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Abstract

Motivation: Clusters of extremely conserved non-coding elements (CNEs) mark genomic regions

devoted to cis-regulation of key developmental genes in Metazoa. We have recently shown that

their span coincides with that of topologically associating domains (TADs), making them useful for

estimating conserved TAD boundaries in the absence of Hi-C data. The standard approach—detect-

ing CNEs in genome alignments and then establishing the boundaries of their clusters—requires

tuning of several parameters and breaks down when comparing closely related genomes.

Results: We present a novel, kurtosis-based measure of pairwise non-coding conservation that

requires no pre-set thresholds for conservation level and length of CNEs. We show that it performs

robustly across a large span of evolutionary distances, including across the closely related

genomes of primates for which standard approaches fail. The method is straightforward to imple-

ment and enables detection and comparison of clusters of CNEs and estimation of underlying

TADs across a vastly increased range of Metazoan genomes.

Availability and implementation: The data generated for this study, and the scripts used to gener-

ate the data, can be found at https://github.com/alexander-nash/kurtosis_conservation.

Contact: b.lenhard@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Regulation of developmental genes requires intricate control of the

timing, location and magnitude of their gene expression. This fine

level of control is primarily provided by multiple enhancers that act

together to establish highly specific spatiotemporal expression pat-

terns. In Metazoan genomes, many of these genes are maintained

within syntenic arrays of evolutionarily conserved enhancers; these

enhancers are known as conserved non-coding elements (CNEs)

(Bejerano et al., 2004; Sandelin et al., 2004; Woolfe et al., 2005).

CNEs are extremely highly conserved, containing stretches of tens

to hundreds of base pairs of nearly perfectly conserved sequence be-

tween humans and teleost fish, surviving �450 million years of evo-

lutionary separation (Woolfe et al., 2005). The vast majority of

tested CNEs have been shown to act as transcriptional enhancers

which are individually capable of driving highly specific gene ex-

pression, and together recapitulate the complex temporal and spatial

expression patterns of developmental genes (Bhatia et al., 2014;

Kimura-Yoshida et al., 2004; Navratilova et al., 2009; Pennacchio

et al., 2006; Spieler et al., 2014).

The requirement for an enhancer to remain in physical proximity

with the gene it regulates has constrained the evolution of vertebrate

genomes, resulting in long syntenic arrays of CNEs clustered around

their target genes. Each of these arrays is a functional, long-range

regulatory unit known as a genomic regulatory block (GRB)

(Engström et al., 2007; Kikuta et al., 2007; Ritter et al., 2010).

Most GRBs regulate a single target gene, but often span additional
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bystander genes. Bystander genes are unresponsive to this form of

long-range regulation, primarily due to differences in promoter

structure and associated epigenetic modifications (Akalin et al.,

2009; Engström et al., 2007; Zabidi et al., 2015). For a GRB to

regulate its target gene, there must be frequent physical interaction

between CNEs and the promoter of the gene they regulate. Indeed,

topologically associating domains (TADs), regions of the genome

that preferentially interact with themselves (Dixon et al., 2012; Rao

et al., 2014) have been shown to coincide with GRBs, suggesting

they are two manifestations of the same underlying phenomenon

(Harmston et al., 2017). The physical location of TAD and GRB

boundaries are strongly correlated in both vertebrates and inverte-

brates, suggesting that the insulation provided by TAD boundaries

might serve to prevent the ectopic interaction of CNEs within a

TAD with developmental genes in neighbouring TADs (Harmston

et al., 2017). Further, it was shown that TADs that are associated

with GRBs have stronger self-interaction than those that are not.

This is consistent with the observation that developmental genes re-

quire complex gene regulation mediated by frequent enhancer—pro-

moter contacts, while other classes of genes, such as housekeeping

genes, do not (Harmston et al., 2017; Zabidi et al., 2015).

Studying the dynamics of GRB evolution and the functional rela-

tionship between GRBs and TADs relies on robust methods to iden-

tify GRBs across a wide range of evolutionary timescales. Currently,

CNE identification, and therefore GRB identification, hinges tightly

on the selection of a threshold beyond which a conserved region is

defined as a CNE. While GRB boundaries in distantly related species

are robust to the CNE identification threshold used (Harmston

et al., 2017), in closely related species this approach breaks down,

as the neighbouring, neutrally evolving sequence has not diverged

enough to be able to non-arbitrarily define CNE identification

thresholds. Due to the resulting increasing average length of con-

served sequences, it is often necessary to choose very long thresholds

for minimal CNE length (>400 bp), thereby casting doubt on the

biological relevance of comparing the distribution of such elements

with those identified in more distant comparisons.

Since GRBs reveal the span of regions populated by enhancers

targeting specific developmental genes, and can serve as sequence-

based proxies for TADs, their comparative studies are of paramount

importance for understanding long-range gene regulation and the

3D chromatin structure that supports it. At the genome level, the

critical GRB features to determine are their boundaries. In this paper

we address this problem by defining and exploring a threshold-free

measure of pairwise sequence conservation based on the kurtosis of

the distribution of the lengths of all sequences perfectly conserved

between two genomes. Kurtosis measures the movement of prob-

ability mass from the shoulders of a distribution into its centre and

tails, and thus a distribution with high kurtosis can be considered

‘fat tailed’ (Balanda and Macgillivray, 1988; DeCarlo, 1997). We

use kurtosis to measure the effect of the number of extreme observa-

tions on the distribution of the lengths of runs of perfect sequence

identity between two genomes. We show that this measure is highly

correlated with CNE density and can be effectively used to predict

high quality GRBs for the species comparisons used in Harmston

et al. (2017). Further, we use this kurtosis-based measure to predict

GRBs from genome alignments between human and non-human pri-

mates, and show that it is superior to CNE density at these short

evolutionary distances. The ability of our method to detect GRBs

across close evolutionary distances, without the requirement for ar-

bitrary conservation thresholds, will enable the study of GRB evolu-

tion and the detection of recent lineage-specific changes in gross

GRB structure.

2 Materials and methods

2.1 CNE identification
CNEs were identified using the R Bioconductor package, CNEr

(Tan, 2017, https://github.com/ge11232002/CNEr). The standard

pipeline, described in the CNEr vignette, was followed. CNE density

across the genome was calculated by running a 300 kb sliding win-

dow across the genome, with 30 kb steps, and calculating the num-

ber of CNEs per kb in each window.

The minimum length and identity thresholds for CNE identifica-

tion must be adjusted for each species comparison due to the con-

tinuous divergence of CNEs since the last common ancestor of the

two species being compared. The identification thresholds used for

each species comparison are listed in Supplementary Table S1.

2.2 CNE-based GRB identification
CNE-dense regions of the genome were identified using an unsuper-

vised two-state hidden Markov model that partitions the genome

into high and low CNE density regions (as described in Harmston

et al. (2017). In brief, the genome was segmented into high- and

low-density regions, and those CNEs within the high-density

regions, which were separated by less than a pre-defined genomic

distance, were merged to form blocks. Human—rhesus monkey and

human—gorilla GRBs were generated for this paper, while previous-

ly published human—opossum GRBs were retrieved from Harmston

et al. (2017).

2.3 Genome-wide kurtosis calculation
For each species comparison, the kurtosis of the distribution of the

lengths of all identical sequences was calculated in bins across the

genome. Initially, all runs of 100% sequence identity were extracted

from the pairwise whole-genome alignment and filtered for anno-

tated repeats and exonic sequences. The genome was then divided

into 30 kb bins and the lengths of all runs of identity within each bin

were calculated. Windows of 30kb were used as this is the window

size we traditionally use for CNE density calculation, thereby maxi-

mizing the comparability of the two approaches. The kurtosis of the

distribution of lengths in each bin was then calculated as follows:

R Fð Þ ¼ q0:99 Fð Þ � q0:01ðFÞ
G50

where F is the distribution of the lengths of runs of perfect sequence

identity in a bin, and G50 is the range of the middle 50% of the dis-

tribution of lengths of all runs of identity, from all bins (background

distribution); calculated as follows:

G50 ¼ q0:75 Jð Þ � q0:25ðJÞ

where J is the distribution of the lengths of runs of perfect sequence

identity across the whole genome. For each bin, R(F) is a ratio of the

range of 99% of all lengths of runs of identical sequence, in a bin, to

the range of 50% of all lengths of runs of identity for the whole gen-

ome. In practice it measures the number, and extremity, of long runs

of perfect identity, in each bin, compared to the background conser-

vation for the whole genome. This is an adaptation of the robust

kurtosis measure proposed in Ruppert (1987).

2.4 Correlation of kurtosis and CNE density
Maximum kurtosis and CNE density was calculated in 90 kb win-

dows across the genome, with 1000 windows randomly sampled

from previously defined human—opossum GRBs and 1000 from

non-GRB regions. This was performed for human to dog, chicken
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and spotted gar comparisons at each CNE identification threshold

listed in Supplementary Table S1. The Spearman’s correlation coeffi-

cient between maximum scores in each window was then calculated.

For the purpose of visualization, a linear model was fitted to the

data for each comparison at each CNE identification threshold.

2.5 Kurtosis-based GRB identification
Kurtosis-based GRBs were generated by using the change point

modelling approach to identify change points in the binned kurtosis

data, indicating a shift to higher mean kurtosis values (Ross, 2015).

Under this framework, kurtosis values in bins across the genome are

treated as a series of n independent observations xi; . . . ; xn. The

assumption that all observations (genomic windows) are identically

distributed according to an undefined distribution F0, can then be

tested by choosing between the following hypotheses:

H0:Xi � F0 xi; h0ð Þ; i ¼ 1; 2; . . . ; n;

H1:Xi �
F0 x; h0ð Þ; i ¼ 1; 2; . . . ;k;

F1 x; h1ð Þ; i ¼ kþ 1;kþ 2; . . . ; n;

8<
:

where hi represents the unknown parameters of each distribution. In

this scenario the two distributions F0 and F1 represent the distribu-

tion of values coming from non-GRB and GRB regions of the gen-

ome, respectively. The presence of a change point can be tested

using a two-sampled Mann–Whitney test and the null hypothesis

rejected if the test statistic exceeds a pre-defined cut-off. For a series

of observations xi; . . . ; xt the test statistic is calculated at every xk,

for 1<k< t, and the maximum test statistic obtained for all values

of k is used. As successive observations are made (successive win-

dows along the genome), the test statistic is calculated again at every

xk but now for 1<k< tþ1. If no significant change point is

detected, the next observation, xtþ2 is received and the testing is

performed again on xi; . . . ; xtþ2. However if a change is detected

at xk the process begins again with xkþ1 as the first observation in

the new series of observations to be tested. For further details refer

to Ross (2015). This analysis was performed using the cpm package

in R, and the ARL0 parameter was set to 370. This is the least strin-

gent ARL0 value implemented in the package and ensures that all

potential change points are detected, at the risk of including more

false positives. Greater sensitivity combined with a merging step

(described below) was preferred to stringent change point detection

that potentially misses GRB boundaries.

Once significant change points in the binned kurtosis values

have been identified, these are treated as potential GRB boundaries.

The mean kurtosis within each range is then calculated, and adja-

cent ranges are merged if the mean kurtosis in both is above a speci-

fied quantile of all binned kurtosis values. The quantile used was

determined empirically based on the predicted GRBs ability to re-

capitulate known GRB boundaries. For all species comparisons, the

quantile used was 0.7.

2.6 Hi-C data processing
hESC and IMR90 Hi-C data were obtained from the Gene

Expression Omnibus (GSE35156) and processed as described in

Harmston et al. (2017). To visualize how well kurtosis-based GRBs

recapitulate TAD boundaries, we produced heatmaps of Hi-C direc-

tionality index (DI) within genomic windows centred on GRBs and

ordered from largest to smallest GRBs.

3 Results

3.1 CNE identification
To test the improvement in performance of the kurtosis-based ap-

proach, we first produced CNE sets for standard GRB span detec-

tion and its comparison with our new method. The first step in this

analysis was to identify CNEs between human and a range of species

chosen to represent distinct vertebrate lineages. For each species

comparison we used multiple CNE identification thresholds to fa-

cilitate a comprehensive comparison between the proposed kurtosis-

based conservation measure and CNE density calculated for a range

of conservation thresholds. The results of CNE identification are

presented in Supplementary Table S2. As expected, the number of

CNEs identified for each species comparison decreases as the strin-

gency of the threshold increases. The mean width of the elements

identified also decreases as the minimum required identity is

increased. In general, the stringency of the threshold used for CNE

identification is reduced as the evolutionary distance between the

species compared increases. This is to account for the continual se-

quence divergence in conserved regions during the time that the two

genomes have been evolving independently. The effect of this se-

quence divergence is clearly discernible from the number of CNEs

identified in dog, opossum, chicken and spotted gar at 80% identity

over 50 bp (30 bp in spotted gar). The divergence time between

human and each of these species ranges from 96 to 435 million

years, and with the increasing time so the number of CNEs identi-

fied drops from 3 763 684 to just 33 172.

3.2 Kurtosis-based conservation is strongly correlated

with CNE density
Next, for each of the same species comparisons, we calculated the kur-

tosis of the distribution of the lengths of perfectly conserved sequences

(i.e. of gapless alignment blocks with no substitutions) in bins across

the genome. Figure 1A shows the distribution of kurtosis values across

the genome for each comparison. The distributions are very similar

across species comparisons, illustrating that the results of the method

are comparable across a wide range of evolutionary distances. In the

closer species comparisons (gorilla to opossum) the distributions of

kurtosis values are centred on 4.5. As the evolutionary distance of the

comparison increases, so the number of bins containing a value of zero

increases, and the median kurtosis value drops. The increasing number

of zero bins is due to an increasing number of bins that do not contain

any alignable sequence. This trend shows that, as expected, with

increasing evolutionary distance there will be larger portions of the

genome that are unalignable due to continual sequence divergence.

Since the kurtosis calculation does not depend on the total amount of

aligned sequence per bin, the kurtosis-based measure is also robust to

variation in proportion of other unalignable sequences along the gen-

ome, such as repetitive elements. It is also striking that the range of the

kurtosis values increases with evolutionary distance. This trend reflects

the potential for more extreme outliers relative to the genomic back-

ground in more distant comparisons. These extreme outliers are the

CNEs that we normally identify using traditional CNE identification

approaches. Another notable feature of the distributions is the

increased dispersion with increasing evolutionary distance. This is most

likely due to the increased variability in the number and length of runs

of sequence identity from bin to bin in the more distant comparisons.

To compare kurtosis and CNE density across the genome, we

sampled 1000 random 90 kb windows from previously defined

CNE-based human—opossum GRBs, and non-GRB regions of the

genome. We then calculated the maximum kurtosis and CNE dens-

ity in each window. We repeated this using CNE density calculated
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at multiple thresholds for each species comparison. Next, we calcu-

lated the Spearman’s correlation coefficient between kurtosis and

CNE density for each species comparison inside and outside of

GRBs. There is a strong correlation between kurtosis and CNE dens-

ity, and this correlation is greater within GRBs than outside GRBs

(Fig. 1B). This trend is confirmed in Figure 1C, which shows the

Spearman’s correlation coeffcient between kurtosis and CNE dens-

ity, calculated for all CNE identification thresholds used for each

species comparison. This data are also presented in detail in

Supplementary Table S3. It is striking that regardless of the evolu-

tionary distance of the comparison, kurtosis and CNE density values

are similarly correlated within GRBs, whereas outside of GRBs it

appears that the correlation drops with increasing evolutionary dis-

tance. The reduced correlation outside of GRBs may be caused by

multiple properties of kurtosis and CNE density:

1. Outside of GRBs, CNE density is consistently either zero or

close to zero, while kurtosis fluctuates around 4.5 from bin to

bin, thereby reducing the correlation. Within GRBs, both the

CNE density and kurtosis will be high in the majority of bins.

2. Outside of GRBs, there may be stretches of identical non-coding

sequence that are shorter than the minimum length of the thresh-

old used for calling CNEs, and are therefore not identified.

These stretches will still result in distributions with relatively

high kurtosis. Within GRBs there are many identifiable CNEs

and thus both CNE density and kurtosis will be high.

Overall, the consistency of the distribution of kurtosis values for

species comparisons spanning vastly different evolutionary time-

scales, and its high correlation with CNE density in conserved

regions of the genome, suggest that the kurtosis of the lengths of

runs of sequence identity can be used as an effective threshold-free

proxy for sequence conservation in genomic windows.

3.3 Kurtosis-based GRB identification in moderately to

distantly related species
In the past, GRB identification has succeeded for moderate to dis-

tant evolutionary comparisons because the CNE density across the

genome forms discrete peaks that are easily distinguished from the

Fig. 1. Kurtosis and CNE density are highly correlated. (A) The distribution of the kurtosis values calculated for human to each other species. The kurtosis values

were calculated for the distribution of the lengths of perfectly conserved sequences in bins across the genome for each species comparison separately. (B) The cor-

relation between CNE density and kurtosis inside and outside of CNE-based GRBs. (C) The correlation of CNE density (calculated for multiple conservation thresh-

olds) and kurtosis inside and outside of GRBs as a function of evolutionary distance. Here, each point for a species represents the correlation of kurtosis-based

conservation with CNE density at a different CNE identification threshold. CNE density and kurtosis are highly correlated within GRBs, regardless of the evolutionary

distance of the comparison. Outside of GRBs there is a decreasing linear relationship between the correlation and the evolutionary distance of the comparison

A novel measure of non-coding genome conservation identifies genomic regulatory blocks within primates 2357
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genomic background (Akalin et al., 2009; Engström et al., 2007;

Harmston et al., 2017; Kikuta et al., 2007). To test how well the

kurtosis-based measure of conservation can discriminate highly con-

served regions of the genome from non-conserved regions, we used

binned kurtosis values to identify GRBs from human to moderately

and distantly related species which have previously been used for

CNE-based GRB prediction (Harmston et al., 2017). The number and

size of GRBs identified for each comparison are presented in Table 1.

The number of GRBs identified in each comparison is similar, but

there is a slight decrease in total GRBs as the evolutionary distance of

the comparison increases. The average width of the identified GRBs

also decreases with increasing evolutionary distance. The decreasing

average width reflects the erosion of sequence conservation over time,

making accurate prediction of GRB boundaries diffcult over large

evolutionary distances. This effect is also observed in GRBs identified

using CNE density and has been previously described (Harmston

et al., 2017). The decreasing number of GRBs may be due to the iden-

tification of relatively rapidly evolving GRBs in the closer compari-

sons that are not identifiable in the more distant comparisons.

As an initial assessment of the quality of the identified GRBs, we

visualized CNE density within genomic windows centred on the

kurtosis-based GRBs for each species comparison (Fig. 2A). GRBs were

ordered by width, and thus any feature that is enriched within GRBs

forms a characteristic funnel pattern. From these heatmaps, it is imme-

diately apparent that there is a very strong enrichment of CNE density

within kurtosis-based GRBs. This enrichment is robust to the CNE

identification threshold used (Supplementary Fig. S1). Interestingly, as

the stringency of the CNE identification threshold is increased, there

are an increasing number of GRBs that contain no enrichment for CNE

density (Supplementary Fig. S1). This likely reflects the ability of the

kurtosis-based measure to identify runs of non-coding identity that fail

to pass the more stringent CNE identification thresholds.

As with CNE-based GRBs, the boundaries of kurtosis-based

GRBs are very similar between species comparisons (Supplementary

Fig. S2), and there is significant overlap between the kurtosis-based

GRBs and those predicted using CNE density (Supplementary Fig.

S3). In general, the kurtosis-based method predicts fewer GRBs than

the CNE-based method, with the former appearing to be a high-

confidence subset of the latter.

To further evaluate the accuracy of the kurtosis-based GRB boun-

daries, we took advantage of the fact that GRB boundaries frequently

coincide with TAD boundaries (Harmston et al., 2017), and hypothe-

sized that a better prediction of GRB boundaries should result in an

increased agreement with TAD boundaries. To test this, we plotted

the Hi-C DI from hESC cells within the same GRB-containing genom-

ic windows (Fig. 2B). In these plots the intensity of red and blue in a

region shows the frequency with which this region interacts with

downstream and upstream loci, respectively. Visualized this way,

TADs appear as a span of red followed by a span of blue. For GRBs

defined from human to dog, opossum and chicken, there is a very clear

funnel present in the DI heatmaps. The funnels have a well-defined red

boundary followed by a well-defined blue boundary, indicating that

the GRBs coincide well with TADs. There is no visible funnel in the

human to spotted gar GRBs, with only a hint of a funnel visible in the

very largest GRBs, many of which are also the most deeply conserved

(Fig. 2A). While these GRBs clearly do not coincide with TADs, it is

possible that at greater evolutionary distances, the kurtosis-based con-

servation measure is only identifying the core, highly conserved

regions of each GRB, and thus underestimating their true extent—pos-

sibly because of some turnover of the boundary positions themselves.

Based on the concordance between the kurtosis-based GRB predic-

tions and the CNE density for all species comparisons, it is likely that

CNE-based GRB prediction will suffer from the same problem.

Taken together, the concordance between kurtosis-based GRB

predictions and CNE density, the high degree of overlap between

kurtosis-based and CNE-based GRBs and the strong correlation be-

tween GRB and TAD boundaries, suggests that kurtosis-based con-

servation can be used to accurately predict high quality GRBs.

3.4 Kurtosis-based GRB identification in alignments be-

tween human and non-human primates
CNE identification thresholds necessitate the implementation of an ar-

bitrary cut-off for what is defined as a CNE and what is not. At the

edge of the threshold, a single mismatch in two aligned sequences is

suffcient for an otherwise highly conserved region to be declared non-

conserved. In the context of GRB identification, this is seldom a prob-

lem for evolutionarily distant species comparisons, but at shorter evo-

lutionary timescales it becomes increasingly diffcult to determine how

long a stretch of perfect sequence identity should be for the region to

be declared a CNE. This is the context in which kurtosis-based con-

servation may see the most utility. By its nature, kurtosis-based con-

servation takes into account the background level of conservation for

a particular species comparison, and only defines those regions with

unexpectedly long runs of identity as highly conserved.

We predicted GRBs for human to two non-human primates, the

rhesus monkey and the gorilla, to test the limits of kurtosis-based

conservation for GRB detection. Humans and rhesus monkeys

(referred to as rhesus from here on) diverged �30 million years ago,

while humans and gorillas diverged only 8.6 million years ago.

Using kurtosis-based conservation, we predicted 523 human—rhe-

sus GRBs (mean width ¼1279.9 kb) and 483 human—gorilla GRBs

(mean width ¼1242.9 kb). This is a reassuringly similar number of

GRBs to the sets identified by comparison to more distant verte-

brates, suggesting that even at such short evolutionary timescales the

method can predict comparable GRB sets.

To assess the quality of these GRBs, we plotted CNE density and

Hi-C DI across genomic windows centred on the kurtosis-based GRB

predictions, as previously described (Fig. 3A–C). For the human-

rhesus GRBs there is a strong enrichment of CNE density within the

predicted GRBs, indicating that for this species comparison kurtosis is

a good proxy for conserved non-coding conservation. For the human

to gorilla comparison there is also a visible CNE density enrichment

within the predicted GRBs, but the strength of the enrichment is much

reduced. The average mismatch rate between human and gorilla is

only 1.75%, and therefore it is very surprising that there is any CNE

density enrichment within the kurtosis-based GRBs (Scally et al.,

2012). This result is strong evidence that kurtosis-based conservation

can identify highly conserved regions of the genome. Examining the

DI heatmaps, it is clear that the rhesus GRBs have a visible funnel, al-

though it is not as strong as in the more distant comparisons. The

largest rhesus GRBs have the weakest correspondence with the DI,

and appear to span multiple TADs. These are probably physically

close GRBs that have been merged by the GRB prediction. This may

also account for the increased mean GRB width in this set. Separating

Table 1. Kurtosis-based GRB number and size

Query species Number Mean width (kb)

Dog 559 1233.1

Opossum 487 1195

Chicken 426 978.7

Spotted Gar 400 804.8
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adjacent synteny blocks using sequence conservation alone is a known

diffculty in GRB prediction (Harmston et al., 2017). Since kurtosis-

based GRB prediction is also sequence-based, it is not immune to this

problem. For the human-gorilla GRBs a similar issue is visible. The

largest third of GRBs display no visible funnel in the DI heatmaps,

however there is a noisy funnel visible in the rest of the GRBs. Overall

Fig. 2. CNE density and Hi-C directionality index within kurtosis-based GRBs. GRBs were predicted from human to dog, opossum, chicken and spotted gar using

the kurtosis-based measure of conservation. Grey heatmaps represent the extent of the predicted GRBs. (A) CNE density within genomic windows centred on

predicted GRBs. (B) hESC derived Hi-C DI within genomic windows centred on predicted GRBs. In each case, the left-hand most heatmap shows the sign of the

DI, representing the direction of interaction bias, while the right-hand most heatmap shows the DI value, representing the strength of the interaction bias
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these results suggest that kurtosis-based conservation can identify sig-

natures of non-coding conservation in very closely related species, but

that GRB boundary prediction becomes less precise in the most close-

ly related comparisons.

Next, we compared our kurtosis-based GRBs to GRBs identified

using the CNE-based approach described in Harmston et al. (2017).

The CNE-based GRB prediction yielded 744 human to rhesus GRBs

with a mean width of 482.9 kb and 2220 human to gorilla GRBs

with a mean width of 504.4 kb. The number of GRBs identified in

human-rhesus is greater than for the other species comparisons used

so far, but not exceedingly so. For the human-gorilla comparison,

however, there were a very large number of predicted GRBs. In

Figure 3C, the average Hi-C DI is plotted across the predicted GRBs

from both sets. We can clearly see that, for the human-rhesus com-

parison, the kurtosis-based GRBs have a stronger peak of the posi-

tive and negative DI (at their starts and ends, respectively) than the

CNE-based GRBs. There is also a much sharper boundary effect in

the kurtosis-based GRBs, with the DI signal spreading well beyond

the boundaries of the CNE-based GRBs. In the human-gorilla com-

parison the kurtosis-based GRBs boundaries also coincide with

peaks in the positive and negative DI, while the CNE-based GRBs

show no enrichment of DI score at either boundary.

Fig. 3. Kurtosis-based GRBs in primates. Kurtosis-based GRBs were identified from human to rhesus monkey and gorilla. Grey heatmaps represent the extent of

the predicted GRBs. (A) CNE density within genomic windows centred on predicted GRBs. The CNE density is shown for two conservation thresholds. In the case

of human-gorilla CNEs all CNEs are identified at 100% identity and therefore to increase stringency, the minimum length is increased. (B) Hi-C DI within genomic

windows centred on predicted GRBs. In each case the left-hand most heatmap shows sign of the DI representing the direction of interaction bias, while the right-

hand most heatmap shows the DI value, representing the strength of the interaction bias. (C) Average Hi-C DI strength within kurtosis- and CNE-based GRBs for

human-rhesus monkey and human-gorilla
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These results conclusively demonstrate that the kurtosis-based

conservation measure can identify highly conserved regions of the

genome, even in very closely related species, and that kurtosis-based

GRB predictions recapitulate TAD boundaries better than the CNE-

based GRB predictions at these evolutionary timescales.

4 Discussion

In this paper we have defined a novel measure of pairwise sequence

conservation based on the kurtosis of the distribution of the lengths

of sequences perfectly conserved between two genomes. We have

shown that the kurtosis-based measure is highly correlated with

CNE density and can be used to generate high quality GRB predic-

tions for moderate to distant species comparisons. Importantly, our

method enables accurate prediction of GRB-scale regulatory

domains, but does not identify the individual conserved elements

themselves. This presents the potential for complementary use of

kurtosis-based GRB identification and traditional CNE identifica-

tion in future analyses.

We have also shown that kurtosis-based GRB prediction far out-

performs CNE-based GRB prediction in closely related species. The

identification of GRBs between human and gorilla is a surprising re-

sult as previously it has been impossible to define conserved regula-

tory domains between such closely related species. Humans and

gorillas share over 98% of their genome sequence, and so to be able

to use sequence conservation to define regulatory regions that coincide

with TADs is strong testament to our method’s ability to account for

the general background conservation between two genomes.

Most importantly, unlike CNE-based conservation analysis, our

method works without requiring any pre-defined minimum length or se-

quence identity thresholds for a sequence to be considered conserved.

Having a threshold-free approach for measuring conservation allows us

to directly compare the results of species comparisons spanning a range

of evolutionary distances. This feature, combined with the success we

have had in identifying GRB-like structures in extremely closely related

species, opens up the possibility of systematically investigating the evo-

lutionary dynamics of GRBs in multiple closely related Metazoan line-

ages, potentially yielding a greater understanding of the origin and

evolution of long-range gene regulation in Metazoan genomes.

Further, our method may have utility in the analysis of GRB devel-

opmental gene regulation in species that have undergone extreme gen-

ome compaction such as the puffer fish, Tetraodon nigroviridis, and

the sea squirt, Oikopleura dioica (Denoeud et al., 2010). The tiny size

of these genomes makes it very difficult to define the minimum length

a stretch of conserved sequence should be to be considered a con-

served element, and as described above, comparing the results of this

analysis with those performed in larger genomes is problematic. Our

method may provide the ability to accurately define GRB boundaries

in compact genomes and therefore deliver insights into the effects of

genome compaction of long-range gene regulation.

Acknowledgements

We thank Dr Ge Tan for generating a number of the CNE datasets used in

this analysis, and Dr Nathan Harmston for processing the Hi-C data. We are

also grateful to Dr Leonie Roos, Dr Anja Baresic, Dr Sasha Murrell and Dr

Ben Murrell for comments on the manuscript.

Funding

This work was supported by the Medical Research Council [MC UP 1102/1

to B.L., 1584095 to A.J.N.

Conflict of Interest: none declared.

References

Akalin,A. et al. (2009) Transcriptional features of genomic regulatory blocks.

Genome Biol., 10, R38.

Balanda,K.P. and Macgillivray,H.L. (1988) Kurtosis: a critical review. Am.

Stat., 42, 111–119.

Bejerano,G. et al. (2004) Ultraconserved elements in the human genome.

Science, 304, 1321–1325.

Bhatia,S. et al. (2014) A survey of ancient conserved non-coding elements in

the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipel-

agos. Dev. Biol., 387, 214–228.

DeCarlo,L.T. (1997) On the meaning and use of kurtosis. Psychol. Methods,

2, 292–307.

Denoeud,F. et al. (2010) Plasticity of animal genome architecture unmasked

by rapid evolution of a pelagic tunicate. Science, 330, 1381–1385.

Dixon,J.R. et al. (2012) Topological domains in mammalian genomes identi-

fied by analysis of chromatin interactions. Nature, 485, 376–380.

Engström,P.G. et al. (2007) Genomic regulatory blocks underlie extensive

microsynteny conservation in insects. Genome Res., 17, 1898–1908.

Harmston,N. et al. (2017) Topologically associating domains are ancient fea-

tures that coincide with Metazoan clusters of extreme noncoding conserva-

tion. Nat. Commun., 8, 441.

Kikuta,H. et al. (2007) Genomic regulatory blocks encompass multiple neigh-

boring genes and maintain conserved synteny in vertebrates. Genome Res.,

17, 545–555.

Kimura-Yoshida,C. et al. (2004) Characterization of the pufferfish Otx2

cis-regulators reveals evolutionarily conserved genetic mechanisms for ver-

tebrate head specification. Development, 131, 57–71.

Navratilova,P. et al. (2009) Systematic human/zebrafish comparative identifi-

cation of cis-regulatory activity around vertebrate developmental transcrip-

tion factor genes. Dev. Biol., 327, 526–540.

Pennacchio,L. et al. (2006) In vivo enhancer analysis of human conserved

non-coding sequences. Nature, 444, 499–502.

Rao,S.S.P. et al. (2014) A 3D map of the human genome at kilobase resolution

reveals principles of chromatin looping. Cell, 159, 1665–1680.

Ritter,D.I. et al. (2010) The Importance of Being Cis: evolution of

Orthologous Fish and Mammalian Enhancer Activity Research article. Mol.

Biol. Evol., 27, 2322–2332.

Ross,G.J. (2015) Parametric and nonparametric sequential change detection

in R: the cpm package. J. Stat. Softw., 66, 1–20.

Ruppert,D. (1987) What is kurtosis? An influence function approach. Am.

Stat., 41, 1–5.

Sandelin,A. et al. (2004) Arrays of ultraconserved non-coding regions span the

loci of key developmental genes in vertebrate genomes. BMC Genomics, 5,

99.

Scally,A. et al. (2012) Insights into hominid evolution from the gorilla genome

sequence. Nature, 483, 169–175.

Spieler,D. et al. (2014) Restless legs syndrome-associated intronic common

variant in Meis1 alters enhancer function in the developing telencephalon.

Genome Res., 24, 592–603.

Tan,G. (2017) CNEr: cNE detection and visualization. R Package Version

1.16.0.

Woolfe,A. et al. (2005) Highly conserved non-coding sequences are associated

with vertebrate development. PLoS Biol., 3, e7.

Zabidi,M. et al. (2015) Enhancer––core-promoter specificity separates devel-

opmental and housekeeping gene regulation. Nature, 518, 556–559.

A novel measure of non-coding genome conservation identifies genomic regulatory blocks within primates 2361

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/14/2354/5233000 by U
niversitetsbiblioteket i Bergen user on 07 January 2020


