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� and �̄ spin interaction with meson fields generated by the baryon current
in high energy nuclear collisions
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We propose a dynamical mechanism which provides an interaction between the spins of hyperons and
antihyperons and the vorticity of the baryon current in noncentral high energy nuclear collisions. The interaction
is mediated by massive vector and scalar bosons, which is well known to describe the nuclear spin-orbit
force. It follows from the Foldy-Wouthuysen transformation and leads to a strong-interaction Zeeman effect.
The interaction may explain the difference in polarizations of � and �̄ hyperons as measured by the STAR
Collaboration at the BNL Relativistic Heavy Ion Collider. The signs and magnitudes of the meson-baryon
couplings are closely connected to the binding energies of hypernuclei and to the abundance of hyperons in
neutron stars.
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Experiments at the BNL Relativistic Heavy Ion Collider
(RHIC) and at the CERN Large Hadron Collider (LHC) have
provided a wealth of data on the hot and dense matter cre-
ated in collisions between heavy ions [1]. Among these data
are the coefficients of a Fourier expansion in the azimuthal
angle for various physical observables. They provide strong
evidence for collective expansion of the hot and dense matter
and provide information on transport coefficients such as the
shear viscosity [2]. In addition, the polarization of � and
�̄ hyperons was proposed as yet another observable that
provides information on collective flow, in particular vorticity
[3,4]. Measurements of the polarizations have been made by
the STAR Collaboration from the lowest to the highest beam
energies at RHIC [5–7], noting that RHIC produces matter
with the highest vorticity ever observed.

The standard picture of � and �̄ polarization in noncentral
heavy ion collisions assumes equipartition of energy [8,9].
But there is a potential puzzle presented by the experimental
data: The �̄ polarization is greater than the � polarization
by a factor of 4 at the level of two standard deviations at√

sNN = 7.7 GeV for Au+Au collisions. Both the difference
between the two and their absolute values decrease with
increasing beam energy until they are approximately equal at√

sNN = 200 GeV, albeit only at the one-standard-deviation
level, whereas equipartition would suggest no difference. The
interaction that we propose addresses the issue of the polar-
ization difference.

It has been known since the early days of the nuclear
shell model that a spin-orbit interaction is required to explain
the single-particle energy levels [10]. It was subsequently
shown that attractive scalar and repulsive vector meson ex-
changes naturally lead to such spin-orbit interactions via a
nonrelativistic reduction of the Dirac equation [11]. Starting
with the so-called Walecka model [12] much success has
been achieved in describing nuclear structure, proton-nucleus

scattering, and high density matter using various versions
of these relativistic Lagrangians incorporating baryons and
mesons [13,14]. The fact that they include the strong inter-
action equivalent of the magnetic force and the spin-orbit
force, including hyperons [15], suggests that this approach
provides a natural explanation for the interaction between
spin and vorticity and for the difference between � and �̄

polarizations.
Suppose that the strong interaction among baryons is me-

diated by a scalar field σ and a vector field V μ. The effective
Lagrangian is

Leff =
∑

j

ψ̄ j (i �∂ − mj + gσ jσ − gV j �V )ψ j

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2) − 1

4
V μνVμν + 1

2
m2

V VμV μ.

(1)

Here j represents one of the spin-1/2 baryons in the octet, and
the field strength tensor for the vector field is

Vμν = ∂μVν − ∂νVμ. (2)

In general there may be a potential U (σ ) which has terms
cubic and quartic in σ but its exact form will not be needed
here.

One may perform a Foldy-Wouthuysen transformation
[16–18] (an expansion in powers of the inverse of the baryon
mass; higher order corrections may be found in Ref. [19]) to
obtain the nonrelativistic interaction between the vector field
and the spin operator S of the � and �̄. (We set h̄ = c = 1.)
The interaction of the spin with the vector meson is

HV
spin = −gV �

m�

β S · BV − i
gV �

4m2
�

S · ∇ × EV

− gV �

2m2
�

S · EV × p, (3)
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where EV and BV are the vector meson electric and magnetic
fields corresponding to Eq. (2), p is the momentum of the �

or �̄, and

β =
(

1 0
0 −1

)
(4)

is the usual Dirac 4 × 4 β matrix. When acting on the spinors
of � and �̄ they result in opposite signs whereas the second
and third terms have the same sign. The second and third terms
contribute to the usual nuclear spin-orbit energy. Only their
sum is Hermitian, not the individual terms. (According to the
Bianchi identity we can replace ∇ × EV with −∂BV /∂t .) For
a spherically symmetric static potential only the third term
remains, which becomes

HV
spin-orbit = gV �

2m2
�

1

r

∂V0

∂r
S · L, (5)

where L = r × p is the orbital angular momentum.
For the scalar field the spin-orbit interaction is

Hσ
spin-orbit = gσ�

2m2
�

S · ∇σ × p, (6)

while there is no “magnetic” interaction. For central potentials
this becomes

Hσ
spin-orbit = gσ�

2m2
�

1

r

∂σ

∂r
S · L. (7)

In atomic nuclei V is identified with the ω vector meson. A
survey of results in the literature leads to gωN ≈ 8.646 and
gσN ≈ 8.685 [14]. With the sign convention used here σ > 0
represents an attractive interaction and ω0 > 0 represents a
repulsive interaction. They contribute with the same sign to
the spin-orbit interaction with approximately equal strengths,
whereas their contributions to the total binding energy approx-
imately cancel.

In the mean field approximation the vector field is calcu-
lated as follows [12–14]:

∂μV μν + m2
V V ν =

∑
j

gV jJ
ν
j . (8)

Here Jμ
j is the baryon current 〈ψ̄γ μψ〉 contributed by species

j, such that protons and antiprotons contribute with opposite
signs, for example. The mean scalar field is determined by

∂2σ + m2
σ σ + dU

dσ
=

∑
j

gσ jns j, (9)

where ns j is the scalar density 〈ψ̄ψ〉 contributed by species
j, such that protons and antiprotons contribute with the same
sign, for example. These interactions are anticipated to be-
come relevant around the time of hadronization of the hot
and dense matter created in the collisions, which is generally
accepted to be on the order of 3 to 5 fm/c or longer. The
corresponding energy scale is much less than mω = 783 MeV
and mσ ≈ 550 MeV so that the derivatives in Eqs. (8) and (9)
can be neglected.

For noncentral potentials, ∇ × EV = −∂BV /∂t �= 0,
∇σ �= (r/r2)∂σ/∂r, the spin-orbit terms represent an
exchange of energy and angular momentum with the fields.
For some systems in the condensed matter context, the
electromagnetic spin-orbit interaction has been used to derive

the Gilbert term which describes Gilbert damping, the rate at
which magnetization relaxes to equilibrium, in Refs. [20,21].
The damping of magnetization is commensurate with the
emission of electromagnetic radiation. Assuming that the
baryons in high energy nuclear collisions have a vortical
flow motion, the scalar and vector meson interactions given
above can provide a mechanism for hyperon polarization. In
addition, note that the “magnetic” interaction is opposite in
sign for hyperons and antihyperons due to the factor of β.

We can make a simple estimate of the magnitudes and signs
of the effects. We work in the center-of-momentum frame
of the colliding nuclei at mid-rapidity and neglect Lorentz γ

factors. The x-z plane is taken as the reaction plane with the
projectile nucleus moving along the +z direction at x = b/2
and the target nucleus moving along the −z direction with x =
−b/2. Then the angular momentum of the produced matter is
oriented in the −y direction. The baryon species are assumed
to all couple to the vector meson with similar coefficients.
(See the discussion below.) Therefore we approximate

m2
V V μ = ḡV Jμ

B (10)

with an effective coupling ḡV . We write the baryon cur-
rent as J0

B = nB(t ) and JB = nB(t )v(x, t ) with the velocity
parametrized by

v = (ψ̇x(t )x + c1z/t, ψ̇y(t )y, z/t + c3x/t ). (11)

The third component with z/t = tanh η, where η is space-time
rapidity, is the usual longitudinal expansion in the Bjorken
model [22]. The ψ̇x(t )x and ψ̇y(t )y terms represent transverse
expansion, and when they are different they reflect elliptic
flow. The c1 term represents directed flow of the baryons as
they are deflected away from the beam axis. The c3 term rep-
resents shear flow along the beam axis. The ci terms represent
contributions to vorticity since ∇ × v = (0,�c/t, 0), where
�c = c1 − c3, which can be positive or negative. Baryon con-
servation leads to ṅB(t ) + [ψ̇x(t ) + ψ̇y(t ) + t−1]nB(t ) = 0. In
general, for fixed transverse coordinate one expects the ψ̇ to
start near zero, rise with time, and then fall to zero. Since
we are interested in the time around hadronization we take
ψ̇x(t ) = ax/t and ψ̇y(t ) = ay/t with ax and ay constants. Then

nB(t ) = nB(tch )

(
tch

t

)ax+ay+1

, (12)

where tch is the time of hadronization. The limit ax = ay = 0
corresponds to longitudinal expansion only, while the limit
ax = ay = 1 corresponds to homologous spherical expansion.
Consistent with this is the approximation that the scalar den-
sity ns is a function of t only so that the scalar field does not
contribute to the polarization, at least in this simple model.

This is basically a blast wave model.1 At some time tf > tch

hydrodynamic flow ceases and free-streaming begins. At that
time x2 + y2 � R2, where R is a cutoff on the transverse extent

1One may change variables so that x = τ sinh ρ cos φ and x/t =
(sinh ρ/ cosh η) cos φ, where ρ � 0 is the transverse rapidity, and
similarly for y.
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of the matter. The resulting fields are

BV = ḡV

m2
V

(
�c

t

)
nB(t ) ŷ,

EV = 2ḡV

m2
V

(
1 + aav

t

)
nB(t ) v

(13)

with

∇ × EV = −∂BV

∂t
= 2ḡV

m2
V

(
1 + aav

t2

)
nB(t )�c ŷ, (14)

where aav ≡ 1
2 (ax + ay). Then the ratio of the second to

the first coefficient in Eq. (3) is (1 + aav)/(2m�t ), which is
less than 6% for t > 3 fm/c. Due to the symmetries of our
simple model, 〈EV × p〉 = 0 when averaging is done with a
Boltzmann distribution boosted by the flow velocity v, so the
third term in Eq. (3) is also negligible. The second and third
terms do not contribute to the polarization difference anyway.

Suppose that the spins were in equilibrium at temperature
T (tch ) at time tch. With the quantization axis in the y direction
the average polarization in the high-temperature/weak-field
limit would be

Py = β
gV �

m�

|BV |
2T

= gV �ḡV
nB(tch )

m�m2
V

�c β

2tchT (tch )
. (15)

Assuming that gV �ḡV > 0 this implies that �’s are polarized
in the +y direction while �̄’s are polarized in the −y direction
if �c > 0, and the opposite if �c < 0.

Synergy with neutron star physics comes from the require-
ment that the Lagrangian produce a relativistic mean field
equation of state that is stiff enough to support stars of at
least two solar masses [23,24]. Introduction of new degrees of
freedom, such as hyperons, softens the equation of state and
lowers the maximum mass [25]. This provides a constraint
on the values of the vector coupling constants so that the
appearance of hyperons is delayed to higher densities. For
example, Ref. [26] used SU(3) flavor symmetry along with
ideal ω-φ mixing to determine the vector couplings in terms
of a singlet g1, an octet g8, and the F/(F + D) ratio α. They
are

gωN = 1

3
(4α − 1)g8 +

√
2

3
g1,

gω� = −2

3
(1 − α)g8 +

√
2

3
g1,

gω� = 2

3
(1 − α)g8 +

√
2

3
g1,

gω� = −1

3
(2α + 1)g8 +

√
2

3
g1,

gφN =
√

2

3
(4α − 1)g8 −

√
1

3
g1,

gφ� = −2
√

2

3
(1 − α)g8 −

√
1

3
g1,

gφ� = 2
√

2

3
(1 − α)g8 −

√
1

3
g1,

gφ� = −
√

2

3
(2α + 1)g8 −

√
1

3
g1. (16)

TABLE I. Examples of SU(3) couplings that produce a two-
solar-mass neutron star [26].

Vector α = 1 α = 0.9
coupling g8/g1 = 0.35 g8/g1 = 1/

√
6

gω�/gωN 0.700 0.674
gω�/gωN 0.700 0.721
gω�/gωN 0.400 0.372

gφN/gωN −0.071 −0.066
gφ�/gωN −0.707 −0.526
gφ�/gωN −0.495 −0.460
gφ�/gωN −0.919 −0.954

Examples of numerical values which produce a two solar
mass neutron star are given in Table I. Those choices were
used for illustration in Ref. [26] because the SU(6) values are
α = 1 and g8/g1 = 1/

√
6. Greater masses are produced when

g8/g1 < 0.35 for α = 1 and when α < 0.9 for g8/g1 = 1/
√

6.
Synergy also arises with hypernuclear physics [27]. A

survey of results in the literature for � binding energies
in nuclei leads to gω� ≈ 0.55gωN and gσ� ≈ 0.5gσN [14].
Unlike nucleons, the spin-orbit interaction experienced by the
� is an order of magnitude smaller than that arising from
the Foldy-Wouthuysen reduction of the vector interaction. The
physical reason for this is that, within the quark model, the
spin of the � is carried by the strange quark which does
not couple to the ω meson [28,29]. To cancel the spin-orbit
interaction arising from the vector interaction requires the
tensor interaction

Ltensor = − fω�

4m�

ψ̄�σμνψ�ωμν. (17)

This contributes to the spin-orbit energy an amount

H tensor
spin-orbit = fω�

m2
�

1

r

∂ω0

∂r
S · L. (18)

Cancellation with the vector and scalar couplings implies that
fω� ≈ −gω�. The Zeeman energy

− (gω� + fω�)

m�

β S · Bω

is thus suppressed. This suggests that it is the φ meson which
is the primary origin of the polarization difference, which
should be no surprise because of the matching of the strange
quark spin content of these hadrons.

In general there is no reason to expect that vector and
tensor interactions between all vector mesons and all baryons
will cancel. For example, quark models have been used to
estimate that ( f /g)ω� ranges between 0.6 and 1.3, and that
( f /g)ω� ranges between −1.9 and −2.3 [29]. Reference [30]
used the values 1 and −2, respectively. There is no empirical
knowledge of the spin-orbit coupling involving the φ meson
due to the lack of observation of multiply strange hypernuclei
[27,31].

There are several complications before one is able to make
precision comparisons to data. These include, but are not
limited to, feed-down from decays of the heavier hyperons
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FIG. 1. Difference in polarization of � and �̄ hyperons, with
positive value meaning that it is opposite to the total angular mo-
mentum of the produced matter. The top panel (a) shows case I and
the bottom panel (b) shows case II, as described in the text. The data
at 200 GeV come from [7], the rest come from [6]. Only statistical
uncertainties are included.

�, �, and �; feedback of the polarized spins to produce
an effective vector meson magnetic field via susceptibility;
and a more realistic, relativistic space-time evolution of the
baryon current. Nevertheless, we make some preliminary
comparisons here. The difference in polarization in the −y
direction according to Eq. (15) has the form

P�̄ − P� = C

(
nB(tch )

0.15/fm3

)(
140 MeV

T (tch )

)
. (19)

For the chemical potential and temperature at tch as functions
of

√
sNN we use the parametrization given in Ref. [32]. We

then use a crossover equation of state from [33] to deter-
mine the baryon density. For illustration, since the precise
magnitude is rather uncertain for the reasons given above,
we consider two cases. In case I C is independent of beam
energy. In case II C ∼ 1/

√
sNN because generally the directed

flow and the shear flow of net baryons is expected to decrease
with increasing energy. We take C = 0.03 for case I and
C = 0.45 GeV/

√
sNN for case II; both assume that �c > 0.

The coefficients are chosen to give a reasonable visual fit to
the polarization data as shown in Fig. 1. The difference in

polarizations rises with decreasing energy because the net
baryon density increases, the temperature decreases, and in
case II the factor C rises with decreasing energy. It is interest-
ing to note that the directed flow of both net protons [34] and
net �’s [35] is actually negative in the range 10 <

√
sNN <

30 GeV. This may reflect a change in the equation of state of
the produced matter [36]. Because the polarization difference
is sensitive to the baryon current it is a probe of the reaction
dynamics.

For comparison the true magnetic field produced in high
energy heavy ion collisions points in the −y direction. The
equilibrium � polarization due to that field is Py = −μ�B/T
which orients the spin in the +y direction because the mag-
netic moment is negative: μ� = −0.61μN where μN is the
nuclear Bohr magneton. Being its antiparticle, the �̄ would
be polarized in the −y direction. The magnetic field has been
calculated with the inclusion of the electrical conductivity σE

of the produced matter; in its absence the magnetic field at the
time of hadronization is orders of magnitude smaller [37]. At
time t at z = 0 its value is

B = ebσE

8πt2
exp(−b2σE/4t ), (20)

where b is the impact parameter. Evaluated at t = tch =
3 fm/c, b = 7 fm, T = T (tch ) = 140 MeV, and σE = 6 MeV
the magnitude of the polarization is |Py| = 7.4 × 10−6, totally
irrelevant compared to the strong interaction induced polariza-
tion. Note also that as long as the condition γbeambσE > 1 is
satisfied there is no beam energy dependence to the magnetic
field. Realistic transport model calculations show that the time
extent of the magnetic field is on the order of 0.2 fm/c,
which is too short to build up observable polarization
[38].

For the problem of relaxation of a small departure from
equilibrium we turn to studies in the area of spintronics. A
solution to the Bloch equations for a static magnetic field
in the y direction provides a formula for the spin relax-
ation rate �s for the magnetization in that direction in the
form [39,40]

�s =
〈
�2

x

〉 + 〈
�2

z

〉
�2

y + �2
c

�c. (21)

Here �y is the Larmor frequency associated with the static
magnetic field, 〈�2

x〉 and 〈�2
z 〉 are the average fluctuations of

the Larmor frequencies in the perpendicular directions, and
1/�c is the coherence time of a single spin, which we take
to be the time between scatterings of the hyperons with other
particles. The fluctuations in this problem arise from the spin-
orbit term involving Eω × p in Eq. (3). We apply this formula
assuming an adiabatic evolution of the vector meson magnetic
field in the y direction. Around tch the time between collisions
is on the order of several fm/c, so that �y < �c. From the
spin-orbit interaction we estimate that �s 	 �c, and therefore
the polarization difference should be established around the
time of hadronization at its equilibrium value and should not
change significantly thereafter.

In conclusion, we have argued that well-known interac-
tions of baryons with mesons can result in a splitting of the
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polarizations of � and �̄ hyperons in high energy heavy ion
collisions. This interaction is orders of magnitude larger than
the one arising from electromagnetic fields. The results are
sensitive to the space-time evolution of the baryon current.
There is much work to be done by theorists and experimental-
ists to fully exploit this idea.
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