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Abstract:  21 

Background: The B-lymphocyte chemokine CXCL13 is increasingly considered a useful early 22 

phase diagnostic marker of Lyme neuroborreliosis (LNB). However, the large variation in level 23 

of CXCL13 in the cerebrospinal fluid (CSF) observed in LNB patients is still unexplained. We 24 

aimed to identify factors associated with the level of CXCL13 in children with LNB, possibly 25 

improving the interpretation of CXCL13 as a diagnostic marker of LNB.  26 

Methods: Children with confirmed and probable LNB were included in a prospective study on 27 

CXCL13 in CSF as a diagnostic marker of LNB. The variables age, sex, facial nerve palsy, 28 

generalized inflammation symptoms (fever, headache, neck-stiffness and/or fatigue), duration of 29 

symptoms, Borrelia antibodies in CSF, Borrelia antibody index, CSF white blood cells (WBC), 30 

CSF protein, and detection of the genospecies Borrelia garinii by PCR were included in simple 31 

and multivariable regression analyses to study the associations with the CXCL13 level. 32 

Results: We included 53 children with confirmed and 17 children with probable LNB. CXCL13 33 

levels in CSF were positively associated with WBC, protein and Borrelia antibodies in CSF in 34 

both simple and multivariable analyses. We did not find any associations between CXCL13 and 35 

age, sex, clinical symptoms, duration of symptoms, antibody index or the detection of Borrelia 36 

garinii.  37 

Conclusions: High levels of CSF CXCL13 are present in the early phase of LNB and correlate 38 

with the level of CSF WBC and protein. Our results indicate that CSF CXCL13 in children 39 

evaluated for LNB can be interpreted independently of clinical features or duration of symptoms. 40 

Keywords: Lyme neuroborreliosis, CXCL13, children, clinical variables, laboratory variables, 41 

diagnosis 42 
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Introduction: 43 

The tick borne infection Lyme neuroborreliosis (LNB) is caused by spirochetes from the Borrelia 44 

burgdorferi sensu lato (Borrelia) complex entering the central nervous system (CNS) and 45 

inducing inflammation when recognized by the host immune system (1, 2). The CNS 46 

inflammation in LNB patients is characterized by increased concentration of both pro-47 

inflammatory and regulatory cytokines (1, 3-5), and a marked mononuclear pleocytosis in the 48 

cerebrospinal fluid (CSF) dominated by B-lymphocytes and plasma-cells (1, 6-8). The B cell 49 

chemokine CXCL13 plays an important role in trafficking of B-lymphocytes to the site of 50 

infection (2), and substantially increased concentrations of this chemokine has been measured in 51 

the CSF during LNB infections in both adults and children (9-16). CXCL13 in CSF is 52 

increasingly considered a useful additional diagnostic marker of LNB, especially in the early 53 

phase when the intrathecal production of the Borrelia specific antibodies may not yet be 54 

detectable (17). However, the wide range in CXCL13 levels observed in adults and children with 55 

LNB is still unexplained. Furthermore, a large variability in clinical symptoms, duration of 56 

symptoms and intrathecal inflammation characteristics have been described in LNB patients (18-57 

21) and different Borrelia genospecies can cause LNB (22-28). It is not known if any of these 58 

factors influence the release of CXCL13 in the CSF during LNB. To understand possible 59 

mechanisms associated with the CXCL13 release in the CSF and to improve the interpretation of 60 

CXCL13 as a diagnostic marker for LNB, identifying factors associated with levels of CXCL13 61 

in LNB is important.  62 

The aim of this study was to explore how clinical and laboratory characteristics are 63 

associated with the level of CXCL13 in the CSF of children with LNB.  64 
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Material and Methods: 65 

Subjects, data collection and diagnostic classification:  66 

In a prospective multicenter study, all children with symptoms suggestive of LNB aged 67 

three months to 18 years who were admitted to the pediatric departments of five hospitals in 68 

south west Norway from autumn 2011 to spring 2014 were invited to participate. Children who 69 

had been given antibiotics prior to admission were excluded. At admission, children or parents 70 

were interviewed with a standardized questionnaire, and standard serum and CSF samples were 71 

taken. Children were classified into different diagnostic groups with high or low likelihood of 72 

having LNB prior to the analyses of CXCL13, as described previously (9). In the present study 73 

we included only children classified as either confirmed LNB (CSF pleocytosis and intrathecally 74 

produced antibodies against Borrelia, expressed as a positive antibody index, or probable LNB 75 

(CSF pleocytosis, negative antibody index and either positive Borrelia antibodies in serum or a 76 

recent history of erythema migrans). Both groups were included as LNB patients in the further 77 

analyses.  78 

Laboratory analyses: 79 

The CSF analyses of white blood cells (WBC), protein and Borrelia antibodies were 80 

performed at each local laboratory, as previously described (9). One ml CSF from each child 81 

were stored frozen on -70 oC for later analyses of CXCL13 and Borrelia genospecies 82 

determination, both analyses performed at the Hospital of Southern Norway Trust, Kristiansand, 83 

Norway. The CXCL13 analyses were performed by an enzyme-linked immunosorbent assay 84 

(Quantakine, R&D Systems, Minneapolis, MN, USA), previously described in more detail (9). 85 

Borrelia genotyping was performed by five single-plex real-time polymerase chain reaction 86 
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(PCR) assays. As previously reported, Borrelia garinii (B. garinii) was the predominant 87 

genospecies associated with LNB in these children (22). In most CSF samples the concentration 88 

of Borrelia spirochetes were low, and in some samples possibly under the detection limit of the 89 

PCR assays used. Consequently, a negative PCR result for B. garinii did not guaranty the absence 90 

of B. garinii. 91 

Variables:  92 

Variables possibly associated with the CXCL13 level in CSF were classified in two 93 

groups. (A) Demographic and clinical variables: age, sex, presence of facial nerve palsy, 94 

symptoms of generalized inflammation (fever, headache, neck-stiffness or fatigue) and duration 95 

of symptoms, and (B) laboratory/CSF variables: CSF WBC, CSF protein, Borrelia antibody 96 

index (AI), CSF Borrelia IgG antibodies, CSF Borrelia IgM antibodies and detection of B. 97 

garinii in the CSF.  98 

Statistical analyses: 99 

We performed simple and multivariable linear regression analyses for associations 100 

between CXCL13 in the CSF and the variables (A and B). The continuous variables CXCL13, 101 

duration of symptoms and CSF WBC were all severely skewed. We therefore used the natural 102 

logarithm of these variables in the analyses. From the regression models we report effect 103 

estimates with 95% confidence intervals (CI), p-values from Wald tests of no effects, R2 for each 104 

model, and change in R2, i.e. ΔR2, by inclusion of each variables in the models. For ease of 105 

interpretation some of the effect estimates are presented as percent difference in medians (29). 106 

 The variable “detection of B. garinii” was only included in the simple regression 107 

analyses. Biologically and theoretically, the Borrelia bacteria induce CXCL13 release in the CSF 108 
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which results in the following: Increased level of CSF WBC (recruitment of B-lymphocytes into 109 

the CSF), and in turn elevated levels of CSF protein (due to production of immunoglobulins by 110 

plasma cells, matured from the recruited B-lymphocytes) (2, 7). Thus, the level of CXCL13 will 111 

influence the level of WBC and protein in the CSF (variables B). In multivariable models of 112 

possible associations between CXCL13 and other variables, adjusting for CSF WBC and protein 113 

may cause collider bias. Consequently, multivariable analyses were performed with adjustment 114 

for the variables A and not B. 115 

Statistical analyses were performed using SPSS Statistics 23 (IBM, New York, USA). A 116 

p-value < 0.05 was considered significant.  117 

 118 

Results: 119 

In total, 77 children with LNB were eligible for inclusion. Seven children were excluded 120 

as their CSF study sample had been temporarily stored on -20 Co for weeks before further storing 121 

on -70 Co. The remaining 70 children (53 with confirmed LNB and 17 with probable LNB) were 122 

included in the present study and their clinical and laboratory characteristics are presented in 123 

Table 1.  124 

In the simple linear regression analyses, the level of CXCL13 in the CSF was associated 125 

with the level of WBC and protein in the CSF and the detection of Borrelia IgG and IgM 126 

antibodies in the CSF (Table 2). CXCL13 was not significantly associated with age, sex, facial 127 

nerve palsy, generalized inflammation symptoms, duration of symptoms, antibody index or 128 

detection of B. garinii (Table 2). CXCL13 remained positively associated with CSF WBC, CSF 129 

protein, Borrelia IgG and Borrelia IgM after adjusting for age, sex, facial nerve palsy and 130 
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duration of symptoms, of which the associations were strongest with CSF WBC and CSF protein, 131 

as judged by ΔR2 (Table 2). We also performed additional adjustment for generalized 132 

inflammation symptoms, including 60 children in the multivariable regression model, but the 133 

results were unchanged. Log CSF WBC correlated with CSF protein; Pearson correlation 134 

coefficient 0.587 (p = 0.001). The relations between CXCL13 and CSF WBC, CSF protein, age 135 

and duration of symptoms are shown graphically in Figure 1. In the adjusted models children 136 

with Borrelia IgG in the CSF had 300% (95% CI 38-1060%) higher median CXCL13 values than 137 

those without Borrelia IgG, whereas children with Borrelia IgM in the CSF had 212% (34-640%) 138 

higher median CXCL13 levels than those without Borrelia IgM. 139 

 140 

Discussion:  141 

In this study in children with LNB, the levels of CXCL13 in the CSF were positively 142 

associated with the levels of WBC and protein and the detection of Borrelia IgG and IgM 143 

antibodies in the CSF. We did not find associations between CXCL13 and age, sex, type of 144 

symptoms, duration of symptoms, antibody index or detection of B. garinii in the CSF.  145 

Associations between CXCL13 and WBC, protein and Borrelia antibodies in the CSF  146 

Several prior studies have found a similar positive association between CXCL13 and 147 

WBC in the CSF in both adults and children with LNB, as we did (30-33). Our study cannot 148 

determine cause-effect relationships between CXCL13 and CSF WBC, but growing evidence 149 

suggests that CXCL13 is the driver of CSF pleocytosis in LNB. An experimental model by 150 

Rupprecht et al. have shown that CXCL13 is the main regulator of B-cells in CSF in LNB (7). 151 
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Moreover, cases of possible early phase LNB with increased CXCL13 levels prior to the 152 

pleocytosis have also been reported (9, 34).  153 

One of many possible mechanisms behind the correlation between CXCL13 and protein 154 

in the CSF, is recruitment of B-lymphocytes developing into plasma cells and eventually 155 

producing Borrelia antibodies (immunoglobulins) (2). The positive association between CXCL13 156 

and intrathecal Borrelia IgG and IgM (Table 2) in our study, supports this hypothesis. According 157 

to studies by Reiber, proteins in the CSF originate from blood (80%) and CNS (20%) (35, 36). 158 

Moreover, changes in the CSF protein concentration may be due to alterations in serum protein 159 

levels, intrathecal release of immunoglobulins, blood/CSF barrier properties or changes in the 160 

CSF flow-rate and drainage (36, 37). Possibly, other factors than immunoglobulins contributes to 161 

the correlation between CXCL13 and CSF protein in LNB, but this cannot be determined by our 162 

study.  163 

Taken together, CXCL13, WBC and protein seems to be strongly correlated and possibly 164 

all reflect the state of inflammation in LNB patients. Whether these correlations have any clinical 165 

implications is unclear, but Markowicz et.al. have suggested that applying a linearized cut-off for 166 

CXCL13 dependent on the CSF WBC level could be a novel approach in the diagnosis of LNB 167 

(31).  168 

Associations between CXCL13 and clinical features of LNB in children 169 

The strong association between CSF CXCL13 and WBC and protein cannot explain the 170 

large variety in the level of CXCL13 observed in LNB patients. Children with LNB present with 171 

variable symptoms and signs, often categorized in groups with either facial nerve palsy, 172 

symptoms of generalized inflammation / mild meningism, or both of these symptoms (18, 20). 173 
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Symptoms may also vary according to age and sex (38). However, as for previous studies, we 174 

could not identify clinical variables such as symptoms, age or sex predicting the level of 175 

CXCL13 in children with LNB (14, 30).  176 

In adults with LNB it seems that high levels of CXCL13 correlate with short duration of 177 

symptoms (13), whereas this correlation has not been confirmed in children (14, 30). In general, 178 

children with suspected LNB are investigated after shorter duration of symptoms compared to 179 

adults (19, 20) and this may explain why there was no correlation between the level of CXCL13 180 

and duration of symptoms in our study. Nevertheless, children in our study had substantially 181 

elevated levels of CXCL13 in the CSF already after a few days of symptoms (Figure 1), 182 

suggesting an early and pronounced release of CXCL13 in the CNS during LNB. Interpretation 183 

of diagnostic markers often depend on the duration of the disease. It is therefore important to 184 

understand how the diagnostic marker is induced by both the disease of interest and possibly by 185 

other relevant diseases. A few experimental studies have shown that the CXCL13 release in LNB 186 

is caused by binding of Borrelia spirochetes to Toll-like receptor 2 (TLR2) on local immune cells 187 

(monocytes, macrophages and dendritic cells) (39, 40). Other pathogens, such as Streptococcus 188 

pneumonia, can also bind to TLR2 (41), but the CXCL13 release is much less pronounced (40). 189 

This is supported by the findings of Pilz et al., who reported elevated levels of CXCL13 in the 190 

CSF of patients with both bacterial (including S. pneumonia) and viral neuroinfections (42), but 191 

with a less pronounced and a more gradual increase than previously reported in LNB patients 192 

(10). We have previously shown that children with non-Lyme aseptic meningitis have 193 

substantially lower levels of CXCL13 compared to children with LNB with similar duration of 194 

symptoms (9). Experimental studies on Rhesus Macaques have shown that the CXCL13 195 
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concentration peaks between one and three weeks after intrathecal inoculation with Borrelia (43). 196 

Thus, compared to other CNS infections, the CXCL13 release in LNB is early and pronounced.  197 

As far as we are aware, the relation between the CXCL13 level in the CSF and different 198 

Borrelia genospecies causing LNB, has not been studied before. We did not find an association 199 

between the CXCL13 level and detection of the B. garinii genospecies in the CSF of children 200 

with LNB, all though absence of the B. garinii genospecies was an uncertain variable in our 201 

study.  202 

CXCL13 is released in the CSF in the early phase of LNB, before the Borrelia antibody 203 

index (11, 17) and sometimes even before pleocytosis can be detected in the CSF (9, 34). The 204 

major clinical application of CXCL13 may therefore be the discrimination between LNB and 205 

non-Lyme aseptic meningitis when the antibody index is still negative (9, 17). This scenario is 206 

not uncommon in children with suspected LNB, who are often investigated early and share 207 

clinical features with those of non-Lyme aseptic meningitis. These patients are often 208 

characterized as probable or possible LNB (17, 19, 20). We have previously shown that 18/18 209 

children with probable LNB would have been diagnosed as LNB if CXCL13 with a low cut-off 210 

level was applied for the diagnosis (9). We can still not explain the large variety in the levels of 211 

CXCL13 in children with LNB. However, our results indicate that CXCL13 is associated with 212 

LNB per se and not with specific clinical features of the disease or the causing genospecies, 213 

making this a good candidate for a diagnostic marker. For pediatricians considering the LNB 214 

diagnosis, this may implicate that CXCL13 levels in the CSF can be interpreted independently of 215 

clinical features or duration of symptoms at the time of lumbar puncture.  216 

 217 
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Strengths and limitations 218 

The strength of this study is the prospective inclusion of patients, the predefined 219 

diagnostic criteria and that all CSF samples included in this study were treated equally. Even 220 

though this is one of the largest studies on LNB in children, the confidence intervals for some of 221 

the effect estimates are wide and we cannot rule out that some of the non-significant associations 222 

may be clinically relevant. Another limitation was that six CSF samples contained insufficient 223 

amount of CSF for determining AI, even though Borrelia antibodies were present in the CSF. 224 

Therefore, we chose to present both Borrelia antibodies in the CSF and the AI as variables in the 225 

regression analyses. One could speculate whether CXCL13 would have been positively 226 

associated with AI if AI analyses could have been performed in these six samples.  227 

Conclusion:  228 

 This study has shown that the CXCL13 release in CSF during LNB infection in children 229 

is pronounced and present in the early phase of the disease. High levels of CXCL13 are 230 

associated with high levels of WBC and protein and detection of Borrelia antibodies in the CSF. 231 

We could not identify any demographic or clinical variables associated with the level of CXCL13 232 

in children with LNB. Thus, CXCL13 is associated with LNB, but probably not with specific 233 

features of the disease or duration of symptoms, supporting the role as a good diagnostic marker 234 

for LNB.  235 

 236 

Notes: 237 
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Table 1 Demographic and clinical characteristics (A) and laboratory characteristics in the CSF 
(B) of 70 children with LNB  
Variables   
A Age years, mean (SD) [range] 7.1 (2.75) [2 - 14] 
 Sex, male/female (% male) 38/32 (54) 
 Facial nerve palsy, yes/no (% yes) 45/25 (64) 
 Generalized inflammation symptoms a, y/n (% y) 55/5 (92) n=60, b 

 Duration of symptoms days, median (IQR) [range] 7 (3, 19) [1 - 120] 
B                 CSF CXCL13 pg/ml, median (IQR) [range] 2641 (944, 8434) [7 - 63212] 
 CSF WBC 106/L, median (IQR)  [range] 164 (57, 282) [10 - 733] 
 CSF protein g/L, median (IQR) [range] 0.51 (0.36, 0.81) [0.16 - 1.61] 
 CSF Borrelia AI (IgG and/or IgM), y/n (% y) 53/11 (82) n=64, c 
 CSF Borrelia IgG y/n (% y) 57/13 (81) 
 CSF Borrelia IgM y/n (% y) 44/26 (63) 
 Detection of B. garinii in CSF, y/n (% y) 26/43 (38) n=69, d 

Abbreviations: CSF: cerebrospinal fluid, LNB: Lyme neuroborreliosis, SD: standard deviation, IQR: interquartile 388 
range, WBC: white blood cell count, AI: antibody index, IgG: Immunoglobulin G, IgM: immunoglobulin M.  389 
a Headache, fever, neck stiffness or fatigue. b Missing information to confirm absence of symptom in ten children, 390 
thus n=60. c Insufficient amount of CSF in sample for successful AI test in six children, thus n=64. d Insufficient 391 
amount of CSF in sample for analyses of genospecies determination in one child, thus n=69.  392 
  393 
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 394 

Table 2 Simple and multivariable linear regression analyses of associations between different 
demographic and clinical (A) and laboratory/CSF variables (B) and the log transformed level 
of CXCL13 in the CSF of 70 children with LNB 
  Simple regression analyses Multivariable regression analyses 

adjusting for: age, sex, FNP and log 
duration of symptoms 

 N Beta (95% CI) P-value R2 (%) Beta (95% CI) P-value ΔR2 

A. Demographic and 
clinical variables 

       

   Age 70 -0.01 (-0.17, 0.15) 0.88 0.0 -0.03 (-0,2, 0.14) 0.72 0.2 
   Sex = boy 70 0.10 (-0.78, 0.97) 0.83 0.1 0.09 (-0.82, 0.99) 0.85 0.0 
   Facial nerve palsy (y) 70 -0.33 (-1.24, 0.57) 0.47 0.4 0.12 (-1.07, 1.32) 0.84 0.0 
   Generalized inflam- 
   mation symptoms (y) 

60 0.76 (-1.02, 2.53) 0.40 1.2 0.51 (-1.46, 2.48) 0.61 1.1 

   Log duration of   
   Symptoms, days 

70 0.28 (-0.11, 0.66) 0.15 3.0 0.32 (-0.19, 0.84) 0.21 2.3 
 

B. CSF variables        
   Log WBC 106/L 70 0.96 (0.61, 1.31) <0.001 30.7 1.03 (0.67, 1.38) <0.001 32.9 
   Protein g/L 70 2.65 (1.51, 3.79) <0.001 24.1 3.37 (2.06, 4.67) <0.001 28.4 
   Borrelia AI (y) 64 1.03 (-0.17, 2.23) 0.092 4.5 1.02 (-0.29, 2.32) 0.124 4.3 
   Borrelia IgG (y) 70 1.39 (0.32, 2.45) 0.012 9.0 1.46 (0.28, 2.63) 0.016 8.5 
   Borrelia IgM (y) 70 1.14 (0.29, 2.0) 0.010 9.4 1.10 (0.21, 1.98) 0.016 8.5 
   Detection of B.  
   Garinii (y) 

69 0.03 (-0.86, 0.92) 0.94 0.0 0.18 (-0.75, 1.12) 0.70 -0.4 

Abbreviations: CSF: cerebrospinal fluid, LNB: Lyme neuroborreliosis, y: yes, WBC: white blood cell count, AI: 395 
antibody index, B. garinii: Borrelia garinii, R2: R square. 396 
 397 
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 400 
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 402 

Figure 1 Relation between the level of CSF CXCL13 and age, duration of symptoms, CSF WBC and CSF protein 403 
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