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Transfer entropy computation using the Perron-Frobenius operator
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We propose a method for computing the transfer entropy between time series using Ulam’s approximation of
the Perron-Frobenius (transfer) operator associated with the map generating the dynamics. Our method differs
from standard transfer entropy estimators in that the invariant measure is estimated not directly from the data
points, but from the invariant distribution of the transfer operator approximated from the data points. For sparse
time series and low embedding dimension, the transfer operator is approximated using a triangulation of the
attractor, whereas for data-rich time series or higher embedding dimension, we use a faster grid approach. We
compare the performance of our methods with existing estimators such as the k nearest neighbors method and
kernel density estimation method, using coupled instances of well known chaotic systems: coupled logistic maps
and a coupled Rössler-Lorenz system. We find that our estimators are robust against moderate levels of noise.
For sparse time series with less than 100 observations and low embedding dimension, our triangulation estimator
shows improved ability to detect coupling directionality, relative to standard transfer entropy estimators.
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I. INTRODUCTION

Time series analysis is used to study the dynamics of com-
plex systems across many disciplines, including macroscale
activity of the brain [1] and interactions in the global climate
system [2]. A long-standing problem in time series analy-
sis is the detection of causal connections between different
components of a system from observed time series. Sev-
eral theoretical frameworks have been proposed to address
this problem [3], including information-theoretic approaches
[4,5]. A popular information-theoretic method is the so-called
transfer entropy (TE) [6], or conditional mutual information
[7], which quantifies whether knowledge of changes in one
variable reduces uncertainty about changes in another vari-
able. For deterministic systems, the concept of information
entropy relies on the existence of invariant densities associated
to attractors [8]. Standard methods for computing mutual in-
formation (and from it, TE), estimate the invariant distribution
directly from the embedding of the data. For instance, the k
nearest neighbors method (kNN) [9], which uses counting of
nearest neighbors, or approaches using visitation frequency,
either directly [6] or through kernel density estimation (KDE)
[10]. Other TE estimators use the concept of permutation
entropy [11]. In our work, we propose to compute TE (or any
standard information-theoretic measure [12]) between time
series, based on a numerical approximation of the Perron-
Frobenius (transfer) operator of the underlying dynamics. The
transfer operator [13] dictates how densities in phase space are
transformed under the action of maps and its approximation
has been used to identify long-term emergent behavior in
dynamical systems. Applications include computation of the
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stretching rate of chaotic maps, and identification of attracting
regions in ocean circulation [14,15]. The transfer operator
enables estimation of invariant distributions from which infor-
mation entropies may be computed [16–18]. Transfer operator
approximation may also be used to generate dynamically in-
formed surrogates for null-hypothesis testing, and to interpo-
late and forecast time series. These possibilities are explored
in a forthcoming study.

In the following, we describe our approach starting with
the general notion of TE, and a brief overview of entropies
in the context of deterministic systems (for a more in-depth
review, see [3,8]).

II. TRANSFER ENTROPY

Suppose that for two variables X1 and X2, one is given
the probability density P(X1 = x1, X2 = x2) with support S.
From this density one may compute their mutual information
[12,19] as

I (X1, X2) =
∫

S
P(x1, x2) log2

P(x1, x2)

P(x1)P(x2)
. (1)

For the case of three variables X1, X2, and X3, a related
quantity is the TE

TX1,X2|X3 =
∫

S
P(x1, x2, x3) log2

P(x1|x2, x3)

P(x1|x3)
. (2)

One can easily check the identity

TX1,X2|X3 = I (X1, X23) − I (X1, X2) , (3)

with X23 = (X2, X3). TX1,X2|X3 thus quantifies the amount of
information shared between X1 and (X2, X3) beyond the in-
formation already shared between X1 and X2. The TE was
originally introduced in the context of time series analysis
[6] as a way of estimating the information transfer from one
time series to another. Given two time series X and Y , the
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TE measures how much information is lost by assuming that
the variables X and Y are independent, i.e., by assuming that
P(x(t + τ )|x(t ), y(t )) = P(x(t + τ )|x(t )). There is, however,
no absolute scale associated with information entropy [12,19],
hence, the TE only determines whether the information trans-
fer from Y to X is greater than in the opposite direction.

III. MEASURE THEORETIC ENTROPIES FOR
DETERMINISTIC SYSTEMS

In the context of dynamical systems, mutual information
(or any information-theoretic measure) between variables may
be computed from the density distribution of invariant mea-
sures associated with the attractor of the dynamical system. In
the following, we briefly review these concepts.

A. Attracting sets and attractors

Assume the dynamics is generated by a diffeomorphism
[20] ψ : Rn → Rn. A set A ⊂ Rn is said to be an attracting
set for ψ if the following conditions are met [21]:

(1) There is an open set U ⊃ A and a natural number N
such that for any open set V ⊃ A, ψm(U ) ⊂ V for all m � N .

(2) ψ (A) ⊂ A.
Here, ψm denotes the m-fold iterate of ψ . The open set U
is called a fundamental neighborhood of A. This definition
implies [21] that A = ∩m�1ψ

m(U ) and ψ (A) = A. More-
over, if there is an open set U ⊂ Rn such that for all m big
enough ψm(U ) has compact closure contained in U , then
A = ∩r�1ψ

r (U ) is a compact attracting set with fundamental
neighborhood U . Because the open set V can be arbitrarily
small around A, all the trajectories entering U asymptoti-
cally approach A. In addition, B = ∪m�0ψ

−m(U ), where ψ−m

denotes the preimage of the m-fold iterate of ψ , is such
that for any p ∈ B there is m with ψm(p) ∈ U . Thus, the
corresponding orbit approaches A asymptotically. B is called
the basin of attraction of A and if B = Rn, A is called a global
attracting set. An attractor is, however, a somewhat more
restrictive concept than an attracting set. Roughly speaking,
an attractor is what is left of an attracting set after removing
the wandering points (see [21] for a precise definition). Trivial
examples of attractors are asymptotically stable fixed points
while less trivial ones are stable limit cycles or quasiperiodic
limiting orbits [22]. More complicated (“strange”) attractors
contain unstable orbits (i.e., sensitivity to initial conditions)
and usually fractal geometries. Most dynamical systems asso-
ciated with natural processes, even simple processes involving
very few variables, give rise to highly complex dynamics in
the form of strange attractors [23–25].

B. Invariant measures and ergodicity

The trajectory of a typical orbit of a dynamical system
having an attractor generates a distribution of points in the
phase space with a certain density which seems to be intrinsic
to the system. Different portions of the attractor are visited
by the orbit with different frequency, and this frequency of
visitations naturally defines a density on the attractor, clearly
invariant under the dynamics. The notion of invariance leads
to the notion of ergodicity. Intuitively, a dynamical system
is said to be ergodic if a generic trajectory fills in the

attractor (according to the above notion of invariant density).
A crucial result pertaining to ergodic systems is the celebrated
Birkhoff’s ergodic theorem:

Given a space M and a map h : M → M, let μ be a
measure on M such that μ is invariant under h. Then for any
φ : M → R measurable, it holds that

lim
n→∞

1

n

n−1∑
k=0

φ(hk (x)) =
∫

M
φ dμ , (4)

for μ almost every x ∈ M.
Applied to the characteristic function [26] of any measurable
set K , the theorem implies that the measure of K , μ(K ), equals
the frequency of visits to K , in concordance with the above
notion of invariant measure. In Appendix B, we show the
equality between time and spatial averages obtained from the
estimates of invariant measures considered in this work.

Assuming that a density δ of μ is well defined for μ al-
most all points [27] [μ(K ) = ∫

K δ dm, with dm the Euclidean
(Riemannian) volume element induced on the attractor], any
standard information-theoretic entropy [12] can be computed
from δ.

Axiom-A systems are known to possess an (unique) invari-
ant measure of physical significance [28] (compatible with
the volume measure on the attractor). The property of being
axiom A refers to the existence of a continuous and invariant
splitting of the tangent space, at each point of the attractor,
into stable and unstable directions [29]. This property is
difficult (if not impossible) to check from an observed times
series. However, a system with a sufficiently large number of
degrees of freedom, and in a stationary state, can be regarded,
for the purpose of computing macroscopic properties, as a
smooth dynamical system with a transitive axiom-A global
attractor [30].

C. Estimation of the transfer operator and invariant measures

Let ψ : Rn → Rn be differentiably invertible and A ⊂ Rn

a compact attractor with m denoting the induced volume
measure on A. Suppose that μ is a measure compatible with
m, with support contained in A and having density δ with
respect to m. The map ψ acts on the measure as (ψ∗μ)(K ) :=
μ(ψ−1(K )), for any measurable set K ⊂ A. Thus, its density
is modified as (ψ∗δ)(x) := |dxψ

−1|δ ◦ ψ−1(x), | · | denoting
the absolute value of the determinant. The linear map between
functions

P ( f )(x) := |dxψ
−1| f ◦ ψ−1(x) (5)

is known as the Perron-Frobenius (or transfer) operator asso-
ciated to the map ψ . If μ is a ψ-invariant measure, then

δ(x) = |dxψ
−1|δ ◦ ψ−1(x) , (6)

and thus ψ-invariant densities correspond to fixed points of P .
There is a rich literature on the approximation of the transfer
operator and the estimation of invariant measures [14,15].
Ulam’s method [31] approximates the transfer operator by a
row stochastic Markov matrix acting on distributions defined
over a given partition of A. More specifically, let {B1, . . . , BN }
be a partition of A into measurable sets and for each 1 � a �
N , let χa : Rn → R be defined as χa(x) = 1 if x ∈ Ba and 0,
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otherwise. Any (measurable) function ρ : Rn → R+ can be
approximated as constant on each partition element, that is

ρ =
N∑

i=1

∫
Bi

dm ρ

m(Bi )
χi , (7)

where m(Bi ) denotes the volume of the partition element
Bi and dm is the (Lebesgue) volume element. From this
piecewise constant approximation and from Eq. (5) it follows
that

P (χi ) =
N∑

j=1

1

m(Bj )

∫
Bj

dm |dxψ
−1| χi ◦ ψ−1 χ j

=
N∑

j=1

∫
ψ−1(Bj )

dm χi

m(Bj )
χ j

=
N∑

j=1

m(Bi ∩ ψ−1(Bj ))
m(Bj )

χ j . (8)

The linearity of P implies

ρ̃ := P (ρ) =
∑
i, j

1

m(Bj )
ρi

m(Bi ∩ ψ−1(Bj ))
m(Bi )

χ j , (9)

where ρi := ∫
Bi

dm ρ is the measure of Bi according to the
density ρ. Taking ρ̃i := ∫

Bi
dm ρ̃ as the updated measure of

Bi, one finds

ρ̃ j =
N∑

i=1

ρi
m(Bi ∩ ψ−1(Bj ))

m(Bi )
. (10)

The row stochastic matrix with entries

P(N )
i j = m(Bi ∩ ψ−1(Bj ))

m(Bi )
(11)

constitutes the Ulam’s approximation to the transfer operator
and it approximates how distributions defined over a given
partition do change under the map generating the dynamics.
Accordingly, its left invariant distribution (ρ (N )P(N ) = ρ (N ))
corresponds to the approximation of the invariant density of
the system subject to the partition. From the left invariant
distribution of P(N ), a measure on A can be defined as

μN (K ) =
N∑

i=1

ρ
(N )
i

m(K ∩ Bi )

m(Bi )
. (12)

In [15] it is shown that using a piecewise linear approx-
imation of the map ψ , the above sequence of measures
{μN } approaches a ψ-invariant measure as the partition gets
infinitely refined (the maximum size of the sets in the partition
approaches 0 as N → ∞). In the following sections, we
give a detailed description of the implementation of these
approximations.

D. Computation of TE

Suppose X and Y are time series of two variables
of a dynamical system with attractor A. The attrac-
tor may be reconstructed using a generalized delay em-
bedding from both time series as (x(l )(t ), y(k)(t )) [32].

Where x(l )(t ) = (x(t ), . . . , x[t − (l − 1)τ ]) and y(k)(t ) =
(y(t ), . . . , y[t − (k − 1)τ ]), for appropriate delay τ and em-
bedding dimension l + k. Denote the resulting embedded
attractor by Ã. The transfer operator and the invariant mea-
sure may be approximated using Eqs. (11) and (12) in the
(x(l ), y(k) ) embedding space. Suppose μ̃ is the invariant mea-
sure on Ã and P(x(l ), y(k) ) is the corresponding density of μ̃.
The TE from Y → X is then

TY →X =
∫
Ã

dm P(x(l ), y(k) ) log2
P(x( j)|x(l− j), y(k) )

P(x( j)|x(l− j) )
. (13)

Notice that this procedure can be easily extended to compute
any of the standard information-theoretic measures by using
the appropriate embedding. For instance, for the conditional
TE, TY →X |Z , one may use a generalized embedding of the form
(x(l )(t ), y(m)(t ), z(k)(t )) [33].

During the revision of this paper, we were made aware
of the work by Bollt [17], who proposed to use Ulam’s
approximation to the transfer operator to estimate the transfer
entropy between coupled systems in order to identify syn-
chronization. In his work, Bollt interprets the transfer matrix,
that constitutes the Ulam’s approximation, as a conditional
probability between states in the phase space and computes
the TE using Bayes’s rule. In our work, we follow a different
strategy: we use a generalized embedding to approximate the
transfer operator and the invariant distribution of this transfer
operator is then interpreted as a joint probability on the phase
space, from which TE is computed. Our method also differs
from Bollt’s in the use of a triangulation estimator for sparse
time series, as described in the following section.

E. Numerical implementation

Suppose that X = {x1, . . . , xN } and Y = {y1, . . . , yN } are
time series of two variables of some dynamical system gen-
erated by the map ψ , and that TY →X is to be computed.

The collection of points E = {(x( j)
n+k, x(l )

n , y(r)
n )}N

n=1
for x(l )

n =
(xn, . . . , xn−l+1) (analogously for y(r)

n ) is a reconstruction of
the attractor for suitable time delay k and embedding di-
mension j + l + r [32]. Several methods for estimating both
parameters can be found in the literature [3,34]. Suppose for
the moment that the transfer operator has already been approx-
imated using Eq. (11) and an estimate for an invariant measure
for E , μ has been obtained from Eq. (12). For convenience, we
relabel the axes corresponding to x( j)

n+k, x(l )
n , y(r)

n as 1,2,3, re-
spectively. We use a regular grid into (hyper)rectangular bins,
say {Ci}i=1,...,J , and uniquely decompose each bin index i into
the triplet (i1, i2, i3) (Appendix A for details). The integral
expression for the TE, Eq. (2), can then be approximated as

TY →X �
∑

i1,i2,i3

m(Ci )P(i1, i2, i3) log2
P(i1|i2, i3)

P(i1|i2)
, (14)

where m(Ci ) is the Euclidean volume of the ith bin and

P(i1, i2, i3) = μ(Ci )

m(Ci )
, i.e., the density of μ over the bin Ci.

Defining μi1i2i3 = μ(Ci ), one easily checks that∑
i1,i2,i3

m(Ci )P(i1, i2, i3) log2
P(i1|i2, i3)

P(i1|i2)

= −H (i1, i2, i3) − H (i2) + H (i1, i2) + H (i2, i3) , (15)
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where H (i1, i2, i3) denotes the Shannon entropy of the distri-
bution μi1i2i3 , H (i1, i2) is the entropy of the marginal distribu-
tion

∑
k μi1i2k , H (i2) corresponds to the Shannon entropy of

the marginal distribution
∑

l,k μli2k , and so on.
To estimate the transfer operator and the invariant measure,

we propose two different approaches depending on the length
of the time series (the number of observations). Denote the set
of points in the reconstructed attractor E by {pn}N

n=1.

1. Grid estimator

If the time series X and Y contain a sufficient number of
observations [35], the transition matrix in Eq. (11) can be
approximated by a coarse-grained estimation [36] as

Pi j � �{pn | ψ (pn) ∈ Cj ∩ pn ∈ Ci}
�{pm | pm ∈ Ci} , (16)

with � denoting the cardinal. In this case, the left invariant
distribution ρ from Eq. (12) coincides with the measure of
the bins, that is, ρi = μ(Ci ) = μi1i2i3 . We clarify that the name
grid estimator refers to the fact that the transfer operator
is approximated using a partition into rectangular bins, as
opposed to using a partition consisting of simplices, which
we consider in the next section. The word grid does not
imply that we use a visitation frequency estimator. For time
series with a sufficient number of observations, however, the
visitation frequency and the grid estimators converge to the
same invariant distribution (Appendix C). The motivation for
obtaining an estimate of the transfer operator is that it provides
an approximation to the underlying map that has applications
beyond the computation of TE. For the purpose of this study,
and as we show in the following sections, computing TE from
the transfer operator is advantageous for sparse and noisy time
series.

2. Triangulation estimator

For time series with fewer observations, the estimation of
the transfer operator using Eq. (16) might become inaccurate.
Actually, the transfer matrix obtained with the grid method
for time series with few observations might fail to be Marko-
vian. This is because the bin containing the last point in the
embedding might not contain any other point. In that case,
such a bin is a sink of information. We thus adopt the method
developed in [15], by which the reconstructed attractor E is
triangulated into simplices [37] (the vertices of each simplex
being points from the embedding E ). Suppose {S1, . . . , SN } is
such a triangulation. The map ψ is then approximated by a
linear map ψ̃ on each simplex such that if {pa0 , . . . , pad } are
the vertices of the simplex Sa, then {pa0+1, . . . , pad +1} are the
vertices of its image under the map ψ̃ (Sa). The transfer matrix
is obtained as

Pab = m(Sb ∩ ψ̃ (Sa))

m(ψ̃ (Sa))
, (17)

and according to Eq. (12), the measure of the simplex a is
ρa. To compute the simplex intersection volume we follow
a direct approach outlined in Appendix D, although several
methods for polytope volume computation can be found
in the literature [38]. Once we have obtained the invari-
ant distribution over the simplices, finding μ(Ci ) exactly is

computationally rather demanding. Instead, we estimate the
measure of each bin by evenly sampling each simplex of the
triangulation with Ms points, and then assuming that each
sampling point carries a fraction 1/Ms of the measure of the
simplex they belong to. Thus, if the set of sampling points
belonging to the bin Ci is formed by Na points from simplex
a, for a = 1, . . . , N (possibly with some Na being zero), its
measure is estimated as

μ(Ci ) �
N∑

a=1

Na

Ms
ρa. (18)

Using this sampling enables a virtually unlimited number of
points to estimate the density of the measure. Notice that we
do not introduce any bias by doing so (provided the sampling
is even over each simplex) because the sampling points do not
contain any information beyond that encoded in ρ.

Using embedding dimension 3 and time series with a few
hundred observations, the number of simplices with positive
measure out of the triangulation is on the order of hundreds
(Appendix F). For the examples we study here, TE becomes
independent of the (total) number of sampling points beyond
∼5000 [39]. Therefore, Ms will be on the order of tens. We
subsample the simplices using a shape preserving simplex
splitting routine developed in [40]. This algebraic procedure
uses an edgewise splitting factor r and splits a simplex in
dimension d into rd subsimplices, all with the same volume.
We use the centroids of the subsimplices resulting from the
splitting as the sampling points.

IV. EXAMPLE DYNAMICAL SYSTEMS

We apply our TE estimators to time series generated by
coupled instances of well known dynamical systems. Several
realizations of the time series are generated from randomly
chosen initial values. In all cases, TE in each direction is
computed using a bin size adapted to the number of points
available [41] and to the size of the reconstructed attractor
(Appendix A). We will generically denote the TE computed
from time series X and Y , as TX→Y and TY →X , where X → Y
corresponds to the direction of the coupling (in the case of
unidirectional coupling) or to the direction of the strongest
coupling (in the case of bidirectional coupling). In both cases,
one expects TX→Y − TY →X > 0. To check the ability of our
methods to detect the direction of the coupling between time
series, we study the dependence of the average values of TX→Y

and TY →X across realizations, on the number of observations
in the time series. We also study the response of our estimators
to the strength of the coupling and to observational and
dynamical noise. We compare our results with those obtained
with the kNN [9] and the KDE [10] estimators. Although these
methods, strictly speaking, estimate mutual information, TE
can be computed from the identity in Eq. (3). Because we are
primarily interested in the sensitivity of our new estimators
to noise and time series length, and not the absolute value of
the TE, we do not apply any bias correction to the estimators
[42–44]. In Appendix A we detail the embedding used for
computing TE for each dynamical system example.
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A. Dynamical and measurement noise

Measurement noise is independently added to each time
series as follows: given a time series X , measurement noise
of intensity ε is simulated by adding independently to each
observation of X a random value drawn from a Gaussian
distribution with zero mean and standard deviation εσ , where
σ is the standard deviation corresponding to the values in X ,
and 0 � ε � 1. For instance, a measurement noise of inten-
sity ε = 0.1 will be referred to as 10% measurement noise.
Dynamical noise is simulated for each system as explained in
the following sections [Eqs. (21), (24), and (31)].

B. Unidirectionally coupled logistic maps (UCLM)

The logistic map is one of the hallmarks of chaotic behav-
ior in dynamical systems [24]. It was originally proposed by
May as a model for population growth. Here, we consider two
logistic maps unidirectionally coupled, given by

x(n + 1) = 3.78 x(n)[1 − x(n)], (19)

y(n + 1) = 3.66 fn[1 − fn],

fn = y(n) + c x(n)

1 + c
. (20)

We also allow for the presence of a moderate level of
dynamical noise by modifying the sequence fn as

f̃n = y(n) + c [x(n) + ε ξ ]

1 + c(1 + ε)
, (21)

where ξ is a random number drawn from [0,1] with a flat
distribution and 0 � ε � 0.5.

C. Bidirectionally coupled logistic maps (BCLM)

In this case we consider the system generated by the map

x(n + 1) = 3.78 x(n)[1 − x(n)] + 0.03 y(n)2

1.03
, (22)

y(n + 1) = 3.66 gn[1 − gn] + c x(n)2

1 + c
,

gn = y(n) + 0.06 x(n)

1.06
. (23)

As in the UCLM case, we also allow for the presence of
dynamical noise by modifying the sequence gn as

g̃n = y(n) + 0.06 [x(n) + ε ξ ]

1 + 0.06(1 + ε)
, (24)

where ξ is a random number drawn from [0,1] with a flat
distribution and 0 � ε � 0.5.

D. Coupled Rössler-Lorenz system

Historically relevant in the study of chaos are also the
Lorenz system [23] and the Rössler system [45]. The former
was developed by Lorenz in 1963 as a simplified model of
viscous fluid flow. Rössler proposed his system in 1976 as
a simpler version of the Lorenz attractor in order to more
easily study its chaotic properties. Here, we study a coupled

FIG. 1. x-y phase space generated from 104-point long orbits of
the UCLM without noise and for different values of the coupling
constant: c = 0 (a), c = 0.4 (b), c = 0.6 (c), and c = 1 (d).

version of both systems also studied in [41,46], generated by
the vector field

ẋ1 = −6 (x2 + x3) , (25)

ẋ2 = 6 (x1 + 0.2x2) , (26)

ẋ3 = 6 [0.2 + x3 (x1 − 5.7)] , (27)

ẏ1 = 10 (y2 − y1) , (28)

ẏ2 = y1 (28 − y3) − y2 + c (x2)2 , (29)

ẏ3 = y1 y2 − (8/3) y3 . (30)

In this case, the dynamical noise is introduced by modifying
the coupling term in Eq. (29) above as

c (x2)2(1 + ε ξ )2 , (31)

where ξ is a random number drawn from [−1, 1] with a flat
distribution and 0 � ε � 0.5.

E. Synchronization

The synchronization threshold for the coupled instances
of the logistic maps can be easily estimated from the shape
of the attractor itself. It turns out that for both cases the
synchronization seems to take place around c ∼ 1. In the
UCLM case, the attractor clearly shrinks to the diagonal for
c ∼ 1 (Fig. 1). For the BCLM, however, one has a generalized
synchronization and hence the attractor does not collapse to
the diagonal when synchronization sets in (Fig. 2). In fact, by
taking the limit when c → ∞, the BCLM system reduces to
the new dynamical system

x(n + 1) = 3.67 x(n)[1 − x(n)] + 0.029 y(n)2 , (32)

y(n + 1) = x(n)2 . (33)
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FIG. 2. x-y phase space generated from 104-point long orbits of
the BCLM without noise and for different values of the coupling
constant: c = 0 (a), c = 0.2 (b), c = 0.5 (c), and c = 1 (d).

As c increases, the attractor generated by the BCLM ap-
proaches the attractor obtained with the system (32) and (33)
(Fig. 3).

For the case of the Rössler-Lorenz system, the generalized
synchronization seems to take place around c � 2 [46]. In-
deed, one can observe a great distortion of the usual butterfly
shape Lorenz attractor for c > 2.5 (Fig. 4).

V. SENSITIVITY OF TE TO TIME SERIES LENGTH

In this section we study the dependence of the TE com-
puted using our estimators on the number of observations in
the time series.

FIG. 3. x-y phase space generated from 104-point long orbits
of the BCLM without noise and for high values of the coupling
constant: c = 10 (a), c = 15 (b), c = 30 (c), and c = ∞ [the limiting
system given by Eqs. (32) and (33)] (d).

FIG. 4. 3D sections of the Rössler-Lorenz phase space generated
from 104-point long orbits without noise and for different values of
the coupling: c = 0 (a), c = 1 (b), c = 2.5 (c) and c = 3.5 (d).

A. Coupled logistic maps

1. Data-rich time series

In both UCLM and BCLM systems, we compute the TE
as a function of the time series length in the range 1000 to
5000 observations and with a low level (10%) of measurement
noise. For the UCLM case the coupling constant is set to c =
0.4, while for the BCLM instance we set c = 0.2.

In both cases of coupled logistic maps, the grid and the
kNN estimators seem to be the least sensitive to the number
of observations in the time series [Figs. 5(a) and 5(c) and 6(a)
and 6(c)], while the KDE estimator shows a mildly stronger
dependence on the time series length. For the grid estimator,

FIG. 5. Sensitivity of TE to time series length for the UCLM
with coupling constant c = 0.4 and 10% measurement noise, using
data rich time series. Values are the mean and standard deviation
of Tx→y (red line) and Ty→x (dashed blue line) over 50 realizations,
computed with the grid estimator (a), the KDE estimator (b) and the
kNN estimator (c).
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FIG. 6. Sensitivity of TE to time series length for the BCLM
with coupling constant c = 0.2 and 10% measurement noise, using
data-rich time series. Values are the mean and standard deviation of
of Tx→y (red line) and Ty→x (dashed blue line) over 50 realizations,
computed with the grid estimator (a), the KDE estimator (b), and the
kNN estimator (c).

and using the adapted bin size described in Appendix A, TE
for both UCLM and BCLM saturates to a fixed value for time
series with more than ∼5000 observations.

2. Sparse time series

In this section we check the ability of our estimators to
yield directional asymmetry in the TE for sparse data in the
range 50 to 400 observations and adding 10% measurement
noise. We also test the stability of the TE against the time
series length. For both UCLM and BCLM systems, our es-
timators yield the correct TE asymmetry (Tx→y > Ty→x) even
for time series sparsely sampled with 50 values [Figs. 7(a) and
7(b) and 8(a) and 8(b)]. In the case of the BCLM system, the
triangulation estimator outcompetes the rest of the estimators
at detecting asymmetry in the TE (in the expected direction)
for very sparse time series, with less than 100 observations
(Fig. 8). As for the sensitivity of the TE on the number of
observations, our estimators yield relatively stable TE in the
range 100–300 observations [Figs. 7(a) and 7(b) and 8(a) and
8(b)]. The KDE estimator seems to be the least sensitive to
the number of observations while the kNN estimator shows
the highest sensitivity [Figs. 7(c) and 7(d) and 8(c) and 8(d)].

B. Coupled Rössler-Lorenz system

Due to the dimensionality of this system, relatively data-
rich time series are required to obtain reliable TE estimates,
hence, we use time series with 2000 to 10 000 observations.
Again we compare the TE computed using our grid transfer
operator estimator with that of the kNN and the KDE estima-
tors. The triangulation approach becomes prohibitively time
demanding for high embedding dimension d � 5 (Appendix
F). The grid estimator is the least sensitive to the number
of observations in the time series [Fig. 9(a)] while the kNN
estimator arguably is the most sensitive [Fig. 9(c)]. For the

FIG. 7. Sensitivity of TE to time series length for the UCLM with
coupling constant c = 0.4 and 10% measurement noise, using sparse
time series. Values are the mean and standard deviation of of Tx→y

(red line) and Ty→x (dashed blue line) over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c), and the kNN estimator (d).

grid estimator, and using the adapted bin size described in
Appendix A, TE for the Rössler-Lorenz system saturates to
a fixed value for time series with more than ∼12 000 obser-
vations. For completeness, we also applied the triangulation
estimator to the Rössler-Lorenz system using 3D embeddings
[(x2(i + 1), x2(i), y2(i)), for computing Ty2→x2 and (y2(i +
1), y2(i), x2(i)), for computing Tx2→y2 ] and time series with
50–400 observations. The estimator detects a marginal causal

FIG. 8. Sensitivity of TE to time series length for the BCLM with
coupling constant c = 0.2 and 10% measurement noise, using sparse
time series. Values are the mean and standard deviation of of Tx→y

(red line) and Ty→x (dashed blue line) over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c), and the kNN estimator (d).
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FIG. 9. Sensitivity of TE to time series length for the Rössler-
Lorenz system with coupling constant c = 1.5 and 10% measure-
ment noise. Values are the mean and standard deviation of Tx2→y2 (red
line) and Ty2→x2 (dashed blue line) over 50 realizations, computed
with the grid estimator (a), the KDE estimator (b), and the kNN esti-
mator (c). We also include the TE computed using the triangulation
estimator with 3D embeddings and using sparse time series (d).

signal for time series with more than ∼300 observations
[Fig. 9(d)].

We note that the computational requirements of the tri-
angulation estimator become prohibitive for embedding di-
mensions beyond ∼5. The current implementation of this
estimator is based on computing exact simplex volume in-
tersections (Appendix D) which suffers from the curse of
dimensionality. There is room for optimization, however,
through more efficient (approximate) polytope intersection
algorithms. Alternatively, a coarse-grained sampling of the
simplices might also be used to estimate the volume inter-
section. We have implemented both exact and approximate
volume intersection routines in our CAUSALITYTOOLS.JL [47]
JULIA[48] package, which also provides an implementation of
the grid estimator. We also suggest a more efficient alternative
in Appendix E. We leave a comprehensive investigation of
these optimizations for future work.

VI. DEPENDENCE OF TE ON THE COUPLING CONSTANT
AND ITS RESPONSE TO NOISE

In this section we study the dependence of the TE com-
puted using our estimators on the coupling constant and its
response to observational and dynamical noise. We compare
the results with the above standard estimators. Because our
main interest in this study is the estimation of TE from sparse
time series, we fix the time series length to 100 observations
for the coupled logistic maps (both UCLM and BCLM) and
to 1000 observations for the Rössler-Lorenz system.

A. Coupled logistic maps

For the coupled logistic maps, we compute the TE for
values of the coupling constant in the range 0 to 1.6 in steps of

FIG. 10. Dependence of Tx→y − Ty→x on the coupling constant
for the noise free UCLM. Values are the mean and standard devi-
ation of Tx→y − Ty→x over 50 realizations, computed with the grid
estimator (a), the triangulation estimator (b), the KDE estimator (c),
and the kNN estimator (d).

0.2. We also include dynamical noise as well as measurement
noise with intensities ranging from 0 to 0.5 in steps of 0.1.
For the case of UCLM without noise, the asymmetry Tx→y −
Ty→x, computed with our estimators, starts at zero (or a very
small value) for c = 0, it then increases up to a maximum
value around c ∼ 0.2–0.4 and decreases back to zero as the
synchronization triggers for c � 1 [Figs. 10(a) and 10(b)]. In
the UCLM system, synchronization causes the evolution of
y to closely follow the evolution of x (Fig. 1). Accordingly,
one expects Tx→y → Ty→x as c increases beyond 1. However,
when dynamical noise is added, the effect of the synchroniza-
tion is attenuated [Figs. 11(a) and 11(b)]. Dynamical noise
may be interpreted as a hidden process affecting the system. It

FIG. 11. Dependence of Tx→y − Ty→x on the coupling constant
and dynamical noise level for the UCLM. Values are the mean and
standard deviation of Tx→y − Ty→x over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c) and the kNN estimator (d).
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FIG. 12. Dependence of Tx→y − Ty→x on the coupling constant
and measurement noise level for the UCLM. Values are the mean and
standard deviation of Tx→y − Ty→x over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c) and the kNN estimator (d).

is then expected that the synchronization effect breaks down
for sufficiently intense dynamical noise. On the other hand,
when measurement noise is added, the asymmetry Tx→y −
Ty→x decreases with increasing noise intensity (Fig. 12), as
the effect of the coupling is masked by the noise. Remarkably,
the ability of the triangulation estimator to detect the correct
directionality of the coupling enhances for low to moderate
levels of measurement noise and weak coupling (c ∼ 0.2–0.4)
[Fig. 12(b)]. This finding is congruent with the concept of
random perturbation approximation to the map, on which the
triangulation estimator is based [15]. In the case of BCLM,
synchronization does not decrease the asymmetry between
Tx→y and Ty→x. Synchronization reduces the BCLM system
to the map in Eqs. (32) and (33). In that limiting case, the
coupling in the x → y direction is much stronger than in
the opposite direction. Both the grid and the triangulation
estimators do capture this saturation of the asymmetry in the
TE for high values of the coupling constant [Figs. 13(a) and
13(b)]. In contrast, the KDE estimator yields a monotonically
decreasing asymmetry c � 1 [Fig. 13(c)] whereas the kNN
estimator shows a less obvious decrease [Fig. 13(d)]. When
dynamical noise is included into the BCLM system, the asym-
metry Tx→y − Ty→x responds similarly to that of the UCLM
system (Fig. 14). Observational noise, however, causes the
TE asymmetry to decreases with increasing levels of noise,
as expected. (Fig. 15). Although less obvious than for the
UCLM system, the triangulation estimator also shows a local
maximum in TE asymmetry for weak coupling and moderate
observational noise [Fig. 15(b)].

B. Rössler-Lorenz system

For the Rössler-Lorenz system, we compute the TE for
values of the coupling constant in the range 0 to 4 in steps
of 0.2 also including observational and dynamical noise
with intensities ranging from 0 to 0.5 in steps of 0.1. The
asymmetry Tx2→y2 − Ty2→x2 computed with the grid estimator

FIG. 13. Dependence of Tx→y − Ty→x on the coupling constant
for the noise free BCLM. Values are the mean and standard devi-
ation of Tx→y − Ty→x over 50 realizations, computed with the grid
estimator (a), the triangulation estimator (b), the KDE estimator (c)
and the kNN estimator (d).

saturates for high values of dynamical noise and coupling
constant [Fig. 16(d)], a trait also seen for the kNN esti-
mator [Fig. 16(c)]. The TE asymmetry computed using the
grid estimator increases for strong coupling and high levels
of dynamical noise [Fig. 16(a)]. However, the asymmetry
saturates for higher levels of dynamical noise [Fig. 16(d)].
With increasing levels of measurement noise, all estimators
yield a decreasing value for the TE asymmetry (Fig. 17).
Remarkably, nonetheless, the TE asymmetry computed with
the grid estimator only starts to decrease substantially once
the level of measurement noise goes beyond 50% [Fig. 17(d)].
These findings suggest that our grid estimator is robust to both
observational and dynamical noise.

FIG. 14. Dependence of Tx→y − Ty→x on the coupling constant
and dynamical noise level for the BCLM. Values are the mean and
standard deviation of Tx→y − Ty→x over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c), and the kNN estimator (d).
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FIG. 15. Dependence of Tx→y − Ty→x on the coupling constant
and measurement noise level for the BCLM. Values are the mean and
standard deviation of Tx→y − Ty→x over 50 realizations, computed
with the grid estimator (a), the triangulation estimator (b), the KDE
estimator (c), and the kNN estimator (d).

VII. DIRECT VS INDIRECT COUPLING

At the end of Sec. III D, we mentioned that our approach
to estimate TE can be easily extended to compute conditional
transfer entropy between three time series. As an example of
this, we apply the grid estimator to a chain of three coupled
Lorenz systems, studied in [49]. The flow is generated by the
vector field

ẋ1 = 10(y1 − x1) , (34)

ẏ1 = x1(28 − z1) − y1 , (35)

FIG. 16. Dependence of Tx2→y2 − Ty2→x2 on the coupling con-
stant and dynamical noise level for the Rössler-Lorenz system.
(a) Mean value of Tx2→y2 − Ty2→x2 over 50 realizations computed
with the grid estimator; (b) the same for the KDE estimator; (c) using
the kNN estimator; (d) using the grid estimator and extending level
of dynamical noise up to 2.

FIG. 17. Dependence of Tx2→y2 − Ty2→x2 on the coupling con-
stant and measurement noise level for the Rössler-Lorenz system.
(a) Mean value of Tx2→y2 − Ty2→x2 over 50 realizations computed
with the grid estimator; (b) the same for the KDE estimator; (c) using
the kNN estimator; (d) using the grid estimator and extending the
level of measurement noise up to 100%.

ż1 = x1y1 − 8/3 z1 , (36)

ẋi = 10(yi − xi ) + c (xi−1 − xi ) , (37)

ẏi = xi(28 − zi ) − yi , (38)

żi = xiyi − 8/3 zi , (39)

with i = 2, 3. The direct coupling chain is x1 → x2 → x3. We
use coupling constant values in the range 0 to 8 in steps of 0.4
(according to [49], the full synchronization takes place for c >

8). For each instance of the coupling constant, we generate
50 orbits starting at randomly chosen initial conditions and
consisting of 104 observations. The data generation for this
system and the delay embeddings used to compute TE are
specified in Appendix A. Our grid estimator detects the direct
coupling x1 → x2 for c � 2 [Fig. 18(a)] and the coupling
x2 → x3 is detected for c � 4 [Fig. 18(b)]. In addition, the
grid estimator detects the indirect coupling x1 → x3 for c � 4
[Fig. 18(c)]. On the other hand, when the transfer entropy is
conditioned on the mediating variable x2, the TE for the indi-
rect coupling x1 → x3 vanishes [Fig. 18(d)], which indicates
that our method holds some promise for detecting indirect
coupling.

VIII. CONCLUSIONS

In this work we propose the computation of transfer en-
tropy (TE) between time series corresponding to variables of
some dynamical system, based on a numerical approximation
of the Perron-Frobenius operator (transfer operator) associ-
ated to the map (or vector field) giving rise to the dynamics.
More specifically, the TE is computed using the invariant
distribution of the transfer operator. Depending on the num-
ber of observations in the time series and the embedding
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FIG. 18. Distinguishing direct from indirect coupling for the
chain of coupled Lorenz systems. Values are the mean and standard
deviation of TE asymmetry over 50 realizations of the chain of
coupled Lorenz systems [Eqs. (34)–(39)]. TE asymmetry for the
direct coupling x1 → x2 (a), direct coupling x2 → x3 (b), indirect
coupling x1 → x3 (c), and conditional TE for the indirect coupling
given the mediating variable (d).

dimension, we propose two methods to estimate the transfer
operator. For sparse time series (less than a few hundred
points) and low embedding dimension, we use a triangulation
of the delay reconstructed attractor to estimate the transfer
operator, whereas for data-rich time series (thousands of
points) or high embedding dimension we estimate TE using
a faster rectangular grid approach. The TE computed using
our estimators shows robustness to both observational and
dynamical noise, even for a high dimensional system such
as the Rössler-Lorenz system. Our results suggest that our
estimators of TE are relevant for the detection of causal
directionality between sparse and noisy time series, which are
commonly encountered in many disciplines.

Computer code required for reproducing the numerical
results presented in this work is available in our CAUSALITY-
TOOLS.JL JULIA package [47].
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APPENDIX A: NUMERICAL IMPLEMENTATION DETAILS

1. Generating time series and embedding

a. Logistic maps

To generate the time series for the UCLM and BCLM
systems, the variables x and y are sampled every second
iterate, after a lapse of 103 iterations. For the computation
of Tx→y, we used the embedding (y(i + 1), y(i), x(i)) while
the computation of Ty→x was done with the embedding
(x(i + 1), x(i), y(i)).

b. Rössler-Lorenz system

The system of equations (25)–(30) is solved using a fourth
order Runge-Kutta routine with time step dt = 0.005. The
time series are generated by recording the variables every 6
time steps of integration and after an initial lapse of 500 steps,
to avoid transients. The embeddings we used in this case were
(y2(i + 3), y2(i + 2), y2(i + 1), x2(i + 2), x2(i + 1), x2(i)) for
Tx2→y2 and (x2(i + 3), x2(i + 2), x2(i + 1), y2(i + 2), y2(i +
1), y2(i)) for Ty2→x2 .

c. Chain of coupled Lorenz systems

The system of equations (34)–(39) is also solved using
a fourth order Runge-Kutta method with the same integra-
tion step as for the Rössler-Lorenz system. The variables
x1, x2, and x3 are sampled using the same sampling time
and initial lapse. To compute Txi→x j , with i = j ∈ {1, 2, 3},
we use the embedding (x j (t + 3), x j (t + 2), x j (t + 1), xi(t +
2), xi(t + 1), xi(t )) while for the estimation of the conditional
transfer entropy Tx1→x3|x2 we used the embedding (x3(t +
3), x3(t + 2), x1(t + 2), x2(t + 2), x2(t + 1), x2(t )). For the
case Tx3→x1|x2 , the embedding is obtained as in the case of
Tx1→x3|x2 by simply interchanging the roles of x3 and x1.

2. Bin sizes

The choice of the size of the intervals along each axis
is adapted to the size of the attractor and the number of
points available. Following [41], if N is the number of points
furnishing the (embedded) attractor and d is the embedding
dimension, the number of intervals along each axis is taken
as Nint = min{ceil(N1/(d+1)), nmax}, where ceil(·) denotes the
ceiling and nmax is taken to be 9 for d = 3 and 4 for d = 6.
If {pi} is the set of points furnishing the attractor (it could
either be the actual set of points in the embedding or the
result of the sampling of the simplices in the triangulation),
the size of the intervals along the ath axis is chosen as
follows: Let Oa = (1 − 1

10 Nint
)min{(pi )a|1 � i � N} and Ta =

(1 + 1
10 Nint

)max{(pi )a|1 � i � N}. O will be referred to as the
origin of the attractor. The interval size along the ath axis is
determined as εa = (T − O)a/Nint .

The results for the KDE estimator are obtained using the
minimum interval size for each case, that is, min{εa}.

3. Constructing the binning

Suppose E = {p1, . . . , pN } ⊂ Rd is the set of points fur-
nishing the reconstructed attractor (in the case of the grid
estimator) or the set of final sampling points (in the case of
the triangulation estimator). Let ε = (εa) and O = (Oa) be
the bin size and the origin of the attractor (see the previous
section). Call (x1, . . . , xd ) the coordinate axes on the embed-
ding space, and generically denote as An+1 := (x1, . . . , xn1 ),
An := (xn1+1, . . . , xn2 ), and Bn := (xn2+1, . . . , xd ), the vari-
ables on which the transfer entropy TB→A is computed. Each
point pl ∈ E is assigned a unique triplet of integer tuples
Il = (il

1, il
2, il

3), with il
1 = ( jl

1, . . . , jl
n1

), il
2 = (kl

n1+1, . . . , kl
n2

),
and il

3 = (ml
n2+1, . . . , ml

d ), and such that Oa + ( jl
a − 1)εa <

(pl )a � Oa + jl
aεa, for all 1 � a � n1 (analogously for il

2
and il

3). The unique elements in the set {I1, . . . , IN }, say
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{I1, . . . , IM}, identify the bins that contain at least one point
from the set E and constitute the binning used to compute the
transfer operator and the TE (in the case of the grid estimator)
and just the TE in the case of the triangulation estimator.

4. Grouping of variables for TE computation

For the case of the coupled logistic maps (both UCLM and
BCLM), the TE corresponding to x → y uses the grouping of
variables An+1 = (x(n + 1)), An = (x(n)), and Bn = (y(n)),
while the TE corresponding to y → x is computed with the
variable grouping An+1 = (y(n + 1)), An = (y(n)), and Bn =
(x(n)).

For the case of the Rössler-Lorenz system, the gathering of
variables used to compute Tx2→y2 is An+1 = (y2(i + 3)), An =
(y2(i + 2), y2(i + 1)), and Bn = (x2(i + 2), x2(i + 1), x2(i)).
For computing Ty2→x2 we use the same gathering of variables
but interchanging the symbols x2 and y2.

The TE corresponding to the coupling xi → x j (both direct
and indirect) in Sec. VII is computed using the gathering
of variables An+1 = (x j (t + 3)), An = (x j (t + 2)), and Bn =
(xi(t + 2), xi(t + 1), xi(t )).

5. Computation of conditional TE

Given the variables An+1, An, Bn, and Cn, the conditional
transfer entropy TB→A|C is computed as∫

P(An+1, An, Bn,Cn) log2
P(An+1|An, Bn,Cn)

P(An+1|An,Cn)
.

The conditional Tx1→x3|x2 in Sec. VII is computed using the
gathering of variables An+1 = (x3(t + 3)), An = (x3(t + 2)),
Bn = (x1(t + 2)) and Cn = (x2(t + 2), x2(t + 1), x2(t )). The
conditional Tx3→x1|x2 is computed using the same gathering of
variables but interchanging x1 and x3.

6. k nearest neighbors counting

For the case of kNN estimator of mutual information for
dimension 3 or less, we used 5 nearest neighbors to compute
I (a, (b, c)) while 10 nearest neighbors were used to compute
I (a, b), where a, b, and c denote generic variables. For higher
dimensions (� 4), the same number of nearest neighbors may
be taken for both mutual informations (Fig. 16 in Ref. [9]).

APPENDIX B: ERGODICITY CROSS CHECK

As a way of testing the ergodicity of the invari-
ant measure estimated with our method, we compare the
temporal and spatial averages of several functions for
the UCLM and for the Rössler-Lorenz system. In par-
ticular, we consider the functions ha := sech(

√
x2 + y2),

hb := β(1 + x2, 1 + y2), and hc = ψ (
√

x2 + y2), for the cou-
pled logistic maps, and hd := sech(

√
(x2)2 + (y2)2), he :=

β(1 + (x2)2, 1 + (y2)2) and h f := ψ (
√

(x2)2 + (y2)2), for the
Rössler-Lorenz system, where β(x, y) is the Euler β function
and ψ (x) is the digamma function. There is no particular
reason behind the choice of these functions, other than being
complicated functions having no obvious connection with the
systems.

FIG. 19. Ergodicity test for 1000-point long orbits from the
UCLM with c = 0.4 and no noise ((a), (b), and (c)) and for 10 000-
point long orbits from the Rössler-Lorenz system with c = 1.5 and
no noise ((d), (e), and (f)). Blue lines show the temporal average and
red lines the spatial average of the different functions (see text). The
x axis indicates the number of intervals that are taken along each axis
in the embedding space for defining the grid. Error bars indicate the
standard deviation over 50 realizations.

The spatial averages rapidly converge to the temporal
averages as the bin size decreases (Fig. 19). Also, we point
out that the rate of convergence seems to be fairly independent
of the functions chosen to be averaged. This is maybe not so
evident in the case of the Rössler-Lorenz system [Figs. 19(d)–
19(f)] but all the spatial averages seem to saturate beyond ∼15
intervals per axis. This rate of convergence is rather dependent
on the system and, likely more strongly, on the embedding
dimension, suggesting that such a saturation could be used as
a criterion for choosing a suitable bin size.

APPENDIX C: GRID ESTIMATOR VS VISITATION
FREQUENCY ESTIMATOR

Here, we compare the invariant density obtained using
the grid estimator with the density that a direct visitation
frequency estimation yields, as a function of the number of
observations in the time series. For each instance of time
series length, say n, we set a bin size (as explained in
Appendix A) and consider a partition into rectangular bins.
We then apply the grid estimator to 50 realizations of time se-
ries with n observations and generated from randomly chosen
initial values. Hence, we obtain 50 estimates for the invariant
distribution, say ρgrid(r, n), for 1 � r � 50. Using the same
time series, we also compute the visitation frequency to each
bin, obtaining thus ρv f (r, n). We consider the discrepancy
measure

δ(n) = 1

50

50∑
r=1

‖ ρgrid(r, n) − ρv f (r, n) ‖
max{‖ ρgrid(r, n) ‖ , ‖ ρv f (r, n) ‖}

with ‖ v ‖:= max{|va|}.
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FIG. 20. Mean value and standard deviation over 50 realizations
of the discrepancy between the invariant densities computed with
the grid estimator and via computation of the visitation frequency
(Appendix C), as a function of the number of observations in the
time series for (a) UCLM with c = 0.4 and no noise; (b) BCLM with
c = 0.2 and no noise; (c) Rössler-Lorenz system with c = 1.5 and
no noise.

We apply this procedure to our example systems and find
that both methods for estimating invariant densities produce
the same outcomes (within very small discrepancies) for long
enough time series (Fig. 20). By virtue of the ergodic theorem,
the invariant density of the transfer operator and the invariant
density yielded by the frequency of visitations must coincide.
Hence, the convergence of the density estimates is expected
for long enough time series.

APPENDIX D: COMPUTING THE INTERSECTING
VOLUME BETWEEN SIMPLICES IN DIMENSION d

We outline the method used in this paper for computing the
volume of the intersection between two simplices. Let V =
{p0, . . . , pd} be d + 1 affinely independent points in Rd . The
simplex S with vertices V is the convex hull of them, usually
denoted as S = CH (V ), and defined as all the points in Rd

constructed as x = α0 p0 + · · · + αd pd , with αi � 0 and α0 +
· · · + αd = 1. In addition, x lies in the interior of S, denoted as
x ∈ S̊, if and only if all αi > 0. A generic boundary of S is the
simplex with vertices {pσ0 , . . . , pσk }, where {σ0 < · · · < σk}
is a (nonempty) selection of {0, . . . , d}, for k = 0, . . . , d . The
proper faces of the simplex correspond to k = d − 1. Suppose
S1 = CH (V1) and S2 = CH (V2), with V1 = {p0, . . . , pd} and
V2 = {q0, . . . , qd}. The method for computing the volume of
the intersection S1 ∩ S2 used in this work is based on the
following result (the proof of which is given at the end of this
Appendix):

Theorem 1. Let S1, S2 ⊂ Rn be two simplices of dimen-
sions n � m � 1, respectively, and with S1 ∩ S2 = ∅. Let I
be the set of points in Rn constructed as follows: p ∈ I if
p ∈ B̊1 ∩ B̊2, where B1 and B2 are boundaries of S1 and S2,
respectively, and not supporting any common direction. Then,
it holds that S1 ∩ S2 = CH (I ).

In other words, if I = {x1, . . . , xN } is such a set, then
S1 ∩ S2 consists of all the points of the form β1x1 +
· · · + βN xN , for βn � 0 and β1 + · · · + βN = 1. The set
I may be found as follows: let B1 = CH ({pρ1 , . . . , pρr })
and B2 = CH ({qσ1 , . . . , qσs}) and, with no loss of gener-
ality, assume that r � s. Reorder the vertices of S1 as
{pρ1 , . . . , pρr , pρr+1 , . . . , pρd+1}. Every point in Rd can be
expressed as a unique affine linear combination of these ver-
tices, possibly with negative coefficients. In particular, qσi =∑d−r+1

j=1 γ ji pρr+ j + · · · , where the coefficients on the rest of
the vertices of S1 are omitted. Denote the least dimensional
affine space containing the boundary B1 (respectively B2) as
�1 (respectively �2). By definition, the affine spaces gener-
ated by the sets of (affinely independent) points {x1, . . . , xn}
and {y1, . . . , ym}, intersect uniquely if the equations

n∑
i=1

αixi =
m∑

j=1

β jy j , (D1)

n∑
i=1

αi =
m∑

j=1

β j = 1 (D2)

have unique solution. In our case, this translates into the
conditions

rank γ = s − 1, (D3)

rank

(
γ

1

)
= s, (D4)

where γ is the (d − r + 1) × s matrix with entries γab and 1
denotes a row of ones. If x is the unique intersecting point,
then

x =
r∑

i=1

αi pρi =
s∑

j=1

β j qσ j , (D5)

with
∑

i αi = ∑
j β j = 1, and only if αi, β j > 0, the point x

is in the interior of both boundaries and thus an element of I.
Once the set I has been found it can be further decomposed

as I = ∪a=1,2; j=0,...,d I (a)
j where I (a)

j := I ∩ F (a)
j and F (a)

j
denotes the face of the simplex Sa that lies opposite to the jth
vertex of that simplex. Some of these subsets might be empty
and there might be repetitions. Call F the set of the unique el-
ements in the collection {I (a)

j }
a=1,2 ; j=0,...,d

that appear at most

once for a = 1 or once for a = 2. If the element I (1)
i appears

only for a = 1, then it is easy to check that the intersection
F (1)

i ∩ S2 produces a convex set of dimension d − 1, i.e., a
proper face of S1 ∩ S2. On the other hand, Theorem 1 applied
to the simplices F (1)

i and S2 precisely yields the set of vertices
I (1)

i . The same holds if the set of vertices I (2)
i appear only for

a = 2. In the case where any such set I (a)
j appears for both

a = 1 and 2, its convex hull is a proper face of S1 ∩ S2 only
when the corresponding faces containing I (a)

j are parallel.
Each face of S1 ∩ S2 may be triangulated (some of them might
be already simplices) and the triangulation of these faces,
together with any point in the interior of S1 ∩ S2, for instance
its centroid, form a triangulation of the intersection between
the simplices. Its volume is then computed as the sum of the
volumes of the simplices in this last triangulation.
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1. Proof of Theorem 1

The statement in Theorem 1 is actually a corollary of a well
known result on convex geometry:

Theorem 2 (Minkowski). Every convex and compact set in
Rn is the convex hull of its extreme points.

The proof of Theorem 2 can be found in Ref. [50]. A point
x in a convex set P is said to be extreme if the equality x =
λ y + (1 − λ) z, for y, z ∈ P and 0 < λ < 1, requires x = y =
z. In other words, x is not found in the interior of any segment
contained in P. For our purposes, it is convenient to use an
(easily shown to be) equivalent definition: x is extreme if for
every unit vector u and for every ε > 0, there is |λ| < ε, such
that x + λ u /∈ P. The set of extreme points of P is denoted as
ext(P).

Proof of Theorem 1. We claim that the set I, as de-
fined in Theorem 1, equals ext(S1 ∩ S2). To see this, let
{p0, . . . , pn} be the vertices of S1 and {q0, . . . , qm} be the
vertices of S2 and let x ∈ B̊1 ∩ B̊2 with B1 and B2, bound-
aries verifying the properties required in Theorem 1. Next,
let u be an arbitrary unit vector and assume, without loss
of generality, that the direction u is not supported by �1

(the least dimensional affine space supporting B1). Further
assume, without loss of generality, that {p0, . . . , pr} are the
vertices of the boundary B1. Then, u = ∑r

i=1 γi(pi − p0) +∑n
j=r+1 μ j (p j − p0) with not all μ j vanishing. Assume, with-

out loss of generality, that μr+1 = 0. Therefore, x + λ u =
λ μr+1 pr+1 + ∑r

i=0 αi(λ) pi + ∑
j>r+1 β j (λ) p j . Given ε >

0 arbitrary, take λ = −sign(μr+1)
ε

2
, it then holds that x +

λ u = −|μr+1|ε
2

pr+1 + · · · and therefore x + λ u /∈ S1. This

shows that x is an extreme point of S1 ∩ S2 and since x ∈ I
was arbitrary, it follows that I ⊂ ext(S1 ∩ S2).

To see the reverse inclusion, let x ∈ ext(S1 ∩ S2) arbitrary.
Without loss of generality, assume that x = ∑r

i=0 αi pi =∑s
j=0 βiqi with all αi > 0 and all β j > 0. Call �r the least

dimensional affine space containing the vertices {p0, . . . , pr}
and �s the affine space with the same property with respect
to the vertices {q0, . . . , qs}. It holds that �r and �s do not
support any common direction. Indeed, suppose u is a unit
vector along a direction supported by both �r and �s then,
having that all the coefficients αi and β j are strictly positive, it
follows that for some ε > 0 small enough, x + λ u ∈ S1 ∩ S2,
for all |λ| < ε, contradicting that x is an extreme point. This
shows that I = ext(S1 ∩ S2). Given that both S1 and S2 are
compact and convex sets, so it is S1 ∩ S2 and the proof is
completed by using Theorem 2. �

APPENDIX E: SAMPLE-AND-FILTER APPROACH

Here, we provide a tentative modification of the triangu-
lation estimator in order to reduce its high computational de-
mands. As described in Sec. III E 2, the triangulation estimator
is based on an initial partition of the embedded attractor into
simplices and the map generating the dynamics is approxi-
mated linearly onto each simplex [15], say ψ̃ . Given the initial
triangulation of the attractor, we make use of the piecewise
linear approximation of the map to generate sampling points
as an input to the grid estimator [Eq. (16)]:

FIG. 21. Example of the sampling and filtration of 100 embed-
ding points for the UCLM system with c = 0.4, no noise, and using
the embedding (x(n + 1), x(n), y(n)). Solid black points represent
the original embedding points and the grid is shown in green. (a) Ini-
tial triangulation of the reconstructed attractor. (b) Each simplex is
sampled with 80 points (small blue points), where those not lying in
the grid have been filtered out. The number of points after filtering
(small blue points) is about 23 000.

(1) Given an embedded attractor in a d dimensional space
(we assume it consists of few hundred points), let {S1, . . . , SN }
be its triangulation into d simplices and {B1, . . . , BM} be the
set of bins in a regular grid that are visited by the embedded
points [Fig. 21(a)]. The size of the bins in the regular grid is
adapted to the number of points in the reconstructed attractor
(Appendix A).

(2) Each simplex is sampled with Ns points using a pre-
defined matrix of convex coefficients. More specifically, let
C be a Ns × (d + 1) matrix such that Cai � 0, no two rows
are equal and

∑d+1
j=1 Ca j = 1, for all 1 � a � Ns and 1 � i �

d + 1. Let {v1, . . . , vd+1} be the vertices of the simplex Sn in
the triangulation of the attractor and {ψ̃ (v1), . . . , ψ̃ (vd+1)} be
the vertices of the simplex being the image of Sn under the
map (see Sec. III E 2 for details). The ath sampling point of
the simplex Sn is given by pn,a := ∑d+1

j=1 Ca jv j and its image

under ψ̃ is given by ψ̃ (pn,a) = ∑d+1
j=1 Ca jψ̃ (v j ) (the map ψ̃ is

linear on each simplex). Call P := {pn,a}1�n�N, 1�a�Ns
, the set

of all the sampling points of the simplices in the triangulation
and ψ̃ (P) = {ψ̃ (pn,a)}, the set of image points.

(3) From P, discard all those points not lying in ∪M
i=1Bi.

The resulting set P̄ contains (possibly thousands of) points
that are distributed more tightly to the volume occupied by
the reconstructed attractor [Fig. 21(b)].

(4) Finally, a new bin size is adapted to the number
of points in P̄. Their images are found in the set ψ̃ (P̄) =
{ψ̃ (pn,a) | pn,a ∈ ∪iBi}. Therefore, the transfer operator may
be approximated using Eq. (16), which using the above nota-
tion reads as

Pi j � �{pn,a | ψ̃ (pn,a) ∈ Bj ∩ pn,a ∈ Bi}
�{pm,b | pm,b ∈ Bi} .
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FIG. 22. Mean value of Tx→y − Ty→x over 50 realizations as
a function of coupling constant and noise level obtained with
the sample-and-filter approach. (a) UCLM with dynamical noise;
(b) UCLM with measurement noise; (c) BCLM with dynamical
noise; (d) BCLM with measurement noise.

Note that generating sampling points in this manner only
assumes piecewise linearity of the map and does not introduce
any further bias. We applied this approach to both UCLM
and BCLM, using time series with 100 observations and
50 realizations from randomly chosen initial conditions. The
dependence of �T := Tx→y − Ty→x on the coupling constant
and noise is comparable to that obtained from the grid es-
timator [Figs. 22(a) and 22(b)]. Interestingly, the values for
the �T obtained with the sample-and-filter approach are, in
general, higher than those obtained with the grid estimator
(Fig. 23). This result suggests that from a sparse time series
one may generate thousands of points from a piecewise linear
approximation and obtain reliable results for the TE. We also

FIG. 23. �T (SF) − �T (grid ) (SF indicates sample-and-filter
method) as a function of the coupling constant and noise level for
(a) UCLM with dynamical noise; (b) UCLM with measurement
noise; (c) BCLM with dynamical noise; (d) BCLM with measure-
ment noise.

FIG. 24. Mean value of Tx2→y2 − Ty2→x2 over 50 realizations as a
function of the coupling constant and noise level for the Rössler-
Lorenz system and (a) with dynamical noise obtained with the
sample-and-filter approach; (b) the same as in (a) but with measure-
ment noise instead; (c) obtained with the grid estimator and adding
dynamical noise; (d) the same as in (c) but with measurement noise
instead.

apply the sample-and-filter approach to the Rössler-Lorenz
system, in which case the results are less impressive (Fig. 24).
Note, however, that these analyses used time series with only
200 observations in embedding dimension 6 (Appendix A).

FIG. 25. (a) Mean and standard deviation over 50 realizations of
the CPU time needed to obtain the volume of a nontrivial simplex
intersection; (b) mean and standard deviation over 10 realizations
of the CPU time required to obtain an estimate of the transfer
operator for to the UCLM system with c = 0.4 and no noise, in
embedding dimension 3. The timing values were obtained using the
cputime function in MATLAB; (c) mean and standard deviation over
50 realizations of the number of simplices in a triangulation in 3D;
(d) the same as in (c), fixing the number of observations in the time
series to 500.
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APPENDIX F: COMPUTATIONAL TIMES FOR THE
TRIANGULATION ESTIMATOR

In this Appendix we provide CPU times required to ob-
tain the transfer operator using the triangulation estimator
[Fig. 25(b)] as well as the CPU time required for obtaining the
volume of a (nontrivial) simplex intersection [Fig. 25(a)]. The
simulations were run in MATLAB using a MacBook Pro with a
2.8 GHz Intel Core i7 processor. Computation times increase
for higher dimensions because the CPU time to obtain the
volume for a simplex intersection and the number of simplices
in the triangulation both scale exponentially [Figs. 25(a) and

25(d)]. In particular, for dimension 5, the CPU time required
to obtain the volume of a nontrivial simplex intersection is
ts ∼ 5 × 10−2 s and the typical number of simplices in a tri-
angulation generated from 500 points is ns ∼ 5 × 104. If each
simplex intersects nontrivially with just 10 of the simplices
in the triangulation (which is a quite optimistic estimate) we
are left with a computation time for obtaining the transfer
operator in the order tTO ∼ 10 ns ts ∼ 2.5 × 104 s ∼ 7 h. For
comparison, our grid estimator applied to 500-point long time
series in dimension 5 requires a CPU time of ∼5 × 10−3 s to
estimate the transfer operator.
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