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Abstract

Today, the majority of anthropogenic greenhouse gas emissions stem from the burning
of fossil fuels for energy purposes. In order to avoid devastating consequences of
climate change, the world needs to reduce its emissions and transition its energy system
to one based on low carbon technologies.

This transition has already begun. Renewable energy technologies, in particular
solar and wind power, have seen massive growth in recent years, largely driven by
political ambitions, cost reductions and technological improvement. However, since
solar and wind are variable energy sources which depend on the weather for their
electricity generation, challenges arise when they constitute a large part of the energy
system.

Using long-term energy system modelling tools, this thesis focuses on gaining a better
understanding of how to transition to a low carbon future, and how variable renewable
energy technologies could be integrated into the energy system. Such tools are widely
used to support policy, but many of them use a low temporal resolution that could be
insufficient to represent solar and wind variability. One of the main objectives of this
thesis is therefore to assess how such models treat solar and wind, explore how e.g.
stochastic modelling techniques can improve their representation, and by extension
contribute towards more robust decision making.

Two cases are modelled. First, pathways for how a remote isolated settlement in the
Arctic can transition from a coal-based energy system to one based on renewable energy
technologies are investigated. The results show that a stochastic modelling approach
is needed to ensure a reliable energy supply, which could be based on solar and wind,
energy storage, import of hydrogen and adequate back-up capacity. Second, a model of
the European power and district heat sectors is used to explore the impact of modelling
methodology and temporal resolution on model accuracy and performance. Here,
the findings show that a stochastic modelling approach is preferred over deterministic
models, even when the temporal resolution of the deterministic models is significantly
increased. This case study also shows that a low carbon European power system is
the preferred pathway going forward, with solar and wind, energy storage and cross-
country interconnections as critical contributors.

This thesis demonstrates how energy modelling tools can be used to aid in the
challenge of transitioning to a low carbon energy system with large shares of variable
renewables, and presents techniques that leads to more robust results and a more
accurate knowledge base for decision makers.
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Chapter 1

Introduction

In response to the threats of climate change, ambitious targets have been set to reduce
global anthropogenic greenhouse gas (GHG) emissions. According to the IPCC [1],
emissions must be halved by 2030 and reach net zero by 2050 in order to keep global
warming below 1.5 degrees and to avoid catastrophic consequences for humanity. A
key sector for achieving these targets is the energy sector, which is currently the largest
contributor and responsible for about three quarters of global manmade GHG emissions
[2]. There is an urgent need for shifting our energy supply from burning CO2-emitting
fossil fuels to using less carbon intensive resources. Simultaneously, an increase in
the supply of energy services is needed. There are are still about 800 million people
without access to electricity, and about 3 billion people rely on inefficient and polluting
cooking systems [3]. Energy plays a vital role not only in fighting climate change, but
also in combating poverty, hunger, promoting education, accessing clean water and to
foster global sustainability.

Renewable energy can play an important role in decarbonising the energy sector. In
recent decades, renewables have expanded at an unprecedented pace. In the EU,
renewables now account for more than 30% of electricity generation, with wind power
being the most important contributor [4]. Solar PV is still a small, but quickly growing,
energy technology. Between 2010 and 2017, solar PV increased its generation in the
EU five-fold from 23.3 TWh to 120 TWh [4]. During the same period, the cost of
generating electricity from solar PV fell 73% and the cost of wind turbines halved [5].
In a recent study, Vartiainen et al. found that electricity generated from solar PV is
already cheaper than the average spot price all over Europe [6]. The costs of solar
and wind, as well as energy storage technologies such as batteries, are predicted to fall
further [7, 8]. It is therefore likely that solar and wind will hold a large share of the
electricity mix in the future [9, 10].

Solar and wind are, however, variable renewable energy sources (VRES), which depend
on the sun to shine and the wind to blow for generating electricity. Integrating large
shares of variable and partially unpredictable electricity generation in the existing
energy infrastructure is therefore not straight forward, and will pose a severe challenge
for today’s power system. Measures such as flexible generation capacity, grid
interconnections, energy storage and demand-side management can help accommodate
VRES, but these require substantial infrastructure investments. It is evident that large
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changes in the energy system are needed, but it is not obvious which solutions and
changes to the present system would give the highest benefit. Therefore, assessments
on a system scale are needed.

1.1 This thesis

The overall objective of this thesis is to investigate how to facilitate for future low
carbon energy systems with large shares of variable renewable energy sources. This
involves how solar and wind variability is treated in energy modelling tools, and how
this modelling can be improved for more robust decision making.

Energy modelling tools are often used to gain insights into the energy system, for
strategic planning and to support policy-making. A number of tools exist, ranging
from short-term operational models that treat the management of the grid on sub-
second scales, to long-term integrated assessment models that treat multiple sectors
of the economy several decades into the future [11]. Paper I of this thesis presents
a comprehensive review of the state-of-art in modelling tools currently used both
by the research community and industry. This review aims not only to summarize
the capabilities and properties of various modelling tools, but also to help new
modellers in identifying which tools could be appropriate for their needs and research
questions.

One of the main motivations behind conducting the review was in fact to identify a
suitable tool for further use in this thesis. Originally, it was considered to develop an
energy model from scratch, but after discovering the many available models there was
no reason for using a lot of time to reinvent the wheel. In order to study energy systems
with large shares of renewables and how they are impacted by variable electricity
generation, a model that could treat both the long-term evolution of the energy system
while simultaneously addressing its short-term dynamics was desired. Long-term
energy models fit this description perfectly. Several long-term energy models were
considered, many of them having the same properties. Finally, the TIMES modelling
framework was chosen. This was due to its documented and wide usage, its flexibility,
and that it could help answering many of the research questions posed in this thesis.
It was also helpful that the author was collaborating with researchers at the Institute
for Energy Technology (IFE) who were using TIMES and were willing to share their
expertise.

TIMES (The Integrated MARKAL-EFOM System) was developed by IEA-ETSAP
(Energy Technology Systems Program) [12], and has been widely used to develop
models of energy systems on various scales [13–15]. It follows a technology rich
bottom-up approach, and uses linear programming to minimise total system cost over a
given horizon, through optimal decision making on infrastructure investments, systems
operation and imports of energy carriers. By modelling both the long-term evolution
of the energy system and the short-term operations, TIMES is an effective tool for
modelling the effects of VRES integration on various scales.

While long-term energy system models such as TIMES have been around for several
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decades, they face some challenges particularly in representing solar and wind variabil-
ity. A large portion of this thesis is thus dedicated to explore how such models treat
VRES, and how this representation could be improved. Two specific case studies have
been investigated; the energy system in the small Arctic settlement of Longyearbyen,
and the European power and district heat systems. Both cases are highly relevant
for policy-makers, while at the same time excellent for studying the integration of
variable renewables and the importance of an accurate modelling of solar and wind
variability.

The structure of the thesis is as follows: Chapter 2 provides a general scientific
background, with particular focus on the basics of long-term energy models, the
stochastic modelling approach used in this thesis and how such models are applied
in recent relevant literature to study the integration of variable renewables. In Chapter
3, the two models developed and applied in this thesis are briefly introduced, and results
from an additional scenario that explores a 100% renewable European power mix are
presented. Chapter 4 includes a list of the papers in this thesis and a summary of their
contributions, with each of the papers appended at the end of the thesis. Finally, chapter
5 summarises the thesis and gives an outlook for future research.
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Chapter 2

Scientific Background

The potential of renewable energy sources to replace fossil fuels has become a hot
research topic in recent years. Several studies have assessed systems with very high or
even 100% share of renewable energy [9, 10, 16–20], and several focus on the impacts
of integrating large shares of variable generation [21–27]. A common feature of the
majority of these studies is that they use some kind of modelling tool to aid and enhance
their analysis.

Due to their dependence on the weather, the challenges that arise from integrating
VRES occur on many timescales. This ranges from short-term operations on a sub-
second scale to long-term planning several decades into the future. Constrained
by computational capabilities, but also in order to address different purposes and
capabilities, choices must be made on scope and resolution of models [11, 28, 29].

Figure 2.1 shows an illustration of the features of energy modelling tools, grouped
into three overarching modelling types. Note that this is an illustration and not an
accurate representation of the modelling landscape. Generally, models with high
temporal resolution focus on the operational and technical aspects of the energy
system, including challenges related to e.g. grid stability, load flow analysis or unit
commitment. On the other hand, Integrated Assessment Models (IAM) combine the
assessment of natural and man-made systems, linking for example the energy system
to other economic sectors, effects on and by the climate and its impacts on land-use.
Such models usually have a global scope and a long horizon of 50-150 years. IAMs
are heavily used for policy analysis, especially in climate change mitigation studies,
such as the IPCC’s 1.5◦ scenario [1]. However, due to the wide scope of IAMs, their
treatment of the energy sector is less detailed. When making infrastructure investment
decisions in energy systems, especially those with large shares of variable renewables,
as much operational detail as required should be included.

Long-term energy system models are a branch of modelling tools that attempt to deal
with the long-term evolution of the energy system while still taking into account its
short-term dynamics. For this thesis, where the aim is to model the transition to
low carbon energy systems with large shares of variable renewables, long-term energy
system models have many desirable properties (see the blue square in Figure 2.1).

The remainder of this chapter focuses on long-term energy models, particularly on
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Figure 2.1: Illustration of the challenges assessed by various types of energy modelling tools. The
figure is adapted from [30]

the TIMES modelling framework used in this thesis. Paper I of this thesis presents a
comprehensive review of 75 modelling tools, including but not limited to long-term
energy models.

2.1 Long-term energy system models

Long-term energy system models are often used to gain insights into the energy sector
and to investigate transition pathways to future energy systems. Such models can
encompass the entire energy sector, describing how energy carriers such as electricity or
heat are produced, distributed and supplied to various end-use sectors, or they can also
target specific sectors of the energy system, such as the power sector. Most models are
flexible in terms of their spatiotemporal resolution, capable of modelling a wide range
of system sizes, from small local energy systems to the entire global energy system,
several decades into the future.

Usually, long-term energy system models are formulated as optimisation models, with
the objective of minimising the total cost of providing energy services. In order to do
this, the models make decisions regarding investments, operation and import of energy
carries, and gives information about the optimal transition pathway, its costs, emissions
and deployment of various technologies.

The knowledge gained from long-term energy models is valuable in policy-making.
They can provide information about how to achieve desired future energy systems, or
the likely evolution of the energy system given today’s situation and assumptions about
the future evolution of key parameters. These two ways of designing scenarios may be
named prescriptive and descriptive, respectively [31]. Prescriptive scenarios are useful
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to understand what decisions are needed to achieve a given target. This could be a given
target for CO2 emissions, or to reach a given share of renewables in the energy mix.
A descriptive scenario, on the other hand, could be used to investigate whether given
policies (e.g. RES subsidies) would be sufficient to reach a stated goal, but without
setting the goal as an explicit bound in the model. By doing this, such scenarios could
be translated into actual policy portfolios that could be implemented in real life.

Despite providing useful knowledge, long-term energy system models should not be
blindly trusted. The development of the energy system and decisions made in a model
could strongly deviate from real-world dynamics and decisions. First, long-term energy
system models make a number of assumptions of the evolution of key parameters, both
in terms of future demand, technological characteristics, costs etc. The actual evolution
will most likely differ from the modelled ones due to a number of factors such as
unforeseen technological progress or political decisions. Second, optimisation models
usually take a social planner’s perspective, optimising to the benefit of the entire system
rather than individual actors. In reality, individual actors might not act according to
what is optimal for the entire system, but rather to their own benefit.

Long-term energy system models have been extensively applied to study various energy
systems, and numerous models have been developed. Two well known examples are
the MARKAL/TIMES [12, 32] and MESSAGE [33] families of models. TIMES has
for example been used to study the decarbonisation of the UK [34, 35], Canadian [36],
Chinese [37] or Californian [15] energy systems. Similarly, the MESSAGE model
has e.g. been used to study the impact of wind power in southern Brazil [38], and to
study power system reliability and how variability from renewable energy sources could
be captured in a global Integrated Assessment Model [39]. Other examples include
the open-source long-term energy models OSeMOSYS [24, 40] and Calliope [41–43],
the National Renewable Energy Laboratory’s (NREL) power system planning model
ReEDS [44, 45], the U.S. Energy Information Administration’s (EIA) NEMS model
[46], or the PRIMES energy system model [47, 48]. Many of the above-mentioned
models are actively used in policy-making. Both TIMES, PRIMES and MESSAGE
have been widely used to support EU policies [34, 49, 50], while the NEMS model is
used for EIA’s Annual Energy Outlook [51].

2.2 The TIMES modelling framework

The fields of energy policy and energy modelling started gaining popularity after the
oil crisis in 1973, when long-term strategic energy planning came on the agenda for
both policy makers and industry [52]. The International Energy Agency (IEA), known
for their annual World Energy Outlook (WEO), was established shortly after in 1974
as an international collaboration to foster energy security, energy efficiency and the
development of alternative energy sources. Some years later, in 1976, IEA launched its
Energy Technology Systems Analysis Program (ETSAP), with the aim of developing
an energy system model that could aid government officials and decision makers to
create robust and evidence-based energy and environmental policies [53]. This led to
the development of the MARKAL (MARKet ALlocation) energy system model, which
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later evolved into the TIMES (The Integrated MARKAL-EFOM System) model.

TIMES is a modelling framework frequently applied to develop models for local,
national, international or global energy systems [12]. An illustration of the TIMES
model structure is shown in Figure 2.2.

TIMESInputs

Demand for energy
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Techno-economic
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fuel prices, 
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Model decisions

Investments
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Current energy 

system

Supply profiles of 

renewables

Outputs

Energy system 

dispatch

Investments in 

energy infrastructure

Emissions

Total system cost

Energy shadow 

prices

Figure 2.2: Illustration of the TIMES model structure (Figure inset: studioworkstock for www.colour-
box.com)

It follows a bottom-up approach, and performs long-term analyses of the entire or
parts of the energy sector. The TIMES modelling framework aims to provide energy
services at the lowest cost possible, making optimal decisions regarding investments in
infrastructure, operation of the system and imports/exports of energy carriers. It is built
on linear programming, and equation 2.1 shows the objective function of an inelastic
and deterministic TIMES model [12]:

min(cT · x)
subject to ∑

k
Ak,i(t)≥ Di(t), ; i = 1, . . . , I; t = 1, . . . ,T

and B · x ≥ b

(2.1)

The model minimises the discounted total system cost, where c is the cost vector and
x is the vector of TIMES variables (the choices the model makes, e.g. new capacity
additions or generation of energy commodities). The minimisation is subject to a series
of constraints, where perhaps the most important one is is that the demand of various
energy services (i) is met at all times (t). Here, Ak,i(t) is the supply of energy from
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various end-use technologies (k), which has to be greater than or equal to the demand
Di(t). Finally, B ·X ≥ b corresponds to all other TIMES constraints, for example the
maximum installed capacity of a technology, emission constraints, minimum share of
renewables in the energy mix and so on.

The decision-making in TIMES assumes perfect foresight (full knowledge of how
market parameters will evolve across the planning horizon), perfect competition and
is driven by the demand of energy services. A more detailed mathematical formulation
of the TIMES modelling framework is out of the scope of this chapter, and can be found
in [12].

The code for the TIMES model generator is available Open Source under a GNU
General Public License v3.0., but requires commercial third-party software to be run
[54]. This includes data and results handling software (ANSWER/VEDA) [54], and
GAMS [55] plus a solver (e.g. CPLEX) to solve the model. The computational
requirements to run a TIMES-based model depends strongly on the size of a given
model. For this thesis, most runs were done on a normal laptop (Intel(R) Core(TM)
i7-5600U CPU @ 2.60 GHz, 16 GB RAM), while some required a more powerful
workstation (Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, 96 GB RAM).

2.2.1 Temporal and spatial representation

Figure 2.3 shows an example of the temporal representation in a TIMES model. Here,
the base-year to which all future costs and revenues are discounted to is 2015, and
the modelling horizon is 2050. The planning horizon is divided into 9 time-periods,
where investments are made every 5th year (the number of time-periods is flexible and
can vary in length). Each time-period is represented by one milestone year, which is
further divided into a set of user-defined time-slices that represent the hourly, diurnal
and seasonal variations in supply and demand. In Figure 2.3, each milestone year is
represented by 192 time-slices, distributed over 24 hours over two days (one weekday
and one weekend day) per season; spring (March, April and May), summer (June,
July and August), autumn (September, October, and November) and winter (December,
January and February).

Figure 2.3: Typical temporal representation in a TIMES energy system model [56]

The flexible time-slice definition in TIMES is an advantage in comparison to its
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predecessor MARKAL. In MARKAL, time-slices were rigid and only permitted
for electricity and low temperature heat, represented by six and three time-slices
respectively [57]. The flexibility of TIMES allows a user to increase the number of
time-slices, with the aim of improving the representation of various processes such
as solar and wind power. However, increasing the temporal resolution of a long-term
energy model also means increasing the computational demand, leading to a trade-off
between modelling accuracy and computational requirements. A very common time-
slice configuration in TIMES is to use 12 time-slices, used in e.g. the JRC EU-TIMES
model [58]. However, to take into account the increasing share of intermittent solar
and wind in the energy system, higher resolutions or other approaches to tackle solar
and wind variability might be needed. This is further discussed in Paper III of this
thesis.

The spatial resolution in long-term energy models varies greatly. Often, this depends on
the scope of the given study, but there is also a trade-off between spatial resolution and
computational demands. Splitting up a region into several sub-regions could improve
the representation of local characteristics, such as resource availability and load centers.
For example, Paper III of this thesis focuses on Europe where each country is modelled
as one region (node). This simplification could undermine the spatial distribution
of generation and demand, and miss potential bottlenecks. A concrete example is
Germany, where bottlenecks between the windy north and the industrial south leads
to congestion and overloading [59]. Treating each country on a national scale could
therefore underestimate required upgrades of the distribution grid.

2.2.2 Energy system representation

This section aims to describe how an energy system in TIMES is usually modelled,
including its structure, parameters and required input data. It is important to mention
that TIMES is a so-called model generator, meaning that the underlying structure is the
same in all TIMES models, but each model version varies based on their input data.
In other words, TIMES is a framework with equations and constraints that allows a
user to design a specific model for a given purpose and a given system. A standard
TIMES model is usually made up by various processes (technologies), commodities
and commodity flows [12]. By combining these, entire complex energy systems could
be represented.

Processes describe the conversion of one commodity into another, such as how natural
gas is converted to electricity in a gas-fired power plant. Here, natural gas and
electricity are two examples of commodities, and the flow of natural gas going into
the process and the flow of electricity going out of the process are commodity flows.
The input/output ratio of these flows also describes the efficiency of the process, which
is one of many technological parameters defined for each technology. Commodities
do not necessarily have to be energy carriers, but could also be materials, emissions,
monetary flows or energy services [12]. There are also two special types of processes
in TIMES, used to model storage technologies and to model inter-regional trade.
Storage processes allow commodities to be stored from one time-slice to another (in



2.2 The TIMES modelling framework 11

e.g. pumped hydro storage plants or batteries), and trade processes allow trading of
commodities between regions (e.g. cross-country grid interconnections).

Figure 2.4 below shows an example of a very simple TIMES model, consisting of
three processes and three commodities. Coal is first imported, before converted into
electricity in a coal-fired power plant. This electricity is then used to power a heat
pump which produces heat for households. Through expanding this simple model with
additional commodities and processes, entire energy systems could be modelled.

Figure 2.4: Representation of a very simple energy system in TIMES

In addition to the technological description of processes, their economic assumptions
are also important input parameters to a TIMES model. Since the optimisation is cost-
driven, the economic parameters decide whether a given technology is chosen in the
solution or not. Therefore, the deployment of renewables is heavily dependent on their
competitiveness with traditional fossil fuels. The cost of renewables have dropped
massively in recent years, and are expected to continue dropping [6]. When modelling
the energy system several decades into the future, it is important to capture their cost
reductions going forward.

Projections of future demand for energy services are one of the most important drivers
for model results, and are supplied exogenously to TIMES. Long-term energy models
that cover all energy sectors, usually consist of a number of end-use sectors each with
their own demand projection for various energy services. As an example, the demand
in the transport sector could be defined as the number of passenger-kilometers. Then,
the model has a choice of satisfying this demand through several technologies, e.g.
an electric vehicle or a combustion engine vehicle. If the model decides to invest in
electric vehicles, this will add to the demand for electricity in the model. Similarly, one
could define the end-use sector of heating a household, with technology-choices such
as heat pumps, biomass ovens or oil boilers, which in turn will affect the demand for the
given commodity. As such, the demand for a given commodity such as electricity will
be endogenous in an energy system model. As an example, TIMES-Norway consists of
70-80 end-use sectors that have a demand for energy services such as heating, cooling,
electricity, vehicle-km etc. [60, 61].

In long-term electricity models, on the other hand, the electricity demand is usually
supplied exogenously. For the two models used in this thesis, which include the
electricity and district heat (DH) sectors, the electricity and DH demand is exogenous.
However, electrification of heating, by for example using heat pumps or electric boilers
that consume electricity to supply heat, will modify the demand for electricity.
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2.3 Stochastic modelling in TIMES

Stochastic modelling in TIMES is a relatively new technique [62], first applied in a
study of the Danish energy sector in 2015 [63]. Here, wind power was represented
as a stochastic parameter, resulting in lower investments in wind power, lower
energy system costs, less exports of electricity and an increased use of biomass in
comparison to a deterministic model. Furthermore, Seljom & Tomasgard [64] studied
the Scandinavian energy system with PV, wind, and hydro generation, as well as heat
demand in buildings and electricity prices outside Scandinavia as stochastic parameters.
Stochastic approaches have also been applied to other modelling tools than TIMES. An
example is the model EMPIRE [65, 66], which covers the European power sector. The
European power sector was also the focus of a stochastic model developed by Nagl et
al. [67].

A stochastic long-term energy system model considers various operational situations
caused by the short-term uncertainty of e.g. solar and wind [68]. This contrasts
a conventional deterministic approach, which assumes that all input parameters are
known. Generally, deterministic models are therefore optimised based on only one
operational scenario where values of e.g. solar and wind availability are based
on the expected outcome (climatology). By doing this, deterministic models make
investments in an energy system that might not take into account the range of
operational situations that can occur.

In a stochastic model, each uncertain parameter is represented by a set of possible
realisations, called scenarios, and their associated probability of occurrence. Usually,
these scenarios are generated through a scenario generation method, which will be
further discussed in section 2.3.1. An example of the temporal representation in a
stochastic model is shown in Figure 2.5. It is similar to that of a deterministic model
(see Figure 2.3), but the stochastic modelling approach takes into account a range of
operational scenarios that can occur.

Figure 2.5: Illustration of the temporal representation in a stochastic long-term energy model

In a stochastic model, investment decisions and operational decisions are split into
two separate stages. This division is important in order to define what information is
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known when certain decisions are made. During the first stage, investment decisions
are made across all regions and throughout the whole modelling horizon. However,
these investments are made without knowing the outcome of the operational scenarios,
but takes into account their expected cost. The outcome of these operational scenarios
is then revealed at the second stage, where operational decisions are made for each
of the scenarios and for all model periods. This gives investments that take into
account the expected operational cost, and are identical and feasible for all operational
scenarios.

To do this a two-stage stochastic model is applied [68, 69], illustrated in Fig 2.6 through
a scenario tree (as it is applied in paper III of this thesis). Often, this is also referred to as
multi-horizon modelling, due to the division of the long-term and short-term dynamics
in two separate stages [65]. A stochastic two-stage linear programming problem can
be written as [70–72]:

min
x

(cT · x+E[Q(x,w)])

subject to A · x ≥ b, x ≥ 0
(2.2)

Where x are the the first-stage decision variables, cT the cost vector, E[Q(x,w)] is the
expected value of the optimal solution of the second stage problem, and A ·x ≥ b are the
first-stage scenario-independent constraints. During the first stage, decisions have to be
made before the outcome of the stochastic data w is known (a specific realisation of the
uncertain parameter is called a scenario and noted ws). The set of all realisations of the
stochastic parameters is described by Ω = {w1, ...,wS} ⊆ Rr, where r is the number of
parameters included. The second-stage solution can be written as [72]:

Q(x,w) =min
y

dT
wy(w)

subject to Twx+Wwy(w)≥ hw, ;y(w)≥ 0,
(2.3)

Here, y(w) are the second-stage decision variables, dT
w is the uncertain parameter vector,

Tw represents the transition matrix, Ww the recourse matrix and hw the right-hand side
of the second stage scenario-dependent constraints. Note that all decisions in the
second-stage depends on the specific realisation of the stochastic data. If it is assumed
that the uncertain parameters follow a discrete distribution, and that the probability of
occurrence (ps) for each scenario w is equal and sums to one for all s = 1, ...,S, then
E[Q(x,w)] = ∑s psdT

s y(s), where y(s) is the optimal second-stage decision for scenario
ws [73]. The model can then be written as a large linear program, often called the
deterministic equivalent [72–74]:

min
x,y1,...,yS

(cT · x+∑
s

psdT
s y(s))

subject to A · x ≥ b, x ≥ 0
and Tsx+Wsy(s)≥ hs, ;s ∈ S,y(s)≥ 0

(2.4)
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Figure 2.6: Illustration of a two-stage stochastic model with fifteen operational scenarios (adapted
from [64])

2.3.1 Scenario generation

In stochastic programming, the scenario tree with its scenarios represents the true
distribution of the uncertain parameters. Since it is computationally unrealistic to
represent the entire distribution in a model, a subset of scenarios is often used. This
also means that the optimal solution is estimated and not inherently found, and could
therefore deviate from the exact solution. It is thus important that the set of scenarios
gives a sufficient representation of the uncertain parameters, as inadequate scenarios
can give inadequate model results and inaccuracies. Additionally, it is also important
that the scenarios capture the dependency between various uncertain parameters,
geographical regions and also dependencies in time [74].

Scenario generation methods are used in order to ensure that proper scenarios are
chosen. These rely on data that describe the uncertain parameters, which could be
a continuous probability distribution or a discrete dataset based on e.g. historical
observations or simulations [74]. Several techniques are used in the literature, including
random sampling, distance measures and moment matching [75–77]. In paper II and
III of this thesis, a combination of random sampling and moment matching is used.
This technique involves:

1. The uncertain parameters are described by long datasets spanning multiple years
and with hourly resolution (e.g. wind and solar generation). From these datasets,
historical days are sampled in order to construct a set of independent scenarios to
make up the scenario tree. By sampling consecutive hourly values throughout a
day, consistent daily correlations are captured. In addition, correlations between
the three uncertain parameters are captured by sampling concurrent days, and
spatial correlation is ensured by sampling the same day for each region.

2. Repeating this procedure multiple times in order to generate a large amount of
possible scenario sets.

3. Calculating mean, variance, skewness and kurtosis (the first four moments) for
the historic data and for each of the scenario sets.

4. Calculating the deviation of the moments of each scenario set to the historical
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datasets, and then selecting the set of scenarios with the lowest deviation (best fit
with the statistical properties of the original datasets).

The deviation of moments is calculated by:

du,p,s =
4

∑
v=1

T

∑
t=1

abs[
mp,v,s,t

hist −mp,v,s,t
scen

mp,v,s,t
hist

] (2.5)

Where u is a given set of scenarios, p is the stochastic parameter (e.g. wind or solar), s is
the season, v is the moment (m) order and t is the time-step. For all scenario sets U , the
total deviation (d) for each scenario set across the stochastic parameters (p) and seasons
(s) is found (P is the total number of stochastic parameters being modelled):

du =
P

∑
p=1

4

∑
s=1

du,p,s (2.6)

Then the set of scenarios with the lowest deviation du∗ among the large amount of
sampled scenarios (U) is found, and used as input to the model.

du∗ = min(d1,d2, . . . ,dU) (2.7)

2.3.2 Solution quality

It is often desirable to reduce the number of scenarios in a stochastic model due
to computational requirements, but this could give model results that depend on the
scenarios rather than the underlying data. It is therefore important to evaluate the
quality of the obtained solution and its stability [78]. In order to test if the model
solution is stable with a given number of scenarios, one could test the in-sample
stability of the model [79]. In-sample stability involves testing if solving the stochastic
model gives approximately the same objective function value when using different
scenario trees all based on the same underlying data and scenario generation method.
This also includes assessing whether the value of the objective function is stable when
increasing the number of scenarios. However, increasing the number of scenarios is
challenging, as it quickly leads to very high computational requirements.

This problem is avoided when testing the out-of-sample stability [79]. This test
investigates whether the obtained solution is stable when it is applied to the actual
expected performance of the solution [80]. Here, the first-stage solutions from a
stochastic model is fixed, and then run with a large number of scenarios representing the
true distribution of the uncertain parameters. Since the first-stage solution is fixed, this
does not lead to very high computational demands, as one could simply split the model
up into several sub-models with a manageable scenario size. As an example, Seljom
& Tomasgard test out-of-sample stability in [63]. Here, they estimate the optimal
value using a stochastic model with 90 scenarios, fix the first-stage solution, and test
it for 9 sub-models with different scenario trees. Since the investment decisions are
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fixed, this is equivalent to testing the model with 9·90=810 stochastic scenarios. They
find that the objective value does not deviate much, and conclude that the solution is
satisfactory.

There are also methods to evaluate the stochastic modelling approach relative to a
deterministic one. By applying a test called the Value of Stochastic Solution (VSS),
one can expose the energy system configuration from a deterministic model to the
same short-term uncertainty as in a stochastic model [81]. It works by taking the
investments from the deterministic model, implement them in the stochastic version,
and then run it with the stochastic scenarios without allowing new investments. This
will provide a measure of the value of following a stochastic investment strategy relative
to a deterministic one [63, 81]. If the suite of technologies from the deterministic
model is not able to meet the demand in all stochastic scenarios, it leads to infeasible
solutions.

2.4 Alternative methods for dealing with short-term vari-
ability

While stochastic modelling techniques applied to long-term energy system models is
the main focus of this thesis, other methods to deal with the short-term variability of
solar and wind have been proposed in the literature. Several of these methods are
reviewed by Collins et al. [23], including soft-linking long-term energy models with
operational power system models, increasing or improving the temporal resolution and
improving the technical representation (See Table 2.1 for a comparison).

Soft-linking involves coupling energy system models/IAMs to more detailed oper-
ational power system models, where characteristics of the power system obtained
from the energy system model/IAM are used as input to the operational model. This
allows a more detailed modelling of the operational aspects of the power system,
particularly useful to get a better understating of the operational impacts of solar and
wind generation. This approach is followed in Deane et al. [26], where a TIMES
model of the Irish energy system is coupled to the PLEXOS power systems tool.
They find that without important technical constraints, the energy system model can
underestimate flexibility, underestimate wind curtailment and overestimate the use
of base-load plants. Here, a uni-directional approach is followed, meaning that the
operational power system model is only used to evaluate the outcome of the energy
system model. Alternatively, a bi-directional approach could be followed, where the
outcome of the operational power system model feeds back to the energy system model
(see e.g. [82]). Finally, one could also hard-link two models to get one integrated model
[83, 84].

A second approach is to improve the temporal representation in long-term energy
models. This could be done by increasing the number of time-slices in a model, by for
example including more representative days [85, 86]. Various methods for the selection
of representative days have also been assessed, including e.g. heuristic methods,
random sampling, clustering or even optimisation methods [43, 87–91]. Pfenninger
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tested several of these methods (downsamplng, heuristics and clustering techniques)
using the open-source modelling framework Calliope [92].

Finally, one could also improve the technical representation in long-term energy models
by adding operational constraints, which specifies e.g. ramp-rates, minimum load
levels, kinetic inertia etc. [27, 93, 94]. Even though it is important to address
the technical detail in a long-term energy system model, it has been shown that for
high shares of variable renewable energy, the temporal resolution is more important
[26].

Table 2.1: Strengths and weaknesses of various modelling approaches (adapted from [23])

Method Strengths Drawbacks

Stochastic
modelling

Improved VRES representation, can im-
prove optimality

Increased computational complexity

Determines the need for back-up capacity
endogenously

Requires complex scenario tree genera-
tion

Considers uncertainty of parameters (e.g.
VRES supply)

Can be difficult to implement

Correlation between time-series can be
accounted for

Should test stability and quality of solution

Chronology can be captured (important
for e.g. storage technologies)

Soft-linking More accurate modelling of systems op-
erations

Need an additional power systems opera-
tional model

Improved solution optimality (bi-
directional)

No improved solution optimality (uni-
directional)

Allows assessment of power system reli-
ability.

Optimality and convergence not guaran-
teed (bi-directional)

Can be used to check results from energy
system model

Need of harmonising model input

Temporal
representation

Can be easy to implement Difficult to assess short-term reliability of
the power system

Can improve optimality Higher number of time-slices increases
computational complexity

Algorithms can give better selection of
representative days (allowing fewer time-
slices)

Improved selection of representative days
requires complex algorithms

Can capture correlation between time-
series

Additional constraints needed to ensure
back-up capacity

Technical rep-
resentation

Can be easy to implement Requires calibration using more detailed
models

Can improve optimality Validity can not be guaranteed

Can be combined with a low level of
temporal detail

Only minor increase in computational de-
mand
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Chapter 3

Models and data

This section gives a brief overview of the two models that were developed and applied
in this thesis, and their most important input data. In addition, results from an additional
example scenario of a 100% renewable European power sector is presented in order to
demonstrate how this modelling tool can be used in further scenario analyses. More
detailed descriptions of the models are presented in the supplementary materials for
Paper II and III, in Appendix A and B respectively.

3.1 TIMES-Longyearbyen

The stochastic long-term energy system model TIMES-Longyearbyen consists of the
single isolated region of Longyearbyen. Longyearbyen is situated on Svalbard, barely
a thousand kilometres from the North Pole and has around 2000 permanent residents
[95]. The settlement was founded in 1905 for coal mining purposes and is still supplied
by Norway's only coal-fired power plant.

Using 2015 as the base-year, the model makes endogenous investments and operations
in the power and district heat systems of Longyearbyen towards 2050. The discount rate
in the base case is set to 4%, and the currency is Norwegian kroner (NOK). Investment
decisions are made every 5th year, with sub-annual operations represented through
192 time-slices. In addition, the stochastic approach takes into account 60 different
operational scenarios that can occur, where investments decisions are common for all
60 scenarios, but operational decisions are scenario dependent.

3.1.1 Input data

The current energy system composition in Longyearbyen and its calibration is an
important input to the model, as it provides the starting point for the transition to a
low carbon energy system and a basis for future investment needs. Today, the energy
system in Longyearbyen consists of the coal-fired power plant as the main generator
of electricity and heat, in addition to diesel generators and oil boilers for reserve and
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Figure 3.1: Map of Svalbard and its surroundings [56]

peak generation [96, 97]. There is also a very small amount of solar PV installed, both
on the airport and on residential buildings [98]. In total, the energy system provides
about 40 GWh electricity and 70 GWh heat annually (see monthly generation in Figure
3.2).

While the base-year relies on available statistics [99], assumptions have to be made for
its future evolution. In the base case of TIMES-Longyearbyen, a significant decrease in
energy usage is predicted for both electricity and heat. This is due to a huge potential for
energy savings, particularly for heating. For electricity, the decline is associated with
the closing of the coal mining operations as well as the coal-fired power plant, which
today make up ∼30% of electricity consumption. Due to the uncertain development of
the settlement, the sensitivity of the results on the demand projections is assessed. The
results show that increased demand has a large impact on system size and costs, but a
small impact on its composition.

How the demand profiles for electricity and heat are distributed within a year are
also important inputs. This is represented through real data from the power plant
in Longyearbyen, given on an hourly basis for 2017 and 2018 [99]. These datasets
constitute the basis for the deterministic and stochastic profiles used in the model.

Technology costs (e.g. investment and O&M costs) are mainly retrieved from the
Norwegian Water Resources and Energy Directorate [100]. The reasoning behind this
is to use costs that are state-of-art as well as relevant in a Norwegian context.

Solar and wind data are based on Renewables.ninja1, an online tool that allows users to
simulate power output from solar panels and wind turbines anywhere in the world.
The tool uses meteorological data from the MERRA reanalysis [101] to produce
generation data for solar PV and wind through two models, the GSEE model (Global
Solar Energy Estimator) [83] and the VWF model (Virtual Wind Farm) [102]. A high

1www.renewables.ninja



3.1 TIMES-Longyearbyen 21

Figure 3.2: Monthly generation of electricity and heat in Longyearbyen in 2016 [99]

correlation (0.77) is found when comparing the wind speed data from Renewables.ninja
to observations from the Norwegian Meteorological Institute [103] (see Figure 3.3).
The mean wind speed in the observations are a bit higher than in the reanalysis (5.7
vs 4.4 m/s), indicating that the generation data based on the reanalysis should be
considered conservative.

The maximum potential for onshore- and offshore wind turbines as well as ground-
mounted solar PV are unconstrained in the model due to large available area.
Residential solar panels are, on the other hand, constrained by the available roof area
in the settlement [104].

Figure 3.3: Comparison of wind speed data from renewables.ninja (reanalysis) and observations
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3.2 TIMES-Europe

TIMES-Europe focuses on the European power and district heating systems. It
covers 29 regions/countries in Europe, including the EU-28 countries plus Norway
and Switzerland, with the exception of Cyprus and Iceland as they presently are not
connected to the European power system.

Again, the base-year is set to 2015 with a horizon of 2050. The currency is 2015e, the
discount rate is 4%, and the model is run with investment periods of ten years. In Paper
III of this thesis, different versions of this model with varying temporal resolution were
used, all based on the same input data. This includes versions with respectively 12, 48,
192, 672 and 2016 time slices per year. Both stochastic and deterministic versions were
developed.

Figure 3.4: Map of included countries and their share of renewables in the power mix in 2015

3.2.1 Input data

The energy system characteristics of the base-year has been calibrated using available
statistics from 2015, and is primarily based on data from the European Network of
Transmission System Operators for Electricity (ENTSO-E) [105]. The electricity
generation in Europe in 2015 consisted of ∼40% fossil fuels, ∼27% nuclear and ∼33%
renewable energy. Figure 3.5 shows a comparison of the aggregated installed capacity
in the base-year.

Projections of future electricity and heat demand are based on the EU reference case
from 2016 [49]. This projection predicts that electricity demand will increase by
27% between 2015 and 2050 (∼3000 TWh to ∼3800 TWh), whereas the district
heat demand increases by 10% (∼610 TWh to ∼670 TWh). Electrification of e.g.
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Figure 3.5: Calibration of installed capacity in the base year

vehicles could lead to a steeper increase of electricity demand than what is assumed
here [106–108]. The impact of other demand projections could easily be tested by this
new modelling tool.

The hourly electricity data is based on real data for all countries in the model, retrieved
from ENTSO-E [109]. Six years of data are used, between 2010 and 2015, and make
up the basis for both the deterministic and stochastic load profiles in TIMES-Europe.
The model used in this thesis assumes that the shape of the load profile will remain the
same also in 2050. However, measures such as increased electrification and demand
side management will likely affect the future load curve. It would be interesting to
assess the effect of a changing variability in the load curve on the results. The load
curve for district heating is based on data from the model EnergyPlan [110].

Numerous technologies are available for investment, including conventional and
renewable generation capacity, energy storage (e.g. batteries and hydrogen) and
international transmission between pairs of countries. Costs are mainly drawn from
publications from the European Commission [7, 111, 112].

Figure 3.6 shows the assumed evolution for the levelised cost of electricity (LCOE) of
solar PV, onshore- and offshore wind in Europe towards 2050. LCOE is a measure
of the discounted cost of producing electricity over the entire expected lifetime of
the technology (e/MWh), using investment- and O&M costs as well as electricity
generation data as input. These LCOE calculations are based on inputs to the TIMES-
Europe model used in Paper III of this thesis. With three cost classes and different
resource potential in each country, the LCOE varies widely across Europe in this
model (Figure 3.6). One can see that solar PV and offshore wind have the steepest
cost projections, whereas onshore wind is already a relatively mature technology.
From these assumptions, solar PV becomes the cheapest power generation method in
many regions in Europe by 2050, and one can also see that the cost of offshore wind
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approaches and even goes below that of onshore wind in some regions.

Figure 3.6: Simple LCOE projection used in TIMES-Europe

30 years of hourly solar and wind data between 1985 to 2015 are used, retrieved from
Renewables.ninja. In contrast to the data retrieved for Longyearbyen, the per country
data have been validated and bias-corrected using real generation data [83, 102].
There are large geographical differences in the solar and wind resource across Europe,
which are important to capture in the model. Simultaneously, capturing the temporal
differences are also important. A future highly interconnected Europe could both
benefit from the smoothing effect seen when aggregating solar and wind generation
over large areas, but it could also suffer from long-lasting continental-wide weather
patterns. Maximum capacities for renewable energy technologies are used as an input
to TIMES-Europe in order to limit the maximum installed capacities of a certain
technology in a given country based on technical, environmental or political constraints
[113–115].

3.2.2 A 100 % renewable European power system

As an additional exercise, and to demonstrate how TIMES-Europe can be used in
further scenario analyses, it was run for a scenario leading to a 100 % renewable
Europe in 2050. While the feasibility of 100% renewable energy systems have been
debated [116, 117], there is a growing body of literature suggesting that a system driven
entirely by renewable energy sources is both technically feasible and economically
viable [19, 107, 118–120]. Bogdanov et al. [10] modelled the transition to a 100%
renewable global power sector in 2050, achieving a technically feasible system with
a levelised cost of electricity (LCOE) ∼25% lower than today. Solar PV was shown
to become the dominant electricity producer (78 % of capacity in 2050), with battery
storage also playing an integral part. In a similar fashion, Jacobson et al. [17] developed
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a roadmap for how 139 countries could use only renewables to cover all energy needs
in 2050. By not only covering the power sector, Jacobson et al. also suggested how
other sectors such as transport and industry could transition through e.g. electrification
or the use of hydrogen.

Figure 3.7: Electricity generation mix in a 100% renewable European power system scenario

The model set-up and assumptions in this 100% renewable energy scenario were
identical to that of Paper III, but with an explicit constraint that CO2 emissions must
reach zero by 2050 and without investments in nuclear power capacity.

Figure 3.7 shows how the generation mix of electricity changes from today until 2050 in
the 100% renewable scenario. Here, solar and wind dominate the electricity generation,
with variable renewables being responsible for 67%. In order to maintain flexibility in
the system, the model invests in large biomass capacities, energy storage as well as
cross-country interconnection cables. There is also a high amount of offshore wind
capacity, which helps diversifying the set of technologies, thus reducing the impact of
their variability.

As expected, these results are similar to those found in Paper III. In that case-study,
there were no constraints on emissions, but a conservative CO2 tax was included. The
share of renewables turned out to be 85% in 2050, where 60% was from variable
renewables. Instead of large biomass capacities, much of the flexibility was provided
by natural gas and nuclear capacity. In addition, interconnection capacity in 2050 was
about 25% lower than in the 100% renewables scenario, but on the other hand the
battery storage capacity was 20% higher. This is probably due to the extra biomass
capacity in the 100% renewables scenario, which gives additional short-term flexibility
and removes some of the need for batteries.
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In terms of costs, a 100% renewables scenario turns out to have only 7% higher average
annual costs than the case-study in Paper III. This is shown in Figure 3.8, which shows
that a transition to a 100% renewable power system is not only technically feasible
with the resources available, but would also be only slightly more expensive than a
cost-optimal energy system.

Figure 3.8: Comparison of annual costs in 2050 in the cost optimal and 100 % renewable Europe

The results of our 100% renewables scenario are supported by findings found in the
literature [9, 121, 122]. As an example, the results are similar to those found in the
Area scenario of Child et al. [16] in a study of a 100% renewable Europe. Here, they
use the LUT transition model, a deterministic power system model with high spatial
and temporal resolution (8760 time-steps per year). The composition of their system in
2050 is similar, with solar and wind supplied by hydropower and biomass dominating
electricity generation. They find that variable renewables make up an even higher share
of the electricity mix, with almost 80% of generation in 2050. In addition, their grid
expansions are of similar order (fourfold increase versus a 3.4 times increase), while
storage is much higher, likely due to effects of their modelling of prosumers. In terms
of costs, Child et al. estimate annual costs of 276 be/y, compared to 211 be/y in our
scenario. Here, it must be noted that the electricity demand in 2050 is about 25% higher
in Child et al. than in our case (5000 TWh versus 4000 TWh), explaning the ∼30%
difference in annual costs.



Chapter 4

Introduction to the papers

Paper I: A review of modelling tools for energy and electricity systems with large
shares of variable renewables

Hans-Kristian Ringkjøb, Peter M Haugan and Ida Marie Solbrekke (2018),
Renewable and Sustainable Energy Reviews, 96, doi:10.1016/j.rser.2018.08.002

In this paper, we review 75 modelling tools, ranging from small-scale power system
analysis tools to global long-term energy models. One of the main purposes of this
paper is to give an updated overview of currently available modelling tools, their
capabilities and to serve as an aid for modellers in their process of identifying and
choosing an appropriate model. We present key information regarding their general
logic, spatiotemporal resolution as well as technological and economic features. In
order to include the most relevant and currently active tools, we only included models
used in an academic publication after 2012. Additionally, to get the most updated and
state-of-art information about the models as possible, our information was validated
and updated through personal communication with developers or contact persons for
71 of the 75 reviewed models. While currently available modelling tools are able to
assess most challenges of today’s energy system, there are some challenges for future
energy systems such as how to represent short-term variability in long-term studies,
incorporate the effect of climate change and ensure openness and transparency in
modelling studies.

Paper II: Transitioning remote Arctic settlements to renewable energy systems - a
modelling study of Longyearbyen, Svalbard

Hans-Kristian Ringkjøb, Peter M Haugan and Astrid Nybø (2020),
Applied Energy, 258 doi:10.1016/j.apenergy.2019.114079

Norway’s only coal-fired power plant is located in the Arctic settlement of Longyear-
byen, Svalbard. Due to an ageing energy-infrastructure, a deteriorating coal reserve
and questions about sustainability, Longyearbyen is in need of a new energy system.
Through developing and applying a stochastic TIMES long-term energy model, we
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analyse and optimise an affordable and reliable future supply of electricity and
heat primarily based on renewable energy sources in Longyearbyen. Our findings
underline the importance of treating solar and wind variability in long-term energy
models, especially for an Arctic case where energy security and reliability is crucial.
Furthermore, we show that transitioning to an energy system based on renewables is
found feasible, reliable and affordable. We recommend a solution based mainly on
renewable power generation, but also including energy storage, import of hydrogen
and adequate back-up capacity is considered when planning the future of remote Arctic
settlements.

Paper III: Short-term solar and wind variability in long-term energy system
models - a European case study

Hans-Kristian Ringkjøb, Peter M Haugan, Pernille Seljom, Arne Lind, Fabian Wagner
and Sennai Mesfun, Submitted to Energy, December 2019

When solar and wind make up a large share of the power mix, it becomes increas-
ingly important for long-term energy models to adequately represent their short-term
variability. In this work, we use a long-term TIMES model of the European power
and district heat sectors towards 2050 to explore how stochastic modelling of short-
term solar and wind variability as well as different temporal resolutions influence the
model performance. In comparison to a stochastic model version, our results show
that deterministic models with low temporal resolution overestimate the contribution
of variable renewables, leading to lower CO2 emissions, a lack of system flexibility
and an underestimation of associated costs. The deterministic models are only able
to approximately reproduce the results of the stochastic model when the temporal
resolution is significantly increased, but still lacking investment in system flexibility
and with significantly longer solution times. Based on our findings, we therefore
recommend that a stochastic approach is used in long-term studies of energy systems
with large shares of variable renewable energy sources.



Chapter 5

Perspectives and outlook

The main research objective of this thesis was to contribute to a more robust modelling
of solar and wind power in long-term energy system models, and by extension gain
a better understanding of how variable renewables can be integrated into future low
carbon energy systems. Due to the urgency of transitioning to a more sustainable energy
system, this is a hot research topic at the moment, involving both methodological and
policy-relevant questions.

Integrating variable renewables leads to a multitude of challenges on a range of
timescales. This thesis gives an overview of these challenges, and the modelling tools
currently available to assess them. The key properties and capabilities of 75 modelling
tools are reviewed (Paper I), summarizing the state-of-art in energy modelling tools,
and serves as an aid for new modellers in their search for a suitable model for their
purposes. The findings of this review show that the currently available modelling suite
is capable of investigating most challenges of today’s energy system, but for a future
with an increasing share of variable renewables some challenges remain.

One of the main challenges remaining for the modelling community is how to
adequately represent short-term variability in long-term energy system models [123].
Misrepresenting this variability could lead to an overestimation of the penetration and
contribution of variable renewables, which in turn could lead to underestimated costs,
emissions and need for system flexibility [25].

This methodological challenge is assessed through two specific case studies in this
thesis (Paper II and III). In a case study of a remote isolated Arctic settlement (Paper II),
following a stochastic modelling approach gives investments in a system configuration
able to meet the demand of heat and electricity through sixty different operational
scenarios, including some with unfavourable wind and solar conditions. This ensures
system robustness and security of supply, which is critical in the harsh climate of an
isolated Arctic settlement. Traditionally, long-term energy system models have mainly
been used for larger energy systems, but this paper shows that through applying a
stochastic approach such models could also be used to study small isolated energy
systems. This could have wide applications, not only for other Arctic settlements, but
also for isolated island states at southern latitudes that despite a vastly different climate
experience many of the same issues as communities in the Arctic.
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In addition, this case-study also shows how Longyearbyen could transition from being
supplied by coal into a low carbon settlement powered by renewable energy. The results
indicate that a solution consisting of renewable power generation, energy storage,
import of hydrogen and adequate back-up capacity is recommended to be taken into
consideration by policy makers when planning the future of remote Arctic settlements.
While some specifics are expected to vary with location, the major building blocks of
the emerging system including wind, solar and hydrogen storage is applicable to other
Arctic settlements. A sustainable energy supply to Longyearbyen could be a test bed
for renewable solutions in the Arctic, relevant for other communities and an example
for others to follow.

The usefulness of a stochastic approach versus a deterministic approach is further
investigated in a case-study of the European power and district heat systems (Paper
III). This is a much larger system than the settlement assessed in Paper II, with
completely different dynamics and higher complexity. Due to ambitious targets for
decarbonising the European energy system, this is also a highly relevant and interesting
case-study.

While much work has been focused on the temporal resolution in long-term energy
system models [23–25], Paper III is believed to be the first to explicitly compare
stochastic models to deterministic models with increasing temporal resolution on the
European scale. The findings show that a stochastic model is preferred in studies
of energy systems with high shares of variable renewables. This is true also when
increasing the temporal resolution of the deterministic models. Our results show that
when the resolution is increased, the results from the deterministic models converge
towards those of the stochastic model. However, this is achieved at much longer
computational times, and the flexibility is still underestimated. Added heuristics that
limit the contribution of variable renewables is needed in order to secure enough
flexibility, but this leads to a 6% higher system cost than the stochastic case.

Our European case-study also shows that a large share of renewable electricity
generation is the most-preferred pathway for the European power and district heat
systems, even without imposing CO2 constraints. Renewable electricity generation
is already, and to an increasing extent will be, competitive with fossil fuelled power
generation in many locations. Additional scenarios, such as the 100% scenario
presented in this thesis, would be useful to further assess the policy-outcomes of the
European decarbonisation.

This thesis demonstrates that the choice of temporal resolution and modelling approach
plays an important role both for model results and insights as well as computational
performance of long-term energy models, and should be carefully evaluated when such
models are used for decision-making. When modelling energy systems consisting of
large shares of variable renewable energy sources, a stochastic modelling approach
is recommended, both due to its accuracy and also its computational efficiency in
comparison to conventional deterministic models.
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5.1 Future research

This thesis opens up several future research possibilities, partly to address limitations
and shortcomings of the methods used and partly to explore expanded research and
policy questions.

First, our findings suggest that a stochastic model approach should be used instead of
deterministic models in cases with high shares of variable renewables. However, there
are several methods for a more elaborate choice of time-slices used in deterministic
models based on e.g. heuristics, optimisation or random sampling. These techniques
could improve the low-resolution deterministic models, potentially to the extent that
they become competitive with the stochastic modelling.

Second, the stochastic modelling approach followed in this study is only applied to
power and district heating systems. The two models developed in this thesis could be
expanded to encompass other energy sectors such as industry and transport. This would
provide a better picture of the full system transformation that is required. It would likely
lead to additional challenges, but coupling various sectors could also lead to positive
effects that could ease the integration of variable renewables, e.g. by providing storage
and/or flexible demand.

Third, the focus on the temporal resolution comes at the expense of a coarse spatial
resolution. The European model developed for Paper III represents each country as one
node, potentially missing the spatial effects and bottlenecks that could occur within a
given country.

Finally, the developed models could be used to assess additional scenarios for the
long-term development of energy systems. There are large uncertainties of the long-
term evolution of technological developments and costs of different energy sources.
Furthermore, many factors including costs depend on policy choices such as CO2
taxes. Effects of alternative policies can be explored by comparative model runs. In
addition, climate change may influence both energy demand and the resource potential
of renewables in the future. Effects of climate change on regional resource potential
should be taken into account in long-term energy modelling studies.
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A B S T R A C T

This paper presents a thorough review of 75 modelling tools currently used for analysing energy and electricity
systems. Increased activity within model development in recent years has led to several new models and
modelling capabilities, partly motivated by the need to better represent the integration of variable renewables.
The purpose of this paper is to give an updated overview of currently available modelling tools, their capabilities
and to serve as an aid for modellers in their process of identifying and choosing an appropriate model. A broad
spectrum of modelling tools, ranging from small-scale power system analysis tools to global long-term energy
models, has been assessed. Key information regarding the general logic, spatiotemporal resolution as well as the
technological and economic features of the models is presented in three comprehensive tables. This information
has been validated and updated by model developers or affiliated contact persons, and is state-of-the-art as of the
submission date. With the available suite of modelling tools, most challenges of today's electricity system can be
assessed. For a future with an increasing share of variable renewables and increasing electrification of the energy
system, there are some challenges such as how to represent short-term variability in long-term studies, in-
corporate the effect of climate change and ensure openness and transparency in modelling studies.

1. Introduction

Electricity generation from renewable energy sources (RES) is in-
creasing in Europe, much of it driven by ambitious targets for emission
reductions set by the European Commission. In the 2050 Low Carbon
Economy roadmap, the EU set a goal of reducing emissions to 80%
below the 1990 level [1]. The EU also states that all sectors have to
contribute to this reduction, but the sector with the highest potential for
cutting emissions is the power sector. Through increasing the share of
zero-emitting RES in the electricity mix, the power sector can almost
totally eliminate its emissions by 2050.

Most of the increased RES in the electricity mix has in the latest
years been, and is projected to be, solar and wind technologies. Part of
this increase is due to the large cost reductions experienced and also
projected. According to the International Renewable Energy Agency
(IRENA), the levelised cost of electricity (LCOE) of solar photovoltaics
(PV) has halved between 2010 and 2014 [2]. Furthermore, in No-
vember 2016, the winning bid to build the Danish offshore wind farm
Kriegers Flak was as low as 49.9 €/MWh [3].

However, solar and wind are variable renewable energy sources
(VRES) whose outputs vary temporally on many scales. This is espe-
cially the case for wind, which ranges from local gusts of only seconds

to large scale patterns evolving over several years. The solar radiation is
to some extent more predictable, where the daily and seasonal cycles
are well known components. However, on shorter timescales the solar
radiation can be difficult to predict due to the rapid change in cloud
cover. In an electricity grid that requires a balance between generation
and consumption, larger shares of VRES leads to multiple challenges.

On a very short timescale, from sub-seconds to minutes, challenges
of VRES integration are related to the operation and management of the
grid. The main issues include the reduction of inertia of the power
system, the increase of curtailment events, the rate of change of fre-
quency as well as the system reactive power capability [4]. Grid support
services such as frequency and voltage regulation, fault ride through,
spinning reserve and system restoration are currently provided by
conventional technologies (i.e. mostly fossil fuelled power plants and
hydropower). However, if solar and wind technologies are to replace
much of the fossil fuelled capacities, they or new system components
like batteries must be able to provide the required grid support services
in order to maintain a stable and reliable grid. With existing tech-
nology, both wind turbines and PV systems are capable of providing
grid support services, but limited to some drive-train topologies for
wind turbines and generally only for large utility-scale PV systems
[5–7].
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On an hourly timescale, both wind turbines and photovoltaic sys-
tems can shift from generating at nominal power to not generating
anything at all [8]. With a large VRES penetration, this can lead to
challenging ramping situations, periods of oversupply as well as periods
where the renewable sources are not able to meet the demand. Future
power systems with high shares of VRES may require increased system
flexibility through e.g. flexible power plants, energy storage, demand
response and transmission grid extensions [8].

On longer timescales, challenges related to VRES integration include
identifying pathways to a renewable and emission free energy system,
assessing different scenarios and testing the effect of various policies.
For example by assessing the impact of a carbon tax, the future evo-
lution of electricity and fuel prices or how much the demand of energy
is going to increase due to population growth and increased standard of
living. Due to the long investment cycles in the energy sector, such
analyses usually cover a time span of several decades [9]. Technological
possibilities for more geographically distributed energy production and
better control systems suggest that the development of energy pro-
duction, storage and distribution systems in the near future may depend
more on consumer or prosumer preferences and multi-level governance
in addition to planning and optimisation on a national level. Business
opportunities arising from periodically low electricity prices can sti-
mulate new technologies and reduce curtailment. It is suggested that
such factors may be relevant to include in scenario modelling.

From short-term operation to long-term energy system planning,
many different models have been developed to assess the numerous
challenges related to energy and electricity systems. Jebaraj and Iniyan
[10] reviewed a spectrum of energy models, including energy planning
models, supply-demand models, forecasting models, renewable energy
models, emission reduction, optimisation and even emerging modelling
techniques based on neural networks or fuzzy logic. Connolly et al. [11]
looked at 37 models specific for the integration of renewables in energy
systems. Their review also considered a large variety of modelling
types, and was based on communication with the model developers
through surveys. Sinha and Chandel [12] had a specific focus on
modelling of hybrid renewable energy systems, mainly focused on
stand-alone systems in urban, rural and remote areas. Pfenninger et al.
[13] looked at how energy models face the challenges seen in today's
system; resolving time and space, balancing uncertainty and transpar-
ency, addressing growing complexity and integrating human behaviour
and social risks and opportunities. Moreover, Hall and Buckley [14]
reviewed and categorised 22 energy models that are used in the United
Kingdom. There are also several other reviews worth mentioning;
Després et al. (2015), Mahmud and Town (2016), Hedenus and Jo-
hansson (2013), Foley et al. (2010), Bhattacharyya and Timilsina
(2010) and Van Beuzekom et al. (2015) [15–20]. In addition, The In-
ternational Energy Agency has published an extensive report on the use
of energy models, scenarios and their assumptions [21].

There has been a high level of activity on model development in
recent years, with many new models and modelling features appearing
in the literature. This has partly been motivated by the need to better
address the challenges of VRES integration. Many previous reviews are
restricted to parts of the modelling landscape, e.g. modelling of the
transport sector or local energy systems [12,16]. This review seeks to
cover a wide range of aspects, extending previous reviews, and pro-
viding an updated overview of state of art modelling tools by the time
of submission. The aim of the paper is to present an assortment of
models that are capable to assess challenges faced in today's energy
system, useful for modellers to identify suitable models for their pur-
poses.

2. Materials and methods

2.1. Included models

In order to include only the most recent and currently active

models, a criterion was set that each model must have been used in a
publication after 2012. The starting point for identifying models was in
previous review papers [10–20], but many of the models in these re-
views have not been active since 2012 and are therefore excluded.
Some of the models were found through the Open Energy Modelling
Initiative [22], while the majority of models were identified via manual
web searches based on keywords and citations.

As models are continuously developed and updated, this exercise is
basically shooting at a moving target. Therefore, to ensure that the
information provided in this paper is state of the art at the time of
submission, it has been validated and updated through personal com-
munication with developers or contact persons affiliated with the
models. Out of the 75 models included in the review, 71 are validated.
Table 1 presents the models included in the study, their developers,
availability and the necessary software to run them. Missing replies are
marked by asterisked entries in the “model” column, and might be due
to wrong contact information.

It must be noted that this review does not explicitly distinguish
between models and modelling tools. Some models are better regarded
as tools or frameworks, where there is no data already in the model, but
with equations and constraints from which a specific model can be
built. Such tools are therefore usually highly flexible in the kind of
systems they can model, where the user can define the spatiotemporal
resolution, horizon, energy carriers, demand sectors etc. An example is
the MARKAL/TIMES family of models, which have been applied to all
from global to isolated island energy systems. In the tables these have
been entered with their most typical characteristics. Specific examples
of models developed by the TIMES modelling framework by adding
ETSAP-TIAM, TIMES-Norway and TIMES-Oslo [23–25] are also in-
cluded. OEMOF is another such framework [26]. It consists of a toolbox
where several energy system modelling approaches can be integrated as
single libraries. These libraries can then be used in so-called applica-
tions to build a computable model. In this review the application of a
library called SOLPH has been used to illustrate OEMOF's capabilities.

2.2. Model features and properties

The model categorisation has been structured following the over-
arching typology presented by Després et al. [15]. This consists of the
general logic, the spatiotemporal resolution as well as the technological
and economic parameters of the models. Fig. 1 presents an overview of
this categorisation, with a simplified flowchart that aims to aid pro-
spective modellers in identifying an adequate modelling tool for their
needs.

Starting with the problem statement at hand, the reader can find
comprehensive information about the capabilities of the included
models in Tables 1–3. Table 1 introduces the reviewed models along-
side information about their availability, software requirements and
developers. The general logic and spatiotemporal resolution is pre-
sented in Table 2, whereas Table 3 contains information about tech-
nological and economic parameters. By assessing the information stored
in these tables, the reader should be able to identify and choose a model
capable of giving insights to their specific question, model the involved
processes with an adequate spatiotemporal resolution, and possess the
necessary technological and economic properties.

The next paragraphs explain the various categories in further detail.

2.2.1. General logic
2.2.1.1. Purpose. Energy and electricity models are usually developed
to solve a problem or to answer a given question. Four different
purposes are identified. Models can fit into several of these categories:

Power System Analysis Tools – Tools developed to study power
systems with a high degree of detail, usually dealing with power flows,
fault level studies, dynamic stability etc. A typical application can be to
study the power electronics in a wind turbine connected to the grid.

Operation Decision Support – Tools developed to optimise the
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operation/dispatch of the energy/electricity system, considering for
example unit commitment. Such models operate on short-term time-
scales, but on a larger scale than power system analysis tools e.g. on a
national or European scale.

Investment Decision Support – Tools that optimise the invest-
ments in the energy/electricity system. Due to the long investment
cycles in the energy sector, such models are usually long-term models.
Investment modelling can be done either with a myopic or a perfect
foresight approach. With a perfect foresight approach, the system is
optimised for the whole study-period simultaneously, with complete
knowledge of how market parameters will evolve across the planning
horizon [196]. For the myopic approach, investments are made se-
quentially, only based on information from the current investment
period.

Scenario – Such tools investigate future long-term scenarios in the
energy/electricity sector. They can for example be used to evaluate the
impact of various policies.

2.2.1.2. Approach. Energy models generally follow two approaches;
either a top-down or a bottom-up approach. Often referred to as the
engineering approach, bottom-up models are based on detailed
technological descriptions of the energy system. On the other hand,
top-down models follow the economic approach, considering
macroeconomic relationships and long-term changes [21].

In many cases, particularly when assessing the integration of vari-
able renewables, both long-term changes and technological properties
are of high importance. To capture both, models can be combined in
hybrid approaches [214].

2.2.1.3. Methodology. The methodologies of energy and electricity
models are generally divided into three main categories; simulation,
optimisation or equilibrium models.

Simulation models simulate an energy-system based on specified
equations and characteristics. They are often bottom-up models, with a
detailed technological description of the energy system. Simulation
models allow the testing of various system topologies, as well as im-
pacts and developments of various scenarios. Agent-based simulation
is a specific case of models where actors participating in e.g. the elec-
tricity market are modelled explicitly as agents with distinct strategies
and behaviour.

Optimisation models optimise a given quantity. When modelling
energy and electricity systems this quantity is usually related to the
system operation or investment, while some models have the capability

of optimising several aspects simultaneously. The majority of optimi-
sation models use a linear programming (LP) approach, with an ob-
jective function which is either maximised or minimised (e.g. mini-
mising the total system cost), subject to a set of constraints (e.g.
balancing the supply and demand in the grid). Mixed-integer linear
programming (MILP) forces certain variables to be integral, which can
be useful when for example optimising how many power plants or the
number of wind turbines one should invest in. Optimisation models can
also be non-linear, i.e. the objective function or constraints are non-
linear. Heuristic optimisation models differ from traditional optimi-
sation modelling as they do not necessarily find the optimum solution
[215]. By simple and fast methods, such as the Covariance Matrix
Adaption Evolution Strategy (CMA-ES) [216], the optimal solution can
be approximated.

Equilibrium models take an economic approach, modelling the
energy sector as a part of the whole economy and studies how it relates
to the rest of the economy. Such models are therefore often used to
evaluate the impact of various policies on the economy as a whole.
General equilibrium models, or computable general equilibrium
models (CGE), consider the whole economy. They determine the
equilibrium across all markets, and determine important economic
parameters such as the gross domestic product (GDP) endogenously.
Partial equilibrium models (PE) focus on balancing one market, in
this case the energy or electricity market, with the rest of the economy
not modelled.

2.2.2. Spatiotemporal resolution
The spatiotemporal resolution of a model is particularly important,

as it sets limitations to which processes can be appropriately modelled.
This is especially important in systems with a large share of VRES, as
the variability of the solar and wind resources must be captured. This is
further discussed in Section 4.1.

Time-steps can vary from milliseconds in power system analysis
tools to several decades in long term economic equilibrium models. In
some models time-steps are fixed, while in others the time-step is given
by the input data. Likewise, the geographical scope can vary from
analysing single projects or individual buildings to modelling the en-
ergy system of the whole world.

2.2.3. Technological and economic properties
Measures such as grid development, energy storage and demand

side management have been identified as some of the key contributors
for successfully building an energy system containing large shares of

Fig. 1. Flowchart illustrating the model cate-
gorisation followed in this paper, where this
information can be found, and how it can be
applied in a process to identify a specific model
for a given use. The abbreviations Conv. Gen.
and Ren. Gen. refer to conventional and re-
newable generation technologies, and DR re-
fers to demand response.
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VRES. When modelling the impact of increased shares of VRES in the
European energy system, some properties and features of a model are
therefore crucial. Model components and properties are categorized as
follows:

Conventional Generation – Modelling of conventional generation
technologies such as thermal generation, nuclear and bioenergy can be
done in various ways, for example by modelling each power plant in-
dividually or by aggregating all power plants of a technology within a
region.

Renewable Generation – Whereas conventional generation is dis-
patchable, renewable generation (except geothermal & tidal) depends
on meteorological conditions. These conditions, and thus the genera-
tion, can be modelled by meteorological data (e.g. wind speed data in
combination with a power curve for wind production), by stochastic
methods (e.g. stochastic inflow modelling for hydropower scheduling)
or not modelled at all (e.g. by deriving capacity factors from historical
data). The renewable generation technologies considered are: wind, PV,
solar thermal, concentrated solar power, hydropower with reservoir,
run-of-the-river hydropower, geothermal energy, wave power and tidal
energy.

Energy Storage – Due to the fluctuating output from solar and wind
that does not necessarily comply well with the demand, means of
storing energy is important. Pumped hydropower storage (PHS) is the
only large-scale energy storage technology widely available today, and
amounts about 96% of the storage capacity in Europe [217]. Due to
limited available locations for further PHS expansions and increasing
need for energy storage, other solutions such as hydrogen, thermal
energy storages, batteries, or compressed air energy-storage (CAES)
may be increasingly important in the future.

Grid – Power system analysis tools apply detailed modelling of
power systems, including power flows, short-circuit analyses, harmo-
nics, stability and so on. In models which mainly are concerned with
load flow between regions, three approaches with decreasing com-
plexity are followed. These are AC (alternating current) flow, DC (direct
current) flow or by net transfer capacities (NTC).

Modelling a grid with N nodes using AC power flow results in 2N
non-linear equations that must be solved iteratively for each time step
[218]. Understandably, this is computationally demanding, and there-
fore in many cases a simplified linearised power flow is preferred (often
referred to as DC-modelling). Studies have shown that the error of using
the DC simplification is only in the order of a few percent, except at
very high loadings [219,220]. At high loadings the reactive power
consumption increases by the power of two, thus making the DC sim-
plification less accurate as it does not represent reactive power. How-
ever, Brown et al. [219] limited the loading of their modelled power
lines due to n-1 security and to allow for extra reactive power flows,
thus avoiding this issue in all but a few instances (they allowed some
overloading in order to avoid unnecessary grid expansions).

The NTC approach considers transfer capacities, often interregional
exchange capacities between countries. Studies have shown that the
NTC approach shows small differences compared to the linearised load
flow [9]. Due to its simplicity and overall high accuracy, modelling
with the NTC approach is highly popular and used in many of the
models.

Commodities – Whilst many models have a specific focus on the
power sector alone, some models also include other commodities. This
can be beneficial, as various forms of energy can be able to complement
each other (see Section 4.2). The focus is on commodities which are
believed to be the most important for a 100% renewable energy system,
namely electricity, heat and hydrogen. In addition all commodities
related to fossil fuels have been classified simply as fuels without spe-
cifying which specific fuels are modelled.

Demand sectors – End-use sectors have been split in the building,
industry and transport sectors. This means that commercial and re-
sidential buildings are combined in the building sector, and likewise
agriculture is included in the industrial sector. Many models concerns
only the electricity systems and uses an aggregated demand/load based
on the consumption of electricity in all of the sectors combined.

Demand Elasticity – A measure of how the demand changes due to
price fluctuations. E.g. the demand of electricity might decrease if the
prices become higher.

Demand Side Management – Demand side management (DSM)
concerns measures taken on the consumers’ side of the energy system,
including improvements in energy efficiency, energy conservation and
demand response (DR) [23].

Demand Response (DR) is the procedure of shifting certain loads
from hours when the demand is higher than the supply to hours with
surplus generation. This helps balancing the fluctuating output from
variable renewables, and is a good complement to energy storage. It
also reduces the highest load peaks for which the electrical grid is de-
signed, thus reducing the need of expensive grid-development. As an
example, the charging of electric vehicles can be shifted from the peak
in demand usually experienced in the afternoon to the night when the
consumption is much lower.

In terms of modelling, DR can be treated as a negative storage, by
“storing” the demand rather than excess energy. It can also be modelled
by shifting unmet flexible loads (e.g. charging EVs) to following time-
steps. A third possibility is to model DR as a negative generating unit,
with associated maximum capacities, costs etc.

Costs – Although very difficult to model accurately, costs are crucial
for the modelling results. Investment, operation & maintenance, fuel,
CO2, taxes and balancing costs (start-up, shut-down and ramping costs)
are included in the model categorisation.

Market – Most of the models assessed treat the market by simply
balancing supply and demand under perfect market conditions.
However, some models have no market modelling at all, whilst other
models can treat the spot market (merit-order modelling), the reserve
market or even the balancing market.

Emissions – Some models include modelling of various greenhouse
gases and pollutants such as CO2, NOx, SOx or CH4, often as a side
product of generation from various fuel types. In some models, any
pollutant can be modelled as its own commodity whereas some models
treat greenhouse gas emissions by CO2 equivalents.

3. Results

Table 1 presented the 75 models included in this review, their
availability, developers and software requirements. In this section,
Tables 2, 3 extends this information by presenting the specific cap-
abilities of each of the models.

The general logic and the spatiotemporal resolution of the models
are presented in Table 2. Most of the models are bottom-up optimisa-
tion models with the purpose of giving investment and/or operation
decision support. Such models work on several timescales and model-
ling horizons, and can analyse small scale energy systems as well as
systems on the scale of the whole of Europe. Thirteen power system
analysis tools are included in this review, all of which are bottom-up
simulation models. There are also some hybrid models and one pure
top-down model. These are mainly long-term and large-scale models
focusing on scenario analysis.

Fig. 2 illustrates the relationship between the geographical coverage
and the temporal resolution of the reviewed models. Panel a) presents
models with pure bottom-up and top-down approaches, whereas panel
b) presents hybrid models. Each model has been assigned a model ID
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Table 2
General logic and spatiotemporal resolution. Abbreviations used in the table: Purpose: IDS – Investment Decision Support, ODS – Operation Decision Support, S –
Scenario, PSAT – Power System Analysis Tool, A – Analysis; Approach: BU – Bottom-up, TD – Top-down, H – Hybrid; Methodology: S – Simulation, LP – Linear
Programming, MIP – Mixed Integer Programming, PE – Partial Equilibrium, A- Accounting, ABS – Agent-based Simulation, MIQCP – Mixed Integer Quadratically
Constrained Programming, CGE – Computable General Equilibrium, E – Equilibrium, CMA-ES – Covariance Matrix Adaptation Evolution Strategy, HO – Heuristic
Optimisation, ECE – Economic Computable Equilibrium, SDDP – Stochastic Dual Dynamic Programming; Temporal Resolution/Modelling Horizon/Geographical
Coverage: UD – user-defined, NL – No limitations.

Models # Purpose Appr. Methodology Temporal resolution Modelling horizon Geographical coverage

AURORAxmp 1 I & ODS, S,
PSAT

BU S, LP, MIP, PE UD (Hourly) UD (50+ years) Single project → Global

BALMOREL 2 I & ODS H PE/LP (MIP) Hourly/Aggregate 50 years (UD) Regional → International
Calliope 3 I & ODS BU LP (MIP under

development)
UD UD UD

CASPOC 4 PSAT BU S UD µs to 1 year Single-System/Local
COMPETES 5 I & ODS BU LP (In.), MIP (Op.) Hourly UD National (Europe)
COMPOSE 6 ODS & S BU A (In.), MIP(Op.) UD (Usually hourly) UD Single-Project/System
CYME 7 PSAT BU S UD (Usually ms) UD Single-System → Regional
DER-CAM 8 I & ODS BU MIP Hourly (In.) & Minutes (Op.) Up to 20 years Single-Project → Regional
DESSTinEE 9 S, I & ODS BU S Hourly 2050 National (Europe)
DIETER* 10 I & ODS BU LP Hourly 1 year Calibrated to Germany
DIgSILENT/

PowerFactory
11 PSAT BU S UD UD Power Systems

EMLab-Generation 12 IDS H ABS Yearly 2050 Two Markets/Countries
EMMA 13 I & ODS BU LP Hourly Long-term economic

equilibrium
National (Europe)

EMPIRE 14 IDS H LP (Multi-horizon
stochastic)

5 y (In.), UD time-slices per year (Op.) Typically 40–50 y National (Europe)

EMPS 15 I & ODS BU LPa Weeklyb 25 years Regional → Continental
EnergyPlan 16 S, IDS BU S Hourly 1 year Local → Continental
energyPro 17 I & ODS BU AOc Minutes Max 40 years Local → Regional
Enertile 18 I & ODS BU LP Hourly Usually 2050 EUMENA (National)
ENTIGRIS 19 I & ODS BU LP Hourly (Op.), 5 y (In.) 2050 Regional → International
ETM (1) 20 S BU PE & LP Six time slices: three seasons (winter,

summer and intermediate), & day/
night

2100 Global (17 regions)

ETM (2) 21 S H S 15-min (+ Hourly & Yearly) 2050 Community →
International

ETSAP-TIAM 22 I & ODS, S BU LP, PE Yearly (seasons & day-night hours) 2100 Global (15 regions)
EUCAD 23 ODS BU MIQCP Hourly Yearly National (Europe)
EUPower-Dispatch 24 ODS BU MIP Hourly Yearly National (Europe)
ficus 25 I & ODS BU MIP Typically 15min 1 year Local → National
GCAM 26 S H PE 5 years 2100 Global (Regional)
GEM-E3 27 S TD CGE 5 years 2030 and 2050 Global (38 regions)
GENESYS 28 IDS BU CMA-ES & HO Hourly 2050 EUMENA (National)
GridLAB-D 29 PSAT BU ABS Sub-seconds – Years 3–5 Years Local → National
HOMER 30 I & ODS BU S & O Minutes Multi-Year Local
HYPERSIM 31 PSAT BU S 10 μs UD Single-System → Regional
iHOGA 32 I & ODS BU HO Hourly Yearly Local
IMAKUS 33 I & ODS BU LP Hourly Several decades Germany
INVERT/EE-Lab 34 S BU S Y (In), Monthly (Op) 2030/2050/2080 Buildings
IPSA 2 35 PSAT BU S d e Power Systems
IRiE 36 ODS BU MIP 15-min Yearly 26 areas in Northern

Europe
LEAP 37 S H S & LP Yearly Usually 20–50 years Local → Global
LIBEMOD 38 S H ECE Yearly (El split in summer and winter

season; one day split into day and
night)

1 → 20 years National (Europe)

LIMES-EU 39 S, I & ODS H LP 5/10 y (6 rep. days per year, 8 time
slices per day)

2050 National (Europe)

LOADMATCH* 40 S BU S 30 s 6 years (2050–2055) CONUS (4° × 5° WWS
data)

LUSYM 41 ODS BU MIP 15min/Hourly & Daily (UC)/Weekly
(Scheduling)

Daily/Weekly (UC) &
Yearly (Scheduling)

National

MARKAL 42 S BU LP/MIP, PE Multiple years (UD time-slices within
a year)

Long-term (UD) Local → Regional

MESSAGE 43 S, IDS H LP UD (Multiple years) Long-term (50–100+
years)

Global (11 Regions)

NEMO 44 I & ODS BU CMA-ES & S Hourly Typically 1 year National
NEMS 45 S H S, O, PE Yearly 2050 Regional/National (U.S.)
Oemof (SOLPH) 46 S, I & ODS All LP, MILP, PE Seconds to years UD UD
OpenDSS 47 PSAT BU S UD (1 s to 1 h) UD Distribution feeders/areas
OSeMOSYS 48 IDS BU LP UD (intra-annual) UD (10–100 y) Community → Continental
PLEXOS 49 I & ODS, S,

PSAT
BU f UD up to 1min (Usually hourly) UD (1 day to 50+ years) Single project→ Global

POLES 50 S, I & ODS H PE/S Yearly (Sectoral load shape for two
typical days with two-hour resolution)

2050 (2100) Global (66 regions)

PowerGAMA 51 S (IDS) BU S, LP Usually hourly Usually 1 year Regional/National

(continued on next page)
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and is represented by a rectangle spanning the range of typical re-
solutions the model can possess. The transparency of the rectangles is
only added to improve visual representation, and the position of the
boxes have been modified to ensure readability. The figure should
therefore be regarded as an illustration of the modelling landscape ra-
ther than an exact representation.

The illustration shows that the geographical scope, the temporal
resolution and the approach are all related. Hybrid and top-down
models populate the upper right side of Fig. 2, whereas bottom-up
models are spread over the whole range. Top-down and hybrid models
generally have large geographical scales and long time-steps, with the
long-term development of the energy system in focus. The operation
and technical details are usually omitted and replaced by macro-
economics, thus making such models top-down or hybrid.

The technological and economic features of the models are pre-
sented in Table 3. This includes features such as conventional and re-
newable generation, storage, grid, demand response, market modelling,

emissions etc. The categories have been thoroughly explained in
Section 2.2.3.

None of the models can tackle all challenges of today's energy
system, but all challenges are covered by at least one of the models.
There is generally a good coverage of the various technological and
economic features, and modellers should be able to identify a model
that can analyse most challenges related to VRES integration.

As previously mentioned, grid expansion, energy storage and de-
mand side management are measures poised to be critical for the in-
tegration of VRES. Some earlier studies have assessed all these features,
but most studies address the individual impact of one of the measures.
From this review, one can identify several tools that may be used to
study the effect of combining multiple measures.

Simple supply/demand modelling or spot (merit-order) of the en-
ergy/electricity market is the most common amongst the tools.
However, a few of the models also have the capability to model the day-
ahead market, reserve or balancing market.

Table 2 (continued)

Models # Purpose Appr. Methodology Temporal resolution Modelling horizon Geographical coverage

PRIMES* 52 S, IDS H PE Yearly Long-term National (Europe)
ProdRisk 53 ODS BU LP (SDDP) Usually 5–25 weekly periods Usually 3–10 years Local → National
PyPSA 54 I & ODS,

PSAT
BU LP Hourly 1 year Local → Continental

RAPSim 55 PSAT BU S Minutes Multiple days Local
ReEDS 56 S (& IDS) BU LP & PE g 2050 h

ReMIND 57 S H NLP i 2150 Global (11 regions)
REMix 58 I & ODS H LP Hourly Typically 1 year Regional (Germany) →

National (Europe)
renpass 59 ODS, S BU S (In) & O (Op) Typically Hourly 1 year Regional/National

(Western Europe)
RETScreen 60 IDS, S H S Monthly/Yearly/Daily Max 100 years Single-system → Global
SAM 61 IDS BU S Sub-Hourly 1 year (/Lifetime for e.g.

batteries + PV)
Single system

SIMPOW 62 PSAT BU S Milliseconds Seconds Single-system → Local
SIREN 63 S BU S Hourly 1 year Regional/National
SNOW 64 S H CGE Yearly UD (1–100 years) j

stELMOD 65 ODS BU MIP Hourly 1 year National (Europe)
SWITCH 66 I & ODS BU MIP Hourly Dispatch/Decadal Investment

Period
UD (2050) Regional/Nationalk

Temoa 67 S BU LP Yearly (With UD time-slices) UD Regional (UD)
TIMES 68 I & ODS H/BU LP/MIP, PE Multiple years - with UD time-slices

within a year
Long-term (UD) Local - Global

TIMES-Norway 69 S, IDS (&
ODS)

BU LP Multiple years – 260 time-slices per
year

2050 Norway (Sweden optional)

TIMES-Oslo 70 S, IDS (&
ODS)

BU LP Multiple years – 260 time-slices per
year

2050 Oslo (Norway optional)

TRNSYS18 71 PSAT BU S & L/NLP 0.01 s to 1 h Multiple years Single Project → Local
urbs 72 I & ODS BU LP UD (Hourly) UD (Yearly) Local → National
WEM* 73 S H S Yearlyl 2040 Global (25 Regions)
WeSIM 74 I & ODS H LP Hour or half-hourly 1 h – multi years National → Continental
WITCH 75 S, IDS H NLP, E 5 years 150 years Global (13 regions (UD))

a The model includes stochastic optimisation (Stochastic Dynamic Programming (SDP)), linear programming and simulation. In the strategy evaluation, SDP is
used to calculate incremental water values and heuristics is used to treat the interaction between areas. In the simulation part of the model, total system costs are
minimised in a linear problem formulation.

b In the strategy evaluation the resolution is weekly. In the simulation it can be weekly with a load-duration curve within the week or with hourly resolution.
c Analytical optimisation [69].
d 30min (Load flow analysis), Usually Milliseconds (Fault Level & Transient Stability).
e About 1-year (Load flow), Fault levels (hundreds of milliseconds), Transient (seconds).
f Optimisation (Mixed-Integer, Linear and Non-Linear)/Partial Equilibrium (e.g. solving Nash-Cournot with integer problems uses Mixed Integer Quadratic

Programming (MIQP)).
g Sequential 2-year periods, 17 seasonal/diurnal blocks of non-chronological aggregate hours.
h U.S. (+ Canada & Mexico) – (134 Supply/demand balancing areas (+ 20 CA/+ 49 ME) & 356 renewable resource regions (+ 47 CA/+ 49 ME).
i 5 years until 2060, 10 until 2110, 20 until 2150.
j Global version: Flexible, typically 2–10 regions, National version: Norway and rest of the world.
k Models typically have 1–50 load zones; models have been created for California, Western U.S., Hawaii, Chile, Nicaragua, China and other regions.
l A new feature in WEM 2016 is the inclusion of a more detailed power market module with hourly resolution.
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4. Discussion and conclusions

This review has shown that there are numerous energy modelling
tools currently available, capable of serving most needs from modelling
of small-scale power systems to the global energy system. Grid expan-
sion, energy storage and demand side management were earlier men-
tioned as key technologies and measures for a successful integration of
VRES in the grid. Among the reviewed models, these measures are well
represented. There are, however, some challenges faced by current
modelling tools as well as future modelling needs.

4.1. Representation of variability

Many studies have looked into the effect and possibility of in-
tegrating wind and solar into the existing, fossil fuel dominated energy
system. They all represent the geophysical data in distinct ways:
Timescales ranging from seconds to several years, spatial resolutions
ranging from a few kilometres to several latitudes, as well as the use of
statistical representations [221–225]. The coarsest representation of
variability is found in computable general equilibrium or partial

equilibrium models, often with yearly aggregated data.
In long-term energy models, which are usually used to define the

composition of and pathways to a future energy system, the temporal
variability is often underrepresented [226]. A too coarse time-step can
give poor estimation of the operation of the system, leading to un-
favourable investments, overestimation of the share of VRES and an
underestimation of the costs.

Welsch et al. used OSeMOSYS and a combined TIMES-PLEXOS
model to study the Irish electricity system [142]. The medium to long-
term energy model OSeMOSYS was first set up using 12 time periods
each year, and was compared to a soft-linked combination of TIMES-
PLEXOS using 8784 time periods over one year. Analysis of 2020
showed that the OSeMOSYS model allocated 21.4% of the dispatch to
wrong generation capacities, by for example overestimating the use of
wind energy. However, Welsch et al. further shows that by adding
operational constraints in an enhanced OSeMOSYS model, without in-
creasing the temporal resolution, the results from the TIMES-PLEXOS
model were reproducible. They also extended the analysis to 2050,
showing that the simple OSeMOSYS model, whose results are re-
presentative of conventional long-term energy models, invested in

Fig. 2. Illustration of geographical coverage vs temporal resolution in the assessed models. The modelling approach is indicated by the colour of the rectangles, with
transparency added for visual representation only. Panel A shows pure bottom-up and top-down models, and panel B shows hybrid models. For full interpretation of
the figure, the reader is referred to the web version of this article. The rectangle marked with an asterisk (*), corresponds to models number 5, 9, 18, 23, 63 and 65.
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14.1% less capacity and led to 14.5% lower investments than the en-
hanced model. They did not, however, extend the use of TIMES-PLEXOS
to 2050, as computational costs become too high over such a long time-
horizon with a high resolution and operational detail.

Similarly, Poncelet et al. used TIMES to evaluate the impact of
utilising long-term energy models with a low temporal resolution
[227]. Their version of the TIMES model was calibrated to Belgium and
used 12 representative time-slices per year. It was compared to a unit-
commitment (UC) model (mixed-integer linear formulation based on
Van den Bergh et al. [228], later named LUSYM [124]) with an hourly
resolution. They showed that the TIMES model invested in less VRES
capacity than the UC model towards 2050, but their electricity gen-
eration shares were equal; showing once again that a low temporal
resolution leads to an overestimation of VRES penetration and thus and
underestimation of the necessary investment.

LEAP, MARKAL/TIMES and EnergyPLAN were used by Haydt et al.
[229] to study the island of Flores (Azores) in the Atlantic Ocean
through three different balancing methods (integral with load-curve of
9 time slices, semi-dynamic with 288 time periods and a dynamic ap-
proach with hourly modelling). Haydt et al. found that the models
which did not consider the variability well enough overestimated the
generation of VRES, therefore underestimating the necessary installed
capacity as well as CO2 emissions.

Tackling both the operational and planning issues of energy systems
can, as has been shown above, be done by either linking models with
different features or by adding capabilities within a model itself. As an
example of the latter, Seljom et al. [230] developed a stochastic TIMES
model, that dealt with the short-term uncertainty experienced in elec-
tricity generation and heat demand in buildings. Similarly, the EMPIRE
model is a stochastic optimisation model, which simultaneously deals
with the long-term evolution of the European electricity system as well
as its operation [59]. Després [81] combined two models, EUCAD and
POLES, respectively a power system optimisation model and a long-
term energy model. EUCAD optimises the operation of the European
power system every 24 h, taking into account the power system bal-
ance, international exchanges and system constraints such as operating
points, on- and off-time, ramping and frequency reserves. This detailed
representation of the power system was then combined with POLES,
which covers the long-term evolution of demand, costs, and technolo-
gical evolution and makes investment decisions for generation, storage
and grid capacities. In addition, Jaehnert et al. has coupled the day-
ahead market model EMPS with IRIE, a model that concerns reserve
procurement and system balancing [231].

It is evident that considerations regarding VRES variability and
operation are key aspects in present modelling, and represent chal-
lenges that become more and more important the larger the share of
VRES in the energy mix becomes.

4.2. Consumer participation, electrification and sector coupling

Through distributed generation and demand side management,
consumers are to an increasing extent becoming involved in the elec-
tricity system. More and more consumers are becoming prosumers,
delivering power to the grid through distributed generation units as
well as drawing power from the grid when local production is not
sufficient. This affects both the distribution grids and the whole energy
system on a larger scale. Consumers will also have to participate in
demand response, which involves an intelligent management of their
flexible loads. It will thus be important to capture consumer responses
to changes in electricity and policies in energy modelling tools. Rai and
Henry [232] modelled consumer energy choices using an agent-based
simulation model. They show that such models can increase our un-
derstanding of consumer choices, knowledge that will be increasingly
important as consumers become more involved in the energy system.

Decarbonisation of the electricity sector is a challenge that can, in
theory, relatively easily be solved by replacing conventional fossil

fuelled power generators with already mature and increasingly cost-
competitive renewable technologies. The transport, heating and in-
dustrial sectors, however, are not that straight forward. One possible
solution is to use different types of fuels, such as hydrogen or biofuels.
Another possible solution is electrification, through for example
switching to electric vehicles, electric water heaters, heat pumps,
electric induction stoves, electrifying industrial equipment and so on.
Switching from fossil fuelled vehicles to electric vehicles will not only
enable decarbonisation of transport, but also lead to a lower primary
energy demand as electric vehicles are much more efficient than their
fossil fuelled counterparts [233]. This is also the case for other appli-
ances, such as electric heat pumps for space and water heating with
efficiencies of 200–300% [234]. The extent of future electrification is
uncertain, but it can be hypothesized to lead to a significant increase in
the electricity demand.

A more interconnected energy system, where the power, heat, in-
dustrial and transport sectors are closely linked, can help accommodate
generation from variable renewables as well as abate emissions.
Connolly et al. [235] recommends avoiding the traditional one-sided
focus on how the power-sector alone can integrate VRES, and rather
look into the synergies that can be achieved by merging the power,
heating and transport sectors through a “Smart Energy Systems ap-
proach”. They argue that measures such as battery electric vehicles,
thermal storage, heat pumps and various types of fuel storage could
provide increased flexibility for VRES, and thus enable higher pene-
tration rates and even 100% renewable energy systems. A first step
towards a 100% renewable-based Irish energy system was investigated
by the use of EnergyPLAN [236], a modelling tool that can take into
account the coupling between the electricity, heat and transport sectors
[64]. Similarly, in a study combining the LOADMATCH grid integration
model and the GATOR-GCMOM global climate/weather model, Ja-
cobson et al. [225] assessed the energy system of the contiguous United
States in 2050–2055 consisting of 100% renewable energy for all sec-
tors (electricity, transportation, heating/cooling, and industry). They
showed that the system is delivered at a low cost and is reliable with no
load loss for the six simulated years. One of the main factors for the
success of this system was the interplay between the various sectors,
with hydrogen and heat as major contributors. Due to the importance of
sector coupling in integrating large amounts of VRES, it is suggested
that this is given more attention in future modelling studies.

4.3. Impacts and links beyond the energy system

Agenda 2030 [237], including its 17 Sustainable Development
Goals and 169 targets, constitutes a global framework for sustainable
development. In order to find a sustainable path forward, there is a
need to address the interaction between different goals and solutions
for energy supply, food production, protection of climate, the en-
vironment and ecosystem functions and many other aspects relevant to
the livelihoods of people. This requires knowledge about the potential
impacts and the links between them. Possible impacts of different en-
ergy systems are numerous and diverse including climate impacts due
to CO2 emissions, impacts on human health and the environment due to
emissions of pollutants, impacts on changing land use e.g. for produc-
tion of biofuels, local environmental impacts of hydropower dams, and
impacts on availability of water and scarce resources [238,239].

Several studies have assessed external impacts of present and future
energy systems through linking electricity or energy systems models
with other types of models. Berrill et al. [240], Rauner and Budzinski
[241], and Garcia-Gusano et al. [242] all couple some form of life cycle
analysis modelling tool to their energy system models. E.g. Berrill et al.
[240] coupled the energy model REMix with the integrated life cycle
analysis modelling framework THEMIS to study different electricity
scenarios for Europe towards 2050 and their impacts on climate
change, freshwater ecotoxicity, particulate matter formation, mineral
resource depletion and land occupation. They find that impacts of wind
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and solar energy do not significantly compromise the climate benefits of
utilising these energy resources, but that VRES-based systems require
more infrastructure leading to much larger mineral resource depletion
impacts than fossil fuel systems, and greater land occupation impacts
than systems based on natural gas.

Buonocore et al. [243] developed a linked electric dispatch and
public health impact assessment model (EPSTEIN), in order to assess
the public health benefits of displacing emissions from fossil-fuelled
power plants through energy efficiency and renewable energy. Fur-
thermore, Abel et al. [244] investigated future health impacts of power
sector-related air pollution in the eastern United States, resulting from
increased air conditioning usage in a warming climate. By using a
comprehensive modelling system consisting of five linked models to
assess the meteorology (WRF), building electricity demand (RBESS),
power sector (MyPower), air quality (CMAQ), and health impacts (Ben-
MAP), they estimated that increased air conditioning potentially can
cause up to a thousand PM2.5- and O3-related deaths. Also looking at the
United States, Wiser et al. [245] used ReEDS to estimate the benefits of
increased penetration of solar energy in the United States on green-
house gas emissions, air pollutants and water usage.

While it may not be desirable or even possible to attempt to quantify
all impacts of an energy system in modelling exercises, in view of
Agenda 2030 [237] it seems reasonable to expect that energy system
modellers in the future need to be aware of and in some cases include
external impacts in their modelling tools.

4.4. Validation and transparency

One of the strengths of power system analysis tools is that, unlike
long-term energy models, their results are in fact directly testable and
verifiable. E.g. IPSA 2 has been developed for over 30 years and has
gone through extensive testing and validation against real life results to
ensure accurate modelling results [246]. Lammert et al. [53] im-
plemented a generic PV system model in DIgSILENT PowerFactory,
achieving perfectly matching results in comparison with a Renewable
Energy Model Validation tool that had been validated against real
measurements. On a larger scale, the model HYPERSIM was tested and
validated on the large AC/DC transmission network of Hydro-Québec
[101], SIMPOW performed validation through the Gotland HVDC
project [180] and PowerGAMA validated its power flow results of most
of the European transmission network by comparison to actual data
from ENTSO-E [151].

On the other hand, neither long-term energy tools nor general
computable equilibrium models can be properly validated [13,247].
Their long time horizons make it practically impossible to compare
their outcomes with real-world observations, and changes happening
through time and external events not taken into account in the model
can alter the structure of the system [248]. For example, it can not be
excluded that political events or unforeseen major technological
breakthroughs greatly change how the future energy system will look
like. Nonetheless, such models give valuable insight on a multitude of
aspects; such as the composition of the future energy systems and
possible pathways of how to get there, the effect of various policies,
changes in market dynamics etc.

Modelling tools may be highly sensitive and dependent on their
assumptions and data used. In many current models, source-code, as-
sumptions and data are not accessible, making it impossible for in-
dependent actors to reproduce the work. Transparency and openness in
energy modelling should be encouraged, especially since many mod-
elling tools play important roles in policy-making processes. NEMS and
PRIMES have for example been used for policy making respectively in
the U.S. and for the European Commission [134,249]. As underlined by
Pfenninger et al. [250], increased openness leads to improved quality of
research, more effective links between science and policy, increased
productivity and also increased relevance to important societal debates.

4.5. Future modelling needs

Forecasting of VRES, in particular of wind, is a challenging task. The
motion in the atmosphere is chaotic and hard to predict accurately.
Only a small change in the initial conditions in a weather model can
change its predicted outcome completely. The electricity market is
highly dependent on accurate forecasts of wind and solar energy pro-
duction, both in day-ahead markets, for balancing and reserves plan-
ning as well as for longer-term forecasts (i.e. months and seasons).
Pineda et al. [251] showed for example that not taking into account
forecast errors in expansion planning models can lead to highly sub-
optimal planning in terms of cost efficiency or penetration of renew-
ables.

The present review has shown that only a few current modelling
tools take into account the uncertainty of VRES generation. Most tools
are deterministic and VRES generation is based on historical meteor-
ological data. Some examples of models taking into account uncertainty
are; EMPS, which considers uncertainty in hydro inflow and market
conditions [156]; E2M2, which considers uncertainty in VRES power
production by using a multi-stage stochastic program including a re-
combining tree formulation [252]; and in [230] stochasticity and un-
certainty were included for PV production, wind production, hydro
production, heat demand in buildings and electricity prices.

Climate change can be responsible for altering energy demand or
the resource potential of renewable energies in the long-term
[253,254]. Barstad et al. [255] looked at the present and future offshore
wind power potential in northern Europe based on downscaled (high
resolution) global climate runs. They found that a power reduction of
2–6% is expected in most areas. Similarly, Jerez et al. [256] in-
vestigated future solar power outputs in Europe using the EURO-
CORDEX ensemble of high resolution climate projections together with
a PV production model. They showed that future European PV pro-
duction would lie in the range of − 14 to + 2% compared to today.
However, the largest decrease is seen in Northern Europe where much
PV development is not expected, and in Southern Europe the results
even show a slight positive trend. Similarly, increased temperatures
from global warming can lead to changes in the electricity demand
[257,258]. This raises the question whether effects of climate change on
regional resource potential should be taken into account in long-term
energy modelling tools.

With increased development of offshore wind farms in particular,
interaction between the farms themselves is an increasing concern.
Similarly to the wake effect within a farm, the farm itself can lie in the
“shadow” of another farm and thus generate less electricity. Studies
performed at the FINO-1 research platform showed that the effect from
the closely placed Alpha Ventus wind farm was responsible for a tur-
bulence intensity increase and a wind speed reduction of up to 50%
[259]. With increased offshore development this effect should be ac-
counted for when modelling.

4.6. Conclusion

This paper reviews 75 state of the art energy and electricity mod-
elling tools, ranging from small-scale power system analysis tools to
global long-term energy models. The reviewed models offer a broad
range of capabilities, aiding modellers in identifying suitable models for
their own purposes. The models are categorized by their general logic,
spatiotemporal resolution and technological and economic parameters,
with validated information as of the date of submission for 95% of the
models.

Although this paper shows the massive capabilities of the current
landscape of modelling tools, there are still some challenges related to
representation of spatiotemporal variability and openness as well as the
demand side that should be addressed in future model development and
application.
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H I G H L I G H T S

• We present a new stochastic long-term energy model for a remote Arctic settlement.

• We show the importance of a proper representation of solar and wind variability.

• An energy system based on renewables is found feasible, reliable and affordable.

• Energy efficiency plays an important role in a transition to a low carbon settlement.

• Allowing some CO2 emissions reduces costs and improves energy security.
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A B S T R A C T

As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy
systems, energy modelling tools can provide useful insights. If large parts of the energy system turns out to be
based on variable renewables, an accurate representation of their short-term variability in such models is crucial.
In this paper, we have developed a stochastic long-term energy model and applied it to an isolated Arctic
settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is
critical in particular for studies of remote Arctic energy systems. Furthermore, the results from a case study of the
Norwegian settlement of Longyearbyen, suggest that transitioning to a system based on renewable energy
sources is feasible. We recommend that a solution based mainly on renewable power generation, but also in-
cluding energy storage, import of hydrogen and adequate back-up capacity is taken into consideration when
planning the future of remote Arctic settlements.

1. Introduction

Remote Arctic energy systems are usually characterised by a de-
pendence on imported fossil fuels [1,2]. Concerns about volatile fuel
costs, energy security, and climate change give rise to many remote
Arctic communities looking towards renewable energy sources as
potential solutions. Rapid cost-reductions and technological develop-
ment have led to renewables becoming an increasingly attractive op-
tion. Particularly solar and wind are emerging as mature and cost-
competitive technologies, even for energy systems in remote Arctic
locations.

The transition to future energy systems is often aided by the use of
energy modelling tools. Several tools exist, with various capabilities,
features and applications ranging from analysis of detailed power
systems to the global energy system (see reviews by Connolly et al.
[3], Ringkjøb et al. [4], Hall & Buckley [5] and Foley et al. [6]). Many

previous modelling studies have looked at remote isolated
communities, but there are only a few focusing on Arctic locations
[7,8]. For example, the HOMER (Hybrid Optimization of Multiple
Energy Resources) modelling tool [9] was applied to study the elec-
tricity system serving the small settlement at the island of Grimsey
located north of Iceland (66.5°N) [1]. They analysed three scenarios
for delivering electricity, respectively a diesel-wind, diesel-wind-hy-
drogen and a wind-hydrogen scenario. Their results showed that a
system consisting of wind, hydrogen and diesel was recommended,
achieving a renewable energy fraction of 92% and a payback period of
less than four years. Furthermore, the TIMES (The Integrated
MARKAL-EFOM System) modelling framework [10] was used to study
the energy system at the Faroe Islands (62°N) [11], highlighting the
importance of electrification of heating and concluding that renew-
able energy technologies will be competitive with fossil fuels in a very
short time, even in the Arctic. Streymoy, the largest island on the
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Faroe Islands, was also one of six islands investigated in a study using
a MATLAB/Simulink model to determine cost-optimal system config-
urations [12].

A larger literature has addressed remote and isolated locations at
lower latitudes, such as the island of Pulau Ubin north-east of Singapore
[13], the island of Dia in the Cretan Sea [14] and other locations in the
Mediterranean [15] Even though the climatic conditions in such loca-
tions are vastly different from the Arctic, several similarities make these
studies relevant also in an Arctic context. Many of these locations are
also dependent on imported fossil fuels, have a need of improving en-
ergy security and a large distance to highly populated areas. They are
therefore evaluating renewables as alternatives [8].

Wind and pumped hydro storage (PHS) was for example evaluated
for increasing the share of renewables and aid in desalination of water
on the S.Vicente Island in Cape Verde in a study using the modelling
tool H2RES [16]. Furthermore, a 100% renewable electricity supply for
Reunion Island was modelled in TIMES [17], with large amounts of
solar, biomass, and important contributions from storage and demand
response. TRNSYS [18] was used in combination with HYDROGEMS
[19] in a modelling study of the former wind/hydrogen demonstration
project at Utsira in Norway [20]. The goal of this demonstration project
was to demonstrate how hybrid renewable energy and hydrogen sys-
tems could provide electricity to communities in remote areas. The
authors concluded that the project successfully demonstrated the po-
tential of wind/hydrogen systems to supply remote locations, but that
technical improvements and cost reductions were needed to be com-
petitive with existing solutions.

In this study, we use the TIMES modelling framework to develop
and apply a new stochastic model for isolated Arctic settlements. The
model takes into account the variability of short-term solar and wind
generation as well as the uncertainty in electricity and heat loads. A
common approach, also when modelling larger energy systems, is to
treat solar and wind generation as deterministic inputs. This has pre-
viously been shown to potentially overestimate the contribution from
variable renewable energy sources and lead to suboptimal investments
[21–23]. Long term persistence is characteristic for geophysical time
series including solar and wind resources [24]. In a harsh Arctic cli-
mate, where security of energy supply is crucial for the inhabitants,
taking into account the possibility of periods with low solar and wind
resources is highly important.

Stochastic modelling of short-term variability in TIMES is a rela-
tively new technique, first applied in a study of the Danish energy
sector [22], but which to the authors’ knowledge has never been ap-
plied to local isolated energy systems. Our hypothesis is that a sto-
chastic approach is even more important in a small isolated energy
system than in a large national or international system. As has been
pointed out by Connolly et al. [3], TIMES models have mainly been
applied to study energy systems on larger scales up to the global energy
system, and are not commonly used to assess remote and isolated
communities. However, we believe that the stochastic approach enables
the use of TIMES-based long-term energy models to study small isolated
energy systems, thus widening the range of possible applications of the
TIMES modelling tool.

The importance of a stochastic approach is investigated through a
case study focusing on the Norwegian high-Arctic settlement of
Longyearbyen (78.2°N). Presently, the settlement covers its needs
for electricity and heat from Norway’s only coal-fired power plant
supplied by locally mined coal. With a declining coal industry, an old
energy infrastructure, and the use of greenhouse-gas-emitting coal as
the main source of energy, there is a need of planning for securing the
future energy supply. This makes this study highly relevant to

decision-making, and well suited for investigating the importance of a
stochastic modelling approach for remote communities in
general.

The objective of the present study is to develop a dynamic model to
analyse and optimise an affordable and reliable future supply of
electricity and heat primarily based on renewable energy sources
and test it on a realistic case where necessary data are available. The
model selects which energy system components to invest in over time
based on bottom-up cost estimates for available components,
minimizing total discounted investment and operational costs over the
time period. The study demonstrates the importance of a realistic re-
presentation of solar and wind variability in long-term energy
models, through the application of a stochastic modelling
approach.

2. The Longyearbyen case-study

Longyearbyen was founded in 1905 for coal mining purposes, and is
located on the Svalbard archipelago barely a thousand kilometres from
the North Pole (see Fig. 1). Now, the more than century long coal
mining era is coming to an end. Years of low coal prices have led to
economic difficulties for the state-owned mining company “Store
Norske Spitsbergen Kulkompani». In autumn 2017, the Norwegian
government decided a permanent closure of the mines Svea and
Lunckefjell [25]. This leaves the smaller mine number 7 as the only
Norwegian coalmine to be kept in operation on Svalbard, and its main
purpose is to supply the power plant in Longyearbyen. The coal reserves
in mine 7 are expected to be able to supply the power plant for 10 more
years, after which coal has to be imported if a new energy system is not
in place.

Since Longyearbyen houses the only coal-fired power plant in
Norway, there is particular political focus on reducing emissions
from Longyearbyen. The power plant is the main component of the
current energy system in the settlement, providing about 40 GWh
electricity and 70 GWh heat to the about 2100 year-round residents
and 150 000 person-days of visitors, mostly in summer [26,27]. Most
of the electricity is consumed in the industrial sector, whereas
households and the service sector consume the majority of heat [28].
The power plant was built in 1982 and faces challenges regarding
ageing equipment, though recent and comprehensive upgrades have
extended the potential lifetime of the plant for about another 20 years
[27].

In addition to the coal-fired power plant, there are five diesel gen-
erators to cover peak electricity demand and to serve as reserve gen-
eration capacity. There is also a reserve heat-exchanger that can be fed
directly with steam from the two coal-fired boilers in case of failure on
the back-pressure turbine. Six oil-fired boilers are also placed around in
the district heat network for reserve and to cover peak heat demand.
There is also a small amount of solar PV installed in the settlement,
about 57 kW on the airport and about 28 kW on residential buildings in
Longyearbyen [29]. In total, the energy supply in Longyearbyen emits
about 60 000 tons CO2 annually [11].

Against this background, there is a need of planning the future en-
ergy supply of Longyearbyen. The Norwegian Ministry of Petroleum
and Energy has already started investigating different options, and will
decide the future of Longyearbyen’s energy system in the near future
[30]. The Norwegian Government stresses that the future energy supply
in Longyearbyen should be sustainable and cost-effective, as well as
provide adequate security of supply.
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3. Modelling methodology

3.1. TIMES-Longyearbyen

TIMES (The Integrated MARKAL-EFOM System) is a modelling
framework widely used to develop models of local, national, interna-
tional or global energy systems [10]. It follows a bottom-up approach,
and performs long-term analyses of the entire or parts of the energy
system. The TIMES modelling framework uses linear programming to
minimise the total system cost, through optimal decision making on
infrastructure investments, systems operation and imports of energy
carriers. An extensive documentation detailing the TIMES modelling
framework can be found in [10].

Based on the TIMES modelling framework, we have developed and
applied the stochastic long-term energy model TIMES-Longyearbyen in
this study. TIMES-Longyearbyen consists of the single isolated region of
Longyearbyen. The base-year is 2015, and the base case global discount
rate has been set to 4% in compliance with recommendations from the
Norwegian Ministry of Finance in long-term socioeconomic studies

[31]. We also assess the sensitivity of the model results on the discount
rate in Section 4.6. The currency chosen is Norwegian kroner (NOK),
and all costs, prices etc. are given in 2015-NOK.

The model horizon is from 2015 to 2050, and investments are made
every 5th year (Fig. 2). In order to represent the operation of the
system, e.g. through demand profiles and variable renewables, we use a
high temporal resolution within each period (Fig. 2). Each year is re-
presented by 192 time-slices, distributed over 24 h over two days (one
weekday and one weekend day) per season; spring (March, April and
May), summer (June, July and August), autumn (September, October,
and November) and winter (December, January and February).

Load profiles for electricity and heat have been derived from two
real datasets of heat and energy generation from the power plant in
Longyearbyen (Longyear Energiverk), given on an hourly basis for 2017
and 2018 [32]. The datasets were used to calculate representative daily
load profiles, and as input for the stochastic modelling.

For each of these representative time-slices, the demand of heat and
electricity must be covered by the set of technologies in the model. For
the present study, in addition to the current system in Longyearbyen,

Fig. 2. Time-slice division in TIMES-Longyearbyen.

Fig. 1. Map of Svalbard and its surroundings.
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we have included a broad set of technologies available for future in-
vestments (solar photovoltaics, solar thermal, onshore- and offshore
wind, hydrogen electrolysers, hydrogen storage, hydrogen fuel-cells,
lithium-ion batteries, geothermal and seawater-based heat pumps,
electric boilers, underground thermal energy storage, diesel generators,
gas turbines, gas cogeneration plants and energy efficiency measures).
Costs of these technologies are as far as possible based on recent data
from the Norwegian Water Resources and Energy Directorate with the
aim to use costs that are both relevant in a Norwegian context and state
of the art in a quickly changing energy sector [33,34]. The present and
future costs of these technologies, as well as their technological para-
meters (efficiency, technical lifetime etc.), are summarised and refer-
enced in Table S1 in the supplementary materials.

Several technologies were omitted from the study due to qualitative
considerations, e.g. hydropower and biomass due to lack of potential.
Another example is electricity generation through an Organic Rankine
Cycle (ORC) using a low temperature geothermal heat source.
Preliminary test drillings have shown promising conditions for geo-
thermal energy in and around the settlement, with ground temperatures
significantly higher than experienced in mainland Norway [35]. With
its independence of weather conditions, year-round availability and its
ability of serving as a base-load generator, geothermal electricity may
become a useful component of the energy system in Longyearbyen.
However, due to the high uncertainty, both in terms of the actual re-
source potential and in terms of costs, geothermal electricity was not
assessed in this study.

Solar PV panels with single-axis tracking has a slightly higher per-
formance than fixed panels, but are omitted from the study due to
higher costs and the reduced durability associated with moving parts in
harsh arctic conditions with both snow and ice.

Another potential technology not modelled in this study, is carbon
capture and storage (CCS). Studies concerning the potential of CCS for
Longyearbyen have been undertaken at the University Centre in
Svalbard (UNIS) [36]. CCS could be an option to extend the operation
of the coal-fired power plant or used with new gas based generators. We
have not included CCS due to uncertainties about storage integrity,
costs and maturity of related technologies.

3.2. Projection of end-use energy demand

Projections of future end-use energy demand are supplied exogen-
ously to TIMES-Longyearbyen, and are important drivers for modelling
results. Since Longyearbyen is highly influenced by policy, this is a
challenging task.

Fig. 3 shows the historic evolution of heat- and electricity demand
in Longyearbyen from 2000 until 2015. A sharp population increase
from about 1500 to about 2100 residents between 2000 and 2010 was a
strong driver for increased heating needs in the settlement [37]. In the
period between 2010 and 2015, the population was quite stable and
lead to the heat demand stabilizing around 70 GWh (see Fig. 3). On the
other hand, the generation of electricity has been relatively constant

through the whole period, which can be explained by a gradual shift
from electricity demanding mining activities to less demanding activ-
ities such as tourism, culture and education. In our calculations of fu-
ture end use energy demand, we have assumed that the population is
kept stable at the current level.

The energy demand is split into three main sectors; households,
services and industry, where all three sectors require electricity and
heat as an energy service. We follow the methodology presented in
[38], where the development in end-use energy demand is calculated as
the product of an activity (e.g. m2) and an energy indicator (e.g. kWh/
m2y).

There is a large potential for increased energy efficiency in
Longyearbyen, particularly for heating. Firstly, the historic and present
cost-structure where the residents only pay for heating per square
meters and not for actual energy use, gives no incentives to reduce
energy consumption. Secondly, more than 50% of the building stock in
Longyearbyen was built before 1970 and is not very energy efficient
[28]. New buildings must adhere to current building regulations
(Norwegian standard TEK17), and we thus assume that new and re-
novated buildings will cut their specific heat usage from about 500
kWh/m2y to 150 kWh/m2y [39]. Due to the assumption of a constant
population towards 2050, the total building area stays the same but is
replaced by new and renovated buildings at a rate of 2.3% per year
[40]. In addition, we assume that energy efficiency in the service sector
increases by 1% per year due to the new building regulations [38]. The
development of electricity use in the household and service sector is
based on development in electricity use per capita in mainland Norway
[40]. In the industry sector, the mining activities and the coal-fired
power plant itself constitutes 30% of the electricity use in the settle-
ment. Since we assume that in 2030 both the coal-fired power plant is
decommissioned and the mining activities are stopped, this leads to a
reduction in electricity consumption of 12 GWh, visible as a significant
drop in Fig. 3. With these assumptions, the demand for electricity and
heat is projected to decrease by 13 GWh and 34 GWh respectively by
2050 (34% and 50%).

Additional energy efficiency improvement may be achieved as a
result of the model optimisation. It allows investments in energy effi-
cient equipment including heat pumps, solar thermal collectors and
four other energy efficiency measures; energy monitoring, insulation
and tightening, technical equipment and energy management (Table S2
in the supplementary material) [38,41].

Since the development in the settlement is highly dependent on
political considerations, our energy demand projection represents only
one of several possible scenarios for the future of Longyearbyen. We
have therefore assessed the sensitivity of the modelling results to the
demand projection by testing alternative demand projections (discussed
in Section 4.6).

3.3. Solar and wind resources

In this study, we apply hourly solar and wind electricity generation
estimates based on renewables.ninja, a web application based on the
GSEE model (Global Solar Energy Estimator) [42] and the VWF model
(Virtual Wind Farm) [43]. The models use meteorological data from the
MERRA reanalysis [44], as well as user-specified data such as the lo-
cation, hub-height, wind turbine model, orientation and tilt (Tables 1
and 2) as input to produce hourly datasets of solar and wind generation.

Five datasets spanning from 01.01.2000 until 31.12.2018 have been
retrieved, representing three possible locations for solar PV and two for
wind power in and around Longyearbyen. The specifications of the
solar and wind farms and their average capacity factors (the ratio of
actual energy generation during a given period to the potential gen-
eration if producing at nominal capacity during the same period) are
shown in Tables 1 and 2.

The datasets for solar PV generation have been used directly, and
their capacity factors are comparable to realised capacity factors onFig. 3. End use demand projection.

H.-K. Ringkjøb, et al. Applied Energy 258 (2020) 114079

4



already installed residential solar panels in Longyearbyen. Existing
solar panels, which were installed in 2013, have exceeded expectations
with an annual capacity factor of 7.1% [29]. In TIMES-Longyearbyen,
we limit the amount of residential solar installations by estimations of
available roof area based on [45].

For wind power, renewables.ninja offers a series of power curves for
various wind turbines, but to be able to model newer and bigger tur-
bines, we have used raw wind speed data retrieved from renew-
ables.ninja in combination with power curves of a 5MW [46] and a
10MW [47] wind turbine for onshore and offshore applications re-
spectively (Renewables.ninja has recently been updated with additional
wind power curves). As a quality control, the MERRA-based wind speed
data has been compared to observations from the Norwegian Meteor-
ological Institute from the relevant location Platåberget close to Long-
yearbyen in the period 03.02.2018 to 31.12.2018 [48], achieving a
good fit with the MERRA reanalysis data (correlation coefficient of
0.76).

Fig. 4, which shows the hourly capacity factor for solar and wind
through one climatological year (averaged over the 19-year period),

indicates that solar and wind could complement each other well in
Longyearbyen. The solar resource is strong during the summer months,
but not present during the polar night from October until March. In-
versely, the wind resource is at its strongest during winter from Sep-
tember to April, but weaker during summer.

3.4. Stochastic modelling approach

Stochastic modelling in TIMES involves taking into account the
uncertainty of various input parameters to the system optimisation
[49]. This contrasts deterministic model versions, in which the deci-
sion-making assumes that all input parameters are certain.

In TIMES-Longyearbyen, we model the short-term uncertainty of
seven stochastic parameters, corresponding to electricity generation
from solar PV (three possible locations), wind power (onshore and
offshore), and the demand of electricity and heat. For this application, it
is particularity important to capture the intermittency of solar and wind
to ensure energy system robustness. As already mentioned, the solar PV
and wind power data are based on Renewables.ninja [42,43], whereas
the electricity and heat data are based on real measurements from the
power plant in Longyearbyen [32].

A two-stage stochastic model is applied [50,51], and is illustrated by
its scenario tree in Fig. 5. Here, the first stage involves investment
decisions made over the whole modelling horizon based on the ex-
pected outcome of the operational scenarios but without knowing their
true realisations. This is a key property of the approach, as the invest-
ments are not only optimised for one set of load profiles and renewable
generation profiles, but take into account a wide range of possible
outcomes. This leads to a set of investments that are feasible and
identical for all sixty operational scenarios, important for e.g. security
of supply. The true outcome of the operational scenarios is first revealed
in the second stage, where operational decisions are made across all
scenarios and periods. Each branch in the second stage corresponds to

Table 1
Wind generation data.

Type Location Hub height (m) Turbine size (MW) Capacity Factor (%)

Onshore 78.2°N, 15.4°E (Platåfjellet) 90 5 26.3
Offshore 78.4°N, 14.7°E (Isfjorden) 119 10 31.9

Table 2
Solar generation data.

Type Location Orientation
(Azimuth)

Tilt Avg. Capacity Factor
(%)

Ground 78.2°N, 15.4°E
(Platåfjellet)

180° (south) 30°1 7.67

Rooftop 78.2°N, 15.8°E
(Longyearbyen)

315° (northwest) 20° 6.03

Rooftop 78.2°N, 15.8°E
(Longyearbyen)

135° (southeast) 20° 7.22

1 Optimal tilt obtained from the software PVSyst by Thorud [45]. There is no
sun during the polar night (March to October), which leads to a low optimal tilt
angle close to summer conditions.

Fig. 4. Solar and wind resources.
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one operational scenario, corresponding to different realisations of the
stochastic parameters, all with the same probability of occurrence. We
employ a multi-horizon structure [51], in which investment and op-
erational decisions are made simultaneously, and which assumes no
dependency of operational decisions between model periods. This
means there is no learning effect from observing operational scenarios,
which significantly reduces model size, and is also a good approxima-
tion of real decision processes since including such learning effects
would be similar to assuming perfect foresight of operational outcomes
over the modelling horizon [52].

In TIMES-Longyearbyen, we use sixty operational scenarios to de-
scribe our stochastic parameters. Increasing the number of scenarios
can improve the robustness of the results, but leads to increased com-
putational effort [54]. The sixty scenarios play an important role in the
stochastic modelling approach, as they should reflect the variability of
the parameters and in addition represent realistic operational situa-
tions. The scenarios are selected from historic datasets through a
method that combines two techniques called random sampling and
moment matching, based on [22]. This involves:

(1) Random sampling of historical days to construct 60 independent
scenarios, where each scenario follows the temporal structure of the
model and consists of two sampled days with hourly resolution per
season (192 time-slices). The approach gives consistent daily cor-
relations by sampling consecutive hourly values throughout the
day, and correlations between the seven uncertain parameters by
sampling concurrent days. We sample the days separately for each
of the four seasons, assuming no seasonal dependency, and repeat
the procedure for each investment period thus also capturing inter-
annual variability. A set of scenarios consists of 60 independent
scenarios * 24 h * 2 days * 4 seasons * 9 periods * 7 stochastic
parameters= 725 760 values.

(2) Repeating this procedure to generate a large amount of possible
scenario sets, in this case 10 000 sets.

(3) Calculating the first four moments (mean, variance, skewness and
kurtosis) for the historic data and for each of the 10 000 scenario
sets.

(4) Finding the deviation of the first four moments of each scenario set
to the historical datasets, and select the set of scenarios with the
lowest deviation and thus the best fit with the statistical properties
of the original datasets.

Fig. S9 in the supplementary materials presents a comparison of the
mean, variance, skewness and kurtosis profiles of the selected stochastic
scenarios and the historical datasets. The figures show that by following
the scenario generation method we achieve a reasonable approximation
to the historic data. Furthermore, Fig. S10 in the Supplementary
Materials compares the probability density functions of onshore wind
and solar PV generation, showing that our model captures their

intermittent power generation sufficiently well.
Fig. 6 below illustrates the difference between a deterministic and a

stochastic modelling approach. The deterministic profiles are based on
the expected value of each parameter, while the sixty stochastic sce-
narios are selected by the scenario generation method explained in the
previous paragraphs. The figure shows a day of solar generation during
summer, as well as onshore wind, electricity demand and heat demand
during a winter weekday. These days are chosen since generation and
consumption are highest during these respective seasons and days.
Fig. 6 clearly shows the extra variability modelled in a stochastic ap-
proach, with periods of both low and high generation from variable
renewables and periods of varying heat and electricity demand. The
ability of the energy system to support these realistic operational si-
tuations is important for security of supply in the settlement.

3.5. Model cases

We investigate four model cases, each distinguished either by their
modelling approach or by constraints that allow us to study specific
cases for Longyearbyen’s future energy system. All input parameters,
such as future technology costs, efficiencies, fuel costs and so on are
equal in all model cases. We also assume, in all cases, that the existing
coal-fired power plant is decommissioned within ten years from now, so
that by 2030 an entirely new energy system will be in place in
Longyearbyen. The four model cases are summarised in Table 3 below.

The first model case, DET, is a deterministic model version con-
strained to use only renewable energy sources, either locally available
or through imported hydrogen produced elsewhere, presumably in
mainland Norway and shipped to Longyearbyen. Its main purpose is to
illustrate the difference between a deterministic and a stochastic model
version, and to assess and compare the different investment strategies
in the two approaches. The DET case is not considered a realistic op-
timisation of Longyearbyen’s future.

The second case, ISO, is a stochastic model that constrains all import
processes to the island, resulting in a completely isolated energy system
that has to draw all its power and heat from locally available renewable
energy resources.

The third case, HYD, is a stochastic model that allows importing
hydrogen from mainland Norway. We also assume that the hydrogen is
produced by electrolysis using surplus Norwegian hydro- or wind power
rather than steam reformation of natural gas, and thus considered 100%
renewable. The cost of importing hydrogen has been set to 35 NOK/kg
H2 [55]. Due to the uncertainty surrounding this future price, the
sensitivity of the model results to the hydrogen price has been assessed.

The fourth case, FOS, is a stochastic model that permits import of
fossil fuels (diesel and/or natural gas) in addition to hydrogen. This has
the potential to reduce the storage requirements, help stabilise the grid
and reduce the total cost of the system. In addition, if only or primarily
used as back-up generation, it would lead to limited amounts of

Fig. 5. Illustration of a two-stage scenario tree with sixty operational scenarios (adapted from [53]).
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greenhouse gas emissions. In the final analysis, we run several addi-
tional cases each with a pre-determined maximum level of CO2 emis-
sions in Longyearbyen exploring options ranging from HYD to FOS.

4. Results and discussion

4.1. Deterministic (DET) versus stochastic modelling approach

A conventional deterministic modelling approach, which considers
only one operational scenario in its optimisation, can give valuable
insights, but in this particular case study it could lead to misleading
results.

The DETmodel case gives investments in a system heavily reliant on
wind power, supplemented by solar power and batteries to smoothen
intraday variability (Fig. 10). Heating is largely electrified, and is
generated through electric boilers as well as geothermal and seawater
based heat pumps. The electrification requires additional electricity,
which also plays a part in increasing the required installed electricity
generation capacity. In addition, the model decides to invest in energy
monitoring, the cheapest alternative of the modelled energy efficiency
measures.

As illustrated in Fig. 6, the solar and wind resources in the DET
model case are based on their climatological features and give an

inaccurate description of their true variability. This consequently leads
to an overestimation of the contribution of wind power in the model,
with wind unrealistically treated as a base-load generator. The case
clearly demonstrates that using a deterministic modelling approach
could lead to misleading results when variable renewables become a
major fraction of installed capacity.

The lack of realism in the DET model case is further evidenced by
testing the value of stochastic solution (VSS), a test that aims to eval-
uate the advantage of using a stochastic model version versus a de-
terministic one [22,56]. It works by fixing the first-stage decisions in
the deterministic model (the investments), and thereafter solving the
model using the stochastic operational scenarios. In other words, we
use the system typology that the deterministic model version invests in,
and test it for the sixty operational scenarios in the stochastic model
with no additional investments allowed. Applying the VSS to the DET
model case results in an infeasible model run. This indicates that the
system is not able to cover the demand in at least one of the operational
scenarios. The reason for this is the overestimation of the contribution
from wind energy in the deterministic version, which leads to in-
sufficient investments in reserve capacity making the energy system
unable to meet the demand in operational scenarios with e.g. un-
favourable wind and solar availability and/or high electricity and heat
demand. This shows the importance of having an adequate re-
presentation of short-term solar and wind variability.

The question remains whether our stochastic approach is suffi-
ciently robust to deal with long term persistence of the solar and wind
resources, in particular extended periods of low supply. Tsekouras and
Koutsoyannis [24] have shown that a significantly positive auto-
correlation (Hurst coefficient of 0.84) characterizes long time series of
wind and solar radiation in Europe. Zeyringer et al. [57] in a study of
the UK, used a high resolution model softly coupled to a TIMES based
energy system model to explicitly model impacts of interannual varia-
bility of weather. Our approach, based on [22], has the benefit of
preserving computational efficiency while allowing for a combined

Fig. 6. Deterministic and stochastic daily profiles of hourly capacity factors for solar generation during summer, as well as onshore wind generation, electricity
demand, and heat demand during a winter weekday. The thick bold line refers to the daily profile used in a conventional deterministic model, whereas the thin lines
in grey are the sixty stochastic profiles selected by the scenario generation method.

Table 3
Model Cases investigated in the study.

Model Cases Method Description

DET Det. Unrealistic case, included in order to compare model
techniques

ISO Stoch. Isolated system
HYD Stoch. Allowing imports of renewable hydrogen from mainland

Norway
FOS Stoch. No constraints, i.e. allowing also imports of fossil fuels
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stochastic treatment of both supply and demand. Inspection of the en-
ergy system configurations which emerge as results of the stochastic
modelling of Longyearbyen in the present study, see Sections 4.2–4.5,
convinces us that they have sufficient energy storage to be robust
against periods with persistent low solar or wind resources. However, a
more sophisticated treatment of the statistical properties of solar and
wind data (e.g. [58]) could be interesting for further development of
the model for wider applicability.

4.2. An isolated system (ISO)

The ISO case considers a completely isolated Longyearbyen, pow-
ered only by locally available renewable energy resources after 2030.
By following a stochastic modelling approach, the model finds the op-
timal system configuration that is able to meet the demand of heat and
electricity in all sixty operational scenarios modelled, even those with
unfavourable wind and solar conditions.

Large installed capacities of solar and wind as well as a full hy-
drogen value chain with both short- and long-term energy storage is
necessary for a robust and reliable isolated energy system. Fig. 7 shows
two examples of system operation in 2050 during a summer day (A) and
a winter day (B), which illustrate well the trend seen across the op-
erational scenarios. Detailed results for each scenario is found in Fig. S6
in the supplementary materials.

The fall and winter seasons are important design factors in all model
cases, but particularly in the ISO case. Due to colder temperatures the
demand of heat and electricity are higher during these seasons, the
polar night means there is no contribution from solar PV, and although
the wind resource is generally higher during fall and winter, there are
periods with little or no wind generation. To cover such periods, shown
in Fig. 7B, the model uses seasonally stored hydrogen produced in
periods of excess electricity (Fig. 7A). The model invests in large
amounts of hydrogen storage (31 GWh in 2030 and 22 GWh in 2050),
which in addition to covering the demand also needs to compensate for
boil-off losses during long-term storage and losses in the fuel cells.

The need for producing and storing large amounts of hydrogen with
a relatively low round-trip efficiency, the electrification of heating, and
relatively low capacity factors compared to dispatchable technologies
call for a large installed capacity of solar and wind. In 2030, the model
has invested in 119MW of solar PV capacity and 126MW of onshore
wind, corresponding to a total capacity of variable renewables ~50
times larger than the peak hourly electricity demand. This leads to
periods with large amounts of excess electricity generation. Fig. 7A
shows an example of how otherwise curtailed electricity is used in
electrolysers for hydrogen production, to be stored for use in other
seasons. Here batteries also play a useful role. The model decides to
invest in ~10MW of li-ion battery charging/discharging capacity and
~57 MWh of energy storage in 2030 (~11MW and ~51 MWh in 2050).
In Fig. 7A, one can see that batteries are not only useful for intra-day
balancing of demand and supply, but also for balancing the electrolyser
loads. By storing a large part of the solar peak in the middle of the day

and distributing it to the night, the batteries help the electrolysers to
work with a more stable load and avoids investments in large electro-
lyser capacities otherwise necessary to cover the solar peaks.

In the ISO case, all four energy efficiency measures (presented in
Section 3.2) are fully implemented, reducing the annual demand of
electricity and heat by about 10%. Due to the additional infrastructure
needed for power generation, investing in energy efficiency measures is
found to be economically attractive in this model case.

Introducing large fractions of variable renewables into a small iso-
lated system could lead to challenges in maintaining grid stability
[59–61]. Grid support services traditionally offered by fossil-based
technologies, such as frequency and voltage regulation, fault-ride-
through and spinning reserve must in this case be supplied through the
power electronics of renewables, hydrogen fuel cells and by energy
storage technologies. Introducing demand response or installing reserve
fossil fuel generators could further help maintain stability in the system.
Building such a system could spur further research on its detailed op-
eration.

4.3. Hydrogen import (HYD)

The high investments in storage and generating capacity seen in the
ISO case would be costly (Fig. 11). This motivates the HYD case, which
allows import of hydrogen from mainland Norway. The Norwegian
power system is characterised by large amounts of hydropower (96% of
electricity generation), and has a surplus of about 15 TWh in a normal
hydrological year [62]. Utilizing the flexibility of the Norwegian power
system, which is many times larger than the Longyearbyen system,
could reduce the infrastructure for local power and hydrogen produc-
tion compared to the ISO case. Under the assumption that the imported
hydrogen is produced from electrolysis powered by surplus renewable
electricity and transported by ship fuelled by hydrogen this model case
could still be considered 100% renewable. The amount of imported
hydrogen, averaged across all scenarios, is found to be 89 GWh and 60
GWh in 2030 and 2050 respectively. Scenario-specific results for the
HYD case are presented in supplementary materials S7.

The 35 NOK/kg import price used in this study [55] is assumed to
bear the costs of producing hydrogen in mainland Norway and the
transportation to Longyearbyen. Due to the uncertainty associated with
this price, we have assessed the sensitivity of the energy system ar-
chitecture and total system cost by additional model runs with results
displayed in Fig. 8. As expected, the amount of imported hydrogen
depends strongly on its price. For a price lower than 70 NOK/kg, all of
the required hydrogen is imported. For a price of 70 NOK/kg and
higher, an increasing share of local hydrogen production is found
economically attractive, but at the same time the total share of energy
generation from hydrogen fuel cells decreases while wind and solar
increase. Producing all hydrogen locally becomes economical only at a
very high import price (as shown in Fig. 8). At this point, the HYD case
becomes identical to the ISO case. However, a future hydrogen price
this high seems very unlikely. Glenk and Reichelstein [63] found a

Fig. 7. Examples of system operation in 2050 for a summer (A) and winter (B) day. Note the different scales for electricity generation in A and B.
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current break-even price for renewable hydrogen through electrolysis
in Germany of 3.23 €/kg (~32 NOK/kg), and predicted a decrease to
~2.3 €/kg (~22 NOK/kg) by 2030.

4.4. Fossil fuels (FOS)

Allowing use of fossil fuels could further reduce the costs of
Longyearbyen’s future energy system. For a system with no emission
restrictions, the model shows a preference towards fossil fuels, in-
vesting in new diesel generators, gas cogeneration turbines, pure gas
turbines and gas boilers (Fig. 10).

In the unrestricted FOS case, moving from coal to natural gas, diesel,
and some renewable capacity reduces the CO2 emissions with a factor
of 2/3 from 2015 to about 20 000 ton CO2 annually from 2030. Fig. 9
shows how the total system cost, and the share of renewables in final
energy demand varies with a constraint on CO2 emissions ranging from
no regulations (corresponding to the FOS case) to zero emissions (cor-
responding to the HYD case). The system cost first rises gradually as
emissions are beginning to be constrained, before increasing rapidly to
reduce the last tons of CO2. This shows that achieving some emission

reductions is relatively cheap, whereas the last tonnes of CO2 are very
costly to remove.

Allowing for some, but minor emissions could thus be an effective
way of considerably reducing the total system cost, and at the same
time increase redundancy and possibly reduce local environmental
impacts such as land-use and visual impact from large wind turbine
installations. As an example, allowing for 25% of CO2 emissions com-
pared to an unrestricted case (FOS) annually would only give about
10% higher total system cost.

4.5. Summary of key results

This section summarises key results on the energy system structure
and costs for the four investigated model cases. Tables with detailed
results on installed capacity and energy generation as well as scenario
specific figures can be found in the supplementary material to this
paper.

Fig. 10 shows a comparison of the installed capacities in the ISO,
HYD and FOS cases in 2030 and 2050 compared to today’s existing
capacity. Although the model optimisation suggests investment in new
infrastructure already in 2020, it decides to keep the coal-fired power
plant until decommission in 2030 in all cases, adding only some minor
investments in energy efficiency measures and onshore wind capacity.
Since the system composition also does not change much between 2030
and 2050, we only show the installed capacities in 2030 and 2050 in
Fig. 10 (complete results are available in the supplementary material).

Electrification of heating is seen in all model cases. Electric boilers,
heat pumps and heat from hydrogen fuel cells become the main source
for heating in all but the FOS model case, where gas boilers provide the
majority of heat to the settlement. Large investments in onshore wind
are also seen in all model cases. These results are consistent with the
Grimsey island study [1], which included fewer options, but also
showed that wind and hydrogen could be important parts of Arctic
energy systems.

Due to faster cost reductions for solar PV technologies than for wind
and despite its lower annual capacity factor, one can see that the share
of solar PV in the generation mix increases from 2030 to 2050 in all
model cases.

Fig. 10 also shows the total installed capacity of all model cases. As
expected, this is very high in the ISO case, about seven times larger than
the current installed capacity. In all other cases, the total installed ca-
pacity is comparable to today’s level, as these cases rely on fossil fuels
or import of hydrogen.

Since the coal-fired power plant is kept until 2030 in all model
cases, this leads to more similar annual system costs between cases for
the entire period 2015–2050 than for the period 2030–2050. As the
energy system costs are discounted back to 2015, earlier costs play a
more important role in the optimisation with respect to total costs than
later ones. This explains why the total discounted system costs (Table 4)
are more similar in comparison to the large differences seen in the
average annual system costs between 2030 and 2050 (Fig. 11).

In Fig. 11, one can see that the ISO case has the highest average
annual costs, about three times larger than the HYD case and about ten
times larger than the FOS case. This is due to the high requirements for
renewable energy capacity, storage and hydrogen infrastructure in an
isolated system, which also leads to a very capital-intensive system,
where ~84% of the annual costs in 2050 are related to investments. In
the HYD and FOS cases, on the other hand, imports of energy carriers
are the driving cost factors, corresponding to ~60% and ~50% of mean
annual costs respectively.

The average cost of energy (reflecting both electricity and heat)
shown in Table 4 is calculated between 2030 and 2050, thus only taking
into account the new energy system in each model case, consistently
with Fig. 11. We see that moving from the unconstrained FOS case to
the 100% renewable HYD case almost quadruples the cost of energy,
but constraining 2050 emissions to 5000 tonne CO2/year (~25% of the

Fig. 8. Sensitivity of energy generation in 2050 (bars) and total system cost
relative to a hydrogen price of 35 NOK/kg (line) to the cost of hydrogen.

Fig. 9. The impact of constraining emissions on the total system cost and
system composition.
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unconstrained 2050 emissions and less than 10% of 2015 emissions)
increase the average cost of energy for 2030–2050 by ~50%.

Even though our model has a relatively high temporal resolution in
comparison to other TIMES models, it is worthwhile to validate the
model against a less scaled down model. In order to do so, we devel-
oped another model version with 672 time-slices, modelling one full
week with hourly resolution per season. These two models are essen-
tially equal, with the only difference being the temporal resolution. In
order to maintain computational feasibility, we had to reduce the
number of stochastic scenarios from 60 to 15. In addition, the scenario
generation method selects a full week instead of individual days. We
tested the new model with our three main model cases (ISO, HYD and
FOS), achieving consistent results in comparison to our 192 time-slice
model. When comparing the value of the objective function, the total
system cost, all model cases results in a slightly lower total system cost
in the 672 time-slice model in comparison to the 192 time-slice model.
The HYD scenario has the highest deviation with 5.9%, whereas the ISO
case and the FOS case deviates 4.2% and 1.1% respectively.
Furthermore, the overall system composition stays the same in both
model cases, showing that our scaled down model has an adequate
temporal resolution.

4.6. The role of policy and regulations

Our modelling results suggest that a future energy system in
Longyearbyen based primarily on renewable energy sources is feasible,
reliable and achievable. Energy efficiency plays an important role, and
is a crucial part of our demand projection (hereafter denoted base). We
envision drastic improvements of energy efficiency in buildings as well
as reduced electricity demand due to changes in the industry sector.
The demand projection is based on a number of assumptions. If policies
fail to address energy efficiency, it could have a great impact on the size
and cost of the new required energy infrastructure in Longyearbyen.

To assess the sensitivity of our results, we have investigated the

impact of alternative demand projections (shown in Fig. 12). The status-
quo demand projection assumes no measures are incorporated to reduce
energy demand, leaving the demand of heat and electricity on today’s
level (~70 GWh heat and ~40 GWh electricity) until 2050. The high
demand projection is a more aggressive demand projection, which as-
sumes a doubling of energy demand towards 2050 (~140 GWh heat
and ~80 GWh electricity). For heat, this would mean a continuation of
the trend seen between 2000 and 2010 (continuous line in Fig. 3). This
would be consistent with a doubling of the population to about 4000
residents in 2050 and assuming that the specific heat demand (kWh/m2

y) remains on today’s levels. In addition, it assumes an increase in

Fig. 10. Share of (bars) and total (markers) installed capacity in all cases. See Table S4 in the supplementary materials for detailed results on installed capacity for all
investment periods.

Table 4
Key economic results.

Key economic results ISO HYD 5 Mt CO2 10 Mt CO2 15 Mt CO2 FOS

Total discounted system cost (bNOK) 4.93 2.21 1.51 1.40 1.37 1.36
Cost of energy (2030–2050 avg.) (NOK/kWh) 5.73 1.73 0.67 0.51 0.47 0.46

Fig. 11. Avg. annual system cost between 2030 and 2050.
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activities e.g. within tourism and/or research, as well as a large degree
of electrification (e.g. of the transport sector) that leads to a doubling of
the electricity demand. A projection with significantly lower future
energy demand than the base scenario is not considered realistic and
therefore not assessed.

Fig. 12 shows that an increase in energy demand gives significantly
more expensive systems in all model cases. The ISO case is the most
sensitive to changes in energy demand, linearly increasing its annual
system cost by 3.7 mNOK per GWh of increased energy demand. This is
expected due to the extra infrastructure needed to cover the higher
energy demand. The HYD and FOS cases are less sensitive to changes in
the demand, due to the availability of imports of energy carriers, and
have an increase in annual system costs of only 1.0 and 0.3 mNOK per
GWh respectively.

The selection of discount rate is expected to influence particularly
the balance between capital and operation intensive technologies. We
have tested all cases with a 2% and 6% discount rate in addition to the

base case 4%. The results displayed in Fig. 13, show that these changes
of discount rate have a discernible but not drastic impact on the results
for Longyearbyen. The overall composition of the system stays roughly
the same in all model cases, although a discount rate of 2% favours
investments in renewable capacity (high upfront investment, but low
operational costs), while a 6% discount rate favours investments in
fossil fuels or imported hydrogen (lower investments, but higher run-
ning costs).

An advantage of a renewable based system is its modularity, which
means that one can incorporate units into the system one at a time. This
can help sizing the system according to the actual development of a
highly uncertain future energy demand. Furthermore, a gradual tran-
sition to a system based on renewables, while phasing out the coal-fired
power plant in a controlled manner, could ease the operation and keep
security of supply in place. Modularity also improves system reliability,
as it is highly unlikely that several units fail at the same time.

For future work, the TIMES model of the settlement could be ex-
panded to also include the transportation sector. There are almost as
many snowmobiles as people and about 1500 cars in the settlement
[37]. Tourism is likely to lead to an increased use of tourist ships and
visits from large cruise ships. This puts sustainable tourism on the
agenda. Given energy demand projections for these sectors, an ex-
panded version of the present model could evaluate the potential of
electrification and the use of hydrogen in the transport sector, enabling
cross-sector synergies and potentially deeper decarbonisation of the
settlement.

Environmental aspects not captured by this modelling study should
be included in planning and policy making. As an example, the in-
stallation of new infrastructure, e.g. onshore wind turbines and ex-
tensive areas for solar panels, can disturb existing habitats in an already
constrained Arctic ecosystem and their impact should be carefully
considered before installation. The broader environmental impact of
lithium ion batteries should also be further assessed. Not only in terms
of greenhouse gas emissions and energy use in the production phase,
but also in terms of lifecycle impacts including materials usage, toxicity
and the social risk particularly related to the mining of cobalt [64,65].

We recommend that new policies ensure that energy efficiency is
prioritised, and that a new system should include renewable generating
capacity, energy storage, electrification of heating, and imports of hy-
drogen, in this case most likely from mainland Norway. Fossil fuel back-
up capacity could be installed to reduce costs and increase security of
supply in the settlement. A renewable based energy system in an Arctic
location such as Longyearbyen could also be a valuable research

Fig. 12. Sensitivity of annual system cost in 2050 to alternative demand pro-
jections. The average energy demand (electricity and heat) between 2030 and
2050 for the alternative demand projections is shown in the fig. inset.

Fig. 13. Sensitivity of the key model results on the discount rate.
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opportunity, and an example for others to follow.
The approach and the findings from this study should be relevant for

other Arctic communities. Although wind and solar resources vary from
place to place and are likely to influence the structure of the resulting
optimal energy system, most of the properties of the energy system
components studied here should be almost directly applicable to studies
of other locations.

5. Conclusion

Three main conclusions can be drawn from this work. First, in-
corporating an adequate modelling of the variability of renewables is
highly important for ensuring the robustness of modelling studies in
cases where a significant part of the energy supply is based on variable
renewables. Handling this variability is particularly important when
security of supply is of highest importance, such as in the case of a
remote Arctic settlement. A careful representation of the stochastic
properties of the solar and wind resources is recommended.

Second, the detailed and realistic case study shows that
Longyearbyen has the potential of being supplied by an energy system
based primarily on renewable energy sources with wind and solar as
both complementary and critical contributors. The potential of har-
nessing wind and solar in Arctic locations is significant, and when
utilised together they have beneficial complementary properties.
Energy efficiency is also of high importance, and policies and regula-
tions should be directed towards improving energy efficiency and re-
ducing energy usage. An isolated system based only on locally available
renewable resources is technically feasible, but requires high installed
capacities, and is found to have annual system costs about three times
larger than a case where import of hydrogen is allowed. Allowing for a
limited fraction of the energy supply to come from fossil fuel use could
significantly reduce system costs, increase robustness and system re-
liability while still obtaining major reductions of emissions compared to
cases where the use of fossil fuels is unconstrained.

Finally, the developed model tool could easily be expanded to op-
timise an extended energy system, which not only supplies the settle-
ment, but also tourist ships and other transportation needs. It could also
be adapted to other remote settlements with other starting and
boundary conditions. While specifics including costs of hydrogen im-
port can be expected to vary with location, one may speculate that the
major building blocks of the emerging system including wind, solar and
hydrogen storage will remain. These technologies in contrast to geo-
thermal and carbon storage have the advantage of being generic and
not so dependent on costly investigations of local conditions.
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Abstract

Integration of variable renewables such as solar and wind has grown at an unprecedented pace in Europe

over the past two decades. As the share of solar and wind rises, it becomes increasingly important for

long-term energy system models to adequately represent their short-term variability. This paper uses a long-

term TIMES model of the European power and district heat sectors towards 2050 to explore how stochastic

modelling of short-term solar and wind variability as well as different temporal resolutions influence the model

performance. Using a stochastic model with 48 time-slices as benchmark, our results show that deterministic

models with low temporal resolution give a 15-20% underestimation of annual costs, an overestimation of the

contribution of variable renewables (13-15% of total electricity generation) and a lack of system flexibility.

The results of the deterministic models converge towards the stochastic solution when the temporal resolution

is increased, but even with 2016 time-slices, the need for flexibility is underestimated. In addition, the

deterministic model with 2016 time-slices takes 30 times longer to solve than the stochastic model with 48

time-slices. Based on our findings, a stochastic approach is recommended for long-term studies of energy

systems with large shares of variable renewable energy sources.

Keywords: Energy modelling, TIMES energy-models, variable renewable energy, stochastic model-

ling



1 Introduction

The European power sector has the potential of becoming nearly carbon neutral by 2050 through increasing

the share of renewable energy in the electricity mix [1]. A major share of this increase is expected to come

from solar and wind technologies. Over the past two decades, solar and wind have experienced massive

cost reductions and technological development. In many locations, unsubsidised solar and wind are already

cheaper than their fossil-fuelled counterparts, and costs are projected to plummet further [2]. However, due

to their variable and partially unpredictable nature, a large share of solar and wind in the electricity mix

gives rise to a number of challenges, ranging from short-term systems operations to strategic planning on a

long-term timescale [3].

Long-term energy models are frequently used to aid policy-making, for strategic planning, and to understand

the future complexity of the energy system. Such models have the advantage that they are capable of

modelling the entire or parts of the energy system several decades into the future, but they often model

short-term operations in a stylized and simplified way [4]. When energy modelling started gaining popularity

after the oil crisis in 1973 [5], the major source of variability in the energy system was on the demand side

[6]. Models where thus developed to treat the relatively regular diurnal and seasonal fluctuations of the load

curve while maintaining computational efficiency [7]. Consequently, this led to models generally having a

low number of time-slices [8, 9].

Merrick [6] found that a year of hourly electricity demand could be sufficiently represented using only ten

data points, while the joint profiles of wind, solar and electricity demand require in the order of 1000 data

points to be fully represented. Due to the low temporal resolution of many traditional long-term energy

models, they might not be well suited for exposing and addressing the challenges of tomorrow’s energy

system. This is also pointed out by Pfenninger et al. [7], who refer to ”resolving time and space” as one of

four main challenges energy system models face today. It has also been shown that failing to take into account

the short-term fluctuations of solar and wind could potentially give biased model results, overestimate the

contribution from variable renewables (VRES), and underestimate costs or greenhouse gas emissions [10–

14]. As the share of VRES in the power system grows, the representation of their short-term variability thus

becomes increasingly important in such models, with a large impact on long-term strategic planning.

Improving the representation of short-term variations of solar and wind in long-term energy models have

seen increased attention in recent years. Collins et al. [15] thoroughly reviewed the challenges of long-term

energy models when dealing with variable solar and wind, and state-of-the-art methodologies to address

them. This includes soft-linking long-term energy models with operational power system models, increasing

or improving the temporal resolution and improving the technical representation.

Welsch et al. [10] compared three models of the Irish power sector; a long-term energy model (OSeMOSYS)

with 12 time-slices, an enhanced OSeMOSYS model with technical constraints, and a soft-linked TIMES-

PLEXOS model with 8784 time-slices. Their results showed that the simple OSeMOSYS model underes-

timated the need of flexibility in the system and overestimated the effective use of wind energy. By adding

operational constraints, the enhanced OSeMOSYS model was able to adequately reproduce the results of the

soft-linked TIMES-PLEXOS model. As an alternative to soft-linking, in which the models follow an iterat-

ive approach where results are fed from one model into the next run of the other, one could also hard-link

models to get one integrated model [16, 17]. Poncelet et al. [11], compared a TIMES long-term energy model
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of Belgium to a merit-order model and the unit commitment model LUSYM. Here, the authors conclude

that for a high penetration of variable renewables, improving the temporal representation is more important

than including detailed techno-economic operational constraints to the model.

Much of recent work has focused on improving the temporal representation in long-term energy models. One

method is to simply increase the temporal resolution by incorporating more time-slices, e.g. by modelling

representative days with hourly resolution or including more representative days [18, 19]. Kannan & Turton

[19] increased the temporal resolution of a Swiss TIMES model from 8 (two diurnal time-slices per season)

to 288 time-slices (24 h x 3 days x 4 seasons), achieving what they referred to as ”a far better solution”

in the more detailed model. TIMES-Norway [20] uses 260 times slices annually in order to give a detailed

description of the Norwegian hydropower system.

Another recently active area of research has been the method of selecting representative days or time-slices,

including the use of heuristic methods, random sampling, clustering or even optimisation methods [21–25].

Pfenninger [26] compared various methods in a model of the Great Britain power system using the open-

source modelling framework Calliope. By applying downsampling, heuristics and clustering techniques,

Pfenninger showed that the results varied strongly with the chosen method, particularly with large shares of

variable renewables. Heuristics showed promise, but the best method depends strongly on the type of system

studied, the input data and the model setup. Furthermore, Hilbers et al. [27] presented an approach for

sampling time-series based on the estimated importance of each time-step and then including a number of

the most important time-slices in their model. In an idealised model of the UK power system, they showed

that their method performed better in comparison to using random sampling, k-medoids clustering or the

use of individual years.

Many authors have looked at the impact of improving the technical representation of long-term energy

models. This includes adding operational constraints to the model, specifying e.g. minimum load levels,

ramp-rates, start-up times etc. [28, 29]. Another approach is to incorporate modelling of operating reserves

(ancillary services), as in [30]. Gaur et al. [29] added a unit commitment (UC) extension to a TIMES model

of the Northern regional grid of the Indian power sector. They found that adding operational constraints

helped to avoid an overestimation of VRES penetration and a better estimation of the needs for flexible

generation.

Stochastic modelling has in recent years emerged as an effective way of representing short-term uncertainty

in long-term energy models [31–35]. While traditional deterministic models make decisions with perfect

foresight of solar and wind availability, a stochastic model can take into account their short-term uncertainty

in the optimisation (see section 2.5.3). Seljom and Tomasgard [31] showed that a stochastic representation

of short-term wind generation resulted in lower energy system costs, lower wind power investments, less

electricity exports and an increased use of biomass compared to a deterministic model. As a result, they

recommended that decision makers use a stochastic approach in order to obtain more solid results. Nagl et al.

[36] developed a stochastic optimisation model for the European electricity system. Through comparing the

results from their stochastic model to one with a deterministic investment strategy, they found that VRES

were significantly overvalued in the deterministic model version, leading to a an underestimation of costs

and flexibility requirements. EMPIRE is another example of a stochastic model of the European electricity

system [34], used for example to study the role of demand response in Europe [37].

In this work, we evaluate and demonstrate different modelling approaches on how to represent the short-term
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variability of solar and wind generation in a long-term TIMES energy model of the European power and

district heating systems. This includes exploring the influence of both modelling approaches to consider

uncertainty and different temporal resolutions on model results. To do so, we have developed and applied

TIMES-Europe, a least-cost optimisation model of the European power and district heat sectors. Five model

versions have been developed, all fundamentally identical but each with increasing temporal resolution.

Each of these versions were further modelled using a conventional deterministic approach and a stochastic

approach that takes into account the uncertainty of short-term solar and wind variability as well as the

electricity demand.

Most previous studies that have investigated the importance of representing short-term solar and wind in

long-term energy models focus on national energy systems, e.g. [10, 11, 26, 27]. To the authors knowledge,

this paper is the first to assess the effect of a varying temporal resolution and modelling methodologies

on a European scale. As the European power grid is becoming more and more harmonised, capturing the

dynamics of cross country trade and the correlation of solar, wind and electricity demand across the whole

of Europe is becoming increasingly important.

In addition, we explicitly compare the performance of stochastic versus high-resolution deterministic mod-

eling approaches using TIMES at the European level. We believe this study is the first to assess how

fine resolution a deterministic model must have in order to perform approximately as well as a benchmark

stochastic model.

A third contribution is the application of a TIMES long-term energy model to a realistic case-study of the

European power and district heat systems towards 2050. We expect there will be a demand for a range of

similar studies in the future, e.g. to take into account policy constraints and looking at how energy storage

and grid interconnections can help to accommodate high shares of variable renewables.
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2 Data & Methods

2.1 Modelling methodology

The overarching methodology of this paper is presented in Figure 1. The core of the approach is the long-

term energy model, TIMES-Europe, with its main assumptions and input data which are equal for all model

versions. An important input to this model is the solar, wind and load data, exemplified in Figure 1 with

a week of hourly data for Norway and further discussed in section 2.4. This data is then aggregated or

used in the scenario generation method to produce input data for the various deterministic and stochastic

model versions with differing temporal resolution. Finally, the various model versions are tested and their

model results and computational performance are compared. This is done to investigate their similarities,

their differences, and most importantly the significance of an appropriate representation of solar and wind

short-term variability in a long-term energy model of the European power sector.

Figure 1: Overarching methodology followed in this paper
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2.2 TIMES-Europe

TIMES-Europe is a least-cost optimisation model of the European power and district heat sectors developed

from the well-known TIMES (The Integrated MARKAL-EFOM) modelling framework [38]. The model is

based on a TIMES model of the Scandinavian energy system [32], and uses linear optimisation to treat

investments in energy-infrastructure, system operation and imports of energy carriers for 29 interconnected

European countries towards 2050 (see Figure 2). In order to reduce computational requirements, particularly

arising from the focus on short-term variability, the model is run with investment periods of ten years. We

use a discount rate of 4 %, and the currency is 2015e.

A comprehensive description of the model, its assumptions and input data can be found in the model

documentation in the Supplementary Materials.

Figure 2: Modelled countries and their share of renewables in the electricity mix in 2015

2.3 Model assumptions

Despite not being the main focus of this paper, it is important that the case study of a future European

power system is realistic. One of the main drivers of model results is the projection of future demand of

electricity and heat. This is supplied exogenously to the model, where all national demand projections are

based on the European Commission’s Reference Scenario from 2016 [39]. The electricity demand increases

by 27 % between 2015 and 2050 (∼3000 TWh to ∼3800 TWh), whereas the district heat demand increases

by 10 % (∼610 TWh to ∼670 TWh). Many studies have shown that e.g. electrification of vehicles could

lead to a steeper increase of electricity demand than what is assumed here [40–42].

National generation capacities, electricity and district heat generation as well as cross-border interconnection
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capacity and trade has been calibrated by statistics for the year 2015 from a number of sources (this is further

elaborated in section 4 of the Supplementary Materials). This calibration is important, as the existing

capacities serve as a basis for future investment needs and provides the starting point for the gradual

transition to a low carbon energy system.

Import prices for coal, natural gas and oil from 2015 to 2050 are based on IEA’s New Policies Scenario from

the World Energy Outlook 2018 [43]. The CO2 price in 2015 of 7.7 e/ton is based on [44], and assumed

to increase to 55 e/ton in 2050 [43]. This is a conservative estimate in comparison to other similar studies.

For example, Bogdanov et al. [45] assume a CO2 price of 150 e/ton in 2050, and Zappa et al. [46] assume

a CO2 price of 120 e/ton in 2050.

We have excluded all other subsidies, taxes, and national climate goals. This is a standard assumption in

social planning, and is done in order to obtain the macroeconomic cost-optimal solution. The only policies

included are established nuclear phase-out programs (see Supplementary Materials section 4.3.). However,

the developed model tool is well suited for specific analyses of the impact of both national and Europe-wide

policies.

2.4 Input data

We have used 30 years of historic nationally aggregated hourly solar and wind capacity factors (the ratio of

actual energy generation during a given period to the potential generation if producing at nominal capacity

during the same period), spanning from 1985 - 2015 as basis to represent short-term solar and wind variability

in TIMES-Europe. Due to the significant inter-annual variability of both solar and wind, recent studies have

discussed the importance of using long and coherent wind and solar data-sets in long-term energy models

[27, 47].

The solar and wind data-sets are obtained from renewables.ninja, a web application based on the Global

Solar Energy Estimator (GSEE) model and the Virtual Wind Farm (VWF) model [16, 48]. These models

estimate hourly availability of solar and wind generation based on weather data from the MERRA reanalysis

[49], and are bias-corrected for European countries using national generation data.

The wind and solar data allow us to include the effect of solar and wind correlation across Europe in our

model. This could have significant implications on the wider system operation, with benefits of the smoothing

effect seen when aggregating solar and wind generation over large geographical areas. It could also lead

to challenges, as European-wide weather regimes could lead to longer periods of low solar and/or wind

availability. Figures S4 - S7 in the Supplementary Materials show the Spearman rank correlation coefficient

for solar PV, onshore wind and offshore wind generation calculated over the whole 30-year period.

The electric load data for all countries is retrieved from the European Network of Transmission System

Operators (ENTSO-E), and is given on an hourly basis between 2010 and 2015 [50]. The electricity load

profile is assumed to have the same shape in 2050 as it does today. This is a simplification, as it is expected

that the shape of the load profile will change e.g. due to increased penetration of electric vehicles or the

introduction of technologies for demand side flexibility [51]. The district heat load profile, which describes

the fluctuation of district heat demand within a year, is retrieved from EnergyPlan [52, 53], and is given in

hourly resolution (8760 steps per year). This is also used to create generic profiles for the model versions,
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and are used for all regions in TIMES-Europe. It must be noted that the inclusion of the district heat

network is not the main focus of this research, but implemented to capture the cross-sector effects, which

are particularly important for combined heat and power plants.

Maximum installed capacities of the various renewable energy sources as well as maximum use of biomass

and waste are presented in Table S40 - 48 in the Supplementary Materials. These constraints are added in

order to reflect both theoretical, environmental and social constraints to the expansion of renewable energies.

As an example, the assumed maximum onshore wind capacity is based on estimates of available land area

for onshore wind installations in each country, taking into account protected areas, mountainous areas etc.

[54–56].

2.5 Model versions

2.5.1 Temporal resolution

In order to explore the importance of the temporal resolution and modelling methodology in long-term

energy models, we have developed several model versions. Fundamentally, all versions work in the same way

and with the same data, but with varying temporal resolutions. This includes versions with respectively 12,

48, 192, 672 and 2016 time slices per year (see description of time-slice division in Table 1). The number of

time-slices in TIMES models usually range between 4 to 48 [29, 57], with the most detailed models having

288 time-slices [18, 29]. Our models with 672 and 2016 time-slices represent a significant increase of the

temporal resolution compared to the existing literature. The different temporal resolutions are combined

with two alternative ways of handling the uncertainty in the future supply.

Table 1: Temporal structure of the tested model versions

Model version Description

12 time-steps 3 time-steps per season, consisting of a night time-slice (00.00-07.00, 7 hours), a day
time-slice (07.00-23.00, 16 hours) and a peak time-slice (1 hour)

48 time-steps 12 time-steps per season, one representative day with two-hourly resolution per season

192 time-steps 48 time-steps per season, one average day with hourly resolution, and one peak day
with hourly resolution that contains the peak hour of the season

672 time-steps One week with hourly resolution per season, the week containing the peak hour of the
combined European load is chosen (to keep spatial and temporal correlation)

2016 time-steps One week with hourly resolution per month, the week containing the peak hour of the
combined European load is chosen (to keep spatial and temporal correlation)

2.5.2 Deterministic approach

A conventional deterministic modelling approach considers only one operational scenario, in which the solar,

wind and electricity demand profiles are based on their expected values (climatology). Consequently, the

investment decisions in a deterministic model do not take into account a range of operational situations that

can occur. This is the simplest approach followed in this paper.
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2.5.3 Stochastic approach

We apply a two-stage stochastic model [58] to provide investment decisions in TIMES-Europe that expli-

citly consider various operational situations caused by the short-term uncertainty of solar PV generation,

wind generation and electricity demand. Each uncertain parameter is represented by a set of 15 possible

realisations, called scenarios, which all are assigned the same probability of occurrence. These scenarios are

generated by a scenario generation method combining random sampling and moment matching, as described

in Section 2.5.4.

Figure 3 shows a scenario tree containing the information structure of a two-stage stochastic model. The first

stage involves investment decisions for the entire model horizon, from 2015 to 2050, which are made without

knowing the realisation of the operational scenarios. The outcome of the operational scenarios is revealed at

the second stage, where operational decisions are made for each of the scenarios and for all model periods.

Investments and operational decisions are made simultaneously through applying a multi-horizon model

structure [59], where no dependency of operational decisions between model periods is assumed. In order

to take into account the various operational scenarios in the optimisation, the stochastic model minimises

the investment costs and the average of the operational costs for all scenarios. This results in investments

that take into account the expected operational cost, and are identical and feasible for all operational

scenarios.

Figure 3: Illustration of a two-stage stochastic model with fifteen operational scenarios (adapted from [32])

2.5.4 Stochastic scenario generation

In the stochastic modelling approach, the generated scenarios describe the uncertainty of the solar and wind

availability and in addition represent realistic operational situations [31]. Our scenarios are generated through

a method that combines random sampling and moment matching [31, 35]. The technique involves:

1. Random sampling of historical days from the solar, wind and load data to construct 15 independent
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scenarios (one scenario set), where each scenario follows the temporal structure of each model version.

We sample consecutive hourly values, giving consistent daily correlations. Furthermore, we capture

correlations between the three uncertain parameters by sampling concurrent days, and spatial correla-

tion by sampling the same day for each region. Days are sampled separately for each season, assuming

no seasonal dependency, and repeat the procedure for each investment period thus also capturing

inter-annual variability.

2. Repeating this procedure 10 000 times to generate a large amount of possible scenario sets.

3. Calculating mean, variance, skewness and kurtosis (the first four moments) for the historic data and

for each of the 10 000 scenario sets.

4. Calculating the deviation of the moments of each scenario set to the historical datasets, and then

selecting the set of scenarios with the lowest deviation (best fit with the statistical properties of the

original datasets) for use in TIMES-Europe.

2.5.5 Model versions

Table 2 presents the various model versions that have been run in this study. Some of the model versions

have not been tested due to memory requirements. As the 672 and 2016 time-slice models were not solvable

on a normal laptop computer1, all model versions are run on a computer with state-of-art specifications2.

This allows a comparison of e.g. solution time between the models, and represents computational possibilities

that most likely will be the norm in the future. We also developed a model with 8760 time-slices, but were

unable to solve it due to RAM limitations. This also shows why we have to reduce the temporal resolution

in long-term energy-models to make them computationally tractable.

Table 2: Model runs in this study

Model version Deterministic Stochastic

12 time-slices X X

48 time-slices X X

192 time-slices X ×
672 time-slices X ×
2016 time-slices X ×

1Intel(R) Core(TM) i7-5600U CPU @ 2.60 GHz, 16 GB RAM
2Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, 96 GB RAM
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3 Results and discussion

In this section, we present and compare the results from the various model versions, and assess the impact of

increasing the temporal resolution or modelling with a stochastic modelling approach. The stochastic model

with 48 time-slices is used as a reference for comparison, in order to determine at which temporal resolution

a deterministic model is able to reproduce the results. First, we investigate the energy system related results,

looking at the features of a future European power system. Second, we look at the computational performance

of each model version, discussing the trade-off between model accuracy and computational effort. Finally,

we discuss the implications of our work and suggest topics to be explored for future studies.

3.1 Model performance

3.1.1 The European electricity mix

Figure 4 panel A and C show the European aggregated installed capacity and electricity generation in 2050.

The overall composition of the system is similar across all versions, dominated by large shares of onshore

wind and solar PV, but there are important differences between them.

These differences are highlighted in panel B and D of Figure 4, which show the mismatch of the installed

capacity and electricity generation in 2050 for each model version relative to the stochastic model with 48

time-slices. The deterministic models with 12, 48 and 192 time-slices overestimate the contribution from

solar and wind, investing in an additional 321 GW capacity of VRES in Det12 (∼17 % of total installed

capacity in Stoch48 ), and about 200 GW in both Det48 and Det192. Consequently, this gives 500-600

TWh (13-15% of total electricity generation) more VRES generation in 2050 in those models relative to

Stoch48. Since the deterministic model versions treat solar and wind based on their expected generation,

their availability is overestimated. The large amounts of solar and wind also leads to the 12, 48 and 192 time-

slice models underestimating the need of flexibility, with significantly lower investments in flexible natural

gas and biomass, as well as base-load nuclear (see Figure 4 panel B). This is also shown in panel D, which

shows that the mismatched generation from solar and wind in Det12, Det48 and Det192 is largely replaced

by biomass, natural gas and nuclear generation in Stoch48.

The Stoch12 model also overestimates solar PV capacity, with more than 1.1 TW of solar capacity across

Europe in 2050, which is 350 GW more than Stoch48. Furthermore, the stochastic model version works

so that the fleet of technologies invested in by the model should be able to meet the energy demand in all

scenarios, even those with unfavourable wind and solar conditions. In this case, due to the structure of the

12 time-slice model where the peak time-slice constitutes as much as 4 % of the year, this results in the

Stoch12 model investing in large amounts of natural gas to cover the peak hours in the stochastic scenarios

with low VRES availability. This leads to a total natural gas capacity of 270 GW, which is about three times

as much as in Stoch48.
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Figure 4: European aggregated installed capacity and electricity generation in 2050 and as-
sociated mismatch between model versions: Panel A shows the installed capacity in 2050, whereas
panel B shows the mismatch in installed capacity relative to the Stoch48 model. Panel C shows the electri-
city generation in 2050, and its associated mismatch in Panel D. The diamonds show the net mismatch, i.e.
the mismatch of total installed capacity or total electricity generation, and the percent mismatch relative to
the Stoch48 model is shown on the right-axis. Also note the different y-axes in the four panels. It must be
mentioned that for the stochastic model versions, the installed capacity is common for all stochastic scen-
arios, but the electricity generation changes for each scenario depending on VRES availability and the load
curve shape. Therefore, panels C and D show the average across all stochastic scenarios. The generation in
2050 shown in panel C of about 4000 TWh is larger than the demand of 3800 TWh mentioned in the text
mainly due to grid losses.
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The higher temporal resolution of the Det672 model leads to a better performance in comparison to the

other deterministic models. By modelling a full week per season, this model is able to capture periods with

low solar and wind availability, thus achieving results that are more similar to Stoch48. There is, however, a

big discrepancy in the installed capacity of solar PV and natural gas. It is interesting to notice that despite

the lower natural gas capacity, the actual electricity generation is higher in Det672 in comparison to Stoch48.

This, as was the case with Stoch12 above, has to do with the internal structure of the stochastic model.

In Stoch48, there are some scenarios with low VRES availability where additional natural gas generation is

needed, and others with high VRES variability where natural gas is less used. This leads to a wide spread of

natural gas generation across the stochastic scenarios, ranging from 82 TWh to 280 TWh. Thus, the average

natural gas generation is lower in Stoch48 than in Det672, but in some scenarios, which also determine the

installed capacity, natural gas generation is higher.

The model performing the closest to the stochastic 48 time-sliced model is the Det2016 model, with the only

big difference being less solar PV capacity in the deterministic model. There are also some small differences in

the choice of fuel in the electricity generation, but the spread of mismatched generation is reduced drastically

from Det12 to Det2016. The two models are also aligned in the share of renewables in the electricity mix,

both with a total renewables share of 82 %, with 62 % being from variable renewables.

While Figure 4 only shows the European aggregated results for 2050, figures S20 - S33 in the Supplementary

Materials show the development in installed capacity and electricity generation from 2015 to 2050 for each

country for all model versions. These figures strengthen the impression that Det672 and Det2016 perform

well in reproducing the results from Stoch48.

Figure 5: Estimated CO2 emissions from 2015 to 2050

The transition to a power system based primarily on renewable energy sources also leads to major cuts in CO2

emissions. The emission cuts range from 72 % to 88 % in the various model versions, with the low-resolution
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deterministic model generally achieving the highest emission reductions. High emission reductions are also

obtained in Stoch48, but this depends strongly on the given stochastic scenario, with emissions ranging from

190 Mton CO2 to 290 Mton CO2.

Figure S35 in the supplementary materials shows the district heat generation in 2050 for each model version.

By the middle of the century, there is still a large contribution (about 40 % in Stoch48 ) from fossil-fuel

powered combined heat and power plants and natural gas boilers for district heating. The remainder of

the demand is mostly served by electrified heating (mostly heat pumps), biomass as well as solar thermal

heating.

3.1.2 Flexibility requirements

In a future Europe with high shares of variable renewables, there is a significant need for flexibility to match

the variable renewable generation. As already discussed, the low resolution deterministic model versions (12,

48 and 192 time-slices) put too much trust in renewables to generate electricity when needed, systematically

underestimating the need for flexible and base-load generation (Figure 6 panel A). In addition to flexible

generation, additional sources of flexibility can help the integration of large shares of variable renewables.

Significant investments in the European transmission grid is seen in all model versions (Figure 6 panel B),

with more than a doubling of total interconnection capacity. Energy storage will also be an important source

of flexibility. Figure 6 panel C shows the new energy storage capacity in the various model versions. Pumped

hydro storage (PHS) utilises all its available potential in almost all model versions, and lithium-ion batteries

are also very popular. Hydrogen storage sees a very limited role in the future power sector, but this could

change if the present model is expanded to also include the transport sector.

Figure 6: Sources of flexibility: A) shows the installed capacity of baseload and flexible generation in
2050, B) shows the development of the transmission grid relative to 2015, and C) shows new storage capacity
in 2050 (i.e. not existing installed PHS capacity)
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The previous sections have shown that both Det672 and Det2016 achieve similar results as Stoch48. By

applying a test called the Value of Stochastic Solution (VSS), we can expose the resulting energy system

configuration from Det672 and Det2016 to the same short-term uncertainty as modelled in Stoch48. This

will provide a measure of the value of following a stochastic approach relative to a deterministic one [31, 60].

The VSS works by fixing the investments from a deterministic model and then running the model with

the stochastic operational scenarios. In other words, we take the investments from Det672 and Det2016,

implement them in Stoch48, and then run them with the fifteen operational scenarios without allowing

new investments. For both Det672 and Det2016, the VSS leads to infeasible solutions. The deterministic

investment strategy leads to a system that is not able to meet the demand in 14 out of 15 scenarios for

Det672 in 2050, and in 7 scenarios for Det2016. This shows that the deterministic models underestimate

the need for flexibility in comparison to the stochastic model.

A common way of ensuring enough back-up capacity in deterministic models is to use a heuristic that

limits the contribution from VRES and ensures investment in flexible generation capacity [32]. We have

tested running our deterministic models with operational peaking constraints, with the approach and results

presented in the supplementary materials. For the low temporal resolution models, adding this constraint

did not have significant impact on the results. The results are very similar to the other deterministic models,

with the exception that the peaking reserve constraint leads to more investments in natural gas capacity,

including open cycle gas turbines (OCGT). This is the cheapest capacity available, and is only invested in

to satisfy the peaking reserve constraint, but rarely used.

It does, however, make an impact for the deterministic models with higher resolution. The additional flexible

capacity in these models, leads to a feasible solution when tested for the VSS, which without the peaking

reserve constraint led to infeasible solutions. The relative VSS is found to be 6% for Det672, indicating

that the total system cost is higher for the deterministic model solution when uncertainty is present. This

is mainly due to the extra investments in OCGT capacity and the expensive use of this capacity in periods

with low solar and wind availability. This highlights the caveat of the peaking reserve approach, as the

reserve requirements are set exogenously and are not a result of endogenous model decisions. Due to memory

requirements, Det2016 proved impossible to run with additional peaking constraints on the current computer

setup. However, similar results as shown with Det672 are to be expected.

3.1.3 Costs of a highly renewable European power system

Figure 7 shows the aggregated annual costs for the European power and district heat systems in 2050, divided

into investment costs, fuel costs, O&M costs and CO2 taxes. The annual costs range from ∼150be/year to

∼200be/year depending on the model version. Due to their overestimation of the contribution from variable

renewables, Det12, Det48 and Det192 underestimate the expenditures in all cost segments. This leads to

large underestimations of total annual costs, being 30-35 be/yr (15-20%) lower than Stoch48. On the other

hand, Stoch12 overestimates the fuel and CO2 costs, mainly due to high natural gas usage, which in turn

gives annual costs about 10 be/yr (5 %) higher than Stoch48.

The closest results are achieved for Det2016 and Det672, with annual costs that deviate by respectively 1.5

and 5 billion euros per year in comparison to Stoch48 (0.8 and 2.6 % deviation). These minor deviations

occur due to slightly higher investment and O&M costs in Stoch48, which are compensated by higher fuel
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and CO2 costs in Det672 and Det2016. This is also an indication that Stoch48 invests more in a system

capable to serve the demand in all stochastic scenarios, but this additional capacity might only be used in

a couple of the scenarios. In fact, the total annual costs in Stoch48 range from 185-200 be/yr across the

scenarios, depending on VRES availability and the need to use fossil fuels (investments costs and O&M costs

are of course equal in all scenarios). On the other hand, the deterministic models only optimise on the basis

of one scenario, where it is cheaper to invest in less capacity but with a higher utilisation. However, it is this

investment strategy that leads to challenges when exposed to the variability of the operational scenarios in

the VSS tested above (section 3.1.2).

Figure 7: Average annual system costs in 2050

The maps in figure 8 show the electricity shadow price in 2050 for each country in A) Det48, B) Det672,

C) Det2016, and D) Stoch48. All these model versions are able to capture the spatial trends across Europe,

even the simple low resolution Det48 model. The outskirts of Europe generally achieve lower prices, whereas

the big load centres in the middle of Europe (e.g. France, Germany and Italy), have higher prices. This

trend occurs due to the north and south of Europe having the best resource potential for renewable energy

sources (high wind potential in the north and high solar potential in the south). A lot of renewable capacity is

therefore built in these regions, with additional investments in grid interconnections to transfer the electricity

to central Europe. The surplus of electricity thus leads to low prices in these regions, while the import

dependency of the central European countries gives higher prices. This is particularly the case in time-slices

with low availability of renewables, which leads to less cheap electricity being available for import, thus

increasing the need for more expensive fossil fuel use pressing prices upwards.

All deterministic models in Figure 8 return lower shadow prices than Stoch48. While Stoch48 estimates

the average European shadow price to be ∼61.2 e/MWh, the prices in Det48, Det672 and Det2016 range

between 57.7 to 58.7 e/MWh, corresponding to a deviation of 4-6%.
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Figure 8: Average electricity shadow prices by country in 2050 for A) Det48, B) Det672, C) Det2016, and
D) Stoch48

3.1.4 Stability

This paper uses 15 stochastic scenarios to represent the short-term variability of solar and wind generation as

well as electricity demand. It is often desirable to reduce the number of scenarios in a stochastic model due to

computational requirements, but this could give model results that depend on the scenarios rather than the

underlying data [61]. We test the in-sample stability on the stochastic model with 48 time-slices to evaluate

whether the number of scenarios used in this paper is sufficient to have a stable solution. Testing in-sample

stability involves testing if solving the stochastic model gives approximately the same objective function

value when using different scenario trees based on the same underlying data and scenario generation method

(2.5.4). This also includes assessing whether the value of the objective function is stable when increasing

the number of scenarios. However, increasing the number of scenarios is challenging, as it quickly leads

to high computational requirements. We have run 20 model instances, involving 5 runs for each of 3, 9,

15 and 30 scenarios respectively, with the results shown in Supplementary Figure S34. The value of the

objective function is generally stable from 9 to 30 scenarios. Consequently, we assume that 15 scenarios are

satisfactory for the purpose of this paper.
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3.2 Computational performance

An important discussion point is the trade-off between accuracy and computational effort in the model

versions. While stochastic models have been shown to give a more realistic representation of short-term

solar and wind variability in models with low temporal resolution, they are complicated, need intricate

preprocessing and have long run times relative to deterministic models with the same resolution (see Figure

9 and Table 3). The deterministic model version with 48 time-slices takes less than a minute to solve, whereas

the same model with a stochastic approach takes more than ten hours.

As the previous sections have shown, only the deterministic model versions with 672 and 2016 time-slices

come close to reproduce the results from Stoch48. However, Det672 has a solution time almost equal to

Stoch48, whereas Det2016 is almost 30 times longer. Given that both fail the VSS, this suggests that the

stochastic modelling approach is able to weigh up for its lower temporal resolution.

Figure 9: CPLEX time in seconds for A) each model version and B) relative to number of nonzero elements
(note the logarithmic axes)

Table 3: Computational performance of tested model versions (nonzero elements, equations and variables
are reported after aggregation)

Model
version

Time
(s)

Time
(h)

Nonzero
elements

Equations Variables

Det12 7.1 ∼0 393623 69319 80778

Stoch12 6078 ∼2 5717225 1037871 1078179

Det48 69.9 ∼0 1413852 230953 275513

Stoch48 37141 ∼10 20183347 3237170 3679885

Det192 1060 ∼0.3 5507870 879168 1053827

Det672 34606 ∼10 19079446 3022448 3631491

Det2016 1075263 ∼299 55805140 8821290 10633679
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3.3 Outlook

This paper has investigated the importance of an adequate representation of short-term solar and wind

variability in long-term energy models. We have compared a conventional deterministic approach to a

stochastic approach, and have also assessed the effect of increasing the temporal resolution. In addition, we

have discussed the introduction of a heuristic that limits the contribution of VRES, and how it can improve

the output from deterministic models. We have not, however, compared the stochastic modelling approach

to more sophisticated methods of selecting time-slices. Both Det672 and Det2016 are based on heuristic

methods, selecting a week of hourly data based on the occurrence of the combined European peak hour in

that week. Other methods could also be tested, using e.g. clustering algorithms or optimisation techniques

to better select the time-slices. This could improve the performance of the deterministic models, potentially

to the extent that it could replicate the results achieved with the stochastic model version. However,

such techniques would also add to the complexity and intricate pre-processing, which is a drawback of the

stochastic model version used in this paper. Another approach that could be further investigated is the

coupling of long-term energy models to operational power systems models. This could reduce the temporal

resolution needed in the long-term energy model, while simultaneously capturing the detailed operation of

the system.

While this paper focuses on the temporal aspects of wind and solar integration, the spatial resolution is

limited to country level. This simplification undermines how generation and demand is distributed within

each country and the bottlenecks that could occur. An example is the German power grid, where bottlenecks

between the windy north and the industrial south leads to congestion and overloading [62]. Our assessment

on a national scale could therefore underestimate necessary investment in the distribution grid, even though

our costs for cross-country transmission lines are overestimated to also take into account improvements in

the distribution grid. A better spatial representation could give important information about the placement

of new renewable capacity, to minimise land-use impacts and to avoid social conflicts [63]. Since TIMES

has been heavily used in national and sub-national studies, the present establishment of a European version

enables comparison, exchange of parameters and perhaps even coupling of models on different scales. It is

then important to remember that the present model optimises the power and district heating systems of a

collective Europe, and not each individual country.

The demand side of the energy system could be another source of flexibility to ease the integration of VRES.

In addition to energy efficiency measures, demand response (DR) could actively help matching the demand

to the available supply through shifting load in time, change load profiles or even curtail load [37]. Additional

sector coupling, not only with the district heat sector as in this paper, but also with e.g. the transport sector

could improve flexibility through intelligent EV charging or even using EV batteries as a means of storage

[64].

Finally, our results lead to a VRES share of about 60 % of the electricity generation, with a total renewable

share of about 85 %. In order to meet the 1.5 degree target, the IPCC state that the emissions must be halved

by 2030 and reach net-zero by 2050 [65]. As other sectors such as transportation and industry are harder

to decarbonise, the power sector is seen as key for cutting emissions. Therefore deeper emission reductions

in the power sector than what is achieved here would be required. Additional scenarios that require 100 %

renewable energy or zero CO2 emissions would be interesting to assess, in order to increase the VRES share

and investigate how this affects the flexibility requirements of the European power system.
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4 Conclusions

The future European power system is expected to contain large shares of variable electricity generation,

particularly from solar and wind technologies. Long-term energy system models are often used to provide

insights of power market transitions with large shares of renewables, and require therefore an appropriate

representation of short-term solar and wind variability. In this work, we have assessed the representation

of solar and wind variability in a TIMES long-term energy model of the European power and district heat

sectors towards 2050.

We have shown that an accurate representation of short-term solar and wind variability is highly important

when modelling the future European power system. When compared to a stochastic model with 48 time-

slices, deterministic models with a too coarse temporal resolution underestimate annual costs in the range

of 15-20% and overestimate the contribution from variable energy sources from 13 to 15% of total electricity

generation. Consequently, this leads to an underestimation of CO2 emissions and the required flexibility to

handle solar and wind variability.

A better approximation of the results from the stochastic 48 time-slice model is only achieved when signific-

antly increasing the temporal resolution to 672 or 2016 time-slices. The 2016 time-slice model achieves the

closest results to the stochastic 48 time-slice model, with a generation mismatch of about 5 %, and a de-

viation of annual system costs of 0.8 %. However, both the 672 and 2016 time-sliced models invest in too

little flexibility to handle the same short-term uncertainty as the stochastic model, needing an added peak-

ing constraint to achieve feasible results. In addition, while the deterministic model with 672 time-slices

takes as much time to run as the stochastic one, the 2016 time-slice model is 30 times slower. This shows

that a stochastic model version with 48 time-slices is able to weigh up for a low temporal resolution in com-

parison to very high temporal resolution deterministic models, both in terms of solution time and model

accuracy.

The choice of temporal resolution and modelling approach plays thus an important role both in model results

and insights as well as computational performance of long-term energy models, and should be carefully eval-

uated when such models are used for decision-making. When modelling an energy system consisting of large

shares of variable renewable energy sources, a stochastic modelling approach that takes into account the un-

certainty of their short-term variability is recommended, both due to its accuracy and also its computational

efficiency in comparison to high-resolution deterministic models.

Our case-study has also shown that a large share of renewable electricity generation is the most-preferred

pathway for the European power and district heat systems. This is achieved with a conservative CO2 tax,

and without emission constraints or targets for renewables share. This shows that new renewables already

are, and to an increasing extent will be, competitive with fossil fuelled power generation. Future studies

could use a stochastic long-term energy systems model to investigate such aspects and assess even more

radical transformations, considering e.g. 100 % renewable energy or zero emission scenarios. Further studies

should also assess other time-slice selection techniques to improve the deterministic model versions.
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Table S2. Energy efficiency measures 

Four energy efficiency measures in buildings are included, and are based on [10,11]. Their 

lifetime, energy savings potential and costs are shown in Table S2. Energy monitoring: 

installing an energy monitoring system, which shows the consumption for technical 

equipment, lighting, ventilation, heating etc. in the building. It also includes installing 

individual heat measurement and instructions for operation and maintenance. Insulation 

and tightening: insulation of walls, ceilings, floors and tightening of windows and air sealing 

(this measure reduces heat demand only). Technical equipment (Best available 

technology - BAT): heating systems, solar shading, building management systems, water 

treatment plans, low energy luminaires and heat recovery in ventilation systems. Energy 

management: Automatic control of lighting, heat and ventilation based on need. 

 Lifetime (years) Potential Inv. cost (NOK/kWh) 

Energy monitoring    

Existing dwellings 10 1.6 % 1.9 
New dwellings 10 1.8 % 1.5 
Commercial and public buildings 10 1 % 2 

Insulation and tightening    

Existing dwellings 30 7.7 % 16.2 
New dwellings 30 10.0 % 11.2 
Commercial and public buildings 30 3.1 % 19 

Technical equipment (BAT)    

Existing dwellings 15 2.8 % 12.5 
New dwellings 15 3.0 % 15 
Commercial and public buildings 15 1.3 % 23 

Energy management    

Existing dwellings 10 2.2 % 8.8 
New dwellings 10 3.6 % 20 
Commercial and public buildings 10 1.7 % 13 

  



Text S3. Technical Potential of Solar Thermal Collectors 

Due to their better efficiency, ability to deliver higher temperatures and lower thermal losses, 

evacuated tube collectors are likely to perform better than flat plate collectors in Arctic climate, 

and are therefore considered in this estimate. An evacuated tube collector consists of an 

absorber enclosed by a glass tube with vacuum in between. Due to virtually no heat transfer 

occurring in the vacuum, the evacuated collector has very favourable insulation capacities. 

This also means that the collector works well when there is a large difference between the 

ambient temperature and the collector temperature. 

The heat generation from a solar thermal collector can be expressed by [12]: 

𝑃𝐶 = 𝐴𝑐𝜂0(𝐺𝑑𝑖𝑟𝐾𝜃 + 𝐺𝑑𝑖𝑓𝑓𝐾𝜃=60) − 𝑎1 ∗ (𝑇𝑐 − 𝑇𝑎) − 𝑎2 ∗ (𝑇𝑐 − 𝑇𝑎)2 

where: 

𝑃𝐶 = Heat generation from solar thermal collector (W) 

𝐴𝑐 = Area of collector (m2) 
𝜂0 = Collector efficiency (-) 

𝐺𝑑𝑖𝑟 = Direct normal irradiance (W/m2) 
𝐺𝑑𝑖𝑓𝑓 = Diffuse irradiance (W/m2) 

𝐾𝜃 = Incidence angle modifier (IAM) for the angle of incidence at the given time step (-) 
𝐾𝜃=60 = IAM for diffuse irradiance (-) 

𝑎1 = First order heat loss coefficient (W/Km2) 
𝑎2 = Second order heat loss coefficient (W/K2m2) 

𝑇𝑐 = Collector temperature (°C) 

𝑇𝑎 = Ambient temperature (°C) 

This equation takes into account the heat loss from the collector, the individual contributions 

from direct and diffuse irradiance as well as the effect of a varying angle of incidence on the 

performance of the collector.  

We have retrieved collector parameters (𝜂0, 𝑎1, 𝑎2, 𝐾𝜃 and 𝐾𝜃=60) from test results on a 

commercially available collector [13]. The efficiency is found to be 0.734, the first order heat 

loss coefficient is 1.529 W/m2K and the second order heat loss coefficient is 0.0166 W/m2K. 

The incidence angle modifier (IAM) is given in table S2. 

The data for solar power generation from renewables.ninja also contained raw time-series 

data of direct normal irradiance, diffuse irradiance and ambient temperature. We have 

modified these time-series into climatological daily profiles for each season, enabling us to 

calculate daily profiles of solar thermal generation that fits with the representative time-slice 



resolution used in TIMES-Longyearbyen. Since we use the same data as for the PV panels, 

we also assume that the solar thermal collectors can be installed in the same locations. This 

means that we have a ground-mounted solar collector facing south with a tilt of 30°, and two 

residential collectors facing northwest and southeast, both with a tilt of 20°. Installation of 

residential solar thermal collectors will of course restrict the available area for residential PV 

panels, and is taken into account in the model. 

The incidence angle modifier (IAM) is used to correct a solar collector’s efficiency when the 

irradiance comes from angles that are not perpendicular to the collector. Typically, flat plate 

collectors achieve their maximum efficiency at normal irradiance, and the performance is 

reduced when the incidence angle increases. However, for evacuated tubes the maximum 

efficiency might not occur at the normal incidence angle. Due to the cylindrical shape of the 

vacuum tubes, the reflection from neighbouring tubes can increase at higher incidence angles 

and can lead to IAM factors above one.  

The IAM factor is given by the ratio of the collector efficiency at a given angle of incidence 

relative to the collector efficiency at normal irradiance: 

𝐾𝜃(𝜃𝑙, 𝜃𝑡) =
𝜂0(𝜃)

𝜂0
  

The incidence angle modifier for an evacuated tube solar collector is specified for both the 

transversal and longitudinal incidence angles, θl and θt (see [14] for illustration), where the 

overall IAM factor is the product of the two: 

𝐾𝜃(𝜃𝑙 , 𝜃𝑡) = 𝐾𝜃(𝜃𝑙, 0) ∗ 𝐾𝜃(0, 𝜃𝑡) 

The values of 𝐾𝜃(𝜃𝑙, 0) and 𝐾𝜃(0, 𝜃𝑡) are found by linear interpolation in table NN. For diffuse 

irradiance, which comes from all angles between 0 and 90, an average value of 𝐾𝜃 at 60 ° is 

used [12]. 

Table S2: Test results for the Incidence Angle Modifier (IAM) 

θ 0 ±10 ±20 ±30 ±40 ±50 ±53 ±60 ±70 ±80 ±90 

𝑲𝜽(𝜽𝒕) 1.00 1.00 1.03 1.11 1.25 1.37 1.40 1.36 1.11 0.70 0.05 

𝑲𝜽(𝜽𝒍) 1.00 1.00 1.00 0.99 0.96 0.92 0.88 0.84 0.69 0.44 0.00 

The incidence, longitudinal and transversal angles are found by the following equations [15]: 

𝜃 = arccos (cos(𝜃𝑠) ∗ cos(𝛽) + sin(𝜃𝑠) ∗ sin(𝛽) ∗ cos (𝜙𝑠 − 𝛾) 



𝜃𝑙 = arctan (
sin(𝜃𝑠) ∗ sin(𝜙𝑠 − 𝛾)

cos(𝜃)
) 

𝜃𝑡 = − arctan(tan(𝜃𝑠) ∗ cos(𝜙𝑠 − 𝛾)) − 𝛽 

where: 

𝜃 = Incidence angle 

𝜃𝑠 = Solar zenith angle 
𝜃𝑙 = Longitudinal incidence angle 

𝜃𝑡 = Transversal incidence angle 
𝛽 = Collector tilt angle 
𝜙𝑠 = Azimuth angle 

𝛾 = Collector orientation 

The zenith angle, 𝜃𝑠, is the angle between the sun and the vertical, whereas the azimuth 

angle, 𝜙𝑠, is the angle of the sun’s position on the horizontal plane. These angles are found 

by calculating the sun’s position for every hour through the representative days for each of 

the four seasons. For simplicity, we have chosen the day in the middle of each season: April 

15th (day number 105) for spring, July 16th (197) for summer, October 16th (289) for autumn 

and Jan 14th (14) for winter. A number of calculations are needed to calculate the solar zenith 

and azimuth angle, summarized in table S3 below: 

Table S3: Equations for calculating the sun’s position on the sky 

Parameter Equation Description 

Declination Angle 𝛿 = 23.45° ∗ sin [
360(284 + 𝑛)

365
] 

Angle between the equator and a straight line from the centre 

of the earth to the centre of the sun, 𝑛 is the number of a day 

in the year 

Local standard 

time meridian 
𝐿𝑆𝑇𝑀 = 15° ∗ ∆𝑇𝐺𝑀𝑇 

Reference meridian for a particular time zone, ∆𝑇𝐺𝑀𝑇 is the 

difference of the local time (LT) from Greenwich Mean Time 

(GMT) 

Equation of time 
𝐸𝑜𝑇 = 9.87 sin(2𝐵) − 7.53 cos(𝐵)

− 1.5 sin(𝐵) 

Empirical correction for the eccentricity and obliquity of the 

Earth 

Correction factor 𝐵 =
360

365
(𝑛 − 81) Correction factor 

Time correction 

factor 
𝑇𝐶 = 4(𝐿𝑂𝑁 − 𝐿𝑆𝑇𝑀) + 𝐸𝑜𝑇 

Correction factor to the local solar time to take into account 

the time zone effect, LON is the longitude of the given location  

Local solar time 𝐿𝑆𝑇 = 𝐿𝑇 +
𝑇𝐶

60
 Solar time at the given location, LT is the local time 

Hour angle 𝐻𝑅𝐴 = 15°(𝐿𝑆𝑇 − 12) 
Conversion of the local solar time to the angular position of the 

sun during the day 

Elevation angle 
α = arcsin(sin(𝛿) sin(𝜑)

+ cos(𝛿) cos(𝜑) cos(𝐻𝑅𝐴)) 

Angle between the sun and the free horizon, 𝜑 is the latitude 

of the location  



The sun’s position, i.e. zenith and azimuth angle, can then be determined by: 

𝜃𝑠 = 90° − 𝛼 

𝜙𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑠𝑖𝑛(𝛿) 𝑐𝑜𝑠(𝜑) − 𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠 (𝐻𝑅𝐴)

𝑐𝑜𝑠 (𝜃𝑠)
) 

The resulting daily profiles for each of the seasons and locations are shown in figure S5. In 

order to implement these profiles in TIMES-Longyearbyen, we have converted the 

generation profiles into availability as a unit of installed nominal capacity rather than per 

area. According to the Norwegian Water Resources and Energy Directorate, there is an 

international agreeance to use a conversion factor of 0.7 kWth/m2 [16]. 

 

Figure S5: Daily profiles for solar thermal availability 

Table S4: Average annual availability factors 

 
South, 30 ° tilt 

Northwest, 20 

° tilt 

Southeast, 20 

° tilt 

Avg. annual availability factor (%) 8.98 7.18 8.57 

  



Table S4 - Detailed results – installed capacities  

Installed capacities (MW) 

FOS 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure) 5.5 5.5 5.5      

Coal (Condensation) 5.5 5.5 5.5      

Diesel (Existing) 8.8 8.8 8.8      

Diesel (New) 
   2.0 2.0 2.0 2.0 2.6 

Gas CHP 
   3.2 3.2 3.2 3.2 2.3 

Gas Turbine 
   3.0 3.0 3.0 3.0 3.7 

Solar PV - Existing 0.1 0.1 0.1 0.1 0.1    

Solar PV - Ground 
     0.7 0.7 0.9 

Onshore wind 
 0.5 0.5 3.6 4.5 5.9 5.9 5.7 

Electric boiler 
   1.0 1.2 2.5 3.1 2.4 

Gas boiler 
   10.3 10.3 5.6 5.6 5.3 

Heat pumps 
   0.3 0.5 1.5 1.2 1.0 

Oil boiler 20.6 20.6 20.6      

Battery charge/discharge 
     0.1 0.1 0.1 

Battery storage (GWh) 
     0.0 0.0 0.0 

HYD 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure) 5.5 5.5 5.5      

Coal (Condensation) 5.5 5.5 5.5      

Diesel (Existing) 8.8 8.8 8.8      

Solar PV - Existing 0.1 0.1 0.1 0.1 0.1    

Solar PV - Ground 
   5.8 12.5 14.5 14.5 14.5 

Onshore wind 
 0.5 0.5 18.1 22.7 22.1 23.7 20.5 

Electric boiler 
   3.1 3.1 3.1 3.1 3.1 

Heat pumps 
   10.6 10.6 10.6 8.4 6.8 

Oil boiler 20.6 20.6 20.6      

Solar thermal 
      0.6 0.6 

Battery charge/discharge 
   1.5 1.8 2.1 3.4 2.7 

Hydrogen fuel cells 
   6.9 6.5 5.9 5.5 5.5 

Hydrogen storage (MWh) 
   67.4 75.6 75.6 75.6 65.4 

Battery storage (MWh) 
   6.3 8.9 13.7 17.3 14.8 

  



ISO 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure) 5.5 5.5 5.5      

Coal (Condensation) 5.5 5.5 5.5      

Diesel (Existing) 8.8 8.8 8.8      

Solar PV - Existing 0.1 0.1 0.1 0.1 0.1    

Solar PV - Ground 
   103.1 103.1 103.1 103.1 109.6 

Solar PV - Residential 
   16.8 16.8 16.8 16.8 16.8 

Onshore wind 
 1.9 2.2 125.6 125.6 123.7 123.4 109.4 

Electric boiler 
   3.1 3.1 3.1 3.1 1.8 

Heat pumps 
   10.9 10.9 10.9 8.9 7.5 

Oil boiler 20.6 20.6 20.6      

Battery charge/discharge 
   10.4 10.4 8.5 8.5 11.3 

Hydrogen electrolyser (PEM)    8.2 6.5 6.9 10.7 5.5 

Hydrogen fuel cells 
   4.2 3.4 4.0 4.0 3.1 

Hydrogen storage (GWh) 
   30.8 30.8 30.8 30.8 21.9 

Battery storage (MWh) 
   56.6 56.6 38.8 45.1 51.1 

 

Table S5 - Detailed results – energy generation  

Energy generation (GWh) 

FOS 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure)2 19/74 18/74 18/73      

Coal (Condensation) 18.1 18.1 18.1      

Diesel (Existing) 2.6 0.00 0.00      

Diesel (New) 
   0.04 0.01 0.03 0.03 0.04 

Gas CHP 
   13/34 11/30 10/28 10/25 8/22 

Gas Turbine 
   6.1 5.7 5.1 5.8 7.2 

Solar PV - Existing 0.06 0.06 0.06 0.06 0.06    

Solar PV - Ground 
     0.5 0.5 0.6 

Onshore wind 
 1.2 1.2 7.6 9.7 12.8 12.6 12.2 

Electric boiler 
   0.3 0.6 1.6 1.8 1.7 

Gas boiler 
   16.3 14.2 8.0 7.2 7.3 

Heat pumps 
   1.5 2.3 6.0 4.3 3.8 

Oil boiler 
 0.0       

Battery charge/discharge 
     0.02 0.02 0.02 

  

 
2 (Electricity/heat) 



HYD 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure) 19/74 18/74 18/73      

Coal (Condensation) 18.1 18.1 18.1      

Diesel (Existing) 2.6 0.00 0.00      

Solar PV - Existing 0.06 0.06 0.06 0.06 0.06    

Solar PV - Ground 
   1.0 2.9 3.5 2.7 2.5 

Onshore wind 
 1.2 1.2 7.6 12.9 13.3 10.3 10.1 

Electric boiler 
   6.7 10.0 9.3 7.3 6.3 

Heat pumps 
   10.8 11.3 10.3 7.3 5.8 

Oil boiler 
 0.0       

Solar thermal 
      0.2 0.2 

Battery charge/discharge 
   0.4 0.8 1.2 1.1 1.1 

Hydrogen fuel cells 
   34/34 26/26 23/23 23/23 22/22 

ISO 2015 2020 2025 2030 2035 2040 2045 2050 

Coal (Back-pressure) 19/74 18/74 18/73      

Coal (Condensation) 18.09 18.09 18.09      

Diesel (Existing) 2.61 0.00 0.00      

Solar PV - Existing 0.06 0.06 0.06 0.06 0.06    

Solar PV - Ground 
   32.1 32.2 29.8 36.8 27.0 

Solar PV - Residential 
   6.46 6.86 6.78 7.02 6.33 

Onshore wind 
 4.08 4.82 42.7 34.2 36.5 37.1 32.3 

Electric boiler 
   9.66 10.70 9.53 7.78 7.21 

Heat pumps 
   24.5 22.1 21.2 17.0 14.9 

Oil boiler 
 0.0       

Battery charge/discharge 
   10.6 10.3 7.9 9.0 8.9 

Hydrogen electrolyser (PEM)    -51 -41 -42 -55 -38 

Hydrogen fuel cells 
   11/11 8.7/8.7 9/9 12/12 8/8 
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Figure S9 – Comparison of chosen stochastic profiles to historic profiles 

a) Comparison of mean profiles 

 

b) Comparison of variance profiles: 

 

  



c) Comparison of skewness profiles 

 

d)  Comparison of kurtosis profiles 

 

  



Figure S10 – Comparison of probability density functions for onshore wind and Solar PV 

generation 

 

Figure S10 shows that the pdfs are very well captured by our scenario generation method. 

The figure also shows some interesting features of solar and wind generation. While pdfs of 

wind speed tend to follow the Weibull distribution, the pdf of the electricity generation is 

largely impacted by the wind turbine power curve (left panel). A wind turbine does not 

generate electricity below a given cut-in wind speed (3 m/s for the onshore wind turbine in 

our case), explaining the high probability density of zero electricity generation. Similarly, 

above nominal wind speed (12 m/s) the electricity generation is constant at rated power, 

thus explaining the increased probability density at a normalised generation of 1. 

The pdf of solar PV generation (right panel) is largely impacted by nighttime and the polar 

night, which leaves Longyearbyen without any sunlight for large portions of the year and 

leads to a very high probability density of no solar PV generation. Furthermore, solar PV 

generation is characterised by a relatively regular diurnal behaviour, with peak generation 

being achieved at solar noon. Due to the peak power of solar PV panels being registered 

under Standard Test Conditions (1000 W/m2, 25 °C cell temperature and 1.5 AM), such 

power levels are not reached in Longyearbyen. 

  



Figure S11 – Comparison of autocorrelation function for onshore wind and solar PV 

generation in the 192 time-slice model 

 

Figure S12 – Comparison of autocorrelation function for onshore wind and solar PV in the 

672 time-slice model 
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1. TIMES-Europe 

1.1. Overall Structure 

TIMES-Europe focuses on the European power and district heating systems. It covers 29 

regions/countries in Europe, each represented as one node in the model network. The countries 

included are the EU-28 countries plus Norway and Switzerland, with the exception of Cyprus and 

Iceland as they presently are not connected to the European power system. All included countries 

are listed together with their abbreviations in Supplementary Table S1. 

The base-year of the model is chosen as 2015, and the horizon is 2050. The discount rate is set 

to 4 %, based on recommendations from the Norwegian government in socioeconomic studies 

[1]. 

Supplementary Table S1: Countries included in TIMES-EUROPE  

Country Code Country Code Country Code 

Austria AT France FR The Netherlands NL 

Belgium BE Greece GR Norway NO 

Bulgaria BG Croatia HR Poland PL 

Switzerland CH Hungary HU Portugal PT 

Czech Republic CZ Ireland IE Romania RO 

Germany DE Italy IT Sweden SE 

Denmark DK Lithuania LT Slovenia SI 

Estonia EE Luxembourg LU Slovakia SK 

Spain ES Latvia LV United Kingdom UK 

Finland FI Malta MT   

1.2. Demand Projections 

Future projections of electricity and district heat demand are supplied exogenously to TIMES-

Europe, and are one of the most important drivers of model results. All demand projections for the 

EU-28 countries are retrieved from the European Commission’s Reference Scenario 2016 [2]. 

Norway’s demand projections are based on statistics and projections from Norwegian authorities 

for 2030 ([2–4]), fitted to the demand growth seen in Sweden in the EU Reference Scenario. The 

same procedure was followed in the case of Switzerland (based on [5–7]), using the relative 

growth in Austria as reference. 

Supplementary Table S2 and S3 show the electricity and district heat demand projections per 

country towards 2050. The aggregated electricity demand increases by 25 % between 2015 and 

2050, whereas the district heat demand increases by 8 %.  
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Supplementary Table S2: Electricity demand projection per country 

 
2015 2020 2025 2030 2035 2040 2045 2050 

AT 63.2 67.2 69.7 72.5 74.7 77.7 81 82.8 

BE 81.8 84 85.4 89 91.9 97.3 103.9 108.1 

BG 27.7 29.1 30.2 31.1 31.7 32.8 34 35.6 

CH 63.4 66.3 68.8 70.8 72.7 75.2 78.6 81.6 

CZ 58.3 61 64.1 66.1 68.9 71.8 75.7 79.1 

DE 522 530 545 559 562 566 573 580 

DK 31.8 32.8 34.5 35.7 37.8 39.8 42.2 44.5 

EE 7.1 7.6 7.9 8.3 8.6 8.9 9.4 9.8 

ES 233 247 249 257 263 270 279 291 

FI 78.9 79.7 82.4 83.9 86.3 88.8 92.6 96.1 

FR 439 452 458 469 489 509 527 548 

GR 51.1 53.3 52 50.5 52.9 54.3 55.2 56.4 

HR 15.3 16.2 16.2 16.4 17.1 17.9 19.1 20.5 

HU 34.6 35.9 38.2 39.1 40.6 42.9 45.6 47.2 

IE 24.5 26.2 27.3 28.1 29.3 30.6 32.1 33.9 

IT 294 304 306 314 336 359 378 395 

LT 9.7 10.3 10.4 10.2 10.3 10.5 11.2 11.7 

LU 6.5 6.9 7.5 8.3 9.3 10.4 11.3 12 

LT 6.6 7.2 7.6 8.1 8.5 9 9.5 9.9 

MT 1.9 2.3 2.5 2.6 2.6 2.8 3 3.1 

NL 105 111 114 116 119 123 127 133 

NO 123 129 133.4 132 135 139 146 151 

PL 128 142 156 168 177 186 194 202 

PT 45 47.1 47.7 47.8 48.5 49.6 50.5 51 

RO 42.8 47.2 49.2 51.1 53.3 56.3 59.4 62.3 

SE 129 135 140 144 148 153 160 166 

SL 12.8 13.5 14.7 15.1 15.4 16 16.6 17.2 

SK 25.8 27.1 29.4 31.1 32.2 33 33.7 34.2 

UK 322 335 341 356 372 395 421 438 

Total 2984 3106 3188 3281 3394 3526 3670 3801 
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Supplementary Table S3: District heat demand projection per country 

 
2015 2020 2025 2030 2035 2040 2045 2050 

AT 23.4 22.2 23.8 24.9 25.2 25.7 25.7 25.0 

BE 6.6 7.1 7.9 8.6 9.2 10.0 10.5 10.9 

BG 9.8 10.1 10.8 11.2 10.7 10.7 10.6 10.6 

CH 5.1 5.6 6.1 6.6 6.6 6.8 6.8 6.6 

CZ 24.4 26.6 28.1 28.4 28.8 28.9 28.6 29.0 

DE 115.0 114.0 120.0 122.0 116.0 119.0 120.0 118.0 

DK 29.7 29.2 29.1 29.9 29.8 29.4 28.9 29.6 

EE 5.6 6.0 6.0 6.1 6.2 6.2 6.2 6.2 

ES 0.1 1.4 3.5 6.8 8.5 10.2 8.8 8.5 

FI 48.2 50.2 49.0 45.8 44.4 44.3 44.7 45.6 

FR 42.5 39.6 40.7 41.0 43.9 45.5 46.2 46.8 

GR 0.5 0.6 0.7 0.8 1.0 1.2 1.1 1.2 

HR 2.6 2.8 3.0 3.2 3.3 3.6 3.7 3.7 

HU 11.5 11.7 10.8 11.8 11.0 11.2 11.8 12.0 

IE 0.0 0.2 0.4 0.7 1.0 1.3 1.2 1.3 

IT 41.8 44.2 45.4 45.7 42.3 43.4 42.5 42.8 

LT 10.1 10.6 10.8 9.9 9.1 9.2 9.2 9.1 

LU 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 

LT 6.1 6.7 6.7 6.7 6.6 6.6 6.9 6.8 

MT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NL 23.7 25.1 26.9 28.6 27.9 29.0 29.4 29.4 

NO 4.8 4.8 5.0 4.9 5.1 5.2 5.5 5.8 

PL 70.5 80.8 79.3 91.3 97.3 106.0 105.0 106.0 

PT 3.8 4.3 3.9 5.5 4.8 4.7 4.3 4.2 

RO 17.4 18.9 20.0 20.9 21.8 22.7 23.8 24.7 

SE 51.4 51.4 53.1 51.8 53.8 55.7 58.7 61.3 

SL 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 

SK 8.4 9.5 9.6 9.4 9.2 9.0 8.8 8.7 

UK 14.7 15.6 16.3 17.8 18.7 15.3 14.3 15.2 

Total 608 603 620 644 646 664 667 673 
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2. Input data 
2.1. Solar and wind data 

We have used 30 years of hourly solar and wind availability data (capacity factors), spanning from 

1985 – 2015. These datasets are obtained from renewables.ninja, a web application based on the 

Global Solar Energy Estimator (GSEE) model and the Virtual Wind Farm (VWF) model [8,9]. 

Supplementary Figure S1, S2 and S3 show maps of the average national capacity factors for the 

whole 30-year period for solar, onshore wind and offshore wind respectively. The maps show that 

there are large geographical variations within Europe. 

Currently Malta has no onshore wind capacity installed, and no wind data was thus available. Due 

to Malta’s proximity to Italy, we have assumed the onshore wind capacity factor for Malta to be 

equal to that of Italy. In addition, Slovenia has only about 6 MW installed capacity of onshore wind 

power, with an annual capacity factor of only 8.6 %. Even though they have no current plans to 

build more onshore wind in Slovenia, this capacity factor could easily be increased in the future. 

For the long-term data, the annual capacity factor from Hungary is therefore used to scale the 

hourly production curve from Slovenia.  

 

Supplementary Figure S1: Average national solar PV capacity factor 
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Supplementary Figure S2: Average onshore wind capacity factor 

 

Supplementary Figure S3: Average offshore wind capacity factor 
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A future highly interconnected Europe could benefit from the smoothing effect seen when 

aggregating solar and wind generation over large geographical areas [10].  

Supplementary Figure S4 and S5 show the Spearman rank correlation coefficients for respectively 

onshore and offshore wind generation in the 29 countries in TIMES-Europe, based on 30 years of 

hourly data. The countries are sorted by latitude, which shows that the correlation coefficients are 

generally higher for neighbouring countries or countries in close proximity. As an example, wind 

generation in Latvia and Lithuania shows a strong correlation (0.86), whereas the correlation 

between e.g. Latvia and Portugal is very low (0.00). Note that the correlation between Italy and 

Malta is 1.00 in the onshore and offshore wind cases, since, as already mentioned, the Italian data 

is used for Malta.  

Because of the easy recognisable shape of solar generation, with a peak during solar noon, the 

Spearman rank factors for solar PV are generally high (note that the correlation factors for solar 

PV also includes nighttime, which increases the correlation factors). 

Since high wind speeds usually occur during cloudy skies and low solar irradiance, wind speed 

and solar radiation are somewhat negatively correlated. Supplementary Figure S7 shows the 

correlation coefficients between wind and solar generation, which is negatively correlated in 

almost all cases. 
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2.2. Load data 

The hourly load of electricity is based on real data for all 29 countries from the European Network 

of Transmission System Operators for Electricity (ENTSO-E). We have used six years of hourly 

data between 2010 and 2015 to provide load profiles used in TIMES-Europe. Figure S8 shows an 

example of a representative load profile for a typical winter-day in Norway. The load data is also 

used to generate load profiles for the stochastic scenarios. 

 
Supplementary Figure S8: Example of week of electricity demand in Norway (18.24. January 2010) 

The load profile for heat demand is based on a generic profile based on EnergyPlan [11], shown 

in Supplementary Figure S9, and is used for all model regions in TIMES-Europe. This profile is 

scaled down to representative profiles used in the models with lower temporal resolution. 

 
Supplementary Figure S9: Hourly heat demand profile from EnergyPlan 
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3. Technological parameters and cost assumptions 
This chapter gives an overview of the various energy resources and technologies modelled in 

TIMES-Europe, their technological parameters and cost assumptions.  

Currency conversions and inflation figures are retrieved from Norges Bank [12,13], and are used 

to convert costs to Euros and to the base year of 2015 when necessary. 

3.1. Fossil Fuels 

Import prices for coal, natural gas and oil from 2010 to 2050 are shown in Supplementary Figure 

S10 and Supplementary Table S4, and are based on the New Policies Scenario from the World 

Energy Outlook 2018 [14].  

 
Supplementary Figure S10: Fossil fuel price assumptions 

Supplementary Table S4: Fossil fuel import prices 

€/MWh  2015 2020 2025 2030 2035 2040 2045 2050 

Coal  12.7 12.4 12.0 12.4 12.6 12.7 12.4 12.1 

Natural Gas  21.2 24.9 28.5 30.0 31.5 32.9 31.9 31.0 

Oil  34.3 46.1 58.0 63.3 69.2 73.8 71.5 69.3 

CO2 (€/ton)1   7.7 16.4 25 31 37 43 49 55 
 

 

CO2 emissions related to the use of fossil fuels are reported on the import processes of the 

respective fuels. We have assumed emission factors of 340 tonne CO2/GWh for coal, 202 tonne 

CO2/GWh for natural gas, and 264 tonne CO2/GWh for oil. 

 

 

1 The CO2 price in 2015 is based on [72], and the projection towards 2040 is based on the New Policies 
Scenario from the World Energy Outlook 2018 and extrapolated to 2050. 
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3.1.1. Conventional generators 
The tables below show the technological parameters and costs assumed for conventional fossil-

based generators.  

Supplementary Table S5: Techno-economic assumptions for coal-fired power plants 

Coal-fired Power Plant 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 [15] 

Availability Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 [15] 

Investment Cost (k€/MW) 1670 1670 1670 1670 1670 1670 1670 1670 1670 [15] 

O&M Cost (k€/MW) 42 42 42 42 42 42 42 42 42 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 [15] 

Technical Lifetime (years) 40 40 40 40 40 40 40 40 40 [15] 

 

Supplementary Table S6: Techno-economic assumptions for combined cycle gas power plants 

Gas power plant (CCGT) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.58 0.6 0.62 0.62 0.62 0.62 0.62 0.63 0.63 [15] 

Availability Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 [15] 

Investment Cost (k€/MW) 887 887 887 887 887 887 887 887 887 [15] 

O&M Cost (k€/MW) 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 [15] 

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [15] 

 

Supplementary Table S7: Techno-economic assumptions for open cycle gas power plants 

Gas power plant (OCGT) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.4 0.4 0.4 0.4 0.43 0.43 0.44 0.44 0.45 [15] 

Availability Factor 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 [15] 

Investment Cost (k€/MW) 574 574 574 574 574 574 574 574 574 [15] 

O&M Cost (k€/MW) 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 [15] 

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [15] 

 

Supplementary Table S8: Techno-economic assumptions for nuclear power plants 

Nuclear power plants 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 [15] 

Availability Factor 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 [15] 

Investment Cost (k€/MW) 4930 4694 4537 4407 4276 4120 3963 3937 3911 [15] 

O&M Cost (k€/MW) 108 103 99 97 94 90 87 86 86 [16] 

Variable Cost (ex. Fuel) (k€/GWh) 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 [16] 

Fuel cost (k€/GWh) 2.0 2.3 2.7 3.1 3.9 4.7 5.5 6.6 7.8 [15] 

Technical Lifetime (years) 60 60 60 60 60 60 60 60 60 [16] 
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3.1.2. Combined heat & power 

The tables below show the technological parameters and costs assumed for fossil-based 

combined heat and power (CHP) plants. The ratio between heat and electricity generation is 

reflected in the “heat to power ratio”, whereas the coefficient of electricity to heat (CEH) is a 

parameter that defines the slope on the iso-fuel line between full condensing mode and full CHP 

mode [17]. 

Supplementary Table S9: Techno-economic assumptions for gas-fired CHP plants 

CCGT CHP  2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Electrical Efficiency 0.45 0.45 0.46 0.46 0.47 0.47 0.48 0.48 0.49 [15] 

Availability Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 [15] 

Heat to Power Ratio 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 [15] 

Coefficient of Electricity to Heat 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 - 

Investment Cost (k€/MW) 1053 1053 1043 1038 1033 1028 1022 1017 1012 [15] 

Fixed O&M Costs (k€/MW) 42.8 42.8 42.4 42.2 42.0 41.8 41.6 41.4 41.2 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 [15] 

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [15] 

 

Supplementary Table S10: Techno-economic assumptions for coal-fired CHP plants 

Coal CHP 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.39 0.39 0.41 0.41 0.42 0.42 0.43 0.43 0.43 [15] 

Availability Factor 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 [15] 

Heat to Power Ratio 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 [15] 

Coefficient of Electricity to Heat 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 - 

Investment Cost (k€/MW) 2117 2117 2117 2117 2117 2117 2117 2117 2117 [15] 

Fixed O&M Costs (k€/MW) 42 42 42 42 42 42 42 42 42 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 [15] 

Technical Lifetime (years) 35 35 35 35 35 35 35 35 35 [15] 

 

 

Supplementary Table S11: Techno-economic assumptions for waste-fired CHP plants 

Waste CHP 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.27 0.27 0.31 0.31 0.34 0.34 0.37 0.37 0.42 [15] 

Availability Factor 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 [15] 

Heat to Power Ratio 2.3 2.3 1.9 1.9 1.6 1.6 1.4 1.4 1.1 [15] 

Coefficient of Electricity to Heat 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 - 

Investment Cost (k€/MW) 6341 6341 5872 5669 5465 5272 5079 4907 4735 [15] 

Fixed O&M Costs (k€/MW) 198 198 184 177 171 165 159 154 148 [15] 

Variable Cost (ex. Fuel) (k€/GWh) 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 [15] 

Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 
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3.1.3. Fossil heat generation 

Supplementary Table S12: Techno-economic assumptions for natural gas boilers 

Natural Gas Boiler 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 [18] 

Availability Factor 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 [18] 

Investment Cost (k€/MW) 134 134 134 134 134 134 134 134 134 [18] 

Fixed O&M Costs (k€/MW) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 [18] 

Variable costs (ex. Fuel) (k€/GWh) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 [18] 

Technical Lifetime 20 20 20 20 20 20 20 20 20 [18] 

 

Supplementary Table S13: Techno-economic assumptions for oil boilers 

Oil Boiler 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 [18] 

Availability Factor 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 [18] 

Investment Cost (k€/MW) 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 [18] 

Fixed O&M Costs (k€/MW) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 [18] 

Variable costs (ex. Fuel) (k€/GWh) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 [18] 

Technical Lifetime 20 20 20 20 20 20 20 20 20 [18] 

 

Supplementary Table S14: Techno-economic assumptions for waste boilers 

Waste Boiler 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 [18] 

Availability Factor 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 [18] 

Investment Cost (k€/MW) 2855 2620 2593 2567 2541 2515 2515 2515 2515 [18] 

Fixed O&M Costs (k€/MW) 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 [18] 

Variable costs (ex. Fuel) (k€/GWh) 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 [18] 

Technical Lifetime 20 20 20 20 20 20 20 20 20 [18] 

 

3.2. Renewable Energy Resources 

The tables below show the technological parameters and costs assumed for renewable energy 

resources. 

The investment cost for solar PV, onshore- and offshore wind have been split into three cost 

classes, respectively a low, medium and high cost class. These cost classes are introduced to 

reflect that various locations are available for installations of renewable technologies, with 

associated varying costs. For example for offshore wind, the water depth plays an important part 

in the cost of the installations. Near-shore offshore wind turbines, often bottom-fixed, are cheaper 

than floating wind turbines far offshore. This is also reflected in the maximum technical potential 

of each of these renewable resources, which for simplicity is split evenly amongst the three cost 

classes. 
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3.2.1. Renewable Electricity Generation 

Supplementary Table S15: Techno-economic assumptions for onshore wind – low cost class 

Onshore wind - low 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1090 1090 1040 1010 980 960 940 930 920 [19] 

O&M Cost (k€/kWh) 32.7 32.7 31.2 30.3 29.4 28.8 28.2 27.9 27.6 [19] 

Technical Lifetime (years) 20 20 22 22 25 25 25 25 25 [15] 

Supplementary Table S16: Techno-economic assumptions for onshore wind – medium cost class 

Onshore wind - medium 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1350 1350 1290 1250 1210 1190 1170 1150 1130 [19] 

O&M Cost (k€/kWh) 40.5 40.5 38.7 37.5 36.3 35.7 35.1 34.5 33.9 [19] 

Technical Lifetime (years) 20 20 22 22 25 25 25 25 25 [15] 

Supplementary Table S17: Techno-economic assumptions for onshore wind – high cost class 

Onshore wind - high 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1850 1850 1760 170 1660 1630 1600 1580 1560 [19] 

O&M Cost (k€/kWh) 55.5 55.5 52.8 51.1 49.8 48.9 48 47.4 46.8 [19] 

Technical Lifetime (years) 20 20 22 22 25 25 25 25 25 [15] 

 

Supplementary Table S18: Techno-economic assumptions for offshore wind – low cost class 

Offshore wind - low 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 3500 3500 2870 2720 2570 2500 2430 2380 2330 [19] 

O&M Cost (k€/kWh) 70 70 57.4 54.4 51.4 50 48.6 47.6 46.6 [19] 

Technical Lifetime (years) 20 20 25 25 30 30 30 30 30 [15] 

Supplementary Table S19: Techno-economic assumptions for offshore wind – medium cost class 

Offshore wind - medium 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 3600 3600 2950 2800 2650 2570 2490 2440 2390 [19] 

O&M Cost (k€/kWh) 72 72 59 56 53 51.4 49.8 48.8 47.8 [19] 

Technical Lifetime (years) 20 20 25 25 30 30 30 30 30 [15] 

Supplementary Table S20: Techno-economic assumptions for offshore wind – high cost class 

Offshore wind - high 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 5500 5500 4510 4275 4040 3925 3810 3735 3660 [19] 

O&M Cost (k€/kWh) 110 110 90.2 85.5 80.8 78.5 76.2 74.7 73.2 [19] 

Technical Lifetime (years) 20 20 25 25 30 30 30 30 30 [15] 

Supplementary Table S21: Techno-economic assumptions for solar PV – low cost class 

Solar PV - low 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1600 1020 790 695 600 525 450 410 370 [19] 

O&M Cost (k€/kWh) 27.2 17.34 13.43 11.815 10.2 8.925 7.65 6.97 6.29 [19] 
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Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 

Supplementary Table S22: Techno-economic assumptions for solar PV – medium cost class 

Solar PV - medium 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1734 1140 880 775 670 590 510 460 410 [19] 

O&M Cost (k€/kWh) 29.5 19.4 15.0 13.2 11.4 10.0 8.7 7.8 7.0 [19] 

Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 

Supplementary Table S23: Techno-economic assumptions for solar PV – high cost class 

Solar PV - high 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1960 1360 1050 925 800 700 600 545 490 [19] 

O&M Cost (k€/kWh) 33.3 23.1 17.9 15.7 13.6 11.9 10.2 9.3 8.3 [19] 

Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 

 

 

The cost of hydropower is difficult to determine, as estimates from the literature vary considerably. 

Investment costs depend largely on the size of the project, with costs ranging from as low as 770 

€2015/kW to about 7960 €2015/kW [18,20–23]. Therefore, the cost of hydropower is split into three 

cost classes for hydropower plants with reservoirs, and one cost class for run-of-river hydropower. 

Supplementary Table S24: Techno-economic assumptions for hydropower with reservoir (low cost class) 

Hydropower – low 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 1740 1740 1740 1740 1730 1730 1730 1730 1730 [19] 

O&M Cost (k€/MW) 17 17 17 17 17 17 17 17 17 [19] 

Technical Lifetime (years) 60 60 60 60 60 60 60 60 60 [15] 

Supplementary Table S25: Techno-economic assumptions for hydropower with reservoir (medium cost class) 

Hydropower – medium 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 3500 3500 3500 3498 3490 3485 3480 3475 3470 [19] 

O&M Cost (k€/kWh) 18 18 18 17 17 17 17 17 17 [19] 

Technical Lifetime (years) 60 60 60 60 60 60 60 60 60 [15] 

Supplementary Table S26: Techno-economic assumptions for hydropower with reservoir (high cost class) 

Hydropower - high 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 5000 5000 5000 4985 4980 4975 4970 4965 4960 [19] 

O&M Cost (k€/kWh) 25 25 25 25 25 25 25 25 25 [19] 

Technical Lifetime (years) 60 60 60 60 60 60 60 60 60 [15] 

Supplementary Table S27:Techno-economic assumptions for run-of-river hydropower 

Hydropower (Run-of-river) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 3000 3000 3000 2995 2990 2985 2980 2975 2970 [19] 

O&M Cost (k€/kWh) 15 15 15 15 15 15 15 15 15 [19] 
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Technical Lifetime (years) 60 60 60 60 60 60 60 60 60 [15] 

Supplementary Table S28: Techno-economic assumptions for concentrated solar power (CSP) 

Concentrated Solar Power 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 5670 5280 4070 3690 3310 3160 3010 2945 2880 [19] 

O&M Cost (k€/kWh) 96 90 69 46 56 14 51 14 49 [19] 

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [19] 

Supplementary Table S29: Techno-economic assumptions for biomass power plants 

Biomass Power Plant 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 0.34 0.34 0.35 0.35 0.36 0.37 0.38 0.38 0.38 [15] 

Availability Factor (hours) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 [15] 

Investment Cost (k€/MW) 3014 3014 2733 2603 2472 2357 2242 2138 2034 [15] 

O&M Cost (k€/MW) 66 66 60 57 54 52 49 47 45 [15] 

Variable Cost (ex. Fuel) (€/kWh) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 [15] 

Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 

Supplementary Table S30: Techno-economic assumptions for biomass-fired CHP plants 

Biomass CHP 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 30 30 30 30 30 30 30 30 30 [15] 

Availability Factor 0.64 0.65 0.675 0.675 0.675 0.675 0.725 0.725 0.725 [15] 

Heat to Power Ratio 2 2 2 2 2 2 2 2 2 [15] 

Coefficient of Electricity to Heat 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 - 

Investment Cost (k€/MW) 3600 3600 3330 3255 3180 3115 3050 2980 2910 [19] 

Fixed O&M Costs (k€/MW) 72 72 66.6 65.1 63.6 62.3 61 59.6 58.2 [19] 

Variable costs (ex. Fuel) (k€/GWh) 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 [15] 

Technical Lifetime (years) 25 25 25 25 25 25 25 25 25 [15] 

Supplementary Table S31: Techno-economic assumptions for geothermal hydrothermal 

Geothermal hydrothermal 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 3540 3540 3350 3250 3150 3085 3020 2965 2910 [19] 

O&M Cost (k€/kWh) 71 71 67 65 63 62 60 59 58 [19]  

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [15] 

Availability Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 [15] 

Supplementary Table S32: Techno-economic assumptions for enhanced geothermal systems (EGS) 

Geothermal EGS 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 11790 11790 11420 11130 10840 10690 10540 10370 10200 [19] 

O&M Cost (k€/kWh) 236 236 228 223 217 214 211 207 204 [19]  

Technical Lifetime (years) 30 30 30 30 30 30 30 30 30 [15] 

Availability Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 [15] 

Supplementary Table S33: Techno-economic assumptions for wave power 

Wave Power 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 
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Investment Cost (k€/MW) 7910 7910 6310 5815 5320 4680 4040 3640 3240 [19] 

O&M Cost (k€/kWh) 316 316 252 233 213 187 162 146 130 [19]  

Technical Lifetime (years) 20 20 20 20 20 20 20 20 20 [15] 

Availability Factor (%) 0.2 0.2 0.23 0.26 0.28 0.3 0.32 0.34 0.36 [15] 

 

Supplementary Table S 34: Techno-economic assumptions for tidal power 

Tidal Power 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 6160 6160 4920 4530 4140 3645 3150 2835 2520 [19] 

O&M Cost (k€/kWh) 400 400 320 294 269 237 205 184 164 [19]  

Technical Lifetime (years) 20 20 20 20 20 20 20 20 20 [15] 

Availability Factor (%) 0.34 0.34 0.37 0.39 0.4 0.41 0.42 0.44 0.45 [15] 

3.2.2. Renewable Heat Generation 

Supplementary Table S35: Techno-economic assumptions for geothermal heat pumps 

Geothermal heat pump 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Seasonal Performance Factor (SPF) 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 [18] 

Availability Factor 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 [18] 

Investment Cost (k€/MW) 1382 1268 1205 1141 1078 1015 1322 1322 1322 [18] 

Fixed O&M Costs (k€/MW) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 [18] 

Variable costs (ex. Fuel) (k€/GWh) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 [18] 

Technical Lifetime 20 20 20 20 20 20 20 20 20 [18] 

Supplementary Table S36: Techno-economic assumptions for solar thermal collectors 

Solar thermal collector 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Investment Cost (k€/MW) 322.3 295.7 256 216 176 136.0 136.0 136.0 136.0 [18] 

Fixed O&M Costs (k€/MW) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 [18] 

Technical Lifetime 25 25 25 25 25 25 25 25 25 [18] 

Supplementary Table S37: Techno-economic assumptions for biomass boilers 

Biomass boiler 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 90 90 90 90 90 90 90 90 90 [18] 

Availability Factor 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 [18] 

Investment Cost (k€/MW) 728.2 668.1 664.8 661.4 658.1 654.8 697.6 697.6 697.6 [18] 

Fixed O&M Costs (k€/MW) 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 [18] 

Variable costs (ex. Fuel) (k€/GWh) 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 [18] 

Technical Lifetime 15 15 15 15 15 15 15 15 15 [18] 

Supplementary Table S38: Techno-economic assumptions for electric boilers 

Electric Boiler 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency (%) 98 98 98 98 98 98 98 98 98 [18] 

Availability Factor (-) 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 [18] 

Investment Cost (k€/MW) 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 [18] 
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Fixed O&M Costs (k€/MW) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 [18] 

Technical Lifetime (years) 20 20 20 20 20 20 20 20 20 [18] 

Supplementary Table S39: Techno-economic assumptions for electric heat pumps 

Electric Heat Pump 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Seasonal Performance Factor (SPF) 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 [18] 

Availability Factor (-) 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 [18] 

Investment Cost (k€/MW) 1027 942 895 848 801 753 753 753 753 [18] 

Fixed O&M Costs (k€/MW) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 [18] 

Variable costs (ex. Fuel) (k€/GWh) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 [18] 

Technical Lifetime 15 15 15 15 15 15 15 15 15 [18] 
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3.2.3. Renewables maximum potential 
Maximum theoretical capacities for renewable energy technologies are used as an input to TIMES-

Europe in order to limit the maximum installed capacities of a certain technology in a given country 

based on technical, environmental or political constraints. 

Maximum installed onshore wind capacity (see Supplementary Figure S11 and Supplementary 

Table S40)  is based on estimates of available land area for onshore wind installations in each 

country, taking into account protected areas, mountainous areas etc. [24–26]. The available 

installed capacity is further found by multiplying the available land area with a power density of 

3 MW/km2. The maximum potential of electricity generation is estimated by using the average 

capacity factor from Renewables.ninja and the available maximum installed capacity. 

Offshore wind is estimated in a similar matter. We have used available offshore area for wind 

energy farms within national jurisdictions, multiplied by a higher capacity density of 15 MW/km2 

(reflecting that turbines are generally bigger offshore) [27,28].  

Solar PV combines both utility scale and rooftop PV, and is based on [29]. Solar CSP with storage 

is assumed only available in countries with high solar irradiation, respectively Spain (158 GW), 

Portugal (22 GW), Italy (16 GW), Greece (5 GW) and Malta (0.4 GW) [30]. Pfenninger et al. [31] 

found that with current thermal storage technology, solar CSP can act as a dispatchable or base-

load capable technology in parts of the world, and is therefore treated as such in TIMES-Europe. 

The capacity factor of all CSP plants is assumed to be 41 %, modelled after the existing Andasol 

power plant in Spain [32]. This is a rather conservative estimate, e.g. [30] uses a 55 % capacity 

factor. 

New regulated hydropower is based on [33], whereas small run-of-the-river hydro is based on [34]. 

The use of biomass and waste is based on [35–38], using scenarios with a “sustainable theoretical 

potential for biomass”. Geothermal electricity generation is split into two cost classes, representing 

hydrothermal resources and enhanced geothermal systems (EGS). Their maximum theoretical 

potentials are based on [39], where the potential in 2030 is allocated to hydrothermal systems 

while the potential in 2050 is EGS (GEOELEC assumes that EGS is economically competitive in 

2050, thus becoming widely available and therefore drastically increasing the potential). Estimates 

of the theoretical potential for tidal and wave is estimated based on the coastline length of each 

country [40] through the procedures proposed by Jacobson et al. and Gunn & Stock-Williams 

[29][41]. The potential for new pumped hydro storage (PHS) plants is based on [42]. Here we use 

the T1 scenario, in which two reservoirs already exists with sufficient height difference and with a 

distance of maximum 5 kilometers. 
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Supplementary Figure S11: Onshore wind maximum installed capacity (GW) 

Supplementary Table S40: Onshore wind maximum potential capacity and generation 

Onshore Wind 

Max. Theoretical Potential (GW) Max. Generation Potential (TWh) 

AT 12 IT 49 AT 27.9 IT 84 

BE 14 LT 2 BE 29.9 LT 3.8 

BG 8.8 LU 2 BG 17.8 LU 4.2 

CH 1 LV 51 CH 1.7 LV 112 

CZ 87 MT 0.1 CZ 170 MT 0.24 

DE 182 NL 56 DE 308 NL 120.3 

DK 85 NO 7 DK 193 NO 17.4 

EE 66 PL 218 EE 141.4 PL 470.6 

ES 383 PT 122 ES 895 PT 288 

FI 52 RO 25 FI 145 RO 54 

FR 528 SE 510 FR 1139 SE 1131 

GR 21 SI 1 GR 49 SI 0.5 

HR 2 SK 13 HR 2.3 SK 17 

HU 4 UK 596 HU 8.92 UK 1530 

IE 167   IE 432   
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Supplementary Figure S12: Offshore wind maximum installed capacity (GW) 

Supplementary Table S41: Offshore wind maximum installed capacity and generation potential 

Offshore Wind 

Max. Theoretical Potential (GW) Max Generation Potential (TWh) 

AT 0 IT 38 AT 0 IT 64 

BE 3 LT 4 BE 9.2 LT 11 

BG 3 LU 0 BG 0 LU 0 

CH 0 LV 19 CH 0 LV 0 

CZ 0 MT 0.2 CZ 0 MT 0.4 

DE 110 NL 161 DE 319 NL 465 

DK 130 NO 140 DK 403 NO 637 

EE 25 PL 21 EE 67 PL 56 

ES 23 PT 8 ES 82 PT 31 

FI 74 RO 9 FI 232 RO 0 

FR 60 SE 84 FR 242 SE 345 

GR 32 SI 0.1 GR 116 SI 0 

HR 91 SK 0 HR 150 SK 0 

HU 0 UK 230 HU 0 UK 772 

IE 32   IE 89   
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Supplementary Figure S13: Solar PV maximum installed capacity (GW) 

Supplementary Table S42: Solar PV maximum installed capacity and generation potential 

Solar PV 

Max. Theoretical Potential (GW) Max Generation Potential (TWh) 

AT 35 IT 238 AT 42 IT 323 

BE 10 LT 16 BE 11 LT 16 

BG 26 LU 1 BG 34 LU 0.9 

CH 35 LV 8 CH 48 LV 8 

CZ 29 MT 1 CZ 33 MT 1 

DE 228 NL 18 DE 248 NL 19 

DK 15 NO 30 DK 15 NO 26 

EE 4 PL 134 EE 3.9 PL 141 

ES 197 PT 50 ES 289 PT 73 

FI 25 RO 63 FI 21 RO 78 

FR 250 SE 36 FR 306 SE 31 

GR 38 SI 9 GR 54 SI 11 

HR 19 SK 20 HR 23 SK 23 

HU 34 UK 127 HU 41 UK 119 

IE 25   IE 23   
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Supplementary Figure S14: Regulated hydropower maximum installed capacity (GW) 

Supplementary Table S43: Regulated hydropower maximum installed capacity and generation potential 

Regulated Hydropower 

Max. Theoretical Potential (GW) Max Generation Potential (TWh) 

AT 21 IT 27.2 AT 82.5 IT 53.8 

BE 1.4 LT 1.106 BE 3.2 LT 4.3 

BG 3.7 LU 1.347 BG 8 LU 3.5 

CH 19 LV 1.733 CH 74.5 LV 3.5 

CZ 3.7 MT 0 CZ 6.7 MT 0 

DE 24 NL 0.037 DE 126 NL 0.1 

DK 0 NO 34.7 DK 0 NO 154 

EE 0.03 PL 3.4 EE 0.13 PL 4.2 

ES 22.2 PT 8.2 ES 42.6 PT 18 

FI 3.8 RO 7.8 FI 18.3 RO 21.6 

FR 33.7 SE 18.8 FR 99.6 SE 61 

GR 3.9 SI 1.5 GR 11.7 SI 6.3 

HR 2.6 SK 3.1 HR 9.7 SK 9.4 

HU 0.06 UK 4.7 HU 0.2 UK 16 

IE 0.7   IE 2.3   
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Supplementary Figure S15: ROR hydropower maximum installed capacity (GW) 

Supplementary Table S44: Run-of-river maximum installed capacity and generation potential 

Run-of-river Hydropower 

Max. Theoretical Potential (GW) Max Generation Potential (TWh) 

AT 1.8 IT 7.1 AT 6.9 IT 26.5 

BE 0.1 LT 0.04 BE 0.3 LT 0.2 

BG 0.6 LU 0.04 BG 1.8 LU 0.1 

CH 1.2 LV 0.08 CH 3.7 LV 0.2 

CZ 0.5 MT 0 CZ 2.1 MT 0 

DE 1.8 NL 0.01 DE 8.0 NL 0.03 

DK 0.01 NO 7.7 DK 0.04 NO 33.9 

EE 0.01 PL 0.3 EE 0.04 PL 1.4 

ES 2.2 PT 0.8 ES 6.5 PT 2.0 

FI 0.6 RO 0.7 FI 2.3 RO 2.7 

FR 2.6 SE 1.3 FR 8.9 SE 5.7 

GR 2.0 SI 0.5 GR 2.0 SI 1.1 

HR 0.100 SK 0.2 HR 0.3 SK 0.9 

HU 0.03 UK 1.2 HU 0.1 UK 1.7 

IE 0.06   IE 0.2   
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Supplementary Figure S16: Biomass generation potential (TWh) 

Supplementary Table S45: Biomass generation potential (TWh) 

Biomass 

Max Generation Potential (TWh) 

AT 109 IT 183 

BE2 37 LT 42 

BG 89 LU 3 

CH 13 LV 46 

CZ 93 MT3 0.2 

DE 491 NL 14 

DK 66 NO 17 

EE 36 PL 253 

ES 306 PT 95 

FI 257 RO 219 

FR 525 SE 322 

GR 43 SI 20 

HR 4 SK 46 

HU 80 UK 116 

IE 15   

 

 

 

2 Belgium and Luxembourg were aggregated, and is separated by their respective share of land area 
3 Numbers for Malta not available. Used area weighted number based on Italy. 
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Supplementary Figure S17: Waste generation potential (TWh) 

Supplementary Table S46: Waste generation potential 

Waste 

Max Generation Potential (TWh) 

AT 13 IT 112 

BE 41 LT 3 

BG 7 LU 3 

CH 10 LV 0.7 

CZ 31 MT 0.1 

DE 124 NL 68 

DK 6 NO 5 

EE 1 PL 154 

ES 76 PT 18 

FI 21 RO 20 

FR 150 SE 16 

GR 11 SI 3 

HR 2 SK 9 

HU 20 UK 111 

IE 8   
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Supplementary Figure S18: Geothermal hydrothermal maximum installed capacity (MW) 

Supplementary Table S47: Geothermal hydrothermal maximum installed capacity and generation potential 

Geothermal electricity (Hydrothermal) 

Max. Theoretical Potential (MW) Max Generation Potential (TWh) 

AT 13 IT 1531 AT 0.1 IT 11.8 

BE 0 LT 5 BE 0.0 LT 0.0 

BG 12 LU 0 BG 0.1 LU 0.0 

CH 0.2 LV 2 CH 0.0 LV 0.0 

CZ 5 MT 0 CZ 0.0 MT 0.0 

DE 173 NL 30 DE 1.3 NL 0.2 

DK 4 NO 0 DK 0.0 NO 0.0 

EE 5 PL 0 EE 0.0 PL 0.0 

ES 66 PT 20 ES 0.5 PT 0.2 

FI 0 RO 22 FI 0.0 RO 0.2 

FR 49 SE 0 FR 0.4 SE 0.0 

GR 60 SI 1 GR 0.5 SI 0.0 

HR 381 SK 112 HR 2.9 SK 0.9 

HU 2164 UK 3 HU 16.7 UK 0.0 

IE 24   IE 0.2   
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Supplementary Figure S19: Geothermal EGS maximum installed capacity (GW) 

Supplementary Table S48: Geothermal EGS maximum installed capacity and generation potential 

Geothermal electricity (EGS) 

Max. Theoretical Potential (GW) Max Generation Potential (TWh) 

AT 8.5 IT 27.1 AT 67 IT 214 

BE 2.8 LT 2.4 BE 22 LT 19 

BG 9.1 LU 0.3 BG 72 LU 3 

CH 5.4 LV 0.4 CH 43 LV 3 

CZ 3.9 MT 0.0 CZ 31 MT 0 

DE 43.7 NL 6.5 DE 344 NL 52 

DK 3.7 NO 0.0 DK 29 NO 0 

EE 0.2 PL 18.2 EE 2 PL 144 

ES 44.1 PT 8.0 ES 348 PT 63 

FI 0.0 RO 13.3 FI 0 RO 104 

FR 82.8 SE 0.1 FR 653 SE 1 

GR 10.3 SI 1.0 GR 81 SI 8 

HR 6.0 SK 6.8 HR 47 SK 54 

HU 19.9 UK 5.3 HU 157 UK 42 

IE 3.4   IE 27   
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3.4. Storage Technologies 

Supplementary Table S49: Techno-economic assumptions for pumped hydro storage (PHS) 

Pumped Hydro Storage 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Roundtrip efficiency (%) 0.8 0.8 0.82 0.84 0.85 0.87 0.88 0.89 0.9 [16] 

Investment cost (k€/MWh) 70 70 70 70 70 70 70 70 70 [16] 

Fix. O&M Cost (k€/MWh) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 [16] 

Lifetime (years) 60 60 60 60 60 60 60 60 60 [16] 

Supplementary Table S50: Techno-economic assumptions for li-ion battery storage 

Li-ion Batteries 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Roundtrip efficiency (%) 90 90 90 90 90 90 90 90 90 [16] 

Investment cost (k€/MWh) 870 600 300 200 150 120 100 85 75 [16] 

Fix. O&M Cost (k€/MWh) 43.5 24 9 5 3.75 3 2.5 2.13 1.88 [16] 

Var. Costs (Stg) (k€/GWh) 2 2 2 2 2 2 2 2 2 [16] 

Lifetime 15 15 15 15 15 15 15 15 15 [16] 

Supplementary Table S51: Techno-economic assumptions for underground thermal energy storage (UTES) 

UTES 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Roundtrip efficiency 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 [16] 

Investment Cost (k€/MWh) 50 50 40 30 30 20 20 20 20 [16] 

O&M Costs (Storage) (k€/MWh) 0.75 0.75 0.6 0.45 0.45 0.3 0.3 0.3 0.3 [16] 

Lifetime 25 25 25 25 25 25 25 25 25 [16] 

Supplementary Table S52: Techno-economic assumptions for adiabatic compressed air energy storage (a-
CAES) 

CAES 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Efficiency 0.54 0.59 0.65 0.7 0.7 0.7 0.7 0.7 0.7 [16] 

Investment Cost (€/kWh) 35 35 35 33 31.1 30.5 29.8 28 26 [16] 

O&M Costs (Storage) (€/GWh) 0.5 0.46 0.46 0.43 0.4 0.4 0.39 0.36 0.34 [16] 

Var. Costs (Stg) (k€/GWh) 12 12 12 12 12 12 12 12 12 [16] 

Lifetime 40 40 55 55 55 55 55 55 55 [16] 

 

3.5. Hydrogen 

Hydrogen is modelled with a full value chain, from hydrogen production through two types of 

electrolysers (steam methane reforming is not included), storage and finally fuel cells to convert 

the hydrogen back to electricity and heat.  

Supplementary Table S53: Techno-economic assumptions for hydrogen storage 

Hydrogen Storage (compressed) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Lifetime (years) 20 20 20 20 20 20 20 20 20 [23] 

Storage Efficiency (%) 90 90 90 90 90 90 90 90 90 [43] 

Boil-off rate (%/year) 40 40 40 40 40 40 40 40 40 [44] 

Investment Cost (€/kWh) 18.6 17.0 11.2 9.7 8.2 6.7 5.3 3.8 2.3 [23] 
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O&M Costs (€/kWh) 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 [23] 

Supplementary Table S54: Techno-economic assumptions for alkaline hydrogen electrolysers 

Hydrogen Electrolyser (Alkaline) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Lifetime (Years) 10 10 10 10 10 10 10 10 10 [45] 

Efficiency (%) 63 63 64 65 66 67 68 69 70 [45] 

Availability Factor (%) 98 98 98 98 98 98 98 98 98 [45] 

Investment Cost (k€/MW) 1954 1793 1214 1176 1118 1060 1060 1060 1060 [45] 

O&M Costs (k€/MW) 36 33 30 28 26 26 26 26 26 [45] 

Supplementary Table S55: Techno-economic assumptions for hydrogen PEM electrolysers 

Hydrogen Electrolyser (PEM) 2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Lifetime (Years) 8 8 9 9 9 9 9 9 9 [45] 

Efficiency (%) 63 63 68 69 71 71 71 71 71 [45] 

Availability Factor (%) 98 98 98 98 98 98 98 98 98 [45] 

Investment Cost (kNOK/MW) 3298 3026 1927 1677 1291 1291 1291 1291 1291 [45] 

O&M Costs (kNOK/MW)  36 33 30 28 26 26 26 26 26 [45] 

Supplementary Table S56:Techno-economic assumptions for PEM fuel cells 

Hydrogen Fuel Cell  2010 2015 2020 2025 2030 2035 2040 2045 2050 Ref 

Lifetime (years) 7 7 8 8 9 9 9 9 9 [46,47] 

Electrical Efficiency (%) 0.35 0.35 0.4 0.425 0.45 0.45 0.45 0.45 0.45 [46,47] 

Availability Factor (%) 97 97 97 97 97 97 97 97 97 [46,47] 

Heat to power ratio (-) 1.57 1.57 1.25 1.12 1.00 1.00 1.00 1.00 1.00 [46,47] 

Investment Cost (k€/MW) 3488 3200 2410 1620 830 830 830 830 830 [46,47] 

O&M Costs (k€/MW) 174 160 121 81 42 42 42 42 42 [46,47] 
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3.6. Grid Expansions 

TIMES-Europe allows for endogenous investments in additional grid expansions from 2020. The 

specific cost of these expansions are estimated by following a generic methodology presented in 

[48,49]. The cost per MW of each interconnection is calculated based on the length between the 

two countries being connected, where the length is calculated from the two countries’ geographical 

centres. The assumed investment cost for underground and submarine HVDC cables are 

1123 €/km/MW and 1276 €/km/MW respectively, with an additional 0.2 M€/MW for converter 

substations [49].  

All future interconnections are assumed to be submarine or underground high-voltage direct 

current (HVDC) cables. HVDC cables offers a more expensive option compared to conventional 

overhead high-voltage alternating current (HVAC) lines, but avoids potential local opposition seen 

against overhead power lines [50]. 

In accordance with [48,49], a maximum length of 300 km is set for onshore interconnections. This 

procedure generally overestimates the length, and thus the cost, of each interconnection, which 

would become unrealistically high in cases where larger neighbouring countries (e.g. France and 

Germany) are connected. On the other hand, the general overestimation of the cost will 

compensate for the lack of considering local grid reinforcements. 

3.6.1. Current grid 
Interconnection capacities for 2015 are shown in Table 1. In this work, the net transfer capacity 

(NTC) between regions are used as interconnection capacities in the model. These are primarily 

based on data from ENTSO-E [51], and is supplemented with a number of other resources  [52–

59]. 
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4. The Current European System 
The base year of 2015 has been calibrated to the current real system. National generation 

capacities and electricity generation for 2015 is primarily based on ENTSO-E [5].  

Small hydropower is defined as installations smaller than 10 MW. This is to use the “World Small 

Hydropower Development Report 2016” for installed capacities of small hydro as well as future 

technical potential [34]. The storage size and installed capacity of existing pumped hydro storage 

(PHS) plants are reported for 2015 [42,60], but their operation during those years are determined 

endogenously by the model. 

CHP capacities is calibrated for 2010 using the Eurelectric’s Power Statistics and Trends 2013 

[61], and then used to adjust the capacities for 2015. This report gives installed capacity of CHP 

in 2010 by fuel. However, in some cases, this capacity does not match the total capacity reported 

in the EU Reference Case 2016 (The EU 2016 gives the total capacity of cogeneration units, but 

it does not distinguish the type of fuel). In the cases where the EU Reference Case and the 

Eurelectric data does not match, the Eurelectric data is used to define the share (in %) of each 

fuel of the total capacity, and this share is then allocated to the total cogeneration capacity reported 

in the EU Reference Scenario. For example: For Bulgaria, according to the EU Reference 

Scenario, the total cogeneration capacity in 2010 is 1017 MW. In the Eurelectric report the total 

generation capacity is 723 MW, split into 120 MW coal, 290 MW oil, and 366 MW natural gas. This 

gives us shares of 15.4 % coal, 37.4 % oil, and 47.2 % natural gas respectively. Multiplying these 

shares with the total installed capacity from the EU Reference Scenario yields; 158 MW coal, 380 

MW oil, and 478 MW natural gas. These capacities are then used as the current installed 

capacities for CHP-plants, and this capacity is also subtracted from the conventional fossil fuel 

capacity reported in the EU Reference Scenario. Subsequently, these shares are used to calibrate 

the installed capacities in 2015. 

Data on district heat is based on the Euroheat & Power District Heat and Cooling Country by 

Country 2015 survey [62]. This report is used to estimate the installed capacities of heat 

generation technologies (boilers, heat pumps etc.). This data also includes heat generation from 

CHP, which is used to estimate the power to heat ratios of CHP, and thus the generation of 

electricity and heat from those plants. For the rest of the model horizon, this is determined 

endogenously by the model.  

All numbers in the following tables are rounded to one decimal. In the cases where 0.0 is displayed 

the number is less than 0.1, but not zero. 
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4.1. Installed capacity 

Supplementary Table S57: Installed capacity in 2015 in MW (AT-FI) 

 
AT BE BG CH CZ DE DK EE ES FI 

Nuclear 0 5927 2000 3333 4040 12227 0 0 7572 2752 

Hydropower (REG) 8816 1353 1566 11586 753 3633 0 0 17168 2905 

Hydropower (ROR) 1368 72 291 859 334 1826 10 8 2104 314 

PHS5 3365 (125) 1308 (8) 864 (2) 1817 (369) 1147 (7) 6777 (39) 0 0 5260 (1530) 0 

Onshore Wind 2258 1488 701 60 270 37757 3574 307 22740 898 

Offshore wind 0 712 0 0 0 993 1271 0 0 5 

Solar PV 587 2953 1041 756 2050 37446 601 1 6967 7 

Solar CSP 0 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 0 

Tidal 0 0 0 0 0 0 0 0 0 0 

Biomass 0 872 64 0 0 977 285 0 963 375 

Geothermal 1 0 0 0 0 33 0 0 0 0 

Coal 933 339 4304 0 5544 42624 1698 0 10607 2469 

Natural gas 2834 4401 243 288 1073 1058 841 0 27604 378 

Oil 236 171 0 0 0 3882 665 1578 2713 1312 

Coal CHP 238 131 603 0 3856 7703 3150 0 25 2008 

Natural gas CHP 2054 1706 556 41 1027 31229 2100 267 2848 1233 

Oil CHP 98 66 0 0 0 0 386 120 576 392 

Biomass CHP 464 338 0 275 709 7910 275 97 0 1748 

 

  

 

 

5 Numbers in parenthesis are storage capacities in GWh 
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Supplementary Table S58: Installed capacity in 2015 in MW (FR-MT) 

 
FR GR HR HU IE IT LT LU LV MT 

Nuclear 63130 0 0 1887 0 0 0 0 0 0 

Hydropower (REG) 16507 2233 1776 38 174 13908 99 1300 1511 0 

Hydropower (ROR) 2021 223 33 19 42 3173 29 34 26 0 

PHS6 6985 (184) 699 (21) 281 (2.34) 0 292 (2) 7833 (68.3) 900 (10.80) 1296 (4.92) 0 0 

Onshore Wind 10831 1613 429 329 2670 8750 262 54 51 0 

Offshore wind 6 0 0 0 25 0 0 0 0 0 

Solar PV 6549 2429 44 6 0 19100 69 116 0 22 

Solar CSP 0 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 0 

Tidal 240 0 0 0 0 0 0 0 0 0 

Biomass 43 51 0 143 162 3700 0 22 0 0 

Geothermal 0 46 0 0 0 869 0 0 0 0 

Coal 4640 4356 325 1070 1148 5422 0 0 0 0 

Natural gas 4107 2394 453 2623 3870 41966 2256 54 48 0 

Oil 6493 490 853 410 973 11040 0 0 0 462 

Coal CHP 170 103 0 29 212 566 0 0 0 0 

Natural gas CHP 2014 2519 290 1601 93 4385 432 495 1088 0 

Oil CHP 177 228 97 0 0 1153 198 0 0 0 

Biomass CHP 1684 0 45 143 0 780 98 0 82 0 

 

  

 

 

6 Numbers in parenthesis are storage capacities in GWh 
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Supplementary Table S59: Installed capacity in 2015 in MW (NL-UK) 

 
NL NO PL PT RO SE SL SK UK 

Nuclear 492 0 0 0 1298 9528 696 1940 9374 

Hydropower (REG) 34 29130 246 4043 5872 14676 896 1535 4026 

Hydropower (ROR) 3 2242 288 372 598 1280 157 82 274 

PHS7 0 1273 (400) 1406 (11) 1029 (107) 285 (10.2) 99 (72) 180 (0.5) 916 (4) 2744 (33) 

Onshore Wind 2646 873 3758 4486 2896 5827 3 3 8052 

Offshore wind 520 2 0 0 0 202 0 0 5100 

Solar PV 1429 0 14 429 1101 0 262 532 9000 

Solar CSP 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 

Tidal 0 0 0 0 0 0 0 0 0 

Biomass 1041 0 644 83 92 1251 51 0 1163 

Geothermal 0 0 0 0 0 0 0 0 0 

Coal 5507 0 20670 1756 4431 136 859 269 17847 

Natural gas 10470 0 258 4152 1663 446 418 0 26358 

Oil 0 0 345 47 0 1514 0 0 1832 

Coal CHP 1990 0 7123 0 1441 189 369 1161 149 

Natural gas CHP 9347 1598 726 567 3198 622 72 1199 5211 

Oil CHP 0 0 0 0 0 2109 0 301 17 

Biomass CHP 455 0 169 499 0 1742 41 365 119 

 

  

 

 

7 Numbers in parenthesis are storage capacities in GWh 
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4.2. Electricity generation 

Supplementary Table S60: Electricity generation in 2015 by country and technology (all numbers in TWh) 

 
AT BE BG CH CZ DE DK EE ES FI 

Nuclear 0 24.6 14.3 22.1 25.3 86.8 0 0 54.8 22.3 

Hydropower (REG) 36.5 1.3 4.7 36.9 3.7 15.8 0 0 27.4 15.0 

Hydropower (ROR) 3.7 0.1 1.6 2.7 1.5 7.9 0 0 3.4 1.6 

PHS - - -  - -  - - - - - 

Onshore Wind 5.2 3.2 1.4 0.1 0.6 73.8 9.4 0.7 48.1 2.3 

Offshore wind 0 2.0 0 0 0 1.9 4.7 0 0 0 

Solar PV 0.4 3.0 1.4 0 2.2 35.2 0.6 0 13.3 0 

Solar CSP 0 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 0 

Tidal 0 0 0 0 0 0 0 0 0 0 

Biomass 0 3.5 0.2 0 0 4.2 0 0 4.6 1.9 

Geothermal 0.0 0 0 0 0 0.3 0 0 0 0 

Coal 3.0 2.9 17.1 0 20.7 211.8 2.2 0 53.0 3.5 

Natural gas 7.8 15.8 0.4 1.9 2.6 2.1 1.1 0 44.4 1.4 

Oil 1.0 0.5 0 0 0 5.8 0.1 6.2 11.4 0.7 

Coal CHP 0.9 1.1 2.7 0 16.3 43.5 5.0 0.0 0.1 3.3 

Natural gas CHP 5.1 6.0 0.9 0.3 2.3 56.3 2.4 1.1 4.2 4.3 

Oil CHP 0.3 0.2 0 0 0 0 0.1 0.3 0.1 0.1 

Biomass CHP 2.5 1.3 0 2.0 1.9 34.3 2.3 0.8 0.0 8.8 
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Supplementary Table S61: Electricity generation in 2015 by region and technology (all numbers in TWh) 

 
FR GR HR HU IE IT LT LU LV MT 

Nuclear 416.8 0 0 14.9 0.0 0 0 0 0 0 

Hydropower (REG) 52.3 5.5 5.6 0.1 0.9 36.3 0.8 1.5 1.9 0 

Hydropower (ROR) 5.5 0.6 0.1 0.1 0.2 8.3 0.2 0.0 0.0 0 

PHS - - -  - -  - - - - - 

Onshore Wind 23.4 3.7 0.8 0.7 6.5 14.7 0.8 0.1 0.1 0 

Offshore wind 0.0 0 0 0 0.1 0 0 0 0 0 

Solar PV 7.4 3.6 0 0 0 23.9 0.1 0.1 0 0.0 

Solar CSP 0 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 0 

Tidal 0.5 0 0 0 0 0 0 0 0 0 

Biomass 0.2 0.2 0 0.8 0.2 15.6 0 0.1 0 0 

Geothermal 0 0.4 0 0 0 5.7 0 0 0 0 

Coal 8.3 18.9 2.1 5.8 6.0 35.8 0 0 0 0 

Natural gas 15.3 3.7 0.5 2.1 11.3 103.2 2.0 0.1 0.1 0 

Oil 3.3 0 0.2 0 0 8.4 0 0 0 2.6 

Coal CHP 0.3 0.5 0 0.2 1.3 4.2 0 0 0 0 

Natural gas CHP 6.8 3.6 0.3 1.1 0.2 9.9 0.4 0.7 2.5 0 

Oil CHP 0.1 0 0 0 0 0.6 0.0 0 0 0 

Biomass CHP 7.7 0 0.3 0.8 0 3.3 0.4 0 0.4 0.8 
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Supplementary Table S62: Electricity generation in 2015 by region and technology (all numbers in TWh) 

 
NL NO PL PT RO SE SL SK UK 

Nuclear 4.0 0 0 0 10.7 54.3 5.4 14.1 65.7 

Hydropower (REG) 0.1 129.1 1.2 8.8 15.0 68.1 3.5 4.1 7.5 

Hydropower (ROR) 0.0 9.9 1.3 0.8 1.5 5.9 0.6 0.2 0.5 

PHS - - -  - -  - - - - 

Onshore Wind 5.6 2.5 10.5 11.3 7.0 16.6 0 0 20.7 

Offshore wind 1.5 0.0 0 0 0 0.8 0 0 17.2 

Solar PV 0.1 0 0 0.8 2.0 0 0.2 0.5 7.5 

Solar CSP 0 0 0 0 0 0 0 0 0 

Wave 0 0 0 0 0 0 0 0 0 

Tidal 0 0 0 0 0 0 0 0 0 

Biomass 2.8 0 5.3 0.4 0.5 4.1 0.1 0 1.3 

Geothermal 0 0 0 0 0 0.0 0.0 0 0 

Coal 11.8 0 91.5 13.7 13.2 0.2 2.6 0.4 94.1 

Natural gas 39.5 0 1.3 8.7 2.5 0.6 0 0 80.4 

Oil 0 0 0.2 0.1 0 0.4 0 0 0 

Coal CHP 4.9 0 35.8 0 4.9 0.3 1.3 2.1 0.9 

Natural gas CHP 32.2 3.5 3.3 1.1 4.4 0.7 0 1.8 14.5 

Oil CHP 0 0 0 0 0 0.4 0 0.3 0 

Biomass CHP 1.2 0 1.4 2.2 0 5.7 0.1 1.1 0.1 
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4.3. Nuclear Phase Out 

As of 2015, 15 European countries have nuclear power plants in operation. Following the 

Fukushima accident in 2011, the future of nuclear energy has been heavily debated and three 

countries pledged to entirely phase out nuclear. Germany closed eight ageing reactors in 2011, 

with the remaining fleet to be phased out by 2022. Belgium have scheduled a complete phase out 

by 2025, whereas Switzerland has set 2034 as their target. Supplementary Table S63 shows the 

current nuclear policy in each of the countries included in TIMES-Europe (from [63]) . 

Of the 15 current countries with nuclear capacity, only the abovementioned three have pledged to 

phase out nuclear. In some countries projects are stalled due to financial difficulties, some nuclear 

power plants are soon to be in operation, while some countries have nor phase-out plans nor 

specific project plans. 

In TIMES-Europe, the phase out plans of Germany, Switzerland and Belgium are included, 

whereas linear decommission based on the lifetime of a nuclear power plant is modelled for the 

other countries. Countries with stated no-nuclear policies are also included (e.g. Denmark, Austria, 

Italy etc.). Since the median age of nuclear power plants is above 25 years [64], we assume that 

the whole existing fleet is decommissioned by 2050. Furthermore, since most countries, also those 

without nuclear capacity today, can invest in nuclear energy, no future plans are included in the 

model. This is also due to the many uncertain projects, where the operation date might be 

profoundly extended. 

Supplementary Table S63: Nuclear phase out policy in European countries, retrieved from [63] and up to date 
as of 2015. Newer legislations are updated, with references indicated in text. 

Country Policy Planned change 

Belgium Phase-out by 2025 855 MW phase out by 2015, 5066 MW phase-out by 2025 

Bulgaria No phase-out policy Wants to extend lifetime of current reactors. The Bulgarian parliament decided on 

June 8th, 2018, to work towards restarting the 2000 MW Belene nuclear project [65]. 

Czech 

Republic 

No phase-out policy Wants to extend nuclear fleet, but faces financing difficulties [66] 

Finland No phase-out policy Several projects planned or under construction. Current fleet has operating licenses 

until 2018 (1820 MW), and until 2027-2030 (1040 MW). New plant, 1600 MW 

expected operational in 2018 [67].  

France Reduction policy Goal of reducing share of electricity from nuclear to 50 % in 2025 (from about 75 % 

today). 

Germany Phase out by 2022 About 20 GW installed capacity in 2010. 8 plants (8 GW), were shut down in 2011. 

12 GW capacity in 2015, about 8 GW in 2020 [68].  

Hungary No phase-out policy New reactors are planned 

Italy No nuclear reactors Referendum in 2011 rejected plans to revive the nuclear industry 

Lithuania No nuclear reactors Plans for a new nuclear power plant, but with an uncertain future. 

Netherlands No phase-out policy Previous decision to phase-out nuclear was reversed. One power plant in operation, 

scheduled to decommission in 2033. New projects on hold due to financial issues. 
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Poland No nuclear reactors In 2005 Poland decided to build nuclear power plants, and have plans for two new 

plants. In 2018, PGE decided to move away from building the first nuclear power 

plant and invest in offshore wind energy instead [69]. 

Romania No phase-out policy Two reactors planned 

Slovakia No phase-out policy New reactors are planned 

Slovenia No phase-out policy Further expansions are under consideration, but not confirmed 

Spain No phase-out policy Uncertain political situation, no confirmed plans for new reactors. 

Sweden No phase-out policy Ringhals 1 (860 MW) and 2 (870 MW) to be closed by 2020. 

Switzerland Phase-out by 2034 About 3300 MW capacity in 2015, About 2200 in 2020, 1200 in 2030 and complete 

phase-out by 2034. 

United 

Kingdom 

No phase-out policy New reactors planned. Government goal of 16 GW new capacity by 2030. 
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5.2. In-sample stability test 

 

The deviation relative to the objective function value of \textit{Stoch48} ranges between -1 to 

0.3 %. For the 5 instances with 15 scenarios, the deviation of the objective function ranges from -

0.47 to 0.1 \%. Increasing the number of scenarios to 30 returns an objective function value slightly 

higher than when using 15 scenarios, but the deviation is only between 0.23 and 0.77 \%. At the 

same time, increasing the number of scenarios to 30 also drastically increases the solution time. 

Therefore, given the stability of the solution with 15 scenarios, and the increased computational 

effort by going to 30 scenarios, we conclude that using 15 scenarios is satisfactory for the purpose 

of this paper. 

 

 

Supplementary Figure S34: In-sample stability test 
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5.3. District heat generation 

 

Supplementary Figure S35: District heat generation (TWh) 

 

5.4. Peak constraint results 

By adding a peaking constraint to the deterministic model version, we can limit the contribution of 

variable renewables in peaking situations and thus force the model to invest in flexible generation 

capacity [70]. The peaking constraint is given by: 

𝐷𝑡,𝑝 = ∑(𝑝𝑖 ∗ 𝐶𝐹𝑡,𝑝
𝑖 ∗ 𝑐𝑎𝑝𝑝

𝑖 ) + 𝐶𝐹𝑡,𝑝
𝑐 ∗ 𝑐𝑎𝑝𝑝

𝑐 

Where 𝐷𝑡,𝑝 is the demand of electricity in time-slice t and period p, 𝑝𝑖 is the peaking constraint for 

variable renewable energy sources (onshore/offshore wind and solar), 𝐶𝐹𝑡,𝑝is the capacity factor 

for the variable energy sources i and the dispatchable technologies c, and finally 𝑐𝑎𝑝𝑝
𝑐  is the 

installed generation capacity of each technology in period p. 

The value of the peaking constraints are decided exogenously, and usually vary between 0-30 

percent depending on the technology [17,70,71]. For TIMES-Europe, the peaking coefficients are 

set individually for every country based on their expected annual capacity factor. As an example, 

Germany's peaking factors are set to 22 % for onshore wind, 33 % for offshore wind and 12 % for 

PV. As a result, variable renewables can only cover up to a maximum of 67 % of the peak capacity 

in Germany, thus forcing investments in flexible generation capacities. 

It is important to mention that the peaking constraint does not restrict the contribution of electricity 

generated from variable renewables to serve the electricity demand, but only ensures investments 
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in flexible reserve capacity such as hydropower or storage. However, the caveat of this approach 

is that since the peaking constraints are decided exogenously, the requirement of flexible 

generation capacity is a result of model input rather than an endogenous model decision based 

on the actual solar and wind variability. 

 

Supplementary Figure S36: Operational peak reserve constraint results 
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