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Highlights
• Multiscale flux basis is used to solve a Darcy–Forchheimer reduced fracture model.
• Pre-computation of the basis is completely agnostic to the fracture network model.
• Numerical results show notable subdomain solves reduction in the non-linear solver.

Abstract

In this paper, a multiscale flux basis algorithm is developed to efficiently solve a flow problem in fractured porous media.
Here, we take into account a mixed-dimensional setting of the discrete fracture matrix model, where the fracture network is
represented as lower-dimensional object. We assume the linear Darcy model in the rock matrix and the non-linear Forchheimer
model in the fractures. In our formulation, we are able to reformulate the matrix–fracture problem to only the fracture network
problem and, therefore, significantly reduce the computational cost. The resulting problem is then a non-linear interface problem
that can be solved using a fixed-point or Newton–Krylov methods, which in each iteration require several solves of Robin
problems in the surrounding rock matrices. To achieve this, the flux exchange (a linear Robin-to-Neumann co-dimensional
mapping) between the porous medium and the fracture network is done offline by pre-computing a multiscale flux basis that
consists of the flux response from each degree of freedom (DOF) on the fracture network. This delivers a conserve for the
basis that handles the solutions in the rock matrices for each degree of freedom in the fractures pressure space. Then, any
Robin sub-domain problems are replaced by linear combinations of the multiscale flux basis during the interface iteration. The
proposed approach is, thus, agnostic to the physical model in the fracture network. Numerical experiments demonstrate the
computational gains of pre-computing the flux exchange between the porous medium and the fracture network against standard
non-linear domain decomposition approaches.
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Fig. 1. Graphical example of problem (1.1)–(1.3).

1. Introduction

Using the techniques of domain decomposition [1], a first reduced model has been proposed for flow in a porous
medium with a fracture, in which the flow in the fracture is governed by the Darcy–Forchheimer’s law while that
in the surrounding matrix is governed by Darcy’s law.

We consider here the generalized model given in [2], for which we let Ω to be a bounded domain in Rd , d = 2, 3,
with boundary Γ := ∂Ω , and we let γ ⊂ Ω be a (d − 1)-dimensional surface that divide Ω into two sub-domains:
Ω = Ω1 ∪Ω2 ∪ γ , where γ := ∂Ω1 ∩ ∂Ω2 and Γi := ∂Ωi ∩ ∂Ω , i = 1, 2. The reduced model problem as presented
in [2] is as follows:

K−1
i ui + ∇ pi = 0 in Ωi , (1.1a)

∇ · ui = fi in Ωi , (1.1b)

pi = 0 in Γi , (1.1c)

for i = 1, 2, together with

(K−1
γ + βγ I |uγ |)uγ = −∇τ pγ in γ, (1.2a)

∇τ · uγ = fγ + (u1 · n1 + u2 · n2) in γ, (1.2b)

pγ = 0 in ∂γ, (1.2c)

and subject to the following interface conditions

− ui · ni + αγ pi = αγ pγ on γ, (1.3)

for i = 1, 2. Here, ∇τ denotes the (d − 1)-dimensional gradient operator in the plane of γ , the coefficient K i ,
i = 1, 2, is the hydraulic conductivity tensor in the sub-domain Ωi , and K γ is the hydraulic conductivity tensor in
the fracture, I ∈ Rd×d is the identity matrix, ni is the outward unit normal vector to ∂Ωi , and βγ is a non-negative
scalar known as the Forchheimer coefficient. In (1.3), the coefficient αγ is a function proportional to the normal
component of the permeability of the physical fracture and inversely proportional to the fracture width/aperture. We
refer to [3] for a more detailed model description. For illustration purposes, we give a simple graphical example of
a fractured porous medium in Fig. 1.

The system (1.1)–(1.3) can be seen as a domain decomposition problem, with non-standard and non-local
boundary conditions between the sub-domains Ωi , i = 1, 2. Eqs. (1.1) are the mass conservation equation and
the Darcy’s law equation in the sub-domain Ωi while Eqs. (1.2) are the lower-dimensional mass conservation and
the Darcy–Forchheimer equation in the fracture of co-dimension 1. The last Eq. (1.3) can be seen as a Robin
boundary condition for the sub-domain Ωi with a dependence on the pressure on the fracture γ . Clearly, if βγ = 0,
then (1.2) is reduced to a linear Darcy flow in the fracture. The homogeneous Dirichlet boundary conditions (1.1c)
and (1.2c) are considered merely for simplicity. The functions fi ∈ L2(Ωi ), i = 1, 2 and fγ ∈ L2(γ ) are source
terms in the matrix and in the fracture, respectively.

The mixed-dimensional problem (1.1)–(1.3) is an alternative to the possibility of using a very fine grid in the
physical fracture and a necessarily much coarser grid away from the fracture. This idea was developed in [4]
for highly permeable fractures and in [5] for fractures that may be highly permeable or nearly impermeable.
We also refer to [6–8] for similar models. For all of the above models, where the linear Darcy’s law is used
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as the constitutive law for flow in the fractures as well as in the surrounding domains, there are interactions
between fractures and surrounding domains. This coupling is ensured using Robin type conditions as in [9],
delivering discontinuous normal velocity and pressure across the fractures. Particularly, for fractures with large
enough permeability, Darcy’s law is replaced by Darcy–Forchheimer’s law as established in [2], which complicates
the coupling with the surrounding medium.

Several numerical schemes have been developed for fracture models, such as a cell-centred finite volume
scheme in [10], an extended finite element method in [11], a mimetic finite difference [12] and a block-centred
finite difference method in [13]. The aforementioned numerical approaches solve coupled fracture models directly.
However, different equations defined in different regions are varied in type, such as coupling linear and non-linear
systems, and often interface conditions involve new variables in different domains, which results in very complex
algebraic structures. Particularly, several papers deal with the analysis and implementation of mixed methods applied
to the above model problem in the linear case, on conforming and non-conforming grids [9,14–17]. In [1], the model
problem (1.1)–(1.3) was solved using domain decomposition techniques based on mixed finite element methods
(see [4] for the linear counterpart).

The purpose of this paper is to propose an efficient domain decomposition method to solve (1.1)–(1.3) based on
the multiscale mortar mixed finite element method (MMMFEM) [18]. The method reformulates (1.1)–(1.3) into an
interface problem by eliminating the sub-domain variables. The resulting interface problem is a superposition of a
non-linear operator handling the flow on the fracture and a linear operator presenting the flux contribution from the
sub-domains. When applying the MMMFEM, an outer–inner iterative algorithm like, the Newton-GMRes (or any
Krylov solver) method or fixed-point-GMRes method, is used to solve the interface problem. As an example, if a
fixed-point method (outer) is adopted, the linearized interface equation for the interface update can be solved with a
domain decomposition algorithm (inner), in which at each iteration sub-domain solves, together with inter-processor
communication, are required. The main issue of this outer–inner algorithm is that it leads to an excessive calculation
from the sub-domains, as the dominant computational cost is measured by the number of sub-domain solves.

The new implementation recasts this algorithm by distinguishing the linear and non-linear contributions in the
overall calculation and employing the multiscale flux basis functions from [18] for the linear part of the problem,
before the non-linear interface iterations begin. The fact that the non-linearity in (1.1)–(1.3) is only within the
fracture, we can adopt the notion that sub-domain problems can be expressed as a superposition of multiscale basis
functions. In our terminology the mortar variable considered in [18] becomes the fracture pressure, these multiscale
flux basis with respect to the fracture pressure can be computed by solving a fixed number of Robin sub-domain
problems, that is equal to the number of fracture pressure degrees of freedom per sub-domain. Furthermore, this is
done in parallel without any inter-processor communication.

An inexpensive linear combination of the multiscale flux basis functions then circumvents the need to solve any
sub-domain problems in the inner domain decomposition iterations. This procedure can be enhanced by applying
interface preconditioners as in [9,19,20] and by using a posteriori error estimates of [21] to adaptively refine the mesh
grids. This calculation made in an offline step typically spares numerous unnecessary sub-domain solves. Precisely,
in the original implementations, the number of sub-domain solves is approximately equal to

∑Nlin
k=1 N i

dd, where Nlin

is the number of iterations of the linearization procedure, and N k
dd denotes the number of domain decomposition

iterations (GMRes or any Krylov solver). For the new implementation, the number of sub-domains solves will be
reduced if

∑Nlin
k=1 N k

dd exceeds the maximum number of fracture pressure degrees of freedom on any sub-domain.
This step of freezing the contributions on the flow from the rock matrices can be easily coded, cheaply evaluated,

and efficiently used in practical simulations, i.e, it permits reusing the same basis functions to extend (1.1)–(1.3) by
simulating various linear and non-linear models for flow in the fracture, such as generalized Forchheimer’s laws:

(K−1
γ + βγ I |uγ | + ζγ I |uγ |

2)uγ = −∇τ pγ ,

(K−1
γ eζ pγ + βγ I |uγ |)uγ = −∇τ pγ ,

as well as exploring the fracture and barrier cases and comparing in a cheap way various non-linear solvers
to (1.1)–(1.3). Crucially, the present approach can naturally be integrated into discrete fracture networks (DFNs)
models [16,17,22,23], which in contrast to discrete fracture models (DFMs), do not consider the flow in the
surrounding sub-domains, but handle both a large number of fractures and a complex interconnecting network
of these fractures.
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For the present setting, we allow for the discretization of (1.1)–(1.3) by different numerical methods applied
separately in the surrounding sub-domains and in the fracture. We allow for the cases where the grids of the porous
sub-domains do not match along the fracture, where different mortar grid elements are used. We also investigate
the case where the permeability in the fracture K γ is much lower than the permeability in the surrounding matrix
K .

The library PorePy [24] has been used and extended to cover the numerical schemes and examples introduced in
this article. The main contribution to the library is the implementation of the multiscale and domain decomposition
frameworks. Even if we focus on lowest-order Raviart–Thomas–Néd élec finite elements, our implementation is
agnostic with respect to the numerical scheme. The example presented are also available in the GitHub repository.

This paper is organized as follows: Firstly, the variational formulation of the problem and the MMMFEM
approximation are given in Section 2. Therefore, the reduction of the original problem into non-linear interface
problem is introduced. The linearization–domain-decomposition procedures are formulated in Section 3. Section 4
describes the implementation based on the multiscale flux basis. We show that structurally the same implementation
can be extended for more complex intersecting fractures model. Finally, we showcase the performance of our method
on several numerical examples in Section 5 and draw the conclusions in Section 6.

2. Non-linear domain decomposition method

As explained earlier, it is natural to solve the mixed-dimensional problem (1.1)–(1.3) using domain decomposition
techniques. To this aim, we introduce the weak spaces in each sub-domain Ωi , i = 1, 2,

V i := H(div,Ωi ), Mi := L2(Ωi ),

and define their global versions by

V :=

2⨁
i=1

V i , M :=

2⨁
i=1

Mi .

Equivalently, we introduce the weak spaces on the fracture γ , i.e,

V γ := H(divτ , γ ), Mγ := L2(γ ).

Following [1,9], a mixed-dimensional weak form of (1.1)–(1.3) asks for (u, p) ∈ V × M and (uγ , pγ ) ∈ V γ × Mγ

such that, for each i ∈ {1, 2},

(K−1u, v)Ωi + α−1
γ ⟨u · ni , v · ni ⟩γ = (p, ∇ · v)Ωi − ⟨pγ , v · ni ⟩γ ∀v ∈ V ,

(∇ · u, q)Ωi = ( f, q)Ωi ∀q ∈ M, (2.1a)

⟨K−1(uγ )uγ , vγ ⟩γ = ⟨pγ , ∇τ · vγ ⟩
γ

∀vγ ∈ V γ , (2.1b)

⟨∇τ · uγ , qγ ⟩
γ

= ⟨ fγ + Ju · nK , qγ ⟩
γ

∀qγ ∈ Mγ , (2.1c)

where we introduced the functions K and f in Ω1 ∪ Ω2 such that K i = K |Ωi , and fi = f |Ωi , i = 1, 2. The jump
J·K is defined by

Ju · nK := u1 · n1 + u2 · n2,

with ni the outer unit normal vector of Ωi on γ , for i = 1, 2. Finally, the non-linear term is defined as

K−1(uγ ) := K−1
γ + βγ I |uγ |,

The reader is referred to [2] for proof of the existence and uniqueness of a solution to the variational formula-
tion (2.1).

2.1. The discrete problem

Let Th,i be a partition of the sub-domain Ωi into either d-dimensional simplicial and/or rectangular elements.
We also let Th,γ to be a partition of the fracture γ into (d − 1)-dimensional simplicial and/or rectangular elements.
Note that, for both partitions, general elements can be treated via sub-meshes, see [21] and the references therein.
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Moreover, we assume that each partition is conforming within each sub-domain as well as in the fracture. The
meshes Th,i , i = 1, 2, are allowed to be non-conforming on the fracture-interface γ , but also different from Th,γ .
We then set Th := ∪

2
i=1Th,i and denote by h the maximal element diameter in Th . For the scalar unknowns, we

introduce the approximation spaces Mh := Mh,1 × Mh,2 and Mh,γ , where Mh,i , i = 1, 2, respectively Mh,γ , is the
space of piecewise constant functions associated with Th,i , i = 1, 2, respectively Th,γ . For the vector unknowns,
we introduce the approximation spaces V h := V h,1 × V h,2 and V h,γ , where V h,i , i = 1, 2 and V h,γ , are the
lowest-order Raviart–Thomas–Néd élec finite elements spaces associated with Th,i , i = 1, 2 and Th,γ , respectively.
Clearly, in contrast to what is done in [18,25], we use the same order of the polynomials for the interface-pressure
and the normal traces of the sub-domain velocities on the interface.

The discrete mixed-dimensional finite element approximation of (2.1) is as follows: find (uh, ph) ∈ V h × Mh
and (uh,γ , ph,γ ) ∈ V h,γ × Mh,γ such that, for each i ∈ {1, 2},

(K−1uh, v)Ωi + α−1
γ ⟨uh · ni , v · ni ⟩γ = (ph, ∇ · v)Ωi − ⟨ph,γ , v · ni ⟩γ ∀v ∈ V h,

(∇ · uh, q)Ωi = ( f, q)Ωi ∀q ∈ Mh, (2.2a)

⟨K−1(uh,γ )uh,γ , vγ ⟩γ = ⟨ph,γ , ∇τ · vγ ⟩γ ∀vγ ∈ V h,γ , (2.2b)

⟨∇τ · uh,γ , qγ ⟩γ = ⟨ fγ + Juh · nK , qγ ⟩γ ∀qγ ∈ Mh,γ . (2.2c)

The next step in formulating a multiscale flux basis algorithm to solve (2.2) is to adopt domain decomposition
techniques to reduce the global mixed-dimensional problem to an interface problem posed only on the fracture [19].

2.2. Reduction to interface problem

We introduce the discrete (linear) Robin-to-Neumann operator SRtN
i , i = 1, 2:

SRtN
i : Mh,γ × Mi → Mh,γ , SRtN

i (λh,γ , f ):= −uh(λh,γ , f ) · ni ,

where (uh, ph) ∈ V h × Mh is the solution of the sub-domain problems with source term f , homogeneous Dirichlet
boundary condition on ∂Ω , and λ as a Robin boundary condition along the fracture γ , i.e, for i = 1, 2,

(K−1uh, v)Ωi + α−1
γ ⟨uh · ni , v · ni ⟩Ωi = (ph, ∇ · v)Ωi − ⟨λh,γ , v · ni ⟩γ ∀v ∈ V h,i ,

(∇ · uh, q)Ωi = ( f, v)Ωi ∀q ∈ Mh,i . (2.3a)

Then we set

SRtN(λh,γ , f ) :=

2∑
i=1

SRtN
i (λh,γ , fi ).

With these notations, we can see that solving (2.2) is equivalent to solving the following non-linear mixed interface
problem: find (uh,γ , ph,γ ) ∈ V h,γ × Mh,γ such that,

⟨K−1(uh,γ )uh,γ , vγ ⟩γ − ⟨ph,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (2.4a)

⟨∇τ · uh,γ , qγ ⟩γ + ⟨SRtN(ph,γ , f ), qγ ⟩γ = ⟨ fγ , qγ ⟩γ ∀qγ ∈ Mh,γ , (2.4b)

or equivalently

⟨K−1(uh,γ )uh,γ , vγ ⟩γ − ⟨ph,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (2.5a)

⟨∇τ · uh,γ , qγ ⟩γ + ⟨Sγ (ph,γ ), qγ ⟩γ = ⟨ fγ + gγ , qγ ⟩γ ∀qγ ∈ Mh,γ , (2.5b)

where we have set

Sγ (ph,γ ) := SRtN(ph,γ , 0) and gγ := −SRtN(0, f ). (2.6)

The above distinction is classical in domain decomposition techniques in which we split the sub-domain problems
into two families of local problems on each Ωi : one is with zero source and specified Robin value on the fracture-
interface, and the other is with zero Robin value on the fracture-interface and specified source. In compact form,
the mixed interface Darcy–Forchheimer problem (2.5) can be rewritten as[

K−1(·) BT
γ

Bγ Sγ

] [
uh,γ

ph,γ

]
=

[
0

gγ + fγ

]
. (2.7)
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This system is a non-linear mixed interface problem [26] that can be solved iteratively by using fixed point
iterations or via a Newton–Krylov method. To present the two approaches, let us first consider the linear context,
i.e, suppose the operator K−1(·) is linear. Then (2.7) is the system associated to the linear mixed Darcy problem
on the fracture that can be solved using a Krylov type method, such as GMRes or MINRes. Given an initial guess
w

(0)
h,γ := [u(0)

h,γ , p(0)
h,γ ]⊤, the GMRes algorithm computes

w
(m)
h,γ := arg min

v ∈ w
(0)
h,γ

+Km (Aγ ,r(0)
γ )

∥bγ − Aγ v∥2 for m ≥ 1, (2.8)

as an approximate solution to (2.7), where Aγ is the associated stiffness matrix of the linear system, bγ is
the right-hand side, and Km(Aγ , r (0)

γ ) is the m-dimensional Krylov subspace generated by the initial residual
r (0)

γ := bγ − Aγ w
(0)
h,γ , i.e,

Km(Aγ , r (0)
γ ) := span(r (0)

γ ,Aγ r (0)
γ , . . . ,A(m−1)

γ r (0)
γ ).

Clearly, each GMRes iteration needs to evaluate the action of the Robin-to-Neumann type operator Sγ via (2.6),
representing physically the contributions on the flow from the rock matrices, i.e, to solve one Robin sub-domain
problem per sub-domain. Thus the GMRes algorithm is implemented in the matrix-free context [18,27,28].

One can easily observe that the evaluation of Sγ dominates the total computational costs in (2.8). In practice, this
step is done in parallel and involves inter-processor communication across the fracture-interface [27]. To present
the evaluating algorithm of Sγ , we let D⊤

h,i : V h,i · ni |γ → Mh,γ be the L2-orthogonal projection from the normal
trace of the velocity space onto the mortar space normal trace of the velocity space in sub-domain Ωi , i = 1, 2,
onto the pressure space on the fracture Mh,γ . We then summarize the evaluation of the interface operator by the
following steps:

Algorithm 2.1 (Evaluating the Action of Sγ ).

1. Enter an interface data ϕh,γ .
2. For i = 1 : 2

(a) Project mortar data onto sub-domain boundary, i.e,

ϕh,γ

Dh,i
−→ λh,γ .

(b) Solve the sub-domain problem (2.3) with Robin boundary condition λh,γ and with f = 0.
(c) Project the resulting flux onto the mortar space Mh,γ , i.e,

−uh(λh,γ , 0) · ni
D⊤

h,i
−→ −D⊤

h,i uh(λh,γ , 0) · ni .

EndFor
3. Compute the flow contribution from the sub-domains to the fracture given by the flux jump across the fracture,

i.e,

Sγ (ϕh,γ ) =

2∑
i=1

−D⊤

h,i uh(λh,γ , 0) · ni .

3. Non-linear interface iterations

In this section, we form two linearization–domain-decomposition algorithms to solve the mixed interface
Darcy–Forchheimer problem (2.5). For the linearization (outer) of (2.5), a first algorithm based on a fixed-point
method is presented along with a second one based on Newton-GMRes method [29,30]. For the solver of the inner
systems (domain decomposition systems), both methods uses the GMRes method (2.8) to solve the reduced mixed
interface problems. Note that the two approaches have competitive performance for such non-linear model problems
and they lead to different applications of the multiscale flux basis functions of Section 4.
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3.1. Method 1: fixed-point-GMRes

We consider first a standard fixed-point approach to solve the interface Darcy–Forchheimer problem (2.5)
(see [30]). Given an initial value u(0)

h,γ , being the solution of a linear Darcy, for k = 1, 2, . . . , until convergence,
find (u(k)

h,γ , p(k)
h,γ ) ∈ V h,γ × Mh,γ such that,

⟨K−1(u(k−1)
h,γ )u(k)

h,γ , vγ ⟩γ − ⟨p(k)
h,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (3.1a)

⟨∇τ · u(k)
h,γ , qγ ⟩γ + ⟨Sγ (p(k)

h,γ ), qγ ⟩γ = ⟨ fγ + gγ , qγ ⟩γ ∀qγ ∈ Mh,γ . (3.1b)

This process is linear and can be solved using GMRes method (2.8), where each iteration needs to set up the action
of the Robin-to-Neumann operator Sγ using Algorithm 2.1. The above fixed-point-GMRes algorithm is iterated
until a fixed-point residual tolerance reaches some prescribed value.

The result of this procedure is then used to generate the solution in the sub-domains via

uh |Ωi = uh(p(∞)
h,γ , 0)|Ωi + uh(0, fi ), (3.2a)

ph |Ωi = ph(p(∞)
h,γ , 0)|Ωi + ph(0, fi ), (3.2b)

for i = 1, 2, requiring two additional sub-domain solves, and where p(∞)
h,γ indicates the fracture pressure at

convergence.

Remark 3.1 (An Alternative to (3.1)). A well-known drawback of GMRes algorithm for solving the interface-
fracture problem (3.1) is that the number of iterations depends essentially on the number of sub-domain solves. A
preconditioner is then necessary to reduce the iterations number to a reasonable level. To this aim, it is possible to
reformulate (3.1) into a primal problem: at the iteration k ≥ 1, by solving for the sole scalar unknown p(k)

h,γ , such
that

−∇τ · [−K(p(k−1)
h,γ )∇τ p(k)

h,γ ] + Sγ (p(k)
h,γ ) = gγ + fγ on γ, (3.3a)

which can be discretized with a cell-centred finite volume method, leading to a symmetric and positive definite
system that can be solved with a CG method. The CG method can be equipped with a preconditioner being the
inverse of the discrete counterpart of the operator −∇τ · [−K(p(k−1)

h,γ )∇τ ] (see [19,31] for more details).

Remark 3.2 (The Total Computational Costs). The total computational costs in the inner–outer iterative ap-
proach (3.1) is dominated by the number of sub-domain solves required. Precisely, the total number of sub-domain
solves is given by

∑Nlin
k=1 N k

dd, where Nlin is the number of iterations of the fixed-point procedure as outer-loop
algorithm, and N k

dd denotes the number of inner loop domain decomposition iterations (GMRes) at the fixed-point
iteration k ≥ 1.

3.2. Method 2: Newton-GMRes

In the second approach, we propose Newton’s method to solve the interface Darcy–Forchheimer problem (2.5).
For simplicity of notation, we introduce the following

K−1,(k)
:= K−1(u(k)

h,γ ) = K−1
γ + βγ I |u(k)

h,γ | and K−1,(k)
∂ :=

∂K−1,(k)

∂u(k)
h,γ

= βγ

u(k)
h,γ

|u(k)
h,γ |

.

The non-linear variational form (2.4) may be rewritten in the following canonical form: find uh,γ ∈ V h,γ and
ph,γ ∈ Mh,γ , such that

Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
= 0, ∀(vγ qγ ) ∈ V h,γ × Mh,γ ,

where Fγ is the residual expression from the mixed system given as follows:

Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
:= ⟨K−1(uh,γ )uh,γ , vγ ⟩γ + ⟨Sγ (ph,γ ), qγ ⟩γ

− ⟨ph,γ , ∇τ · vγ ⟩γ + ⟨∇τ · uh,γ , qγ ⟩γ − ⟨ fγ + gγ , qγ ⟩γ .
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In the next step, we calculate the Jacobian given by Jγ

[
(u(k)

h,γ , p(k)
h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )

]
by taking the Gâteaux

variation of the residual Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
at uh,γ = u(k)

h,γ and ph,γ = p(k)
h,γ in the directions of δuh,γ and

δph,γ , respectively. This can be formally obtained by computing

Jγ

[
(u(k)

h,γ , p(k)
h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )

]
:=

[Fγ

[
(u(k)

h,γ + ϵδuh,γ , p(k)
h,γ + ϵδph,γ ), (vγ , qγ )

]
− Fγ

[
(u(k)

h,γ , p(k)
h,γ ), (vγ , qγ )

]
ϵ

]
ϵ→0

.

This definition yields

Jγ

[
(u(k)

h,γ , p(k)
h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )

]
= ⟨(K−1,(k)

+ K−1,(k)
∂ ⊗ u(k)

h,γ )δuh,γ , vγ ⟩γ + ⟨Sγ (δph,γ ), qγ ⟩γ

− ⟨δph,γ , ∇τ · vγ ⟩γ + ⟨∇τ · δuh,γ , qγ ⟩γ ,

where ⊗ denotes the standard tensor product. At each Newton iteration, we solve the following linear variational
problem: find (δuh,γ , δph,γ ) ∈ V h,γ × Mh,γ , such that

Jγ

[
(u(k)

h,γ , p(k)
h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )

]
= −Fγ

[
(u(k)

h,γ , p(k)
h,γ ), (vγ , qγ )

]
, ∀(vγ , qγ ) ∈ Mh,γ × V h,γ . (3.4)

In compact form, the linear system for the Newton step k ≥ 0 has the following mixed structure[
J k

γ BT
γ

Bγ Sγ

] [
δuh,γ

δph,γ

]
=

[
Ru,k

γ

Rp,k
γ

]
, (3.5)

where Ru,k
γ and Rp,k

γ are the residuals at the current Newton step formed from (3.4).
The interface system (3.5) is then solved with the GMRes iterations (2.8). On each GMRes iteration, we need

to evaluate the action of the Robin-to-Neumann operator Sγ using Algorithm 2.1. The solution of the interface
problem is therefore obtained in an iterative fashion using the following update equations until the Newton residual
reaches some prescribed tolerance:

u(k+1)
h,γ = u(k)

h,γ + δuh,γ and p(k+1)
h,γ = p(k)

h,γ + δph,γ .

The result of this iterative approach is then used to infer the solution in the sub-domains using (3.2), which needs
two additional sub-domain solves.

Remark 3.3 (An Alternative to (3.4)). For the mixed Jacobian problem in the fracture (3.4), it is possible to adopt
the idea introduced in Remark 3.2 to reduce the computational cost by reformulating (3.4) into a cell-centred finite
volume problem with the pressure step δph,γ as the sole variable. The resulting system is also symmetric definite
and positive and can be solved with the CG method equipped with a local preconditioner.

4. Outer–inner interface iterations with multiscale flux basis

As noticed previously, the dominant computational cost in the above linearization–domain-decomposition
procedures comes from the sub-domain solves to evaluate the action of Sγ using Algorithm 2.1 (step 2(b)). We recall
that the number of sub-domain solves required by each method is approximately equal to

∑Nlin
k=1 N i

dd, where Nlin

is the number of iterations of the linearization procedure, and N k
dd denotes the number of domain decomposition

iterations (GMRes or any Krylov solver). Even though all sub-domain solves can be computed in parallel, this
still be very costly; first, as the non-linear interface solver may converge very slowly and, second, that at each
linearization iteration the condition number of the linearized interface problem ((3.1) for Method 1 and (3.4) for
Method 2) is large due to a highly refined mesh.

One way to reduce the computational costs, is to employ the multiscale flux basis, following [18]. The motivation
of these techniques in this work stems from eliminating the dependency between the total number of solves and the
employed outer–inner procedure on the interface-fracture. This is easily achieved by pre-computing and storing the
flux sub-domain responses, called multiscale flux basis, associated with each fracture pressure degree of freedom
on each sub-domain.
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The multiscale flux basis requires solving a fixed number of linear sub-domain solves and permits retrieving
the action of Sγ on Mh,γ by simply taking a linear combination of multiscale flux basis functions. As a result,
the number of sub-domains solves is now independent of the used linearization procedure as well as of the used
solver for the inner domain decomposition systems. In practice, the number of sub-domains solves will be reduced
if

∑Nlin
k=1 N k

dd exceeds the maximum number of fracture pressure degrees of freedom on any sub-domain.

4.1. Multiscale flux basis

Following [18], we define (Φℓ
h,γ )

Nh,γ

ℓ=1 to be the set of basis functions on the interface pressure space Mh,γ , where
Nh,γ is the number of pressure degrees of freedom on sub-domain γ . As a result, on the fracture-interface, we have

ph,γ :=

Nh,γ∑
ℓ=1

pℓ
h,γΦ

ℓ
h,γ .

We compute the multiscale flux basis functions corresponding to (Φℓ
h,γ )

Nh,γ

ℓ=1 using the following algorithm:

Algorithm 4.1 (Assembly of the Multiscale Flux Basis).

1. Enter the basis (Φℓ
h,γ )

Nh,γ

ℓ=1 . Set ℓ = 0.
2. Do

(a) Increase ℓ := ℓ + 1.
(b) Project Φℓ

h,γ on the sub-domain boundary, i.e,

Φℓ
h,γ

Dh,i
−→ λℓ

h,i .

(c) Solve problem (2.3) in each sub-domain Ωi with Robin boundary condition λℓ
h,i and with f = 0.

(d) Project the boundary flux onto the mortar space on the fracture, i.e,

−uh(λℓ
h,i , 0) · ni

D⊤
h,i

−→ Ψ ℓ
h,γ,i

While ℓ ≤ Nh,γ .
3. Form the multiscale flux basis for sub-domain Ωi , i.e,{

Ψ 1
h,γ,i ,Ψ

2
h,γ,i , . . . ,Ψ

Nh,γ

h,γ,i

}
⊂ Mh,γ .

Once the multiscale flux basis functions are constructed for each sub-domain, the action of interface operator
SRtN

i , and then also the action of Sγ via (2.6), is replaced by a linear combination of the multiscale flux basis
functions Ψ ℓ

h,γ,i . Specifically, for an interface datum ϕh,γ ∈ Mh,γ , we have ϕh,γ :=
∑Nh,γ

ℓ=1 ϕℓ
h,γΦ

ℓ
h,γ , and for i = 1, 2,

SRtN
i (ϕh,γ , 0) := SRtN

i (
Nh,γ∑
ℓ=1

ϕℓ
h,γΦ

ℓ
h,γ , 0) =

Nh,γ∑
ℓ=1

ϕℓ
h,γSRtN

i (Φℓ
h,γ , 0) =

Nh,γ∑
ℓ=1

ϕℓ
h,γΨ

ℓ
h,γ,i .

Remark 4.2 (DOFs on γ ). We observe that each fracture pressure basis function Φℓ
h,γ on the fracture-interface

corresponds to exactly two different multiscale flux basis functions, one for Ω1 and one for Ω2. For the case of
a fractures network, say γ := ∪i ̸= jγi j , where γi j is the fracture between the sub-domain Ωi and Ω j , the previous
basis reconstruction is then applied independently on each fracture.

4.2. Application on intersecting fractures model: solving the DFNs system

In this part, we first introduce and describe the case of intersecting fractures, and then we provide our amendments
to the previous algorithms.
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Fig. 2. Representation of three possible fracture mesh configurations: on the left coarser, on the centre conforming, and on the right finer.
The triangles are represented in grey.

Fig. 3. On the left, graphical example of problem (1.1)–(1.3) along with (4.2) in case of intersecting fractures. On the right, example of
construction of a multiscale flux basis.

4.2.1. Mathematical model
For the sake of simplicity, we consider the Darcy–Forchheimer model in a two-dimensional geological domain

made up with three sub-domains Ωi , i = 1, 2, 3, physically subdivided by fractures γi, j , 1 ≤ i < j ≤ 3. The rock
matrix is now defined as Ω :=

∑3
i=1 Ωi , Ωi ∩ Ω j = ∅, where a single fracture is γi, j := ∂Ωi ∩ ∂Ω j , all fractures

that touch sub-domain Ωi are γi := ∂Ωi \ ∂Ω . Also, T := ∂γ1,2 ∩ ∂γ2,3 = ∂γ2,3 ∩ ∂γ1,3 = ∂γ1,3 ∩ ∂γ1,2 corresponds
to the intersection point of the fractures γi, j and Γi := ∂Ωi ∩ ∂Ω the boundary of each sub-domain Ωi . We impose
the Darcy model (1.1) in each sub-domain Ωi and the Darcy–Forchheimer model (1.2) in each fracture γi, j , with
unknowns denoted by (uγi, j , pγi, j ). See Fig. 3 (left) as an example.

They are coupled using the Robin boundary conditions given by

− ui · ni + αi, j pi = αi, j pγi, j on γi, j , (4.1)

for 1 ≤ i < j ≤ 3, where the coefficient αi, j can now be different in each fracture. To close the system, we need
to impose transmission conditions between the fractures at the (d − 2)-dimensional interface T . On the intersection
T , we set, for 1 ≤ i < j ≤ 3,

− uγi, j · ni, j + αγi, j pγi, j = αγi, j pT on T, (4.2a)∑
1≤i< j≤3

uγi, j · ni, j = 0 on T, (4.2b)

where αγi, j is a strictly positive constant, and ni, j is the outer unit normal vector to ∂γi, j .
For the partition of the sub-domain Ωi , 1 ≤ i ≤ 3, and the fractures γi, j , 1 ≤ i < j ≤ 3, we extend the notation

introduced in Section 2.1. We let Th,i be a partition of the sub-domain Ωi into 2-dimensional simplicial elements
and let Th,γi, j to be a partition of the fracture γi, j into 1-dimensional simplicial elements. Again, the meshes Th,i ,
1 ≤ i ≤ 3, are allowed to be non-conforming on the fractures γi, j , 1 ≤ i < j ≤ 3, but also different from those
used in γi, j , 1 ≤ i < j ≤ 3 (see Fig. 2 for more details). We also extend the same notation for the approximation
spaces in the sub-domains and in the fractures, and additionally we let Mh,T be the space endowed with constant
functions on T .
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4.2.2. Domain decomposition formulation
The extension of the reduced interface problem (2.5) to the present intersecting fractures setting is as follows:

find the triplet (uh,γ , ph,γ , ph,T ) ∈ V h,γ × Mh,γ × Mh,T such that, for each 1 ≤ i < j ≤ 3,

⟨K−1(uh,γ )uh,γ , vγ ⟩γi, j + α−1
γi, j

⟨uh,γ · ni, j , vγ · ni, j ⟩T − ⟨ph,γ , ∇τ · vγ ⟩γi, j

= −⟨ph,T , uγi, j · ni, j ⟩T ∀vγ ∈ V h,γi, j , (4.3a)

⟨∇τ · uh,γ , qγ ⟩γi, j + ⟨Sγi, j (ph,γ ), qγ ⟩γi, j = ⟨ fγi, j + gγi, j , qγ ⟩γi, j ∀qγ ∈ Mh,γi, j , (4.3b)∑
1≤i< j≤3

⟨uh,γi, j · ni, j , qT ⟩T = 0 ∀qT ∈ Mh,T . (4.3c)

On each fracture, the Robin-to-Neumann operator Sγi, j and the linear functional gγi, j , 1 ≤ i < j ≤ 3, are now
given by

Sγi, j (ph,γ ) :=

∑
l∈(i, j)

SRtN
γl

(ph,γ , 0) = −

∑
l∈(i, j)

uh,l(ph,γ , 0) · nl |γl ,

gγi, j :=

∑
l∈(i, j)

SRtN
γl

(0, fl) =

∑
l∈(i, j)

uh,l(0, fl) · nl |γi .

The above problem can be seen as a DFNs system on the set of fractures, and as a domain decomposition problem
between the 1-dimensional fractures γi, j , 1 ≤ i < j ≤ 3, cf. [16,17,22] for more details.

4.2.3. Iterative procedure
We propose to solve the non-linear domain decomposition problem (4.3) using the fixed-point approach in

Section 3.1. This iterative process is now equipped with the multiscale flux basis of Section 4 to lessen the interface
iterations. To this aim, we introduce

Sγ (ph,γ ) :=

∑
0≤i< j≤3

Sγi, j (ph,γ ) and gγ :=

∑
1≤i< j≤3

gγi, j ,

and let

ST (ph,T ) :=

∑
1≤i< j≤3

uh,γi, j · ni, j |T .

Applying the fixed-point algorithm on the set of interface Darcy–Forchheimer equations (4.3) can be interpreted
as follows: at the iteration k ≥ 1, we solve⎡⎣K−1,(k)

γ BT
γ ST

T
Bγ Sγ 0
ST 0 0

⎤⎦
⎡⎢⎣uk

h,γ

pk
h,γ

pk
h,T

⎤⎥⎦ =

⎡⎣ 0
fγ + gγ

0

⎤⎦ , (4.4)

using GMRes method until a fixed tolerance is reached. Again, the evaluation of Sγ in each interface GMRes
iteration dominates the total computational costs of this outer–inner procedure. Note that each inner iteration
also requires the evaluation of the Dirichlet-to-Neumann operator ST , which requires solves in the fractures. The
complete algorithm when equipped with multiscale flux basis is now given by the following algorithm.

Algorithm 4.3 (Fixed-point Algorithm with Multiscale Flux Basis for Fracture Network Model).

1. Enter the source terms and the permeabilities in the fractures and the rock matrices.
2. Choose the meshes Th,i , 1 ≤ i ≤ 3, and Th,γi, j , 1 ≤ i < j ≤ 3.
3. Calculate the right-hand-sides gγi, j , 1 ≤ i < j ≤ 3, by solving the Darcy sub-domain problem in Ωi with

source term fi and zero Robin value on the fracture-interface γi . Then, compute the resulting jump across
all sub-domain interfaces.

4. In the sub-domain Ωi , 1 ≤ i ≤ 3, let Nh,γi be the number of degrees of freedom in the space Mh,γi . Define
the basis (Φℓ

h,γi
)
Nh,γi
ℓ=1 . Set i = 0.

Do {Assembly of the multiscale flux basis}
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(a) Increase i := i + 1.
(b) Compute the multiscale flux basis functions (Ψ ℓ

h,γi
)
Nh,γi
ℓ=1 corresponding to (Φℓ

h,γi
)
Nh,γi
ℓ=1 using

Algorithm 4.1, i.e.,

Ψ ℓ
h,γi

:= SRtN
γl

(Φℓ
h,γi

, 0), ℓ = 1, . . . ,Nh,γi .

While i ≤ 3.
5. Given an initial guess u(0)

h,γi, j
, 1 ≤ i < j ≤ 3. Set k = 0.

Do {Fixed-point iterations}

(a) Increase k := k + 1.
(b) Solve the linear system on the fractures (4.4) using GMRes method (2.8), where in every iteration the

operator action Sγ on any ϕh,γ ∈ Mh,γ is computed with the following steps:

i. Use a linear combination of the multiscale flux basis to compute the action of SRtN
γi

by

SRtN
γi

(ϕh,γ,i , 0) =

Nh,γ,i∑
ℓ=1

ϕℓ
h,γ,iΨ

ℓ
h,γ,i .

ii. Compute the jump across all the fractures:

Sγ (ϕh,γ ) =

∑
0≤i< j≤3

∑
l∈(i, j)

SRtN
γl

(ϕh,γ , 0).

While
∥(pk,∞

h,γ , uk,∞
h,γ ) − (pk−1,∞

h,γ , uk−1,∞
h,γ )∥∞

∥(pk−1,∞
h,γ , uk−1,∞

h,γ )∥∞

≥ εtol . (4.5)

5. Numerical examples

In this section, we validate the model and analysis presented in the previous parts by means of numerical test
cases. We have chosen three examples designed to show how the proposed linearization–domain-decomposition
approaches equipped with multiscale flux basis behaves versus the standard ones in various physical and geometrical
situations. To compare these approaches, the main criteria considers the number of solutions of the higher-
dimensional sub-problems since it constitutes the major computational cost. We consider solving the problem in the
network of fractures as negligible. Since each of the higher-dimensional sub-problem is linear and will be solved
many times, we consider an LU-factorization of the system matrix and a forward–backward substitution algorithm
to compute the numerical solution. It results in a computational cost reduced to O(n2) flops each time, where n is
the size of the matrix. For bigger systems, an iterative scheme is preferable.

We use the PorePy [24] library, which is a simulation tool for fractured and deformable porous media written
in Python. PorePy uses SciPy [32] as default sparse linear algebra. All the examples are reported in the GitHub
repository of PorePy, we want to stress again that even if we focus on lowest-order Raviart–Thomas–Néd élec finite
elements, our implementation is agnostic with respect to the numerical scheme.

For the multiscale flux basis scheme presented in Section 4, for a fixed rock matrix grid and normal fracture
permeability it is possible to compute once all the basis functions. The results in the next parts should be read
under this important property of the method, thus in many cases only a pure fracture network will be solved at a
negligible computational cost. The multiscale basis functions are computed and stored in an offline phase prior the
simulation (called online).

Unless otherwise noted, the tolerance for the relative residual in the inner GMRes algorithm is taken to be 10−6.
The same tolerance is chosen for the outer Newton/fixed-point algorithm. We consider an LU-factorization of the
fracture network matrix [33,34] as the preconditioner of the GMRes method. To illustrate the efficiency of the
proposed new implementation while preserving the accuracy of the MMMFEM, in Section 5.4 we distinguish two
cases: for high-permeable fractures, the mortar mesh is assumed to be conforming with the fine mesh in the rock
matrix, while for low-permeable fractures, a coarse scale of the mortar mesh is considered.

In the examples, we use the abbreviation MS when the linearization–domain-decomposition approach is equipped
with multiscale flux basis techniques, and DD for the corresponding classical approach.
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Fig. 4. Graphical representation of the domain and fracture network geometry (resulting into 10 sub-domains) common for all test cases.

Table 1
Definition of the cases for the examples.

K γ αγ

case (i) 104ϵ I 104/ϵ

case (ii) 10−4ϵ I 10−4/ϵ

case (iii) 104ϵ I 10−4/ϵ

case (iv) 10−4ϵ I 104/ϵ

Remark 5.1 (Fracture Aperture). Even if not explicitly considered in the previous parts of the work, we introduce
the fracture aperture ϵ as a constant parameter. This choice is based on the fact that geometries and (some) data of
the forthcoming examples are taken from the literature.

In 5.1 we describe the geometry and some data of the problem considered. Few subsections follow with an
increase level of challenge: linear case in 5.2, Forchheimer model in 5.3, Forchheimer model with heterogeneous
parameters in 5.4, to conclude with a generalized Forchheimer model in 5.5.

5.1. Problem setting

To validate the performance of the two proposed algorithms, we consider the first problem presented in the
benchmark study [35]. The unit square domain Ω , depicted in Fig. 4, has unitary permeability of the rock matrix
and it is divided into 10 sub-domains by a set of fractures with fixed aperture ϵ equal to 10−4. At the boundary,
we impose zero flux condition on the top and bottom, unitary pressure on the right, and flux equal to −1 on the
left. The boundary conditions are applied to both the rock matrix and the fracture network.

Contrary to what has been done in the benchmark paper, we consider four different scenarios for the fracture
permeabilities, by having high or low values in the tangential and normal parts. Thus, we have the case (i) with
high permeable fractures, case (ii) has low permeable fractures, while cases (iii) and (iv) have mixed high and low
permeability in normal and tangential directions. See Table 1 for a summary of the fracture permeability in each
case. Case (i) and (ii) have the same permeabilities used in the benchmark paper [35].

In the following examples, we consider the maximal number of rock matrix solves to be 104, and we mark with
∞ if this is exceeded.

5.2. Darcy model: βγ = 0

The first example considers the Forchheimer coefficient set to zero, thus the problem becoming linear. The results
for different level of discretization are reported in Table 2. We indicate by level 1 a grid with a total of 110 triangles
and 26 mortar edges, level 2 with 1544 triangles and 84 mortar edges, and level 3 with 3906 triangles and 138 mortar
edges.
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Table 2
Total number of the higher-dimensional problem solves for the case study of example
in Section 5.2. For each level of refinement cases marked in † share the same
multiscale flux basis, which can be constructed only once. The same is valid for §.

level 1 level 2 level 3

MS DD MS DD MS DD

case (i) 28† 10 86† 11 140† 11
case (ii) 28§ 81 86§ 112 140§ 189
case (iii) 28§ 22 86§ 28 140§ 29
case (iv) 28† 82 86† 61 140† 86

Table 3
Total number of the higher-dimensional problem solves for the case study of example
in Section 5.2. For each level of refinement we change the convergence tolerance
for the domain decomposition method.

Tolerance level 1 level 2 level 3

10−4 10−8 10−4 10−8 10−4 10−8

case (i) 8 11 9 12 9 12
case (ii) 42 105 82 ∞ 150 ∞

case (iii) 21 30 22 36 22 36
case (iv) 42 122 50 ∞ 70 ∞

Table 2 shows the results of this example for the physical considerations of Table 1. We notice that for high
permeable fractures (case (i) and (iii)), the standard domain decomposition method performs better than our method
with multiscale flux basis, while the opposite occurs for low permeable fractures. A possible explanation is related
to the ratio between normal and tangential permeability. The normal permeability determines how strong the flux
exchange is between the rock matrix and the fractures (thus, the communications at each DD iteration), while for
small values of the tangential permeability the fractures are more influenced by the surrounding rock matrices. The
opposite occurs in the case of high tangential permeability. Additionally, the choice of the preconditioner for DD
slightly goes in favour of high permeable fractures due to the dominating role of the fracture flow in the system.
We also recall that the number of higher-dimensional problem solves does not depend on the number of outer–inner
interface iterations, but only on the number of local mortar degrees of freedom on the fractures network. A further
important result in this experiments, is that case (i) and (iv) share the same value of αγ , thus the multiscale flux basis
are computed only once per level of refinement. The same applies to case (ii) and (iii). As a result, the developed
method is globally more efficient than the classical approach. That is, the results in Table 2 show a reduction of
the number of the higher-dimensional problem solves from 195 to 56 for level 1, from 212 to 186 for level 2, and
from 312 to 280 for level 3. Note that the two methods produce the same solution for all the cases, within the same
relative convergence tolerance. The numerical solution for all cases is reported in Fig. 5.

The next series of numerical experiments aims at assessing the stability of the domain decomposition approach
with respect to GMRes tolerance. The multiscale flux basis approach provides the extra flexibility to do such analysis
with negligible costs, by reusing the stored multiscale flux basis used for the results of Table 2 but now with different
tolerance for GMRes. Further, this set of test cases aims assessing how the overall gain for an entire simulation in
terms of number of higher-dimensional problem solves can be appreciated or depreciated with more or less stringent
stopping criteria for GMRes; this is a preparatory step to address the complete approaches of Section 3 for the full
non-linear problem, which requires several solves of linear Darcy problems, for which one should formulate the
stopping criteria very carefully. In Table 2, we have considered the relative residual to be below 10−6, while in
Table 3 we present the results in the case of 10−4 and 10−8. Based on the results of Table 3, we can conclude that
even with less stringent criterion, a considerable gain in terms of number of higher-dimensional problem solves
can be achieved. We also see that all the results are free of oscillations and neither the fracture, barrier, or the very
different tangential and normal permeabilities pose any problems for the domain decomposition approach. Based
on the above results and in what follows we consider 10−6 as tolerance for the GMRes algorithm.
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Fig. 5. Pressure and velocity solutions for the four cases: on the top-left case (i), on the top-right case (ii), on the bottom-left case (iii), and
on the bottom-right case (iv). In all the cases, the velocity is represented by arrows (purple for the fractures) proportional to its magnitude.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Total number of the higher-dimensional problem solves required by Method 1 for the
case study in Section 5.3. The number of the fixed-point iterations are in brackets.
Within each case the construction of the multiscale flux basis is done only once, we
mark by † (respectively §) common computations.

βγ case (i) case (iii)

MS DD MS DD

1 86† (2) 33 (2) 86§ (1) 56 (1)
102 86† (3) 44 (3) 86§ (2) 84 (2)
104 86† (8) 99 (8) 86§ (3) 115 (3)
106 86† (94) 1424 (94) 86§ (11) 457 (11)

5.3. Forchheimer model

In this second example we consider case (i) and (iii) for the fracture permeabilities since the Forchheimer model
requires high permeable fractures. In this problem, we fix the computational grid level 2 of Table 2 and we change
the value of βγ in order to compare the performances of Method 1 and Method 2 with and without multiscale flux
basis. The Forchheimer coefficient here varies as {1, 102, 104, 106

}. These values are reasonable since in our model
we do not explicitly scale βγ by the aperture, as done in [2,3]. Therefore, the last two values are more realistic.
The stopping criteria for both methods is based on the relative residual criteria (4.5) with a threshold fixed as 10−6.
The initial guess is taken by solving the linear Darcy by taking βγ equal to zero.

For Method 1, the number of higher-dimensional problem solves is reported in Table 4. As expected, Method 1
equipped with multiscale flux basis (MS) performs all the higher-dimensional problem solves in the offline phase,
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Fig. 6. Pressure and velocity solutions for different configurations of example presented in Section 5.3. On the top case (i) and on the
bottom for case (iii). On the left, we consider value of the Forchheimer coefficient equal to βγ = 1 and on the right a high value βγ = 106.
In all the cases, the velocity is represented by arrows (purple for the fractures) proportional to its magnitude. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

thus the outer–inner interface iterations for the resulting fracture network problem do not influence the total
computational costs. On the contrary, the computational costs of the classical approach (DD) is influenced by the
non-linearity, by varying βγ , as well as by the ratio of the normal and tangential permeabilities, by varying K γ

and αγ . Particularly, the total gain of the new approach is more significant when the non-linear effects becomes
more important (by increasing the value of βγ ). Furthermore, for the entire simulation of each case of Table 4,
the multiscale flux basis are computed only once. As a conclusion, the entire simulation of case (i) required for
Method 1 1600 higher-dimensional problem solves, while for Method 1 with multiscale flux basis, this number is
reduced by 95%. For case (iii), we reduce the computational costs by 88%.

The numerical solution for two values of βγ is reported in Fig. 6 for both cases. Despite the different values
of βγ , we notice that the graphical results are very similar in the case of low αγ . While for high value of αγ , the
resulting apparent permeability given by K γ (1 + K−1

γ βγ |uγ |)−1 decreases (for a fixed |uγ |) and the fractures are
less prone to be the main path for the flow. Also as stated previously, since we do not explicitly scale βγ by the
aperture, values of βγ > 104 are more likely for real applications.

For Method 2, involving Newton’s method for the linearization step, the number of higher-dimensional problem
solves is reported in Table 5. As expected, Method 2 is more efficient than Method 1 in terms of the number of
higher-dimensional problem solves required, regardless of using multiscale flux basis in the domain decomposition
algorithm. Again, the number of solves for the classical approach(DD) depends on the used parameters. This table
demonstrates (as shown with Method 1) that as the value of βγ is increased, there is a point after which Method 2
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Table 5
Total number of the higher-dimensional problem solves required by Method 2 for
the case study in Section 5.3. The number of the Newton iterations is in brackets.
Within each case the construction of the multiscale flux basis is done only once, we
mark by † (respectively §) common computations.

βγ case (i) case (iii)

MS DD MS DD

1 86† (2) 20 (2) 86§ (1) 38 (1)
102 86† (2) 20 (2) 86§ (2) 71 (2)
104 86† (3) 31 (3) 86§ (2) 71 (2)
106 86† (7) 128 (7) 86§ (4) 266 (6)

Table 6
Total number of the higher-dimensional problem solves required by Method 1 for the
case study in Section 5.4. The number of the fixed-point iterations are in brackets.
Within each case the construction of the multiscale basis is done only once, we mark
by † common computations. A coarse scale of the mortar mesh is used on every
low-permeable fracture.

βγ MS DD

1 62† (2) 63 (2)
102 62† (3) 84 (3)
104 62† (8) 189 (8)
106 62† (64) 2372 (64)

with multiscale flux basis is more efficient than without multiscale flux basis. In that case, the gain in the number
of solves becomes more significant when decreasing the value of αγ . Note that, in practice, the simulations for
Method 2 with multiscale flux basis are performed with negligible computational costs as we reused the flux basis
inherited from Method 1. This point together with the fact that the total number of solves required by the entire
simulation of case (i) is now reduced by 57% as well as that of case (i) is reduced by 80% showcase the performance
of Method 2 with multiscale flux basis.

To sum up, equipping Method 1 and 2 with multiscale flux basis leads to powerful tools to solve complex
fracture network with important savings in terms of the number of higher-dimensional problem solves. Note that,
as known, one limitation of Method 2 involving Newton method is that a good initial value is usually required to
obtain a solution. A good combination of both methods can also be used, in which one can perform first some
fixed-point iterations and then switch to Newton method. Concerning the computational costs, let us point out
that the fixed-point algorithm of Method 1 requires at each iteration the assembly of the matrix corresponding to
the linearization of the Darcy–Forchheimer equations and the solution of a linear system. The Newton method in
Method 2 is slightly more expensive since one has to assemble two matrices at each iteration and to update the
right-hand side.

5.4. Heterogeneous Forchheimer model

In this example we assign high permeability to the two largest fractures (one horizontal and one vertical) while
to the others low permeability. For the highly permeable fractures we adopt the physical parameters of case (i),
while for those with lower permeabilities, the physical parameters corresponding to case (ii) together with zero
Forchheimer coefficient. In this case, we want to test the applicability of Method 1 with and without multiscale
flux basis on highly heterogeneous setting for both the permeability and the flow models. We then consider level
2 for the computation and, subsequently, use a coarse scale of the local grids of the low-permeable fractures, i.e,
the number of coarse scale elements being the half of the original number of elements from the fine scale (on the
subdomains); this results in 60 mortar elements instead of 84.

As usually, we compare the method with and without multiscale flux basis in terms of the number of higher-
dimensional problem solves. The results are represented in Table 6. In the present setting, we can see that the
classical approach is outperformed with the approach equipped with multiscale flux basis, particularly, the total
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Fig. 7. Pressure and velocity solutions for example presented in Section 5.4 for β = 102. The velocity is represented by arrows (purple for
the fractures) proportional to its magnitude. A coarse scale on the mortar mesh is used on every low-permeable fracture. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

computational costs is drastically reduced when the non-linear effects become more important. The entire simulation
of Table 6 required 2708 higher-dimensional problem solves for the classical approach while the same approach
equipped with multiscale flux basis required 62 solves. The overall gain is then of 94% which can also be appreciated
for level 3. Similar conclusions as above can be drawn for Method 2, namely in terms of reduction of the solves
(not shown). An example of solution is given in Fig. 7.

5.5. Generalized Forchheimer model

As stated previously, another advantage distinguishes our approach is that it can integrate easily more complex
problems. Here, we apply our procedure to a more general model describing the pressure–flow relation in the
fractures. Precisely, for larger fracture flow velocities, the drag forces (in the Forchheimer model proportional to
the velocity norm) require to consider an additional term proportional to the fluid viscosity. Considering the Barus
formula [36], we have an exponential relation between the fluid viscosity and the pressure. We consider problem
(2.1) where the non-linear term is as follows

K−1(uγ , pγ ) := K−1
γ eζ pγ + βγ I |uγ |,

where ζ being a model parameter. Thus, the non-linear effects are now dependent on both the pressure and the
velocity. For a more detailed discussion we refer to [37]. For the present setting, the fracture permeabilities are set
as in case (i) and (iii) of Table 1.

For the discretization of the mixed geometry, we consider level 2. We use Method 1 with and without multiscale
basis functions. Also, it was not necessary to recompute the basis functions, since we can reuse the stored multiscale
flux basis from the previous test case and solve then only on the fracture network the above more complex
Darcy–Forchheimer model. The total number the higher-dimensional problem solves for βγ = 20 and ζ ∈

(0.5, 5, 7.5) is reported in Table 7. As expected, for such a strong non-linearity, the results show that a considerable
gain in terms of higher-dimensional problem solves can be achieved. Particularly, for large values of ζ the classical
approach becomes uncompetitive to the new approach. In Fig. 8 we report the solution for ζ = 5.

6. Conclusions

In this work, we have presented a strategy to speed up the computation of a Darcy–Forchheimer model for flow
and pressure in fractured porous media by means of multiscale flux basis, that represents the inter-dimensional
flux exchange. The scheme transforms a computationally expensive discrete fracture model to a more affordable
discrete fracture network, where in the latter only a co-dimensional problem is solved. The multiscale flux basis is
computed in an offline stage of the simulation and, despite the particular choice done in this paper, are completely
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Table 7
Total number of the higher-dimensional problem solves required by Method 1 for
the case study in Section 5.5. The number of the fixed-point iterations is in brackets.
Within each case the construction of the multiscale basis is done only once, we mark
by † (respectively §) common computations.

ζ case (i) case (iii)

MS DD MS DD

0.5 86† (5) 71 (5) 86§ (4) 176 (4)
5 86† (4) 648 (4) 86§ (6) ∞

7.5 86† (3) 5317 (3) 86§ (4) ∞

Fig. 8. Pressure and velocity solutions for example presented in Section 5.5 for ζ = 5. The velocity is represented by arrows (purple for
the fractures) proportional to its magnitude. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

agnostic to the model in the fracture network. The numerical results show the speed-up gain compared to a more
classical linearization–domain-decomposition approaches, where solves in both the matrix and the fracture network
are required along the entire outer–inner iterative method. Crucially, an important number of the outer–inner interface
iterations may be spared.

With the proposed approach we are able to predict the computational effort needed to solve the problem since it is
directly related to the number of mortar grids in the fracture network. Furthermore, the multiscale flux basis can be
reused when the fracture network geometry, rock matrix properties, and normal permeability are fixed. Theoretical
findings and numerical results show the validity of the proposed approach and of its aforementioned properties.

Even if not explicitly considered in this work, it is possible to further increase the efficiency of the proposed
scheme by the following two steps. First, compute a multiscale flux basis only in the related connected part of the
rock matrix. Second, use an adaptive stopping criteria for the inner–outer iterative method based on a posteriori
error estimates. These enhancements are a part of future work along with the extension in three-dimensions.
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