
Limnol. Oceanogr. 9999, 2019, 1–11
© 2019 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on

behalf of Association for the Sciences of Limnology and Oceanography.
doi: 10.1002/lno.11173

Seasonal and diel variation in greenhouse gas emissions from an urban
pond and its major drivers

Tamara J. H. M. van Bergen ,1,2* Nathan Barros,1,3 Raquel Mendonça,1,3 Ralf C. H. Aben,1

Inge H. J. Althuizen,1,4 Vera Huszar,5 Leon P. M. Lamers,1 Miquel Lürling,6 Fábio Roland,3

Sarian Kosten 1

1Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University,
Nijmegen, The Netherlands
2Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The
Netherlands
3Laboratory of Aquatic Ecology, Institute of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
4Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
5Department of Botany, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
6Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands

Abstract
Small water systems are important hotspots of greenhouse gas (GHG) emission, but estimates are poorly con-

strained as data are scarce. Small ponds are often constructed in urban areas, where they receive large amounts
of nutrients and therefore tend to be highly productive. Here, we investigated GHG emissions, seasonal and diel
variation, and net ecosystem production (NEP) from an urban pond. In monthly 24-h field campaigns during
11 months, diffusive water–atmosphere methane (CH4) and carbon dioxide (CO2) fluxes and CH4 ebullition
and oxidation were quantified. With oxygen (O2) measurements, NEP was assessed. The pond was a net GHG
source the entire year, with an emission of 3.4 kg CO2 eq m−2 yr−1. The dominant GHG emission pathway was
CH4 ebullition (bubble flux, 50%), followed by diffusive emissions of CO2 (38%) and CH4 (12%). Sediment CH4

release was primarily driven by temperature and especially ebullition increased exponentially above a tempera-
ture threshold of 15�C. The pond’s atmospheric CO2 exchange was not related to NEP or temperature but likely
to a high allochthonous carbon (C) input via runoff and anaerobic mineralization of C. We expect urban ponds
to show a large increase in GHG emission with increasing temperature, which should be considered carefully
when constructing ponds in urban areas. Emissions may partly be counteracted by pond management focusing
on a reduction of nutrient and organic matter input.

Although lakes and ponds only cover a small area of the
Earth’s nonglaciated land area (~ 4%; Verpoorter et al. 2014),
they play a disproportionally large role in the global carbon
cycle due to the large amount of C they process, store, and
transport (Tranvik et al. 2009). The majority of lakes and
ponds is a significant source of CO2 and CH4 to the atmo-
sphere (Cole et al. 1994; Bastviken et al. 2011), while at the
same time, they bury large amounts of C in their sediments
(Dean and Gorham 1998; Mendonça et al. 2017). Carbon

emission in lakes and ponds is largely driven by hydrological
CO2 inputs (Weyhenmeyer et al. 2015; Wilkinson et al. 2016)
and by mineralization of organic matter (OM) within the sys-
tem (Algesten et al. 2003). Conversely, primary producers can
assimilate CO2 at such high rates that the system turns into a
CO2 sink (Roland et al. 2010; Pacheco et al. 2013). However,
global and regional studies suggest that only a small portion
of lakes (6–14%) is undersaturated with respect to the atmo-
spheric CO2 (Cole et al. 1994; Kosten et al. 2010).

Annually, lentic inland waters emit 0.3 Pg C as CO2

(Raymond et al. 2013) and 0.08 Pg C as CH4 (Bastviken et al.
2011). This last value may be an underestimate, as ebullition is
likely underestimated (Wik et al. 2016). Although small
waterbodies (< 50 ha) comprise 98% of lentic inland waters by
number and one third by volume (Downing et al. 2006;
Verpoorter et al. 2014), small lakes and ponds are strongly under-
represented in literature (Downing 2010), and greenhouse gas
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(GHG) inventories such as the United Nations Framework
Convention on Climate Change. Yet, these small systems are
estimated to be responsible for 15% and 41% of the global CO2

and CH4 diffusive emission from lentic freshwaters, respectively,
and thus are important hotspots of C emission (Holgerson and
Raymond 2016).

Here, we investigated GHG emissions from a small nutrient-
rich urban pond. Ponds in urban areas are constructed for recrea-
tional reasons and also for microclimate regulation, for rainwater
storage, or as ornamental features to improve public open spaces
(Bolund and Hunhammar 1999). They provide several ecosystem
services that enhance human wellbeing (e.g., recreation and
microclimate regulation), but ponds also enhance biodiversity by
increasing ecological connectivity in urban areas (Gledhill et al.
2008). Since the end of the 19th century, urbanization has
increased exponentially and is expected to keep increasing, espe-
cially in developing countries (Champion 2001). Urban ponds
are mostly shallow and stagnant, which makes them highly sus-
ceptible to anthropogenic disturbances and eutrophication
(Waajen et al. 2014). They generally receive a large amount of
nutrients, for example, from bird droppings, sewage overflow,
and stormwater runoff (Scherer et al. 1995; Novotny 1999;
Waschbusch et al. 1999; Wong et al. 2000), which frequently
leads to phytoplankton blooms (Waajen et al. 2014) and could
affect GHG emission.

Especially the high perimeter to surface area ratio of small
urban ponds could result in a relatively high input of terrestrial
OM, which may play an important role in fueling heterotrophic
respiration (Hanson et al. 2007). Even though eutrophic systems
tend to have a high gross primary production (GPP; Smith
1979; Balmer and Downing 2011), ecosystem respiration
(ER) tends to be high in these systems as well (Sand-Jensen and
Staehr 2009). Hence, while in some eutrophic systems, the high
primary production rates may lead to a net uptake of CO2

(Pacheco et al. 2013), this is not necessarily the case as ER and
the inflow of CO2 via surface or groundwater may outweigh the
primary producers’ CO2 uptake (Casper et al. 2000; Trolle et al.
2012). In addition, the high OM input, together with the
phytoplankton-derived C that tends to be easily degradable,
potentially leads to high CH4 production rates in urban ponds
(West et al. 2012; West et al. 2016; Martinez-Cruz et al. 2017).

The high relative contribution of small ponds to freshwater
GHG emissions in combination with the scarcity of data regard-
ing pond GHG emissions was our rationale for quantifying
whole-year water–atmosphere CO2 and CH4 fluxes and their sea-
sonal and diel variation in an urban pond. With an intensive
measurement campaign, we aimed to not only quantify CO2 and
CH4 emission from a temperate and hypereutrophic urban pond
but also to obtain insight in temporal and spatial variation of
fluxes to optimize future efforts to quantify GHG emissions from
small systems. Additionally, we aimed to identify the main eco-
system components—sediment, phytoplankton, heterotrophic
picoplankton, and fish—responsible for the within-system CO2

production and consumption. Our approach combined daytime

and nighttime field measurements on a monthly basis with labo-
ratory assays andmodeling.

We hypothesized the pond to be an important GHG emit-
ter as well as an important C sink, with a higher CH4 emission
during warm months. We further hypothesized that the pond
would shift between a net C source in fall and winter to a net
C sink in spring and summer, mainly due to fluctuations in
CO2 emission caused by phytoplankton growth—i.e., high
CO2 uptake by photosynthesis in summer and much less so in
winter. Because of the high primary production, we also
expected a high variability in diel CO2 emission, especially in
summer. Due to the shallowness of the pond (average depth
of 1.3 m), we expected the sediment to be a major contributor
to CO2 emission but simultaneously an important site for C
burial because of a high OM loading.

Materials and methods
In the field, we measured diffusive water–atmosphere fluxes

of CH4 and CO2, ebullitive CH4 fluxes, water layer CH4 oxida-
tion rates, and diel oxygen (O2) concentrations. The pond’s
net ecosystem production (NEP), GPP, and ER were calculated
from O2 concentrations. A metabolic model was constructed
that included aerobic respiration estimates for each organism
group (organisms in the sediment, phytoplankton, heterotro-
phic picoplankton, and fish), based on temperature and O2

consumption. The outcome of both the field and laboratory
measurements, combined with data from an existing hydro-
logical model for the pond area, and literature data, were
joined in a mass balance to unravel the major contributors to
the CO2 flux. Finally, C burial rates in the pond were deter-
mined in order to compare C burial and emission rates.

Study site and sampling strategy
This study was performed inmanmade urban pond situated in

Malden, Gelderland, the Netherlands (“Korte Loef,” 51�4603000N,
5�51011.2200E). The pond was constructed in 1994 to function as a
rainwater overflow for the surrounding urban area. It covers an
area of 4635 m2, stores approximately 6000 m3 of water, and has
distinct central (� 2 m) and littoral (≤ 1 m) zones (respectively,
44% and 56% of the total surface area). Monthly field campaigns
were performed from July 2013 till May 2014. During the field
campaigns, measurements were performed over 24-h periods at
two sampling stations, one in the central and one in the littoral
zone, that were placed at the same location every field campaign.
Groundwater samples were taken from a well situated 20 m from
the shore. Every 15 min, the O2 concentration, temperature, and
pH were measured. Diffusive gas fluxes were measured every 3 h
during the campaign, whereas methane ebullition and oxidation
were measured separately in the light and dark period. We did
not sample in June due to logistic reasons, therefore values for
this month were interpolated using the average values of May
and July in order to obtain year-round estimates. Areal estimates
of gas fluxes for the entire pond were calculated based on the
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weighted average of the central and littoral area. In our analyses,
we considered the months June, July, and August as the summer
season; September, October, and November as fall; December,
January, and February as winter; and March, April, and May as
spring.

Water chemistry
A depth integrated water sample was taken from each of the

sampling stations once per field campaign for chemical ana-
lyses. Unfiltered water samples were analyzed for total phos-
phorus (TP), by inductively coupled plasma spectrometry
(ICP-OES iCAP 6000, Thermo Fisher Scientific), and for total
inorganic nitrogen (TIN) by measuring and summing the
ammonium (NH4

+) and nitrate (NO3
−) concentrations. Ammo-

nium and nitrate were measured colorimetrically with an Auto
Analyzer 3 system (Bran & Luebbe), using salicylate (Grasshoff
and Johannsen 1972) and hydrazine sulfate (Kamphake et al.
1967), respectively. Phytoplankton chlorophyll-α (Chl α) con-
centration and division over major groups (brown, green, and
blue Chl α) were determined using a phytoplankton analyzer
system with a portable emitter–detector unit (Phyto-PAM and
Phyto-ED, Walz).

O2, temperature, and pH
During the monthly 24-h field campaigns, we deployed a

multiparameter portable meter (HQ40d, Hach) equipped with
a luminescent/optical dissolved oxygen probe (LDO101) fitted
with a temperature and barometric pressure sensor (model
LDO101) and a pH–temperature sensor (model 9156BNWP) at
the littoral and at the central station, at 0.5 m depth. Dis-
solved O2 concentration, temperature, pH, and barometric
pressure were recorded every 15 min. A third multimeter was
used to sample vertical dissolved O2 and temperature profiles
at both stations every 3 h.

CO2 and CH4 emission
Diffusive CO2 and CH4 fluxes across the air–water interface

were measured using a transparent Plexiglas floating chamber
(30 cm diameter, 20 cm height) connected to a GHG analyzer
(GGA) using Off-axis ICOS technology (GGA-24r-EP, Los
Gatos Research). A closed loop between the chamber and the
detector was established using an inlet and outlet on the top
of the chamber. A third opening, fitted with an air-tight screw
cap, was used to equilibrate the chamber with atmospheric
pressure prior to each measurement. Measurements were con-
ducted every 3 h, by placing the chamber three times (treated
as triplicates) at the central and littoral zone. Each measure-
ment took about 200 s, and the GGA was configured to log
data every second. The flux of CO2 and CH4 was calculated
based on the slope of the relationship between the concentra-
tion in the chamber headspace and time:

F = V=Að Þ× slope× P × F1× F2ð Þ= R×Tð Þ½ � ð1Þ

where F is the gas flux (g m−2 d−1), V is the chamber volume
(m3), A is the chamber surface area (m2), slope is the slope of the
relationship between the CH4 or CO2 concentration and the time
(ppm s−1), P is atmospheric pressure (Pa), F1 is molar mass of
CO2 (44) or CH4 (16) (g mole−1), F2 is the conversion factor of
seconds to days, R is gas constant 8.3145 (m3 Pa K−1 mol−1), and
T is temperature (K). The values from the triplicate measurements
were averaged to give the flux of each station (i.e., central or litto-
ral zone). The fluxes of CO2 and CH4 were multiplied by their
global warming potential (GWP, 1 and 34 over a 100 yr time
horizon, respectively; Myhre et al. 2013) and then summed to
obtain the total GHG flux in CO2 equivalents (CO2 eq).

Ebullition
In order to quantify the spontaneous release of bubbles from

sediments to the atmosphere (ebullition), three inverted funnels
with a diameter of 35 cm were connected to water-filled infu-
sion bottles (volume of 0.5 liter) and employed at the pelagic
zone of the pond (as in Almeida et al. [2016]). Infusion bottles
were replaced at sunset or sundown, and after collection, the
gas volume was measured by subtracting the weight of each bot-
tle from the full filled weight (i.e., completely filled with water)
of the bottle. The CH4 concentration of the gas was analyzed on
a HP 5890 gas chromatograph equipped with a Porapak Q col-
umn (80/100 mesh) and a flame ionization detector (GC-FID,
Hewlett Packard).

CH4 oxidation and sediment CH4 release
CH4 oxidation was measured as the decline in CH4 concen-

tration over time (as in Bastviken et al. [2008]), in three flexible
medical blood bags (volume 500 mL) located in the shallow
(0.5 m) or deep (1 or 2 m, depending on whether it was the lit-
toral or central zone, respectively) part of the water column, in
each sampling station. Separate blood bags were incubated with
pond water from the corresponding depth, during day and
night to evaluate potential temporal differences in CH4 oxida-
tion. The exact same procedure was followed as in Almeida
et al. (2016). As a proxy for sediment CH4 release, we used the
sum of quantified CH4 oxidation, CH4 water–atmosphere diffu-
sion, and CH4 ebullition. In months where no CH4 oxidation
was quantified due to technical difficulties (January and May),
oxidation was estimated as a function of the diffusive CH4 flux.
The rationale behind this is that the methane oxidation rate
strongly dependents on the methane concentration, which, in
turn, affects CH4 diffusion (CH4 oxidation = 0.0476 × exp
[28.97 × CH4 diffusion]; R

2
adj = 0.87).

NEP and respiration by different organism groups
We used 15-min interval O2 measurements to calculate the

O2 change over time (ΔO2; g O2 L−1 h−1) and subsequently
calculated NEP by integrating ΔO2 over 24 h (as in Cole et al.
[2000] and Staehr et al. [2010]). From the NEP, GPP, and ER
were calculated (see Supporting Information SI 1 for details).
Subsequently, we distinguished different organism groups
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contributing to the aerobic ER in the pond: phytoplankton,
heterotrophic picoplankton, and methanotrophs in the water
layer; organisms in the sediment; and fish. To assess the con-
tribution of all separate organism groups to the ER, we con-
structed a metabolic model consisting of the relationship
between water temperature and O2 consumption for each
organism group. These relationships were based on incuba-
tions and—for fish respiration—on literature-derived relation-
ships (see Supporting Information SI 2 for details).

Hydrological inputs and within-pond CO2 production
For each season, we assessed the relative importance of hydro-

logical CO2 input via groundwater, within-pond CO2 production
from ecosystem productivity (NEP) and fromphotochemicalmin-
eralization of chromophoric dissolved organic carbon (cDOC)
(see Supporting Information SI 3 for details). The CO2 input from
groundwater was calculated based on the estimated groundwater
inflow and the CO2 concentration in the groundwater. Photo-
chemical mineralization cDOCwas calculated as a direct response
to solar radiation exposure and solely based on the average daily
light intensity (as in Vähätalo et al. [2000] and Weyhenmeyer
et al. [2015]). Light intensity data were obtained fromweather sta-
tion Volkel, Noord-Brabant, The Netherlands.

C burial
Organic C burial rates were estimated by taking six sedi-

ment cores (6 cm diameter) with a piston sampler at locations
distributed over the central zone of the pond, determining
total C content and dividing the estimated areal C stock of the
pond by its age (according to Mendonça et al. [2014]; see
Supporting Information SI 4 for details).

Statistics
All statistical analyses were performed using R (version 3.5.0).

Statistical significance was determined at p < 0.05. The effect of
location (littoral or center) and time of day (day or night) on
GHG fluxes and methane oxidation were tested using linear
mixed-effects and generalized linear mixed-effects models (LMM
and GLMM, respectively) using the “lme4” package (Bates et al.
2015; see Supporting Information SI 5 for details). For methane
oxidation, the effect of water depth (shallow or deep) was also
evaluated. Assumptions of linearity, homoscedasticity, and nor-
mality were checked by visual inspection of residual plots and a
Shapiro Wilk’s test (function shapiro.test), respectively (see
Supporting Information SI 5 for details). Simple linear regression
and nonlinear regression were performed using the lm and nls
function, respectively. Coefficients and p values for Pearson corre-
lations were obtained using the rcorr function (“Hmisc” package).
All error values in themanuscript give the standard deviation.

Results
Water chemistry

The yearly average concentrations of TP and TIN were
4.5 � 0.9 and 54.0 � 32.3 μmol L−1, respectively. The average

Chl α concentration was 81 � 29 μg L−1, with the lowest con-
centration observed in April (37 μg L−1) and highest concen-
tration in July (119 μg L−1). The water layer was dominated by
cyanobacteria during summer and fall and by green algae dur-
ing winter and spring. The observed water temperature varied
from 4.3�C during winter to 27.8�C during summer and was
13.0�C � 0.7�C on average. The O2 concentration, measured
at 0.5 m depth, varied between 1.6 and 13.5 mg L−1 during
the year and was on average 9.1 � 2.6 mg L−1. The O2 concen-
tration near the bottom of the pond ranged between approxi-
mately 0 and 11 mg L−1. During July, August, and September,
diurnal stratification occurred, with mixing occurring at night.
During the other months, the pond was homogeneously
mixed all day. The pH had a neutral value on average
(7.2 � 0.2), with slightly acidic values in summer (pH around
6.5) and slightly basic values in spring and fall (pH around 8).

Carbon flux and burial
The urban pond was a net C source all year with an average C

(CO2-C and CH4-C) emission of 1.07 � 0.43 g C m−2 d−1. On
average, the diffusive CO2 emission was 0.95 � 0.40 g CO2-C
m−2 d−1, with the highest values measured in summer and win-
ter season (Figs. 1, 3). CO2 diffusion was not related to tempera-
ture (F1,9 = 0.204; p = 0.66, R2 = 0.02) or Chl α concentration
(F1,9 = 0.008; p = 0.93, R2 = 0.001). Both diffusive and ebullitive
CH4 emission were positively related to temperature (R2adj = 0.86
and R2adj = 0.82, respectively), and thus similarly the total CH4

emission as a sum of these fluxes was positively related to tempera-
ture (Fig. 2). The diffusive and ebullitiveCH4 emissionwere, respec-
tively, 0.02 � 0.30 and 0.10 � 0.49 g CH4-C m−2 d−1. Most CH4

was emitted via the ebullitive emission pathway (75%), and only
approximately 25% was emitted via diffusion. When taking the
GWP into account, we found a yearly GHG emission (CO2 and
CH4 emission combined) of 9.19 � 7.99 g CO2 eq m−2 d−1. The
yearly average ebullitive CH4 emission was 4.63 � 6.70 g CO2 eq
m−2 d−1, whichwas considerably higher than the other fluxes. The
yearly average diffusive CO2 and CH4 emissions were respectively
3.46 � 1.48 and 1.09 � 4.09 g CO2 eq m−2 d−1. An annual aver-
age C burial rate of 29 g C m−2 yr−1 was found, which is substan-
tially lower than the annual C emission (CO2 and CH4 emission
combined) of 391 gC m−2 yr−1.

Sediment CH4 release and CH4 oxidation
The sediment CH4 release was estimated by summing the aver-

age CH4 diffusion, ebullition, and oxidation in the water column
for each month. The estimated sediment CH4 release was posi-
tively related to water temperature (Tw), with the highest release
rate observed at the highest water temperature (Fig. 2). There
seems to be a threshold around 15�C, above which the sediment
CH4 release increases substantially (from April up to and including
September). The estimated sediment CH4 release varied consider-
ably throughout the year, from 0.01 � 0.005 g CH4-C m−2 d−1 in
March to 1.04 � 0.46 g CH4-C m−2 d−1 in July (Fig. 2). The per-
centage of estimated sediment CH4 emission that was oxidized
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before reaching the atmosphere, varied from 0% to 97% over
the year (average 57%), with values ranging between 0 and
0.58 g CH4-C m−2 d−1. On average, 0.16 g CH4-C m−2 d−1 was oxi-
dized. We found a significant location–depth interaction effect
(GLMM: Wald Z = 6.31; p < 0.001): the effect of deep vs. shallow
incubation on CH4 oxidation rates is larger for the littoral than the
central zone of the pond. There was also a significant time–
location–depth interaction (GLMM:Wald Z = −15.59; p < 0.001).

Temporal and spatial variation in C fluxes
The CO2 : CH4 emission ratio (in CO2 equivalents) varied

strongly over the year (Supporting Information Table S2). In
March, the ratio was 1 and there was an equal share of GHG emit-
ted. From April until September, the ratio was well below 1, indi-
cating the importance of CH4 emission. The ebullitive CH4 flux

dominated the GHG emission, with a share of 75% of total CH4

emission and 50% of total GHG emission. From October until
February, CO2 formed the majority of GHG emission, with a
share of 80% to 96%. The CH4 emissions were low during these
coldest months (< 0.5 g CO2 eq m−2 d−1), and more than 85% of
methane released by the sediment was oxidized (Fig. 3). No sig-
nificant temporal (LMM: F1,10 = 2.87; p = 0.12) and spatial
(LMM: F1,10 = 4.09; p = 0.07) difference in diffusive CO2 flux was
found. Similarly, there was no significant temporal (LMM:
F1,10 = 3.01; p = 0.11) nor spatial (LMM: F1,10 = 2.61; p = 0.14)
difference in diffusive CH4 emission, although the emission was
mostly higher in the central zone (Supporting Information
Fig. S1). For ebullition, we found a significant main effect of loca-
tion (GLMM:Wald t = 2.18; p = 0.029), with higher ebullition in
the center of the pond. In addition, we found a significant

Fig. 2. Relationship between water temperature and CH4 fluxes in the pond. All average values are shown with their standard deviation, but at some
dates, the error bars are too small to show. The solid line shows the relationship of water temperature with the average total CH4 emission to the atmo-
sphere (black dots), which includes water–atmosphere diffusion and ebullition. The dashed line shows the relationship of water temperature with sedi-
ment CH4 release (white dots), which was calculated as the sum of water–atmosphere CH4 diffusion and ebullition and water column CH4 oxidation.
Note that CH4 oxidation rates were not measured in January and May. In these months, we estimated CH4 oxidation rates based on the relationship
between CH4 diffusion and oxidation (see Materials and Methods section).

Fig. 1. Measured CO2 diffusion, CH4 diffusion, and CH4 ebullition in CO2 equivalents (g CO2 eq m−2 d−1) � SD. At some dates, the error bars (SD) are
too small to show in the figure.
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interaction (GLMM: Wald t = 2.66; p = 0.008) between time and
location: the effect of the center vs. the littoral zone of the pond
was higher for nighttime than for daytime CH4 ebullition rates.

Relative importance of hydrological inputs and
within-pond CO2 production

High GPP rates were found throughout the year (average of
3.30 � 2.79 g CO2-C m−2 d−1); however, high rates of ER were
observed as well (3.66 � 2.66 g CO2-C m−2 d−1). On average,
ER rates exceeded GPP rates, which led to net heterotrophy in
the system (average NEP of −0.36 � 0.69 g CO2-C m−2 d−1).
We found net heterotrophy in the system in 8 out of
11 months (NEP of −0.64 � 0.48 g CO2-C m−2 d−1) and
(minor) net autotrophy in the months February, March,
and September (with a respective NEP of 0.02, 0.30, and
1.08 g CO2-C m−2 d−1). In months where ER exceeded GPP,
the contribution of the NEP to the measured CO2 emission
from the pond was approximately 50% on average. In months
with net autotrophy (GPP > ER), the pond still emitted CO2.
When CO2 inputs from groundwater (yearly average of
0.03 � 0.01 g C m−2 d−1) and CO2 formed by photochemical
mineralization of DOC (yearly average of 0.009 � 0.007 g C
m−2 d−1) were added to the NEP in months with net hetero-
trophy (indicating CO2 production), the contribution to the
measured CO2 emission was 56%.

Partitioning of ER between organism groups
Empirical relations found to predict organism group-specific

respiration (Supporting Information Table S1), based on the
relationship between temperature and respiration rates, failed
to accurately predict the measured ER of the system (based on
the nighttime O2 decrease at 50 cm depth; Supporting Informa-
tion Fig. S2). The sum of the modeled respiration of the differ-
ent organism groups only accounted for roughly half (56%) of
the aerobic ER, estimated from the nighttime O2 curve
(Supporting Information Fig. S3). Phytoplankton respiration
contributed most to the modeled aerobic ER, with 34.7% on
average. After that, the heterotrophic picoplankton and sedi-
ment organisms in the lake contributed most to ER with 26.8%
and 24.3%, respectively. Fish and methanotrophs contributed
the least to ER, with 8.9% and 5.3%, respectively.

Discussion
Our findings demonstrate that the temperate urban pond

was a year-round source of GHG, with a particularly large CH4

emission. The areal GHG emitted by the pond was 3.4 kg
CO2 eq m−2 yr−1, which corresponds to 15.5 t of CO2 equiva-
lents emitted from the pond surface per year. CH4 ebullition
was by far the most important GHG emission pathway (~ 50%
of total emission), especially during warm months as we
hypothesized (> 15�C, mostly in spring and summer), while

Fig. 3. Seasonal carbon fluxes measured in the pond � SD. All values are in g CO2 eq m−2 d−1, except for OC burial (g C m−2 d−1). A negative NEP
indicates ER exceeded GPP, thereby adding to the DIC pool. A positive NEP (GPP > ER) indicates consumption of DIC. Arrows depict the direction of C
transport.
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diffusive CH4 and CO2 emission contributed with 12% and
38%, respectively. The diffusive CH4 emission from this small
urban pond was three times higher than the average emission
reported for small waterbodies within the same size class
(on average 0.01 g CH4 m−2 d−1, size class 0.001–0.01 km2;
Holgerson and Raymond 2016). Moreover, the total CH4 emis-
sion (168 mg CH4 m−2 d−1) is moderately high compared to
other temperate lakes, irrespective of lake size (Supporting
Information Table S3). The OC burial rate corresponded to
approximately 6% of the total C emission from the pond (443 g
C m−2 yr−1), which is rather low, as a recent global analyses
indicate that on average lakes and reservoir C burial corre-
sponds to roughly 20% of their emissions (Mendonça et al.
2017). Opposed to our hypothesis, the pond did not shift
between a net C source in fall and winter to a net C sink in
spring and summer. The pond emitted CO2 to the atmo-
sphere throughout the entire year, even in months where diel
oxygen curves indicated the pond was net autotrophic,
suggesting that external CO2 sources other than within-
system aerobic respiration play an important role. Overall,
the urban pond acted as a “carbon hub,” receiving carbon
from different sources, processing, and redirecting the carbon
in different ways.

Sediment CH4 release was strongly related to water tempera-
ture and increased exponentially above 15�C (Fig. 2), mainly due
to increased ebullition. This result corroborates findings in other
systems in various climate regions where temperature-induced
exponential increases in ebullition were observed (Aben et al.
2017). Nutrients and organic C limitation may constrain sedi-
ment CH4 release and thereby impede its increase with warming
(Kelly and Chynoweth 1981; Schwarz et al. 2008; DelSontro et al.
2016). This is, however, unlikely to occur in hypereutrophic
urban ponds, where labile OM availability tends to be high
throughout the year both due to internal production and exter-
nal inflow. The high OM availability and anoxic conditions in
pond sediments, combined with the shallow water layer, readily
explain the high rates of CH4 ebullition in our pond (Sobek et al.
2012; Martinez-Cruz et al. 2017). As these conditions are com-
mon in urban ponds (Waajen et al. 2014), our results imply that
CH4 emission from these systems is high and strongly tempera-
ture dependent. The increase of CH4 oxidation with rising tem-
perature was much weaker than that of sediment CH4 release,
which resulted in a high summer CH4 emission (Fig. 2) and is in
accordance with a previous laboratory study (Sepulveda-Jauregui
et al. 2018). In fall and winter, a high proportion (over 85%) of
CH4 was oxidized (Fig. 3) and emissions were low. CH4 oxidation
rates in our pond were comparable with rates found in other
eutrophic systems, which were in a range between 0 and 0.32 g C
m−2 d−1 (Bastviken 2009). Only during July—when water tem-
perature was the highest recorded (25�C)—we found a rate
exceeding the reported range (0.58 g C m−2 d−1). Notably, our
estimates do not incorporate oxidation at the sediment–water
interface, which can be considerable (Bastviken 2009; Martinez-
Cruz et al. 2018).

Diffusive CO2 emission was, after CH4 ebullition, the most
important contributor to the pond’s total GHG emission. The
internally produced CO2 (NEP), calculated based on diel O2 cur-
ves, was always lower than the measured CO2 emission rates
(comprising on average ~ 50% of the emission rate). Even during
phytoplankton blooms in summer, when GPP exceeded ER, CO2

was emitted to the atmosphere (6.1 � 3.5 g CO2-C m−2 d−1).
Daytime an nighttime CO2 emissions were not statistically differ-
ent. This indicates that the pond’s atmospheric CO2 exchange
was not strongly regulated by primary production within the
lake, opposed to our hypothesis and to findings of Pacheco et al.
(2013). CO2 input from groundwater and photochemical miner-
alization of DOC was responsible for approximately 6% of the
measured CO2 emission. The unexplained fraction of the CO2

emission likely originates from endogenous anaerobic CO2 pro-
duction or exogenously produced CO2 (entering via runoff or
local groundwater originating from e.g., leaves from trees, street
dirt, or bird droppings). Endogenous anaerobic CO2 may arise
from denitrification, which seems likely as Dutch groundwater
often contains a large amount of nitrate (Smolders et al. 2006).
Allochthonous C is known to drive CO2 emission in small and
shallow ponds, owing to their high perimeter to volume ratio
(Finlay et al. 2010; Holgerson 2015;Wilkinson et al. 2016). Other
possible factors that may explain the discrepancy between the
measured CO2 emission and estimated internal CO2 production
include inaccurate estimates of oxygen saturation and gas trans-
fer velocity, as well as a possible underestimation of daytime res-
piration (Del Giorgio and Williams 2005; Staehr et al. 2010;
Brothers et al. 2017). Estimating respiration rates per organism
group is a difficult practice as well and comes with several uncer-
tainties and caveats (Del Giorgio and Williams 2005; Martínez-
García et al. 2013), which was confirmed by the fact that our
modeled ER only accounted for roughly half of the oxygen diel-
curve–derived ER.

Seasonal trends in GHG emissions from temperate ponds have
generally been disregarded based on the observation that GHG
emissions in these systems are often not primarily driven by the
seasonally varying within-system metabolism (Jonsson et al.
2003; Holgerson 2015). Although in our pond NEP played a
minor role in driving C emission as well, we did find a clear sea-
sonal pattern in GHG emissions (Figs. 1, 3). This seasonal trend is
strongly determined by ebullition (Fig. 1; Supporting Informa-
tion Table S2). We found a lower CO2 : CH4 emission ratio
with increasing temperature (Supporting Information Table S2),
largely due to an increase in CH4 emission, in accordance with
other studies (Yvon-Durocher et al. 2014; DelSontro et al. 2016).
Unexpectedly, we did not find clear differences in spatial and
temporal (daytime or nighttime) diffusive GHG emission. Both,
CH4 ebullition and diffusion were, however, clearly related to
temperature and ebullition was significantly higher in the central
zone of the pond. The latter contradicts other studies that suggest
the littoral zone plays a more important role in GHG emissions
(Natchimuthu et al. 2016). Because of the high spatiotemporal
variation in total GHG emission and the high importance of CH4
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ebullition, we recommend future studies to explicitly incorporate
ebullition measurements and to take spatial differences into
account even in small systems, such as ponds. Furthermore,
future monitoring efforts in comparable temperate and eutrophic
systems should be concentrated in the months May through
September, as in thesemonths the highest fluxes and highest var-
iation occurs. A low number of measurements in fall and winter
can be used to estimate cold season emissions.

Extrapolating our findings to all urban ponds in the Neth-
erlands (extrapolated from data by Waajen et al. [2014]), we
find a GHG emission of 0.27 Mt CO2 eq yr−1. This equals the
annual emission of approximately 193,000 cars (based on
driving 13,200 km yr−1). City planners consider ponds as nat-
ural cooling mechanisms to mitigate urban heat stress (Inard
et al. 2004; Theeuwes et al. 2013); however, our findings indi-
cate that this is not a GHG neutral option. In addition, hyp-
ereutrophic urban ponds are more likely to be affected by
raising temperatures, as water temperatures of small and shal-
low water systems are closely correlated to air temperature,
making them sensitive to rapid warming (Toffolon et al. 2014;
Wik et al. 2014). Shallow, urban ponds with a high OM input
may thus likely exhibit enhanced CH4 emissions with global
warming induced rising of water temperatures (O’Reilly et al.
2015). Considering their already high GHG emission rates,
their inclusion in regional GHG emission assessments is
important. Climate change will likely feedback on urban
ponds GHG emissions and additionally worsen eutrophication
and OM loading to the system (Moss et al. 2011). In line with
the idea of using local management strategies to mitigate
global stressors (Scheffer et al. 2015), management strategies
for urban ponds should be aimed at reducing eutrophication
and OM loading. In this way, local management may counter-
act the warming induced increase of GHG emissions as well.
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