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A B S T R A C T

In the field of wave model validation, the use of super observations is a common strategy to smooth satellite
observations and match the simulated spatiotemporal scales. An approach based on averaging along track is
widely applied because it is straightforward to implement and adjustable. However, the choice of an appropriate
length scale for obtaining the averages can be ambiguous, affecting subsequent analyses. Despite this dilemma,
no uncertainty for the validation metric is provided when proceeding with wave model validation. We show that
super observations computed from averaging data points applying an inappropriate length scale can lead to a
misrepresentation of the wave field which can introduce errors into the wave model validation. Modelling the
mean of observations as a Gaussian Process mitigates those errors and reliably identifies outliers by exploiting
information hidden in the observational time series. Moreover, the uncertainty accompanying the validation
statistic is readily accessible in the Gaussian Process framework. The flexibility of a Gaussian process makes it an
attractive candidate for the probabilistic validation of wave models with steadily increasing horizontal resolu-
tion. Moreover, this approach can be applied to measurements from other platforms (e.g. buoys) and other
variables (e.g. wind).

1. Introduction

Satellite altimetry allows one to evaluate the performance of wave
models in terms of significant wave height (SWH). Multiple satellite
missions in the past have created an almost continuous record since
1985, allowing for wave model validation and calibration by mea-
surement platforms (Zieger et al., 2009; Abdalla et al., 2011). However,
prior to validation, the satellite derived SWH undergoes quality control,
i.e. outlier removal, and is adjusted to match the effective horizontal
resolution of the wave model (Abdalla et al., 2013). The resulting va-
lues are often called super observations. We propose a new and highly
flexible approach to compute super observations, detect outliers, and
attain a probabilistic uncertainty measure for subsequently computed
validation statistics.

Commonly, a super observation is computed by averaging along the
satellite track of SWH (an example of which is shown in Fig. 2 a), as is
repeatedly applied and described in recent scientific literature (Abdalla
et al., 2011; Liu et al., 2016; Stopa et al., 2016). The size of the aver-
aging window (length scale) is chosen to match the effective model
resolution, such that values representing similar process scales are

compared (Abdalla et al., 2013). Another reason for the smoothing is
the chaotic nature of the sea state consisting of a superposition of
multiple wave fields with different origin and characteristics (random
phase/amplitude model, e.g. Holthuijsen (2010)). From an Eulerian
perspective, this superposition creates a varying wave field with
random realizations scattered around a mean value. This mean value
can be thought of as the sea state one strives to measure but can rarely
observe. As one satellite footprint is just a snapshot of the wave field at
one point in space and time, it is unlikely that it recorded exactly the
underlying sea state but rather one random realization. Smoothing the
time series of along track measurements using an appropriate length
scale averages out these variations and hopefully arrives at the correct
mean. Averaging will further reduce the effect of random measurement
errors inherent to the measuring system.

A challenge with the described approach is the choice of an ap-
propriate length scale. Even though guidelines are provided, e.g. by
Abdalla et al. (2011), one has to decide on one specific value for the
length scale. This is commonly the mean of what might be the range of
possible length scales. However, the most appropriate length scale
might vary in space, or from domain to domain, because it depends on
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the scale of features the wave model is able to resolve. Unfortunately, in
the prevalent approach, one can only choose one discrete number of
footprints or model grid cells that should be averaged.

If the correct length scale could be chosen and there is no systematic
bias in the data, the super-observed average SWH value is a reliable
measure, assuming the sample size (averaging window size) is large
enough to be representative of the underlying stochastic process. This
assumption is challenged by model simulations with increasingly higher
horizontal resolution. For instance, when comparing satellite observa-
tions against high resolution model simulations, the appropriate
number of footprints that should be averaged might reduce to only a
few points. Abdalla et al. (2011) chose 11 consecutive valid footprints
to form one super observation and Saleh Abdalla (2018) mentioned a
necessary minimum of 7 footprints. What if the resolved model scale
drops below that value and what if the 11 or 7 values are not re-
presentative? This becomes increasingly problematic considering an
ever-greater mismatch between the model resolution and the size and
distance of the satellite footprints. Smaller numbers are already applied,
e.g. Stopa et al. (2016) used a moving average window of 5 values to
smooth the satellite track and to match scales.

A similar problem emerges for the detection of outliers. As described
e.g. by Young (1999) or Zieger et al. (2009), outliers are detected based
on a block of data points (25 values in Zieger et al. (2009)) which
undergoes 2 or 3 passes of quality checks. Again, the block size has to
be decided with regard to physical arguments like the spatial scale of
geophysical processes which, however, can vary in space and time. The
assumption is that the block size should be representative for com-
puting a mean and a standard deviation but small enough to avoid
considerable variability as a result of e.g. storm systems. This is not the
case if there are strong gradients or regime shifts along the satellite
track within the chosen block.

After a sequence of subjective decisions on the length scale and
block size, a validation statistic can be computed. Commonly single
numbers are presented, e.g. root mean square error, correlation, or
scatter index. However, the uncertainty associated with these decisions
is not quantified and as such, the significance of the validation statistics
cannot be realistically assessed. Propagating and quantifying this un-
certainty is one of the primary concerns in the exposition of the ap-
proach in this paper.

In the following, we present a flexible, alternative approach which
allows us to estimate the most likely sea state along the satellite track
and thus to create reliable and smooth super observations detecting
outliers at the same time. Moreover, our suggested approach can
naturally quantify the uncertainty to the desired validation statistic.

2. Methodology

2.1. Data and collocation

For producing the results in this paper, we used two data sources:
First, output from simulations with the operational wave model Arctic
WAM, a version of the WAM wave model (Komen et al., 1994), setup
with a horizontal resolution of 8 km regridded to 6.25 km. The simu-
lations were conducted at the Norwegian Meteorological Institute and
are available on the Copernicus web server under the product name
ARCTIC_ANALYSIS_FORECAST_WAV_002_010.1 Second, Sentinel-3a
(S3a) data obtained from the Copernicus web server under the product
name WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001.2 S3a

is a level three satellite altimeter product featuring a 1 Hz sampling
frequency. The wave model is forced with winds from the operational
ECMWF IFS at 9 km horizontal resolution and at the boundaries with
the operational ECMWF wave model with a horizontal resolution of
14 km. A more thorough description is provided on the web site for
these Copernicus products.

To obtain a time series from the wave model matching the satellite
observations, we collocate the S3a footprints to model grid cells
(Fig. 1). Constraints in space and time determine whether a model grid
cell is attributed to a satellite footprint comparable to Stopa et al.
(2016). The time constraint is centered around the model time step and
allows S3a values to be chosen if they were recorded within±30min.
In space, we allow only the collocation of model grid cells which are
directly associated with the satellite swath with a maximum distance of
6 km to the footprint. This approach results in two time series, one for
the wave model and one for the satellite observations, consisting of the
same number of values.

2.2. Averaging based super observations and outlier detection using data
blocks

We compute an effective length scale from the horizontal resolution
of the atmospheric model by multiplying 9 km by 3–6 grid cells as
described in Abdalla et al. (2011). The wave model has a higher re-
solution and is thus not the limiting factor. Our length scale is conse-
quently l=3 · 9 km=27 km to l=6 · 9 km=54 km consistent with
3–7 wave model grids and 4–8 consecutive satellite footprints. Since we
need an odd number for a centered moving average window, we tested
both 5 and 7 satellite footprints. For the illustrations we show only
results with window size 7. We acknowledge that in practice, often
independent blocks are used rather than a moving average (Saleh
Abdalla, 2018, personal communication). The independent block esti-
mates are points on the smoothed line resulting from the moving
average, and as such are implicitly included in our comparison. For the
sake of illustration and because this is sometimes applied, we chose to
compare our method against moving average based super observations.

Outlier removal is performed prior to computing super observa-
tions. This was approached by dividing the time series into smaller
blocks of retrieved altimeter SWH values and removing values greater
than twice the standard deviation from the block mean. Tobe consistent
with the computation of the super observations and the effective model
scale, we compute outliers based on the same length scale of 7 con-
secutive observations. Outliers are additionally detected based on
larger block sizes of 11 and 25 values for comparison with Abdalla et al.
(2011) and Zieger et al. (2009).

2.3. Super observations and outlier detection with a Gaussian process model

The description and application of a Gaussian Process is based on
Rasmussen and Williams (2006) who introduce Gaussian Processes for
machine learning. We assume that an unknown stochastic process, non-
stationary in time and space, produces a wave field. For the short
amount of time that the satellite needs to pass over the model region,
typically some minutes, we assume that the stochastic process is sta-
tionary. This assumption is realistic because the sea state does not no-
ticeably change at the location of the footprints within this amount of
time. This means that the SWH along any trajectory over the wave field
is a function of space, or similarly travel time of the footprint. For any
point in space in the wave field there is a true mean value of the sea
state around which measurements would scatter due to the chaotic
nature of the sea and random measurement errors. The true sea state
can be thought of as a latent mean function of SWH we wish to estimate
and subsequently use for validation of the wave model.

2.3.1. Description of our statistical model
From a statistical point of view, the SWH time series can be

1 http://marine.copernicus.eu/services-portfolio/access-to-products/?
option=com_csw&view=details&product_id=ARCTIC_ANALYSIS_FORECAST_
WAV_002_010.

2 http://marine.copernicus.eu/services-portfolio/access-to-products/?
option=com_csw&view=details&product_id=WAVE_GLO_WAV_L3_SWH_
NRT_OBSERVATIONS_014_001.

P. Bohlinger, et al. Ocean Modelling 139 (2019) 101404

2

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=ARCTIC_ANALYSIS_FORECAST_WAV_002_010
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=ARCTIC_ANALYSIS_FORECAST_WAV_002_010
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=ARCTIC_ANALYSIS_FORECAST_WAV_002_010
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001


described as a mean (trend) plus error model, where the trend is what
we are after, while the error captures the aggregated effect from mea-
surement error and natural variability in the wave field. This model
needs to have a flexible enough trend to capture characteristics of the
true mean SWH, such as gradients, turning points and local maxima/
minima. Here, we take an approach where the trend is characterized
non-parametrically (as opposed to parametrically, e.g. linear, quadratic
etc.) using a Gaussian Process (GP). This assumes that the trend is an
unknown smoothly varying function of time, that can be estimated from
the available data. Features leaving their imprint on the time series can
be e.g. the spatial extent of weather patterns of different scales, wind
shadow effects due to topography, shelter effects due to land, or at-
tenuation effects due to sea ice. Due to the dependency of the data
points, much of the necessary information lies in the measured values
and their distance to each other.

Denote an observation of (mean-centered) SWH at time t by yt. We
consider the following model:

= +y f ft t t t (1)

N (0, )t n
2 (2)

so that yt ∣ ft∼N(ft,σn2). This model assumes that conditional upon the
trend ft, the error about this trend is independent Gaussian noise with
variance σn2 (where n denotes the total number of time points in the
data). Furthermore, the trend itself ft is also assumed to be Gaussian,
but not one that is independent in time. Values ft and ft′ will be assumed
positively correlated with the strength of correlation decreasing with
the temporal separation ∣t− t′∣. Specifically, ft is assumed to have zero
mean and variance σs2:

f N (0, )t s
2 (3)

and the dependence ft and ft′ defined by the squared exponential cor-
relation function:

=f f t t
l

cor( , ) exp ( )
2t t

2

2 (4)

This is a Gaussian Process (GP) with zero mean, variance parameter
σs2 and length scale parameter l. The correlation function is defined in
such a way to ensure that the correlation decays with increasing tem-
poral separation, and notice that this is squared in the exponential term
ensuring a very smooth function ft (infinitely differentiable), an ex-
pected behavior of a wave field. The length scale parameter (to be es-
timated from the data) controls the amount of smoothness, with small l

resulting in wiggly looking functions whereas large l result in more
slowly varying ones.

2.3.2. Model estimation
Notice that the probability distribution for yt is defined con-

ditionally on ft. It turns out (Rasmussen and Williams, 2006) that the
marginal probability distribution for the vector y=(y1,…,yn) is a
multivariate Gaussian distribution y∼N(0,Σ), with mean vector zero
and covariance matrix Σ= K+ σn2I, where K is the covariance matrix
that results from the GP and I is an n× n identity matrix that adds the
Gaussiannoise. The diagonal entries of K are all equal to σn2+ σs2

whereas the off diagonals capture the covariances between all combi-
nations of yt and yt for t≠ t′, and are defined by

=y y t t
l

, exp ( )
2t t s

2
2

2 (5)

We can now write down the likelihood of the data as the probability
density function of the multivariate Gaussian distribution (Rasmussen
and Williams, 2006) and proceed to maximize it with respect to the
parameters σn2, σs2 and l. This will provide optimal point estimates for
the three parameters, in accordance to likelihood theory. The algorithm
for computing the latent mean function, its variance and the likelihood
is described in Rasmussen and Williams (2006) (algorithm 2.1). For
computational efficiency, we used the scikit-learn python package
(Pedregosa et al., 2011) for optimization.

2.3.3. Outlier detection
In the GP framework, values can be flagged as outliers if they fall

outside of the e.g. 2σ bounds computed in the previous section. This can
be adjusted according to the desired threshold applying the algorithm
described in Section 2.4.1. We apply the 2σ threshold to produce a
result comparable with the prevalent approach.

2.4. Uncertainty and probabilistic validation

We estimate uncertainties of the validation statistics in two different
ways, applying parametric bootstrap on the GP model and non-para-
metric bootstrapping on the unprocessed (raw) observational data. Both
approaches lead to a large number of realizations of (super) observa-
tional time series which can be validated against the wave model time
series. This results in a distribution of the computed validation statistic
rather than a single value.

2.4.1. Uncertainty estimation for the GP model
To quantify and propagate the uncertainty involved in estimating

the three parameters (σn,σs and l), we use parametric bootstrapping
(Davison and Hinkley, 1997). This involves simulating data points yt∗

that correspond toplausible realizations of the actual observations yt,
under the GP model.

First, it is instructive to consider the probability distribution of the
trend ft given the model and the data yt. Denote this as ft ∣ yt, something
that can be interpreted as the best guess of the (smooth) trend given
that we have observed some data. It turns out that this distribution is a
multivariate Gaussian with a mean vector and covariance matrix given
in Rasmussen and Williams (2006) (Chapter 2.2). The expressions for
both the mean and covariance depend on the three model parameters
(σn2, σs2, l) as well as the data. Given the estimates of the three para-
meters obtained in Section 2.3.2, this distribution captures two sources
of uncertainty: the stochastic variability assumed by modelling ft as a
GP and the sampling uncertainty in only having observed a finite
sample of n data points. Notice however that this does not include the
uncertainty involved in the estimation of the three model parameters.
In what follows, we describe a simulation approach to quantify this
appropriately.

The parametric bootstrapping algorithm is effectively a loop with

T1

T2

d moving
search 
window

time window

distance limit

model 
grid

Fig. 1. Sketch of the used collocation method. The satellite footprint is illu-
strated with an orange rectangle. For speedup collocation only takes place
within a search window (indicated in blue) where all model values that are not
in the vicinity are masked out.
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index i that involves the following steps:

1. From the multivariate Gaussian distribution of ft ∣ yt, simulate a
realization of the trend, f1(i), …, fn(i);

2. Then simulate n replicate data points from the conditional dis-
tribution of yt, namely yt(i) ∼N(ft(i),σn2), using the estimate of σn2

obtained in Section 2.3.2;
3. Fit the GP model again to the replicate data set y1(i), …, yn(i), to

obtain new parameter estimates σn2(i), σs2(i) and l(i);
4. Using the new estimated parameters, compute the trend as the mean

of the multivariate Gaussian distribution of ft ∣ yt, to obtain a new
realization of the trend, f1∗(i), …, fn∗(i).

Repeating these steps for a large number of times, e.g. i=1…, m
with m=1000, will provide m realizations of the trend. These reali-
zations are then approximate samples from a distribution that also
captures the uncertainty in the estimation of σn2, σs2 and l. The mean of
these realizations is still a best estimate of the trend given the data, an
example of which is shown in Fig. 4. The variability (through the m
samples) can be expressed by taking e.g. the 2.5% and 97.5% empirical
quantiles as an estimate of the 95% confidence interval. In addition, the
uncertainty expressed by these samples, can be propagated as required.
For example, the validation statistic can be computed for each sample
yielding a distribution of the validation statistic. This distribution will
express the uncertainty in having to estimate the trend and also the
three model parameters from a sample of data.

2.4.2. Uncertainty estimation for the raw observational time series
The standard non-parametric bootstrap (Efron, 1979) samples from

the collocated observational time series. The observations are chosen
above the wave model because we assume the observations to follow a
stochastic process whereas the numerical wave model produces de-
terministic results, namely the significant wave height computed from
the zeroth-order moment of the variance density spectrum (e.g.
Holthuijsen (2010)). Moreover, the variance is noticeably higher in the
un-smoothed observations creating a larger spread and should therefore
describe the uncertainty more adequately. The observational time series
is re-sampled 1000 times, ultimately resulting in a distribution of the
validation statistic. This provides a sense of uncertainty for the re-
spective measure based on the degree of scattering in the measurement.

3. Results

Our study is based on a S3a track around the model time step of
2018-05-02 00:00 UTC. This is an arbitrary choice and our conclusion is
also valid for other time steps. Nonetheless, this track depicts crucial
features which will be discussed in the following.

The chosen S3a track enters our domain in the North Atlantic
heading toward Greenland, crosses Greenland, the Arctic and Russia,
and continues from the Bering Sea to the North Pacific (Fig. 2 a). The
satellite track is obviously divided into two parts where we will call the
footprints in the North Atlantic Track 1 and the footprints in the North
Pacific Track 2.

In Track 1, the SWH increases toward Greenland and drops abruptly
from ca. 5m to ca. 1m SWH within a distance of 380 km. This results in
a spiky local maximum and a steep gradient in the time series (Fig. 3 a
and c). The reason for the abrupt changes in SWH is the sheltering effect
of Greenland. The winds are mostly from west due to a low pressure
system that travels from west to east over Greenland (Fig. 2 b). Waves
generated by the low pressure system are stopped by the southern tip of
Greenland. This leads to a short effective fetch and consequently a
young, wind generated wave field in the Irminger Sea close to the
south-eastern Greenland coast. Strong gradients in winds along the
southern Greenland tip are not rare and are known to the scientific
community (Doyle and Shapiro, 1999) with significant effect on the
hydrography (Pickart et al., 2003) and, as evident here, the wave field
(Fig. 3 a). This is therefore a good example for a steep gradient and
local maximum in the wave field as these phenomena are not rare and
the emerging features need to be accounted for.

Track 2 is characterized by a gradual increase in SWH (Fig. 3 b). The
increase of wave height toward the south is related to the increasing
distance between the observation location and the coastline of the
Kamchatka peninsula, under the prevailing westerly winds that oc-
curred around the chosen time step (not shown). The time series depicts
multiple suspicious values that attract attention by their isolated and
pronounced deviation from their neighbors (Fig.3 c). The detection of
outliers will be elucidated in the following.

3.1. Outlier detection

We focus on Track 2 because there are obvious outliers which
should be handled correctly by an automated outlier detection algo-
rithm. We apply the algorithm described in Section 2.2 to detect out-
liers based on block sizes of 7, 11, and 25 consecutive valid values.
Fig. 4 a) illustrates the difference among super observations derived
from different window sizes and the according difference between the
catchment area for accepted values (shaded area). The choice of the
block size affects considerably the detection of outliers. None of the
chosen window sizes detects all of the values that are seemingly erro-
neous.

In contrast, the GP based 2σ confidence intervals is much smoother
(Fig. 4 b) and the block size did not have to be chosen manually.
Learning from the entire available time series of satellite observations,
the excursion of the super observation time series due to the outliers

Fig. 2. a) S3a track according to the model time step at 2018-05-02 00:00 UTC. b) Wind speed and direction from 2018-05-01 12:00 UTC depicted in filled contours
and arrows, respectively. Mean sea level pressure is shown in black contour lines with steps of 5 hPa.
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and the according 2σ region are more moderate. All values that seem
erroneous lie outside the catchment region for acceptable values and
can thus be flagged as outliers.

The aforementioned suspicious values were recorded when the sa-
tellite swath passed Bering Island. Erroneous recordings are common
close to land-sea boundaries and near islands due to corrupted wave
forms. This is why e.g. Young (1999) and Zieger et al. (2009) use land-
sea masks for the detection of erroneous recordings. However, the
suspicious footprints in our case were located over sea and several tens
of km away from the coastline. This means that a land-sea mask would
not help to detect these error seven if flagging values additionally in the
vicinity of land.

A possible problem for an outlier detection algorithm is non-sta-
tionarity and non-linear behavior in the process that produces the
stochastic data. Therefore, Zieger et al. (2009) assumed that within the
block size of 25 values, representing a distance of ca. 180 km, the

recordings of the sea state can be considered representative without
significant variability due to geophysical processes. As illustrated in
Fig. 3, this assumption can frequently be violated depending on the
region of interest.

An example of such a violation is the local maximum close to the
southern tip of Greenland (blue shading in Fig. 3 c). Fig. 5 zooms in on
the local maximum showing a sample of recordings with a block size of
23 values. If this block had been chosen to detect outliers the leftmost
value would have fallen outside of the catchment area for acceptable
values and would have consequently been misinterpreted as an outlier.
In a time series this behavior is difficult to anticipate and thus not
straightforward to employ in an automatic outlier detection algorithm.
However, when using a GP based approach the arc-like structure is
automatically recognized and the sixth value from the right falls outside
the blue shading. This seems more intuitive to the eye than the first
value from the left.

Fig. 3. a) S3a SWH depicted as round markers. Only
every fourth value is displayed for readability. The
filled contours are wave model derived SWH for the
model output time 2018-05-02 00:00 UTC. b) same as
a) but outside of the wave model domain. c) Time
series of SHW from S3a (black dots) and the wave
model red line. The red line represents only the col-
located values of the wave model. The shaded areas
depict sections of the time series that will be dis-
cussed in the results.

Fig. 4. Satellite footprints of Track 2 as black points together
with outliers and smoothed time series. a) centered moving
average with window sizes 7, 11, 25 as lines and 2σ interval in
same color but shaded to mark the catchment area for ac-
ceptable values. Outliers are marked with a circle (detected
with window size 25 and 11), a square (detected with window
size 11 and 7) and a triangle (detected with all window sizes).
b) Same as a) but with a moving average of window size 7
applied on the time series after removing outliers. The outlier
detection is based on the same window size. Additionally GP
based smoothed observations before and after outlier re-
moval. The shaded region represents the 2σ area for the GP
approach. Outliers are marked as circles.

P. Bohlinger, et al. Ocean Modelling 139 (2019) 101404

5



3.2. Comparing super observations from both approaches

3.2.1. Example A: short time series with a local maximum
Fig. 5 b) shows super observations derived from the moving aver-

aging approach with different block sizes together with the GP ap-
proach. If the displayed observations were the only available observa-
tions, multiple values close to the boundary could not exist based on
this block size (illustrated in Fig. 4 a). The GP approach, however, can
provide super observations for the entire given observation time period.
To compare the different approaches for this case the moving average
was allowed to borrow information from outside of the given block.

The choice of the averaging window is crucial for the resulting super
observations where the similarity with the GP approach increases with
decreasing block size (Fig. 5 b). However, the smaller the block size, the
noisier are the super observations and the less representative is the
sample size for computing the block average. The 2σ area reduces with
decreasing block size but depicts more frequent abrupt changes in
variance. These abrupt changes are challenging to interpret and prob-
ably unrealistic, as the moving average seems to be more certain close
to the local maximum and will be highly influenced by single values.

3.2.2. Example B: longer time series
A satellite track with a realistic sample size (zoom in over the gray

shaded area in Fig. 3) is shown in Fig. 6 a where the satellite track is
directly compared with the wave model output. The average based
super observations with a block size of 7 values represent the super
observations which one would have chosen according to the commonly
applied scale analysis. These moving average derived values follow
closely the GP based super observations. However, for the GP based
super observations no block size had to be chosen explicitly. Rather, a
physically logical range can be given where the estimation of the length
scale is a result of a maximum likelihood optimization based on the
behavior of the observations. The resulting function carries the imprint
of the information in the data through the optimal estimation of the
trend and the three model parameters.

The two examples of block sizes illustrate what is intuitively an-
ticipated, namely that the larger the block size the smoother the super
observations. Choosing an inappropriate block size of 25 consecutive
values irons out important features in the observed wave field.
Choosing the block size of 7 values results in a noisier structure but
more variability in the observational time series can be retained. The
GP approach can model the observations with a very smooth function

Fig. 5. a) S3a observations are displayed as black dots, the red line depicts the block mean, the stippled lines the 1σ and the dotted lines the 2σ deviation. b) S3a
observations together with super observations displayed as lines: GP in blue, and the moving averages with window sizes 7 (red), 11 (orange), and 25 (black). The
shaded regions illustrate the 2σ area for the GP approach (blue), moving average with window size 7 (red), and for window size 25 (gray).

Fig. 6. SWH time series for S3a observations (block dots) and
collocated wave model output (red dots). a) Comparison of
super observations comprising the moving average derived
super observations for window size 7 (black), 25 (gray), GP
(blue). b) The latent mean function representing the GP de-
rived super observations is depicted in blue. The gray dots
represent realizations of observations based on the GP model
as described in step 2 in Section 2.4.1. The gray shading de-
scribes the region between the 2σ uncertainty bounds of these
realizations. The blue shading depicts the 2.5 and 97.5 per-
centile uncertainty bounds of the latent mean function de-
rived from the samples in step 3 in Section 2.4.1.
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while retaining the variability in SWH. Such a continuous behavior is
expected for a SWH field where abrupt changes would only occur on
very fine spatial scales under certain circumstances (e.g. modulation of
the wave field by bathymetry, wave-current interactions, or sharp
changes due to coastlines).

Another advantage of the GP approach is that it can provide in-
formation about the uncertainty of the observations and the super ob-
servations (latent mean function) as described in Section 2.4.1. Each
observation and super observation can be seen in context with a desired
number of realizations (Fig. 6 b). The scatter around the observations
illustrates that each observation is just a random realization of what is
likely to be the true sea state. This makes both the super observations
and the observations probabilistic. The uncertainty can subsequently be
propagated to other applications, such as validation purposes.

3.3. Implications for the validation of wave models

To illustrate the applicability and benefits of the GP approach for
wave model validation, we compute validation statistics commonly
included in validation reports. The validation statistics are defined in A
and are computed based on the time series illustrated in Fig. 6.

When computing a validation statistic from average derived super
observations, a single value describes the goodness of the wave model
compared to an observational reference. This approach cannot provide
an uncertainty estimate. This is problematic because the super ob-
servations used for the validation are based on semi-subjective deci-
sions which naturally introduce uncertainty (different choices would
lead to different super observations). This uncertainty should be pro-
pagated to the validation statistics in order to rigorously quantify the
significance of their magnitude.

We present two attempts to assess the uncertainty in the computed
validation statistics (Sections 2.4.2 and 2.4.1). The resulting distribu-
tions for each validation statistic can differ considerably between the
approaches (Fig. 7). Significant discrepancies are visible for the scatter
index and the correlation coefficient while results for the bias are very
similar. The average based statistics overestimate the quality of the
model compared to the raw data with non-parametric bootstrapping
and the GP approach. For deviation-based statistics this means a lower
value and for the correlation a higher value. This behavior results from
smoothing the time series as illustrated in the following.

Proposed by Murphy (1988) the mean squared error (MSE) can be
decomposed as follows:

= + + +MSE m o r( ) 2m o m o mo
2 2 2 (6)

where m is the mean of the model time series, o is the mean of the
observational time series, σm and σo represent the standard deviation of
the model and observational time series (super observations or ori-
ginal), respectively. Pearson product-moment correlation between the
model and observations is denoted by r. The validation statistic MSE
and therefore also RMSE (A) depend directly on the variance within the
compared time series and hence the smoother the time series the better
the validation statistic. The, in our case inappropriate, window size of
25 therefore generates the best validation scores, while validating
against the noisy raw S3a data systematically leads to the worst results.

The non-parametric bootstrap method applied to the raw observa-
tions can provide a distribution of the validation statistics with a sub-
stantial spread (Fig. 7, red histogram). The spread reflects the un-
certainty based on the noise inherent in the observations. It is then
possible to choose percentiles to express a probability. When com-
paring, however, the bootstrap results with the average and GP based
results, a systematic mismatch becomes visible. As indicated above, this
is due to smoothing the time series, but the question emerges whether
the values being compared represent the same physical processes?

In case of using the non-averaged values for validation and per-
forming a bootstrap, it is not taken into account that the model has a

certain (effective) resolution. In this framework, the uncertainty and
the associated histogram is not representative of the uncertainty of
results from averaged or smoothed values. Essentially two different
types of values are compared resulting in an overall underestimated
model quality due to the noise in the observations. When only using
average based results, the semi-subjective choice of the correct length
scale is crucial to producing representative observational values which
can be compared to model values on the wave model scale. Recalling
that the chosen length scale is, besides being partly subjective, also
static, it is likely that an inappropriate length scale is chosen in some
cases. At the same time no uncertainty of the derived statistic is
available. Note that one could possibly quantify such uncertainty using
relatively advanced parametric bootstrapping (Davison and Hinkley,
1997). However, this is beyond the scope of this paper, where the aim is
to illustrate the relative ease with which such uncertainties are obtained
from the GP approach. The length scales chosen in this manuscript
feature a tendency to overestimate the wave model quality. Likewise,
an underestimation would be possible in some cases when choosing to
small length scales.

These shortcomings from having to decide on a length scale can be
mitigated by using the GP approach. If necessary the length scale for the
GP approach can be constrained based on physical arguments. The
optimization of the model parameters (signal variance, noise variance
and length scale) are not subject to a subjective decision on a stationary
value but are chosen objectively by maximizing the likelihood. Those
parameters are allowed to vary from case to case and are learned each
time depending directly on the characteristics of the observations.
Moreover, the result is probabilistic and can provide a distribution
expressing the uncertainty of the quality of the wave model.

4. Discussion

The chosen example featuring a strong gradient in the wave field
due to the sheltering effect of Greenland might seem extreme. It is not,
however, a single or unusual example. As mentioned before, a tip jet at
the southern tip of Greenland is a feature of frequent occurrence (e.g.
Våge et al. (2009)). Based on measurements from the NASA-JPL Sea-
Winds scatterometer on board the Quick Scatterometer (QuikSCAT)
satellite, Moore and Renfrew (2005) stress that the tip jet around
Greenland leads to surface wind speeds as high as 50 ms−1 with winds
over 25 ms−1 occurring approximately 10% to 15% of the time. Those
intense winds have a significant impact on the sea state for a con-
siderable fraction of time when validating the wave model performance
in this region. Especially due to the sheltering effect of land, sharp
gradients are expected to occur other places in the world oceans.

When choosing a static block size for outlier detection, gradients
and regime shifts in the wave field can violate the assumption of sta-
tionarity within the chosen block. A feature- and scale-aware length
scale as presented here can take this into account as the information is
accessible in the observations. Since each predicted value of the GP
model is weighted by the behavior of the neighboring observations
across the entire time series, the result is less sensitive to outliers while
still reproducing the variability of the observational data to the desired
degree. This is of particular importance as the effective wave model
resolution advances to ever finer scales. The mismatch between the
length scale of the satellite observations and the effective model re-
solution increases and could result in e.g. one or only a few satellite
measurements per model grid point. Knowing, however, that the sa-
tellite value is a result of a stochastic process with considerable spread
and abrupt changes, while the true sea state features smooth transi-
tions, a limited number of observations might not be representative of
the sea state. As model resolution continues to increase, this problem
needs to be addressed and the GP approach is an attractive candidate.

An issue with smoothing by using a moving average, is that de-
pendence between the errors of single observations are introduced (see
Section 2.2). However, when planning to use the super observations for
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data assimilation into the wave model, independence of the errors is
desired (Saleh Abdalla, 2018, personal communication). This is the
reason for choosing non-overlapping blocks of values as opposed to a
moving average. It is noteworthy that error dependency can be ex-
pected at every physical scale and that therefore even non-overlapping
blocks cannot ensure independence of errors in general. The GP model
as formulated here will create a smooth super observational time series
without introducing additional error correlation as Gaussian noise is
only added to the diagonals of the covariance matrix. The skill of the GP
model to capture the auto-correlation inherent in the underlying pro-
cess while leaving error dependency insignificant is displayed in Fig.

B.8. The GP produced values can therefore be used for both wave model
validation and data assimilation. Not having to divide into independent
blocks further results in more super observations available for valida-
tion and assimilation.

The GP model introduced here is motivated by the physical prop-
erties of the wave field. However, as demonstrated in Rasmussen and
Williams (2006) and Camps-Valls et al. (2016), there are many ways to
adjust the kernel function to the problem at hand. Our work aims
mainly at introducing the GP approach to the field of wave model va-
lidation using super-observations and presenting inherent advantages.
For this reason, we chose a comparably simple model formulation

Fig. 7. Validation statistics computed with average based values with window sizes 7 and 25, non-parametric bootstrap results of raw observations, and results from
the GP approach. Histograms are given in red for the non-parametric bootstrap results and in blue for the GP results. The violet shaded region indicates overlapping of
the two histograms.
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which serves the understandability of what is going on in the GP-model.
To optimize the performance of the space-time evolution one could
explore e.g. the impact of using different kernel functions as well as
customize a desired behavior by combing the available kernel functions
to imitate the presumed underlying process. A full Bayesian inference
(Rasmussen and Williams, 2006) could also be pursued where the
kernel function parameters are again parameterized with hyperprior
distributions. As visible in the Fig. B.8, despite the overall good per-
formance of our GP-model there might be room for tuning, e.g. re-
garding the auto-correlation of the y-samples within the first lags and
the wiggles in the residuals. However, it is important to note that nei-
ther of these issues, wiggles nor the first lags, are of statistical sig-
nificance. In future studies, especially the impact of adding hetero-
scedasticity to the GP model could be investigated.

5. Summary and conclusion

We propose a highly flexible approach to compute super observa-
tions and detect outliers utilizing a Gaussian Process. We subsequently
validate wave model results where our approach allows us to retrieve a
probabilistic estimate of the validation statistics. There is no need to
exactly specify the length scale for the computation of super observa-
tions and outlier detection since our super observations and uncertainty
bounds are maximum likelihood estimates. The data dependence and
automated way to fit is scale-sensitive and assures flexibility. These are

characteristics that are important for the validation of high resolution
model simulations. If needed, our approach would even allow the
prediction of super observations for a model grid cell along the satellite
track, interesting e.g. for the validation of very high resolution simu-
lations or for imputation of missing values. The characteristics of the
here proposed formulation ensures that no significant additional error
correlation is being introduced which is beneficial for using the super
observations for data assimilation.

Gaussian Processes are getting increasing attention as state-of-the-
art tools for regression problems. In the field of earth observation data
analysis their advantages are discovered and exploited across scientific
disciplines (Camps-Valls et al., 2016). Although our work focuses on the
computation of super observations from satellite tracks for wave model
validation, the here formulated GP model can be used just as well for
measurements from other platforms e.g. buoys or other variables like
e.g. wind speed.
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Appendix A. Equations for the validation statistics

Variable names and the statistics Bias, MAE, and RMSE follow the convention from WMO (2010). The computation of the scatter index is adopted
from the ECMWF.3

• xf is the forecast values of the chosen parameter
• xv is the value to evaluate against (“ground truth”)
• xc is the climatological value of the chosen parameter
• n is the number of values to be used for verification

Bias or Mean Error:

= =
=n

x xBias ME 1 ( )
i

n

f v i
1 (A.1)

Mean Absolute Error:

=
=n

x xMAE 1 | |
i

n

f v i
1 (A.2)

Root Mean Square Error:

=
=n

x xRMSE 1 ( )
i

n

f v i
1

2

(A.3)

Pearson product-moment correlation coefficient:

=
cov x x

r
( , )

·
f v

f v
f,v

(A.4)

Scatter index:

=
std x x

mean x
SI

( )
( )

·100f v

v (A.5)

Appendix B. Auto-correlation

This section illustrates the empirical auto-correlation function (acf) of the observational time series compared to the acf of artificially generated
observations (yi) produced by our GP-model. Consistent with the rest of this study, we produced 1000 artificial observational time series from a
parametric bootstrap. The residuals were computed by subtracting original observations from all 1000 time series.

3 https://www.ecmwfr.int/en/newsletter/150/meteorology/twenty-one-years-wave-forecast-verification.
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Fig. B.8. a) shows the mean of the empirical auto-correlation functions (acf) of 1000 y-samples generated with our GP model (black) with 95% uncertainty bounds
(gray) from parametric bootstrapping. The red line is the acf from the unprocessed measurements depicting a very similar behavior. b) shows the acf of the residuals
where no significant auto-correlation is present.
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