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ABSTRACT: The complex traveltime solutions of the complex eikonal equation are the basis of 

inhomogeneous plane-wave seismic imaging methods, such as Gaussian beam migration and tomography. 

We present the analytic approximations for complex traveltime in transversely isotropic media with a 

titled symmetry axis (TTI), which is defined by a Taylor series expansion over the anisotropy parameters. 

The formulation for complex traveltime is developed using perturbation theory and the complex point 

source method. The real part of the complex traveltime describes the wavefront and the imaginary part 

of the complex traveltime describes the decay of amplitude of waves away from the central ray. We 

derive the linearized ordinary differential equations for the coefficients of the Taylor-series expansion 
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using perturbation theory. The analytical solutions for the complex traveltimes are determined by 

applying the complex point source method to the background traveltime formula and subsequently 

obtaining the coefficients from the linearized ordinary differential equations. We investigate the influence 

of the anisotropy parameters and of the initial width of the ray tube on the accuracy of the computed 

traveltimes. The analytical formulas, as outlined, are efficient methods for the computation of complex 

traveltimes from the complex eikonal equation. In addition, those formulas are also effective methods 

for benchmarking approximated solutions.   
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INTRODUCTION 

The complex eikonal equation plays an important role in wave propagation problems of 

inhomogeneous plane waves (Červený, 2001). The inhomogeneous plane wave is a solution of the 

elastodynamics equation if the traveltime is complex-valued (Krebes and Le, 1994). Studies on the 

complex eikonal equation fall into two groups. In the first group, the complex eikonal equation is used 

to describe the traveltimes in attenuating media. The complex eikonal equation is used for ray-based 

imaging and inversion (Huang et al, 2019) for an attenuating medium (i.e. the stiffness coefficients in 

the frequency-domain are complex-valued). Early studies on the complex traveltimes are based on the 

complex ray tracing method (Hearn and Krebes, 1990a, 1990b; Zhu and Chun, 1994; Thomson, 1997; 

Chapman et al., 1999; Kravtsov et al., 1990; Egorchenkov and Kravtsov, 2001). The computation of the 

complex ray tracing is very expensive because it is implemented in a high dimensional space. The 

introduction of the real ray tracing method based on perturbation theory (Vavryčuk, 2008a, 2008b, 2010, 

2012; Klimeš and Klimeš, 2011) into the complex traveltimes computation enables computing complex 

traveltimes numerically.  

The research work carried out in the 1980s is principally focused on developing a linear system of 

equations for asymptotic solutions concentrated in the vicinity of a ray utilizing a complex eikonal 

(Babich and Nomofilov, 1981; Nomofilov, 1982). That early reported work shows Hamiltonian 

formulations for the complex solution in some special systems of local coordinates. Although the theory 

is well established, numerical implementation for Hamiltonian formulations is not known. Effectively, 

solutions for Hamiltonian formulations require solving a system of differential equations numerically.  

In the second group, the complex eikonal equation is used to describe the complex traveltimes of 

Gaussian beams. Since Deschamps’s (1971), Wang and Deschamps’ (1974) and Felsen’s (1976) original 

formulations of the complex phase and the complex eikonal equation method, the complex traveltimes 

method has long attracted interest. Magnanini and Talenti (1999, 2003, 2006) use the Bäcklund transform 

to conduct some extensive research on the complex eikonal equation. The Bäcklund transform constitutes 

the basis of soliton theory (Terng and Karen, 2000). More recently, Li et al. (2011) develop a fast 

marching method to solve the complex eikonal equation without the limitation of the paraxial ray 

approximation. Accordingly, Huang et al. (2016b) design a local algorithm to compute the local complex 

traveltimes by combining the fast marching method with the nonuniform grid-based finite difference 

method. The complex traveltimes of the evanescent wave, in which their real part describes the wavefront 

while their imaginary part describes the decay away from the central ray, play an important role in local 

plane wave. Because of its advantages for handling caustics and multipath resulting from ray tracing in 

complex media, the complex traveltimes have been widely used for Gaussian beam modelling (Červený, 
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1982; Popov, 1982; Huang et al., 2016a; Huang, 2018) and seismic imaging (Hill, 1990, 2001; Gray, 

2005, 2009).  

The work outlined herein sits in the second group. In this paper, we focus on solving the Gaussian 

beam problem in a non-attenuating medium (i.e., the medium behaves elastically, and the stiffness 

coefficients are real-valued). We use a “real-valued” eikonal equation, but we force the traveltimes to be 

complex-valued, while Hearn and Krebs (1990a, 1990b), Zhu and Chun (1994), Thomson (1997), 

Chapman et al. (1999), Kravtsov et al. (1999), Egorchenkov and Kravtsov (2001) and Hao and 

Alkhalifah (2017a, b) use complex-valued eikonal equation without any enforcement of the traveltimes. 

Previously, the condition that the gradient of the real part of the traveltimes is orthogonal to that of the 

imaginary part is taken to solve the complex eikonal equation. That condition does not hold true for 

traveltimes determined from the complex eikonal equation for an attenuating isotropic medium. A key 

advantage of basing our discussion on Gaussian beam theory is that our expressions are readily applicable 

to complex heterogeneous media which is paramount for accurate seismic imaging (Hill, 2001). 

When media are anisotropic, the isotropic approximation is no longer adequate (Huang and 

Greenhalgh, 2019). Areas with thin layering and fractures are particularly common in the geophysical 

exploration context, therefore the effect of anisotropy needs to be considered in realistic applications of 

the complex eikonal equation. This paper outlines the computation of the traveltimes for TTI media. 

Červený (2001) introduces the complex ray tracing method for general anisotropic elastic media. It is 

important to note that the application of such formulations is not usually feasible as the vast majority of 

the recorded datasets do not contain complete information on the elements of the full anisotropic stiffness 

tensor. In addition, it is unfeasible to consider the full anisotropic characterization of elastic media . It is 

often verified that disregarding shear waves from the constitutive law for an anisotropic medium yields 

an accurate representation of the kinematics of waves at the expense of sacrificing the accuracy of the 

computed amplitudes. However, it is important to note that modeling seismic waves with the true 

amplitude is generally not feasible as the exact source wavelet is unknown. In addition, the dynamic 

response of an acoustic medium is different from that of an elastic medium. The acoustic approximation 

has been widely used in seismic inversion and imaging (Alkhalifah, 2000, Grechka, 2004, Zhang et al., 

2011, Duveneck and Bakker, 2011, da Silva et al, 2016). The work follows the same rationale regarding 

the constitutive law. The real eikonal approximation method is originally proposed as a means of 

computing the real-valued traveltimes for anisotropic media (Alkhalifah, 2011a, 2011b, 2013; Stovas 

and Alkhalifah, 2012; Waheed et al., 2013; Hao and Alkhalifah, 2017a, 2017b; Hao et al., 2018). In these 

methods, a Taylor expansion of the traveltimes with respect to the anisotropy parameters and to the 

background traveltimes for tilted elliptically isotropic media is carried out. The major advantage of these 

methods is that if we know the background traveltimes and anisotropy parameters, we can obtain 

traveltimes for general anisotropic media directly at a relatively low computational cost. More recently, 
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Huang et al. (2018) extend the mentioned above perturbation theory to the real and imaginary parts of 

the complex traveltimes, and they solve successfully the complex eikonal equation in VTI and 

orthorhombic media (Huang and Greenhalgh, 2018). Unlike the real eikonal approximation method, we 

take Taylor expansions of both the real and imaginary parts of the complex traveltimes. Then, we 

construct the linearized complex eikonal equations by substituting the Taylor’s expansions into the 

complex eikonal equations. 

According to the recent results of Huang et al. (2016b), solving the complex eikonal equation leads 

to an inverse process for computing the imaginary slowness. This process is especially complicated for 

anisotropic media. This is because the complex eikonal equation for anisotropic media includes several 

parameters: the normal moveout (NMO) velocity, velocity along the symmetry axis, and the anellipticity 

parameter, . 

This paper focus on two principal aspects. The first aspect is deriving the linearized complex eikonal 

equations based on perturbation theory (Alkhalifah, 2011a, 2011b, 2013; Stovas and Alkhalifah, 2012; 

Waheed et al., 2013; Hao et al., 2016; Hao and Alkhalifah, 2017a, 2017b; Hao et al., 2018). A key 

advantage of the linearized complex eikonal equations is providing possible method of solving the TTI 

complex eikonal equation using a finite-difference method, which can be used to address the computation 

of traveltimes in general heterogeneous media. Once the TTI complex eikonal equation can be solved 

directly, the paraxial ray approximation can be avoided while solving the complex eikonal equation. 

Following the recent methods (Huang and Greenhalgh, 2018; Huang et al., 2018), we develop a linear 

partial differential equation for the TTI complex eikonal equation. However, we use a tilted elliptically 

isotropic background medium for the perturbation expansion associated with the tilt angle, which allows 

us to perform the perturbation expansion in η only. This reduces uncertainty in the computed complex 

traveltimes. 

The second aspect is obtaining the analytical formulas for homogeneous TTI media. The analytical 

solutions can be used to benchmark the accuracy of alternative methods, as well as, providing insight on 

the kinematics of wave propagation in TTI media. As pointed out earlier the latter has found many 

relevant applications in applied geophysics, especially in seismic imaging and inversion. Even though 

the theory developed in this paper applies to the general complex traveltimes for TTI media in the 

complex space, our closed form (analytical) solution is for a specific Gaussian beam. This is based on 

the fact that, for a complex point source (Choudhary and Felsen, 1974; Wang and Deschamps, 1974; 

Felsen, 1976, 1984; Wu, 1985), the beam has an initial constant phase front and a Gaussian field profile, 

and the wavefield has a Gaussian decay along the direction perpendicular to the central ray. In this case, 

the contours of the real part of the traveltimes define the equiphase contours, while the contours of the 

imaginary part define the phase paths. In addition, the theoretical development of the analytical formulas 

is based on another assumption that the distance is limited to the region of the paraxial ray approximation. 

η
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After defining the anisotropic complex traveltimes equation using the complex point source method, we 

substitute this equation into the linearized complex eikonal equations to obtain the coefficients of the 

Taylor expansions.  

The analytical formulas of the complex travel time for TTI media based on the linearized complex 

eikonal equations are determined by introducing the complex point source method (Deschamps 1971; 

Felsen 1976, 1984) into the linearized complex eikonal method. However, it should be noted that 

although the linearized complex eikonal method in this paper is valid for an inhomogeneous background 

medium and an evanescent wave, the analytical formulas we will obtain are for a homogeneous medium 

and a specific Gaussian beam. In the following, we first describe the theory of constructing the complex 

eikonal equations for TTI media. Then based on perturbation theory, we introduce the linearized 

equations, followed by the analytical formulas for complex traveltimes of both the vertical and tilted rays 

in TTI media. Further, we demonstrate the effectiveness of the linearized complex eikonal method and 

the analytical formulas. Finally, we investigate the influence of locations, wave-width, and anisotropy 

parameters on the complex traveltimes. 

 

COMPLEX EIKONAL EQUATIONS FOR INHOMOGENEOUS 

PLANE WAVES 

In this section, we derive TTI complex eikonal equations in TTI media. As pointed out earlier the 

medium is considered acoustic and we only consider P-wave propagation. We depart from the eikonal 

equation introduced in Alkhalifah (2000) 
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of the real part 𝜏R and the imaginary part 𝜏I 
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The rotation matrix for the complex eikonal equation from VTI media to TTI media is given by 

  , (5) 

where  is the angle between the symmetry axis and the vertical-axis. Substituting equation 5 to 

equations 3 and 4, we obtain the complex eikonal equations for TTI media  

  , (6) 

and  

  . (7) 

where 

  , (8) 

and 

  . (9) 
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PERTURBATION THEORY 

After obtaining the complex eikonal equation for TTI media, we can develop the linearized complex 

eikonal equations based on the perturbation method. Equations 6 and 7 are difficult to solve using a 

numerical method directly because of the large number of parameters and coupled real and imaginary 

parts. Thus, as in Alkhalifah (2011a, 2011b), and Stovas and Alkhalifah (2012), we expand the complex 

traveltime about the background complex travel time, with a Taylor series, for deriving the complex 

travel time for TTI media. Then the coefficients from the linearized complex eikonal equations can be 

used to calculate the whole complex travel time. For this purpose, following the same rationale as in 

Alkhalifah (2011b), we assume 

 𝜏( = 𝜏(! + 𝜏()𝜂 + 𝜏("𝜂" , (12) 

 𝜏* = 𝜏*! + 𝜏*)𝜂 + 𝜏*"𝜂" , (13) 

where   and  are the real and imaginary parts of the complex traveltimes for the 

background media, respectively. These background complex traveltimes satisfy the TEI complex eikonal 

equations 10 and 11. For a matter of clarity, the coefficients of the linearized complex eikonal equations 

from a background elliptical anisotropy can be represented in vector notation to describe the tilt angles 

following Alkhalifah’s approach (2011a). The components of that vector describe the projection of the 

symmetry axis on each plane. 

  

COMPLEX ASYMPTOTIC SOLUTIONS USING COMPLEX 

POINT SOURCE METHODS  

According to the research reported in Deschamps (1971) and in Felsen (1976, 1984), when the 

source of the wave is located at a complex point location, the angular spectrum of the wave is that of a 

plane wave whose wave vectors are close to the central ray. Thus, the theoretical development is based 

on the following assumptions: (1) the distance is limited to the region of the paraxial ray approximation, 

(2) the mathematical expressions are formulated in the acoustic approximation and (3) the angular 

spectrum of the wavefield has a Gaussian decay along the direction perpendicular to the central ray. It is 

necessary to use this approximation because the purpose of this work is to introduce an approximation 

of traveltimes for Gaussian beams. According to Felsen (1976, 1984) and to Wu (1985), the analytical 

solution in the paraxial region will be approximately equal to a Gaussian beam. The complex traveltimes 

computation method introduced in this paper is for Gaussian beams, which is effectively a kind of local 

plane wave. Thus, the complex traveltime, as outlined, gives a local traveltime along a single beam rather 

than a global traveltime. Huang et al. (2016a) introduce a local algorithm for computing local complex 

traveltimes. 

According to the formulas for real eikonal equation (Golikov and Stovas, 2012), we give the 

0 ( , )R x zt 0 ( , )I x zt
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equation satisfying the complex eikonal equations 10 and 11 for tilted elliptically isotropic media 

  , (14) 

where 𝑥! is the source position, with (Golikov and Stovas, 2012) 
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  , (16) 

and 

  , (17) 
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expanding with a Taylor-series expansion gives   

  . (18) 

Note that equation 18 is based on the Taylor-series expansion of equation, which suffers from a 

paraxial approximation assumption, meaning that it can only predict the traveltimes in the region in the 

vicinity of the central ray. Then, we divide equation 18 into real and imaginary parts, respectively:  
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The formulas above can be simplified by defining  

                         ,                            (21) 

which is used to simplify the formulas in Appredix A. Substituting formulas 19 and 20 into equations A-

1, A-2, A-9 and A-10, we obtain the coefficients of equations 12 and 13. Then, we can calculate the 

complex traveltimes of the vertical ray.  

To improve the accuracy of the traveltimes computation, we use the first-sequence of the Shanks 

transform (Bender and Orszag, 1978)  

  , (22) 

where 

   (23) 

Details about the analytic approximations can be found in Appendix B.  

To obtain the solutions when the ray is not vertical, one can transform the formulas above using 

coordinate transformation: 

  , (24)  

where is the angle of the ray with the vertical direction, and 𝑥+and 𝑧+are the transformed coordinates. 

It should be noted the properties for a tilted anisotropic medium are related to those of a respective 

canonical medium (local axis of symmetry) through a rotation transform, See Stovas and Alkhalifah 

(2012) and Ivanov and Stovas (2019) for more details on transverse isotropic and orthorhombic media, 

respectively. Figure 1 shows a schematic diagram for complex traveltime computation. 

 

 

NUMERICAL RESULTS 

Complex traveltimes of vertical beams in TTI media 
First, to check the analytical formulas for the complex traveltimes presented here and to investigate 

the influence of anisotropy parameters and on complex traveltimes, we show examples of the 

complex traveltimes of a vertical beam for TTI media with different parameters . Figure 2 shows the 

complex traveltimes of a vertical beam for two anisotropic models ( ). All models have the 

same velocity , , ;  and , but different anisotropy parameter . 

The starting point of the ray is at (3 km, 0 km), and the initial width of the ray tube is 200m. Figures 2a 

and 2b show the real and imaginary parts of the complex traveltimes with the proposed method. Figures 2c and 2d 
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show the real and imaginary parts of the complex traveltimes with dynamic ray tracing. Figure 3 shows 

the comparison of complex traveltimes of a vertical beam with exact solutions (Huang et al., 2018b). The 

model size is . The source is at (2 km, 2km). Figures 3e and 3f show the error of the real 

and imaginary parts, respectively. From Figures 3e and 3f, one can observe that the error is larger within 

the region around both sides of the source and far from the central ray. That is expected because the 

approximate solutions use the Taylor series expansion. All computations are performed with a processor 

Intel (R) Core (TM) i7-7700 CPU 3.60 GHz accessing 64 GB of RAM. The computational elapsed time 

for examples shown in Figures 2 and 3 are 45s and 48s, respectively. 

Figure 4 shows the results with the same model as in Figure 2, except that the traveltimes are 

smoothed slightly, the tilt angle is  and the anellipticity parameter is . The most 

evident difference between Figures 2 and 4 is that the latter shows the complex traveltimes for a and b:

; for c and d: . The starting point of the ray is located at (3 km, 0 km), and the initial width 

of ray tube is 300m. Figures 4a and 4c show the real part of the complex traveltimes, while Figures 4b 

and 4d show the imaginary part of the complex traveltimes.  

From Figures 2 and 4, one can observe that (1) the contours of the real part of the complex 

traveltimes are approximately elliptical; (2) the contours of the imaginary part of the complex 

traveltimes are approximately hyperbolic; and (3) for the imaginary part of the complex traveltimes, 

there are some relatively large values in the top right region of the figures. This is because the imaginary 

part of the complex traveltimes is used to describe the increasing distance in the orthogonal direction to 

the central ray. The strength of the rays decreases with increasing distance from the central ray. It should 

be mentioned that the formulas are derived based on a paraxial approximation. This approximation is 

widely used in the field of ray theory. Huang and Greenhalgh (2018) and Huang et al. (2018) analyze the 

relative error of the approximate analytical formulas for orthorhombic (ORT) and VTI media. Because 

the region on the side of the source (the starting point of the central ray) is relatively far from the central 

ray, these values are relatively large. On the other hand, one can observe from Figures 4 and 5 that for 

the real part of the complex traveltimes, it is not symmetrical along the central ray. This is because the 

medium anisotropy affects the wavefront and the value of the angle is not zero. The comparison 

between the traveltimes computed utilizing the traveltime approximation and the dynamic ray tracing 

shows that the main difference occurs in the area around both sides of the source. That can be explained 

easily as unlike dynamic ray tracing, our approach uses the paraxial approximation which allows carrying 

out computations faster at the expense of some degree of inaccuracy. That leads to the inaccuracy of the 

formulas observed in the region of the source, where inaccuracies are more likely to occur due to the 

singular nature of the source point.  
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Complex traveltimes with different initial beam widths 
Next, we compare the behavior of the complex traveltimes with different initial width of the ray 

tube. One can observe from equations 17 and 18 that the initial width of the tube is important to determine 

the behavior of the complex traveltimes. Figure 5 shows the complex traveltimes with the initial beam 

widths. The starting point of the ray is at (3 km, 0 km), while the initial widths of the ray tube are 200 m 

and 500 m, respectively. The size of the model is . The model velocity is , and 

the parameters of are ,  and , respectively. Figures 5a and 5c show the real part of 

the complex traveltimes, while Figures 5b and 5d show the imaginary part of the complex traveltimes. 

Figure 6 shows a color plot of the complex traveltimes of a vertical beam for a TTI medium using the 

Shanks transform. From Figure 5, one can observe that the shape of the contours of the real part of the 

complex traveltimes with an initial ray tube width of 200 m are more similar to circles, whereas the shape 

of the contours of the imaginary part of the complex traveltimes with an initial ray tube width of 500m 

are more similar to ellipses. This is because the Gaussian beam is paraxially equivalent to a spherical 

wave with the center at the complex location. When the initial width of the ray tube is very small, it 

performs similarly to an approximated point source. Thus, the contours of the complex traveltimes look 

similar to circles. On the other hand, the difference between the traveltime plots for a width of 200 m and 

a width of 500 m can be noticeable. The difference is relatively large far from the source and in the region 

around both sides of the source. However, the strong similarity in shape suggests that the complex 

traveltimes retains the shape of the Gaussian beam and can be used to approximate the traveltimes of a 

beam.  

 

Comparisons with elliptically isotropic media 
We compare the traveltimes in isotropic media with that in anisotropic media, carrying out 

computations of the complex traveltimes. Figure 7 shows comparisons of the contours of the complex 

traveltimes of a vertical ray for the TTI model with the results for the elliptically isotropic model. The 

size of the model is . The model velocity is km/s, and the anisotropy parameters are

,  and , respectively. The starting point of the ray is located at (3.5 km, 1 km). 

The green lines show the results for anisotropic media, and the red lines show the results for isotropic 

media. Figure 7a shows the real part of the complex traveltimes, and Figure 7b shows the imaginary part 

of the complex traveltimes. From Figure 7, one can observe that the contours of the real part of the 

complex traveltimes are approximately elliptical, whereas the contours of the imaginary part of the 

complex traveltimes are approximately hyperbolic. Figures 7c and 7d show the time differences between 

the TTI medium and the elliptically isotropic medium. This coincides with the distribution of the complex 

traveltimes based on Felsen’s complex source point method (Felsen, 1976, 1984). From Figure 7, one 

also sees that there is some difference between the complex traveltimes for anisotropic media and 

6 km 6 km´ 0 2 km/sv =

0.1h = 0.1d = 0.5q =

6 km 6 km´ 0 2v =

0.1h = θ = 5° 0.1d =
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isotropic media. This difference is expected because complex traveltimes are affected by anisotropy. With 

the same real part of the complex traveltimes, the increase in the distance in anisotropic media is bigger 

than in isotropic media.  
 

Influence of anisotropy on traveltimes 
In this section, we investigate the influence of the medium anisotropy on the complex traveltimes 

at a fixed location point. To this end, we calculate the complex traveltimes for different changing 

anisotropy parameters. Figure 8 shows the influence of those parameters on the complex traveltimes. The 

size of the model is . The location for Figures 8a and 8b is at (2 km, 2 km), and for Figures 

8c and 8d is at (4 km, 4 km). The model velocity is , and the anisotropy parameters are

, , respectively. The initial ray tube width is 300 m. Figures 8a and 8c show the influence 

of the anisotropic parameters on the real part of the complex traveltimes; while Figures 8b and 8d show 

the influence of the anisotropy parameters on the imaginary part of the complex traveltimes. The strong 

influence of the parameter of anisotropy  on the complex traveltimes can be seen in Figures 8a and 8c. 

One can see that there is less influence of the anellipticity parameter  on the complex traveltimes than 

the anisotropy parameter . From Figures 8b and 8d, one can see that when the anellipticity parameter 

is small while the anisotropic parameter is large, the complex traveltime is small. When the 

anellipticity parameter is large while the anisotropic parameter  is small, the complex traveltime 

difference is large. This means that the accuracy of the complex traveltimes depend on how well we 

obtain the anisotropic parameters. Because the traveltimes in anisotropic media depends on the 

anellipticity parameters and , there are significant traveltimes differences with changes in and . 

Both the real and imaginary parts vary significantly as a function of the anisotropy parameters. The 

contours of the real part of the traveltimes exhibit elliptical shapes, with big outer values and small inner 

values. The imaginary part of the traveltimes peaks at the large parameter . Figure 9 shows color plot 

of the complex traveltimes associated with a tilted ray for an inhomogeneous VTI medium using the 

finite difference method (Huang et al., 2018). The size of the model is9 km 9 km, which is based on 

the same model used in Figure 11 (Huang et al., 2018). The initial angle of the central ray is . 

The starting point of the central ray is at (4.5 km, 300m), and the initial beam width is 500 m. Figure 9a 

shows the velocity model, Figure 9b shows 𝛿 model, Figure 9c shows 𝜀 model, Figure 9d shows the 

real part of the complex traveltimes and Figure 9e shows the imaginary part of the complex traveltimes. 

The computational time is 3643 s. This example demonstrates that the derived differential equations can 

be not only used for homogeneous media but also for inhomogeneous media.  
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DISCUSSIONS 

The most important contribution of the paper is to derive the analytic approximations for complex 

traveltime in transversely isotropic media with a titled symmetry axis (TTI) using perturbation theory 

and the complex point source method. Those formulas are also effective methods for benchmarking 

numerical solutions in such media and investigating seismic anisotropy. In addition, to develop the 

approximate solutions, we derive the complex eikonal equation for inhomogeneous waves in TTI media. 

Then we transform the nonlinear compelx eikonal equation into the linearized ordinary differential 

equations that can be solved by the farst marching method and finite difference method numerically.  

In theory, the complex point source analytic continuation, and the analysis into the spaces of 

complex distances can provide exact Green’s function. From the practical point of view, the 2D complex 

point source Green’s function provides a frequency-independent formulation, and not only under high-

frequency asymptotic approximation. This exact solution, and the complex analysis associated to it thus 

become a reference standard for the analysis and comparison of other practical and very important 

solutions obtained under certain approximations. The formulas for the complex traveltime derived in this 

paper use second-order approximations rather than first-order. Although the complex approximation 

solution is not the more efficient from a practical point of view, it constitutes a reference standard against 

which other formulations and approximations may be qualitatively compared.  

Actually, there are several reasons to investigate such asymptotic solutions. Theoritically, the 

approximate solution provides a description of propagation of the inhomogeneous waves. The complex 

eikonal equation plays an important role in wave propagation problems of inhomogeneous plane waves, 

which gives asymptotic solutions concentrated in the vicinity of a ray utilizing a complex eikonal. One 

main reason why we need the high-frequency asymtotic solutions is that we can investigate wave 

propagation phenemonon and separate the propagation events into reflection and refraction, etc. From 

application perspective, the complex approximate solution can be used for Gaussian beams, which are 

widely used for seismic modeling and imaging. Actually, because of its advantages for handling caustics 

and multipath resulting from ray tracing in complex media, the complex traveltimes have been widely 

used for Gaussian beam modelling in the past decades. Another reason is that the formulations provide 

anisotropy parameter estimation capabilities for a general inhomogeneous background medium. This is 

practical since conventional seismic experiments combined with well information may provide us with 

a background elliptically anisotropic inhomogeneous model. An extension to more "real world" 3D TTI 

or tilted orthorhombic problems even 3D elastic case is easy and realstic. For 3D TI media with a tilt in 

the axis of symmetry, two additional parameters  and  that describe the tilt in three dimensions 

are needed to fully characterize a high-frequency acoustic wave propagation. Expanding the complex 

traveltime solutions of the complex eikonal equation in a power series in terms of the independent 

θ ϕ
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anisotropic parameter and aplying the complex sourse point leads to the complex approximate solutions. 

Here, we give some explanations why we need such a approximate solution rather than we use a 

GPU to compute full wavefield solutions of 2D elastodynamic equation. It is beyond doubt that indeed 

there has been a significant progress in the past years. The 2D wave simulation with GPU cards can be 

carried out significantly faster than before. In 3D the FD computational cost increases by a factor of at 

least 8 times compared to that of 2D. For large scale applications it starts hitting limitations in the GPU's 

cache and that requires very specific programming techniques to avoid any issues. Basically our point is 

that comparing a FD computing on a GPU against our implementation is not an entirely “apples to apples” 

comparison. However, if we want to extract maximum capability of hardware, then we can argue that we 

could use a GPU implementation of our method and likely simulate an entire 2D survey with a run-time 

similar to that it would take a GPU to simulate a shot gather. The reason is because, with our current 

implementation, we are getting a comparable run-time by just using a single core. 

We also point out indeed nowadays we are simulating wave equations at higher and higher 

frequencies. However, even these days RTM is generally not run at full-bandwidth and in fact 60-70 Hz 

really is the upper limit in the vast majority of commercial applications. This is the reason why many 

RTM images seem to have lower spectral content than the Kirchhoff counterparts. In fact Kirchhoff 

migration is still a must in seismic imaging. And with Kirchhoff migration we also include Gaussian 

beam migration which finds a wide range of applications. We point out that these methods (Gaussian 

Beam Migration and Kirchhoff) are heavily based on computing traveltimes with ray-based theory. 

Hence, the proposed method finds applicability in a vast domain of application and for that reason we 

also believe that our approach is relevant. 

 

CONCLUSIONS 

We have presented the analytical solutions for the computation of complex traveltimes with the 

complex eikonal equation for TTI media. The complex eikonal equation is derived assuming that the 

complex traveltimes for TTI media can be expanded in a Taylor series. As a result, we obtain linearized 

ordinary differential equations for the coefficients, which can be used to construct the complex traveltime 

formulas. The complex point source method plays an important role in developing those analytical 

solution. The paraxial approximation and background complex traveltimes are required for solving the 

TTI complex eikonal equation. However, if the aim of solving the TTI complex eikonal equation is to 

compute the seismic complex traveltimes, then we can only compute a special case of the Gaussian beam. 

Compared to the dynamic ray tracing method, the method outlined in this paper has higher efficiency 

because it is based on an analytical solution. The method presented herein is therefore a closed form 

solution for the computation of complex traveltimes. It is useful for benchmarking alternative numerical 

approaches, including methods based upon ray theory, or explicit discretization of wave equations for 
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acoustic media with transverse isotropy, which are adequate for heterogeneous media. The expressions 

derived and discussed herein are based on the theory of Gaussian beams. They can then be used for the 

computation of multi-traveltime arrivals which find application in seismic imaging and inversion in 

heterogeneous media. Applying the equations introduced herein to those media is straightforward 

requiring their discretization with numerical methods, such as the finite-difference method. The approach 

outlined herein can be used for both homogeneous and inhomogeneous media. However, the method is 

based on perturbation theory, which assumes small perturbation in the variables. Thus, this method is not 

adequate for the computation of complex traveltimes in media with strongly velocity variation. Due to 

the use of the paraxial approximation in the derivation of the equations, the propagation accuracy 

decreases when the beam width is too large. That means that one can only calculate the local complex 

traveltimes in the region close to the central ray. Due to its characteristics, we find application in seismic 

imaging especially in Gaussian beam migration which is conforming with the criteria for selecting the 

initial width of the ray. 
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APPENDIX A: LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

FOR THE COEFFICIENTS OF TAYLOR SERIES EXPANSION 

In this appendix, we derive the linear partial differential equations for the coefficients of Taylor expansion. 

These equations are the basis to develop analytic traveltime approximations. When substituting equations 

19 and 20 into equations 13 and 14, we have the complex coefficients in    
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. 

The complex coefficients of second power in are written as 
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APPENDIX B: THE APPROXIMATE ANALYTIC SOLUTIONS 

In this section, we give the approximate analytic traveltime formulas. We start with the analytic 

formulas for the background medium. The equation satisfying the complex eikonal equations 17 and 18 

in tilted elliptically isotropic media is given by 

  , (B-1) 
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Substituting equations B-1, B-2 and B-3 into equation B-1, using the Taylor expansion, we obtain 
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Figure 1. Schematic diagram for complex traveltime computation. 
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Figure 2. Plot of the complex traveltimes of a vertical beam for a TTI medium. All models have the same 

velocity , , and . The starting point of the ray is at (3km, 0km), and the 

initial ray tube width is 200 m. Figures (a) and (b) show the real and imaginary parts of the complex traveltimes 

with the proposed method. Figures (c) and (d) show the real and imaginary parts of the complex traveltimes with 

dynamic ray tracing. The TTI medium for Figure (a) and (b) has . 
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Figure 3. Comparison of complex traveltimes of a vertical beam with exact solutions. The starting point of the 

ray is at (2 km, 2 km), and the initial ray tube width is 500m. Figures (a) and (c) show the real part of the complex 

traveltimes, while Figures (b) and (d) show the imaginary part of the complex traveltimes. Figures (e) and (f) show 

the error of the real and imaginary parts, respectively.  
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Figure 4. The complex traveltimes of a vertical beam for a TTI medium. The starting point of the ray is at (3 km, 

0 km), and the initial ray tube width is 300 m. Figures (a) and (c) show the real part of the complex traveltimes, 

while Figures (b) and (d) show the imaginary part of the complex traveltimes. The TTI medium for Figures (a) and 

(b) has: and for Figures (c) and (d): . 
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Figure 5. Plot of the complex traveltimes of a vertical beam for a TTI medium. The size of the model is

. The model velocity is , and the anisotropic parameters are ,   and

, respectively. The starting point of the ray is at (3 km, 0 km), and . Figures Figures (a) and (c) show 

the real part of the complex traveltimes, while Figures (b) and (d) show the imaginary part of the complex 

traveltimes. The initial ray tube width for Figures (a) and (b) is 200 m. The initial ray tube width for (c) and (d) is 

500 m.  
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Figure 6. The complex traveltimes of a vertical beam for a TTI medium using the Shanks transform. The size of 

the model is . The model velocity is , and the anisotropic parameters are ,

 and , respectively. The starting point of the ray is at (3 km, 0 km), and . Figures (a) and 

(c) show the real part of the complex traveltimes, while Figures (b) and (d) show the imaginary part of the complex 

traveltimes. The initial of ray tube width for Figures (a) and (b) is 500 m. The initial ray tube width for Figures (c) 

and (d) is 200. m. 
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Figure 7. Comparison of the results for the TTI medium (green line) with those for the elliptically isotropic (red 

line) medium. The size of the model is .. The model velocity is . The starting point of 

the ray is at (3.5 km, 1 km), and  . The initial ray tube width is 300 m. Figure (a) the real part of 

the complex traveltimes, and Figure (b) the imaginary part of the complex traveltimes. Figures (c) and (d) show 

the time differences between the TTI medium and the elliptically isotropic medium.   
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Figure 8. The influence of anisotropic parameters on the complex traveltimes of a vertical beam for a TTI 

medium. The starting point of the ray is at (6 km, 6 km), , and . The initial ray tube 

width is 300 m. Figures (a), and (c) show the influence of anisotropic parameters on the real part of the complex 

traveltimes, while Figures (b) and (d) show the influence of anisotropic parameters on the imaginary part of the 

complex traveltimes. The location for Figures (a) and (b) is (2 km, 2 km). The location for Figures (c) and (d) is (4 

km, 4 km). 
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Figure 9. The complex traveltimes associated with a tilted ray for a VTI medium. The size of the model is (9 km, 

9 km), which is based on the same model used in Figure 11 (Huang et al., 2018b). The initial angle of the central 

ray is θ = 60◦. The starting point of the central ray is at (4.5 km, 300m), and the initial beam width is 500 m. Plot 

(a) shows velocity model, plot (b) shows δ model, plot (c) shows ε model, plot (d) shows the real part of the 

complex traveltimes and plot (e) shows the imaginary part of the complex traveltimes. 
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