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Abstract 

Over the last 40 years, the relatively fast expansion of Atlantic salmon aquaculture has 

created new obstacles for the persistence of wild Atlantic salmon stocks where the two 

overlap. Now, the greatest threat to existing wild Atlantic salmon populations is the 

unintended release of domesticated Atlantic salmon from aquaculture sites. Once 

escaped, domesticated Atlantic salmon can migrate into rivers and spawn with wild 

salmon populations. Overall, the hybridization of wild and domesticated salmon has 

negative impacts that threatens the long-term viability of many salmon populations. 

However, researchers have limited knowledge into the mechanics that promote the 

direct overlap between the two conspecifics and thus stakeholders lack robust and 

effective mitigation strategies and are largely dependent on reactive measures to 

control escaped Atlantic salmon.  

This thesis was focused on the spatial distribution and overlap of wild and 

escaped farmed Atlantic salmon and identifying ecologically sound mitigation and 

management strategies to control the abundance of escaped Atlantic salmon in nature. 

To accomplish this, the thesis is divided into four objectives: 1) evaluate the movement 

patterns of acoustically tagged wild adult Atlantic salmon throughout the estuaries and 

connected fjords where salmon directly overlap with aquaculture sites. 2) validate the 

spawning count data collected during fall snorkel surveys to quantify the abundance of 

wild and escaped salmon during active spawning activities. Finally, using validated 

data from the spawning count surveys, assess the 3) among- and 4) within river 

distribution of wild and escaped Atlantic salmon.  

My results demonstrated the direct spatial overlap of wild and escaped Atlantic 

salmon and fills the following knowledge gaps necessary for the effective management 

of escapees in rivers: 1) when relying on reactive mitigation efforts (e.g., active 

removals from the river), monitoring and removal methods that fail to account for the 

within river spatial variation of escaped Atlantic salmon can be limited in their 

effectiveness to quantify and remove escapees and should only be used when alternate 

mitigation efforts fail (e.g., proactive management strategies), 2) to implement 

effective marine protected areas, it is necessary to either incorporate a) the habitat 



 vi 

where direct interactions between wild and escaped farmed salmon are most likely to 

occur or b) the spatial scopes that aquaculture concessions has the greatest effect on 

escapee abundance (75 km from important rivers), and 3), it is recommended that the 

current regulation of aquaculture production (e.g., traffic light system) should be 

expanded to include regulating concession limits to reduce the number of escaped 

farmed salmon in important Atlantic salmon rivers. This thesis highlights the 

importance of understanding spatial distribution and the mechanisms that drive the 

direct overlap of wild and escaped farmed salmon so that robust ecologically based 

tools can be developed for resource managers to help regulate the abundance of escaped 

Atlantic in the wild.    
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1. INTRODUCTION 

Many of the world’s socially and economically important species of salmonids have 

been subjected to numerous anthropogenic pressures, such as river regulation, fish 

farms, and diseases (Reid et al. 2019) and the interactions between humans and the 

surrounding ecosystem has warranted the need to evaluate their ecological impacts 

(Costanza et al. 2014). In turn, the importance of spatial planning to mitigate and 

maximize the ecosystem services of the environment has gained considerable attention 

(Douvere 2008, Foley et al. 2010, Qiu and Jones 2013). A particular focus of spatial 

planning is the interface between human needs and aquatic environments (e.g., dams, 

drinking water, sports fishing; Carter 2007, Jager et al. 2015) and more recently in the 

coastal regions (e.g., energy production and aquaculture; Douvere 2008).  

The domestication of aquatic species as a food source is a major global industry 

(~66 million tons in 2012; FAO 2014). Finfish species, particularly salmonids, are 

cultivated in net pen facilities in marine environments where current efforts are focused 

on creating an environmentally sustainable industry. Environmental sustainability is 

broadly defined as the requirement to development aquaculture to meet the needs of 

the current generation while at the same time maintaining the capacity to meet the needs 

of future generations (page 112 - 113; Pillay 2008). This requires identifying the 

carrying capacity of aquaculture sites in an area given the limitations of the 

environment to absorb the adverse effects from aquaculture, the current technology to 

mitigate adverse effects, and an equilibrium between aquaculture and the wide array of 

ecosystem services (Gentry et al. 2017). To do this, it is important to directly assess 

how different habitats, flora, and fauna are affected by aquaculture activities and to 

incorporate ecologically relevant metrics into current and future management and 

planning strategies to help develop an environmentally sustainable aquaculture sector.  

1.1 Atlantic salmon 

Atlantic salmon (Salmo salar) is an anadromous species that has a dynamic life history 

with considerable within- and among population variation (Birnie-Gauvin et al. 2019). 

They range from mid North American (northern United States) and southern Europe 
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(Portugal) to northern latitudes (e.g., northeastern Canada, Greenland, and 

northwestern Russia; Parrish et al. 1998). Perhaps the most critical aspect of the salmon 

lifecycle is their anadromous migrations between the freshwater and marine habitat 

where important history functions are carried out. Today, Atlantic salmon has become 

one of the most studied fish species due to the complex interactions between their 

environment and anthropogenic stressors and the need for information to mitigate the 

anthropogenic influences (Birnie-Gauvin et al. 2019). 

Atlantic salmon begin their lifecycle in river habitats and after several years in 

natal rivers as parr (1 – 8 years), Atlantic salmon undergo smoltification (i.e., 

physiological and morphological changes for marine ecosystems; Folmar and Dickhoff 

1980, McCormick et al. 1998) and begin their journey to the marine environment for 

feeding and growth. During this transition under natural conditions, migrating smolts 

experience increased mortality that often results in > 90 %  reduction in numbers during 

their out-migration to the sea (Thorstad et al. 2011). Here, even small compounding 

anthropogenic disturbances are likely to impact the recruitment of future generations 

(e.g., navigation of multiple hydropower facilities; Nyqvist et al. 2017). Once in the 

marine environment, less is known about Atlantic salmon distribution and behavior. 

However, the development of new technology and analytical techniques have allowed 

researchers to better assess the marine migration of Atlantic salmon (see Strøm et al. 

2018 as a recent example). 

Depending on the genetic disposition and growth conditions at sea, adult 

Atlantic salmon usually migrate back to their natal rivers after 1 to 3 years in the sea to 

spawn. Arrival to their natal rivers usually occurs in the early spring and summer 

months and in some instances the previous year prior to spawning (Quinn et al. 2015). 

Their return spawning migration has two distinct marine phases (Hansen et al. 1993), 

the first, is a course scale movement from the feeding ground to the coast. The second 

is more focused movement that is directed in identifying natal rivers through the use of 

olfactory cues (Hansen et al. 1993), environmental determinates (Jonsson and Jonsson 

2011), and behavior mechanisms (Berdahl et al. 2016, Berdahl et al. 2017). Atlantic 

salmon will enter rivers as early as May, but the majority will typically enter in the 

later portion of the summer or fall (Klemetsen et al. 2003). Several studies have 
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observed the extended time periods that Atlantic salmon spend in the near shore habitat 

prior to entering the river (Potter 1988, Priede et al. 1988, Thorstad et al. 2003). 

However, limited information is available on the behavior and habitat use of estuaries 

and fjords of Atlantic salmon and the mechanism that promote extended marine 

residence (Quinn et al. 2015). Such information can be particularly advantageous as 

we expand the use of the marine habitats for a variety of recreational, economical, and 

mitigation functions (e.g., fishing, aquaculture, and marine protected areas [MPA]; 

Bishop et al. 2017).  

Once in the river, Atlantic salmon display several distinct phases of river 

migration (Økland et al. 2001). The first phase is a direct upstream migration followed 

by a search phase for the desired spawning habitat. Here, salmon enter an extended 

holding or residence phase where limited movement occurs. The final phase is active 

spawning that typically occurs in October and November. Suitability of a spawning 

habitat is dependent on the geomorphology, temperature regimes, and flow 

characteristics of the river (Armstrong et al. 2003) and dictate the spatiotemporal 

distribution of Atlantic salmon in the riverscape and thus can have important 

implications on population success (Finstad et al. 2010). Once spawned, Atlantic 

salmon are termed kelts and migrate back to the ocean soon after spawning or the 

following spring depending on energetic reserves (Halttunen et al. 2013) and can 

potentially return in successive years to spawn as repeat spawners (Bordeleau et al. 

2019).  

The dynamic life history of Atlantic salmon is dependent on vastly different 

habitats throughout their life. The broad spatial extent that they occupy can present 

challenges for researchers who study salmonids and the various factors that can impact 

them. Aquaculture is one of the most important anthropogenic factors facing Atlantic 

salmon (Forseth et al. 2017) and is an important area of research. However, studying 

these interactions often requires long-term datasets that allows researchers to detect 

trends associated to population changes (Diserud et al. 2019, Glover et al. 2019) or  the 

use of new technologies that can directly quantify how wild Atlantic salmon and 

aquaculture spatially interact (e.g., reomote telemetry; Lennox et al. 2018). 
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1.2 Aquaculture  

Wild fish stocks were once abundant and the thought of depleting the different 

populations seemed to be impossible. In the past 70 years, we have seen a shift from a 

mostly stable fishery that consists of high trophic level species, which are long-lived, 

to a lower trophic level-based fishery, which are short-lived (Pauly et al. 1998).  As a 

result of the improper management of important fisheries (e.g., Atlantic cod closures 

in northeastern North America), fish populations began to depreciate below sustainable 

thresholds that results in a population collapse and subsequent closure (Pauly et al. 

1998, Pinsky et al. 2011). To supplement the stagnation of fish biomass harvest over 

the last 30 years (Figure 1) and to provide a new source of economic stability to local 

economies, the fishing industry has shifted to the domestication and cultivation of 

popular fish species to supplement declining wild stocks and to provide society with a 

high-quality food source (Yucel-Gier et al. 2019).  

The use of cultivated fish for food production has been a common practice at 

small scales for centuries (FAO 2014). However, since the 1950’s, with the steady 

increase in the global population, we have seen corresponding increases in fish 

production for food. With the development of key innovations, the viability of 

aquaculture on a broad scale became a real possibility and in the late 70’s and early 

80’s. Now, aquaculture is a major source of fish production for food consumption and 

averages approximately 8% growth per year (Olsen and Hasan 2012) and overtook 

commercial fisheries in 2014 as the main source of aquatic based food for human 

consumption (Clavelle et al. 2019). Today, about 567 species are used in aquaculture  

(FAO 2016), with roughly 112 million tons produced globally and consisting of 

roughly 54 % of the global fisheries in 2017 (Figure 1) with the expectation that 

aquaculture will continue to increase to meet the global demand for low cost protein. 
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Figure 1. The total global harvest of fisheries (red) and aquaculture (green, excluding 

Atlantic salmon) from 1950 to 2017 (http://www.fao.org/fishery/statistics/en).  

Atlantic salmon is a widely used salmonid in aquaculture with Norway, Chile, 

and Great Britain producing the most Atlantic salmon (Figure 2). The cultivation of 

salmonids is primarily used for two different purposes. The first is to directly 

supplement a fishery or a stock that has shown declines in abundance due to 

anthropogenic influences (Myers et al. 2004). The second, is for economic gain to 

provide society with what is regarded as a quality fish that can no longer be captured 

sustainably in the wild. Norwegian aquaculture dates to the 1850’s with the land-based 

domestication of brown trout (Salmo trutta) and in the early 1900’s a shift to rainbow 

trout (Oncorhynchus mykiss; FAO 2005) as a means to supplement or create new 

fisheries. In the 1960’s and 70’s, the large-scale production of domesticated Atlantic 

salmon began with breakthroughs in cultivation success in marine environments 

(Tilseth et al. 1991). In the early 90’s, individual owners were allowed to maintain 

multiple concessions and this shifted aquaculture from numerous small independent 

companies to several large conglomerates owning the majority of the domesticated 

Atlantic salmon production (Asche et al. 2013, Olaussen 2018). Currently, Atlantic 

salmon is the main aquaculture product in Norway accounting for ~ 80 % of the total 

production nationally and 54 % of the global market of domesticated Atlantic salmon 

in 2017 (Figure 2, Asche et al 2013). Still, Norway has an ambitious plan to increase 

domesticated salmon production from 1.24 million tones in 2017 (Figure 2) to 5.0 
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million tones by 2050 (based on the potential industrial growth projections from 

Olafsen et al. 2012). Yet, the production of Atlantic salmon has stalled over the last 10 

years due to the frequent occurrences of parasites and disease (e.g., Chile; Osmundsen 

et al. 2017, Kim 2018) and through the increase in regulations (e.g., produciton limits 

to control the impacts of sea lice and wild fauna; Osmundsen et al. 2017).  

 

Figure 2. Top producers of Atlantic salmon from 1960 to 2017 (left) and the percent 

yearly growth from 1960 to 2017 (right, loess smoothers used for trend lines; 

http://www.fao.org/). 

1.3 Conflicts between wild Atlantic salmon and aquaculture 

Wild populations across their spatial extent have been declining since the late 20th 

century as a result of numerous anthropogenic factors (e.g., climate change, habitat 

degradation, invasive species, and aquaculture; Parrish et al. 1998, Forseth et al. 2017, 
Nicola et al. 2018, Soto et al. 2018, Lehnert et al. 2019), and in some instances, 

populations have been extirpated from the landscape (Parrish et al. 1998). With the 

increase of salmon farm production over the last 5 decades, the magnitude of farmed 

fish relative to their wild conspecifics has increased (domesticated salmon acount for 

~ 98 % of Atlantic salmon biomass; Parrish et al. 1998). Moreover, during the 

development of the aquaculture industry, multiple unintended issues have appeared that 

impact the ecological integrity of the ecosystem (Taranger et al. 2014, 2015, Forseth et 

al. 2017). Therefore, understanding the potential interactions between industry and the 

environment is critical in developing the industry in a sustainable way.  
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The high density of domesticated salmon in the fjords serves as source 

populations for parasites and disease. A common ectoparasite associated with 

aquaculture are salmon lice (Lepeophtheirus salmonis). Sea lice are naturally found in 

regions that support salmonids, however, locations with increased salmon aquaculture 

have artificially inflated the density of sea lice around migration routes that out-

migrating salmon smolts depend (Vollset et al. 2015). Also, the potential for disease 

transmission from aquaculture sites through the direct interface with wild salmonids 

(Garseth et al. 2013) can also have negative implications for Atlantic salmon. Viral 

diseases constitute the dominate disease vector affecting aquaculture. However, direct 

evidence of disease transfer from aquaculture to wild conspecifics is limited (but see 

Nylund et al. 2019). Yet, horizontal transmissions have been documented to be 

introduced via aquaculture farms and subsequently detected in wild populations 

(Nylund et al. 2019) and recaptured escaped farmed salmon have been observed with 

high densities of pathogens in or near rivers (Madhun et al. 2017). Still, broad scale 

infection rates are largely unknown due to the difficulty of detecting infected 

individuals as they tend to be less catchable and more susceptible to predation events 

(Bakke and Harris 1998). 

 The introgression of domesticated Atlantic salmon genotypes in wild stocks is 

regarded as the main threat to the persistence of wild Atlantic salmon populations in 

Norway (herein the unintentional release of domesticated Atlantic salmon from 

aquaculture sites will be referred to as escaped farmed Atlantic salmon, escapees, or 

escaped salmon; Forseth et al. 2017). The strong artificial selection of genetic traits in 

aquaculture has resulted in a distinct genetic signature significantly different from the 

wild stock they were originally based (Karlsson et al. 2011). In addition, escapees from 

fish farms can also lead to resource competition (Fleming and Einum 1997, Fleming et 

al. 2000, Robertsen et al. 2018) and the establishment of invasive species (e.g., 

escapees from farmed rainbow trout; Taranger et al. 2015). In Norway, Karlsson et al. 

(2016) found that approximately 50% of the wild salmon populations exhibit 

significant levels of introgression. The consequences of introgression in Atlantic 

salmon are population dependent  (Fraser et al. 2010, Glover et al. 2013, Heino et al. 

2015, Bolstad et al. 2017, Wringe et al. 2018), but the overall impacts of introgression 

from escaped salmon include decreases in survival (Fleming and Einum 1997, 
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McGinnity et al. 2003), reduced smolt production (Fleming et al. 2000, Skaala et al. 

2019), and overall reductions in the fitness of wild populations (McGinnity et al. 2003), 

which together may lead to the extirpation of vulnerable Atlantic salmon populations 

(McGinnity et al. 2003, Castellani et al. 2018).  

To help improve the management of these interactions, it is important to first 

understand how wild salmon use their environment and at what spatiotemporal scales 

they interact with aquaculture and their by-products. Therefore, to develop an 

environmentally sustainable aquaculture industry, it is necessary to identify the 

problems and to what extent aquaculture sites interact with the environment and limit 

the long-term viability of both industry and nature.  

1.4 Mitigating the impacts of escaped farmed Atlantic salmon 

The introduction of domesticated Atlantic salmon in the marine environment was a 

necessary step into an economically sustainable industry and it is essential to continue 
to develop aquaculture while maintaining various ecosystem processes. Often with new 

technologies, economic progress frequently outpaces the necessary knowledge needed 

to understand what impact they have on the environment. While regulations have 

helped limit the escapement of individuals from farms (e.g., standardization of net pen 

construction; Jensen et al. 2010, Høyli 2016), incidences of escaped events still occur 

at levels that pose a threat to the persistence to wild salmon (see Wringe et al. 2018 as 

a recent expample). To help mitigate and reduce the negative impact of aquaculture, 

stakeholders use a range of management strategies to reduce the threat of genetic 

introgression from escaped farmed Atlantic salmon.  

 Reactive strategies to recapture escaped farmed salmon after release from the 

farm site is perhaps the most widely used method to mitigate the potential interactions 

with wild Atlantic salmon (Diserud et al. 2019, Glover et al. 2019). For instance, where 

available, recaptures with nets in the marine environment is the most effective method 

to reduce the number of escapees directly post-release (Skilbrei 2010, Chittenden et al. 

2011). However, initial efforts to recapture escaped salmon must be taken immediately 

(within 24 hours), otherwise recaptures will be unlikely (Chittenden et al. 2011, 
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Dempster et al. 2018). In addition, removal efforts in rivers is another commonly used 

method in Norway to mitigate the interactions of escaped salmon with wild fauna 

(Glover et al. 2019). However, this occurs close to or during spawning activities and 

can potentially have limited benefits if escaped farmed salmon spawn prior to removal.  

A better alternative is a proactive management strategy that directly inhibits the 

abundance of escaped salmon that are able to interact with wild fauna (Atalah and 

Sanchez-Jerez 2020). Marine spatial planning (MSP) is one proactive tool that can help 

resource managers make informed decisions on the spatial distribution of activities in 

the sea that humans dependent, while promoting a healthy marine ecosystem for current 

and future activities (Foley et al. 2010, Qiu and Jones 2013). A core postulate of many 

MSP actions is centered around an ecosystem-based management approach that is 

based on scientific methodologies to support sound policies decisions (Crowder and 

Norse 2008, Sørensen et al. 2008). However, it is not guaranteed to be the foundation 

within the decision-making process (Foley et al. 2010). For instance, while it is a stated 

goal of the various MSP actions in Norway to protect important populations from 

introgression (Aasetre and Vik 2013), their effectiveness to buffer against introgression 

has not been rigorously tested. Furthermore, the necessary biological understanding of 

how wild and escaped farmed Atlantic salmon interact across the landscape is limited 

and thus prevents stakeholders from acquiring the necessary information to effectively 

manage the threat of introgression (Guttormsen 2015).  
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2. OBJECTIVES 

This thesis was motivated by the current lack of proactive management 

strategies against escaped farmed salmon in Norway. However, the biological 

understanding of how industry and ecosystems interact is still limited (e.g., escapee 

dispersal) and it is essential that research is directed towards understanding these 

interactions. Therefore, the overarching goal is to 1) assess the dispersal of wild salmon 

near farming sites (Paper II), 2) determine the environmental variables that influence 

escapee dispersal among- (Paper III) and within rivers (Paper IV). However, as a 

precursor to Papers III and IV it was necessary to 3) test the effectiveness of the 

sampling method to distinguish between wild and escaped Atlantic salmon in situ 

(Paper I). Subsequently, the focus of this synopsis will be to discuss the spatial overlap 

of wild and escaped Atlantic salmon and the relevancy of these results to mitigate the 

abundance of escaped salmon in rivers though different reactive and proactive 

management strategies.  
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3. SUMMARY OF PAPERS 

Paper I 

Swimming with fishes: Validating drift diving to identify farmed Atlantic salmon 

escapees in the wild 

Shad K. Mahlum, Helge Skoglund, Tore Wiers, Eirik Straume Norman, Bjørn T. 

Barlaup, Vidar Wennevik, Kevin Glover, Kurt Urdal, Gunnar Bakke, Knut W. Vollset 

Escaped farmed Atlantic salmon Salmo Salar interbreeding with wild conspecifics 

represents a threat to the genetic integrity and viability of wild populations. Therefore, 

it is necessary to accurately quantify escapees in riverine systems to monitor and 

mitigate interactions with wild conspecifics. Drift diving surveys are presently used in 

Norway to quantify the number of wild and farmed escaped salmon in rivers. However, 

limited information is available on the validity of the method to distinguish escapees 

from wild conspecifics. Comparing the proportion of escapees calculated from drift 

diving (mean = 8.5 %) and net captures (mean = 8.6 %), we found that drift diving was 

well correlated with net captures (adj.r2 = 0.79). Furthermore, scale analysis from an 

independent dataset demonstrated a 98 % true positive rate when identifying and 

capturing farmed escapees during drift diving. The results of this study indicate that 

drift diving is an accurate and robust method to quantify farmed escaped salmon, at 

least in rivers where observation conditions are adequate for snorkeling. In general, 

drift diving can be a valuable tool for stakeholders to quickly assess broad spatial 

extents with limited time and resources.   
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Paper II 

Where the salmon roam: Fjord habitat use of adult Atlantic salmon 

Shad K. Mahlum, Knut W. Vollset, Bjørn T. Barlaup, Gaute Velle, and Tore Wiers 

The habitat use of adult Atlantic salmon was evaluated in a fjord complex in western 

Norway. A representative sample of 9 wild and 29 hatchery origin Atlantic salmon 

were tagged with acoustic tags and tracked with 28 stationary receivers from June 2012 

to river entry. Using a movement-based kernel density estimation, we identified near 

shore habitat use in relation to a National Salmon Fjord (NSF) and adjoining 

aquaculture sites. Furthermore, we compared progression rates and vertical 

distributions among habitat units. Mean residence time for salmon with acoustic tags 

from marking to river entry was 30 days (range 3–83 days). Moreover, recaptures of 

individuals with T-bar anchor tags supported the long residency of Atlantic salmon 

within the fjord (0–63 days). The main habitat use occurred outside the NSF (68%), 

with 62% of the individuals overlapping with one or more aquaculture sites. Median 

progression rates ranged from 15kmd-1 up to 42kmd-1 among the different sections of 

the fjord with a mean vertical distribution <2m from the surface. Whereas direct 

implications from the overlap with aquaculture are unclear, the results illustrate the 

challenge encountered when evaluating the effectiveness of marine protected areas in 

close proximity to aquaculture sites. 
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Paper III 

Salmon on the lam: Drivers of escaped farmed fish abundance in rivers  

Shad K. Mahlum, Knut W. Vollset, Bjørn T. Barlaup, Helge Skoglund, Gaute Velle 

The production of Atlantic salmon in aquaculture has grown substantially over the 

last 40 years. The unintentional release of domesticated salmon poses a significant risk 

in the long-term persistence of wild Atlantic salmon populations through ecological 

interactions and genetic introgression. Our ability to link aquaculture production to 

farmed escaped salmon in rivers is still limited and hinders identifying the appropriate 

carrying capacity of the environment to mitigate unwanted interactions between wild 

and escaped Atlantic salmon. Here, we use a 14-year dataset of farmed escapee 

abundance in rivers along with a priori selected covariables to identify factors that 

affects the abundance of escapees in 54 watersheds. In addition, we evaluate the 

predictive strength of the model to assess the risk of individual rivers to introgression. 

We found that the abundance of farmed escaped Atlantic salmon in rivers is not a 

random process and directly relates to the production limits for aquaculture facilities 

when controlling for biotic (abundance of wild Atlantic salmon) and abiotic 

mechanisms (mean yearly discharge). The model performed moderately well when 

predicting the abundance of farmed escaped salmon in rivers (40% success rate) and 

improved when categorizing into management thresholds (75 % success rate). This 

study provides important links between aquaculture production and the abundance of 

farmed escaped Atlantic salmon in rivers so that governmental agencies can provide 

ecological relevant production values for an environmentally sustainable aquaculture 

industry. Understanding these relationships are beneficial in areas with an established 

aquaculture industry and for potential new aquaculture sites where domesticated and 

wild Atlantic salmon will overlap. In addition, these methods could be applied to other 

species of domesticated fish (e.g., rainbow trout), that share similar life histories that 

also pose an ecological threat to wild fauna.   
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Paper IV 

The last stop: Longitudinal distribution of farmed escaped Atlantic salmon in rivers 

Shad K. Mahlum, Knut W. Vollset, Bjørn T. Barlaup, Helge Skoglund, Gaute Velle 

The interaction between wild and escaped farmed salmon is a significant threat to the 

long-term persistence of wild Atlantic salmon populations. Risk assessments of the 

impacts by escaped farmed fish are normally done at the watershed level, although 

interactions between wild and farmed fish is likely dependent on the spatial distribution 

of the species within rivers, and how they use the available spawning grounds in the 

river. Therefore, the focus of this study is to assess the spatial distribution of wild 

salmonids and escaped Atlantic salmon in rivers using data from spawning counts. We 

found that 1) in contrast to earlier studies, escaped Atlantic salmon generally distribute 

in the same parts of the river as wild salmonids, but are more variable among year in 

their distribution. 2) Densities of sea trout and salmon was correlated to the distribution 

of spawning habitat, whereas, escaped salmon densities lacked statistical clarity to any 

of the riverscape metrics. 3) Using a distance-based redundancy analysis we identified 

that sea trout, wild Atlantic salmon, and escaped Atlantics salmon appeared to 

segregate according to the slope, elevation, and spawning habitat quality, where fish 

size categories appeared to be segregated by watershed placement. Our study indicates 

that the spatial overlap between wild and farmed salmon are dependent on the 

watershed characteristics and the size distribution of wild and escaped farmed fish, and 

that a risk assessment evaluating the impact of farmed fish must take these factors into 

account.  
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4. SYNTHESIS AND GENERAL DISCUSSION  

In the following sections, I summarize the key findings from these four papers relative 

to the spatial overlap of wild and farmed escaped Atlantic salmon. Then, discuss six 

management strategies, their potential benefits for wild salmon populations, and the 

implications for promoting an environmentally sustainable industry (Figure 3): 1) no 

mitigation, 2) river monitoring and active removal (current management strategy; 

Paper I and IV), 3) regulating escapees with production limits based on environmental 

carrying capacities (“Traffic light system”; Paper III), 4) maintaining existing 

protected areas (National Salmon Fjord [NSF]; Paper II), 5) ecological relevant 

protected areas (Paper II & III), and 6) the incorporation of new technologies (e.g., 

triploid salmon).   

 

Figure 3. Current and potential management strategies to mitigate the impacts of 

escaped Atlantic salmon on wild Atlantic salmon (NSF = National Salmon Fjord). 
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4.1 The spatial overlap of wild and escaped Atlantic salmon 

The spatiotemporal overlap of wild and escaped farmed Atlantic salmon can result in 

competition for mates and habitat (Robertsen et al. 2018). However, of greater concern 

is the long-term genetic degradation of wild Atlantic salmon stocks (Bolstad et al. 2017, 

Skaala et al. 2019). For introgression to occur, wild and escaped Atlantic salmon must 

overlap in space and time. Therefore, to understand the threat of introgression and how 

to best mitigate interactions between conspecifics, it is necessary to first understand the 

underlying mechanisms that contribute to the direct spatial overlap between wild and 

escaped farmed salmon.  

After escape, the overlap of wild and escaped farmed Atlantic salmon starts in 

the marine environment. Unlike wild salmon, escaped farmed Atlantic salmon lack 

imprinted natal cues to specific rivers (Jonsson and Jonsson 2011), and if present, are 

thought to be more general to a given area (Skilbrei et al. 2015). Thus, escaped Atlantic 
salmon require secondary navigational strategies to find rivers to spawn (e.g., 

collective migration hypothesis; Berdahl et al. 2016). For example, a key factor that 

determined the abundance of escaped Atlantic salmon in rivers and spawning sites is 

the abundance of wild salmon (i.e., it seems evident that farmed fish are found in the 

same places as wild fish independent of the habitat; Paper III, Paper IV, Jonsson et 

al. 2003). With the high affinity of wild salmon to congregate for extended periods of 

time in spatially distinct areas just prior to river entry (Paper II), the probability 

increases that escaped salmon can locate groups of wild salmon via pheromones and 

other biological cues (Bett and Hinch 2015). Escaped salmon may then follow wild 

salmon into their respective rivers (Paper III) and spawning sites (Paper IV; Berdahl 

et al. 2017). Social mechanisms, like the collective migration theory (Berdahl et al. 

2016), likely play an active role in the distribution of wild and escaped Atlantic salmon 

and managing escaped farmed Atlantic salmon within this context can improve our 

ability to mitigate the threat of escaped salmon (e.g., 4.2.4 National Salmon Fjords).  

River specific distributions can have important implications for the success of 

introgression. The distribution of the spawning population of salmonids along the 

riverscape continuum provides an important insight into how populations are affected 
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and potentially allow managers to identify bottlenecks that affect the productivity of 

the river (Atlas et al. 2015). For instance, juvenile salmonids have limited ability to 

disperse after emergence from the gravel. Consequently, aggregations of nests can 

result in density-dependent effects, such as reduce individual growth from increased 

competition (Einum et al. 2006, Einum et al. 2008) and decreased survival (Einum and 

Nislow 2005, Einum et al. 2008). One might envision that such density-dependent 

mechanisms can help buffer the population against the effects of introgression. For 

example, offspring of escaped farmed fish are inferior competitors compared to their 

wild conspecifics in river settings (Fleming and Einum 1997), and the inclusion of 

domesticated- and hybrid origin individuals increases the competition for resources and 

reduces the river capacity of wild smolt production (Skaala et al. 2012, Skaala et al. 

2019). Yet, results from the Guddal River, Norway, indicates that rivers sites that 

display increased density-dependency also have a greater difference in survival 

between wild and escaped framed Atlantic salmon (Skaala et al. 2019).  

Although a small dataset, comparing data on the distribution of escapees from 

this thesis to introgression rates suggests that sites with small unimodal distributions of 

wild spawning salmon (e.g., River Granvinselva mean 68 wild salmon per year, Paper 

IV) also have a greater population level introgression rates (10 % probability of being 

wild; supplementary material in Karlsson et al. 2016). However, in rivers with more 

robust populations (e.g., Eidfjordvassdraget has mean yearly abundance of wild salmon 

= 151, Paper IV), population level introgression was shown to be more resilient even 

though distributions of spawners are also lumped together (92 % probability of being 

wild; supplementary material in Karlsson et al. 2016). Clearly, the robustness of the 

wild population is an important buffer against introgression. However, this effect is 

most likely affected by the distribution of escapees within the river and following local 

density-dependent completion between wild and farmed fish.  

River fragmentation may also play an important role in limiting the rate of 

introgression. The distribution within the watercourse is dependent on the 

connectedness of the habitat patches (Parry et al. 2018). For instance, Sylvester et al. 

(2018) found that the hybridization rates decreased with the number of obstructions 

within the river. Furthermore, while anthropogenic barriers are easily definable in 
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space and time, natural fragmentation is less obvious in the context of partial barriers 

(e.g., flow dependent structures that are only passable to the most fit individuals). By 

identifying natural barriers within a river, (Enqvist 2020) found that escaped salmon 

passed significantly less barriers than wild Atlantic salmon and sea trout. While 

fragmented rivers often have detrimental effects to wild populations (Mahlum 2014), 

in some instance (e.g., invasive species), natural and anthropogenic barriers can help 

protect species at risk, such as the interbreeding of wild and escaped Atlantic salmon. 

Understanding the distribution of escaped farmed salmon relative to wild 

salmon outside (Paper II), among (Paper III), and within rivers (Paper IV) is an 

important first step into developing robust ecological advice to resource managers. The 

distribution of escaped salmon is dependent on the behavioral mechanisms (e.g., 

collective migration hypothesis) and the geomorphological attributes of the river. 

However, the risk of introgression is likely more complex and depends on the ability 

of the wild population to absorb the yearly abundance of escaped salmon and to 

minimize long-term introgression rates (e.g., density-dependency relationships; section 

4.1). It is therefore necessary to build upon existing knowledge to continue to identify 

the mechanisms that affect introgression to better refine effective management 

strategies (e.g., density-dependent relationships of wild and escaped farmed salmon at 

broad spatiotemporal scale; Osmundsen et al. 2017).  

4.2 Mitigation of escaped farmed Atlantic salmon 

Mitigating the risk of introgression should be a principle objective when 

recommending future aquaculture sites or when evaluating current production limits. 

The development and implementation of different MSP tools can alleviate the pressure 

of escaped Atlantic salmon on wild conspecifics and build a sustainable industry. Here, 

I will discuss current management strategies, their limitations, and how the new 

insights from this thesis might impact how we mitigate escaped farmed salmon 

populations and manage aquaculture production in the future (Figure 3).  
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4.2.1  No mitigation 

The absence of mitigation of escaped salmon was largely relevant at the early onset of 

the aquaculture industry when the industry benefited from high growth rates (Figure 

2). However, in the late 80’s and early 90’s, researchers became concerned over the 

potential genetic degradation of wild populations (Gausen and Moen 1991). Then, with 

advances in genetic analysis at population levels to track the rate and degree of 

introgression (Karlsson et al. 2011), it became evident that the interbreeding between 

wild and escaped Atlantic salmon was eroding the unique genetic signature of wild 

salmon populations (McGinnity et al. 1997, Karlsson et al. 2016) with clear ecological 

impacts on the population (Bolstad et al. 2017, Skaala et al. 2019). Because of the 

negative consequences of introgression, long-term mitigation strategies are required to 

preserve the existing populations of wild Atlantic salmon from further degradation.  

4.2.2 Monitoring and active removal 

Active removal of escaped farmed salmon is a reactive management strategy that is 

widely used only after an escape event occurs. Tracking escapees in rivers can be 

difficult and a range of methods are used to try and quantify and remove escaped 

Atlantic salmon. Norway has over 400 salmon poulations (Anon 2016) and the 

monitoring of escapees within these rivers has been conducted across Norway since 

1989 (Diserud et al. 2019). The National Salmon Program (NSP) in Norway has 

evolved into a broad scale collaboration of five research institutes surveying 241 rivers 

in 2017 (Glover et al. 2019). Here, the primary directive of the NSP is to quantify the 

proportion of escaped salmon in important salmon rivers (Glover et al. 2019). The NSP 

uses several sampling methods to track and provide mitigation advice for stakeholder 

to reduce the impacts of escaped farmed salmon (utfisking.no). Then, based on advice 

from the NSP, the “Oppdrettsnæringens sammenslutning for utfisking av rømt 

oppdrettsfisk” (OURO) distributes funds for the active removal of escaped Atlantic 

salmon in rivers. Through this mitigation program, escapee abundances are reduced to 

levels that are believed to be within limits to prevent long-term impacts from 

introgression (Næsje et al. 2013, Skoglund et al. 2019). 
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The differences in the spatial and temporal distribution of conspecifics can 

produce biased estimates of escaped farmed Atlantic salmon. The quantification of 

escaped farmed Atlantic salmon is primarily accomplished through either the direct 

visual observations based on distinctive morphological characteristics (e.g., video 

analysis and drift diving, Paper I, Svenning et al. 2017) or through the evaluation of 

growth rings of scales obtained during captures (primarly based on rod and reel 

captures; Diserud et al. 2019). Monitoring of a single river can occur in the course of a 

day (e.g., drift diving), several weeks (e.g., autumn fishing surveys), or even months 

(e.g., summer sports fishing). The methods that have extended sampling periods risk 

the increased likelihood that populations non-randomly change over time and result in 

biased estimates (Kendall 1999, Maunder and Punt 2004). For example, escaped 

Atlantic salmon enter rivers later than wild salmon and may create a sampling 

mismatch between wild and escaped salmon (e.g., seasonal closures of sports fishing; 

Jonsson et al. 1990, Heggberget et al. 1993, Erkinaro et al. 2009) and can result in the 

two conspecifics exhibiting large differences in catchability (Harvey et al. 2017, 

Svenning et al. 2017). In addition, the spatial distribution of escaped farmed Atlantic 

salmon has a high degree of variability among years (Paper IV) and many of the 

commonly used removal methods (e.g., snorkeling and net captures) are constrained to 

sites that can be effectively sampled, which have limited efficiency in large river 

systems (Paper I and IV). Failure to account for changes in variation and sites with 

limited sampling capabilities can produce biased estimates (Moe et al. 2016) and limit 

the effectiveness of active monitoring and removals.  

Active sampling methods can also have negative impacts on wild salmon. 

Sampling of adult Atlantic salmon occur close to or during spawning activities. This 

can be a sensitive time and invasive sampling techniques that capture and remove 

individuals may induce unnecessary stress on individuals, which alters their behavior 

(Lennox et al. 2017, Lennox et al. 2019), and in some instances can result in greatly 

depreciated successive spawning events (e.g., brood stock fishing; Bordeleau et al. 

2018). Repeat spawners constitutes less than 10 % of the population, but plays an 

important role in supporting the populations during low recruitment years (Bordeleau 

et al. 2019). Therefore, continued active monitoring of escaped farmed fish (e.g. rod 
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fishing) during or close to spawning may have unintended consequences in the long-

term persistence of the population.  

To ensure representative abundance estimates of escaped salmon while 

minimizing the impact on wild fauna, it is necessary to promote methods that are 

characteristic of the entire anadromous reach (e.g., drift diving) or all individuals 

returning to spawn (e.g., whole river fish traps or video analysis; Svenning et al. 2017, 

Glover et al. 2019). For instance, drift diving has been shown to have minimal bias 

when quantifying wild salmon (Paper I, Orell and Erkinaro 2007, Orell et al. 2011) 

and is a robust method when estimating the proportion of escaped salmon (Paper I). 

By sampling the entire anadromous reach in a single event, drift diving can compensate 

for both the potential disparity in catchability seen in capture methods and provide 

representative estimates of abundance. Furthermore, drift diving allows for the passive 

observation of Atlantic salmon populations with limited or no short- or long-term 

impacts that are seen in active sampling methods (Snyder 2003).   

 The continued monitoring and removal strategy should be considered a 

secondary measure of mitigating escapee impacts when primary measures fail (e.g., 

structural failures of net pens). The unknown biases among sampling methods could 

result in recommendations to OURO that are limited when mitigating interactions 

between wild and escaped salmon. Surprisingly, potential biases associated with catch 

statistics have not been addressed and future research is needed to explore the 

catchability dynamics of escaped and wild Atlantic salmon to understand the 

limitations of the different methods. Consequently, it is difficult to determine how and 

to what extent estimates of escaped salmon based on catch statistics are biased and how 

limitation of the sampling and removal methods impacts our ability to effectively 

provide sound management advice to policy makers. Taken together, i.e. the 

uncertainty of sampling methods and the inefficiency of removal strategies in some 

rivers, more proactive strategies, such as production limits, new technologies or 

implantation of ecological relevant MPA’s, should be relied upon to reduce the risk of 

escapees directly interacting with wild fauna.  
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4.2.3 Regulating escapees with production limits (traffic light system)  

Acknowledging the need to refocus the management of salmon aquaculture based on 

an ecosystem-based approach, the Norwegian government mandated that future growth 

of the industry will be directly linked to the ecological impacts on the environment 

(Guttormsen 2015). To address this need, a new regulatory framework, termed the 

traffic light system, was implemented in 2017 and requires that industry growth will 

be conditional on minimizing their ecological footprint. Within this framework, the 

coast is divided into 13 production zones where production levels are based on key 

environmental indicators. Currently the implementation of the traffic light system is 

based on the predicted mortality of out migrating smolts from sea lice pressure within 

a production zone (Vollset et al. 2017). However, to incorporate an avenue within the 

current regulatory framework to include escaped salmon as an indicator (Guttormsen 

2015), it is necessary: 1) that the impact is measurable (e.g., escaped salmon 

abundance) and closely linked to aquaculture production (e.g., concessions) and 2) to 

identify the carrying capacity of the system (e.g., abundance of wild Atlantic salmon) 

to buffer against the long-term impacts from escaped salmon in rivers (e.g., critical 

thresholds of escapee abundance relative to wild salmon abundance; Næsje et al. 2013, 

Diserud et al. 2019).  

The production of aquaculture is directly related to the abundance of escaped 

farmed salmon in rivers. By assessing a range of metrics (e.g., reported escapees and 

in situ production values) across spatial scales (up to 100 km from the river mouth), 

Paper III linked the concessions allotted to aquaculture sites (within a 75 km buffer 

from the river mouth) to the abundance of escaped farmed Atlantic salmon in rivers. 

Surprisingly, few studies have attempted to link aquaculture production to the 

abundance of escaped salmon in rives and the studies that have explored mechanism 

of escapee abundances in rivers often focused on the reported number of escapees 

(Paper III, Walker et al. 2006, Green et al. 2012, Skilbrei et al. 2015). However, this 

has yielded disappointing results, which is believed to be from a chronic underreporting 

of escape events (up to two- to four-fold underreporting; Skilbrei et al. 2015). Directly 

linking aquaculture production to escaped salmon in rivers provides stakeholders a 
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valuable tool to proactively regulate the threat of escaped salmon in rivers towards 

desired thresholds.  

The ability of the environment to absorb escaped salmon with minimal long-

term impacts on wild Atlantic salmon is dependent on the size of the wild population. 

Several studies have found a correlation between the abundance of wild and escaped 

farmed Atlantic salmon (Paper III, Jonsson et al. 2003). If escaped salmon are drawn 

to rivers with more robust populations that can withstand long-term introgression, then 

it is necessary to take steps to preserve these populations to maintain their resiliency. 

However, the wild salmon abundance of many Norwegian rivers is often less than 100 

wild individuals (Paper III, Gausen and Moen 1991), and in such cases, even low 

abundances of farmed escaped salmon (> 4 individuals) can increase the risk of long-

term genetic impacts (Diserud et al. 2019). It is therefore necessary to ensure that wild 

populations are robust to help buffer against introgression and thus increase the 

production potential of natural systems (Paper III).  

The regulation of aquaculture production based on the abundance of escaped 

salmon in rivers will provide a strong long-term management tool in mitigating 

introgression (Figure 3). Furthermore, regulating based on known relationships of 

escapee abundance and aquaculture production is important when assessing future 

aquaculture sites and the potential risk of introgression between conspecifics. By 

understanding the relationship between the abundance of wild and escaped salmon, 

resource managers can continually adjust the production limits based on the population 

status of wild salmon stocks. This will likely result in decreasing production in areas 

where wild salmon populations are low with limited capacity to buffer against 

introgression (e.g., Hardangerfjord, Paper III), but indicate an increase in production 

in areas with more robust salmon populations and an increased capacity to buffer 

against introgression (Ryfylke, Paper III). This would provide added industrial 

incentives to maintain and improve regional salmon populations to increase 

aquaculture production and thus capitalize on improved regional carrying capacities.  
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4.2.4 Marine Protected Areas 

The implementation of MPA’s is a special type of MSP action used to reduce the 

ecological impacts of human influences. Marine protected areas are primarily 

established to protect sensitive habitats or species or for the management of restoring 

commercially important fisheries (Sørensen et al. 2008). Often, MPA’s range in 

protective status with no-take reserves regarded as the strictest to partially protected 

areas that allow various forms of activity (e.g., sports fishing; Agardy 2000, Lester and 

Halpern 2008). In Norway, MPA’s are used to buffer wild populations from the side 

effects of aquaculture.  

Current National Salmon Fjords 

The implementation of the NSF’s, a partially protected MPA, were designed to buffer 

important wild salmon producing rivers from disease, parasites, and introgression 

connected to aquaculture sites (Aasetre and Vik 2013). The current structure of the 

NSF’s is based on the implementation of 52 temporary protected zones in 1989. Then 

in 2002, twenty-one permanent NSF’s were established (DKMD 2002a, b) with an 

additional 8 NSF’s included into the regulatory structure in 2007 (DKMD 2006) to a 

total 29 NSF’s.  

Many of the current NFS’s have limited success in meeting their stated regulatory 

goals. Several studies have assessed the effectiveness of NSF’s and found that they had 

minimal impacts in protecting salmonids against sea lice (Bjørn et al. 2011, Serra-

Llinares et al. 2014). Paper II determined that the current size of the NSF failed to 

encompass the habitat that is used by returning wild Atlantic salmon and that salmon 

directly overlapped with aquaculture sites. This echoes’ previous studies indicating that 

the effectiveness of the current NSF is site- dependent and that smaller NSF’s provide 

minimal protection (Bjørn et al. 2011, Serra-Llinares et al. 2014). Furthermore, after 

accounting for the wild population size, Hindar et al. (2018) found that the percentage 

of escaped salmon was consistently lower in rivers located in protected areas. However, 

no clear difference in genetic introgression was observed between rivers located within 

and outside the NSF (Hindar et al. 2018).  
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Ecological Relevant National Salmon Fjords 

Ecologically relevant NSF’s need to account for the biological attributes of the species 

of interest. To function properly, protected areas need to be large and encompass the 

habitat that is routinely used by the target species. Otherwise, it may result in a 

mismatch between the MPA boundary and the habitat that the species occupies 

(Lennox et al. 2018). Therefore, to buffer against introgression, NSF’s need to inhibit 

the initial spatial overlap of wild and escaped Atlantic salmon in the marine 

environment. This can be accomplished through either the protection of habitat that is 

routinely used by wild Atlantic salmon (Paper II) or by buffering rivers based on the 

spatial scales that escapees act (Paper III).  

Effective MPA’s to buffer rivers against introgression need to have ecological 

relevant spatial extents to be effective. Studies that assessed escaped salmon 

distribution, found that escapees entered rivers within 150 km from release with most 

observing escaped salmon entering rives within 90 km from release (Heggberget et al. 

1993, Jonsson et al. 2003, Hansen and Youngson 2010, Quintela et al. 2016). In 

addition, within this spatial extent, the rivers with the more robust populations attract 

more escaped salmon (Paper III, Jonsson et al. 2003). Potentially, two different spatial 

extents can be used to create ecologically relevant NSF’s. First, because returning wild 

Atlantic salmon have long residence periods (Paper II, Thorstad et al. 2003) in 

spatially distinct areas of the marine habitat (Paper II), excluding the production of 

domesticated salmon from areas where wild salmon reside prior to river entry, can help 

reduce the risk of escaped salmon finding and following wild salmon to spawning 

rivers (see section 4.1). However, this is predicated on a strong understanding of habitat 

use by wild salmon, and such information is often absent or requires extensive remote 

telemetry methods to acquire (Lennox et al. 2018). Alternately, the “scale of effect” 

that aquaculture production is related to the abundances of escaped salmon in rivers 

can be used to create ecologically relevant NSF’s boundaries (Jackson and Fahrig 

2012). For example, Paper III found that the concessions allowed within 75 km from 

the river was the best predictor of aquaculture production related to the number of 

escaped salmon in the rivers. Because active monitoring is more common in rivers 

compared to extensive remote telemetry studies, resource managers would likely be 
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more successful using the “scale of effect” in designing ecological relevant MPA’s. 

Implementing ecologically relevant MPA’s would reduce the likelihood of escapees 

inhabiting areas of high salmon abundance and subsequently migrate into the rivers to 

spawn. 

Effective MPA’s will always directly impact the production of aquaculture by 

decreasing the already constrained allowable habitat that can be used (Sanchez-Jerez 

et al. 2016). In extreme cases, if the protected areas are implemented based on the 

spatial scope that aquaculture acts on the abundance of escaped salmon in rivers (75 

km buffer from rivers), this could effectively close the existing aquaculture industry. 

While broad scale exclusion zones would potentially be very beneficial to the wild 

salmon population, it will have detrimental impacts to the local economies that depend 

on aquaculture. Therefore, the use of MPAs should be used sparingly when other 

mitigation strategies fail to protect important populations of Atlantic salmon.  

4.2.5 New Technologies   

Aquaculture is a dynamic industry (Osmundsen et al. 2017) and the relationships 

between aquaculture and escapee abundance among and within rivers is conditional on 

the current technology (e.g., farm retention measures) and the legal guidelines that 

regulate it. However, evolving technologies can have profound impacts on the industry 

and the long-term viability. The most notable was the initial development net pen 

facilities that allowed for aquaculture to move to the marine environment. Below, I 

briefly discuss some recent technological developments and how they may allow 

industry to continue to grow while minimizing the threat of introgression. 

First, improvements in site retention will result in increases in carrying capacity 

of the system. For example, in 2004, universal net-pen construction regulations resulted 

in decreases in reported escaped events despite increases in production (Jensen et al. 

2010). Continued technological improvements (e.g., self-contained or land-based 

aquaculture sites) would result in increases of the carrying capacity of the ecosystem 

and thus parallel increase in aquaculture production. Retention is the most important 

factor that can help mitigate the genetic interactions between wild and escaped farmed 
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fauna. In addition, the improved retention of salmon will directly result in increases in 

production that is otherwise lost when individuals escape.  

Second, the degree of the impact from escapees is dependent on the competitive 

ability of escaped Atlantic salmon relative to wild salmon and how they interact in 

space and time (Houde et al. 2017). The abundance of escaped Atlantic salmon are still 

at levels deemed as high risk for introgression and one way to potentially reduce the 

risk is to use sterile fish. Of the methods to sterilize individuals (see Benfey 2016 for a 

review), the use of triploids females presents the most robust avenue. Unlike triploid 

males (Fjelldal et al. 2014), females have inhibited spawning behaviour and are less 

likely to migrate to freshwater to spawn (Glover et al. 2016). Overall triploid fish 

display similar qualities to their diploid counterparts. However, concerns have been 

raised regarding their robustness to disease and parasites and their ability to ack to 

reservoirs for pathogens (Benfey 2016). Still, by eliminating the ability for 

introgression to occur, the direct interactions with wild fauna will likely have minimal 

long-term effects on wild populations.  

The development of offshore aquaculture can potentially reduce the direct 

interaction of aquaculture with wild fauna. Aquaculture is predominantly located 

within nearshore habitats where refugia from the open ocean is best. However, it is 

believed that large scale increases in aquaculture production will need to capitalize on 

the new habitats such as the open ocean (see Gentry et al. 2017 for a recent review). 

Shifting new production sites to offshore habitat can reduce the pressure and potentially 

separate some of the mechanisms that are important for escaped salmon to find rivers 

(section 4.1, Paper III). In addition, relocating aquaculture to offshore environments 

can potentially also have important secondary benefits that are critical for sustainable 

aquaculture (e.g., reduction of disease and parasite transmission pathways). 

The discovery and implementation of new technologies will likely have the 

greatest impacts on limiting the negative interactions between aquaculture and the 

surrounding environment. New technologies often have steep initial cost during 

development, however, once established and tested, can result in increased industrial 

growth. While the previous strategies will help alleviate the symptoms that impact the 

environment (e.g., concession limits and MPA’s), only improvements in the retention 
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of domesticated salmon or directly inhibiting introgression will instil long-term 

environmental stability to the industry. 

4.3 Conclusion 

The main objective of my thesis was to evaluate the spatial overlap of wild and escaped 

farmed salmon and the potential implementation of effective management policies to 

mitigate introgression. Following Atlantic salmon from the fjord to the river with the 

use of fine scale data (remote telemetry and snorkel estimates), I was able to help clarify 

how both wild and escaped Atlantic salmon interact across the landscape. Moreover, I 

outlined how understanding these mechanisms is critical when applying ecological 

relevant management strategies (e.g., concession limits) and understanding their 

strengths (e.g., proactive strategies) and weaknesses (e.g., reactive strategies).  

Important information was ascertained from this thesis pertaining to the spatial 

overlap of wild and escaped farmed Atlantic salmon. However, less attention has been 
shown to the increased risk of intraspecific introgression between sea trout and escaped 

Atlantic salmon. Natural introgression between Atlantic salmon and sea trout can occur 

but is considered rare (see Adams et al. 2013 and references therein) and natural 

introgression between salmonid species is restricted based on spatiotemporal 

differences in spawning. The spatial overlap (Paper III) and early spawning of escaped 

salmon (Lura and Sægrov 1993) may indicate that sea trout have an increased risk of 

mating with escaped Atlantic salmon (Hindar and Balstad 1994). Studies that have 

focused on introgression rates between escapees and sea trout found interspecific 

introgression frequencies range from < 1% up to 41 % (Youngson et al. 1993, Jansson 

and Öst 1997, Hórreo et al. 2011), which can result in the suppressed growth of wild 

fauna (Oke et al. 2013). Therefore, the potential for increased interspecific 

introgression rates, future research should also be directed into the broad scale impacts 

of the interspecific hybridization of sea trout populations and the potential ecological 

effects. 

This thesis fills important knowledge gaps needed to help incorporate 

ecologically pertinent metrics into current and future management strategies. It is 



 29 

recommended that stakeholders shift focus on limiting the interactions of wild and 

escaped farmed salmon through the use of 1) technological advances that inhibit the 

potential for introgression (e.g., closed systems, or triploid females) or 2) the use of 

proactive strategies, such as concession limits (e.g., traffic light system) or through 

complete closures of ecologically relevant protected areas (e.g., NSF). Furthermore, 

reactive mitigation efforts (e.g., active removals within rivers) should be used as a last 

resort when primary mechanisms fail (e.g., net failures). Therefore, incorporating 

metrics that allow for robust wild salmon populations to persist, my thesis will help 

propagate the salmon aquaculture sector in an environmentally sustainable manner 

while also promoting the continued economic success of the industry.    
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1.  INTRODUCTION

The introduction of exotic species is a well-known
risk to the ecological integrity of many ecosystems
(Wilcove et al. 1998). Less known is the impact of
introduction of non-native genotypes into a popula-
tion from conspecifics through restocking programs,
which has resulted in reductions in overall popula-
tion fitness (Champagnon et al. 2012). The expansion
of aquaculture over the last century has resulted in
the unintentional introduction of domesticated ani-
mals to regions that they would not have otherwise
inhabited (Naylor et al. 2001). Aquaculture facilities
have provided source populations that can inadver-
tently escape into the surrounding biome and pro-
duce self-sustaining populations — or in some cases,

interbreed with ex isting wild conspecifics, thereby
introducing deleterious domesticated genetic attrib-
utes into the wild population (Glover et al. 2017).

Over the last several decades, declines in wild
Atlan tic salmon Salmo salar populations have been
reported throughout their historic range (Parrish et
al. 1998, Friedland et al. 2003, Chaput 2012, Soto et
al. 2018). During the same time period, there has
been an increase in the production of domesticated
S. salar (Gross 1998, Bostock et al. 2010). One of the
biggest environmental challenges related to salmo -
nid aquaculture is the escape of farmed individuals
that disperse from cultivation sites and migrate into
rivers to spawn (Taranger et al. 2015, Forseth et al.
2017). Retention of farmed fish within net pen facili-
ties has greatly improved with time (Jensen et al.
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2010), yet escape events still occur at levels that pose
a significant threat to wild populations of salmon (see
Wringe et al. 2018 for a recent example). To circum-
vent the ecological ramifications of escaped farmed
salmon, various stakeholders have increased aware-
ness and efforts to monitor the presence of escapees
in wild populations (Glover et al. 2019) and to miti-
gate the effects that can occur between wild and
farmed salmon.

Introgression of domesticated escapees is consid-
ered to be one of the most significant threats to native
S. salar populations in countries where salmon aqua-
culture is practiced (Taranger et al. 2015, Forseth et
al. 2017). This phenomenon has been documented in
the wild for decades (Diserud et al. 2019, Glover et
al. 2019), and extensive introgression and hybridiza-
tion has been observed in areas where aquaculture
and wild S. salar overlap (Clifford et al. 1998, Glover
et al. 2013, Karlsson et al. 2016, Wringe et al. 2018).
While consequences arising from escaped salmon
are likely to be population-dependent (Fraser et al.
2010, Glover et al. 2013, Heino et al. 2015, Wringe et
al. 2018), the offspring of domesticated salmon, and
their hybrids with wild salmon, display reduced sur-
vival in the wild (McGinnity et al. 1997, Fleming et al.
2000, Skaala et al. 2012, 2019). Therefore, introgres-
sion of domesticated escapees in native S. salar pop-
ulations, if extensive enough, may ultimately lead to
the extirpation of vulnerable populations (McGinnity
et al. 2003, Castellani et al. 2018). It is therefore
imperative to be able to quantify escaped salmon in
relation to specific populations so that management
strategies (e.g. escapee removals and improved re -
tention within net pens) can be implemented or im -
proved to minimize the risk of further introgression.
However, river systems where S. salar reside often
encompass broad spatial scales that can be time-
consuming and costly to manually survey and diffi-
cult to attain a representative sample.

Quantifying escaped farmed salmon in a river
can be challenging. Common survey techniques (e.g.
mark−recapture or electrofishing) can incur undue
stress on wild individuals at critical times in their
life cycle (Snyder 2003), require releasing escaped
salmon back into the system (e.g. mark− recapture),
or are subject to limitations due to variation in the
catch per unit effort (CPUE), which is beyond the
changes in abundance (e.g. recreational fishing esti-
mates; Maunder & Punt 2004). Similar to other obser-
vational methods (e.g. video surveillance and camera
traps), drift diving represents a relatively non-inva-
sive method to directly survey the abundance of dif-
ferent species (Pilliod & Peterson 2001, Ebner et al.

2015) in a range of habitat types (e.g. freshwater and
marine ecosystems; St. John et al. 1990, Beauchamp
et al. 1994, Toft et al. 2007), with ex tensive use in lotic
ecosystems to monitor salmo nids (Thurow et al. 2006,
Orell et al. 2011, Vollset et al. 2014). Although drift
diving has been used for several decades to assess
salmonid populations in rivers, some concerns exist
(Dolloff et al. 1996). For instance, the accuracy and
precision of drift diving may vary according to vari-
ous factors, such as individual fish size (Slaney &
Martin 1987, Hillman et al. 1992, Thurow et al. 2006),
density across various habitats (Hankin & Reeves
1988), habitat complexity (O’Neal 2007), and the ten-
dency of individuals to seek specific habitat types
(Orell & Erkinaro 2007). Although visual estimates
may incur uncertainties with regards to precision,
drift dive estimates can save time and expenses
(Dolloff et al. 1996, Thurow et al. 2006, Orell et al.
2011) and potentially increase the total habitat sam-
pled, thus improving the overall abundance esti-
mates of a system (Hankin & Reeves 1988).

Drift diving is one of the main sampling methods
used to quantify the number and proportion of es-
caped farmed S. salar throughout rivers in Norway
(data from 133 rivers included in the national moni-
toring program in 2017; Glover et al. 2019). In order to
identify farmed salmon escapees through drift  diving,
it is necessary to be able to distinguish them from
wild conspecifics by identifying variations in several
phenotypic traits (e.g. spotting patterns; Jørgensen et
al. 2018). However, in contrast to other methods im-
plemented in the Norwegian monitoring program
that involve capture and subsequent determination of
origin through scale reading, the accuracy of drift
diving in differentiating between escaped farmed
and wild salmon is still to be investigated. Therefore,
the overall aim of this study was to (1) assess the
 accuracy of quantifying the proportion of escaped
farmed sal mon using the abundance approximations
from drift diving validated against net captures, and
(2) establish the accuracy of identifying escaped
farmed sal mon (i.e. true positive rate; TPR) in rivers
during drift diving when applying commonly used re-
moval methods (e.g. harpoon).

2.  MATERIALS AND METHODS

This study consists of 2 independent datasets to
assess the accuracy of drift diving in identifying
escaped farmed salmon. Dataset 1 is a comparison of
the proportion of escapees at sites observed during
drift diving and subsequent net captures. Dataset 2
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quantifies the TPR of drift diving as a mitigation
method to removed escapees from spawning sites.

2.1.  Study sites

The rivers in which the methods were tested were
located in 3 fjords in western Norway (Fig. 1). The
rivers originate in alpine systems where steep gradi-
ents dominate the upper reaches of the watersheds
and lower gradients dominate the lower reaches;
hydro power is a prevalent feature in the landscape
(6 of the 9 streams). Atlantic salmon Salmo salar
and anadromous brown trout S. trutta represent the
dominant salmonid species within the anadromous
reaches of these rivers. The presence of aquaculture
is variable among the 3 fjords with at least one
National Salmon Fjord in each fjord complex that
restricts aquaculture activities in these defined zones
(Aasetre & Vik 2013). The rivers were chosen based
on the frequent observations of escaped farmed sal -
mon in previous years, and because they were suit-
able for catching and sampling fish to validate drift
diving counts.

Sampling occurred from 2016 to 2018 in October
and November when salmon returned to spawn. To
directly compare salmon drift dive estimates, each
site needed to have stream conditions that were con-
ductive to the use of a beach seine or gill nets (e.g.

low flow velocities and limited in-stream structures
such as large boulders and large woody debris). A
total of 26 comparisons were conducted at 19 differ-
ent sites among 9 watersheds (Table 1). Capture sites
consisted of pools ranging in size from 716 to 15 179 m2

that were chosen based on previous experience indi-
cating that these locations were spawning and/or
holding pools for salmon. One site was excluded from
the comparison analysis based on unrepresentative
net captures (<25% of the ob served population dur-
ing drift diving and an unequal CPUE towards
escaped farmed salmon; Site 3 in Table 1).

2.2.  Dataset 1: drift diving and net captures

Drift diving was conducted before the removal of
fish (both wild and farmed) at a sampling site (~10 to
15 min). Prior to drift diving, underwater visibility
(effective visibility; in m) was estimated as the dis-
tance at which features of the fish could be observed
to assign the origin of the individual (e.g. wild vs.
farmed). This was done by assessing objects with
enough clarity to identify detailed characteristics
(e.g. the facial features of a drift dive partner) and
estimating the distance to those objects. A single
downstream pass was used to count fish with experi-
enced drift diving personnel, in accordance with Nor-
wegian standards (NS 9456:2015). To maintain visual
coverage of the stream width during sampling, the
number of personnel (1 to 4 divers) was adjusted to
the stream width and the effective visibility of the
site. Only fish that passed upstream of the dive team
were counted to avoid double counting of fish mov-
ing downstream. Upon encounter, fish were visually
identified to species (i.e. S. salar or S. trutta), rearing
origin (wild, hatchery, or farmed; see below), and
size class (small: <3 kg; medium: 3 to 7 kg; large:
>7 kg). For the purposes of this study, the offspring of
wild salmon produced and reared in a hatchery and
deliberately released into the river as juveniles for
the purpose of supportive breeding were classified as
wild (identified by lack of adipose fin, which was
removed prior to release as smolts). Morphological
differences were used to distinguish between the dif-
ferent conspecifics. Specifically, escaped farmed S.
salar were distinguished based on differences in
body proportions, fin erosion, morphology of opercu-
lum, behavior, and pigmentation (Lund et al. 1991,
Walker et al. 2006, Erkinaro et al. 2010, Jørgensen et
al. 2018).

To remove salmon from the site immediately fol-
lowing drift diving, we used either gill nets (length =
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30 m, depth = 2 m, half mesh size = 45 to 75 mm), a
beach seine (length = 40 m, depth = 6 m, half mesh
size = 15 mm), or both during the capture process
(referred to as net captures throughout). All nets
were constructed of nylon. Prior to drift diving, the
net was positioned at the back of the pool to prevent
individuals from escaping downstream during drift
diving. Once drift dive transects were completed,
several personnel guided salmon into position to
encircle them with the net. To limit accidental escape
after capture, entanglement with the net, and to
reduce stress during sampling, fish were removed
from the capture area and placed in holding cages
until processing (30 mm half mesh nylon; 100 × 50 ×
50 cm). For each individual, we measured total
length (cm), sex, noted the presence of an adipose

fin, and collected scales to deter-
mine the origin (de scribed be low).
Fish identifiedas farmedescapees
were killed upon capture, as the
work, in part, was organized to
reduce the incidence of farmed
fish in the populations. In sites
with more than 50 captured indi-
viduals, Finquel vet. (100 mg l−1)
was used to sedate the fish during
workups; theywere thenplaced in
thecages torecover fromtheanes-
thetic (10 to15min from anestheti-
zation to release).

In addition to comparing rela-
tive abundance of escapees be -
tween the 2 methods, we also
 as ses sed the accuracy of drift div-
ing to differentiate among size
classes. Correct size classification
of salmon is important when as -
ses sing the impact of farmed fish,
as fecundity is strongly size-
dependent (Fleming 1996). Be -
cause no weights were taken and
due to a lack of length− weight
re gressions specific to the differ-
ent populations sampled, we cat-
egorized size classes of net cap-
tures based on the sea winter age
(calculated from scale reading;
SW) and length of wild S. salar
caught in the net. We classified
the SW stages as 1, 2, and 3+ SW
age classes. Then, we calculated
the 25 and 75% quartile (inter -
quartile range; IQR) of length for

each SW and divided the difference in length of the
IQR between adjacent SW by 2. This created breaks
at 70.5 cm between 1 and 2 SW fish and 88.5 cm for 2
and 3+ SW fish (horizontal lines in Fig. 2). To com-
pare to drift dive size classifications, net-captured
salmon <70.5 cm were classified as small, 70.5 to
88.5 cm were classified as medium, and >88.5 cm
were classified as large.

2.3.  Dataset 2: removal of escaped farmed salmon
during drift diving surveys

A secondary independent dataset was incorpo-
rated to supplement the study and to compare the
TPR (proportion of positively identified farmed
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Site               Net captures                         Drift dive                      Area 
                 2016     2017     2018   %EFSm      2016     2017     2018   %EFSm     (m2)

Arnaelva                                                                                                                  
Site 1           −           −        13/3       23.1            −           −        10/3       30.0        1054

Åroyelva                                                                                                                  
Site 2      179/15  267/9   174/2       4.3         186/7   231/4   196/6       2.9         2482
Site 3           −           −        10/3       30.0            −           −        45/3        6.7         2894

Daleelva (Høyanger)                                                                                               
Site 4           −           −         4/1        25.0            −           −         4/1        25.0         716
Site 5           −           −        10/1       10.0            −           −        12/1        8.3         1254
Site 6        14/1      7/0      17/1        5.3          15/1      8/1      23/1        6.5         2016
Site 7         7/1         −           −         14.3         11/2        −           −         18.2        2283
Site 8           −        11/0        −          0.0             −        15/0        −          0.0         4603
Site 9         9/2       4/0         −         15.4         10/2      5/0         −         13.3         871
Site 10       8/1         −           −         12.5         12/2        −           −         16.7         760
Site 11         −         8/0         −          0.0             −         9/0         −          0.0         3042

Daleelva (Vaksdal)                                                                                                  
Site 12      14/1        −           −          7.1          28/2        −           −          7.1         2905
Site 13      30/1     30/0     24/0        1.1          34/1     26/0     31/0        1.0         2803

Ekso                                                                                                                          
Site 14         −           −        17/0        0.0                                   18/2       11.1       15179
Site 15         −        49/2        −          4.1             −        54/2        −          3.7         6609

Matreelva                                                                                                                
Site 16         −           −         9/2        22.2            −           −         9/2        22.2        1236

Steinsdalselva                                                                                                          
Site 17         −           −         5/1        20.0            −           −         5/1        20.0        1794

Strandadalselva                                                                                                       
Site 18         −           −        10/0        0.0             −           −        11/0        0.0         1500

Uskedalselva                                                                                                           
Site 19      18/0        −           −          0.0          18/0        −           −          0.0         1035

% EFSm     9.4        1.1       12.5        8.5           9.4        2.6       11.9        8.6

Table 1. Site, net captures, and drift dive observations of Atlantic salmon for each
sampling year. First number: total captures; second number: total number of es-
caped farmed salmon (EFS). %EFSm: mean proportion of escaped salmon for each
year (bottom row) and site (column); bold %EFSm numbers indicate the mean for
each method. Site 3 was removed from the overall analysis due to biased sampling 

during net captures
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escaped salmon) of identifying escapees during rou-
tine removals of escapees from rivers with drift div-
ing. Significant resources are diverted throughout
Norway to mitigate potential introgression with wild
fish, and drift diving is one method used to identify
and actively remove escaped farmed salmon from
the watercourse where introgression is prone to
occur. Removals included in this study are located
throughout western Norway among 35 rivers (8 of 9
rivers from data set 1) and involved data from 2016
to 2018. Consistent with drift diving protocols
described above, the removals were carried out by
the Norwegian Research Center (NORCE). Once
visually identified as farmed escaped salmon, har-
poons were used to remove individuals. The total
length (cm), wet mass (kg), sex, and maturity stage
(visual inspection of gonads) were recorded, and
scale samples were collected to confirm the individ-
ual was of aquaculture origin.

2.4.  Origin classification based on scale readings

To verify the visual identity of each fish captured
with nets and removed with harpoons, scales were
taken just posterior of the dorsal fin directly above
the lateral line. Origin was based on variations of
seasonal growth rings as described in Fiske et al.
(2005). Consistent with Diserud et al. (2019), the ori-
gin for net-captured individuals with unidentifiable
scales was based on visual identification at capture
(n = 46; see Table 2). Individuals with missing or un -

readable scales from dataset 2 were re moved when
calculating the TPR (n = 2; see Table 2). Scale read-
ings were performed by NORCE, the Institute of
Marine Research, and Rådgivende Biologer AS.

2.5.  Analysis

We first used a generalized linear model (Poisson
error) to regress the abundances of the 2 methods to
determine their precision and any indication of
unwanted bias (e.g. outliers signifying an unrepre-
sentative sample for either method). To ac count for
left skewedness of the data distribution, relative
abundances were log transformed. A strong relation-
ship with small variance would indicate that the
methods had equivalent performances when sam-
pling the populations of interest, and deviations
would indicate a potential sampling bias between the
2 methods. A Bayesian inference was implemented
to compare the proportion for each size category
(small, medium, large) and the proportion of farmed
escapees observed between drift diving (explanatory
variable) and net captures (response variable). No
information was available for a prior distribution for
the Bayesian inference; therefore, we used a diffuse
normal prior for the intercept and slope (uninforma-
tive). Because of violations of model assumptions
(non-normally distributed residuals), the failure of
model outputs with a binomial distribution to fit the
data, and an expected linear relationship between
methods, we deferred to a Gaussian distribution
instead of the preferred binomial distribution for pro-
portion data. Furthermore, to control for the impact
of increased deviations in the proportion of farmed
escapees at sites with small counts, we weighted
each sample by the sample size of net captures,
thereby giving more weight to larger catches. We ran
5000 burn-in iterations across 3 chains before run-
ning the 15 000 Markov chain Monte Carlo sam-
plings (45 000 total iterations). Model convergence
was achieved based on the low variance between
chains (Gelman-Rubin diagnostic test <1.05; Gelman
& Rubin 1992) and visual inspection of the posterior
distributions. In addition, 2 data points indicated a
large difference in the proportion of farmed escapees
between the 2 methods (extreme outliers). Therefore,
we compared the goodness-of-fit (adj. r2) of the
model that included all sampling points (primary
model) and a model excluding the 2 data points
which were believed to be outside the ability to accu-
rately identify and quantify individuals at a site (i.e.
observed escape of salmon during capture from the
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Fig. 2. Size classification of Atlantic salmon net captures
based on sea winter age. Solid horizontal lines: length breaks
into small, medium, and large size classifications. Boxes: in-
terquartile range (IQR); horizontal lines in the boxes: median
values; whiskers: 1.5 times the IQR; solid circles: outliers
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site; open circles in Fig. 5). All analyses were done
within the statistical programs R v.3.5.2 (R Core Team
2018) and JAGS v.4.3.0 (Plummer 2003).

3.  RESULTS

A total of 1026 salmon were counted and identi-
fied through drift diving; of these, 943 were subse-
quently captured and verified through scale analysis
(Table 2). Among the captured individuals, 45 were
classified as true escaped farmed salmon and 854
were classified as true wild salmon based on the
results from the scale analysis (Table 2). The origin of
the 44 individuals with unreadable scales was deter-
mined by visual identification. For individuals whose
origin could be verified during scale readings, the
accuracy of the visual identification on land for net
captures was very high (96 and 99% for farmed es -
caped and wild origin, respectively).

3.1.  Dataset 1: 
drift diving and net captures

Comparison of the abundances be tween the 2
methods demonstrated that drift diving and net cap-
tures were very highly correlated (r2 = 0.99; Fig. 3)
with a near 1:1 relationship between the methods
(slope = 1.06, z = 37.202, n = 25, p < 0.001; Fig. 3). The
overall trend showed that net captures of Atlantic

salmon were lower compared to drift
dive counts of Atlantic salmon, which
was likely due to difficulties in obtain-
ing all fish in a site, as some fish were
observed to escape during capture
attempts.

Overall, drift diving classified salmon
into different size categories relatively
well compared to net captures (small:
adj. r2 = 0.5; medium: adj. r2 = 0.37;
large: adj. r2 = 0.55) with no significant
deviation from the expected 1:1 rela-
tionship (small: mean = 0.96, lower CI =
0.75, upper CI = 1.16; medium: mean =
1.27, lower CI = 0.85, upper CI = 1.7;
large: mean = 1.03, lower CI = 0.88,
upper CI = 1.18; Fig. 4).

The proportion of farmed escapees es-
timated from drift diving and net cap-
tures was also well correlated (adj. r2 =
0.79; Fig. 5a) with a significant relation-
ship between the 2 methods (mean =

0.77, lower CI = 0.52, upper CI = 1.01). Furthermore, no
statistical difference was seen between a 1:1 relation-
ship and the current predicted relationship (dash ed
line in Fig. 5a). However, 97% of the values of the pos-
terior distribution fell below a 1:1 relationship, sug-
gesting that a small difference potentially exists be-
tween drift diving and net captures. This was further
supported after removing the 2 outliers, where we ob-
served an improved goodness-of-fit for the model (adj.
r2 = 0.93; mean = 0.85, lower CI = 0.64, upper CI = 1.06;
Fig. 5b) and a high proportion (92%) of the posterior
distribution below the expected 1:1 trend line.
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Fig. 3. Generalized linear regression of the total Atlantic
salmon counts observed in drift diving and net captures.
Solid line: fitted line; shaded area: 95% confidence intervals.
The × is a point that was removed from the analysis due to an 

unrepresentative and biased net capture

             Total Rearing origin               Size            Sex     Mature
                             W    E     U                                          M      F        Yes  No
                                                                                                   
Drift diving                                       S      M      L                                         
2016       314        297   17    −           36    169   109          −       −           −      −
2017      348        241    7      −           43    177   128          −       −           −      −
2018      364        344   20    −           83    160   121          −       −           −      −
Seine                                                                                          
2016       279        252   21     6                    84                   98    179        −      −
2017      376        352   11    13                   86                  137   239        −      −
2018      288        250   13    25                   82                  151   137        −      −
Harpoon                                                                            
2016        91           0     89     2                    78                   50     40         66    25
2017        48           0     48     0                    77                   25     20         38     9
2018        46           1     45     0                    75                   29     17         42     4

Table 2. Net captures, drift dive observations, and harpoon removals of At-
lantic salmon. Rearing origin was determined from scale readings, and indi-
viduals were classified as wild (W), escaped (E), or unknown (U). Scales were
classified as unknown if they were missing, damaged, or new (i.e. lacking an
entire growth cycle). Size was categorized by weight for drift diving (small
[S]: <3 kg; medium [M]: 3 to 7 kg; large [L]: >7 kg) and by mean length (cm) 

for net captures and harpoon removals
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3.2.  Dataset 2: removal of escaped farmed salmon
during drift diving surveys

Independent drift diving sampling of 35 rivers dur-
ing routine removals of farmed salmon escapees iden-
tified 185 individuals as escapees (Table 2). Scale
analysis verified that 182 were indeed escapees
(TPR = 98%) and 1 individual was identified as a wild
S. salar. Two individuals had unreadable scales and
could not be verified as either escaped or wild.

4.  DISCUSSION

Accurate identification is pivotal when monitoring
proportions of farmed salmon escapees in rivers
and assessing the effectiveness of mitigation efforts
against the potential interbreeding of domesticated
conspecifics (e.g. improved aquaculture retention
and removal efforts). Here, for the first time, we vali-
dated that drift diving represents a robust method
that can accurately classify Atlantic salmon Salmo
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salar into size categories and determine their origin
(i.e. wild vs. farmed). Furthermore, results from indi-
vidual removal data (TPR = 98% with harpoon cap-
tures) demonstrates that drift divers rarely identified
wild fish as escaped farmed salmon (1 out of 183 indi-
viduals). Similar to previous studies (Orell & Erkinaro
2007, Orell et al. 2011), we also found drift dive abun-
dances to be highly correlated with net captures of
Atlantic salmon, even at large densities (>150 ind.).
Based on these findings, we conclude that drift div-
ing represents a robust method, when observation
conditions are adequate, to effectively assess the
numbers, size categories, and proportions of farmed
vs. wild S. salar.

While previous studies on drift diving quantified
the number of S. salar, few have evaluated the preci-
sion of this method to quantify differences in popula-
tion structure (but see Orell & Erkinaro 2007 as an
example of distinguishing between sex of S. salar)
and particularly, the identification of farmed escaped
salmon in rivers. In general, there was a good fit be -
tween the proportions of escapees identified be -
tween the 2 methods (adj. r2 = 0.79), demonstrating
that visual identification of escapees by snorkeling
was, in most cases, highly accurate. However, some
deviation from the expected relationship was ob -
served, likely caused by biases in either of the sam-
pling methods. Firstly, some error is likely to arise
due to limitations in catch efficiency of net captures.
For instance, we were unable to verify that all indi-
viduals were captured at a site, as some fish escaped
during net captures. For example, small 1 SW fish
(<50 cm) were, in some cases, observed to swim
through or under the net and are therefore likely to
be underrepresented in those catches. Be cause we
were unable to verify the origin of missed individu-
als, these were not included in the calculations of
proportions and hence could potentially result in the
differences observed between drift diving and net
captures. Furthermore, degraded scale quality lim-
ited our ability to verify the origin of some individu-
als. Finally, many of the sample locations had rela-
tively few fish (<20 ind. observed in 18 of 26
locations). Consequently, small deviations in counts
between the 2 methods will, in such cases, create
large discrepancies in the observed proportions.

Secondly, some deviance from the 1:1 relationship
in the present study may arise due to identification
error during drift diving. As characterizations of
farmed salmon escapees during snorkeling is based
on visual identifications, it requires that the snorkeler
is able to observe each fish well enough to correctly
distinguish escapees and wild fish. This likely de -

pends upon several factors, such as visual conditions
underwater (i.e. water clarity and light conditions),
the distance between the observer and the fish, the
length of time the observer has to observe each fish,
and the experience of the observer. Furthermore,
farmed fish may vary in distinctiveness, with the typ-
ical ‘farmed’ features being more ex pressed in some
individuals than in others. For example, fish that
escape as smolts are likely to have fewer distinguish-
ing characteristics than recently escaped fish and
may thus be more difficult to differentiate from wild
fish (Jørgensen et al. 2018). Also, repeat spawners of
wild fish may, in some cases, exhibit abrasions and
fin erosion commonly seen in farmed escaped sal -
mon (Fleming et al. 1997) and be miss-identified as
escapees, particularly by inexperienced ob servers.
However, in those instances where escapees were
removed and verified with scale ana lysis (dataset 2),
only 1 wild fish was misidentified as a domesticated
salmon, indicating that such misidentification of pre-
viously spawned salmon are rare. Yet in most cases,
identification error is likely to be towards misidentifi-
cations of farmed fish as wild fish, and consequently,
cause an underestimation of the proportion of farmed
salmon escapees in the sample or river. This was not
ap parent in our study, and in fact, drift diving ap -
peared to potentially overestimate the proportion of
farmed fish compared to the net catches, as 97% of
the posterior distribution fell below the predicted 1:1
line for the comparison of the 2 methods. Still, for
most locations, both the total number and proportion
of farmed fish coincided well between the 2 meth-
ods and, while some bias may be present, it will
likely have little effect on the overall management
decisions.

Drift diving has only recently (since 2014) been
included as a standard method used in the Norwe-
gian monitoring program of farmed escaped salmon
(Glover et al. 2019), supplementing the traditional
method based on validation of fish gathered from
angling (Diserud et al. 2019, Glover et al. 2019).
Compared to angling-based methods of assessing
the number and proportions of farmed escaped sal -
mon (e.g. net captures and fishing), drift diving offers
several advantages. For example, the variation in the
CPUE is one of the main challenges when incorporat-
ing fishing statistics to quantify farmed escaped sal -
mon. In Norway, fishing for S. salar primarily occurs
during summer when salmon enter the river or are
holding in estuaries until optimal stream conditions
for upstream migration (e.g. adequate water dis-
charge). This could result in a mismatch be tween
sampling and the effective spawning population

424
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(Harvey et al. 2017). It has also been shown that the
angling catch efficiency is quickly reduced after river
entry (Harvey et al. 2017), suggesting that variation
in time of river entry (Erkinaro et al. 2010, Svenning
et al. 2017) may cause different catch probabilities
between wild and escaped salmon.

Furthermore, differences within the river in the
distribution of escaped and wild salmon and varia-
tions in spatial CPUE during fishing may further
underestimate or overestimate the proportion of
escaped farmed salmon in the spawning populations
(Moe et al. 2016). For example, sampling in areas
where escapees or wild fish are spatially aggregated
may give a biased sample. In addition, without prior
knowledge of the spatial distribution of the fish in the
river, it is almost impossible to know how to design
a representative sampling design. Drift diving, on
the other hand, is less susceptible to many of these
issues. For instance, the spatial CPUE is less variable
during drift diving when the entire anadromous
reach (~5 to 10 km) of moderately sized rivers can be
sampled in a single day with 1 to 3 divers. Because of
the quick assessment of the river and the down-
stream direction of the sampling, drift diving can
also capture differences in distribution between con-
specifics while minimizing effects from fluctuations
in population density during sampling (e.g. immigra-
tion or emigration). Finally, drift diving estimates are
usually conducted close to or during active spawning
and therefore the mismatch between sampling and
effective spawning population is limited and can
 provide a better representation of the proportion of
farmed escaped salmon in the period that is most rel-
evant in terms of risk for genetic effects on the popu-
lation (i.e. spawning).

Another important advantage of drift diving is the
relatively limited time and expense needed to suffi-
ciently survey broad spatial extents (Dolloff et al.
1996, Thurow et al. 2006, Orell et al. 2011). For in -
stance, to obtain a comparable sample with net cap-
tures for this study, additional time (on average 1 to
2 h), personnel (5 to 7), and equipment (e.g. capture
nets, holding pens) were needed to capture the same
representative sample that took 2 divers only 10 to
15 min to sample. In addition, drift divers are able to
sample habitats that are impractical to sample with
conventional methods or are prohibited (e.g. streams
that are closed to fishing). Drift diving is also less
invasive compared to other methods that would re -
quire the physical removal of the individual to deter-
mine whether it was an escaped or wild salmon.

While the current study provided valuable infor-
mation on the accuracy of drift dive estimates to

quantify farmed escaped salmon, limitations exist.
Orell et al. (2011) saw a decrease in the precision of
drift diving estimates of S. salar abundance when
assessing more complex habitats. While routine sam-
pling of the spawning population includes a range of
conditions in terms of river size, depth, and water
clarity, we focused on sites that allowed for a congre-
gation of salmon while also allowing for the use of net
captures to validate observations. This necessitated
us to focus predominantly on habitat units consisting
of pools. As a result, it is likely that estimates and the
ability to identify farmed escaped salmon will fluctu-
ate as habitat complexity (e.g. riffle vs. pools or the
inclusion of boulders and debris) and sampling con-
ditions (e.g. water turbidity and clarity) vary. Further-
more, while not assessed in this study, the experience
of the diver is an important factor in being able to dis-
tinguish between conspecifics (Orell et al. 2011), and
it is necessary to develop training protocols to im -
prove the skill level of inexperience personnel while
maintaining the integrity of the sampling method.

In conclusion, the implementation of drift diving in
rivers where escaped farmed and wild S. salar coex-
ist was determined to be a robust tool that will allow
managers to quickly and accurately identify areas of
potential introgression and focus removal efforts.
This study demonstrates the usefulness to assess the
proportion of escaped farmed salmon in a system via
drift diving and provides stakeholders with a valu-
able tool that is not limited by changes in CPUE nor
does it inflict unnecessary stress at a sensitive time in
a salmon’s life history (e.g. spawning). Future appli-
cations should focus on assessing how changes in
habitat affect the accuracy of correctly identifying
escaped salmon.
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