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Abstract

Seismic scattering theory plays an important role in seismic forward modeling and is the theoretical
foundation for various seismic imaging methods. Full waveform inversion is a powerful technique
for obtaining a high-resolution model of the subsurface. One objective of this thesis is to develop
convergent scattering series solutions of the Lippmann-Schwinger equation in strongly scattering
media using renormalization and homotopy methods. Other objectives of this thesis are to develop
efficient full waveform inversion methods of time-lapse seismic data and, to investigate uncertainty
quantification in full waveform inversion for anisotropic elastic media based on integral equation
approaches and the iterated extended Kalman filter.

The conventional Born scattering series is obtained by expanding the Lippmann-Schwinger equa-
tion in terms of an iterative solution based on perturbation theory. Such an expansion assumes
weak scattering and may have the problems of convergence in strongly scattering media. This
thesis presents two scattering series, referred to as convergent Born series (CBS) and homotopy
analysis method (HAM) scattering series for frequency-domain seismic wave modeling. For the
convergent Born series, a physical interpretation from the renormalization prospective is given.
The homotopy scattering series is derived by using homotopy analysis method, which is based on
a convergence control parameter (h) and a convergence control operator (H) that one can use to
ensure convergence for strongly scattering media. The homotopy scattering scattering series solu-
tions of the Lippmann-Schwinger equation, which is convergent in strongly scattering media. The
homotopy scattering series is a kind of unified scattering series theory that includes the conven-
tional and convergent Born series as special cases. The Fast Fourier Transform (FFT) is employed
for efficient implementation of matrix-vector multiplication for the convergent Born series and the
homotopy scattering series.

This thesis presents homotopy methods for ray based seismic modeling in strongly anisotropic me-
dia. To overcome several limitations of small perturbations and weak anisotropy in obtaining the
traveltime approximations in anisotropic media by expanding the anisotropic eikonal equation in
terms of the anisotropic parameters and the elliptically anisotropic eikonal equation based on per-
turbation theory, this study applies the homotopy analysis method to the eikonal equation. Then this
thesis presents a retrieved zero-order deformation equation that creates a map from the anisotropic
eikonal equation to a linearized partial differential equation system. The new traveltime approxima-
tions are derived by using the linear and nonlinear operators in the retrieved zero-order deformation
equation. Flexibility on variable anisotropy parameters is naturally incorporated into the linear dif-
ferential equations, allowing a medium of arbitrarily anisotropy.

This thesis investigates efficient target-oriented inversion strategies for improving full waveform
inversion of time-lapse seismic data based on extending the distorted Born iterative T-matrix in-
verse scattering to a local inversion of a small region of interest (e. g. reservoir under production).
The target-oriented approach is more efficient for inverting the monitor data. The target-oriented



v

inversion strategy requires properly specifying the wavefield extrapolation operators in the integral
equation formulation. By employing the T-matrix and the Gaussian beam based Green’s function,
the wavefield extrapolation for the time-lapse inversion is performed in the baseline model from
the survey surface to the target region. I demonstrate the method by presenting numerical examples
illustrating the sequential and double difference strategies.

To quantify the uncertainty andmultiparameter trade-off in the full waveform inversion for anisotropic
elastic media, this study applies the iterated extended Kalman filter to anisotropic elastic full wave-
form inversion based on the integral equation method. The sensitivity matrix is an explicit represen-
tation with Green’s functions based on the nonlinear inverse scattering theory. Taking the similarity
of sequential strategy between the multi-scale frequency domain full waveform inversion and data
assimilation with an iterated extended Kalman filter, this study applies the explicit representation
of sensitivity matrix to the the framework of Bayesian inference and then estimate the uncertain-
ties in the full waveform inversion. This thesis gives results of numerical tests with examples for
anisotropic elastic media. They show that the proposed Bayesian inversion method can provide rea-
sonable reconstruction results for the elastic coefficients of the stiffness tensor and the framework
is suitable for accessing the uncertainties and analysis of parameter trade-offs.
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Chapter 1

Introduction

1.1 Seismic modeling

Seismic forward modeling plays an important role in seismic survey design, imaging, inversion
and interpretation. The goal of seismic forward modeling is to generate the seismograms based on
assumed subsurface structures. Nowadays, full waveform inversion has become a more popular
technique for obtaining an accurate velocity structure of the subsurface. Seismic full waveform in-
version depends on the data fitting of the recorded and modeled seismogram (Tarantola and Valette,
1982a; Tarantola, 1986). The applicability of such a technique relies on the fact that the seismograms
are used for fitting based on the forward modeling. As a result, one of the challenges for seismic
inversion in complex structures, e. g. salt structure, is to accurately model the seismogram.

Seismic forward modeling can be mainly divided into three categories (Carcione, 2007): direct
methods (Robertsson, 1996), integral equation methods (see e. g., Zhdanov, 2002; Jakobsen and
Wu, 2016; Malovichko et al., 2017; Jakobsen and Wu, 2018) and asymptotic methods (Ĉervenŷ,
2001). The direct methods use the numerical techniques, e. g. the finite difference method and finite
element method, to solve the full acoustic or elastic wave equation directly. Direct methods can ob-
tain highly accurate full wavefields and can be used for complex subsurface structures and strong
velocity contrast regions. Although the approaches produce highly accurate results, the computa-
tional cost is still expensive and the memory requirements are high.

Asymptotic methods are traditional methods which are widely used for Kirchhoff and beam imaging
due to their efficiency. They have well known limitation of asymptotic approximations based on
ray theory rather than the full wavefields. Such methods can also identify the specific events from
the seismograms whereas the direct methods just calculate the full wavefields. Ray theory based
methods require an accurate computation of traveltimes. To develop efficient time-lapse inversion
methods and full waveform inversion methods in anisotropic elastic media, I use the ray theory
to calculate the background Green’s functions in the integral equation approach. When calculating
the Green’s functions in the background media, computing traveltimes is very important, which
ensures that the modeled waveform is not more than half a cycle out of phase with the recorded
waveform. The traveltimes can be obtained by solving the eikonal equation, which is a nonlinear
partial differential equation under the high frequency asymptotic ray theory assumption.

There are several approaches to solve the eikonal equation, such as ray tracing methods (see e.
g., Červenỳ, 1972; Červenỳ and Pšenčík, 1983; Moser, 1991; Vinje et al., 1993; Ĉervenŷ, 2001;
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Červenỳ et al., 2007; Bai et al., 2007; Iversen and Tygel, 2008; Červenỳ et al., 2012) and the finite
difference method (see e. g., Vidale, 1988; Sethian and Popovici, 1999; Cao and Greenhalgh, 1994;
Sethian, 1996; Rawlinson and Sambridge, 2004a,b; Noble et al., 2014). The ray tracingmethod com-
putes the traveltimes by integration along rays, in which the initial condition must be specified. The
main advantages include easy implementation and high efficiency. However, it gives a non-uniform
distribution of traveltimes, and the presence of shadow zones can lead to problems. Moreover, due
to the different directions of the group velocity (ray direction) and the phase velocity (wavefront
normal direction) vectors, solving the ray tracing system becomes complicated in anisotropic media.
The finite difference (FD) method has been recognized as an efficient and accurate computational
scheme for calculating the traveltimes. In the framework of the FD method, two approaches, the
fast marching method (Sethian, 1996; Sethian and Popovici, 1999; Alkhalifah and Fomel, 2001;
Huang et al., 2016b; Huang and Sun, 2018) and the fast sweeping method (Zhao, 2005), have been
widely used for calculating the traveltimes. In recent years, efforts have been made to solve the
anisotropic eikonal equations (Luo and Qian, 2012; Waheed et al., 2015; Bouteiller et al., 2017;
Han et al., 2017; Waheed and Alkhalifah, 2017). In addition, some interesting results for moveout
approximations have been obtained based on the weak-anisotropy (WA) parameters (Pšenčík and
Farra, 2017; Farra and Pšenčík, 2017). However, it is challenging to use the finite difference method
to solve the eikonal equation for anisotropic media because of the additional anisotropic parame-
ters involved. This is especially true because solving the quartic equation and finding the roots of a
quartic equation at each computational step is difficult (Alkhalifah, 2011a; Stovas and Alkhalifah,
2012).

Most traveltime approximations employ perturbation theory to calculate the traveltimes in anisotropic
media (Ursin, 1982; Gjøystdal et al., 1984; Červenỳ et al., 1984; Alkhalifah, 2011a,b; Červenỳ et al.,
2012;Waheed et al., 2013; Iversen et al., 2018). Alkhalifah (2011a,b) derived the traveltime approx-
imations and used them for scanning anisotropic parameters in transversely isotropic media with a
vertical-symmetry axis (VTI) and transversely isotropic media with a tilted symmetry axis (TTI)
media. Much work has been done along this direction of traveltime development. Even in the case
of strongly anisotropic media, the perturbation theory is used. Many researchers have applied the
perturbation theory and havemade significant progress (Stovas and Alkhalifah, 2012;Waheed et al.,
2013; Alkhalifah, 2013; Masmoudi and Alkhalifah, 2016; Xu et al., 2017). Later, this approach has
been extended to an orthorhombic medium (Stovas et al., 2016) and attenuating VTI medium (Hao
and Alkhalifah, 2017). Rather than calculating the real traveltimes, recently, Huang et al. (2018)
used perturbation theory to calculate the omplex traveltime by solving the highly nonlinear complex
eikonal equation. They successfully applied perturbation theory to the complex eikonal equations
in orthorhombic and VTI media and derived a system of linear equations for the complex travel-
time computation. It should be appreciated that in the derived linear system, it become possible
to develop analytic solutions in an orthorhombic medium (Huang and Greenhalgh, 2018) and nu-
merical solutions in a VTI medium (Huang et al., 2018). This approach relies on the availability of
the perturbation theory with the assumption of small contrast to the complex eikonal equations in
anisotropic media.

One potential weakness of the above perturbation theories is the assumption of small anisotropic
parameters. This is because most of the traveltime approximations make use of a power series
expansion in terms of the anisotropic parameters. When the traveltime computation is performed in
strongly anisotropic media, in which the degree of anisotropy is beyond a small perturbation from
the anisotropic backgroundmedium, the calculated traveltimes are no longer accurate. In such cases,
overcoming the weak anisotropy assumption is necessary.
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Table 1.1: Multiple scattering theory can be applied to various partial differential equations (Gonis
and Butler, 2012)

Equation L |ψ⟩ = − |S⟩
1 Schrödinger equation (−▽2 +V − E) |ψ⟩ = 0

2 Dirac equation (−iα · ▽+ β + V −W ) |ψ⟩ = 0

3 Laplace equation ▽ · ϵ▽ |ψ⟩ = 0

4 Poisson equation ▽2 |ψ⟩ = −4πρ

5 Debye-Huckel equation (−▽2 +λ2) |ψ⟩ = 0

6 Vector wave equation ▽× [▽× E]− κ2ϵ (r)E = 0

7 Helmholtz equation (▽2 + k2) |ψ⟩ = 0

Integral equation methods are another class of seismic modeling methods (Aki, 1980; Zhdanov,
2002). An attractive feature of the integral equation method is that only the anomalous volume
(scattering volume) needs to be discretized, which leads to more efficient computation (Malovichko
et al., 2017). From the perspective of applicability to inversion, the integral equation approach has
actually several advantages compared with the differential equation approach: (1) it is naturally
target oriented (Huang et al., 2018), (2) it gives the sensitivity matrix directly in terms of Green’s
functions (Jakobsen and Ursin, 2015) which is convenient for uncertainty estimation (Eikrem et al.,
2019) and (3) it is compatible with the use of domain decomposition and renormalization methods
from modern physics (Jakobsen and Wu, 2016; Jakobsen et al., 2018). On the other hand, the in-
tegral equations involving dividing the medium into background and anomalous parts, have some
significant limitations, such as the expensive computation of the matrix inversion.

1.2 Aspects of multiple scattering theory

Scattering theory is the basis for various seismic modeling and inversion methods. Seismic scat-
tering theory provides a solution of the wave equation, which can be transformed into Lippmann-
Schwinger integral equation. The Lippmann-Schwinger equation has long been used in the mathe-
matical physics community as a basis for solving scattering problems. This Lippmann-Schwinger
integral equation, which relates the reflection response measured on one side to wavefields inside
the medium, provides solutions of the wave equations. Typically, the wave propagation can be de-
scribed by the following equation

L |ψ⟩ = − |S⟩ . (1.1)

Here |ψ⟩ is the state, L is the linear operator and |S⟩ represents the source signal. We express the
wave equation in operator notation using Dirac’s bra-ket notation for linear operators and state-
vectors (Taylor, 1972). Table 1.1 shows that multiple scattering theory can be applied to various
linear partial differential equations. Assuming |ψ⟩ = |ψ0⟩ + |ψs⟩, where |ψ0⟩ is the state in the
background media and |ψs⟩ is the scattered state, and substituting the above equation into Equation
(1.1) gives the Lippmann-Schwinger equation (Taylor, 1972)

|ψ⟩ = |ψ0⟩+G0V |ψ⟩ , (1.2)

where G0 is the Green’s functions in reference media and V is the potential. The key idea is to
transform the inhomogeneous Helmholtz equation into the equivalent Lippmann-Schwinger inte-
gral equation, where the actual wavefields can be constructed by reference wavefields in a relatively
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simple reference medium and the perturbation operator in a corresponding perturbation potential.
The Lippmann-Schwinger equation can in principle be solved very accurately using the full integral
operators. Solving the Lippman-Schwinger equation for |ψ⟩ is formally very simple, giving

|ψ⟩ = (1−G0V )−1 |ψ0⟩ , (1.3)

Following the quantum mechanical potential scattering approach (Taylor, 1972), Jakobsen (2012)
introduced a transition operator T

V G = TG0 (1.4)

Because the background medium is arbitrary, it follows that (Taylor, 1972; Jakobsen, 2012)

T = V + V G0T (1.5)

Thus, the T-operator satisfies an integral equation of the Lippmann-Schwinger type, independent
of the source-receiver configuration. Equation (1.5) has the following formal solution

T = V (1−G0V )−1 (1.6)

which represents a full numerical solution of the Lippman-Schwinger equation that includes all the
effects of multiple scattering. However, solving the full integral equation requires the inversion of a
full matrix, which is very expensive and the memory demands are high. Different iterative solutions
of the Lippmann-Schwinger equation have been proposed, but not all of these are guaranteed to
converge independent of the strength of the velocity perturbations and the size of the model relative
to the wavelength.

Another way to solve the Lippman-Schwinger equation is by the iteration method. A forward
scattering series solution of the integral equations is a popular approach to solve the Lippmann-
Schwinger equation for seismic modeling. It generates seismic wavefields, including primaries,
free surface multiples and internal multiples, based on the reference wavefieds and the perturbation
operator. There are various approximate solutions of the integral equations, such as Born approxi-
mation, extended Born approximation (Liu et al., 2001), quasi-linear, quasi-analytical and localized
quasi-analytical approximations (Zhdanov and Fang, 1996; Zhdanov, 2002) for seismic modeling.
An instructive approach is to generate the Born scattering series using a succession of propagations
in the relative simple reference medium and different terms in the scattering series. After an infinite
number of iterations, this procedure leads to

|ψ⟩ = (1 +G0V +G0V G0V +G0V G0V G0V +G0V G0V G0V G0V + ...) |ψ0⟩ , (1.7)

which is known as the Born series.

The different terms in the Born scattering series means the scattering interactions. The main differ-
ence between the approximate solutions and the Born scattering series is that the Born scattering
series includesmultiple scattering. The forward scattering series is based on scattering theory, which
is a form of perturbation theory (Weglein et al, 2009). The Born series has the assumption of weak
scattering (Wu and Toksöz, 1987; Kouri and Vijay, 2003). Convergence issues may occur in strong
scattering in high-contrast areas, such as salt structures. It is important for seismic imaging in such
high-contrast regions to address the weak-scattering.

Figure 1.1 (a) shows an example for strongly scattering model, SEG/EAGE salt model. Fig-
ure 1.2 shows the wavefields using the full integral equation solution, with the background model
shown in Figure 1.1 (b). Figure 1.3 shows the wavefields using the Born series, which shows the
conventional Born series is divergent for such a strongly scattering model.



1.2 Aspects of multiple scattering theory 5

Resampled SEG/EAGE salt model

200 400 600 800 1000 1200

Width (m)

200

400

600

800

1000

1200

D
e

p
th

 (
m

)

2000

3000

4000

5000

Background model

200 400 600 800 1000 1200

Width (m)

200

400

600

800

1000

1200

D
e

p
th

 (
m

)

2000

3000

4000

5000

Figure 1.1: (a) The velocity (m/s) of resampled version of the SEG/EAGE salt model and (b) back-
ground model.
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Figure 1.2: Frequency-domain wavefields with the frequency of 10 Hz for the SEG/EAGE salt
model using the full integral equation solution.
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Born series: real(G)
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4 Born series: imag(G)
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Figure 1.3: Frequency-domain wavefields with the frequency of 10 Hz for the SEG/EAGE salt
model using the Born series.

1.3 Renormalization

Historically, the scattering problem was solved using perturbation theory, where it was found that
the series did not always converge. Instead the sum would diverge towards infinity as more and
more termswere included. This was the famous ’renormalization’ problem. One important approach
to address the divergence issue is to renormalize the Born series using various renormalization
schemes (Eftekhar et al., 2018).

To obtain a convergent scattering scattering series in the presence of strong contrasts, it may be
required to perform some kind of renormalization (Abubakar et al., 2003; Kouri and Vijay, 2003;
Kirkinis, 2008, 2012; Osnabrugge et al., 2016). The term renormalization is often associated with
quantum field theory and related mathematical structures (Delamotte, 2004; Hollowood, 2013),
but within the context of classical wave phenomena the term renormalization may simply refer to
a rearrangement of the different terms in Born series so that infinities cancel each other in each
term in the scattering series. Renormalization can be performed on a term-by-term basis or more
generally on the basis of the renormalization group (RG) (Hollowood, 2013). Jakobsen and Wu
(2016) derived a renormalized scattering series by considering a T-matrix representation of the De
Wolf series (Wu et al., 2007). Wu et al. (2016) has described applications of renormalization group
theory in the context of seismic envelope inversion in the time domain. Jakobsen et al. (2018)
derived a renormalized Born series using the RG theory.

The goal of the renormalization is to remove the divergence by adding a small correction to each
term in the Born series. After adding the correction, when summing the whole series, the sum of the
corrections gives an infinity that exactly cancels the infinity in the pure Born series. Following the
lecture notes of (Moore, 2008), I will give an introduction for the renormalization process. I start
with defining the eigenstates of (Moore, 2008)

G0V |zn⟩ = zn |zn⟩ , (1.8)

where zn is the n th complex eigenvalue. By assuming a discrete spectrum for convenience, the
operator G0V can be expressed as

G0V =
∑
n

|zn⟩ ⟨zn|
1− zn

. (1.9)

Note that the series expansion (1− z)−1 only converges for |z| < 1. This is because a series expan-
sion converges only as far from the expansion point as the nearest singularity in the function being
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expanded. Here the expansion point is z = 0 and the singularity is at z = 1. The series expansion
of (1−G0V )−1 can be expressed as (Moore, 2008)

(1−G0V )−1 =
∑

n u (1− |zn|) |zn⟩ ⟨zn| (1 + zn + z2n + ...)

+
∑

n u (|zn − 1|) |zn⟩⟨zn|
1−zn

.
(1.10)

where u(x) is the unit step function. For the case |zn| > 1, we can expand in powers of 1
zn
, as

1
1−zn

= − 1
zn

1
1− 1

zn

= − 1
zn

(1 + z−1
n + z−2

n + ...) .
(1.11)

Combining the two series gives (Moore, 2008)

(1−G0V )−1 =
∑

n |zn⟩ ⟨zn|
∑∝

m=0 (z
m
n + u (|zn − 1|) [−zmn + (−z−m−1

n )])

=
∑∝

m=0

∑
n |zn⟩ ⟨zn| [zmn − u (|zn − 1|) (zmn + z−m−1

n )]

=
∑∝

m=0 [(G0V )−Rm] .

(1.12)

where
Rm =

∑
n

u (|zn − 1|) |zn⟩ ⟨zn|
(
zmn + z−m−1

n

)
. (1.13)

Then the renormalized series will converge normally. In practice, the renormalization is difficult
because we cannot know the eigenvalues and eigenvectors of G0V .

There are several approaches to develop a renormalized scattering series. There have been success-
ful attempts to introduce the De Wolf approximation (De Wolf, 1971; de Wolf, 1985) into seismic
scattering theory (Wu and Huang, 1995). The renormalized scattering series is derived by Jakobsen
and Wu (2016) using the T-matrix and De Wolf series. Renormalization group method has been
applied to seismic waveform inversion (Wu et al., 2015) and envelope inversion (Wu et al., 2016).
Significant progress has been made by Yao et al. (2015) by dividing the renormalized Lippmann-
Schwinger equation into two sub-Volterra type integral equations by introducing wavefield separa-
tion technology. Recently, by employing the renormalization group (RG) theory, we developed a
renormalized version of Born series. Numerical tests showed that this solution can be convergent for
large-contrast media (Jakobsen et al., 2018, 2020). Our renormalization group approach is based on
the use of an auxillary set of scale-dependent scattering potentials, which gradually evolve toward
the real physical scattering potential.

Renormalization group (RG) theory was originally proposed by Gell-Mann and Low (1954) in
theoretical physics to remove divergences and singularities in perturbation theory in quantum field
theory. Historically, Gell-Mann and Low (1954) proposed the idea of a ”floating renormalization
point” to deal with divergent terms in perturbative expansions within quantum field theory, and
pointed out that the physical quantity should be independent of the choice of the renormalization
points. They expressed the so-called renormalization group law as

H (g (Λ) ,Λ) = H (g (Λ′) ,Λ′) , (1.14)

where H is the local effective Hamiltonian which is a functional of a quantum field, representing
the local (short range) interaction at the corresponding scale Λ

dH (g (Λ) ,Λ)

dlnΛ = 0, (1.15)

which means that the system is scale invariant. From the perspective of statistical physics, Wilson
(1971) developed the RG approach into a general tool for dealing with infinities and interactions
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across different length scales. As a result, the RG method has found useful applications in a range
of different subjects, ranging from quantum field theory to solid state physics via turbulent fluid
flow.

Scientists found that the renormalization group has significant application in obtaining stable prop-
erties of physical systems (Goldenfeld, 1992). The RG theory (Wilson, 1971) has been widely used
to remove divergence in quantum physics, critical phenomena, dynamical systems and statistical
mechanics, etc. The idea was extended to obtain the global asymptotic solutions to nonlinear dif-
ferential equations and asymptotic analysis of differential equations (Goldenfeld, 1992; Chen et al.,
1994, 1996). Kunihiro (1995) established the relation between the traditional envelope theory and
the RG theory and gave the geometrical interpretation of RG theory. RG theory has proved to be ex-
tremely useful in renormalizing perturbation series (Yakhot and Orszag, 1986; Pelissetto and Vicari,
2002; Delamotte, 2004; Kirkinis, 2008, 2012). Renormalization theory was applied to overcome the
divergence problem in the direct inverse scattering series in different ways. I extend the forward
scattering series to calculate the wavefields by localizing the background wavefields.

1.4 Homotopy analysis method

Historically, there are various ways to solve nonlinear problems, such as perturbation theory, the ar-
tificial small parameter methods, the δ-expansion method, and Adomian’s decomposition method.
Perturbation theory is based on the existence of small or large parameters or variables. A major
limitation of perturbation theory is that perturbation theory uses a small perturbation parameter to
transfer a nonlinear problem into an infinite number of linear sub-problems and then approximates it
by the sum of solutions of the first several sub-problems. In particular, for strongly nonlinear prob-
lem, such a theory is often inapplicable. The artificial small parameter methods avoid the assump-
tion of small parameter by introducing a artificial small parameter. Lyapunov (1992) considered the
equation

dx

dt
= A (t) x, (1.16)

where A(t) is a time periodic matrix. Lyapunov (1992) introduced an artificial parameter to replace
this equation with the equation

dx

dt
= εA (t) x, (1.17)

and then calculated power series expansions over for the solutions that will converge for ε.

The domian’s decomposition method (Adomian, 1976; Adomian and Adomian, 1984) is also a
powerful analytic technique for strongly nonlinear problems. This method is valid for ordinary and
partial differential equations, no matter whether they contain small/large parameters, and thus is
rather general. The major advantage of this is that the Adomian approximation series converge
quickly. However, convergence regions of the power series given by the domian’s decomposition
method are small.

The homotopy analysis method (HAM) was proposed by Liao (1992b, 1999, 2003, 2012) for solv-
ing nonlinear differential equations in mathematical physics. However, the development of related
globally convergent homotopy methods for solving nonlinear equations started around 1976 (Wat-
son, 1989). Historically, there have been several attempts to apply homotopy methods to model and
invert geophysical data (Watson, 1989). In any case, the homotopy methods allows one to solve op-
erator equations of any kind by using ideas and concepts of topology, which is a branch of pure and
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applied mathematics dealing with quantities that are preserved during continuous deformations. A
homotopy describes a continuous transformation between two states and has been compared with
the concept of scale-invariance in renormalization group theory (Palit and Datta, 2016; Pfeffer,
2019). The homotopy analysis method have been used to solve a range of different nonlinear prob-
lems, ranging from heat conduction problems (Abbasbandy, 2006) to problems within theoretical
physics. Most applications of the homotopy analysis method is based on a differential operator for-
mulation, but there have also been successful attempts to solve integral equations of the Fredholm
and Volterra types using the homotopy analysis method (Hetmaniok et al., 2014). From the late
1990s to 2010s, due to the advantages of HAM over perturbation theory, it has been widely used in
the mathematical and physical sciences, including nonlinear oscillations (Liao, 1992a,b; Liao and
Chwang, 1998; Liao, 2004), boundary layer flows (Liao, 1999, 2002), heat transfer (Liao, 2003;
Wang et al., 2003), nonlinear water waves (Liao, 1992a; Liao et al., 2016) and nonlinear gravity
waves (Liao, 2011). This implies that the newHAM formulation can be potentially used for strongly
nonlinear problems, e. g. strongly anisotropic media and strongly scattering media.

Unlike perturbation theory, the homotopy analysis method constructs analytic solutions that are
not only independent of any physical parameters but also can guarantee the convergence of the
series solution. The main advantage of HAM is that it can be used for highly nonlinear differential
equations. The homotopy analysis method can be used to solve operator equations of the form (Liao,
2003)

N [ψ] = 0, (1.18)

where N denotes a nonlinear operator and ψ is the unknown function. The basic idea of the ho-
motopy analysis method is to so-called zeroth-order deformation equation to transform a nonlinear
equation into a linear equation system and construct a series solution. Liao (2003) constructs the
so-called zeroth-order deformation equation

(1− λ)L [Φ (λ)− ψ0] = λhHΦ (λ) , (1.19)

where λ ∈ [0, 1] is the so-called embedding parameter, h ̸= 0 is the so-called convergence control
parameter, H is a convergence control operator, ψ0 is our initial guess of the solution and L is an
auxiliary linear operator that can be selected arbitrarily as long as L [0] = 0.

Hence developing analytic solutions with the homotopy analysis method, which involves transform-
ing the nonlinear differential equations into a system of linear equations, improves the accuracy of
the solutions. The homotopy analysis method explains how the analytic solutions of the nonlin-
ear equation can be obtained by transforming the nonlinear equation into a linear equation system.
Expanding the solution in Taylor series with respect to a embedding parameter and inserting the
series into the zeroth-order deformation equation leads to linear equation system, which is used to
construct the coefficients of the series. Then, one can obtain the exact solution. With suitable em-
bedding parameter, auxiliary parameter and the auxiliary linear operator, the series will converge
to exact solution. By analogy with the homotopy analysis process, the first guess approximation is
chosen, then the approximation changes until it satisfies the original nonlinear equation. This means
that the assumed series expansion solution changes from the initial solution to the exact solution.
With the embedding parameter getting larger and larger, the series expansion solution approaches
the exact solution smoothly, meaning that, at λ = 1, the exact solution can be obtained. The homo-
topy analysis process can be divided into the following steps: (1) choosing the linear operator L;
(2) construction of the zero-order deformation equation; (3) determination of the coefficients of the
series expansion; (4) obtaining the exact solution by setting λ = 1.

In this thesis, the fundamental theory for inverse scattering problems using the renormalized and



1.5 Seismic inversion 10

homotopy scattering series is established and its significant advantages compared to optimization
inversion methods are illustrated. This thesis also applies the homotopy analysis method to develop
the traveltime approximation in strongly anisotropic media.

1.5 Seismic inversion

1.5.1 Full waveform inversion

Full waveform inversion is a powerful tool for high resolution subsurface imaging. It was origi-
nally proposed by Tarantola and Valette (1982b) to estimate an earth model by a data-fitting pro-
cedure, which minimizes the difference between the modeled data and recorded data, which can
be performed in the time domain (Tarantola, 1986) or the frequency domain (Pratt et al., 1996).
Compared to other seismic inversion techniques, such as traveltime tomography (Zhang and Tok-
söz, 1998) and AVO inversion (Buland and Omre, 2003; Downton, 2005), full waveform inversion
tries to exploit the full waveform information of the seismic data (Virieux and Operto, 2009). There
are still some challenges in full waveform inversion, including huge computational cost, sensitivity
to the initial model and convergence problems in strongly scattering media, although it has been
applied successfully.

Essentially, seismic full waveform inversion can be viewed as a seismic inverse scattering problem
since the scattering theory provides the relations between the model parameter perturbation and the
seismic waveform (Tarantola, 1986; Virieux and Operto, 2009). Since the 1980s, the direct inver-
sion approach based on the linearized wave equation using the seismic scattering method has been
widely used (Berkhout, 2012). Actually, seismic inversion in general and full waveform inversion
in particular is a balancing act between linearization and nonlinearization of inverse theory. The
seismic data from the excitation of seismic waves is nonlinear with respect to the real Earth pa-
rameter. The weak scattering assumption combined with imperfections of the forward and inverse
scattering theory make inverse problems ill-posed. Solving a seismic inversion problem means to
investigate the seismic data to find model parameters, which can be achieved by various inversion
methods. It depends on simplified methods including the linearization of inverse theory formula-
tion and the assumption of weak scattering and the linearization forward scattering theory. Full
waveform inversion can be equivalent to the seismic inverse scattering theory in the sense that the
sensitivity operator has a single scattering assumption, which is a major limitation of full waveform
inversion to a weak scattering medium when multiple scattering is present.

There are various alternative approaches to full waveform inversion in the context of integral equa-
tions, known as the scattering integral approach (Tao and Sen, 2013), contrast source inversion (Van
Den Berg and Kleinman, 1997) and distorted Born T-matrix inversion (Jakobsen and Ursin, 2015;
Jakobsen and Wu, 2018). Integral equation methods or multiple scattering theory have several ad-
vantages compared with the finite difference and finite element methods: (1) It is only required to
discretize the scattering region of interest where the anomaly is located. This is in contrast to the
finite difference method where it is required to discretize the entire model, unless the special grid
injection method is used. (2) The grid blocks can be selected somewhat larger in the integral equa-
tion approach compared with the finite difference approach. (3) The inversion can be focused on the
target region of interest, if the rest of the model is assumed known and absorbed into the reference
model. (4) The integral equation approach allows for the use of sophisticated renormalization and
domain decomposition from theoretical physics for reducing the starting model sensitivity and the
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computational cost (Kouri and Vijay, 2003;Wu and Zheng, 2014; Jakobsen and Ursin, 2015; Jakob-
sen and Wu, 2016, 2018). (5) The sensitivity matrix is given explicitly in terms of Greens functions
in the reference medium, which is very convenient for Bayesian inversion and uncertainty estima-
tion. (6) The acoustic and elastic wave equations can all be represented by integral equations of the
Lippmann-Schwinger form, suggesting that one can use essentially the same methods for mono-
and multi-parameter FWI. I will use the distorted Born iterative T-matrix method (DBIT) for full
waveform inversion (Jakobsen and Ursin, 2015), which is based on integral equation formulations.
Similar to the classic full waveform inversion method, our approach uses the linear relation between
the medium contrast and the data due to the use of the Born approximation in the sensitivity matrix.
The key idea is to reduce a nonlinear inverse problem to a sequence of linear inverse problems.
However, the nonlinear relationship between the subsurface parameters and the recorded data is in-
corporated in the updated wavefields. Also, the T-matrix completion method can be used (Jakobsen
and Wu, 2017).This thesis will develop target-oriented inversion and Bayesian inversion methods.
The features described here make it applicable to target-oriented inversion and Bayesian full wave-
form inversion by combining the integral equation based full waveform inversion and the iterated
extended Kalman filter method.

1.5.2 Target-oriented inversion of time-lapse data

Time-lapse seismic surveying is a widely used tool for dynamic reservoir monitoring and assessing
the reservoir fluid movements (Landrø, 2001; Landrø et al., 2003; Landrø and Stammeijer, 2004;
Lumley, 2010). In the last couple of decades, we have witnessed an increased use of time-lapse
seismic data. Traditionally, the result of successful interpretation of time-lapse seismic data has been
a better understanding of the oil saturation in the reservoir, leading to identification of the water-
flooded areas and pockets of remaining oil, and an improved understanding of compartmentalization
of the reservoir. This has been crucial in making decisions for drilling new wells. The success in
use of time-lapse seismic data can be judged by the willingness to invest in such data.

Many oil companies have experienced that the information about fluid pressure and saturation
changes that are contained in the time-lapse seismic data can help to decrease the uncertainty in
the statistical estimates of the porosity and permeability fields. Typically, this is done by perform-
ing a quantitative integration of time-lapse seismic and production data using an ensemble-based
method (Skjervheim et al., 2005, 2006; Jakobsen et al., 2007; Eikrem et al., 2016). Since reservoir
production and time-lapse seismic data are typically densely (sparsely) sampled in time and space,
respectively; one can say that these two data types complement each other. Therefore, one should
really expect an improved dynamic reservoir characterization by performing a joint inversion of
time-lapse seismic and production data. However, dynamic reservoir characterization or seismic
history matching is still considered a difficult task; due to the large scale of the problem and due
to the fact that one needs to quantify the uncertainty in the time-lapse seismic data as well as the
production data.

Full waveform inversion is a powerful tool to estimate the physical parameters of the subsurface
(Virieux and Operto, 2009). Recent studies have shown the applicability of full waveform inversion
for time-lapse seismic inverse problem (Zheng et al., 2011; Routh et al., 2012; Asnaashari et al.,
2015; Yang et al., 2016; Kamei and Lumley, 2017; Yuan et al., 2017). There are different strategies
for applying full waveform inversion to time-lapse data, such as the sequential difference strategy
(Asnaashari et al., 2015) and double difference strategy (Zhang and Huang, 2013). The sequential
difference strategy independently inverts different data sets in the time-lapse data (shown in Figure
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Figure 1.4: Schematic diagram of the sequential difference strategy.

1.3). Then the perturbation can be obtained by a subtraction between the inverted baseline and
monitor models. The double difference strategy (shown in Figure 1.4), was originally proposed
by Waldhauser and Ellsworth (2000) in the traveltime tomography for improving the earthquake
source location. It has become a popular strategy to invert directly for time-lapse changes using
the difference of time-lapse data. Recently, the integral equation formulations were applied to the
time-lapse seismic data and to estimate the uncertainty (Eikrem et al., 2017). However, time-lapse
full waveform inversion requires repeated inversion of monitoring data. Thus, a major limitation of
time-lapse full waveform inversion is that the computational cost is expensive.

Target-oriented inversion refers to the situation in which the model space is reduced to the target
of interest, and hence the inversion speed can be improved by localizing the inversion in a target-
oriented fashion (Valenciano et al., 2006). Techniques to perform target-oriented inversion can be
classified into two major categories: 1) performing seismic redatuming by propagating the seismic
survey data to the region of interest; 2) generating the local wavefields that can be used to update
the wavefields when reconstructing the velocity. The technique that generates the local wavefields
is by far the most widespread approach and this thesis focuses on this approach by using the integral
equation approach.

The integral equation formulation of full waveform inversion provides significant advantages over
other methods for target-oriented inversion since it allows the sensitivity matrix to be expressed
explicitly in terms of the Green’s functions. The distorted Born iterative T-matrix method was in-
troduced as a general FWI method by Jakobsen and Ursin (2015). They suggested that it could be
very suitable for time-lapse inversion, since the T-matrix approach is naturally target-oriented, in
the sense that the inversion can be focused on any target if the rest of the model is assumed known.

Target-oriented inversion is particularly appealing for time-lapse full waveform inversion. The rea-
son is that the effects of production on the reservoir changes are considered as small perturbations of



1.5 Seismic inversion 13

Figure 1.5: Schematic diagram of the double difference strategy.

the earth model (Kirchner and Shapiro, 2001), which is localized and only occur in a small region.
Thus starting from the baseline model for time-lapse inversion is a good candidate and can reduce
the computation cost. There are several attempts to focus the inversion on a small region. Borisov
et al. (2015) used the finite-difference injection method to develop an efficient 3-D time-lapse full
waveform inversion. Willemsen et al. (2016) derived a local solver for full waveform inversion of
a small region of interest. Malcolm and Willemsen (2016) have developed local solvers for local-
ized inversion. Broggini et al. (2017) derived the immersive boundary conditions for local wave-
field computations. Yuan et al. (2017) performed a localized waveform inversion time-lapse survey
by combining the wavefield injection and extrapolation. Unlike the methods above, we develop a
target-oriented waveform inversion scheme based on the distorted Born iterative T-matrix method
(Jakobsen and Ursin, 2015) and Gaussian beam based Green’s function (Cerveny, 2005; Huang
et al., 2016a,b; Huang and Greenhalgh, 2018; Huang and Sun, 2018; Huang et al., 2018; Huang,
2018). Figure 1.5 shows the scheme of the target-oriented inversion.

1.5.3 Anisotropic elastic full waveform inversion

Interest in anisotropic full waveform inversion has increased considerably within the FWI com-
munity in the past few years. Seismic anisotropy is particularly important to account for phase and
amplitude information related to different scales of heterogeneousmedia with fine layering (Backus,
1962), aligned fractures (Ali and Jakobsen, 2011; Huang and Greenhalgh, 2019) and aligned clay
minerals (Jakobsen and Johansen, 2000; Schoenberg and Sayers, 1995). Small scale heterogeneities
less than the smallest wavelength are responsible for the direction of wave propagation. In the pro-
cess of FWI, it is the variation in the velocity with respect to the direction of propagation (Virieux
and Operto, 2009; Lee et al., 2010; Plessix and Cao, 2011; Operto et al., 2013; Alkhalifah et al.,



1.5 Seismic inversion 14

Source Receiver

T-matrix

Gaussian beam

Target area

Figure 1.6: Target-oriented inversion.

2016), which leads to medium anisotropy, and contributes to short and long offset data (Plessix
and Cao, 2011). If anisotropy is not considered when present, then the traveltime is not calculated
accurately. This leads to inaccurate inversion.

Some recent effort has been focused on developing methods for anisotropic FWI but in different
ways. The most widely used method includes anisotropy in the forward modeling that accounts for
the kinematics in FWI with the acoustic approximation (Plessix and Cao, 2011; Silva et al., 2016;
Gholami et al., 2013; Alkhalifah and Plessix, 2014). This is because performing anisotropic elastic
FWI is still very challenging, especially for 3-D cases. This type of approach requires that the S-
waves are viewed as artifacts and the S-wave velocity is zero. However, in real wave physics of
anisotropic elastic media, the acoustic approximation is inapplicable. The use of both anisotropic
and elastic FWI methods, in which both elasticity and anisotropy are considered (Burridge et al.,
1998; Lee et al., 2010; Köhn et al., 2015; Kamath and Tsvankin, 2016; Oh and Alkhalifah, 2016; He
and Plessix, 2017; Oh and Alkhalifah, 2018; Jakobsen et al., 2019), mitigates the need to address the
real earth. However, it is well known that increase in the number of parameters will further make the
non-linear inversion approach more complicated (Tarantola, 1986; Brossier et al., 2009), which is
referred to as multiparameter trade-off or crosstalk problem. Also, the lack of low frequencies, the
inaccuracy of initial velocity models and noise (Operto et al., 2013) will increase the uncertainty of
inversion. Different approaches have been devised for addressing the trade-off problems, but very
few researchers have taken a quantitative way to the trade-offs.

1.5.4 Uncertainty quantification

Uncertainty quantification of seismic images is a key component for merging of seismic and pro-
duction data in the seismic history matching of reservoir models. Because of this, quantifying the
uncertainty of inversion results has become increasingly important for the industry (Gouveia and
Scales, 1998; Chen et al., 2007; Landrø, 2002; Martin et al., 2012). The quantification of uncertain-
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ties in time-lapse seismic data is highly non-trivial, since the so-called seismic data are often the
result of a complicated seismic processing or inversion task. Utilizing time-lapse seismic data for
updating reservoir models has been done at different levels. In most cases, inverted elastic prop-
erties or changes in the elastic properties (e.g., acoustic impedance, S-wave impedance, Poisson’s
ratio) are used as data for history matching (Eikrem et al., 2016). In some cases, a further inver-
sion step is done and the data for history matching are in forms of pressure and saturation changes,
or saturation fronts or changes in fluid contacts. Another alternative is to use seismic amplitudes
and/or time-shifts as data. Some attempts have been made to compare results of using different data
types, but the conclusions seem to be largely case dependent. In any case, we think that the use of
full waveform inversion methods can help us to obtain a better understanding of the propagation of
uncertainties along the seismic processing chain (Eikrem et al., 2016).

Full waveform inversion has emerged as a very promising method for obtaining images of the seis-
mic or elastic parameters of the underground (Abubakar et al., 2003; Virieux and Operto, 2009;
Tao and Sen, 2013; Asnaashari et al., 2014). Because the FWI method makes use of the full wave-
forms and not only the travel times and amplitudes, the FWI method is expected to result in images
of the seismic or elastic parameters of the underground which are of higher quality and resolution
than traditional travel time and seismic amplitude versus offset (AVO) inversion (Buland and Omre,
2003; Virieux and Operto, 2009; Jakobsen and Ursin, 2015). However, uncertainties arise in practi-
cal applications. On the one hand, the full waveform inversion is affected by different factors, such
as noisy seismic data, nonlinear forward modeling and inaccurate initial model. These factors con-
tribute to the uncertainty of inversion. Thus, uncertainty quantification of velocity fields is clearly
essential for interpreting inverted subsurface models. On the other hand, it is necessary for making a
more justifiable and reliable conclusion on identifying pockets of oil and gas to quantify the model
uncertainties. To our best knowledge, only few reports have been given on uncertainty quantifica-
tion in the context of full waveform inversion approach. It is generally assumed that a deterministic
model can be obtained by the full waveform inversion. Such a method can be used to estimate the
velocity uncertainties by finding statistical solutions for the unknown model parameters (Tarantola
and Valette, 1982a; Tarantola, 2005).

Bayesian inference, which allows accounting for uncertainties, provides a systematic framework for
obtaining probabilistic solutions of geophysical inverse problems. A prior probability distribution
of the model parameters, such as velocity, density, has to be given to find the posterior probability
distribution of the subsurface model parameters. In this procedure, a prior density P (m) is chosen
for the model parameterm. A likelihoodP (d | m) needs also to be given for the model parameterm
and observation data d. Based on the Bayes’ theorem, themathematical formulation for the posterior
distribution can be expressed as (Tarantola, 2005)

P (m | d) = P (d | m)P (m)∫
P (d | m)P (m) dm , (1.20)

where
∫
P (d | m)P (m) dm is the evidence.

A critical aspect of the Bayesian inversion is the calculation of the posterior covariance matrix. Ac-
tually, when obtaining the global minimum solution of an optimization problem, the inverse Hessian
matrix can be viewed as the posterior covariance matrix (Tarantola, 2005). Several approaches to
analyze the uncertainties based on analyzing the Hessian matrix or utilizing an approximate Hessian
have been given (Liu et al., 2019; Liu and Peter, 2019). Fichtner and Trampert (2011a,b) showed the
relation between the posterior covariance, the Hessian and the resolution matrix of seismic inver-
sion. Fichtner and Leeuwen (2015) then applied Bayesian inference to seismic tomography using
stochastic probing of the Hessian or resolution operators. The application of the Markov chain
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Monte Carlo (MCMC) method to seismic inversion problems in the framework of Bayesian infer-
ence was reported (Martin et al., 2012). Bui-Thanh et al. (2013) and Petra et al. (2014) estimated
the uncertainty for solutions of linearized infinite-dimensional statistical inverse problems. For a
detained review of uncertainty assessment in seismic tomography problems, see Rawlinson et al.
(2014). Zhu et al. (2016) also successfully applied full waveform inversion to uncertainty estimation
by using a point spread function method and a priori information from depth migration. Compared
to the deterministic inversion, the Bayesian inversion is computationally more involved as there is
some extra computational cost for the covariance matrix.

We turn now to the situation where full waveform inversion has been recently used to estimate
velocity uncertainties in the Bayesian framework. In this case, the formulations in Bayesian full
waveform inversion are different from that in the classic deterministic full waveform inversion.
Several publications on this topic are from different prospectives. Aleardi and Mazzotti (2017) de-
veloped a hybrid method that combines the genetic algorithm and a Gibbs sampler to estimate the
posterior probability distributions. An approach to recover the Bayesian posterior model probabil-
ity density function of subsurface elastic parameters and further effort to mitigate the problem of
data uncertainty are presented (Ray et al., 2016, 2017). The Reversible Jump Hamiltonian Monte
Carlo (Ray et al., 2016) was successfully applied to uncertainty quantification and some results on
the Marmousi model were shown (Biswas and Sen, 2017). Fang et al. (2018) presented a method
for uncertainty quantification with weak partial-differential-equation constraints. Also, uncertainty
assessment in velocity models and images can be found in Ely et al. (2018). Recently, Thurin et al.
(2017) made significant progress on the original application of the ensemble-based Kalman filter
method to full waveform inversion and demonstrated impressive results on uncertainty estimation
with the Marmousi model. Eikrem et al. (2019) developed a method with the iterated extended
Kalman filter method for time-lapse seismic full-waveform inversion. In any case, to the best of
our knowledge, there is no report in the literature that gives an uncertainty quantification of in-
verted velocities in anisotropic elastic media by means of full waveform inversion.

1.6 Thesis contributions and overview

The first goal of this thesis is to develop seismic forward modeling methods for strongly scattering
and strongly anisotropic media. The second goal of the thesis is to develop efficient methods for
time-lapse full waveform inversion. Another goal is to estimate the uncertainty and multiparameter
trade-offs in anisotropic elastic full waveform inversion.

The first contribution in papers 1 and 2 is extending the convergent Born series approach to seis-
mic forward scattering problems for strongly scattering media and developing the homotopy Born
series using homotopy analysis method that is guaranteed to converge independent of the contrast
and comparing them with the full integral equation method. The convergent Born series is obtained
by localizing the Green’s function with a damping factor and adding a preconditioner. From the
technical point of view, the convergent Born series removes the divergence by localizing the wave-
fields and controlling convergence using a preconditioner, which is like a renormalization process.
A physical interpretation of the convergent Born series from the physical renormalization prospec-
tive is given. Using several examples of numerical results for frequency-domain wavefields, this
study shows that the convergent Born series can produce the same results for wavefields as the full
integral equation method in strongly scattering media. Also, we use the homotopy analysis method
(HAM) to derive a general scattering series solution of the Lippmann-Schwinger equation which
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is guaranteed to converge, independent of the scattering potential. We found that the conventional
Born series and the convergent Born series are special cases of the new scattering series based on
HAM.

The second contribution in paper 3 is establishing the fundamental theory of the linear partial differ-
ential equations for solving the VTI and TTI eikonal equations and developing traveltime approxi-
mations for strongly anisotropic media. By applying the homotopy analysis method to anisotropic
eikonal equations, this study extends the HAM to geophysical problems for strongly anisotropic
media. They open up new approaches for applications of the homotopy analysis method to geo-
physical problems. The extension leads to a broader application of the derived formulations to the
strongly anisotropic media and helps improve the accuracy of traveltime approximations.

Next, in paper 4, we develop an efficient target-oriented inversion method for time-lapse full wave-
form inversion by combining the T-matrix approach of the integral equation with the Gaussian beam
Green’s functions. The key idea is to perform local inversion for a small region which reduces the
computational cost significantly. The inversion scheme with different degrees of noisy data is ex-
amined. We compare two time-lapse inversion strategies, called the double difference strategy and
the sequential strategy and show the double different strategy has advantages over the sequential
difference strategy.

Another contribution in paper 5 is a Bayesian framework for full waveform inversion in anisotropic
elastic media for uncertainty quantification using the iterated extended Kalman filter. This study ap-
plies the Bayesian inference to the earlier elastodynamic generalization of the distorted Born itera-
tive T-matrix method for anisotropic elastic full waveform inversion, which is based on the integral
equation method. By employing the iterated extended Kalman filter in the Bayesian framework, the
uncertainty characteristics can be exploited simultaneously with the velocity model building. We
also explore the multiparameter trade-off analysis.

Appendix A includes a SEG abstract. This abstract presents a comparison of two scattering series,
referred to as convergent Born series (CBS) and renormalized Born series (RBS) using the renor-
malization group theory (Jakobsen et al., 2018, 2020), for frequency-domain seismic modeling in
strong scattering media. The results from both the CBS and RG theory can agree with the reference
full integral method. We conclude that from the specific model in this abstract, the CBS converges
faster. Currently, the convergence speed of the scattering series using RG theory has been improved
significantly.



Chapter 2

Conclusions and future perspectives

In papers 1 and 2, this thesis extended the convergent Born scattering series to seismic modeling for
strongly scattering media and derived the homotopy Born scattering series by employing the homo-
topy analysis method. This thesis analyzed the convergence properties of both the scattering series
by comparing them with the full integral equation. This analysis builds a connection between the
convergent Born series and conventional Born series. The investigation establishes the theoretical
foundation of convergent Born series for inverse scattering problems in strongly scattering media.

In paper 3, the thesis derived the linear differential equation system that retrieves the eikonal equa-
tions for VTI and TTI media and the traveltime approximations. This methodology first transforms
the strongly nonlinear eikonal equation in strongly anisotropic media into a linear differential equa-
tion system by employing the homotopy analysis method, then uses the zero-order deformation
equation and Taylor’s series expansion to construct the traveltime approximations. This thesis tested
the method using synthetic models and showed that the formulations have advantages over the tra-
ditional perturbation theory.

In paper 4, this thesis presented a methodology for target-oriented inversion of time-lapse seismic
waveform data. This method obviates the need to repeat the full model inversion for monitor surveys
in time-lapse seismic inversion. The integral equation method with the T-matrix and the asymptotic
Green’s function with Gaussian beams were applied to construct the local wavefields in the region
of interest. This thesis showed that inversion with the target-oriented scheme significantly reduces
the computational cost. This thesis discussed two strategies for time-lapse inversion.

In paper 5, this thesis developed a Bayesian full waveform inversion method for inverting the stiff-
ness parameters and estimating the uncertainty in anisotropic elastic media. The integral equations
based on the nonlinear inverse scattering theory are used to construct the explicit sensitivity matrix
in terms of Green’s functions. The iterated extended Kalman filter is used to solve the Bayesian
inversion problem. The FWI is performed in frequency domain and the sequential strategy is used
for the data assimilation process.

The renormalized and homotopy scattering series developed in this thesis and in recent work (Jakob-
sen et al., 2020) can be generalized to anisotropic elastic media, since the corresponding wave
equation can also be transformed into an integral equation of the Lippmann-Schwinger type. Hav-
ing developed a convergent forward scattering series, the next step could be to apply this series
in the context of inverse scattering theory. In principle, it can be extended to inverse scattering
problems using the renormalized and homotopy scattering series. In theory, one can also use the
wavefields produced by the scattering series for inversion. Weglein et al. (2003) have pioneered in-
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verse acoustic scattering methods that do not require an assumed propagation velocity model within
the medium. Their approach is based on the Born series solution of the Lippmann-Schwinger equa-
tion and a concomitant expansion of the interaction in orders of the data. In principle, the method is
completely general and requires no prior information about the target or the propagation details of
the probe signal within the target. The only fundamental limitation of the approach appears to the
convergence of the conventional Born series. Potential extension of convergent inverse scattering
series using the HAM scattering series to inverse scattering problem is also interesting. However,
it is not obvious that the inverse scattering series will converge even though the forward scattering
series is convergent.

There is another approach to inverse scattering theories in strongly scattering media, referred to as
Gel’fand-Levitan-Marchenko theory in addition to the renormalization scattering theory. Gel’fand-
Levitan-Marchenko theory provides an exact solution of the 1-D Schrodinger equation, which can
be transformed into the acoustic wave equation in the 1-D case. The Gel’fand-Levitan-Marchenko
(GLM) equation has long been used in the mathematical physics community as a basis for solving
inverse scattering problems (Ware and Aki, 1969; Burridge, 1980; Coen, 1981; Wu and He, 2019).
This Gel’fand-Levitan-Marchenko equation, which relates the reflection response measured on one
side to wavefields inside the medium, provides exact solutions of the Schrodinger equations. The
methodmay be called exact since in principle, the inversionmethod is not approximate. Recent stud-
ies have shown that the GLM method provide superior capability for inverse scattering problems
compared to the optimization method. This is mainly due to the fact that this method can address
multiple reflections, which is particularly important in reflection seismology. Multiple reflections
are often caused by a strong scattering region, e. g. salt bodies, and they can have a strong influence
on seismic inversion. The GLM method, however, is restricted to the one dimensional case in the
context of one side reflection seismology. An attempt to generalize the Marchenko equation to 3D,
which is the so-called Newton-Marchenko (NM) equation has been done but this 3D inverse scatter-
ing based on the NM equation requires omnidirectional reflection and transmission measurements.
Hence, despite the fact that the NM equation is very useful for this class of inverse problems, it is
not applicable to single-sided reflection seismology. One of the main physical requirements is the
transformation of the acoustic wave equation into the 3-D Schrodinger type equation althoughWare
and Aki (1969) used the Liouville transformation to transform the acoustic wave equation into a
Schrodinger equation in the 1-D case (Wu and He, 2019). Wapenaar et al. (2013) have pioneered the
focusing scheme for 3-D inverse scattering problems that only requires the direct wave and reflec-
tion response in one sided observations. This focusing scheme is based on the one of Broggini and
Snieder (2012), and Wapenaar et al. (2013) is an extension of the theory of Rose (2001, 2002) who
uses an iterative scheme to solve the Marchenko equation for 1-D wavefield focusing. Extension
of the focusing scheme leads to an iterative scheme to calculate the focused events in the wave-
field for the virtual source consisted of primaries and internal multiples (Wapenaar et al., 2014).
The focusing method derived by Rose (2001, 2002) for single-sided illumination with sources and
receivers on one side of the medium was successfully applied to the seismic imaging problem. The
only fundamental limitation of the approach is that to construct the focusing functions for wavefield
focusing, a smooth velocity model is required, which is impossible to obtain in the inverse scatter-
ing problem for velocity reconstruction. Developing inverse scattering theory in this direction is the
next goal.

Recent work shows that introducing an approximate inverse of the Born modelling operator, into
the objective function can help reduce the artifacts in the full waveform inversion. In theory, this
operator tends asymptotically towards the identity matrix. As a result of the introduction of the
operator, the artifacts generated by second order scattering and the trade-off can be reduced. As a
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modification of this approach, one can use the asymptotic methods developed in this thesis, which
account for multi-arrivals in strongly anisotropic media, to replace the migration operator in the
framework of the inversion and apply it to full waveform inversion.

The Bayesian full waveform inversion can be used for resolution analysis. Resolution quantification
in Bayesian full waveform inversion is important for interpretation of the inversion results. There
is still an important need for further development of methods due to the following factors: (1) The
linearization approximation in the FWI is not applicable to the nonlinear data set with the real Earth.
(2) The sensitivity matrix is not computed explicitly in FWI, which presents the local analysis for
resolution quantification (Fichtner and Trampert, 2011b). (3) Recently probabilistic methods are not
applicable to large scale FWI problem. The key point to resolution analysis is the Hessian matrix as
the inverse Hessian operator is equivalent to the posterior covariance of the minimization problem
when the solution is close to the global minimum. Recent approaches rely on parameterized or low-
rank approximations of the Hessian operator. Application of the exact Hessian matrix based on the
scattering integral method in terms of explicit Green’s functions to Bayesian FWI can overcome
the linear approximation. From the scattering prospective, the exact Hessian can account for the
second order scattering effects.
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Abstract
Scattering theory is the basis for various seismic modeling and inversion methods.
Conventionally, the Born series suffers from an assumption of a weak scattering and may face a
convergence problem. We present an application of a modified Born series, referred to as the
convergent Born series (CBS), to frequency-domain seismic wave modeling. The
renormalization interpretation of the CBS from the renormalization group prospective is
described. Further, we present comparisons of frequency-domain wavefields using the reference
full integral equation method with that using the convergent Born series, proving that both of the
convergent Born series can converge absolutely in strongly scattering media. Another attractive
feature is that the Fast Fourier Transform is employed for efficient implementations of
matrix–vector multiplication, which is practical for large-scale seismic problems. By comparing it
with the full integral equation method, we have verified that the CBS can provide reliable and
accurate results in strongly scattering media.

Keywords: seismic modeling, integral equation, wave scattering, renormalization theory

1. Introduction

The integral equation (IE) method based scattering theory
(Aki & Richards 1980; Zhdanov 2002) is a powerful tool in
themodeling of wave propagation, which has a wide applica-
tion in data processing (Weglein et al. 1997, 2003),modeling
(Innanen 2009), and seismic inversion (Wu & Zheng 2014;
Snieder 1990; Berkhout 2012; Zhang & Weglein 2009;
Alkhalifah & Wu 2016; Alkhalifah 2016; Wu & Alkhalifah
2017; Huang et al. 2019). An attractive features of the IE
method is that only the anomalous volume (scattering vol-
ume) needs to be discretized, which leads to more efficient
computation (Malovichko et al. 2017). The implementation
of the IE method involves dividing the medium into back-
ground and anomalous parts (Zuberi & Alkhalifah 2014).

TheBorn series has an assumptionofweak scattering (Wu
& Toksoz 1987; Kouri & Vijay 2003). Convergence issues
may occur in strongly scattering areas, such as salt structures.
It is important for seismic imaging in such strong-contrast
regions to address the weak-scattering assumption. One im-
portant approach that addresses the divergence problem is
to renormalize the Born series using various renormalization
approaches (Eftekhar et al. 2018).

There are several approaches to develop a convergent scat-
tering series. There have been successful attempts to intro-
duce the DeWolf approximation (DeWolf 1971, 1985) into
seismic scattering series (Wu&Huang 1995).The renormal-
ized scattering series is derived by Jakobsen & Wu (2016)
using the T-matrix and De Wolf series. The T-matrix is a

©The Author(s) 2019. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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Figure 1. The two-layered and background models. The size of the model is 1280m× 1280m.

transition operator that includes all the effects of multiple
scattering. Renormalization group method has been applied
to seismic waveform inversion (Wu et al. 2015) and en-
velope inversion (Wu et al. 2016). Signicant progress has
been made by Yao et al. (2015) by dividing the renormal-
ized Lippmann–Schwinger equation into two sub-Volterra
type integral equations and introducingwavefield separation.
Recently, by employing the renormalization group (RG)
theory, we developed a renormalized version of the Born
series. Numerical tests showed that this solution can be
convergent for large-contrast media ( Jakobsen et al. 2018).
Our renormalization group approach is based on the use
of an auxillary set of scale-dependent scattering potentials,
which gradually evolves toward the real physical scattering
potential.

Another interesting convergent Born series (CBS) was
proposedbyOsnabrugge et al. (2016) to solve theHelmholtz
equation. The convergent Born series can guarantee conver-
gence by localizing the wavefields, in which the contracted
preconditioner must be specified. Actually, the CBS can
be understood as a kind of renormalized Born series based
on the RG theory. In the early 1970s, the renormalization
procedure was proposed by Gell-Mann & Low (1954) for
problems of infinity and divergence. From the early 1970s
(Wilson 1971), RG theory has been widely used to remove
divergence in quantumphysics, critical phenomena, dynami-
cal systems and statisticalmechanics, etc. Themajor purpose
of the RG theory is to obtain stable properties of physical
systems (Goldenfeld 1992). Based on the above fact, Chen
et al. (1994, 1996) applied the RG approach to deriving

global asymptotic solutions of differential equations. Since
then, the RG theory has been well developed and significant
progress in renormalizing perturbation series (Yakhot &
Orszag 1986; Pelissetto & Vicari 2002; Delamotte 2004;
Kirkinis 2008, 2012) has been made.

The purpose of this paper is to extend the CBS of
Osnabrugge et al. (2016) to seismic scattering problems for
strongly scattering media and compare the CBS with the full
integral equation method. The convergent Born series is ob-
tained by localizing the Green’s function with a dampling
factor. From the technical point of view, the CBS removes
the divergence by localizing the wavefields and controlling
convergence using a preconditioner. Thus, the CBS can be
understood as a kind of renormalized Born series. After
presenting the convergent Born series, we analyze the the-
oretical background of the convergent Born series from the
renormalization group theory prospective and its nature of
localization. Then, we give numerical results of frequency-
domainwavefields. To quantatively compare the results from
the CBS and full integral equation methods, we present nu-
merical results for results of pressure wavefields in strongly
scattering media.

2. Integral equations for the seismic scattering problem

2.1. The Lippmann–Schwinger equation

The Helmholtz equation can be written as (Morse &
Feshback 1953):

∇2
𝜓 (r) + k2𝜓 (r) = −s(r), (1)
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Figure 2. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the two-layer model using the IE method.

with the wavenumber k and source signal s(r), where ∇ is
the second-order differentiation. Defining𝜓b(r) as the back-
ground field,

∇2
𝜓b (r) + k2b𝜓b (r) = −s(r), (2)

where kb is the backgroundwavenumber. The total wavefield
𝜓 (r) can expressed as

𝜓 (r) = 𝜓b (r) + 𝜓s (r), (3)

where ks is the scatteredwavenumber and ks = k− kb. Substi-
tuting equation (3) into (1), we have the following equation
for the scattered wavefields𝜓 s(r):

−∇2
𝜓s (r) − k2b𝜓s (r) = k2s (r) (𝜓b (r) + 𝜓s (r)) . (4)

From equations (2) and (4), we get the scattered wavefields
𝜓 s(r)

𝜓s (r) = k2b ∫D
Gb (r, r

′)𝜒 (r′)𝜓 (r′) d3r′ (5)

with

𝜒 (r′) =
k2 − k2b
k2b

, (6)

where the background Green’s function Gb can also be cal-
culated with analytical expressions for homogeneous media,
and the ray theory (Cerveny 2005; Huang & Greenhalgh
2019), Gaussian beam (Huang et al. 2016a, b, 2018; Huang
2018) or finite difference method (Carcione 2007) for in-
homogeneous media. Finally, we can get the Lippmann–
Schwinger equation:

𝜓 (r) = 𝜓b (r) + k2b ∫D
Gb (r, r

′)𝜒 (r′)𝜓 (r′) d3r′.

(7)

2.2. The conventional Born series

Equation (7) has the formal solution as

𝜓 (r, k) = 𝜓b (r, k)
(
1 − k2b ∫D

Gb (r, r
′, k)𝜒 (r′) d3r′

)−1

.

(8)
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Figure 3. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the two-layered model using the CBSmethod.

This equation can be solved iteratively:

𝜓(rg , rs, k) = 𝜓b(rg , rs, kb)

+ k2b ∫D
Gb(rg , r

′)𝜒 (r′)𝜓b (r
′, rs) dr

′

+ k4b ∫D
dr′Gb(rg , r

′)𝜒 (r′)∫D
dr′′

×Gb (r
′, r′′)𝜒 (r′′)𝜓b (r

′′, rs) + ⋅ ⋅ ⋅ (9)

After taking the first-order term of the conventional Born se-
ries, we have the Born approximation:

𝜓(rg , rs, k) = 𝜓b(rg , rs, k)

+ k2b ∫D
Gb(rg , r

′, k)𝜒(r′)𝜓b(r
′, rs, k)dr

′
. (10)

TheBorn series is thebasis for seismic forward and inverse
problems. However, because the Born series assumes weak
scattering, it can only converge when the scattering potential
is weak (Kirkinis 2008;Wu et al. 2007). For real applications,

the strength of the contrast in themedium is relatively strong.
Divergence may occur in media with strong contrasts.

2.3. Convergent Born series

This section revisits the equations for the CBS (Osnabrugge
et al. 2016). Equations are presented for an arbitrary strong
medium. The convergent Born series refers to the situation
in which the value of the coefficient of each iteration term is
less than unity. The key point formodification of the conven-
tionalBorn series is to introduce adampingparameter 𝜖 anda
preconditioner 𝛾 . Here, we review the derivation of the CBS.
To this end, we start with the conventional Born series and
apply the preconditioner to both sides of the conventional
Born series. It should be noted that the damping parameter
𝜖, which is related to the attenuation of the wavefields in the
background medium, is also important for the convergence.

In operator form, the Born series (9) can be written as
follows:

𝜓 = G𝜒𝜓 + GS, (11)
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Figure 4. (a) Resampled version of the SEG/EAGE salt model and (b) background model.

where S is the source term, which represents the source
wavelet in frequency-space domain, andG is the Green’s op-
erator, which represents the Green’s function Gb in equa-
tion (9). Note that S and 𝜓 are vectors, and G is dense op-
erator filled with various Green’s functions. 𝜒 is a diagonal
matrix. By applying a preconditioner 𝛾 to both sides of equa-
tion (11), Osnabrugge et al. (2016) obtained

𝛾𝜓 = 𝛾G𝜒𝜓 + 𝛾GS. (12)

Then, we reformulate equation (12) as

𝜓 = Λ𝜓 + 𝛾GS, (13)

with

Λ = 𝛾G𝜒 − 𝛾 + 1, (14)

where

𝛾 (r) = i
𝜖
𝜒 (r) . (15)

The combination of the parameters 𝛾 and 𝜖 can ensure that
the largest eigenvalue of Λ is smaller than unity. The details
of choice of parameter 𝜖 will be discussed in the section Im-
plementation. The modified Born series is explained by the
following renormalized Born series:

𝜓 =
(
1 + Λ + Λ2 + Λ3 +⋯

)
𝛾GS. (16)

The iteration form solution is𝜓 =Λ𝜓 + 𝛾GSwith the initial
solution𝜓b= 𝛾GS. The backgroundGreen’s function can be

written as (Osnabrugge et al. 2016)

Gb (k) =
1|k|2−k2b−i𝜖 , (17)

and in the real-space domain (Osnabrugge et al. 2016)

Gb =
e
i|r|√k2b+i𝜖

4𝜋|r| , (18)

where k is the wavenumber vector in the real medium.
Because of the introduction of the coefficient of each

iteration term Λ and preconditioner 𝛾 into the Born series,
the modified Born series is convergent. Mathematically,
Osnabrugge et al. (2016) demonstrated that the modified
Born series can converge by combining the two parameters
and given the suggestions of choice of the parameters in the
optimum scale.

Here, we aim to apply the CBS method to seismic wave
modeling problems and provide the renormalization in-
terpretation of the convergent Born series. Due the strong
contrast in the seismic problems, it is more challenging. We
perform numerical tests and investigate how to choose the
coefficient Λ and preconditioner 𝛾 for each iteration term,
and the dependence on the parameter 𝜖. We will look at how
the parameter 𝜖 changes for different models with different
strong scattering cases.
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Figure 5. Frequency-domain wavefields for the frequency of (a) 10Hz and (b) 15Hz for the SEG/EAGE salt model using the full integral equation
method.

3. Interpretation of the convergent Born series

In this section, we discuss the convergent Born series from
the renormalization perspective.

3.1. Step-by-step local interaction

The modified version of the Born series developed by
Osnabrugge et al. (2016) is called the convergentBorn series.
In thismodifiedBorn series, a preconditioner𝛾 is introduced.
By combining the preconditioner 𝛾 and parameter 𝜖, the iter-
ation computation satisfies the convergence condition of the
Born series.

Actually, the concepts of the locality of wavefields explain
how step-by-step propagators prevent the CBS from diver-
gence. From equation (13), we can see that for the conven-
tional Born series, each term involves integrations over the
whole volume, which leads to the divergence problems of

strongly scattering medium. The CBS makes the total en-
ergy in the background medium localized and finite so the
volume integral in each term will not blow up. It compen-
sates the damped wavefield by introducing an imaginary part
with an opposite sign into the scattering potential V. This
means that in the latter procedure the wavefield will grow
when interacting with the scattering potential, and therefore
compensate the energy loss during propagation in the back-
groundmedium. In this way, those interactions always act lo-
cally, and thus can be regarded as short-range interactions.
The iterations will continue until the wavefields cover the
whole region with accepted accuracy. Physically, this can be
explained as the renormalization process. According to Wil-
son’s RG theory, one can first integrate out the local interac-
tions and then derive the effective action operator, and then
go to the next level to calculate the local interactions based on
the effective interaction operator. The RG procedure in CBS
is more like the mathematician’s renormalization procedure

6

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/advance-article-abstract/doi/10.1093/jge/gxz105/5678615 by C

olum
bia U

niversity,  Xingguo.H
uang@

uib.no on 16 D
ecem

ber 2019



Journal of Geophysics and Engineering (2019) 00, 1–22 Huang et al.

Born series solution: real(G)

200 600 1000

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-15

-10

-5

0

5

10

15

Born series solution: imag(G)

200 600 1000

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-15

-10

-5

0

5

10

15

20

(a)

Born series solution: real(G)

200 600 1000

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-1

-0.5

0

0.5

1

106 Born series solution: imag(G)

200 600 1000

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-1

-0.5

0

0.5

1

106

(b)

Born series solution: real(G)

200 400 600 800 1000 1200

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-1.5

-1

-0.5

0

0.5

1

1.5

1023 Born series solution: imag(G)

200 400 600 800 1000 1200

Width (m)

200

400

600

800

1000

1200

De
pt

h 
(m

)

-1.5

-1

-0.5

0

0.5

1

1.5

1023

(c)

Born series solution: real(G)

200 400 600 800 10001200

Width (m)

200

400

600

800

1000

1200

D
ep

th
 (m

)

-3

-2

-1

0

1

2

3

4

1029 Born series solution: imag(G)

200 400 600 800 10001200

Width (m)

200

400

600

800

1000

1200

D
ep

th
 (m

)

-3

-2

-1

0

1

2

3

1029

(d)

Figure 6. Frequency-domain wavefields with the frequency of 10Hz for the SEG/EAGE salt model using the BSmethodwith (a) 20, (b) 50, (c) 80 and
(d) 100 iterations.
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Convergent Born series: real(G)
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Figure 7. Frequency-domain wavefields with the frequency of 10Hz for the SEG/EAGE salt model using the CBS method with (a) 20, (b) 50, (c) 80
and (d) 100 iterations.
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Figure 8. Frequency-domain wavefields with the frequency of 15Hz for the SEG/EAGE salt model using the CBS method with (a) 20, (b) 50, (c) 80
and (d) 100 iterations.
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Figure 9. Convergence property of the CBS for the (a) 10Hz and (b) 15Hz simulations of the two-layer model.

(Chen et al. 1996) using RG theory as a floating initial condi-
tion. At each step, the calculated field is treated as a new ini-
tial wavefield for further propagation. This is different from
Wilson’s multi-scale RG procedure.

4. Implementation

In this section, we give the coordinate representation for the
CBS. The advantage of this representation is that it is easy
to relate two adjacent scattering potentials. Using the coor-
dinate representation, equation (13) can be rewritten as

𝜓 (r) = 𝛾 (r) G (r) S + Λ (r, r′)𝜓 (r). (19)

The entire model is discretized into Nx × Nz in the two-
dimensional case. Then, we have

𝜓m,n (r) = 𝛾 (r) Gm,n (r) S +
Nx∑
m=1

Nz∑
n=1

Λm,n (r, r
′)𝜓m,n (r),

(20)
where i= 1,…,Nx and j= 1,…,Nz.

It should be noted that, to compute the wavefields at
the receivers along the surface, we need to compute the
wavefields from the sources to any subsurface point and the
background Green’s functions from receivers to any subsur-
face point. For computing the wavefields at any subsurface
point, we need compute the wavefields in the background
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mediumand theGreen’s functions fromany subsurface point
to any subsurface point (the Green’s function from volume
to volume GVV). Then we need compute Λ, which is used
for the high-order terms of the CBS. The workflow for im-
plementing the renormalized Born series can be found in
Algorithm 1.

Algorithm 1 Pseudo code for renormalized Born series
1: Initialisation: frequency, maximum iteration num-

berNmax and the parameter 𝜖
2: m = truemodel,m0 = backgroundmodel;
3: for n = 0 to n = Nmax do
4: 𝜒 = k2 − k20 − i𝜖

5: kb =
√

k20 + i𝜖
6: n = n + 1
7: if n == 0 then
8: G(b)

VV = Green(VV, kb)
9: G(b)

VS = Green(VS, kb)
10: G(b)

VR = Green(VR, kb)
11: 𝜓 (b) = GS
12: end
13: 𝛾 (r) = i

𝜖
𝜒 (r)

14: Λ = 𝛾GVV𝜒 − 𝛾 + 1
15: 𝜓 = Λ𝜓 + 𝛾GVSS
16: dr=Error (𝜓CBS,𝜓FullIntegral)
17: end for

5. Choice of parameter 𝝐 in the scale of seismic
modeling

An important issue for the CBS is to choose the parameter
𝜖. From the analysis in the above section, it can be found
that the stronger the scatters (large-contrast), the higher the
required parameter 𝜖. This is because to eliminate the di-
vergence the wavefields should be strongly localized. From
equation (19), one can see that the higher the parameter 𝜖,
the stronger the attenuation of the backgroundGreen’s func-
tions. Thismeans that there is a compromise between the de-
mand on the convergence of the CBS and the computational
cost. After conducting numerical tests, we find that the pa-
rameter 𝜖 should be chosen as follows:

𝜖 = 0.1 ×max|k2 − k2b| if f < 3, (21)

and

𝜖 = max|k2 − k2b| if f > 3. (22)

After investigating the convergence of the convergent
Born series, Fast-Fourier Transform (FFT) is used, which
can accelerate the computation in the implementation. Fol-
lowing Osnabrugge et al. (2016), we employ the FFT tech-
nique for an efficient matrix-free implementation. The FFT

method has been used for integral equation modeling (Liu
et al. 2001; Gao & Torres-Verdin 2006). The matrix–vector
multiplications can be expressed as

G𝜒 = −1 [ [G] [𝜒]], (23)

where  is the forward 2D FFT operator and −1 is the in-
verse 2DFFToperator. It should be noted that the product is
performed in the size of 2Nx× 2Nz. The computational com-
plexity isO[NxNzlog(NxNz)] and thememory complexity is
O[NxNz].

6. Synthetic results

6.1. Comparison of frequency-domain wavefields

In this section, we share the frequency-domain wave-
fields for different models, including two-layers and the
SEG/EAGE salt models as well as, compare the conver-
gence property of the CBS by calculating the normalized
errors and share the pressure response along receiver line
for different iterations. To demonstrate the accuracy of
the CBS, we compare it with the full integral equation
method (Jakobsen & Wu 2016). We have used homoge-
neous background media in the tests and the velocity is
2000m s−1.

We first compare the renormalized Born series against the
T-matrix method in an acoustic two-layer model (figure 1).
The model measures 1280m× 1280m with grid intervals
for the simulations of 10m× 10m.

Snapshots of frequency-domain wavefields computed
with the full integral equation method and the conver-
gent Born series are shown in figures 2 and 3, respec-
tively. In each figure, we show the wavefields of two
frequencies, 10Hz and 15Hz. From figures 2 and 3,
one can make the following observations: (1) the wave-
fields using all the methods display an obvious change
around the boundary; (2) the wavefields using the CBS
match well with those from the reference integral equation
method.

Figure 4 shows the resampled SEG/EAGE salt model for
this example.Themodel grid is 10m× 10m.Themodel rep-
resents a uniform mesh of 128× 128 nodes. We have per-
formed simulationsof frequency-domainwavefields inwhich
the frequencies of 10Hz and 15Hz are used. Figure 5 shows
the wavefields for 10Hz and 15Hz obtained by the refer-
ence integral equation method with 100 iterations. Figure 6
shows thewavefield snapshots for 10Hzobtainedby the con-
ventional Born series (BS) method with 20, 50, 80 and 100
iterations. Figures 7 and 8 show the wavefields at frequen-
cies 10Hz and 15Hz, respectively, obtained by the CBS
method with 20, 50 ,80 and 100 iterations. From figures
5, 7 and 8, one can observe that the results from the CBS
method have a good match with the results from full integral
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Figure 10. Convergence property of the CBS for (a) 10Hz and (b) 15Hz simulations of the SEG/EAGE salt model.

equation approach. All computations were performed on an
Intel i7-7700. The CPU of the computer is 3.60GHz with
RAM 64GB. The computational times of the full integral
equation and CBS for 100 iterations are 859 s and 492 s,
respectively.

6.2. Convergence property of the CBS

To investigate the convergence property of the CBS, we cal-
culate the normalized error. Figures 9 and 10 show the results
for the two-layered and the SEG/EAGE salt models, respec-
tively . The figures show that the CBS has a similar conver-
gence property in different models and frequencies, but the

error decreases in a different way. With the same iterations,
the error in the two-layeredmodel is smaller than those of the
SEG/EAGE salt model. From the figures, one can observe
that after around 100 iterations the error of the CBS is very
small. This suggests that the CBS can give a goodmatch with
the reference solution.

6.3. Frequency-domain wavefields with FFT

Because we use FFT in the implementation, some periodic
boundary condition problems may occur (Osnabrugge et al.
2016). To prevent the reflection from the boundaries, we
use an absorbing boundary condition in the implementation
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Figure 11. Frequency-domain wavefields for 10-Hz simulation of SEG/EAGEmodel using the CBS with FFT.

of the CBS. The absorbing boundary condition has been
used in the context of wave modeling by different authors.
More specifically, for the CBS, we use a width of absorbing
boundary layer with grids of 40× 40. Figure 11 shows the
frequency-domain wavefields of 10Hz using the CBS with
FFT. We have estimated the computational cost. The com-
putational times of the reference integral equation method
is 492 s. The computational time of the CBS with FFT
is 100 s.

6.4. Anomalous pressure response along receiver line

Wenow consider the same simulation as the SEG/EAGE salt
models but for the synthetic pressure response along the re-
ceiver line. This example is designed to test the accuracy of
the numerical scheme. Figure 12 shows the results for a two-
layered model, in which the frequencies of 10Hz and 15Hz
are used. Figures 13 and 14 show the pressure response in a
salt model using the BSmethod with the frequency of 10Hz
for different iterations. Figures 15 and 16 show the pressure
using the CBS method with the frequency of 10Hz for the
salt model. Figures 17 and 18 show the pressure using the
CBSmethod with the frequency of 15Hz for the salt model.
For all the tests, the point source is placed at the same posi-
tion. A receiver line is located at the surface. From figures 13
and 14, one can observe that the results from the BSmethod
do not agree with the pressure wavefields from the full inte-
gral equation method. From figures 15–18, we observe that
the pressure response using the CBS works very well com-
pared with the result using the reference integral equation
method.

7. Discussion

Before we discuss the convergence, computational com-
plexity and potential application of the CBS, we would

like to clarify that we have presented the theory and
performed the numerical tests in the frequency do-
main because scattering theory is naturally formulated
in the frequency domain and we do not have to gener-
ate time-domain waveforms to perform inversion in the
frequency domain. The main reason for using a homo-
geneous reference medium is that we want to use FFT,
which depends on the fact that the Greens function for
a homogeneous medium is directly related to the differ-
ence between x and x′. Another point is that the con-
trast is frequency-dependent. In our tests, we used dif-
ferent frequencies and investigated different choices of
parameter 𝜖.

The application of the BS to seismic forwardmodeling re-
quires small contrasts to achieve convergence. Here, by ap-
plying a preconditioner to the both sides of the BS and in-
troducing the parameter 𝜖 to the background Green’s func-
tion, the convergence of the BS is guaranteed. Figures 19
and 20 show the difference of frequency-domain wavefields
for SEG/EAGE salt model using full integral equation and
CBS methods. Osnabrugge et al. (2016) have already pro-
vided a general proof of convergence,wehaveusednumerical
examples to verify that the general proof holds for our spe-
cificmodels. However, for the case where the contrast is very
large, e.g. salt areas, more iterations are needed to achieve
convergence. This is also related to the choice of the param-
eter 𝜖. The stronger the scatters (large-contrast), the higher
the needed parameter 𝜖.

Compared to the conventional BS there is no additional
computational cost for each term in the real-space imple-
mentation. It should be noted that the accuracy of the
wavefields depend on the number of iteration. This is differ-
ent from the full IE method. One important thing we would
like to mention is that, due to the FFT implementation for
the CBS, the computational cost is reduced significantly.
The computational complexity for such an implementation
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Figure 12. Comparison of pressure records for the two-layer model using the CBS and full integral equationmethods with the frequencies of (a) 10Hz
and (b) 15Hz, respectively.

is O[NxNzlog(NxNz)] and the memory complexity is
O[NxNz]. Thus, the method can be in principle extended to
the 3-D case.

We have presented and tested a new forward scattering
series for seismic modeling. The method is suitable for

numerical simulation of strongly scattering medium. The
scattering series can be used for direct inverse scattering
problems. Future research can look into the application of
the CBS to the elastic case as well as in seismic inversion.
The CBS in this paper can be considered as a stepping
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Figure 13. Comparison of pressure records for the SEG/EAGE salt model using the BS and full integral equationmethods with the frequency of 10Hz
with a) 20, b) 50 iterations.

stone to developing modifications for one-way propagators.
Also, it can be used to establish the Frechet derivatives for
multi-scattering full waveform inversion (Alkhalifah & Wu
2016).

8. Conclusions

Seismic scattering theory is an effective method for seis-
mic wave modeling and is the basis of seismic inversion.
However, the Born series assumes weak scattering, which
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Figure 14. Comparison of pressure records for the SEG/EAGE salt model using the BS and full integral equationmethods with the frequency of 10Hz
with (a) 80 and (b) 100 iterations.

renders the modeling and the inversion divergent for strong
scattering media. We have presented the application of
the so-called convergent Born series to seismic modeling
problems. Numerical examples are presented, showing that,
because of the introduction of a preconditioner into the
traditional Born series, the Born series can be convergent for

arbitrarily strong contrastmedium.Compared to the integral
equation method, the computational cost of the convergent
Born series is cheaper, especially in the Fast Fourier Trans-
form implementation. This method should be suitable
for applications to inverse scattering and full waveform
inversion.
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Figure 15. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
10Hz with (a) 20 and (b) 50 iterations.
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Figure 16. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
10Hz with (a) 80, (b) 100 iterations.
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Figure 17. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
15Hz with (a) 20, (b) 50 iterations.
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Figure 18. Comparison of pressure records for the SEG/EAGE salt model using the CBS and full integral equation methods with the frequency of
15Hz with (a) 80 and (b) 100 iterations.
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Figure 19. Difference of wavefields of real (a) and imaginary (b) parts using the CBS and full integral equation methods with the frequency of 10Hz.
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Figure 20. Difference of wavefields of real (a) and imaginary (b) parts using the CBS and full integral equation methods with the frequency of 15Hz.
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Homotopy analysis of the Lippmann-Schwinger equation

for seismic wavefield modeling in strongly scattering media
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SUMMARY

We present an application of the homotopy analysis method for solving the integral equations of the

Lippmann-Schwinger type, which occurs frequently in acoustic and seismic scattering theory. In this method,

a series solution is created which is guaranteed to converge independent of the scattering potential. This

series solution differs from the conventional Born series because it contains two auxiliary parameters ε

and h and an operator H that can be selected freely in order to control the convergence properties of the

scattering series. The ε-parameter which controls the degree of dissipation in the reference medium (that

makes the wavefield updates localized in space) is known from the so-called convergent Born series theory;

but its use in conjunction with the homotopy analysis method represents a novel feature of this work. By

using H = I (where I is the identity operator) and varying the convergence control parameters h and ε, we

obtain a family of scattering series which reduces to the conventional Born series when h = −1 and ε = 0.

By using H = γ where γ is a particular preconditioner and varying the convergence control parameters h

and ε, we obtain another family of scattering series which reduces to the so-called convergent Born series

when h = −1 and ε ≥ εc where εc is a critical dissipation parameter depending on the largest value of the

scattering potential. This means that we have developed a kind of unified scattering series theory that in-

cludes the conventional and convergent Born series as special cases. By performing a series of 12 numerical

experiments with a strongly scattering medium, we illustrate the effects of varying the (ε, h,H)-parameters

on the convergence properties of the new homotopy scattering series. By using (ε, h,H) = (0.5,−0.8, I)

we obtain a new scattering series that converges significantly faster than the convergent Born series. The

use of a non-zero dissipation parameter ε seems to improve on the convergence properties of any scattering

series, but one can now relax on the requirement ε ≥ εc from the convergent Born series theory, provided

that a suitable value of the convergence control parameter h and operator H is used.
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1 INTRODUCTION

There exist a range of different numerical methods for seismic wavefield modeling (Carcione, 2002),

including differential equation methods (e.g., Robertsson et al., 2012) and integral equation methods

(Pike and Sabatier, 2000; Oristaglio and Blok, 2012; Jakobsen, 2012; Jakobsen and Wu, 2016; Mal-

ovichko et al., 2018). The majority of researchers in the seismic community use differential equation

methods (Carcione et al., 2002), but the integral equation approach has actually several advantages

compared with the differential equation approach: (1) it is naturally target oriented (Haffinger et al.,

2016; Huang et al., 2019), (2) it gives the sensitivity matrix directly in terms of Green’s functions

(Jakobsen and Ursin, 2015) which is convenient for uncertainty estimation (Eikrem et al., 2018) and

(3) it is compatible with the use of domain decomposition and renormalization methods from modern

physics (Jakobsen and Wu, 2016, 2018). However, the integral equation approach can be less efficient

than the differential equation approach, depending on how it is implemented (Malovichka et al., 2018;

Jakobsen and Wu, 2018; Jakobsen et al. 2019). An integral equation solution based on matrix inver-

sion can be very accurate, but very memory-depending and costly (Jakobsen and Wu, 2018). Efficient

implementations of the integral equations approach are typically based on the use of iterative methods

and /or scattering series solutions (Jakobsen and Wu, 2016, Malovichko et al., 2018; Jakobsen et al.,

2019, Huang et al., 2019b,c).

Many geophysicists are familiar with the scattering series of Born that one can easily obtain from

the Lippmann-Schwinger equation via simple iteration (Jakobsen and Wu, 2016). However, the Born

series represents an example of a so-called naive perturbation expansion which is only guaranteed to

converge in the special case of relatively small contrasts (Kirkinis, 2008; Jakobsen and Wu, 2016). To

obtain a convergent scattering scattering series in the presence of strong contrasts, it may be required to

use a non-perturbative method for strongly nonlinear systems. Previously, researchers have developed

convergent scattering series solutions of the Lippmann-Schwinger equation by using renormalization

procedures (Abubakar and Habashy, 2003; Wu et al., 2007; Osnabrugge et al., 2016; Jakobsen et

al., 2016; Jakobsen et al.. 2019). In this study, however, we have employed the so-called homotopy

analysis method, which is based on concepts and ideas form topology (Liao, 2003; Hetmaniok et al.,

2014).

The homotopy analysis method (HAM) used in this study was developed by Liao (1998, 2003,

2004, 2009, 2012, 2014). However, the development of related globally convergent homotopy meth-

ods for solving nonlinear equations started around 1976 (see Watson, 1989). Historically, there have

been several attempts to apply homotopy methods to model and invert geophysical data (see Watson,

1989), but the paper of Huang and Greenhalgh (2019a) appears to represent the first geophysical ap-

plication of the modern homotopy analysis method developed by Liao (2003), which differs from the
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one discussed by Watson (1989). In any case, the homotopy methods allows one to solve operator

equations of any kind by using ideas and concepts of topology, which is a branch of pure and applied

mathematics dealing with quantities that are preserved during continuous deformations. A homotopy

describes a continuous transformation between two states and has been compared with the concept

of scale-invariance in renormalization group theory (Palit and Datta, 2016; Jakobsen et al., 2019a;

Pfeffer, 2019). The homotopy analysis method have been used to solve a range of different nonlinear

problems, ranging from heat conduction problems (Abbasbandy, 2006) to problems within theoretical

physics (Pfeffer, 2019). Most applications of the homotopy analysis method is based on a differential

operator formulation, but there have also been successful attempts to solve integral equations of the

Fredholm and Volterra types using the homotopy analysis method (see Hetmanio et al., 2014).

Although the homotopy analysis method may potentially be very useful for practical nonlinear

inversion of seismic waveform data (see Han et al., 2005; Fu and Han, 2006), we shall focus on the

forward problem. This is partially because there is still an important need for more work on the nonlin-

ear direct scattering problem (Jakobsen et al., 2019a,b) and the corresponding nonlinear inverse scat-

tering problem is much more difficult to solve due to its ill-posed nature. It will be demonstrated that

the homotopy analysis method can be used to construct a scattering series solution of the Lippmann-

Schwinger equation in the context of seismic wavefield modeling. Although such convergent scatter-

ing series have been developed on the basis of renormalization methods in the past (Abubakar and

Habashy 1983; Osnabrugge et al., 2016; Jakobsen et al., 2019a), we think it is interesting to study

convergence properties of the direct scattering series solution from different perspectives, since this

may give us new ideas and insights that may be useful for future studies of nonlinear inverse scattering

as well as direct scattering problems.

In section 2, we present fundamental equations and establish our notation. In section 3, we present

a general method for obtaining convergent series solutions of nonlinear operator equations that does

not depend on any parameter being small. In section 4, we derive a convergent scattering series solution

of the Lippmann-Schwinger equation. In section 5, we show that the conventional Born series and the

renormalized Born series of Osnabrugget et al. (2016) and Huang et al. (2019) represents a special

case of the HAM series. In section 6, we demonstrate that the HAM series converges for strongly

scattering media where the conventional Born series diverges. In section 7, we also provide some

ideas for further work.
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2 THE LIPPMANN-SCHWINGER EQUATION AND CONVENTIONAL BORN SERIES

The scalar wave equation in the frequency domain (the inhomogeneous Helmholtz equation) can be

written as (Morse and Feshbach, 1953; Osnabrugge et al., 2016; Huang et al., 2019b,c)(
∇2 + k2(x

)
ψ(x) = −S(x), (1)

where k(x) is the wave number at position x. Following Osnabrugge et al. (2016), we now decom-

pose the actual medium with wavenumber k(x) into an arbitrary homogeneous dissipative reference

medium with complex wave number kd given by k2
d = k2

0 + iε (where ε is an arbitrary small positive

number) and a corresponding complex scattering potential V (x) (with compensating gain, rather than

dissipation). It follows that(
∇2 + k2

d

)
ψ(x) = −S(x)− V (x)ψ(x), (2)

where

V (x) = k2(x)− k2
d. (3)

The second term on the right-hand side of equation (2) represents the so-called equivalent sources. By

treating the contrast-sources just like real sources, one can derive the Lippmann-Schwinger equation

(Jakobsen and Ursin, 2015)

ψ(x) = ψ(0)(x) +

∫
Ω
dx′G(0)(x− x′)V (x′)ψ(x′), (4)

where G(0)(x− x′) is the Green’s function for the homogeneous reference medium, that satisfies(
∇2 + k2

d

)
G(0)(x− x′) = −δ(x− x′). (5)

Note that the introduction of a non-zero imaginary part ε to the squared wave number k2
0 in the ho-

mogeneous reference medium makes the energy associated with Green’s function finite and the wave

fields more localized (Osnabrugge et al., 2016; Jakobsen et al., 2019a; Huang et al., 2019c). Although

most workers tend to set ε to zero, the use of a non-zero ε parameter improves the convergence prop-

erties of any scattering series (Abubakar and Habashy, 2003; Osbabrugge et al., 2016; Huang et al.,

2019c; Jakobsen et al., 2019a).

In symbolic operator notation, the Lippmann-Schwinger equation (4) can be written as

ψ = ψ(0) +G(0)V ψ, (6)

where the scattering potential operator V is local (but see Jakobsen and Wu, 2017) and can be repre-

sented by a diagonal matrix in the real-space representation (Jakobsen and Ursin, 2015). The above

equation has the following exact formal solution:

ψ = (I −G(0)V )−1ψ(0) (7)
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where I is the identity operator.

The solution (7) is valid independently of the contrast volume, but it involves the inversion of a

huge operator or matrix (in the coordinate representation), which can be very costly in the case of a

realistic model. In principle, one could try to solve the Lippmann-Schwinger equation by iteration. The

well-known Born series can be regarded as the simplest possible iterative solution of the Lippmann-

Schwinger equation and can be presented as

ψ =
∞∑
m=0

ψm (8)

where ψ0 = ψ(0) and

ψm = G(0)V ψm−1, m = 1, 2, 3, ... . (9)

The Born series is very popular due to its simplicity. However, the Born series represents an example

of a naive perturbation expansion (Kirkinis, 2008) which is only guaranteed to converge if the contrast

is relatively small, in the sense that the largest eigenvalue of the operator G(0)V must be smaller than

unity (Weinberg, 1983, Newton, 2002; Osnabrugge et al., 2016).

3 THE HOMOTOPY ANALYSIS METHOD

The homotopy analysis method can be used to solve operator equations of the form (Liao, 2003)

N [ψ] = 0, (10)

where N denotes a nonlinear operator and ψ is the unknown function (or state vector). The first step

is to define the homotopy operatorH by (Liao, 2003)

H [Φ, λ] ≡ (1− λ)L [Φ(λ)− ψ0]− λhHN [Φ(λ)] , (11)

where λ ∈ [0, 1] is the so-called embedding parameter, h 6= 0 is the so-called convergence control

parameter,H is a convergence control operator (see section 4), ψ0 is our initial guess of the solution to

equation (10) and L is an auxiliary linear operator that can be selected arbitrarily as long as L [0] = 0.

By settingH [Φ, λ] = 0 we get the so-called zero-order deformation equation (Liao, 2003)

(1− λ)L [Φ(λ)− ψ0] = λhHN [Φ(λ)] . (12)

If λ = 0 then L [Φ(0)− ψ0] = 0, which implies that Φ(0) = ψ0. If λ = 1 then N [Φ(1)] = 0, which

implies that Φ(1) = ψ, where ψ is the solution of equation (10) we are looking for. A gradual change

in the embedding parameter λ from 0 to 1 therefore means a continuous transition of Φ(λ) from the

initial guess ψ0 to the exact solution ψ of the original equation (10).

If we now expand the auxiliary field Φ(λ) into a Maclaurin series with respect to the embedding

parameter λ then we obtain (Liao, 2003)
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Φ(λ) = Φ(0) +
∞∑
m=1

1

m!

∂mΦ(λ)

∂λm
|λ=0λ

m. (13)

By introducing the definition (Liao, 2003)

ψm ≡
1

m!

∂mΦ(λ)

∂λm
|λ=0, m = 1, 2, 3, ..., (14)

the above equation (13) can be expressed as (Liao, 2003)

Φ(λ) = Φ(0) +
∞∑
m=1

ψmλ
m. (15)

If the above series (15) is convergent for λ = 1 then the solution we are looking for is given by (Liao,

2003)

ψ =
∞∑
m=0

ψm. (16)

It is of course not obvious that the series (15) is convergent for λ = 1, but by adjusting the auxiliary

parameter h and the auxiliary operatorH we can make sure that this series is indeed convergent (Liao,

2003).

In order to determine the different ψm terms , we now differentiate the left and right side of the

0th-order deformation equation (12) m times with respect to the auxiliary parameter λ, divide the

result by m! and set λ = 0. In this way suggested by Liao (2003), we obtain the so-called mth-order

deformation equation (m > 0):

L [ψm − χmψm−1] = hHRm, (17)

where

χm =

 0 if m ≤ 1

1 if m ≥ 2
(18)

and

Rm =
1

(m− 1)!

(
∂m−1

∂λm−1
N

[ ∞∑
i=0

ψiλ
i

])
λ=0

. (19)

The different Rm parameters will depend on the nature of the non-linear operator N . In the next sec-

tion, we shall evaluate theRm-parameters for the nonlinear operator corresponding with the Lippmann-

Schwinger equation.

The selection of the convergence control parameter h is very important. In order to select a suitable

value of h, one can either use the h-parameter curve method or an optimization method (Liao, 2003;

Hetmaniok et al., 2014). We shall discuss the selection of h in connection with the results we have

obtained for the homotopy analysis of the Lippmann-Schwinger equation.
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4 HOMOTOPY ANALYSIS OF THE LIPPMANN-SCHWINGER EQUATION

Hetmaniok et al. (2014) discuss the usage of the homotopy analysis method for solving nonlinear and

linear integral equations of the second kind. However, their analysis is restricted to 1D media and

slightly different from the analysis presented below. In order to derive a convergent scattering series

solution of the Lippmann-Schwinger equation based on the homotopy analysis method, we define the

linear and nonlinear integral operators L and N by

L[ψ] = ψ, N [ψ] = ψ − ψ(0) −G(0)V ψ, (20)

By using the above definitions of the linear and nonlinear operators L and N in conjunction with the

mth-order deformation equation 17, we obtain

ψm = χmψm−1 + hHRm. (21)

By using the definition of the nonlinear operator N given in equation (20) in conjunction with the

expression for the Rm parameters in equation (18), we get

Rm =
1

(m− 1)!

∂m−1

∂λm−1

[ ∞∑
i=0

ψiλ
i − ψ(0) −G(0)V

∞∑
i=0

ψiλ
i

]
λ=0

. (22)

The above equation implies that

Rm =
1

(m− 1)!

(
(m− 1)!ψm−1 − (1− χm)ψ(0) − (1−m)!G(0)V ψm−1

)
, (23)

or

Rm = ψm−1 −
(1− χm)

(1−m)!
ψ(0) −G(0)V ψm−1. (24)

By using the above expression for Rm in conjunction with the recursive formula (21), we obtain

ψ1 = hH
(
ψ0 − ψ(0) −G(0)V ψ0

)
, (25)

and for m ≥ 2:

ψm =Mψm−1. (26)

where

M≡ I + hH − hHG(0)V. (27)

Equations (25) and (A.1) for the first and higher-order terms in the homotopy analysis scattering series

represents the main results of this paper. This homotopy analysis method iterative solution of the

Lippmann-Schwinger equation differs from the conventional Born series via the convergence control

parameter h and the operator H that can be selected arbitrarily to ensure that the series is convergent.

The HAM series converges if the spectral radius σ of M is smaller than unity; which can occur even
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if the spectral radius of the operator G0V is larger than unity; that is, when the conventional scattering

series of Born diverges.

5 COMPARISON WITH EXISTING ANALYTICAL RESULTS

If we use our freedom to set ψ0 = ψ(0), h = −1 and H = I then the homotopy series in equations

(25-26) reduces to the conventional Born series (9). As discussed earlier, the conventional Born series

have a rather small range of convergence, since the largest eigenvalue of the operator G(0)V must be

smaller than unity.

Osnabrugge et al. (2016) presented a modified Born series (CBS) which is guaranteed to converge

independent of the scattering potential. If we set ψ0 = γψ(0) where γ = iV/ε is the preconditionner

of Osnabrugge et al. (2016) then it follows from equation (23) that

ψ1 = hH
(
I − γ−1 −G(0)V

)
ψ0. (28)

If we now set h = −1 and H = γ then the above equation becomes

ψ1 = Mψ0, (29)

where

M ≡ I − γ + γG(0)V. (30)

Also, it follows from equation that

ψm = Mψm−1, (31)

which implies that the convergent Born series of Osnabrugge et al. (2016) is a special case of our new

HAM series.

A comparison of equations (26-27) and (30-31) clearly suggests that we have generalized the con-

vergent Born series of Osnabrugge et al. (2016). We can construct a family of convergent Born series

similar to the convergent Born series of Osnabrugge et al. (2016) if we set H = γ but use different

values of the convergence control parameter h. The CBS is based on the use of a dissipative reference

medium, which makes the Green’s function finite and localized (Osnabrugge et al., 2016; Huang et al.,

2019c; Jakobsen et al., 2019a). Since our generalized convergent Born series based on HAM contains

the additional convergence control parameter h, we can decrease the value of the dissipation param-

eter ε if we compensate by using a suitable h-value. The convergence control parameter h is a global

convergence parameter, in the sense that it acts globally on the whole model, whereas the dissipa-

tion parameter ε can be regarded as a local convergence parameter, since a higher value for ε implies

a higher degree of wavefield localization. By a suitable choice of the local and global convergence
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control parameters ε and h we can accelerate the convergence of the HAM series. This point will be il-

lustrated in the next section dealing with numerical experiments based on a strongly scattering seismic

model.By introducing an imaginary part to the wavevector of the background medium, we make the

total energy represented by the background Green’s function finite and localized. The imaginary term

in the background medium is compensated exactly by an imaginary term in the scattering potential.

Therefore, the final solution remains the same as the solution without any dissipation.

6 NUMERICAL RESULTS AND DISCUSSION

We performed a series of 12 different numerical experiments to study the effects of the auxiliary

parameters (ε, h,H) on the convergence properties of the homotopy analysis method for solving the

Lippmann-Schwinger equation. The numerical experiments are based on a resampled version of the

SEG/EAGE salt model (Figure 1, left). We used a homogeneous reference medium with wavespeed

c0 = 2870 m/s (Figure 1, right). We employed a single delta function source with frequency 10 Hz

located in the middle of the top of the model and we used a grid size equal to 5 m in each direction.

In each experiment, we used one of the combinations of the (ε, h,H) -parameters given in Table 1

and generated a scattering series solution of the Lippmann-Schwinger equation by using the recursive

formula (25-27).

We quantified the convergence properties of the different scattering series by calculating the nor-

malized overall error δk as a function of the number of iterations k, where

δk = ||
k∑
i=1

ψi − ψ(r)||/||ψ(r)||, (32)

and ψ(r) is a reference solution obtained by solving equation (7) via matrix inversion (see Figure

2), which is exact apart from very small numerical discretization errors (Jakobsen, 2012). In each

numerical experiment, we iterated until the normalized overall error became smaller than 10−3 (in the

case of convergence) or larger than 10 (in the case of divergence). However, this stopping criteria is of

course flexible and dependent on the desired accuracy.

If the scattering series diverges then the resulting wavefield (Figure 3) will of course look very

different from the reference wavefield (Figure 2). If the scattering series converges in the sense that

the overall normalized error becomes smaller than 10−3 than the resulting wavefield (Figure 4) will

necessarily be very similar to the true wavefield (Figure 2). Since the resulting wavefield is indepen-

dent of the auxiliary parameters in the case of convergence, we focus on the behavour of δk rather than

the wavefield itself.

In numerical experiments 1-6 (Figure 5) we assumed H = I and varied the dissipation parameter

ε and the convergence control parameter h. As discussed in the previous section, when ε = 0 and h =
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−1 the numerical results correspond with the conventional Born series, whereas the use of different ε-

and h-values represents different modifications of the conventional Born series. Clearly, one can see

from the blue curve in Figure 5 that the conventional Born series corresponding with ε = 0 and h = −1

diverges for this strongly scattering medium. When ε = 0 and h = −0.95 corresponding with the

green curve in Figure 5, the scattering series still diverges. When ε = 0 and h = −0.9 corresponding

with the red curve in Figure 5, the scattering series is starting to converge, but extremely slowly. When

ε = 0 and h = −0.8 corresponding with the cyan curve in Figure 5, the scattering series converges

faster. When ε = 0 and h = −0.1 corresponding to the black curve in Figure 5, the scattering series is

still convergent, but the convergence rate is much smaller than when using h = −0.8. When ε = 0.5

and h = −0.8 corresponding to the black curve in Figure 5 than the scattering series converges faster

than for all the other experiments 1-5. Therefore, it appears that the use of a non-zero ε-value in

conjunction with an optimal h-value helps to accelerate an already convergent scattering series.

In numerical experiments 7-12 (Figure 6) we assumedH = γ and varied the dissipation parameter

ε as well as the convergence control parameter h. When ε ≤ εc where εc is a critical value depending on

the velocity model and h = −1 then the numerical results corresponds with the convergent Born series

of Osnabrugge et al. (2016), whereas the use of different ε and h-parameters correspond with different

modifications of the convergent Born series of Osnabrugge et al. (2016). Clearly, one can see from

the blue curve in Figure 6 that the convergent Born series of Osnabrugge et al. (2016) corresponding

with ε = εc and h = −1 is indeed convergent. When h = −1 but ε = 0.5εc corresponding to the

green curve in Figure 6, the scattering series is as expected divergent. When ε = 0.5εc and h = −0.5

corresponding with the red curve in Figure 6, the scattering series is still divergent. However, when

ε = 0.5εc and h = −0.25 corresponding with the cyan curve in Figure 6, the scattering series become

convergent again. When ε = 0.5εc and h = −0.125 corresponding with the curve in Figure 6, the

scattering series is still convergent, but the convergence rate is smaller than when using h = −0.25.

When using ε = 0.25εc corresponding with the black curve in Figure 6 the scattering series converges

extremely slowly. Therefore, it appears that the ε and h-parameters corresponding with the original

convergent Born series of Osnabrugge et al. (2016) are optimal when H = γ.

Figure 7 represents a comparison of the optimal HAM series (the black curve in Figure 6 corre-

sponding to ε = 0.5, h = −0.8 and H = I) and the original convergent Born series of Osbabrugge et

al. (2016) (the blue curve in Figure 6 corresponding with ε = 1, h = −1 and H = −γ). Clearly, one

can see that the optimal HAM series requires much less iterations than the original convergent Born

series. Therefore, one can say that we have generalized and improved on the convergent Born series

of Osnabrugge et al. (2016) by using the homotopy analysis method.

The auxiliary parameters ε and h may be referred to as local and global convergence control pa-
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rameters, respectively. This is because a non-zero ε value leads to dissipation in the reference medium

(and gain in the scattering potential), which makes the wavefield update more localized in space; and

different h-values are associated with different degrees of global wavefield scaling. Having both local

and global convergence control parameters in addition to the auxiliary convergence control operator

H makes this homotopy analysis method very general and flexible.
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7 CONCLUDING REMARKS

We have used the homotopy analysis method (HAM) to derive a general scattering series solution

of the Lippmann-Schwinger equation which is guaranteed to converge independent of the scattering

potential, provided that one select the dissipation parameter ε as well as the convergence control pa-

rameter h and operator H in a suitable manner. We have found that the conventional Born series and

the convergent Born series of Osnabrugge et al. (2016) are special cases of the new scattering series

based on HAM. We have performed a series of 12 numerical experiments and found that a scattering

series with ε = 0.5, h = −0.8 and H = I requires much less iterations to converge than the original

convergent Born series of Osnabrugge et al. (2016). Other choices of the (ε, h,H) may lead to even

higher convergence rate, but existing guidelines for selecting h and H (see Liao, 2003) needs to be

modified in the presence of the new parameter ε.

Historically, this paper represents a rare example of the application of HAM for solving integral

equations and the first example in the context of seismic wavefield modeling. The introduction of the

dissipation parameter ε into the HAM formalism also represents a novel feature of this work. Theoret-

ically, the embedding parameter λ reminds us about the running coupling constant in the renormaliza-

tion group theory of Jakobsen et al. (2019a) as well as the homotopy parameter λ of Watson (1989),

but these relations requires further investigation. Computationally, it is interesting to note that the

computational cost of the reference solution (7) we have obtained via matrix inversion and the scatter-

ing series solution (25-27) scales like N3 and N2, respectively, where N is the number of grid blocks

in a discretized seismic model. Since our formulation is based on a homogeneous reference medium,

it allows for the use of efficient and memory-saving Fast Fourier Transform methods that scales likeN

and N logN , respectively (see Osnabrugge et al., 2016; Jakobsen et al., 2019a). The present work can

also be combined with convergence acceleration techniques (Eftekhar et al., 2018). Practically, it is

important that the theory and method developed in this study can be generalized to anisotropic elastic

media, since the corresponding wave equation can also be transformed into an integral equation of the

Lippmann-Schwinger type (Jakobsen et al., 2019b). Having developed a convergent forward scattering

series, the next step could be to apply this series in the context of inverse scattering theory. Weglein et

al (2003) have pioneered inverse acoustic scattering methods that do not require an assumed propaga-

tion velocity model within the medium (Zou and Weglein, 2018). Their approach (Zhang and Weglein,

2009; Zou et al. 2019) is based on the Born series solution of the Lippmann-Schwinger equation and a

concomitant expansion of the interaction in orders of the data. In principle, the method is completely

general and requires no prior information about the target or the propagation details of the probe signal

within the target. The only fundamental limitation of the approach appears to the convergence of the

conventional Born series (Kouri, 2003). Weglein et al., (2003) have made significant progress using
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this approach by introducing subseries. We hope to develop convergent inverse scattering series using

the HAM scattering series. However, it is not obvious that the inverse scattering series will converge

even though the forward scattering series is convergent. Finally, we note that the work reported here

may be useful in future applications of the homotopy analysis method within the context of nonlinear

inverse scattering to solve the so-called regularized normal equations (Jegen et al., 2001).
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Table 1. Convergence control parameters used in 4 different numerical experiments focusing on the convergence

properties of the homotopy analysis method. The parameter εc is the critical value which is required for the

convergent Born series of Osnabrugge et al. (2016) to converge. The color refers to the different colors used in

Figure 5 (experiments 1-6) and Figure 6 (experiments 7-12).

Experiment ε/εc h H color ‖M‖ σ (M)

1 0.00 -1.000 I 1.46 1.06 b

2 0.00 -0.950 I 1.40 1.03 g

3 0.00 -0.900 I 1.35 0.99 r

4 0.00 -0.800 I 1.27 0.94 c

5 0.00 -0.100 I 1.01 0.97 m

6 0.50 -0.800 I 0.96 0.82 k

7 1.00 -1.000 γ 0.94 1.98 b

8 0.50 -1.000 γ 0.85 1.93 g

9 0.50 -0.500 γ 0-92 1.09 r

10 0.50 -0.250 γ 0.96 0.93 c

11 0.50 -0.125 γ 0.98 0.96 m

12 0.25 -0.125 γ 0.96 1.00 k
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Figure 1. The true velocity model and the homogeneous reference model.
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Figure 2. Real and imaginary parts of the frequency domain wavefield at 10 Hz computed by solving the

Lippmann-Schwinger equation exactly using a real space matrix representation.
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Figure 3. The real and imaginary parts of the frequency domain wavefield at 10 Hz computed using the HAM

series with auxiliary parameters corresponding to experiment 1 in Table 1.
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Figure 4. The real and imaginary parts of the frequency domain wavefield at 10 Hz computed using the HAM

series with auxiliary parameters corresponding with experiment 2 in Table 1.
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Figure 7. Comparison of overall errors vs the number of iterations for numerical experiment 6 (optimal HAM

series with some dissipation in the reference medium) and 7 (original convergent Born series of Osnabrugge

et al. 2016). Note that the optimal HAM series (black curve) requires much less iterations than the convergent

Born series (blue curve) of Osnabrugge et al. (2016).
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APPENDIX A: DESCRIPTION AND IMPLEMENTATION OF THE HAM SERIES

Similar to the conventional Born series, every iteration is associated with multiple scattering processes

of different orders. However, we have reorganized the different terms in the conventional Born series

so that the spectral radius of M is smaller than unity. This implies that each new term is smaller than

the previous one, so that the scattering series does not diverge when the number of iterations becomes

large. Mathematically, this is done by introducing an integral operator with spectral radius smaller than

unity via the use of control parameter h and the convergence control operator H . The series converges

if the spectral radius of the operator M is less than unity. We have also introduced an element of

dissipation in the reference medium, which ensures that the energy associated with Greens function is

finite and localized. It should be emphasized that the dissipation parameter ε can be selected arbitrary.

This is because the dissipation is compensated exactly by a corresponding gain term in the scattering

potential, suggesting that the final results are independent of this dissipation in the reference medium.

The dissipation aspect of our HAM algorithm is similar to the convergent Born series of Osnabrugge

et al. (2016). However, our convergent scattering series is more general than the convergent Born

series, since the convergent control parameters can be selected rather arbitrary, as long as the spectral

radius of the M-operator is smaller than unity. Some details for implementation of the new convergent

scattering series using based on the HAM is provided in Algorithm 1. In addition, Table 1 shows the

norm ‖M‖ and spectral radius σ (M) of the operator M with numerical experiments.

The HAM algorithm is represented by equations (25)-(27). However, the formulation in the main

text is based on the real-space coordinate representation of the relevant integral operators. As discussed

by Osnabrugge et al., (2016), the operation of Green’s function with contrast-source terms has a con-

volution structure that can be implemented more efficiently by using the wave vector representation;

that is, by using the Fast Fourier Transform (FFT) algorithm in this context. This is because convolu-

tion in real-space is equivalent to multiplication in the Fourier space, and the computational cost of the

FFT-operation is much smaller than that of matrix multiplication and inversion.The memory require-

ments scales like N2 and N when using the position and wave vector representations, respectively.

The computational cost should theoretically scale like N3 and N logN when using the position and

wave vector representations, respectively. The iterative FFT algorithm is implemented as

ψm (r) = hH(ψ(0) (r)− ψ0 (r)− ifft
[
G(0) (k) fft [V ψm (r)]

]
), (A.1)

where fft and ifft are the forward and inverse fast Fourier transform operators, k is the Fourier trans-

formed coordinates. Figures A1 and A2 show the frequency domain wavefield using exact solutions,

the efficient and memory-saving FFT implementation with 100 iterations, respectively.



26 Jakobsen et al.

Algorithm 1 Pseudo code for the scattering series
Initialisation: frequency, maximum iteration number Nmax, the parameter ε

true model and background model;

V = k2 − k2
0 − iε

kb =
√
k2

0 + iε

ψ(0) = G(0)S

ψ = ψ(0)

M = I + hH − hHG(0)V

n = 1

while n < Nmax do

n = n+ 1

if n == 1 then

ψm = hH(ψ(0) − ψ0 −G(0)V ψ(0))

else

ψm = Mψm

end if

ψ = ψ + ψm

end while
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Figure A1. The real and imaginary parts of the frequency domain wavefield at 10 Hz computed by solving the

Lippmann-Schwinger equation exactly using a real space matrix representation.
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Figure A2. The real and imaginary parts of the frequency domain wavefield computed using the HAM series

with auxiliary parameters corresponding with experiment 11 in Table 1.
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SUMMARY
Traveltime approximation plays an important role in seismic data processing, for example,
anisotropic parameter estimation and seismic imaging. By exploiting seismic traveltimes, it
is possible to improve the accuracy of anisotropic parameter estimation and the resolution
of seismic imaging. Conventionally, the traveltime approximations in anisotropic media are
obtained by expanding the anisotropic eikonal equation in terms of the anisotropic parame-
ters and the elliptically anisotropic eikonal equation based on perturbation theory. Such an
expansion assumes a small perturbation and weak anisotropy. In a realistic medium, however,
the assumption of small perturbation likely breaks down. We present a retrieved zero-order
deformation equation that creates a map from the anisotropic eikonal equation to a linearized
partial differential equation system based on the homotopy analysis method. By choosing the
linear and nonlinear operators in the retrieved zero-order deformation equation, we develop
new traveltime approximations that allow us to compute the traveltimes for a medium of arbi-
trarily strength anisotropy. A comparison of the traveltimes and their errors from the homotopy
analysis method and from the perturbation method suggests that the traveltime approximations
provide a more reliable result in strongly anisotropic media.

Key words: Non-linear differential equations; Seismic anisotropy; Wave propagation.

INTRODUCTION

Seismic anisotropy can arise due to various geological situations such as crystal orientation (Musgrave 1970), parallel cracked rocks (Crampin
1984), sedimentation near salt domes and thin layering in the subsurface (Schoenberg 1983; Tsvankin 1997, 2012). It is important for seismic
exploration and investigations of the Earth’s interior to recognize the anisotropy. One of the most common and effective approximations
to an anisotropic subsurface is the transversely isotropic medium. Modelling seismic traveltimes is clearly essential for understanding and
quantification of the kinematic properties of the propagating waves in such media. It finds many applications such as velocity analysis,
anisotropic parameter estimation (Alkhalifah 2011a), traveltime tomography (Chapman & Pratt 1992; Zelt & Barton 1998; Zhou et al. 2008;
Bai & Greenhalgh 2005), seismic migration (Huang et al. 2016a; Huang & Sun 2018) and full waveform inversion (Alkhalifah & Choi 2014;
Silva et al. 2016). The seismic traveltimes can be obtained by solving the nonlinear partial differential equation under the high-frequency
assumption; this is referred to as the eikonal equation.

There are several approaches to solve the eikonal equation, such as ray-tracing methods (see e.g. Červenỳ 1972, 2001; Červenỳ &
Pšenčı́k 1983; Moser 1991; Vinje et al. 1993; Bai et al. 2007; Červenỳ et al. 2007, 2012; Iversen & Tygel 2008) and the finite-difference
(FD) method (Vidale 1988; Cao & Greenhalgh 1994; Sethian 1996; Sethian & Popovici 1999; Rawlinson & Sambridge 2004a,b; Noble et al.
2014). The ray-tracing method computes the traveltimes by integration along rays in which the initial condition must be specified. The main
advantages include easy implementation and high efficiency. However, it gives a non-uniform distribution of traveltimes, and the presence
of shadow zones can lead to problems. Moreover, due to the different directions of the group velocity (ray direction) and the phase velocity
(wave front normal direction) vectors , solving the ray-tracing system becomes complicated in the anisotropic media. The FD method has
been recognized as an efficient and accurate computational scheme for calculating the traveltimes. In the framework of the FD method, two
approaches, the fast marching method (Sethian 1996; Sethian & Popovici 1999; Alkhalifah & Fomel 2001; Huang et al. 2016b; Huang & Sun
2018) and the fast sweeping method (Zhao 2005), have been widely used for calculating the traveltimes. In recent years, efforts have been
made to solve the anisotropic eikonal equations (Luo & Qian 2012; Waheed et al. 2015a,b; Bouteiller et al. 2017; Han et al. 2017; Waheed &
Alkhalifah 2017). In addition, some interesting results for moveout approximations have been obtained based on the weak-anisotropy (WA)

1648 C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1648/5245179 by U

niversity of C
alifornia, Santa C

ruz user on 04 January 2019



Traveltime approximation using the HAM 1649

parameters (Farra & Pšenčı́k 2017; Pšenčı́k & Farra 2017). However, it is challenging to use the FD method to solve the eikonal equation for
the anisotropic media because of the additional anisotropic parameters involved. This is especially true because solving the quartic equation
and finding the roots of a quartic equation at each computational step are difficult (Alkhalifah 2011a; Stovas & Alkhalifah 2012).

Perturbation theory has been widely used to develop traveltime approximations for calculating the traveltimes in anisotropic media. This
approach was proposed by Alkhalifah (2011a,b) for deriving traveltime approximations and scanning anisotropic parameters in transversely
isotropic media with a vertical symmetry axis (VTI) and transversely isotropic media with a tilted symmetry axis (TTI) media. Since then,
many researchers have applied the perturbation theory and have made significant progress in developing the traveltime approximations. For
instance, Stovas & Alkhalifah (2012) derive the traveltime approximations in TTI media by expanding the TTI eikonal equation in a power
series in terms of the anellipticity parameter. Subsequent generalizations of the perturbation theory to a transversely isotropic medium can be
found in Waheed et al. (2013), Alkhalifah (2013) and Masmoudi & Alkhalifah (2016). Xu et al. (2017) have applied perturbation theory to
moveout approximations in an anisotropic medium. Later, this approach has been extended to an orthorhombic medium (Stovas et al. 2016)
and attenuating VTI medium (Hao & Alkhalifah 2017).

Recently, we have extended the perturbation theory to the problem of complex traveltime computation. We have applied it to the complex
eikonal equations in orthorhombic and VTI media and derived a system of linear equations for the complex traveltime computation. Based on
the derived system, we have developed analytic solutions in an orthorhombic medium (Huang & Greenhalgh 2018) and numerical solutions
in a VTI medium (Huang et al. 2018). The perturbation approach to the complex eikonal equation differs from the real eikonal equation in
the following respects. First, we expand the real and imaginary parts of the complex traveltime in terms of the background traveltime and the
coefficients separately and transform the problem of the highly nonlinear eikonal equations into one of solving a relatively simple eikonal
equation for the background medium and a system of linear partial differential equations. Second, we use a perturbation scheme to solve the
background complex eikonal equation for the background traveltimes. In this case, we successfully employed the perturbation theory to solve
the complex eikonal equations in anisotropic media.

In reviewing all of the above perturbation theories, we find that most of the traveltime approximations make use of a power-series
expansion in terms of the anisotropic parameters and make the assumption of small anisotropic parameters. This means that the degree of
anisotropy does not exceed a small perturbation from the elliptically anisotropic background medium. A major limitation of the perturbation
analysis technique is that it breaks down in regions with strong anisotropy.

The purpose of this paper is to establish the fundamental theory of the linear partial differential equations for solving the VTI and TTI
eikonal equations and to develop traveltime approximations for strongly anisotropic media. To this end, we employ the homotopy analysis
method (HAM), an analytic approximation method for highly nonlinear problems, to the nonlinear eikonal equations. The HAM was proposed
by Liao (1992c, 1999, 2003a, 2012) for solving nonlinear problems encountered in mathematical physics. Different from the conventional
perturbation theory, the HAM does not depend on any physical parameters and can guarantee the convergence of the series solution. This
implies that the HAM can be used for arbitrarily high nonlinear problem. From the late 1990s to 2010s, due to the advantages of the HAM
over perturbation theory, it has been widely used in the mathematical and physical sciences. Much work has been done on the HAM for
nonlinear problems in developing analytic series solutions, for example, nonlinear oscillations (Liao 1992b, 2003b, 2004; Liao & Chwang
1998), boundary layer flows (Liao 1999, 2002), heat transfer (Liao 2003b; Wang et al. 2003), nonlinear water waves (Liao 1992a; Liao et al.
2016) and nonlinear gravity waves (Liao 2011). In this work, by applying the HAM to anisotropic eikonal equations, we extend the HAM to
geophysical problems for anisotropic media.

In the following, we first review the theory of the HAM. After deriving linear partial differential equations in VTI and TTI media, we
provide the theoretical background of the differences between the HAM and the perturbation theory and the nature of the derived linear
equations. Then, we develop the analytic solutions of the VTI and TTI eikonal equations for traveltime approximations. Finally, we present
numerical tests of the contours of the traveltimes and the relative errors which are aimed at quantifying the differences of the results from the
HAM and the perturbation theory method and comparing the performance in strongly anisotropic media.

HOMOTOPY ANALYS IS METHOD

The HAM (Liao 2004) is an analytic approximation technique for generating series solutions to highly nonlinear problems. In this method,
an embedding parameter q and a convergence control parameter h are chosen to transform the nonlinear equation into a sequence of linear
equations. In this section, we review the mathematical formulations of the HAM and discuss the applicability of this method to solving
nonlinear equations.

Consider a general nonlinear equation

N [τ (x, z)] = 0, (1)

where N is a nonlinear operator, x and z are the independent variable parameters, and τ (x, z) is the exact solution of the nonlinear equation.
For solving the above nonlinear equation, Liao (1992a,1992b) developed the zero-order deformation equation

(1 − q)L
[
tq (x, z) − τ0(x, z)

] = q hH(x, z) · N [
τq (x, z)

]
, (2)
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where L is an arbitrary linear operator, H (x, z) is an auxiliary function and τ 0(x, z) is the initial approximation. Eq. (2) shows that (1) the
nonlinear problem is transformed into a linear problem; (2) the linear operator L plays a crucial role in the transformation; (3) there is a
continuous mapping from τ (x, z, q) to t(x, z, q).

It can be seen that when q = 0, eq. (2) becomes

L
[
tq (x, z) − τ0(x, z)

] = 0, (3)

and when q = 1, eq. (2) becomes

hH(x, z) · N [
τq (x, z)

] = 0. (4)

From eqs (3) and (4), we have

t(x, z, 0) = τ0(x, z), (5)

and

t(x, z, 1) = τ (x, z). (6)

Eqs (5) and (6) show that while the embedding parameter q changes from 0 to 1, the solution of the nonlinear eq. (1) varies from the initial
approximation to the exact solution of the equation.

By means of Taylor’s theorem, the solution of eq. (2) can be expressed as a power series in q to yield the series expansion solution

tq (x, z) = τ0(x, z) +
∞∑

m=1

τm(x, z)qm . (7)

If now we assume that we can choose the embedding parameter, auxiliary parameter and the auxiliary linear operator to make the series
converge at q = 1, then we can determine the coefficients by substituting it into eq. (2). Then returning to the situation in which q = 1 and
from a combination of eqs (6) and (8), we have

τq (x, z) = τ0(x, z) +
∞∑

m=1

τm(x, z). (8)

The above solution refers to a situation in which only the coefficients τm(x, z) vary. The solution therefore depends on the initial approximation
τ 0(x, z) and the coefficients τm(x, z). This differs from the perturbation theory in which the solution is a function of the coefficients and small
parameters.

The HAM explains how the analytic solutions of the nonlinear equation can be obtained by transforming the nonlinear equation into a
linear equation system. From eq. (2), we can observe that with suitable embedding parameter, auxiliary parameter and the auxiliary linear
operator, the transformation relationship is always accepted. By analogy with the homotopy analysis process, the first guess approximation is
chosen initially for satisfying eq. (3), then the approximation changes until it satisfies eq. (4). This means that the assumed series expansion
solution (7) changes from the initial solution to the exact solution. With the embedding parameter q getting larger and larger, the series
expansion solution (7) approaches the exact solution smoothly, meaning that, at q = 1, the exact solution can be obtained. The homotopy
analysis process can be divided into the following steps: (1) choosing the linear operator L; (2) construction of the zero-order deformation
equation; (3) determination of the coefficients of the series expansion; (4) obtaining the exact solution by setting q = 1.

THEORY FOR TRAVELT IME CALCULATION IN ANISOTROP IC MEDIA US ING HAM

In this section, we derive the linearized partial differential equation system for the traveltime solutions of the VTI and TTI eikonal equations by
using the HAM. For the VTI eikonal equation, we assume to have the known initial traveltime solution, but just for an elliptically anisotropic
medium, which we denote as the background traveltime solution. We start with Alkhalifah’s acoustic eikonal equation for a VTI medium
involving the anisotropic parameter η. Following recent work (Huang & Greenhalgh 2018; Huang et al. 2018), we choose the linear operator
form as an elliptical anisotropic eikonal equation. Then, we propose the solution as a series expansion containing the embedding parameter
q. For the TTI eikonal equation, the initial solution and linear operator are chosen in a similar way to the VTI eikonal equation. However, for
the series expansion, we only keep two terms because if we keep high-order terms, the solution of the TTI eikonal equation is complicated.

Retrieved VTI eikonal equation

Following Alkhalifah (2000), the eikonal equation for VTI media can be written as

v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2
v

(
∂τ

∂x

)2
)

= 1. (9)
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Here, τ (x, z) is the traveltime at the position in the coordinates (x, z) , v is the P-wave normal-moveout (NMO) velocity (v = vv

√
1 + 2δ), vv

is the vertical P-wave velocity and η is the anellipticity parameter. According to eqs (2) and () and by choosing the linear operator as

L = v2 ∂τ0

∂x

∂τ

∂x
+ v2

v

∂τ0

∂z

∂τ

∂z
, (10)

and the nonlinear operator as

N = v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2

(
∂τ

∂x

)2
)

− 1, (11)

we obtain the following zero-order deformation equation for the eikonal equation in VTI media

(1 − q)

(
v2 ∂τ0

∂x

∂τ

∂x
+ v2

v

∂τ0

∂z

∂τ

∂z
−

(
v2

(
∂τ0

∂x

)2

+ v2
v

(
∂τ0

∂z

)2
))

+ q

(
v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2
(

∂τ

∂x

)2
)

− 1

)
= 0, (12)

where τ 0 is the traveltime solution (initial approximation) for the elliptical anisotropic eikonal equation. To obtain the linear equation system,
we assume

τ = τ0 + τ1q + τ2q
2 + τ3q

3, (13)

where τ 1, τ 2 and τ 3 are the first-order, second-order and third-order coefficients, respectively. Then substituting eq. (13) into eq. (12), we
obtain the linear partial differential equation for the first-order coefficient τ 1:(

∂τ0

∂x

) (
∂τ1

∂x

)
v2 +

(
∂τ0

∂z

)(
∂τ1

∂z

)
v2

v = 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2
vv

2 − (2η + 1)

(
∂τ0

∂x

)2

v2 −
(

∂τ0

∂z

)2

v2
v + 1, (14)

the linear partial differential equation for the second-order coefficient τ 2:(
∂τ0

∂x

) (
∂τ2

∂x

)
v2 +

(
∂τ0

∂z

)(
∂τ2

∂z

)
v2

v = 4η

(
∂τ0

∂x

)2 (
∂τ0

∂z

) (
∂τ1

∂z

)
v2

vv
2 + 4η

(
∂τ0

∂x

) (
∂τ0

∂z

)2 (
∂τ1

∂x

)
v2

vv
2

− 2(2η + 1)

(
∂τ0

∂x

) (
∂τ1

∂x

)
v2 −

(
∂τ0

∂x

) (
∂τ1

∂x

)
v2 −

(
∂τ0

∂z

)(
∂τ1

∂z

)
v2

v (15)

and the linear partial differential equation for the third-order coefficient τ 3:(
∂τ0

∂x

) (
∂τ3

∂x

)
v2 +

(
∂τ0

∂x

)(
∂τ3

∂x

)
v2

v = 4η

(
∂τ0

∂x

)2 (
∂τ0

∂z

) (
∂τ2

∂z

)
v2

vv
2 + 2η

(
∂τ0

∂x

)2 (
∂τ1

∂z

)2

v2
vv

2 + 4η

(
∂τ0

∂x

) (
∂τ0

∂z

)2 (
∂τ2

∂x

)
v2

vv
2

+8η

(
∂τ0

∂x

)(
∂τ0

∂z

) (
∂τ1

∂x

) (
∂τ1

∂z

)
v2

vv
2 − 2(2η + 1)

(
∂τ0

∂x

) (
∂τ2

∂x

)
v2 +

(
∂τ0

∂x

) (
∂τ2

∂x

)
v2

+2η

(
∂τ0

∂z

)2 (
∂τ1

∂x

)2

v2
vv

2 −
(

∂τ0

∂z

) (
∂τ2

∂z

)
v2

v − (2η + 1)

(
∂τ1

∂x

)2

v2 −
(

∂τ1

∂z

)2

v2
v . (16)

The linearized partial differential equations, derived in this section, may be used directly for obtaining the coefficients τ 1, τ 2 and τ 3, once
the initial traveltime solution τ 0 has been calculated. For each linear equation, we can solve the equation for the corresponding coefficient
in terms of the anisotropic parameter. Thus, instead of solving the eikonal equation in VTI media directly, we can obtain the solutions by
solving the above linearized partial differential equations.

Retrieved TTI eikonal equation

The eikonal equation for TTI media is given by (Alkhalifah 2000)

v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

= 1, (17)

where θ is the angle of the symmetry axis measured from the vertical direction and vt is the tilted velocity. According to eqs (2) and (7) and
by choosing the linear operator as

L = v2 ∂τ0

∂x

∂τ

∂x
+ v2

t

∂τ0

∂z

∂τ

∂z
(18)

and the nonlinear operator as

N = v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

− 1, (19)
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1652 X. Huang and S. Greenhalgh

we obtain the following zero-order deformation equation for the eikonal equation in TTI media:

(1 − q)

(
v2 ∂τ0

∂x

∂τ

∂x
+ v2

t

∂τ0

∂z

∂τ

∂z
−

(
v2

(
∂τ0

∂x

)2

+ v2
t

(
∂τ0

∂z

)2
))

+ q

(
v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

− 1

)
= 0, (20)

where τ 0 is the traveltime solution (initial approximation) for the elliptical anisotropic eikonal equation.
In a similar manner, by assuming

τ = τ0 + τ1q + τ2q
2, (21)

we obtain the following linear partial differential equations for the first-order and second-order coefficients τ 1 and τ 2, respectively:

− ∂τ0

∂x

∂τ1

∂x
v2 − ∂τ0

∂z

∂τ1

∂z
v2
t = −2η

(
∂τ0

∂x

)4

v2v2
v sin2 θ cos2 θ + 4η

(
∂τ0

∂x

)3
∂τ0

∂z
v2v2

t sin θ cos3 θ − 4η

(
∂τ0

∂x

)
∂τ0

∂z
v2v2

t sin3 θ cos θ

− 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t sin4 θ − 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t cos4 θ

+ 8η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t sin2 θ cos2 θ

+(2η + 1)

(
∂τ0

∂x

)2

v2 cos2 θ +
(

∂τ0

∂x

)2

v2
t sin2 θ − 4η

∂τ0

∂x

(
∂τ0

∂z

)3

v2v2
t sin θ cos3 θ

+ 4η
∂τ0

∂x

(
∂τ0

∂z

)3

v2v2
t sin3 θ cos θ

+ 2(2η + 1)

(
∂τ0

∂x

)2

v2 sin θ cos θ − 2
∂τ0

∂x

∂τ0

∂z
v2
t sin θ cos θ − 2η

(
∂τ0

∂z

)4

v2v2
t sin2 θ cos2 θ

+(2η + 1)

(
∂τ0

∂z

)2

v2 sin2 θ +
(

∂τ0

∂z

)2

v2
t cos2 θ − 1 (22)

and

− ∂τ0

∂x

∂τ2

∂x
v2 − ∂τ0

∂z

∂τ2

∂z
v2
t = −8η

(
∂τ0

∂x

)3
∂τ1

∂x
v2v2

t sin2 θ cos2 θ + 4η

(
∂τ0

∂x

)3
∂τ1

∂z
v2v2

t sin θ cos3 −4η

(
∂τ0

∂x

)3
∂τ1

∂z
v2v2

t sin3 θ cos θ

+ 12η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂x
v2v2

t sin θ cos3 θ − 12η

(
∂τ0

∂x

)2
∂τ0

∂z

(
∂τ1

∂x

)
v2v2

t sin3 θ cos θ

− 4η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t sin4 θ

− 4η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t cos4 θ + 16η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t sin2 θ cos2 θ

− 4η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t sin4 θ

− 4η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t cos4 θ + 16η

(
∂τ0

∂x

)(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t sin2 θ cos2 θ

− 12η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂z
v2v2

t sin θ cos3 θ

+ 12η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂z
v2v2

t sin3 θ cos θ + 2
∂τ0

∂x

∂τ1

∂x
v2
t sin2 θ + 2(2η + 1)

∂τ0

∂x

∂τ1

∂z
v2 sin θ cos θ

− 2
∂τ0

∂x

∂τ1

∂z
v2
t sin θ cos θ

− 4η

(
∂τ0

∂z

)3
∂τ1

∂x
v2v2

t sin θ cos3 θ + 4η

(
∂τ0

∂z

)3
∂τ1

∂x
v2v2

t sin3 θ cos θ − 8η

(
∂τ0

∂z

)3
∂τ1

∂z
v2v2

t sin2 θ cos2 θ

− 2
∂τ0

∂z

∂τ1

∂x
v2
t sin θ cos θ + 2(2η + 1)

∂τ0

∂z

∂τ0

∂z
v2 sin2 θ − ∂τ0

∂z

∂τ1

∂z
v2
t + 2

∂τ0

∂z

∂τ1

∂z
v2
t cos2 θ. (23)
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Differences between HAM and perturbation theory

There is another approach to solving the eikonal equation in an anisotropic medium without having to find the root of a quartic equation as
in the FD method. The perturbation method using a Taylor series expansion is by far the most widespread approach developed by Alkhalifah
(2011a,b) and Stovas & Alkhalifah (2012). Such an approach has been adopted by many researchers (Stovas & Alkhalifah 2012; Alkhalifah
2013; Waheed et al. 2013; Masmoudi & Alkhalifah 2016; Stovas et al. 2016) for solving anisotropic eikonal equations. Recently, we applied
this method to the complex eikonal equation for the seismic complex traveltime (Huang & Greenhalgh 2018; Huang et al. 2018). The
perturbation method enables transforming the nonlinear problem into linear problems that can be used to derive analytic solutions of the
anisotropic eikonal equation or solved by the FD method for numerical solutions. This reduces to a simple iteration scheme for the linearized
partial difference equation system. Now we discuss the differences between the HAM and perturbation method and show why the HAM can
account for a strongly anisotropic medium.

For VTI media, the perturbation expansion based on the Taylor series expansion is given by (Alkhalifah 2011a)

τ = τ0 + τ1η + τ2η
2, (24)

where τ 1 and τ 2 are the first-order and second-order coefficients of the Taylor series expansion, respectively.
For TTI media, the perturbation expansion based on the Taylor series expansion is given by (Alkhalifah 2011b)

τ = τ0 + τηη + τθ sin θ + τη2η
2 + τηθη sin θ + τθ2 sin2 θ, (25)

where τ η, τ θ , τη2 , τ ηθ and τθ2 are the coefficients. Another approach for the TTI eikonal equation given by Stovas & Alkhalifah (2012) is

τ = τ0 + τη1η + τη2η
2, (26)

where τ η1 and τ η2 are the first-order and second-order coefficients of the Taylor series expansion, respectively.
The most obvious difference between the HAM and the perturbation method is their different expansion parameters in the expansion

series. In the case of the perturbation method shown as eqs (24)–(26), the traveltime is expressed as a Taylor series expansion with respect
to the small anisotropic parameters η and θ . In the perturbation expansion, there is an assumption of small perturbation, meaning that
the anisotropic parameter is small. In the case of the HAM, the series expansion depends on the embedding parameter q. Contrary to the
perturbation method, which is characterized by a Taylor series expansion that becomes the solution after obtaining the coefficients, the series
expansion using the HAM approaches the exact solution with an increasing embedding parameter q, arriving at the exact analytic solution
where q = 1.

Comparison of eqs (13) and (21) with eqs (24)–(26) implies two options for solving the anisotropic eikonal equations. One is to take
the traveltime with respect to the anisotropic parameters; the other is to use the series expansion with respect to the embedding parameter q.
A major feature of the former approach is the handling of lateral variation in η and θ . The perturbation method is only good for estimating
constant η in a velocity analysis framework. However, the two methods have different capabilities for computing the traveltime in anisotropic
media with lateral variation because of the different forms of the series expansions. In this case, since there is not the assumption of small
perturbation in the HAM, this method can be used for a strongly anisotropic medium.

TRAVELT IME APPROXIMATION

One primary aim of this paper is to develop an analytic solution of the eikonal equation in homogeneous VTI and TTI media. To this end, we
start with the initial traveltime solution satisfying the elliptical anisotropic eikonal equation and apply this solution to the linearized partial
differential equations derived in the last section to obtain the coefficients of the series expansions (13) and (21). Then, we obtain the analytic
solution of the eikonal equations in the anisotropic medium.

Analytical formulae for traveltime in VTI media

The analytic formula for the elliptical anisotropic eikonal equation is given by (Alkhalifah 2011a)

τ0 =
√
x2

v2
+ z2

v2
v

. (27)

Substituting eq. (27) into eq. (14), we obtain

τ1 = −
2ηv4

vx
4

√
x2

v2
+ z2

v2
v(

v2z2 + v2
vx

2
)

2
. (28)
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1654 X. Huang and S. Greenhalgh

Figure 1. Comparison of the percentage traveltime error as a function of offset at the depth of 2 km using the perturbation method (dash red line) and the
homotopy analysis method (solid green line) in VTI media with C11 = 6.3, C13 = 2.25, C33 = 4.51, C44 = 1.0, C66 = 1.5 (η = 0.28, ε = 0.19 and δ = −0.05)
for panel (a) and C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.16, ε = 0.33 and δ = 0.72) for panel (b).

Also, applying eqs (27) and (28) to eq. (15), we have

τ2 =
2ηv4

vx
4

√
x2

v2
+ z2

v2
v

(
v4z4 + 2(14η + 1)v2v2

vx
2z2 + (4η + 1)v4

vx
4
)

(
v2z2 + v2

vx
2
)

4
. (29)

Furthermore, inserting eqs (27)–(29) into eq. (16) gives

τ3 = −
4ηv4

v x
4

√
x2

v2
+ z2

v2
v

(
v8z8 + 2(29η + 2)v6v2

v x
2z6 + 3(η(248η + 41) + 2)v4v4

v x
4z4 + 2(η(36 − 13η) + 2)v2v6

v x
6z2 + (2η + 1)(5η + 1)v8

v x
8
)

(
v2z2 + v2

v x
2
)

6
. (30)
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Figure 2. Colour plot of contours of the traveltime in VTI media. (a and c) The homotopy analysis method; (b and d) the perturbation method. The elastic
parameters are C11 = 35.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.03, ε = 0.66 and δ = 0.58) for panels (a) and (b), and C11 = 40.7, C13 =
17.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.04, ε = 0.82 and δ = 0.81) for panels (c) and (d).

Analytical formulae for traveltime in TTI media

For the analytic solution of the TTI eikonal equation, we employ the same initial traveltime solution to obtain the corresponding coefficients.
The analytic formula for the elliptical anisotropic eikonal equation can be written as

τ0 =
√
x2

v2
+ z2

v2
t

. (31)

A derivation for the analytic solutions for the traveltime in homogeneous TTI media based on the initial solution for an elliptical
anisotropic background medium is provided in the Appendix.

RESULTS

Comparison of HAM with perturbation method

To validate and test the accuracy of the analytic formulae using the HAM, we first compute the traveltimes in homogeneous VTI media. Here
we use the group velocity formulae given by Zhou & Greenhalgh (2004) to construct the wave fronts. The phase velocity is given by

c1 =
√
P ±

√
P2 − Q (32)
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1656 X. Huang and S. Greenhalgh

Figure 3. The percentage relative errors of the traveltime at a depth of 2 km for homogeneous VTI media using the homotopy analysis method (panels a and
c) and perturbation method (panels b and d).The size of the model is 4 km × 4 km. The source is located at (2 km, 10 m). The elastic parameters are C11 =
35.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.03, ε = 0.66 and δ = 0.72) for panels (a) and (b), and C11 = 40.7, C13 = 17.2, C33 = 15.4, C44

= 4.2, C66 = 9.0 (η = −0.04, ε = 0.82 and δ = 0.81) for panels (c) and (d).

where

P = Q1 + Q2

2
, Q = Q1Q2 − Q3 (33)

with⎧⎪⎪⎨
⎪⎪⎩

Q1 = C44 + (C11 − C44) sin2 ϑ

Q2 = C33 + (C44 − C33) sin2 ϑ

Q3 = 0.25(C13 + C44)2 sin2 2ϑ

. (34)

Then, the group velocity can be written as

U1 =
√
c2

1 +
(

∂c1

∂ϑ

)2

(35)

where

∂c1

∂ϑ
= 1

2c1

[
∂P

∂ϑ
± 1√

P2 − Q

(
P

∂P

∂ϑ
− 0.5

∂Q

∂ϑ

)]
(36)
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Figure 4. Colour plot of coefficients of the traveltime expansion. Panels (a) and (b) show the first-order expansion coefficient; panels (c) and (d) show the
second-order expansion coefficient. The elastic parameters are C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.16, ε = 0.33 and δ = 0.81)
for panels (a) and (c), and C11 = 35.7, C13 = 17.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.1, ε = 0.66 and δ = 0.92) for panels (b) and (d).

with

∂P

∂ϑ
= 0.5 (C11 − C33) sin 2ϑ (37)

and

∂Q

∂ϑ
= [Q1 (C44 − C33) + Q2 (C11 − C44)] sin 2ϑ − 0.5 (C13 + C44)2 sin 4ϑ . (38)

We will use the traveltimes constructed using the above formulae as the reference traveltimes and compare the relative error of traveltimes
using the HAM and the perturbation method.

Fig. 1 shows the comparison of the traveltime error as a function of offset at the depth of 2 km using the perturbation method (red dash
line) and the HAM (green solid line) in VTI media with C11 = 6.3, C13 = 2.25, C33 = 4.51, C44 = 1.0, C66 = 1.5 (η = 0.28, ε = 0.19 and δ

= −0.05) for (a) and C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.16, ε = 0.33 and δ = 0.72) for (b). The size of the
model is 4 km × 4 km and the source is located at (10 m, 10 m). In this computation, we use the traveltimes from the exact solution (Zhou
& Greenhalgh 2004) in the actual medium as the reference traveltimes. From Fig. 1, we can observe that the relative errors of both methods
increase gradually with increasing distance in the x-direction. At around 4 km in the x-direction, the relative error arrives at the maximum
value of 1. This can be easily explained. The larger the distance from the source, the larger errors will be. However, when the distance in the
x-direction is less than 2 km, the values of the relative error using the HAM are bigger than those from the perturbation method. For a large
offset, the results using the formulae from the HAM have a higher accuracy.

Traveltimes in strongly anisotropic media

To examine the capabilities of the analytic formulae developed in this paper and compare the results with the results from the perturbation
method, we compute the traveltimes and their relative errors in more strongly anisotropic media. The size of the model is 4 km × 4 km and
the source is located at (2 km, 10m). Fig. 2 shows a colour plot of the contours of the traveltimes. Figs 2(a) and (c) show the results using
the HAM and Figs 2(b) and (d) show the results using the perturbation method. The elastic parameters are C11 = 35.7, C13 = 15.2, C33 =
15.4, C44 = 4.2, C66 = 9.0 (η = 0.03, ε = 0.66 and δ = 0.58) for (a) and (b), and C11 = 40.7, C13 = 17.2, C33 = 15.4, C44 = 4.2, C66 =
9.0 (η = 0.04, ε = 0.82 and δ = 0.81) for (c) and (d). From Fig. 2, it can be seen that although all the formulae yield smooth, continuous
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1658 X. Huang and S. Greenhalgh

Figure 5. Effects of the anisotropic parameters on the traveltimes. The size of the model is 4 km × 4 km and the source is located at (2 km, 10 m). Panels
(a) and (b) show results using the homotopy analysis method at the locations of (1 km, 1 km) and (2.5 km, 4 km); panels (c) and (d) show the results using the
perturbation method at the locations of (1 km, 1 km) and (2.5 km, 4 km).

contours of the traveltime, there is some difference in the region far from the source. Comparing Figs 2(a) and (c) with Figs 2(b) and (d), one
can recognize the difference between the results from the two methods. Specifically, by applying the chosen embedding parameter q and the
HAM, the traveltime formulae can include the anisotropic parameters. By contrast, the analytic formulae with the perturbation method cannot
give an accurate result in a strongly anisotropic medium but only give the results with a small perturbation of the anisotropic parameter. The
difference in the results is caused mainly by the anisotropic parameters in which the traveltimes have different sensitivity behaviours to the
various anisotropic parameters.

Fig. 3 shows the comparison of the relative errors of the traveltimes at a depth of 2 km using the perturbation method (b and d) and HAM
(a and c). The experiments show that traveltime formulae with different methods can yield differing accuracy in the traveltime computation.
From Fig. 3, one can observe that the formulae using the HAM give more satisfactory results because the relative errors are relatively small.
For the results from the formulae from the HAM, when the distance in the direction of the x-axis changes from 0 to 2 m, the errors become
larger; however, when the distance changes from 2 to 4 m, the errors decrease with increasing distance. For the results at a large offset, the
errors using the formulae from the perturbation analysis are larger than those from the HAM.

Exact series expansion coefficients

In this section, we have computed the coefficients of the series expansion. We use the same model size 4 km × 4 km as the last section but the
source is located at (2 km, 10 m). Fig. 4 shows a colour plot of the coefficients of the traveltimes expansion in VTI media. Figs 4(a) and (b)
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Figure 6. Colour plot of the traveltime using a modified Hess model with variable η. The size of the model is (18 km, 7.5 km). The source is located at the
centre of the model (9 km, 3.75 km). Plot (a) shows velocity model, plot (b) shows δ model, plot (c) shows η model and plot (d) shows the traveltime.

show the results of the first-order coefficients and Figs 4(c) and (d) show the results of the second-order coefficients. The elastic parameters
are C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.16, ε = 0.33 and δ = 0.81) for (a) and (c), and C11 = 35.7, C13 = 17.2,
C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.1, ε = 0.66 and δ = 0.92) for (b) and (d). From Fig. 4, differences between the first-order coefficients
and the second-order coefficients are notable. Whereas for the first-order coefficients, the large values are concentrated in the region along
the vertical direction from the source, the values of the second-order coefficients are relatively large near the boundaries on both sides of the
model. However, there is some similarity in shape between the first-order coefficients and the second-order coefficients, which shows similar
effects of the coefficients on the traveltimes in VTI media.

Effects of anisotropic parameters

Finally, we perform numerical tests to analyse the effects of the anisotropic parameters on the traveltimes. The size of the model is 4 km × 4 km
and the source is located at (2 km, 10 m). The NMO velocity is 2 km s−1 and the anisotropic parameters are η = 0.2 and δ = 0.2, respectively.
Figs 5(a) and (c) show colour plots of the traveltimes at a fixed location of (1 km, 1 km). Figs 5(b) and (d) show the colour plots of the
traveltimes at a fixed location of (2.5 km, 4.0 km). From Fig. 5, one can observe that there are some common features: (1) whether using
the HAM or the perturbation theory, there are more substantial effects on the traveltimes with an increasing anisotropic parameter η; (2)
the maximum values for both methods occur in the region where the values of the anisotropic parameters η and δ are maximal. As for the
locations of (1 km, 1 km) and (2.5 km, 4.0 km), the images are similar. As expected, the effects increase as the anisotropic parameters increase.

All the numerical tests so far have been based on the constant η. In real cases, however, η will be variable. One of the advantages of
the approach is to deal with the variable η. We computed the traveltime in the Hess VTI model with variable η. Fig. 6 shows a colour plot of
the traveltime using a modified Hess model with variable η. The size of the model is (18 km, 7.5 km). The source is located at the centre of
the model (9 km, 3.75 km). Plot (a) shows the velocity model, plot (b) shows the δ model, plot (c) shows the η model and plot (d) shows the
traveltime.

DISCUSS ION AND CONCLUS ION

We have presented a methodology and formulations for retrieving the eikonal equations for VTI and TTI media. The main advantage of the
new HAM formulation in this paper is that it can be used for strongly anisotropic media. The formulation involves the initial approximation
for the traveltimes, which is given by an analytical formulation or estimated by a numerical method. The derived linear equations involve
the anisotropic parameters. We have derived the traveltime approximations for computing the traveltimes in VTI and TTI media using the
HAM. We have demonstrated that the traveltime approximations based on the HAM can be used for computing the traveltimes in strongly
anisotropic media. A comparison between traveltime approximations from the HAM and the perturbation theory has been carried out which
shows that in strongly anisotropic media, the former has a higher accuracy. Finally, we have shown the effects of the coefficients of the series
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solutions and the anisotropic parameters on the traveltimes. Because the HAM does not rely on the small perturbation assumption, we think
that it is promising for applications to geophysical problems, for example, renormalization of scattering series.
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APPENDIX : TRAVELT IME APPROXIMATION IN TT I MEDIA

In this appendix, we derive the traveltime approximations based on the HAM. Substituting eqs (31) into (22), we obtain

τ1 = 1

v2v2
t

(
x2v2

t + v2z2
)

2

(√
x2v2

t + v2z2

v2v2
t

(−2ηv8z4 sin2 θ + 2ηv8z4 sin2 θ cos2 θ + v8z4
(− sin2 θ

)
(A1)

v6x2z2
(− sin2 θ

)
v2
t − 2v6xz3 sin θ cos θv2

t + v6z4v2
t − v6z4 cos2 θv2

t − 2ηv6x2z2 sin2 θv2
t − 4ηv6

xz3 sin θ cos θv2
t + 4ηv6xz3 sin θ cos3 θv2

t − 4ηv6xz3 sin3 θ cos θv2
t − 2v4x3z sin θ cos θv4

t + 2v4x2z2v4
t

−2v4x2z2 cos2 θv4
t + 2v4xz3 sin θ cos θv4

t − 4ηv4x3z sin θ cos θv4
t − 2ηv4x2z2 cos2 θv4

t + 2ηv4x2z2

cos4 θv4
t − 8ηv4x2z2 sin2 θ cos2 θv4

t + 2ηv4x2z2 sin4 θv4
t + v2x4v6

t − v2x4 cos2 θv6
t + 2v2x3z sin θ

cos θv6
t v

2x2z2 sin2 θv6
t − 2ηv2x4 cos2 θv6

t − 4ηv2x3z sin θ cos3 θv6
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t −
2ηx4 sin2 θ cos2 θv8

t + x4 sin2 θv8
t

) + v6z4v2
t + 2v4x2z2v4

t + v2x4v6
t

)

and

τ2 = τ21 + τ22 + τ23 + τ24 + τ25, (A2)
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where

τ21 = 8η2v16z8 sin4 θ − 24η2v16z8 sin4 θ cos2 θ + 8ηv16z8 sin4 θ − 12ηv16z8 sin4 θ cos2 θ (A3)
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t

+16η2v14z8 sin6 θ cos2 θv2
t + 10v12x4z4 sin4 θv4

t + 8v12x3z5 sin3 θ cos θv4
t − 9v12x2z6 sin2 θ

v4
t + 20v12x2z6 sin2 θ cos2 θv4

t − 6v12xz7 sin θ cos θv4
t + 8v12xz7 sin θ cos3 θv4

t + v12z8v4
t

−3v12z8 cos2 θv4
t + 2v12z8 cos4 θv4

t − 8v12z8 sin2 θ cos2 θv4
t + 40ηv12x4z4 sin4 θv4

t − 32η

v12x4z4 sin4 θ cos2 θv4
t + 32ηv12x3z5 sin3 θ cos θv4

t − 80ηv12x3z5 sin3 θ cos3 θv4
t + 56η

v12x3z5 sin5 θ cos θv4
t − 18ηv12x2z6 sin2 θv4

t + 68ηv12x2z6 sin2 θ cos2 θv4
t − 20ηv12x2z6

sin2 θ cos4 θv4
t − 16ηv12x2z6 sin4 θ cos2 θv4

t + 4ηv12x2z6 sin6 θv4
t − 12ηv12xz7 sin θ cos θ

v4
t + 52ηv12xz7 sin θ cos3 θv4

t − 40ηv12xz7 sin θ cos5 θv4
t − 20ηv12xz7 sin3 θ cos θv4

t + 80ηv12

xz7 sin3 θ cos3 θv4
t − 16ηv12xz7 sin5 θ cos θv4

t − 16ηv12z8 sin2 θ cos2 θv4
t + 16ηv12z8 sin2 θ

cos4 θv4
t − 16ηv12z8 sin4 θ cos2 θv4

t + 40η2v12x4z4 sin4 θv4
t − 64η2v12x4z4 sin4 θ cos2 θv4

t

+32η2v12x3z5 sin3 θ cos θv4
t − 160η2v12x3z5 sin3 θ cos3 θv4

t + 192η2v12x3z5 sin3 θ cos5 θ

v4
t + 112η2v12x3z5 sin5 θ cos θv4

t − 192η2v12x3z5 sin5 θ cos3 θv4
t + 16η2v12x2z6 sin2 θ cos2 θ

v4
t + 48η2v12x2z6 sin2 θ cos4 θv4

t − 64η2v12x2z6 sin2 θ cos6 θv4
t − 32η2v12x2z6,

τ22 = sin4 θ cos2 θv4
t + 192η2v12x2z6 sin4 θ cos4 θv4

t + 8η2v12x2z6 sin6 θv4
t − 64η2v12x2z6 sin6 θ (A4)

cos2 θv4
t + 32η2v12xz7 sin θ cos3 θv4

t − 64η2v12xz7 sin θ cos5 θv4
t + 32η2v12xz7 sin θ cos7 θv4

t

+160η2v12xz7 sin3 θ cos3 θv4
t − 160η2v12xz7 sin3 θ cos5 θv4

t − 32η2v12xz7 sin5 θ cos θv4
t

+160η2v12xz7 sin5 θ cos3 θv4
t − 32η2v12xz7 sin7 θ cos θv4

t + 4v10x6z2 sin4 θv6
t + 16v10x5z3

sin3 θ cos θv6
t − 9v10x4z4 sin2 θv6

t + 20v10x4z4 sin2 θ cos2 θv6
t − 18v10x3z5 sin θ cos θv6

t + 24v10

x3z5 sin θ cos3 θv6
t − 8v10x3z5 sin3 θ cos θv6

t + 4v10x2z6v6
t − 12v10x2z6 cos2 θv6

t + 8v10x2z6

cos4 θv6
t − 16v10x2z6 sin2 θ cos2 θv6

t − 4v10x2z6 sin4 θv6
t + 6v10xz7 sin θ cos θv6

t − 8v10xz7

sin θ cos3 θv6
t + 8v10xz7 sin3 θ cos θv6

t + 4v10z8 sin2 θ cos2 θv6
t + 16ηv10x6z2 sin4 θv6

t

+64ηv10x5z3 sin3 θ cos θv6
t − 80ηv10x5z3 sin3 θ cos3 θv6

t + 48ηv10x5z3 sin5 cos v6
t − 18ηv10

x4z4 sin2 v6
t + 50ηv10x4z4 sin2 cos2 v6

t − 56ηv10x4z4 sin2 cos4 v6
t + 80ηv10x4z4 sin4 θ cos2 θv6

t

−12ηv10x4z4 sin6 θv6
t − 36ηv10x3z5 sin θ cos θv6

t + 120ηv10x3z5 sin θ cos3 θv6
t − 56ηv10x3

z5 sin θ cos5 θv6
t − 56ηv10x3z5 sin3 θ cos θv6

t + 80ηv10x3z5 sin3 θ cos3 θv6
t + 16ηv10x3z5

sin5 θ cos θv6
t − 6ηv10x2z6 cos2 θv6

t + 18ηv10x2z6 cos4 θv6
t − 12ηv10x2z6 cos6 θv6

t − 72η

v10x2z6 sin2 θ cos2 θv6
t + 96ηv10x2z6 sin2 θ cos4 θv6

t + 2ηv10x2z6 sin4 θv6
t − 40ηv10x2

z6 sin4 θ cos2 θv6
t − 16ηv10xz7 sin θ cos3 θv6

t + 16ηv10xz7 sin θ cos5 θv6
t + 16ηv10xz7

sin3 θ cos θv6
t − 80ηv10xz7 sin3 θ cos3 θv6

t + 32ηv10xz7 sin5 θ cos θv6
t + 16η2v10x6z2

sin4 θv6
t + 64η2v10x5z3 sin3 θ cos θv6

t − 160η2v10x5z3 sin3 θ cos3 θv6
t + 96η2v10x5z3

sin5 θ cos θv6
t − 48η2v10x4z4 sin2 θ cos4 θv6

t + 208η2v10x4z4 sin2 θ cos6 θv6
t + 160η2

v10x4z4 sin4 cos2 θθv6
t ,
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τ23 = −544η2v10x4z4 sin4 θ cos4 θv6
t − 24η2v10x4z4 sin6 θv6

t + 208η2v10x4z4 sin6 θ cos2 θv6
t + 64η2 (A5)

v10x3z5 sin θ cos3 θv6
t − 64η2v10x3z5 sin θ cos7 θv6

t + 448η2v10x3z5 sin3 θ cos5 θv6
t + 32η2v10x3z5

sin5 θ cos θv6
t − 448η2v10x3z5 sin5 θ cos3 θv6

t + 64η2v10x3z5 sin7 θ cos θv6
t + 16η2v10x2z6 cos4 θ

v6
t − 32η2v10x2z6 cos6 θv6

t + 16η2v10x2z6 cos8 θv6
t + 224η2v10x2z6 sin2 θ cos4 θv6

t − 224η2v10x2z6

sin2 θ cos6 θv6
t − 128η2v10x2z6 sin4 θ cos2 θv6

t + 480η2v10x2z6 sin4 θ cos4 θv6
t − 224η2v10x2z6

sin6 θ cos2 θv6
t + 16η2v10x2z6 sin8 θv6

t + 8v8x7z sin3 θ cos θv8
t − 3v8x6z2 sin2 θv8

t + 12v8x6z2 sin2 θ

cos2 θv8
t − 18v8x5z3 sin θ cos θv8

t + 24v8x5z3 sin θ cos3 θv8
t − 16v8x5z3 sin3 θ cos θv8

t + 6v8x4z4v8
t

−18v8x4z4 cos2 θv8
t + 12v8x4z4 cos4 θv8

t − 16v8x4z4 sin2 θ cos2 θv8
t − 8v8x4z4 sin4 θv8

t + 18v8x3z5

sin θ cos θv8
t − 24v8x3z5 sin θ cos3 θv8

t + 16v8x3z5 sin3 θ cos θv8
t − 3v8x2z6 sin2 θv8

t + 12v8x2z6

sin2 θ cos2 θv8
t − 8v8xz7 sin3 θ cos θv8

t + 32ηv8x7z sin3 θ cos θv8
t − 6ηv8x6z2 sin2 θv8

t + 32ηv8x6

z2 sin2 θ cos2 θv8
t − 64ηv8x6z2 sin2 θ cos4 θv8

t + 112ηv8x6z2 sin4 θ cos2 θv8
t − 16ηv8x6z2 sin6 θ

v8
t − 36ηv8x5z3 sin θ cos θv8

t + 84ηv8x5z3 sin θ cos3 θv8
t − 32ηv8x5z3 sin θ cos5 θv8

t − 52ηv8x5z3

sin3 θ cos θv8
t + 80ηv8x5z3 sin3 θ cos3 θv8

t − 18ηv8x4z4 cos2 θv8
t + 44ηv8x4z4 cos4 θv8

t − 24ηv8

x4z4 cos6 θv8
t − 112ηv8x4z4 sin2 θ cos2 θv8

t + 160ηv8x4z4 sin2 θ cos4 θv8
t + 4ηv8x4z4 sin4 θv8

t

−48ηv8x4z4 sin4 θ cos2 θv8
t − 52ηv8x3z5 sin θ cos3 θv8

t + 32ηv8x3z5 sin θ cos5 θv8
t + 52ηv8x3z5

sin3 cos θv8
t − 80ηv8x3z5 sin3 θ cos3 θv8

t + 16ηv8x2z6 sin2 θ cos2 θv8
t − 64ηv8x2z6 sin2 θ cos4 θ

v8
t + 112ηv8x2z6 sin4 θ cos2 θv8

t − 16ηv8x2z6 sin6 θv8
t + 32η2v8x7z sin3 θ cos θv8

t + 16η2v8x6

z2 sin2 θ cos2 θv8
t − 128η2v8x6z2 sin2 θ cos4 θv8

t + 224η2v8x6z2 sin4 θ cos2 θv8
t − 32η2v8x6z2

sin6 θv8
t + 32η2v8x5z3 sin θ cos3 θv8

t + 32η2v8x5z3 sin θ cos5 θv8
t + 96η2v8x5z3 sin θ cos7 θ

v8
t − 544η2v8x5z3 sin3 θ cos5 θv8

t + 544η2v8,

τ24 = x5z3 sin5 θ cos3 θv8
t − 96η2v8x5z3 sin7 θ cos θv8

t + 40η2v8x4z4 cos4 θv8
t − 24η2v8x4z4 cos6 θv8

t (A6)

−16η2v8x4z4 cos8 θv8
t + 160η2v8x4z4 sin2 θ cos4 θv8

t + 320η2v8x4z4 sin2 θ cos6 θv8
t − 48η2v8x4z4

sin4 θ cos2 θv8
t − 768η2v8x4z4 sin4 θ cos4 θv8

t + 320η2v8x4z4 sin6 θ cos2 θv8
t − 16η2v8x4z4 sin8 θ

v8
t + 96η2v8x3z5 sin θ cos5 θv8

t − 96η2v8x3z5 sin θ cos7 θv8
t − 160η2v8x3z5 sin3 θ cos3 θv8

t + 544η2

v8x3z5 sin3 θ cos5 θv8
t − 544η2v8x3z5 sin5 θ cos3 θv8

t + 96η2v8x3z5 sin7 θ cos θv8
t + 4v6x8 sin2 θ

cos2 θv10
t − 6v6x7z sin θ cos θv10

t + 8v6x7z sin θ cos3 θv10
t − 8v6x7z sin3 θ cos θv10

t + 4v6x6z2v10
t

−12v6x6z2 cos2 θv10
t + 8v6x6z2 cos4 θv10

t − 16v6x6z2 sin2 θ cos2 θv10
t − 4v6x6z2 sin4 θv10

t + 18v6

x5z3 sin θ cos θv10
t − 24v6x5z3 sin θ cos3 θv10

t + 8v6x5z3 sin3 θ cos θv10
t − 9v6x4z4 sin2 θv10

t + 20

v6x4z4 sin2 θ cos2 θv10
t − 16v6x3z5 sin3 θ cos θv10

t + 4v6x2z6 sin4 θv10
t + 16ηv6x8 sin2 θ cos2 θ

v10
t − 12ηv6x7z sin θ cos θv10

t + 16ηv6x7z sin θ cos3 θv10
t − 16ηv6x7z sin θ cos5 θv10

t − 16ηv6x7

z sin3 θ cos θv10
t + 80ηv6x7z sin3 θ cos3 θv10

t − 32ηv6x7z sin5 θ cos θv10
t − 18ηv6x6z2 cos2 θv10

t

+34ηv6x6z2 cos4 θv10
t − 12ηv6x6z2 cos6 θv10

t − 72ηv6x6z2 sin2 θ cos2 θv10
t + 96ηv6x6z2 sin2 θ

cos4 θv10
t + 2ηv6x6z2 sin4 θv10

t − 40ηv6x6z2 sin4 θ cos2 θv10
t − 56ηv6x5z3 sin θ cos3 θv10

t + 56

ηv6x5z3 sin θ cos5 θv10
t + 56ηv6x5z3 sin3 θ cos θv10

t − 80ηv6x5z3 sin3 θ cos3 θv10
t − 16ηv6x5

z3 sin5 θ cos θv10
t + 50ηv6x4z4 sin2 θ cos2 θv10

t − 56ηv6x4z4 sin2 θ cos4 θv10
t + 80ηv6x4z4 sin4

θ cos2 θv10
t − 12ηv6x4z4 sin6 θv10

t + 80ηv6x3z5 sin3 θ cos3 θv10
t − 48ηv6x3z5 sin5 θ cos θv10

t

+16η2v6x8 sin2 θ cos2 θv10
t − 32η2v6x7z sin θ cos5 θv10

t + 160η2v6x7z sin3 θ cos3 θv10
t − 64η2

v6x7z sin5 θ cos θv10
t + 32η2v6x6z2 cos4 θv10

t + 8η2v6x6z2 cos6 θv10
t + 16η2v6x6z2 cos8 θv10

t

−32η2v6x6z2 sin2 θ cos4 θv10
t − 224η2v6x6z2 sin2 θ cos6 θv10

t + 48η2v6x6z2 sin4 θ cos2 θv10
t + 480

η2v6x6z2 sin4 θ cos4 θv10
t − 224η2v6x6z2 sin6 θ cos2 θv10

t + 16η2v6x6z2 sin8 θv10
t + 112η2v6

x5z3 sin θ cos5 θv10
t + 64η2v6x5z3 sin θ cos7 θv10

t − 160η2v6x5z3 sin3 θ cos3 θv10
t − 448η2v6x5

z3 sin3 θ

and
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τ25 =
(

cos5 θv10
t + 448η2v6x5z3 sin5 θ cos3 θv10

t − 64η2v6x5z3 sin7 θ cos θv10
t − 64η2v6x4z4 sin2 θ cos4 θv10

t (A7)

+208η2v6x4z4 sin2 θ cos6 θv10
t − 544η2v6x4z4 sin4 θ cos4 θv10

t + 208η2v6x4z4 sin6 θ cos2 θv10
t + v4x8

v12
t − 3v4x8 cos2 θv12

t + 2v4x8 cos4 θv12
t − 8v4x8 sin2 θ cos2 θv12

t + 6v4x7z sin θ cos θv12
t − 8v4x7z

sin θ cos3 θv12
t − 9v4x6z2 sin2 θv12

t + 20v4x6z2 sin2 θ cos2 θv12
t − 8v4x5z3 sin3 θ cos θv12

t + 10v4x4z4

sin4 θv12
t − 6ηv4x8 cos2 θv12

t + 8ηv4x8 cos4 θv12
t − 16ηv4x8 sin2 θ cos2 θv12

t + 16ηv4x8 sin2 θ cos4 θ

v12
t − 16ηv4x8 sin4 θ cos2 θv12

t − 20ηv4x7z sin θ cos3 θv12
t + 40ηv4x7z sin θ cos5 θv12

t + 20ηv4x7z

sin3 θ cos θv12
t − 80ηv4x7z sin3 θ cos3 θv12

t + 16ηv4x7z sin5 θ cos θv12
t + 52ηv4x6z2 sin2 θ cos2 θv12

t

−20ηv4x6z2 sin2 θ cos4 θv12
t − 16ηv4x6z2 sin4 θ cos2 θv12

t + 4ηv4x6z2 sin6 θv12
t + 80ηv4x5z3 sin3 θ

cos3 θv12
t − 56ηv4x5z3 sin5 θ cos θv12

t − 32ηv4x4z4 sin4 θ cos2 θv12
t + 8η2v4x8 cos4 θv12

t + 32η2

v4x8 sin2 θ cos4 θv12
t − 32η2v4x8 sin4 θ cos2 θv12

t + 16η2v4x7z sin θ cos5 θv12
t − 32η2v4x7z sin θ

cos7 θv12
t + 160η2v4x7z sin3 θ cos5 θv12

t − 160η2v4x7z sin5 θ cos3 θv12
t + 32η2v4x7z sin7 θ cos θv12

t

−88η2v4x6z2 sin2 θ cos4 θv12
t − 64η2v4x6z2 sin2 θ cos6 θv12

t + 192η2v4x6z2 sin4 θ cos4 θv12
t − 64

η2v4x6z2 sin6 θ cos2 θv12
t − 192η2v4x5z3 sin3 θ cos5 θv12

t + 192η2v4x5z3 sin5 θ cos3 θv12
t − 3v2

x8 sin2 θv14
t + 8v2x8 sin2 θ cos2 θv14

t + 8v2x6z2 sin4 θv14
t + 18ηv2x8 sin2 θ cos2 θv14

t − 28ηv2x8

sin2 θ cos4 θv14
t + 16ηv2x8 sin4 θ cos2 θv14

t − 8ηv2x7z sin5 θ cos θv14
t − 44ηv2x6z2 sin4 θ cos2 θv14

t

−24η2v2x8 sin2 θ cos4 θv14
t + 16η2v2x8 sin2 θ cos6 θv14

t − 32η2v2x8 sin4 θ cos4 θv14
t + 16η2v2x8

sin6 θ cos2 θv14
t + 64η2v2x6z2 sin4 θ cos4 θv14

t + 2x8 sin4 θv16
t − 12ηx8 sin4 θ cos2 θv16

t + 16η2

x8 sin4 θ cos4 θv16
t + (

v12z6v6
t + 3v10x2z4v8

t + 3v8x4z2v10
t + v6x6v12

t

) √
x2v2

t + v2z2

v2v2
t

)

/ (
v6v6

t

(
x2v2

t + v2z2
)

3

√
x2v2

t + v2z2

v2v2
t

)
.
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1 Introduction

Full waveform inversion (FWI) is a powerful tool for reconstructing the subsurface struc-
ture and estimating the physical parameters, e.g. P- and S- wave velocities in the sub-
surface [1]. Advances in full waveform inversion make it possible to do the time-lapse
seismic full waveform inversion. Time-lapse seismic is a widely used tool for the dy-
namic reservoir monitoring and assessing the reservoir changes due to production [2–4].
Recent studies have shown the applicability of the full waveform inversion for the time-
lapse seismic problem [5–10].

Essentially, the seismic full waveform inversion can be viewed as a seismic inverse
scattering problem since the scattering theory provides the relations between the model
parameter perturbation and the seismic waveform [1, 11–14]. Seismic scattering method
is an important technique for seismic data processing, in which the scattered wavefield
results from a medium perturbation. The perturbation property of the seismic scattering
theory renders it useful not only for seismic forward modeling but also for seismic inver-
sion [15–17]. Since the 1980s, the direct inversion approach based on the linearized wave
equation using the seismic scattering method has been widely used [18–23].

Jakobsen and Ursin [24] developed the distorted Born iterative T-matrix method
(DBIT) for full waveform inversion based on integral equation methods. The underly-
ing idea of this method is to reduce a nonlinear inverse scattering problem to a sequence
of linear inverse scattering problems. For this method, there are several important fea-
tures: (1) the sensitivity matrix is expressed explicitly in terms of the Green’s functions,
which is helpful to reduce the computational cost [24, 25]; (2) this method can be applied
to the cases with multiple sources; (3) the computational cost and convergence problems
can be addressed by the T-matrix approach by domain decomposition and renormaliza-
tion methods [24, 27–29, 61]. These features make the distorted Born iterative T-matrix
method more applicable to seismic full waveform inversion. Additional works on this
method can be found in Jakobsen and Wu [29, 31] and Wang et al. [32]. Recently, the
integral equation formulations were applied to the time-lapse seismic data and to esti-
mate the uncertainty [33]. However, a major limitation of the time-lapse full waveform
inversion is that the computational cost is expensive.

The main purpose of this paper is to develop a fast waveform inversion scheme for
the time-lapse inversion. We develop a target-oriented inversion method, which is based
on the idea of local inversion. Thus, if we develop a fast repeat-inversion scheme, which
is only for a small region, the computational cost can be significantly reduced. It makes
sense because the effects of the production on the reservoir changes are considered as
small perturbations of the earth model [34]. Several studies on the localized full wave-
form inversion have been proposed to approach this topic. Borisov et al. [35] used the
finite-difference injection method to develop an efficient 3-D time-lapse full waveform
inversion. Willemsen et al. [36] derive a local solver for full waveform inversion of a
small region of interest. Malcolm and Willemsen [37] have developed local solvers for
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localized inversion. Broggini et al. [38] derive the immersive boundary conditions for lo-
cal wavefields computation. Willemsen and Malcolm [39] applied the coupled acoustic-
elastic local solver to phase inversion. Yuan et al. [10] performed a localized waveform
inversion time-lapse survey by combining the wavefield injection and extrapolation. Un-
like the methods above, we develop a target-oriented waveform inversion scheme based
on the distorted Born iterative T-matrix method [24] and Gaussian beam based Green’s
function [40–47].

The integral equation formulation of full waveform inversion provides significant
advantages over other methods for the target-oriented inversion since it allows the sen-
sitivity matrix to be expressed explicitly in terms of the Green’s functions. The distorted
Born iterative T-matrix method was introduced as a general FWI method by Jakobsen
and Ursin [24]; but they suggested that it could be very suitable for time-lapse inversion,
since the T-matrix approach is naturally target-oriented, in the sense that the inversion
can be focused on any target if the rest of the model is assumed known. In this paper,
we have performed a numerical study of time-lapse inversion based on the distorted
Born iterative T-matrix method, to verify that this method reduce computational time for
time-lapse inversion. The use of Gaussian beam based Green’s functions for the static
Reference medium also represent a novel aspect of the present study. The target-oriented
inversion method of this paper has the following advantages: (1) When using integral
equation methods, it is only necessary to discretize the target area if the Green’s func-
tions for the rest of the model is known. This is in contrast to the finite difference method
where it is required to discretize the whole model, unless special grid injection method is
used; (2) The scattering volume V in the T-matrix formulation is flexible and can be equal
to the target area in time-lapse inversion; (3) Another advantage if that compared to finite
difference method, there is no grid dispersion error which exists in numerical differential
equation solvers, and the integral equation method has a smaller accumulated error [48].
For our approach, two critical aspects are (1) to calculate the initial local wavefields of the
target region and (2) its iterative updating for the local inversion. To this end, we employ
two methods, called Gaussian beam based Green’s function approach [40, 45] and the
T-matrix method. These two methods are used to calculate the initial local wavefields
of the target region. For the updating of the wavefields in the local inversion, we use
the T-matrix method. The T-matrix method is from quantum mechanical scattering the-
ory [50–55]. Since its introduction into rock physics, the T-matrix method [29, 56–58] has
been successfully used to solve the seismic scattering forward problem. More recently,
this approach has been extended to seismic inversion [24].

The paper is organized as follows: we first review the seismic scattering forward
problem including the Lippmann-Schwinger equation and the T-matrix approach. Then,
we review the seismic inverse scattering method for waveform inversion. Further, we
present our target-oriented inversion scheme for time-lapse seismic data in Section 4.
The new aspects of the paper is described in Section 4 called Time-lapse inversion. Both
Sections 4.1 and 4.2 are new compared with the work of [24], but the sequential and
double difference strategies are less new than the target-oriented aspects discussed in
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Sections 4.2. Finally, we give the inverted results for the full baseline model and the
target-oriented inverted results for the time-lapse data.

2 Seismic direct scattering problem

For the inversion of the time-lapse waveform data, we use the seismic scattering method
to extrapolate the wavefield. In this section, we review the Lippmann-Schwinger equa-
tion, Green’s operators and T-matrix theory.

2.1 The Lippmann-Schwinger equation

The Green’s function for the scalar wave equation in the frequency domain satisfies [59]

(

▽2+
ω2
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difference method [1]. In this work, we employ the Gaussian beam summation method
to calculate the background Green’s function. Following the recent approach [45], the
method implements an estimate of the Green’s function in the inhomogeneous back-
ground medium that requires (1) a dynamic ray tracing for Gaussian beam computation,
(2) the Green’s function calculation by Gaussian beam summation. The reason why we
use the Gaussian beam is that (1) we can start the inversion with a smoothed inhomo-
geneous background model; (2) the boundary reflection can be reduced. The details of
the method are shown in Appendix A. For the use of the operator form in the follow-
ing section, we rewrite the Lippmann-Schwinger equation (2.4) in a form of a product of
continuous matrices

G
(

r,r′,ω
)

=G(0)
(

r,r′,ω
)

+
∫

D
dr1dr2G(0) (r1,r2,ω)V (r1,r2)G

(

r2,r′,ω
)

, (2.6)

where V (r1,r2) =ω2χ(r1)δ(r1−r2), V is a local scattering potential operator, which can
be represented by a diagonal matrix in coordinate representation [29, 31].

2.2 The Green’s operators and T-matrix approach

Here, we rewrite the Lippmann-Schwinger equation (2.6) in operator notation

G=G(0)+G(0)VG. (2.7)

Following the recent works [24, 56–58], we introduce the T-matrix approach into the full
waveform inversion approach. Referring to Jakobsen and Ursin [24], we introduce the
T-matrix approach by

VG=TG(0), (2.8)

where represents the T-matrix. Applying the relation (2.8) to the Lippmann-Schwinger
equation (2.7), we have

G=G(0)+G(0)TG(0). (2.9)

For the Green’s operators above, we haven’t specified any matrix elements in any par-
ticular representation. However, for application to the seismology, we introduce the re-
stricted Green’s operators. Note that the above equation is independent of the source-
receiver configuration. By applying the relation (2.8) to the Lippmann-Schwinger equa-
tion (2.7), we have

GVS =G
(0)
VS+G

(0)
VV TG

(0)
VS , (2.10)

where G
(0)
VS and GVS are the source-dependent Green’s functions in the background and

actual media, respectively. Similarly, we get Green’s functions from the source to the
receiver, volume to volume, the scattering point to the receiver, respectively:

GRS =G
(0)
RS +G

(0)
RS TG

(0)
RV ,

GVV =G
(0)
VV+G

(0)
VV TG

(0)
VV ,

GRV =G
(0)
RV+G

(0)
RV TG

(0)
VV .

(2.11)
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Since in Eq. (2.11) G
(0)
RS is arbitrary, the T-matrix satisfies the Lippmann-Schwinger type

equation [24]

T=V+VG
(0)
VV T. (2.12)

Eq. (2.12) has the exact solution

T=
(

I−VG
(0)
VV

)−1
V. (2.13)

The computation of the T-matrix by matrix inversion can be very costly. The domain
decomposition was proposed by Jakobsen and Wu [29, 31] to accelerate the T-matrix ap-
proach to seismic full-waveform inversion. Also, if the perturbation is small, we can use
an approximated form of the T-matrix [24] to update the background Green’s function
for every iteration.

3 Seismic inverse scattering problem

3.1 The distorted Born iterative T-matrix inversion method

The distorted Born iterative T-matrix inversion method of [24, 81], which is based on
a distorted Born approximation [60, 61] and solves for the scattering potential V, uses
an iterative scheme that for each iteration updates the scattering potential. Because the
T-matrix is used for the Green’s function update, the method has been referred to dis-
torted Born iterative T-matrix inversion method. The relationship between a variation

δV(i) =V−Vi in the scattering potential V around a heterogeneous background model

with scattering potential V(i) and a variation δGRS =GRS−G
(i)
RS in the Green’s function

GRS around the Green’s function G
(i)
RS for the background medium is given by [60, 61]

δG
(i)
RS =G

(i)
RVδV(i)G

(i)
VS, (3.1)

where

G
(i)
RS =G

(0)
RS+GRVT(i)G

(0)
VS, (3.2)

G
(i)
VS =G

(0)
VS+GVVT(i)G

(0)
VS, (3.3)

G
(i)
RV =G

(0)
RV+GRVT(i)G

(0)
VV (3.4)

are matrices of Green’s functions for the background medium responsible for different
parts of the scattering path from the source to the receiver via the volume, and

T(i)=T
(

V(i)
)

(3.5)

is the corresponding T-matrix. In Eqs. (3.2)-(3.4), the reference Green’s functions G
(0)
RS ,

G
(0)
VS, and G

(0)
RV are calculated for a heterogeneous medium with Gaussian beams and the
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background Green’s functions G
(i)
RS, G

(i)
VS, and G

(i)
RV (typically calculated numerically for

an inverted model with scattering potential V(i) relative to the reference model with zero
scattering potential) are static and dynamic, respectively. By dynamic, they are updated
after each linearised inversion step.

The observable scattered (data residual) wavefield δd
(i)
R associated with the perturba-

tion V(i) can be written as
δd

(i)
R =δG

(i)
RSs, (3.6)

where s is an Ns-dimensional vector associated with the source functions at Ns different
source positions. By combining Eqs. (3.1) and (3.6), a linear relation between the scattered

(data residual) field δd
(i)
R and the scattering potential variation (or perturbation) V(i) [24]

can be obtained:
δd

(i)
R =G

(i)
RV δV(i)G

(i)
VSs. (3.7)

From Eq. (3.7), one can observe that when the scattered (data residual) field δd
(i)
R is

known, one can determine the perturbation V(i) using a regularised least-squares inver-

sion method. Then, the original V(i) can be replaced with the inverted scattering potential
and more accurate solutions can be obtained with iterations in a direct iterative manner.
It should be noted that the data residual field and background medium Green’s functions
can be updated after each iteration by using the exact relations (3.1)-(3.4).

3.2 Some details for implementation

In this work, we use the distorted Born iterative method to solve the inverse problem
for the baseline and time-lapse inversions. The underlying idea of the distorted Born
iterative inversion method is to reduce a nonlinear inverse scattering problem to a series
of linear inverse scattering problem.

Eq. (3.7) can also be expressed as [24]

δd
(i)
r,s =

N

∑
n=1

J
(i)
rn,sδχn, (3.8)

where the scattered wavefields δd represents the difference between the calculated wave-
fields in the background medium and the wavefields in the actual medium, δχ is the
difference of the contrast potential, and the sensitivity matrix can be written as [24]

J
(i)
rn,s=

[

G
(i)
rn δvnG

(i)
ns

]

fs, (3.9)

where G
(i)
rn and G

(i)
ns are the Green’s functions in a dynamic heterogeneous reference

medium associated with the receivers and the sources at ith iteration, respectively. The
Green’s functions that is updated after each iteration and where we compute the corre-
sponding Green’s functions by solving the Lippmann-Schwinger equations (3.2)-(3.4).
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Here, fs is the source function associated with the angular frequency, and δvn is the
Kronecker-delta.

From Eq. (3.8), one can observe that the nonlinear inverse scattering problem has
been reduced to a series of linear inverse scattering problem. However, solving inverse
problem is an ill-posed problem. In order to obtain a meaningful solution, we can apply
generalized Tikhonov regularization to the inverse scattering problem. Thus, the solution
can be obtained by solving the following optimization problem [62]

E(δχ)=
∥

∥

∥
δd(i)− J(i)δχ

∥

∥

∥

2
+α‖δχ‖2 , (3.10)

where ‖‖ represents the L2 norm, α is the regularization parameter, which can be chosen
by the cooling scheme [24], a modified version of the method described in Lavarello and
Oelze [63] and in Hesford and Chew [64], or L-curve method [65]. The regularization
parameter is very important for the inversion. Through many numerical tests, we choose
to use the cooling scheme as

α(i)=α0a(i−1), (3.11)

where α0 is the initial value, and 0.1 < a < 0.9. However, to obtain a relatively good
result, we should choose different initial values in Eq. (3.11) for the baseline and time-
lapse inversion. The details will follow in Section 4. The iterative form solution for the
inversion is

χi+1=χ(i)+
(

Hi+α(i) I
)−1

V(i), (3.12)

with the gradient

V(i)=ℜ
[

(

J(i)
)†

δd(i)
]

, (3.13)

where δd(i) is the difference between the observed data and the calculated data, † denotes
transpose conjugate, i is the number of iteration, ℜ represents the real part, and

H(i)=ℜ
[

(

J(i)
)†

J(i)

]

(3.14)

is the approximate Hessian matrix. The process of solving the nonlinear inverse scat-
tering problem is essentially similar to the Gauss-Newton optimization methods for FWI
(e.g. the process for inverse Hessian, shown as Eq. (3.12) in this paper and Eq. (13) in [76]).
Similar to the GN Hessian (equation 10 in [76]), the element of the Hessian in our ap-
proach is formed by correlating the two Frechet derivative wavefields at the receivers,
which is a approximate Hessian. Actually, it has been demonstrated that the Distorted
Born iterative method is consistent with the Gauss-Newton methods of optimization (see
Remis and van den Berg [74], Oristaglio and Blok [73], Jakobsen and Ursin [24]. How-
ever, different from [75] and [76], we construct the approximate Hessian matrix explicitly
in terms of Green’s functions based on the integral equations. The main difference be-
tween our scattering approach and the conventional adjoint state method is that we have
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an explicit representation of the sensitivity matrix in terms of Green’s functions, that can
easily be updated after each iteration using the variational T-matrix approach, without
having to perform a full forward simulation. And also instead of using the conjugate gra-
dient method, we solve a linear system (using Gaussian elimination method) involving
our approximate Hessian matrix. Appendix B shows the pseudo code of the algorithm,
which is based on the pseudo code of the DBIT inversion algorithm shown in [81].

The above formulations are used to obtain both the full baseline model and the time-
lapse model. For the baseline inversion, we formulate the Gaussian beam based distorted
Born iterative T-matrix inversion method by using the Gaussian beam based Green’s
function as the background Green’s function. This method incorporates several impor-
tant features: (1) The Gaussian beam has flexibility in calculating the wavefields and the
boundary reflection can be avoided because it is a ray-based method. (2) Due to the use
of the complex traveltime [40–46] in Gaussian beam, this method can deal with the prob-
lem of caustic, which is a limitation of the conventional ray theory. For this inversion, we
use the integral equations as wavefield propagators, which is based on scattering theory.
The Gaussian beam is only used to compute the background Green’s function, but the
scattering theory can address all the wavefields, e.g. multiple scattering. In fact, for rela-
tively simple medium, combining the distorted Born iterative inversion method and the
Gaussian beam can be used for the baseline inversion. However, this paper focus on the
target-oriented time-lapse inversion. To obtain an accurate baseline model, the T-matrix
is used in the baseline inversion.

4 Time-lapse inversion

4.1 Sequential and double difference strategies

After obtaining the baseline model, we can perform the time-lapse inversion using the
time-lapse inversion strategies. In this work, we employ two strategies, called sequential
difference strategy and double difference strategy.

Sequential difference strategy: Fig. 1 shows the schematic diagrams of the sequential
difference method. The sequential difference strategy [6, 7, 33] considers the baseline
model as the initial model. Because the perturbation resulting from the reservoir changes
is localized and only occur in a small region, starting from the baseline model for the
time-lapse inversion is a good candidate and can reduce the computation cost. After
completing the time-lapse inversion, the perturbation can be obtained by a subtraction
between the inverted baseline and monitor model.

Double difference strategy: Fig. 2 shows the schematic diagrams of the double
difference method. The double difference strategy was proposed by Waldhauser and
Ellsworth [66] in the traveltime tomography for improving the earthquake source lo-
cation [7, 67, 68]. It also starts the time-lapse inversion with the baseline model [5, 7].
However, instead of a full-data inversion in the sequential difference strategy, the double
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Figure 1: Schematic diagrams of the sequential difference method.

difference strategy only inverts the time-lapse perturbation model using the time-lapse
data difference as

E(δχ)=
1
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Figure 2: Schematic diagrams of the double difference method.

4.2 The target-oriented scheme

To reduce the computational cost of the time-lapse inversion, we develop a target-
oriented inversion scheme. The target-oriented concept was proposed to reduce the com-
putational cost of the wave-equation least-squares migration [69,70] and the reverse time
migration [71]. This concept is generalized to the local full waveform inversion [10,35,36].
The scheme of the local inversion is referred to as the target-oriented inversion.

For the target-oriented inversion, there have been several different approaches to per-
form localized inversion. Borisov et al [35] used the finite-difference injection method to
develop a localized full waveform inversion for time-lapse imaging. In this approach,
the wavefields are recorded around the local region, and the initial wavefield of the tar-
get region are injected. In subsequent target-oriented inversion, the local wavefields are
updated. However, the method suffers a limitation that it does not accurately model the
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Source Receiver

T-matrix

Gaussian beam

Target area

Figure 3: Sketch illustrating the main ideas of the target-oriented inversion. Note that in this scheme, the
Gaussian beam and T-matrix are used to propagate the wavefields from the source and receiver and- the
wavefields are propagated from the receiver to scattering region by the reciprocity theorem.

higher order long-range interactions between the scattered wavefield propagating into
the unaltered exterior domain and then re-enter into the local target domain. Yang et
al. [77] developed time-lapse waveform inversion by transforming the original survey
into a new survey at the top of the reservoir. The new data sets are synthesized from the
recorded data with the re-datumed signals and the new virtual survey geometry. Because
of modifying the surface data recordings, they introduce varying degrees of artefacts. Va-
lenciano et al. [70] proposed to explicitly compute an approximation of the Hessian in a
target-oriented fashion. After computing a nondiagonal Hessian matrix, they obtain the
inverse image using an iterative algorithm. However, this method used the Green’s func-
tion by solving the one-way wave equation, which has a limited accuracy for large-angle
propagation.

Our approach uses integral equations to develop the target-oriented inversion. The
method requires only one simulation for the initial Green’s functions on the entire sub-
surface model and the initial Green’s functions are computed efficiently since we employ
Gaussian beams. For the subsequent target-oriented inversion, the multiple scattering
occurring within the target area can be modeled by the T-matrix. The T-matrix approach
is naturally target-oriented since the T-matrix refers to the target-region only and is inde-
pendent of the source-receiver configuration. Our target-oriented inversion is based on
the full waveform inversion using the integral equation formulations. Fig. 3 shows the
sketch illustrating the main ideas of target-oriented inversion. The underlying idea of
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the proposed target-oriented inversion is that we only need to compute the local wave-
fields of the target region. The initial local scattered wavefields of the target region are
computed in the inverted baseline model.

We have developed our time-lapse inversion method adopting the distort Born it-
erative T-matrix method described in Section 2.3 and using the inversion formulations
described in Section 3. Our inversion approach involves a static heterogeneous reference

medium (denoted by G
(0)
RS , G

(0)
VS,and G

(0)
RV) for which we use Gaussian beam based Green’s

functions, and a dynamic heterogeneous reference medium that is updated after each it-

eration and where we compute the corresponding Green’s functions (G
(i)
RS, G

(i)
VS,and G

(i)
RV)

by solving the Lippmann-Schwinger equation. The Green’s functions have scattering in-
formation from the target area. That means that we could estimate the velocity within
the target.

For the time-lapse target inversion scheme, there are three main steps:

(1) Compute the background Green’s function in the smoothed baseline model;

(2) Compute the static Green’s functions in the inverted baseline model using the
Gaussian beam based Green’s function and T-matrix from the survey surface to
the target region;

(3) Perform the local inversion, the local wavefields are updated by the Lippmann-
Schwinger equations associated with T-matrix approach within the target region.

5 Numerical results

5.1 Baseline inversion

In this section, we use a subset of the Marmousi 2 P wave velocity model [72] to test the
baseline inversion scheme. The model size is 2460 m × 1620 m. The size of the grid is
20 m ×20 m. Fig. 4(a) shows the resampled baseline model. We employ 81 sources and
123 receivers, which are both located at the surface and distributed uniformly from 0 m
to 2460 m. We employ a Ricker wavelet with the central frequency of 7.5 Hz. In this
example, we use the sequential frequency inversion scheme, which inverts frequency by
frequency. Here, we choose a frequency group of 2 Hz, 5 Hz, 8 Hz, 11 Hz, 15 Hz and
18 Hz. For each frequency, the maximum number of iterations is 30. We generated the
frequency component synthetic data and used the fast Fourier transform with a sampling
interval of 0.004 s and the total record length of 3 s. A key point of this inversion is to
choose the regularization parameter. We use the cooling scheme [24] for this test. In the
numerical tests, we find that if the regularization parameter is too small in the beginning
of the iterative process, artefacts can build-up in the inverted results, to compensate for
model errors. This is because in the scattering domain, the initial information about the
scattered wavefield is not sufficient. After many tests, we decide to use 10 as the initial
value α0 of the cooling scheme (see Eq. (3.11)). We choose a in the Eq. (3.11) as 0.9. We
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Figure 4: The baseline model and target region. (a) A subset version of the Marmousi2 P- wave velocity model;
(b) time-lapse perturbation of 300m/s.

have tested with noise-free and noisy data. For the noisy data, the random noise has been
added to each frequency component data [24]

dnoisy=

(

d+
|d|
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Figure 5: The baseline inversion results using Gaussian beam plus T-matrix method. (a) The smoothed starting
model; (b) the inverted result of noise-free data; (c) the inverted result of noisy data (30dB); (d) the inverted
result of noisy data (26dB).

and frequency group as the baseline inversion. The size of the target region is 600 m ×
600 m, shown as Fig. 4(b). The locations are from 1600 m to 2200 m and from 600 m to
1200 m in the horizontal and vertical directions, respectively. For the regularization pa-
rameter, we use a modified version of the cooling scheme (Jakobsen and Ursin, 2015). In
our approach, the initial value is chosen as α0 =

√
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Figure 6: The errors of the baseline inversion. (a) The inversion error with noise-free data; (b) The inversion
error with noisy data (30dB); (c) the inversion error with noisy data (26dB).

We have performed the full-model inversion and target-oriented inversion on this time-
lapse model. Fig. 7 shows the inverted results of the noise-free data for the time-lapse
inversion with the sequential difference strategy and double difference strategy, respec-
tively. All computations were performed on Intel (R) Xeon (R) CPU E5-4650 2.7 GHz.
The computational times of the full-model inversion with the sequential difference and
double difference strategies are 2.15×104 s and 2.11×104 s, respectively. The computa-
tional times of the target-oriented inversion with the sequential difference and double
difference strategies are 418 s and 431 s, respectively. One can see that by using the
target-oriented inversion scheme, the computational cost has been reduced by approxi-
mately 80%. Comparison of the inversion results shows that, for both of the sequential
and double difference strategies, the results of the target-oriented inversion are slightly
better than that of full-model inversion. This can easily be explained. The larger area
we have in the inversion, the more errors of the inversion will occur. We can observe
from Figs. 8(a) and (c) that for the full-model inversion there are some inversion artefacts
outside the target region. This is because the full waveform inversion has the problems
of high ill-posedness and nonlinearity. However, the potential artifacts can be avoided in
the target-oriented inversion because there is no model update outside the target region.
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Figure 7: The time-lapse inversion results of the noise-free for a perturbation of 300m/s with the true baseline
model as the starting model. (a) The full-model inversion with the sequential difference strategy; (b) the
target-oriented inversion with the sequential difference strategy; (c) the full-model inversion with the double
difference strategy; (d) the target-oriented inversion with the double difference strategy.

5.2.2 Inversion of noise-free data with the inverted baseline model

In this section, we employ the inverted baseline model of the noise-free data (shown as
Fig. 4(b)) as the starting model for the time-lapse inversion and use noise-free data for
time-lapse inversion. In this inversion, we use both the sequential difference strategy
and double difference strategy as well. Fig. 8 shows the inverted results for the time-
lapse inversion using the full-model scheme (Figs. 8(a) and (c)) and target-oriented in-
version scheme (Figs. 8(b) and (d)). We also compare the results of the target-oriented
inversion and that of the full-model inversion. From Fig. 8, one can make the following
observations: (1) whether for the target-oriented inversion or full-model inversion, the
results from the double difference strategy are better than that from the sequential dif-
ference strategy, which shows that compared with the sequential difference strategy, the
double difference strategy works better; (2) for both the sequential difference and double
difference strategy, the target-oriented scheme works nearly the same as the full-model
scheme. However, the computational cost can be reduced by target-oriented inversion.
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Figure 8: The time-lapse inversion results of noise-free data for a perturbation of 300m/s with the inverted
baseline model of noise-free data as the starting model. (a) The full-model inversion with the sequential
difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c) the full-model
inversion with the double difference strategy; (d) the target-oriented inversion with the double difference strategy.

The double difference strategy, which inverts with the data difference rather than full-
data, requires the starting baseline model that can accurately describe the kinematics and
structures, otherwise the time-lapse energy cannot be localized [7].

5.2.3 Inversion of noisy data with the inverted baseline model

To make the numerical experiments more realistic, we perform the numerical tests with
the noisy data. Fig. 9 shows the inverted results for the time-lapse inversion of the noisy
data (30 dB) using the full-model scheme (Figs. 9(a) and (c)) and target-oriented scheme
(Figs. 9 (b) and (d)). Fig. 10 shows the inverted results for the time-lapse inversion of the
noisy data (26 dB) using the full-model scheme (Figs. 10(a) and (c)) and target-oriented
scheme (Figs. 10(b) and (d)). For the inversion of the noisy data (26 dB), the computa-
tional times of the target-oriented inversion with the sequential difference and double dif-
ference strategies are 2.01×104 s and 2.19×104s, respectively. The computational times of
the target-oriented inversion with the sequential difference and double difference strate-
gies are 246 s and 602 s, respectively. The computational cost has been reduced from 70
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Figure 9: The time-lapse inversion results of noisy data (30dB) for a perturbation of 300m/s with the inverted
baseline model using the same noise-level data as the starting model. (a) The full-model inversion with the
sequential difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c)
the full-model inversion with the double difference strategy; (d) the target-oriented inversion with the double
difference strategy.

% to 80 %. The reason why the computation time is different is that because of the use of
different strategies, the computation stops at different iterations for different frequencies.
The results in Fig. 10 show clear difference for four numerical experiments from different
inversion scheme. For the sequential difference strategy, the inverted time-lapse veloc-
ity perturbation from the target-oriented scheme appears more clear, however, the result
from the full-model scheme with strong noise is not so clear. The situation improves sig-
nificantly for the double difference strategy shown in Figs. 10(c) and (d). Also, for the
double difference strategy, the results with noisy data from the full-model inversion are
slightly better than that from the target-oriented inversion.

Furthermore, we have tested a smaller time-lapse perturbation of 100 m/s. Figs. 11(a)
and (b) show the inverted results of noisy data (26 dB) with the double difference and
sequential difference strategies. From Figs. 11(a) and (b), one can observe the following
features of the inverted time-lapse perturbation: (1) although the time-lapse perturbation
can be displayed clearly, there are some artifacts outside the region of time-lapse velocity
perturbation; (2) compared with the inverted results of the perturbation of 300 m/s, the



20 X. Huang et al. / Commun. Comput. Phys., x (201x), pp. 1-27

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(a)
0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(b)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
p

th
(k

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
p

th
(k

m
)

0.0

V
e
lo

c
it

y
(m

/s
)

V
e
lo

c
it

y
(m

/s
)

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(c) 0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(d)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
p

th
(k

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
p

th
(k

m
)

0.0
V

e
lo

c
it

y
(m

/s
)

V
e
lo

c
it

y
(m

/s
)

-100

-50

0

50

100

150

200

250

300

-100

-50

0

50

100

150

200

250

300

-100

-50

0

50

100

150

200

250

300

-100

-50

0

50

100

150

200

250

300

Figure 10: The time-lapse inversion results of noisy data (26dB) for a perturbation of 300m/s with the inverted
baseline model using the same noise-level data as the starting model. (a) The full-model inversion with the
sequential difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c)
the full-model inversion with the double difference strategy; (d) the target-oriented inversion with the double
difference strategy.
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Figure 11: The time-lapse inversion results of noisy data (26dB) for a perturbation of 100m/s with the inverted
baseline model using the same noise-level data. (a) The target-oriented inversion with the sequential difference
strategy; (b) the target-oriented inversion with the double difference strategy.
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inverted results of the perturbation of 100 m/s look less accurate. This indicates that
the smaller value of the time-lapse velocity perturbation we have, the more difficult for
inversion.

6 Conclusions

Full waveform inversion can be an effective tool for time-lapse seismic data because of its
applicability of extracting information on subsurface structure. However, the inversion
of the time-lapse seismic waveform data requires to repeat computations for monitor
survey. This renders the inversion very expensive for the reservoir monitor. Instead
of performing a full-model inversion, we focus on inversion of a target region, where
the reservoir changes occur. Jakobsen and Ursin [24] mentioned the possibility of doing
T-matrix based time-lapse inversion, but never did this. The main finding is that we
have verified that the T-matrix approach is indeed naturally target-oriented and allows
one to reduce the computational cost of time-lapse inversion by focusing the inversion
on the target-area only. Our approach is based on the DBIT method using the integral
equation form. In our scheme, the Gaussian beam has been introduced, which allows to
compute the wavefields from the surface to the target region in the smoothed baseline
model. Then, by combining the background Green’s function using the Gaussian beam
with the T-matrix, we obtain the Green’s function for the time-lapse inversion. For the
local inversion of the target region, the T-matrix is used to update the wavefields within
the target region.

Numerical examples are presented, showing that because of the limited size of the
target-oriented time-lapse inversion, the computational cost has been reduced by ap-
proximately 80%. However, for the double difference strategy, the results with noise-free
data from the target-oriented inversion are better than that from the full-model inversion,
while the results with noisy data from the full-model inversion are slightly better than
that from the target-oriented inversion. That means that the double difference strategy is
relatively sensitive to the random noise. For the sequential difference strategy, compared
with the results from the full-model inversion, the results of the time-lapse model from
the target-oriented inversion are nearly the same. This method should be possible, due
to the computational efficiency, to perform a 4-D seismic full waveform inversion. Future
works will be also directed toward to a 4-D inversion of the time-lapse waveform data
and extended by the domain decomposition method [31].
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Appendix A: The Green’s function using Gaussian beam

summation

The Green’s function can be computed by a Gaussian beam summation [40, 78]

G(0)
(

x,x′,ω
)

=
i
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ABSTRACT

Uncertainty quantification in the context of seismic imaging is important for interpreting

inverted subsurface models and updating reservoir models. The limited illumination, noisy

data and poor initial models in the seismic full waveform inversion (FWI) lead to inversion

uncertainties. This is particularly true for anisotropic elastic FWI, which suffers from extra

parameter trade-off problems. We address the uncertainty quantification of anisotropic

elastic FWI problem in the framework of Bayesian inference. Specially, we estimate the

uncertainties of the subsurface elastic parameters in the Bayesian anisotropic elastic FWI

by combining the iterated extended Kalman filter with an explicit representation of the

sensitivity matrix with Green’s functions. The sensitivity matrix is based on the integral

equation approach, which is also within the context of nonlinear inverse scattering theory.

We present the results of numerical tests with examples for anisotropic elastic media. They

show that the proposed Bayesian inversion method can provide reasonable reconstructed
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results for the elastic coefficients of the stiffness tensor and the framework is suitable for

accessing the uncertainties.
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INTRODUCTION

Uncertainty quantification of seismic images is important for merging the seismic and

production data in the context of history matching of reservoir models. In addition, various

factors in the seismic inversion, such as noisy seismic data, nonlinear forward modeling and

poor initial models can lead to inversion uncertainties. Thus, uncertainty quantification

of velocity fields is clearly essential for interpreting inverted subsurface models. A better

understanding and quantification of velocity uncertainties is necessary for making a more

justifiable and reliable conclusion on identifying pockets of oil and gas. The full waveform

inversion is a popular technique for obtaining high resolution subsurface images by estimat-

ing subsurface parameters. Such a method can be used to estimate the velocity uncertainties

by finding statistical solutions for the unknown model parameters (Tarantola and Valette,

1982; Gouveia and Scales, 1998; Tarantola, 2005).

Bayesian inference provides a systematic framework for solutions of geophysical inverse

problems, which can account for uncertainties. To find the posterior probability distribution

of the subsurface model parameters, it is necessary to give a prior probability distribution of

the model parameters, which can be velocity, density etc., in the seismic inversion. A critical

aspect of the Bayesian inversion is the calculation of the posterior covariance matrix, which

is based on the Hessian matrix. Actually, when obtaining the global minimum solution of an

optimization problem, the inverse Hessian matrix can be viewed as the posterior covariance

matrix. A solution can be obtained within the framework of the linearized approximation,

as the problem is nonlinear so the covariance matrix is an approximation (Tarantola, 2005).

There are several ways to analyze the uncertainties by means of analyzing the Hessian matrix

or utilizing an approximate Hessian. The posterior covariance based on the Hessian was used
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to discuss the resolution of seismic inversion (Fichtner and Trampert, 2011a,b), whereas a

further application of Bayesian inference to seismic tomography using stochastic probing of

the Hessian or resolution operators can be found in Fichtner and Leeuwen (2015). Martin

et al. (2012) used the Markov chain Monte Carlo (MCMC) method to obtain the solution

of seismic inversion problems in the framework of Bayesian inference, in which the Hessian

manipulations were made tractable by a low-rank approximation. There are some reports

on estimating the uncertainty for solutions of the linearized infinite-dimensional statistical

inverse problems (Bui-Thanh et al., 2013; Petra et al., 2014). Rawlinson et al. (2014) gave

a review of uncertainty assessment in the seismic tomography problems. Zhu et al. (2016)

described a point spread function method for a priori information from depth migration

in the context of Bayesian full waveform inversion. Nawaz and Curtis (2018) applied a

Bayesian inversion method to estimate the spatial distribution of geological facies. Zhang

et al. (2018a) developed uncertainty estimation in the surface wave tomography.

Advances in seismic full waveform inversion have recently made it possible to estimate

velocity uncertainties in the framework of Bayesian full waveform inversion, as an alterna-

tive to the classic deterministic optimization methods. Interest in Bayesian full waveform

inversion as a method for uncertainty quantification has increased in the past few years

due to the development of new computational techniques. Aleardi and Mazzotti (2017)

developed a hybrid method that combines the genetic algorithm and a Gibbs sampler to

estimate the posterior probability distributions. Ray et al. (2016) presented a promising

way to recover the Bayesian posterior model probability density function of subsurface elas-

tic parameters and used it to mitigate the problem of data uncertainty (Ray et al., 2017).

The Reversible Jump Hamiltonian Monte Carlo has been successfully applied to uncertainty

quantification showing results on the Marmousi model (Sambridge and Mosegaard, 2002;
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Mosegaard and Sambridge, 2002; Biswas and Sen, 2017). Fang et al. (2018) presented a

method for uncertainty quantification with weak partial-differential-equation constraints.

Further, uncertainty assessment in velocity models and images can be found in Ely et al.

(2018). Recently, Thurin et al. (2017, 2019) have made significant progress on the original

application of ensemble-based Kalman filter method to full waveform inversion and demon-

strated impressive results on uncertainty estimation with the Marmousi model. Kotsi et al.

(2018) developed the local Bayesian inversion for 4-D time lapse data. Later, Eikrem et al.

(2018) developed a method with the iterated extended Kalman filter method for time-lapse

seismic full-waveform inversion.

To the best of our knowledge, there is no report in the literature that gives an uncer-

tainty quantification of inverted velocities in the anisotropic elastic medium by means of full

waveform inversion. For deterministic FWI, most of the published reconstruction schemes

have assumed isotropy of the subsurface medium. Such an assumption is questionable and

even not reasonable when dealing with reservoirs with anisotropy, which is due to fine lay-

ering (Backus, 1962), aligned fractures (Ali and Jakobsen, 2011; Huang and Greenhalgh,

2019) and aligned clay minerals (Jakobsen and Johansen, 2000; Schoenberg and Sayers,

1995). Generally, it is the potential variation in the velocity with respect to the direction

of propagation (Virieux and Operto, 2009; Lee et al., 2010; Plessix and Cao, 2011; Operto

et al., 2013; Alkhalifah et al., 2016), which leads to medium anisotropy, that contributes

to short and long offset data (Plessix and Cao, 2011). Very few publications have shown

the results in the anisotropic situation, only in the acoustic approximation (Plessix and

Cao, 2011; Gholami et al., 2013; Alkhalifah and Plessix, 2014; da Silva et al., 2016). This

is because solving the anisotropic elastic FWI problem is still a rather challenging task.

Although there are a lot of successful applications of acoustic anisotropic FWI, but mainly
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in marine data and low frequencies. As frequencies increase the importance of the elastic

assumption increases. For describing the wave physics better in such cases, it is better to

use the anisotropic elastic medium. Efforts have been made for both anisotropic and elastic

FWI in order to consider elastic Earth (Burridge et al., 1998; Lee et al., 2010; Köhn et al.,

2015; Kamath and Tsvankin, 2016; Oh and Alkhalifah, 2016; He and Plessix, 2017; Oh and

Alkhalifah, 2018; Yang et al., 2018; Jakobsen et al., 2019). However, it is well known that

an increase in the number of parameters will further make the non-linear inversion approach

more complicated (Tarantola, 1986; Brossier et al., 2009). Also, the lack of low frequencies,

the inaccuracy of initial velocity models and noise (Operto et al., 2013) will increase the

uncertainty of the inversion.

The aim of this paper is to develop a Bayesian framework for full waveform inver-

sion in anisotropic elastic media for uncertainty quantification. To this end, we apply the

Bayesian inference to the earlier elastodynamic generalization of the distorted Born itera-

tive T-matrix (DBIT) method for the anisotropic elastic full waveform inversion (Jakobsen

et al., 2019), which is based on the integral equation (IE) method. The integral equa-

tion method has several important features: (1) it provides solutions of inverse scattering

problems with high-order accuracy, no grid dispersion error, which exists in the numerical

differential equation solvers, captures radiation conditions and has a smaller accumulated

error (Chew et al., 2008; Djebbi et al., 2016); (2) it requires discretization for the anomalous

volume only, which reduces the size of computation, (Malovichko et al., 2017) for the DBIT

method, the scattering volume V in the T-matrix formulation is flexible and can be equal

to the target area in time-lapse inversion (Huang et al., 2018, 2019a); (3) the sensitivity

matrix is expressed explicitly in terms of Green’s functions, which is very suitable for the

Bayesian framework; (4) the computational cost and convergence problems can also be ad-
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dressed by the T-matrix approach using domain decomposition (Jakobsen and Wu, 2018)

and renormalization methods (Wu et al., 2015; Osnabrugge et al., 2016; Wu et al., 2016;

Jakobsen et al., 2018; Huang et al., 2019b). Further, by employing the iterated extended

Kalman filter in the Bayesian framework, the uncertainty characteristics can be exploited

simultaneously with the velocity model building.

The iterated extended Kalman filter is a generalization of the Kalman filter (Kalman,

1960). The Kalman filter provides an estimate of the posterior probability density for the

state when the data and the dynamical relationships are both linear, and the prior is Gaus-

sian. The extended Kalman filter is an extension of the Kalman filter to nonlinear problems.

Because it approximates the nonlinearities using a first-order Taylor expansion around the

current estimate, it has become an important tool for state estimation of nonlinear systems.

In recent work, Eikrem et al. (2017, 2018) used this method for isotropic FWI. Instead of

processing the data sequentially in time, we process the frequencies sequentially, starting

with the lowest and end with higher frequencies, which is the same as the multiscale FWI

method (Bunks et al., 1995).

In the following, we first review the anisotropic elastic integral equations for the non-

linear scattering problem and their operator formulations. Additionally, we derive the

sensitivity matrix in the integral equation method. Then, we present the Bayesian frame-

work and the iterated extended Kalman filter method. The performance of the proposed

inversion in the context of full waveform inversion and nonlinear inverse scattering theory is

tested on synthetic data sets with increasing complexity, both in three layered and modified

Hess models.
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BAYESIAN FRAMEWORK FOR FULL WAVEFORM INVERSION

In this section, we give a brief review of Bayesian inference for anisotropic elastic full

waveform inversion and use the iterated extended Kalman filter method by connecting the

sequential setting in the iterated extended Kalman filter to the sequential strategy in the

frequency domain full waveform inversion.

Bayesian inference

The main purpose of this paper is to find the elastic coefficients of stiffness from the

observed seismic data by performing Bayesian full waveform inversion in anisotropic elastic

media. There are two reasons to choose the Bayesian framework for full waveform inversion.

One is that the Bayesian inference can provide an inversion framework for incorporating

the uncertainties in prior information, measurements, model parameterization, and forward

modeling theory, which can easily be used for solving the full waveform inversion problem,

especially for anisotropic elastic full waveform inversion. The other important reason is that

the solution of seismic inversion is part of the inputs of joint history matching of seismic

and production data. The ensemble-based approach for history matching needs uncertainty

information (Aanonsen et al., 2009).

The Bayesian inversion scheme gives a statistical solution of the inverse problem in the

form of probability density. In this procedure, a prior density P (m) is chosen for the model

parameter m. A likelihood P (d |m) needs also to be given for the model parameter m

and observation data d. Based on the Bayes’ theorem, the mathematical formulation for

the posterior distribution can be expressed as

P (m | d) =
P (d |m)P (m)∫
P (d |m)P (m) dm

, (1)
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where
∫
P (d |m)P (m) dm is the evidence (Ray et al., 2017). A common assumption

for the Bayesian inversion is that both a priori density and likelihood are Gaussian (Zhang

et al., 2018b):

P (m) ∝ exp

{
−1

2

(
(m−mprior)

T C−1M (m−mprior)
)}

, (2)

and

P (d |m) ∝ exp

{
−1

2

(
(d− dcal (m))†C−1D (d− dcal (m))

)}
, (3)

where mprior is the prior model that in our case is the initial model in the inversion, and

CD and CM are the data and model covariance matrices, in which the uncertainties in the

data and uncertainties related to the subsurface parameters are incorporated, respectively.

The symbol † represents the conjugate transpose, d is the observed data, and dcal is the

calculated data, which is from seismic forward modeling. In our case, dcal is equivalent to

δu, which is calculated scattered data.

With nonlinear modeling, this is only an approximation. Combining equations 1-3, we

have

P (m | d) ∝ exp
{
−1

2

(
(d− dcal (m))†C−1D (d− dcal (m))

)}
exp

{
−1

2

(
(m−mprior)

T C−1M (m−mprior)
)}

.

(4)

Gouveia and Scales (1998) used a local, nonlinear optimization technique to find the model

parameters and then performed a local analysis. The posteriori probability density distri-

bution is approximated by

P (m | d) ∝ exp

{
−1

2

(
(m−mmap)T C̃

−1
M (m−mmap)

)}
, (5)

where mmap is the maximum a posteriori solution that is obtained by the inversion, and

the a posteriori covariance matrix is

C̃M =
(
J†C−1D J + C−1M

)−1
, (6)

10



where J is the Fréchet derivatives J = ∂dcal
∂m . From the mathematical formulations described

in this section, we can observe that one key point for estimating the uncertainties for full

waveform inversion is to calculate the Fréchet derivatives and then estimate the covariance

matrix.

Iterated extended Kalman filter method

The Kalman filter provides a way to estimate the state of a linear dynamical system

from a series of noisy measurements. It is a typical method to solve linear problems with

data arriving in batches in time. The seismic data in the full waveform inversion is obtained

simultaneously in time, but it can be transformed and processed in batches (van Leeuwen

and Herrmann, 2013; Tveit et al., 2016; Thurin et al., 2017; Eikrem et al., 2017, 2018).

A generalized version of the Kalman filter, called extended Kalman filter, can be applied

to the nonlinear problems . However, the extended Kalman filter uses a first order Taylor

expansion around the current estimate status to approximate the nonlinearity. Such an

approximation can be questioned for strongly nonlinear cases as Bayesian full waveform

inversion. Here we use an iterated extended Kalman filter (Bell and Cathey, 1993; Skoglund

et al., 2015), which involves the measurement update repeatedly.

The reason why the iterated extended Kalman filter can be used for Bayesian full wave-

form inversion in the frequency domain is due to the multi-scale strategy. The multi-scale

strategy has been widely used by the seismic community to solve the problem of cycle-

skipping in the frequency domain full waveform inversion (Bunks et al., 1995). It relates

the large-scale structure and fine-structure by performing inversion from low to high fre-

quency. In this strategy, the inversion for higher frequencies uses the results from lower
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frequencies as the starting model. The iterated extended Kalman filter method uses a simi-

lar sequential strategy (Eikrem et al., 2018). Thus, it makes sense that the iterated extended

Kalman filter method can be extended to anisotropic elastic full waveform inversion.

Taking the similarity between the multi-scale seismic full waveform inversion and the

iterated extended Kalman filter method, we start with the prior distribution P (m), then

use equation 4 to update P (m | d). In the sequential computations, P (m | d) is the prior

for processing the next set of data for the next frequency. A recursive equation for Bayesian

full waveform inversion can be written as

P (m | dk,··· ,1) ∝ P (dk |m)P (m | dk−1,··· ,1) . (7)

With the assumption that P (dk |m) is approximated by a normal distribution with mean

mk−1 and covariance Ck−1 (Skoglund et al., 2015; Eikrem et al., 2018), we have the recursive

form solution for the posterior distribution

P (m | dk,··· ,1) ∝ exp
{
−1

2

(
(dk − dcal (m))†C−1D,k (dk − dcal (m))

)}
exp

{
−1

2

(
(m̂k−1 −m)T C−1M,k−1 (m̂k−1 −m)

)}
.

(8)

According to Tarantola (2005), the above MAP solutions can be found as

m̂k = argminm

(
(dk − dcal (m))†C−1D,k (dk − dcal (m)) + (m̂k−1 −m)T C−1M,k−1 (m̂k−1 −m)

)
.

(9)

Here, we choose the Levenberg-Marquardt iterative extended Kalman filter algorithm (Skoglund

et al., 2015) to solve equation (9), the iterative solution is

mi+1 = mi +
(
J†iC

−1
D,kJi + C−1k−1 + λI

)−1 (
J†iC

−1
D,k (dk − dcal (m)) + C−1M,k−1

(
mk−1 −mi

))
,

(10)

where λ is a damping factor and I is the identity matrix. It should be noted that the

covariance matrix C−1M,k = J†iC
−1
D,kJi+C−1M,k−1 is only updated after the new m̂k is obtained.
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For large λ such as λ = 106, the update is similar to the steepest decent method, and for

small λ such as λ = 0.01, the update is similar to Gauss-Newton method. After each

iteration, if the objective function decreases, λ is reduced and if not, it is increased.

DIRECT SCATTERING PROBLEM

The elastodynamic wave equation in the frequency domain can be written as (Aki and

Richards, 2002; Cerveny, 2005)

[
∇ ·C(x) : ∇s − ρ(x)ω2I·

]
u(x) = −S(x), (11)

where u (x) is the particle displacement vector at point x, S is the component of the

single-force source, ρ is the mass density, : represents product, ω is the angular frequency,

I is identity matrix and C(x) is the stiffness tensor component field. In order to derive a

volume integral equation for the particle displacement field, we first decompose the stiffness

tensor field C(x) as

C(x) = C(0)(x) + δC(x), (12)

where C(0)(x) and δC(x) are the stiffness tensors in arbitrary background and perturbed

media. It follows from equations (11) and (12) that

[
∇ ·C(0)(x) : ∇s − ρ(x)ω2I

]
u(x) = −S(x)−∇ · δC(x) : ε(x), (13)

where ε(x) = ∇su(x) is the strain field at point x. By treating the (vectorial contrast-

sources) second term on the right-hand side of equation 13 just like ordinary sources and

using the concept of Green’s functions, we obtain

u(x) = u(0)(x) +

∫
dx′G(0)(x,x′) · ∇ · δC(x′) : ε(x′), (14)
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where

u(0)(x) =

∫
dx′G(0)(x,x′) · S(x′), (15)

and [
∇ ·C(0)(x) : ∇s − ρ(x)ω2I·

]
G(0)(x,x′) = −Iδ(x− x′). (16)

Here, δ(x−x′) is the Dirac delta function, u(0)(x) is the wavefield in the reference model due

to the vectorial source field S(x′), and G(0)(x,x′) is the reference medium Green’s function

and the domain of integration is the whole domain. If the medium is homogeneous, one can

compute the background Green’s function analytically; if the medium is inhomogeneous,

one can compute the background Green’s function using the ray theory based method

(Cerveny, 2005; Huang et al., 2016; Huang, 2018; Huang and Greenhalgh, 2018, 2019) or

finite difference method (Fichtner, 2010) or the generalized T-matrix approach of Jakobsen

et al. (2015).

From equation 14, one can observe that the equation involves the derivates of the stiffness

perturbation tensor. By means of partial integration symmetries of the elastic stiffness

tensor, the equation can be reformulated as

u(x) = u(0)(x) +

∫
D
dx′M(0)(x,x′) : δC(x′) : ε(x′). (17)

Here, we have introduced the third-rank tensor M(0)(x,x′), which is defined by the following

tensor components (Jakobsen and Hudson, 2003):

M
(0)
ijk (x,x′) = −1

2

(
∂G

(0)
ij (x,x′)

∂xk
+
∂G

(0)
ik (x,x′)

∂xj

)
. (18)

By taking spatial derivatives of equation 17 at position x, one can show that the strain field

also satisfies an integral equation of the Lippmann-Schwinger type:

ε(x′) = ε(0)(x′) +

∫
D
dx′′Γ(0)(x′,x′′) : δC(x′′) : ε(x′′), (19)
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where the components of the fourth-rank tensor Γ(0)(x′,x′′) are defined by Jakobsen and

Hudson, 2003 and Jakobsen et al., 2003

Γ
(0)
ijkl(x,x

′) =
1

4

(
∂2G

(0)
ij (x,x′)

∂xk∂x
′
l

+
∂2G

(0)
ik (x,x′)

∂xj∂x′l
+
∂2G

(0)
ij (x,x′)

∂xl∂x
′
k

+
∂2G

(0)
ji (x,x′)

∂xl∂x
′
k

)
. (20)

Thus, one can calculate the particle displacement vector field at any point by first solving

the integral equation 19 for the strain field, and then use the result in conjunction with

the integral equation 17. Jakobsen et al. (2015) present a more general integral equation

formulation that also allows for density perturbations (see also Jakobsen and Hudson, 2003).

The two coupled integral equations 17 and 19 can be rewritten exactly as

u(x) = u(0)(x) +

∫
D
dx1

∫
D
dx2M

(0)(x,x1) : V(x1,x2) : ε(x2), (21)

and

ε(x) = ε(0)(x) +

∫
D
dx1

∫
D
dx2Γ

(0)(x,x1) : V(x1,x2) : ε(x2), (22)

where

V(x1,x2) = δC(x1)δ(x1 − x2), (23)

is a non-local stiffness perturbation.

The two coupled integral equations 21-22 can be written as the real-space coordinate

representation of the following integral operator equations:

u = u(0) +M (0)V ε, (24)

and

ε = ε(0) + Γ(0)V ε. (25)

Clearly, the main problem here is to determine the strain field, since the particle displace-

ment field is given explicitly by the integral 24 when ε is known. The integral equation 25
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for the strain field is similar to the Lippmann-Schwinger equation in quantum scattering

theory. This is an agreeable feature because it allows us to modify the well analyzed it-

erative or perturbation methods that have been developed to solve scattering and inverse

scattering problems in quantum physics for seismic use (Zuberi and Alkhalifah, 2014). The

full integral equation method based on scattering theory can address all the wavefields, e.g.

multiple scattering. The integral equation method is also used for full waveform inversion

(Abubakar et al., 2012; Jakobsen and Wu, 2018). Jakobsen and Wu (2016) demonstrated

that the finite difference is equivalent to the full integral equation method.

FRÉCHET DERIVATIVES

An important method to formulate the Fréchet derivatives in this work is the distorted Born

iterative method (Jakobsen and Ursin, 2015). The nonlinear inverse scattering problem

in anisotropic elastic media is based on the distorted Born iterative method and solves

for stiffness tensor from measurements of the displacement-strain. This method uses an

iterative scheme in which we compute the Green’s functions and update the scattering

potential in each iteration. The relation between the displacement-strain state vector for

the variation in the scattering potential using the distorted Born approximation (Chew and

Wang, 1990; Jakobsen and Ursin, 2015; Jakobsen and Wu, 2018):

u− u(i) ≈M (i)
(
V − V (i)

)
ε(i), (26)

where V (i) is the updated scattering potential in the inhomogeneous background medium,

i is the number of iterations and u(i) and ε(i) in inhomogeneous background media are

u(i) = u(0) +M (0)V (i)ε(i), (27)

ε(i) = ε(0) + Γ(0)V (i)ε(i), (28)
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and

M (i) = M (0) +M (i)V (i)Γ(0). (29)

The details on the derivation of M can be found in Appendix A. Another exact approach to

update the u(i) and ε(i) for each iteration is the T-matrix approach, which can be found in

Appendix B. The main advantage of using the distorted Born iterative method to formulate

the Fréchet derivatives is that it gives the Fréchet derivatives in terms of the modified

Green’s function and strain field, which can be easily applied to the iterative extended

Kalman filter for Bayesian seismic full waveform inversion.

The data residual equation in the real-space coordinate representation is

uk (r)− u(i)k (r) =

∫
dxM

(i)
kL (r,x)

[
∆C

(i+1)
LM (x)−∆C

(i)
LM (x)

]
ε
(i)
M (x) , (30)

in the abbreviated sub-script notation, where repeated upper case indices runs from 1 to

6. Here, we have also used Einstein’s summation convention and the definition of stiffness

and mass density perturbations, r is the receiver position vector, k is index of components

and i is the number of iteration. Equation (30) can be expressed more compactly as

δu
(i)
k (r) =

∫
dxM

(i)
kL (r,x) δC

(i+1)
LM (x) ε

(i)
M (x) , (31)

where δu
(i)
k (r) = uk (r) − u

(i)
k (r) is the data residual wavefield at the ith iteration and

δC
(i+1)
LM (x) is the difference in the stiffness (mass density) between the current and following

iterations. The next step is to decompose the mass density and stiffness model perturbations

as

δC
(i+1)
LM (x) ≡ ∆C

(i+1)
LM (x)−∆C

(i)
LM (x) , (32)

with

∆CLM (x) =

21∑
p=1

B
(p)
LM (x)m(p) (x) , (33)
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where m(p) (x) represents the perturbation in one of the 21 elastic constants, which is a

scalar, and B
(p)
LM represents the tensor field related to the model (elastic) parameter m(p).

The B-matrices in equation 33 associated with different elastic parameters depend on the

parameterization of the model. In this study, we parameterize the model by using pertur-

bations in the elastic stiffness elements that are normalized to the corresponding properties

in an isotropic reference medium. More specifically, we use the following expression for the

normalized stiffness perturbations

m(p) =

(
CLM − C(0)

LM

)
C

(0)
LM

, (34)

and a similar expression for the normalized mass density perturbations. By using model

parameter perturbations that are normalized in this way, we ensure that the different model

parameter perturbations are of approximately similar range, which is an advantage for

multi-parameter FWI. It follows from equation 30 that

δu
(i)
k (r) =

21∑
p=1

∫
dxJ

(i,p)
k (r,x) δm(i+1,p) (x) , (35)

where the full set of scalar and vectorial Fréchet derivatives after the i th iteration is given

by

J
(i,p)
k (r,x) = M

(i)
kL (r,x)B

(p)
LM (x) ε

(i)
M (x) . (36)

After a discretization of the seismic model involving Nr receivers and N grid blocks, equation

(35) can be expressed as

δu(i) =
21∑
p=1

J(i,p)δm(i+1,p), (37)

where m(i+1,p) represents the inverted perturbation in the pth model parameter relative

to a static reference medium, whereas δm(i,p) is the variation of this quantity between

two successive iterations. It should be noted that dimensions in the summation should
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not include p. Here, dim
(
δu(i)

)
= 3Nr, dim

(
J(i,p)

)
= 3Nr × 21N and dim

(
δm(i+1,p)

)
=

21N ×21N , which is an explicit matrix. It should be noted that in the numerical examples,

we use VTI media. Thus, dim
(
J(i,p)

)
= 3Nr × 5N and dim

(
δm(i+1,p)

)
= 5N × 5N . Then,

we rewrite equation (27) into matrix form as

δu(i) = J(i)δm(i+1), (38)

where

J(i) =
(
J(i,1),J(i,2) · · · ,J(i,21)

)T
, (39)

and

δm(i) =
(
δm(i,1), δm(i,2) · · · , δm(i,21)

)
, (40)

are block-matrices of Fréchet-derivatives and model parameters, respectively.

This work reports a Bayesian full waveform inversion based on integral equation method

with iterated extended Kalman filter. A key aspect is that performing Bayesian inversion

using iterated extended Kalman filter requires the Fréchet-derivatives 39 utilizing integral

equations 24 and 25. In other words, inserting equation 39 into equation 10 leads to the

formulation for inversion.

NUMERICAL RESULTS

Noisy data are an important source of the uncertainties in seismic full waveform inver-

sion. To make the data represent realizations of the uncertainty, we add complex Gaussian

noise to the synthetic data. The definition of signal to noise ratio SN is as follows (Eikrem
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et al., 2018):

SN =
‖d‖2

‖w‖2
, (41)

where d is the data in the frequency domain and w is the noise, which can be estimated

from the data. The desired signal to noise ratio SN is obtained by scaling it in the following

way

dnoise = d +
‖d‖√(

SNE
(
‖w‖2

))w, (42)

where E is the expectation.

Three-layered model

To validate our Bayesian inversion approach, we have carried out the numerical experi-

ments on a three-layer VTI model in which there are five independent Voigt stiffness pa-

rameters C11, C33, C55, C13 and C66 perturbations shown in Figure 1. Table 1 shows the

values of Voigt stiffness parameters of the three-layered model. The model size is 875 m

× 350 m. The size of each grid cell is 25 m ×25 m. We employ 14 sources and 35 re-

ceivers, which are both located at the surface and distributed uniformly from 0 m to 875

m. We employ a Ricker wavelet with a central frequency of 7.5 Hz. We use the seismic

forward modeling method described in Jakobsen et al. (2019) to generate the dataset. We

use all three components of the particle displacement vector at the surface as data. In

this example, we use the sequential frequency inversion scheme, which inverts frequency by

frequency. Here, we choose frequencies of 4 Hz, 5 Hz, 6 Hz, ..., 20 Hz, and start by inverting

the lowest frequency. We start with a large λ in the first iteration for the first frequency

to make the first step small. We use the initial value in the first iteration for the first

frequency as λ = 10, 000 and reduced it by a factor of 2 after each iteration. For other
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frequencies, we start with λ = 100 and change it by a factor of 10. For this experiment,

the prior mean model is a homogeneous isotropic elastic medium. The background Green’s

functions in such media are computed by analytic methods. The initial mean (the values

of the initial model) for the inversion is zero. In this model, a strongly anisotropic VTI

medium is sandwiched between two weakly anisotropic VTI media.

Figure 2 show the a priori model covariance matrix and a priori covariance matrix for

one parameter (the order from upper part to lower part on the diagonal line is C11, C33,

C55, C13 and C66). The covariance matrix for the prior distribution was constructed from

an exponential variogram with a practical range of 5 grid blocks vertically and horizontally.

The practical range for an exponential variogram is defined as the distance where 95% of

the sill is reached (Eikrem et al., 2018). The covariance matrix was scaled to be 1.0 or 0.5

on the diagonal. Figure 3 shows the maximum a posteriori solution (Example 1), Figure

4 shows a posteriori standard deviation, Figure 5 the full posterior covariance matrix (the

order from upper part to lower part on diagonal line is C11, C33, C55, C13 and C66) and

Figure 6 shows the error (difference between the inverted model and the true model) of

maximum a posteriori solution with noisy data with a signal to noise ratio of 4. From

Figure 3, one can observe that the inverted results are very similar to the true model. That

means that the anisotropic model can be recovered by the proposed approach despite the

fact that the multiparameter reconstruction with noisy data is challenging. From Figure 6,

one can observe that in the region close to the edges of the model and sharp boundaries,

the errors involved are relatively large.

Figure 7 shows the maximum a posteriori solution (mean) using the same model with

the experiment shown in Figure 3 except that the a priori covariance matrix is obtained

by multiplying 0.5 with the covariance matrix (Example 2). Figure 8 shows a posteriori
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standard deviation, Figure 9 shows the full posterior covariance matrix and Figure 10 shows

the error of the maximum a posteriori solution with noisy data with a signal to noise ratio

of 4. An exponential variogram with a practical range of 5 grid blocks vertically and

horizontally is used to construct the covariance matrix for the prior distribution. From the

results shown in Figure 7, the similar observation can be made with Figure 3. We observe

that the a posteriori standard deviation is reduced as a consequence of the reduction in the

a priori standard deviation.

A subset of Hess model

To make the numerical experiments more realistic, we perform the inversion on a subset of

SEG Hess model, shown in Figure 11. We use the same model size, number of sources and

receivers, source with Ricker wavelet as the previous example. Here, we choose the same

frequencies as the previous example and invert in an increased order. For each frequency,

the maximum number of iterations is 20 in the iterated extended Kalman filter method. For

this experiment, the prior mean model is the same as the one used in the previous example.

Figure 12 shows the maximum a posteriori solution (Example 3), Figure 13 shows the

posteriori standard deviation, Figure 14 shows the full covariance matrix and Figure 15

shows the error of mean (maximum a posteriori solution) with noisy data with a signal to

noise ratio of 4. We use the same prior distribution as shown in Figure 2. The standard

deviations are the square root of the diagonal of the covariance matrices. Figure 12 shows

that the Bayesian full waveform inversion method in this paper can give reasonable results

in anisotropic elastic cases. From the results shown in Figure 13, one can observe that

compared with the uncertainties shown in the prior covariance matrix, the a posteriori
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standard deviation shows that the uncertainties have been reduced significantly. However,

different parameters show different degrees of uncertainty.

It is interesting to see the results for uncertainty estimation using different prior covari-

ance matrices. Figure 16 shows the results with the same cases as Figure 13 but with a

different prior covariance matrix, which is the same prior distribution as shown in Figure

2 (Example 4). From Figure 17, one can observe that there are smaller uncertainties

compared with the results shown in Figure 13 since the smaller values of the prior covari-

ance matrix are used. From the posteriori covariance matrices shown in Figures 14 and

18, one can observe that C13 has correlation with C11 and C33, which is consistent with

the deterministic anisotropic full waveform inversion that the anisotropic inversion is highly

sensitive to C13 (Lee et al., 2010). On the other hand, C55 has much smaller relation with

other elastic stiffness parameters. That means that very little parameter trade-off would

exist (Operto et al., 2013; Kazei and Alkhalifah, 2019) for the Bayesian inversion of this

parameters. We also test the method in the resampled SEG Hess model, shown in Figure

20. Figure 21 shows the maximum a posteriori solution (Example 5), Figure 22 shows the

posteriori standard deviation, and Figure 23 shows the error of mean (maximum a posteriori

solution) with noisy data with a signal to noise ratio of 4. One can observe that the model

can be well reconstructed.

DISCUSSION

Analysis and interpretation of the multiparameter Hessian matrix

The exact Hessian involves the superposition of the correlatation of the first-order and

second-order partial derivatives with respect to the data residuals, which is related to the
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first-order and second-order scattering (Pan et al., 2016). In our approach, J†C−1D J is

similar to the Gauss Newton Hessian (Pratt et al., 1998), the element of the Hessian in our

approach is formed by correlating two Fréchet derivative wavefields at the receivers, which

is an approximate Hessian, meaning that we ignore the second-order influence. However,

we construct the approximate Hessian matrix explicitly. The main difference between our

scattering integral approach and the conventional adjoint state method with finite difference

method is that we have an explicit representation of the sensitivity matrix in terms of

Green’s functions, that can easily be updated after each iteration using the variational

T-matrix approach.

Application of the Hessian matrix as as the inverse Hessian operator is equivalent to

the posterior covariance of the minimization problem when the solution is close to the

global minimum. Fichtner and Trampert (2011) provided the interpretation of the Hessian

in terms of the inverse posterior covariance in the Bayesian framework sense. Since the

approximate Hessian is used in this work, it cannot account for strongly non-linear relation

between the model parameters and the seismic data.

Computational cost

We use the distorted Born iterative method to construct the sensitivity matrix, which is

expressed explicitly in terms of Green’s functions based on the integral equations. The

relation between the displacement-strain state vector for the variation in the scattering

potential is constructed using the distorted Born approximation. The sensitivity matrix

can easily be updated after each iteration using the variational T-matrix approach. Af-

ter each iteration, the sensitivity matrix is updated. Actually, it has been demonstrated
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that the Distorted Born iterative method is consistent with the Gauss-Newton methods

of optimization (see Remis and van den Berg, 2003, Oristaglio and Blok, 2012, Jakobsen

and Ursin, 2015). Currently, the Green’s functions are based on the full integral equation

solution of the wave equation (exact solution of Lippmann-Schqinger type equation), which

is relatively costly although in principle, the method can be applied to large scale models.

A potential extension for efficient computation of Green’s functions is to use the iterative

solution of the Lippmann-Schwinger equation. As discussed by Osnabrugge et al., (2016),

the operation of Green’s function with contrast-source terms has a convolution structure

that can be implemented more efficiently by using the wave vector representation; that

is, by using the Fast Fourier Transform (FFT) algorithm. This is because convolution in

real-space is equivalent to multiplication in the Fourier space, and the computational cost

of the FFT-operation is much smaller than that of matrix multiplication and inversion.The

memory requirements scales like N2 and N when using the position and wave vector rep-

resentations, respectively. The computational cost should theoretically scale like N3 and

N logN when using the position and wave vector representations, respectively. The iterative

solution with FFT implementation is much faster and can be used for practical large-scale

problems (Huang et al., 2019; Jakobsen et al., 2019).

Uncertainty analysis

The main difference in uncertainty analysis between the isotropic case and the proposed

multiparameter case is that the covariance matrix in multiparameter case can indicate how

errors are correlated between pairs of model parameters. The uncertainty is described by

the model covariance, which shows that uncertainty in the data leads to uncertainty in the

estimated model parameters. In multiparameter uncertainty analysis, the covariance matrix
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is a square symmetric matrix, whose off-diagonal entries indicate how errors are correlated

between pairs of model parameters and the diagonal entries show the variance of corre-

sponding parameters, such as the influence of data noise. Another important application

of the covariance is that the off-diagonal entries indicate strong trade-offs in the variables.

The inverted C55 is better than others. This is because C55 is related to S-wave, which

leads to higher resolution due to the shorter wavelength (Zhang et al., 2018). From the per-

spective of radiation patterns of different elastic parameters (Wu and Aki, 1985; Tarantola,

1986; Virieux et al., 2009), the S-wave has more low-wavenumber components than that of

P-waves. The low-wavenumber components have stronger amplitudes and prevent from the

inversion getting trapped in a local minimum (Virieux et al., 2009; Liu and Peter, 2019).

The standard deviation is the square root of the diagonal of the covariance matrices.

One can observe that the standard deviation increases with depth. The fact that the

uncertainty increases with the depth is particularly noticeable for both the layered model

and a subset of hess model tests. This can be explained by wave propagation theory, the

geometrical spreading effect. According to the physical interpretation of the Hessian (Pratt

et al., 1998), its energy decreases with the increase of depth due mainly to the geometrical

spreading effect. Whereas high uncertainty values are concentrated in the region of relatively

high perturbation, the values of the uncertainty is particularly large near the boundary and

in the region of the perturbation interface. This is because the wave path will bend in the

region of high perturbation.
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Multiparameter trade-off quantification

The posterior covariance obtained by Kalman filter method in the Bayesian framework

provides a direct measure of trade-off in the anisotropic elastic full waveform inversion.

Actually, the diagonal element of the posterior covariance defines the local resolution in the

full waveform inversion and off-diagonal blocks provide the measure of trade-off of the multi-

parameter full waveform inversion. In the inversion, it can be observed that the posterior

covariance shows correlation between C11 and C33, which is consistent with the deterministic

anisotropic full waveform inversion that the anisotropic inversion is highly sensitive to C13

our data are not independently sensitive to it, and probably there is a combination with

C11 and C33 that SVD can highlight in the linear sense, that has a relative independence

of influence on the data (Kazei and Alkhalifah, 2019). On the other hand, C55 has much

smaller relation with other elastic stiffness parameters.

In any case, by employing the iterated extended Kalman filter in the Bayesian frame-

work, the uncertainty characteristics can be exploited simultaneously with the velocity

model building. Uncertainty quantification in full waveform inversion is important for in-

terpretation of the inversion results. There is still a need for further development because

currently, our Bayesian inversion methods are not applicable to large scale FWI problem.

All these issues need to be investigated in the future research.

CONCLUSIONS

We have presented a new Bayesian inference framework for full waveform inversion and

estimation of the uncertainties in anisotropic elastic media, in which the integral equations

in the context of nonlinear inverse scattering and iterated extended Kalman filter are used.
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Using the integral equation approach based on scattering theory enables us to easily con-

struct the explicit sensitivity matrix in the covariance matrix in terms of Green’s functions.

The iterated extended Kalman filter method can be frequency friendly because the multi-

scale full waveform inversion in the frequency domain uses a sequential strategy, which is

very similar with the data assimilation process in the iterated extended Kalman filter. The

Bayesian full waveform inversion involves a full covariance matrix, which is used to describe

the uncertainty.

Synthetic results are presented, showing that the Bayesian full waveform inversion frame-

work is suitable for the anisotropic elastic medium, in which the independent Voigt stiffness

parameters are reconstructed. Specifically, despite of the fact that the prior mean is far from

the true model, and noisy data with anisotropic elastic model is used, the reconstruction

can provide an acceptable solution. A posteriori standard deviation provides uncertainty

quantification in the Bayesian full waveform inversion. The next steps will be directed to

efficient methods with applications on real data.
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Table 1: Values of three-layered model

Layer C11 C33 C55 C13 C66

1 0.0296 -0.0630 0.0889 -0.3556 0.0889

2 0.2519 -0.1889 -0.3333 -0.1111 -0.3333

3 0.1519 -0.1222 0.0667 -0.5778 0.0667
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MODIFIED GREEN’S FUNCTIONS

It follows from equations (11) and (12) that the corresponding integral operator equations

for Green’s functions can be expressed as

G = G(0) +M (0)V N (A-1)

and

N = N (0) + Γ(0)V N. (A-2)

The integral equation (A.2) for the N-tensor has the following exact formal solution:

N =
(
I − Γ(0)V

)−1
N (0). (A-3)

By inserting the exact formal solution (A.3) into equation (A.1) for modified Green’s func-

tion, we have

G = G(0) +M (0)V
(
I − Γ(0)V

)−1
N (0). (A-4)

It follows from equation (A.4) and the identity (Jakobsen et al., 2019)

V
(
I − Γ(0)V

)−1
=
(
I − V Γ(0)

)−1
V, (A-5)

then we get

G = G(0) +MVN (0), (A-6)

where

M = M (0)
(
I − V Γ(0)

)−1
(A-7)

is the solution of the following integral equation for M-tensor:

M = M (0) +MV Γ(0). (A-8)

Thus, the two coupled integral equations (A.1) and (A.2) are equivalent to the two coupled

integral equations (A.6) and (A.8). For the inversion, equations (A.3) and (A.8) can be

used to update the N and M-tensors after each iteration.
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T-MATRIX PERSPECTIVE

In this Appendix, we give the formulations for updating Green’s functions in the T-matrix

representation. The two coupled integral equations (11-12) can be interpreted as the real-

space coordinate representation of the following integral operator equations:

u = u(0) +M (0)V ε (A-9)

and

ε = ε(0) + Γ(0)V ε. (A-10)

Following the standard approach of potential scattering theory (Taylor, 1972; Jakobsen and

Hudson, 2003; Jakobsen, 2012; Jakobsen and Ursin, 2015), we now introduce the transition

operator (or T-matrix)) T by

V ε = Tε(0), (A-11)

It follows from equation (B.1) that

u = u(0) +M (0)Tε(0), (A-12)

where

T = V + V Γ(0)T. (A-13)

Thus, we have eliminated the strain field from the equations and reduced the problem to

the determination of the transition operator T , that we have a long experience with from

both rock physics and seismic full waveform inversion (e.g., Jakobsen and Hudson, 2003;

Jakobsen and Ursin, 2015). Here, u(i) and ε(i) in inhomogeneous background media can be

updated by

u(i) = u(0) +M (0)T (i)ε(0), (A-14)
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and

ε(i) = ε(0) + Γ(0)T (i)ε(0), (A-15)

where the T-matrix is

T (i) =
(
I − V (i)Γ(i)

)−1
V (i). (A-16)
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Figure 1: A three-layered anisotropic elastic model. The size of the model is

0.875km×0.35km.

–

44



500 1000 1500 2000

500

1000

1500

2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2: (a) The full a priori model covariance matrix. (b) A priori covariance matrix for

one of the parameters.

–
45



 C
11

0.2 0.4 0.6 0.8

L
x
 (km)

0.1

0.2

0.3L
z
 (

k
m

)

0.05
0.1
0.15
0.2
0.25

 C
33

0.2 0.4 0.6 0.8

L
x
 (km)

0.1

0.2

0.3L
z
 (

k
m

)

-0.2

-0.1

 C
55

0.2 0.4 0.6 0.8

L
x
 (km)

0.1

0.2

0.3L
z
 (

k
m

)

-0.3
-0.2
-0.1
0

 C
13

0.2 0.4 0.6 0.8

L
x
 (km)

0.1

0.2

0.3L
z
 (

k
m

)

-0.6

-0.4

-0.2

 C
66

0.2 0.4 0.6 0.8

L
x
 (km)

0.1

0.2

0.3L
z
 (

k
m

)

-0.3
-0.2
-0.1
0
0.1

Figure 3: Example 1: The maximum a posteriori solution.
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Figure 6: Example 1: The error of maximum a posteriori solution with noisy data with a

signal to noise ratio of 4.
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Figure 7: Example 2: The maximum a posteriori solution.

–

50



 C
11

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

0.1

0.2

0.3

C
33

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

0.05

0.1

0.15

0.2

0.25

 C
55

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

0.05

0.1

0.15

0.2

0.25

 C
13

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

0.1

0.2

0.3

0.4

 C
66

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

0.3

0.4

0.5

0.6

Figure 8: Example 2: The posteriori standard deviation.

–

51



500 1000 1500 2000

500

1000

1500

2000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 9: Example 2: The full covariance matrix (The order from upper part to lower part

on diagonal line is C11, C33, C55, C13 and C66).

–

52



 C
11

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

-0.05

0

0.05

 C
33

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

-0.02

0

0.02

0.04

 C
55

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

-0.01

0

0.01

 C
13

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

-0.1

0

0.1

 C
66

0 0.2 0.4 0.6 0.8

L
x
 (km)

0

0.1

0.2

0.3

L
z
 (

k
m

)

-0.1

0

0.1

0.2

Figure 10: Example 2: The error of maximum a posteriori solution with noisy data with a

signal to noise ratio of 4.
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Figure 11: A subset of Hess model.
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Figure 12: Example 3: The maximum a posteriori solution.
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Figure 13: Example 3: The posteriori standard deviation.
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Figure 14: Example 3: The full covariance matrix.
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Figure 15: Example 3: The error of maximum a posteriori solution with noisy data with a

signal to noise ratio of 4.
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Figure 16: Example 4: The maximum a posteriori solution.
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Figure 17: Example 4: The posteriori standard deviation.
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Figure 18: Example 4: The full covariance matrix.
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Figure 19: Example 4: The error of maximum a posteriori solution with noisy data with a

signal to noise ratio of 4.
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Figure 20: A resampled Hess model.
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Figure 21: Example 5: The maximum a posteriori solution.
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Figure 22: Example 5: The posteriori standard deviation.
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Figure 23: Example 5: The error of maximum a posteriori solution with noisy data with a

signal to noise ratio of 4.
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