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Galangin (GG), a flavonoid, elicits a potent antitumor activity in diverse cancers. Here,

we evaluated the efficacy of GG in the treatment of human glioblastoma multiforme

(GBM) and investigated the molecular basis for its inhibitory effects in the disease.

GG inhibited viability and proliferation of GBM cells (U251, U87MG, and A172) in a

dose-dependent manner (IC50 = 221.8, 262.5, 273.9µM, respectively; P < 0.001;

EdU, ∼40% decrease at 150µM, P < 0.001), and the number of colonies formed

was significantly reduced (at 50µM, P < 0.001). However, normal human astrocytes

were more resistant to its cytotoxic effects (IC50 >450µM). Annexin-V/PI staining was

increased indicating that GG induced apoptosis in GBM cells (26.67 and 30.42%,

U87MG and U251, respectively) and associated proteins including BAX and cleaved

PARP-1 were increased (∼3×). Cells also underwent pyroptosis as determined under

phase-contrast microscopy. Knockdown of gasdermin E (GSDME), a protein involved

in pyroptosis, alleviated pyroptosis induced by GG through aggravating nuclear DNA

damage in GBM cells. Meanwhile, fluorescent GFP-RFP-MAP1LC3B puncta associated

with autophagy increased under GG treatment, and transmission electron microscopy

confirmed the formation of autophagic vesicles. Inhibition of autophagy enhanced

GG-induced apoptosis and pyroptosis in GBM cells. Finally, in an orthotopic xenograft

model in nude mice derived from U87MG cells, treatment with GG in combination

with an inhibitor of autophagy, chloroquine, suppressed tumor growth, and enhanced

survival compared to GG monotherapy (P < 0.05). Our results demonstrated that GG

simultaneously induces apoptosis, pytoptosis, and protective autophagy in GBM cells,

indicating that combination treatment of GGwith autophagy inhibitors may be an effective

therapeutic strategy for GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and deadly primary malignant tumor
of the central nervous system in humans. The prognosis of GBM is bleak. Median survival is
15–23 months (1), which is in part due to several biological properties rendering the tumor type
particularly resistant to current therapeutic modalities. First, the blood-brain barrier (BBB) affects
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the absorption of drugs (2). Second, GBM cells have an
intrinsic resistance to the induction of cell death (3, 4).
Finally, tumors exhibit tremendous genetic heterogeneity and a
complex pathogenesis so that tumors lack a single, targetable
oncogenic pathway (5). The current therapeutic schedule is
aggressive, including surgical resection, temozolomide (TMZ),
and concurrent adjuvant radiation therapy (6), and yet, this
strategy only delays tumor progression. Furthermore, it causes
significant adverse reactions reducing patient quality of life. Thus,
low-toxicity, effective drugs/protocols are urgently needed.

Natural flavonoids are a group of polyphenolic compounds
which are ubiquitous in plants and vegetables consumed
daily by humans. Flavonoids have many biological activities,
which are antineoplastic, antiviral, antioxidant, and anti-
inflammatory (7–10). Galangin (GG), a natural flavonoid
(Supplementary Figure 1A), is an active ingredient in galangal,
a spice also used in traditional Chinese medicine. GG is
widespread and also found in honey and propolis. The molecule
is non-toxic to humans but toxic to tumor cells making it a
potential antineoplastic drug. Previous studies have investigated
the antineoplastic effects of GG which appears to work through
different mechanisms (8, 11, 12).

Autophagy is a cellular self-digestion process, which functions
in the degradation of misfolded proteins and dysfunctional
organelles (13). Substrates, such as cytoplasmic proteins or
organelles, are coated by a bilayer membrane generating a
vesicle called an autophagosome. Autophagosomes migrate
along tracks composed of acetylated microtubules to fuse
with lysosomes. The process removes the substrate through
lysosomal degradation and recycles the degradation products
(amino acids) to fulfill cellular metabolic needs (14). Thus,
autophagy is essential for maintaining homeostasis. The process,
however, has been shown to mediate resistance to anticancer
therapies such as radiation, chemotherapy, and some targeted
therapies (15). Many flavonoids have the effect of inducing
autophagy (16, 17).

Here, we investigated the antineoplastic effect of GG and
underlying molecular mechanisms in GBM cells in vitro and in
vivo. Although we found that GG induces protective autophagy,
we improved efficacy by combining treatment with autophagy
inhibitors in vitro and in an orthotopic tumor model in mice.
Meanwhile, we also confirmed that GG induces apoptosis and
pyroptosis, two kinds of programmed cell death. Finally, we
explored the interactions among autophagy, apoptosis, and
pyroptosis. These results support the strategy of combination
therapy using GG and autophagy inhibitors in the treatment of
human GBM.

MATERIALS AND METHODS

Experimental Animals
Male BALB/c athymic mice (4 weeks old; 14–17 g)
were provided by the Nanjing Biomedical Research
Institute of Nanjing University (Nanjing, China) and
maintained in the animal facility for the neurosurgery
laboratory of the Qilu Hospital, Shandong University under
pathogen-free conditions.

Cell Lines and Cultures
Normal human astrocytes (NHA) and human GBM cell lines,
U251, U87MG, and A172, were provided by the Chinese
Academy of Sciences Cell Bank (Shanghai, China). Short
Tandem Repeat profiling was used to authenticate all cell
lines. Mycoplasma PCR Detection Kit was used to detect
mycoplasma contamination. Cells were cultured in complete
medium: Dulbecco’s modified Eagle’s medium (DMEM; Thermo
Fisher Scientific; Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS; Thermo Fisher Scientific), streptomycin
(100µg/mL) and penicillin (100 U/mL). Cells were incubated at
37◦C in 5% CO2 in a humidified chamber.

Cell Viability Assay
Cell viability was assessed using the Cell Counting Kit-8
assay (CCK-8; Dojindo, Kumamoto, Japan). GBM cells (4×103

cells/well) were seeded into 96-well plates and cultured at 37◦C.
After 12 h the medium was replaced with 100 uL of culture
medium containing different concentrations of GG (Sigma-
Aldrich; MO, USA) or vehicle control (dimethyl sulfoxide,
DMSO; Sigma-Aldrich, MO, USA). At 24 and 48 h after dosing,
GBM cells were incubated with 10 µL of CCK-8 reagent in 100
µL of serum-free DMEM at 37◦C for an hour. The absorbance
at 450 nm was measured using EnSight Multimode Plate Reader
(PerkinElmer; Singapore).

Colony Formation Assay
GBM cells were seeded into 6-well plates (600 cells/well)
containing 2mL of complete medium. After cells attached, the
medium was replaced with complete medium containing DMSO
(control) or different concentrations of GG, and thereafter,
every 3 days with fresh medium (+ treatment) over the
course of the experiment. After 2 weeks, colonies were fixed
with 4% paraformaldehyde, stained with 0.5% crystal violet
for 15min, and rinsed with phosphate buffer solution (PBS)
three times. Colonies (> 50 cells) were counted under bright
field microscopy.

Cell Proliferation Assay
Incorporation of 5-ethynyl-2’-deoxyuridine (EdU), a thymidine
analog, into proliferating cells, was detected through a catalyzed
reaction between EdU and Apollo fluorescent dyes using the EdU
incorporation assay (Ribobio, C103103; Guangzhou, China).
Nuclei were counterstained with DAPI. EdU-positive cells in
three visual fields were counted under fluorescence microscopy
per hole (Leica, Dmi8; Solms, Germany).

Protein Lysates and Immunoblotting
GBM cells were treated for 48 h and then lysed for 30min in RIPA
Lysis Buffer (Beyotime; Shanghai, China) supplemented with
phenylmethanesulfonyl fluoride (PMSF, Beyotime; Shanghai,
China). Cells were sonicated to enhance lysis. Lysates were
centrifuged, and protein concentrations of the supernatants were
determined using the BCA assay according to the manufacturer’s
instructions (Beyotime; Shanghai, China).

Proteins lysates (20 µg) were separated using 10–12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
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The separated proteins were transferred to polyvinylidene
difluoride (PVDF) membranes (0.22µm, Millipore). PVDF
membranes were blocked with 5% skim milk in Tris-buffered
saline with Tween20 (TBST, 20 mmol/L Tris-HCL pH 8.0,
150mM NaCl, 0.1% Tween-20 or with 5% BSA in TBST
for phosphoproteins) for 1 h at room temperature. The
membrane was incubated with primary antibodies overnight
at 4◦C followed by incubation with corresponding species
appropriate secondary antibodies (1:2,000) for 1 h at room
temperature. The following antibodies were used: AMPKα,
phospho-AMPKα (Thr172; P-AMPK), mTOR, phospho-mTOR
(Ser2448; p-mTOR), CDH2, CDK4, CCND1, P21, SQSTM1,
BECN1, phospho-ACC (Ser79; P-ACC), and phospho-histone
H2A.X (Ser139; p-H2AX; Cell Signaling Technology; Danvers,
MA, USA); MAP1LC3B, ACTB, BAX, BCL-2, MMP-2, PCNA,
PDK2, HMGCR, GSDMD, GSDME, Ki67, and cleaved PARP1
(Abcam; Cambridge, UK). HRP-labeled goat anti-rabbit and goat
anti-mouse secondary antibodies purchased from Zhongshan
Golden Bridge Bio-technology (Beijing, China). Luminous
intensity was detected with the Chemiluminescence Imager (Bio-
Rad ChemiDoc XRS+; Hercules, CA, USA) according to the
manufacturer’s protocol.

Cell Cycle and Apoptosis Assays
GBM cells (4 × 105) were seeded in 6-well plates. After
incubation overnight, the culture medium was replaced with
fresh complete medium with vehicle control (diluted DMSO)
or GG (150 µmol/L) for 48 h. Cells were harvested through
digestion with 0.05% Trypsin-EDTA (Thermo Fisher Scientific,
MA, USA), incubated in cold 75% ethanol at 4◦C overnight,
pelleted, stained with propidium iodide for 20min (BD
Biosciences; San Jose, CA, USA), and subjected to flow cytometry
for cell cycle analysis. ModFit software (Becton Dickinson; San
Diego, CA, USA) was used to determine cell cycle distribution.

The fluorescein-isothiocyanate-conjugated Annexin V and PI
double staining kit (BD Pharmingen; San Diego, CA, USA) was
used to distinguish between early and late stage apoptosis. Briefly,
GBM cells were harvested and resuspended in 1× binding buffer
and stained with fluorescent dyes according to themanufacturer’s
protocol. Results were analyzed with Flowjo Software (Tree Star;
Ashland, OR, USA).

Quantitative Real-Time PCR (qRT-PCR)
Total RNAwas prepared from treated cells using TRIzol (Thermo
Fisher Scientific; MA, USA). Briefly, after centrifugation, the
aqueous layer was transferred to a new eppendorf tube,
and isopropanol was added to precipitate total RNA. cDNA was
generated from total RNA (1–2µg) using the ReverTra Ace qPCR
RT Kit (TOYOBO; Osaka, Japan). qRT-PCR was performed with
SYBRGreenMaster (Roche; Basel, Switzerland) on the 480II Real
Time PCR Detection System (Roche; Basel, Switzerland). ACTB
mRNA was used to normalize mRNA expression. The results are
representative of at least three independent experiments. The
sequences of the PCR primers used are the following: ACTB-F
5′-CATGTACGTTGCTATCCAGGC-3′, R 5′-CTCCTTAAT
GTCACGCACGAT-3′; GSMDE-F 5′-CCCAGGATGGACCAT
TAAGTGT-3′, R 5′-GGTTCCAGGACCATGAGTAGTT-3′;

ACC-F 5′-CGCCAGCTTAAGGACAACAC-3′, R 5′-GGGA
TGTTCCCTCTGTTTGGA-3′; HMGCR-F 5′-GCAGGACC
CCTTTGCTTAGA-3′, R 5′-GGCACCTCCACCAAGACCTA-3′;
PDK2-F 5′-ATCAACCAGCACACCCTCAT-3′, R 5′-GTCA
CACAGGAGCTTAGCCA-3′.

Caspase-3/7 Activity Assay
The culture medium of GG-treated cells was replaced by fresh
culture containing CellEventTM Caspase-3/7 Green Detection
Reagent according to the manufacturer’s protocol (Thermo
Fisher Scientific; MA, USA). Cells were incubated in the dark
and counterstained with Hoechest 33342 (Beyotime; Shanghai,
China). The number of apoptotic cells was counted under
fluorescence microscopy (Leica; Solms, Germany).

Fluorescence Detection of Autophagic Flux
To detect autophagy, cells were infected with lentivirus
expressing RFP-GFP- MAP1LC3B (Genechem; Shanghai, China)
according to the manufacturer’s protocol, and the number
of RFP-GFP-MAP1LC3B puncta were counted in GG-treated
cells under laser scanning confocal microscopy (Leica,SP8;
Solms, Germany).

Transmission Electron Microscopy
Cells were fixed with 4% glutaraldehyde and post-fixed with
1% OsO4 in 0.1M cacodylate buffer containing 0.1% CaCl2 for
2 h at 4◦C. The samples were then stained with 1% Millipore-
filtered uranyl acetate, dehydrated in increasing concentrations
of ethanol, infiltrated, and embedded in LX-112 medium. After
polymerization of the resin at 60◦C for 48 h, ultrathin sections
were cut with an ultracut microtome (Leica; Solms, Germany).
Sections were stained with 4% uranyl acetate and lead citrate, and
images were obtained using a JEM-100cxII electron microscope
(Kyoto, Japan).

Lactic Dehydrogenase (LDH) Release
Assay
LDH concentration in culture medium was assessed as a
measure of cell membrane integrity using the LDH Release Assay
Kit according to the manufacturer’s instructions (Beyotime;
Shanghai, China). An increase in the LDH concentration in
culture medium indicates that cell membrane integrity has
been compromised.

RNA Interference
Interfering RNA sequences (siRNA) targeting GSDME (DFNA5;
GenePharma Gene; Shanghai, China) were transfected into
cells with Lipofectamine 2000 reagent (ThermoFisher Scientific;
MA, USA) according to the manufacturer’s protocol. After
4 h, fluorescently labeled RNA was used to detect transfection
efficiency. Knockdown efficiency was evaluated 48 h after
transfection by qRT-PCR and immunoblotting. SiRNA sequences
used are the following: 5′-GCGGTCCTATTTGATGATGAA-3′.

Immunofluorescence Staining
Cells were fixed with 4% paraformaldehyde, permeabilized
with 0.5% Triton X-100 (Beyotime, Shanghai, China) in PBS,
and incubated with phospho-histone H2A.X (Ser139) antibody
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(1:200; Cell Signaling Technology; Danvers, MA, USA) in 5%
bovine serum albumin (Sigma-Aldrich; MO, USA) in PBS
overnight. Primary antibody was detected with Alexa Fluor 647-
conjugated anti-rabbit IgG (Beyotime; Shanghai, China). Cells
were incubated in the dark with DAPI to stain nuclei. Slides
were examined under fluorescence microscopy, and images were
acquired using laser scanning confocal microscopy (Leica, SP8;
Solms, Germany).

Orthotopic Xenograft Model and
Bioluminescence Imaging
3 × 105 cells of U87MG infected with lentivirus expressing
luciferase-GFP (OBiO Technology; Shanghai, China) in ten
microliters of cell suspension were stereotactically implanted

into the brains (1mm posterior to the bregma and 2mm
to the right of the midline suture at a depth of 1.5mm)
of 4-week-old athymic mice (18, 19). After 7 days, tumor
size was determined, and animals were divided into the
following 4 groups: control, n = 5; GG, n = 5; chloroquine
(CQ; Sigma-Aldrich, C6628), n = 5; GG + CQ, n = 5).
Mice were, respectively, gavaged with diluted DMSO alone
(control), GG (100 mg/kg/day), CQ (25 mg/kg/day) and GG
(100 mg/kg/day) + CQ (25 mg/kg/day) every day. Tumor
growth was examined after implantation using bioluminescence
imaging (IVIS SPECTRUM, PerkinElmer; Hopkinton,MA,USA)
weekly. During the imaging procedure, the mouse was given D-
Luciferin, Potassium Salt D (150 mg/kg; Yeasen Biotech Co., Ltd.
Shanghai, China) under isoflurane gas anesthesia. Pictures were
taken every 5min. At the end of the experiment, tumors were

FIGURE 1 | GG inhibits proliferation of GBM cells. (A) Graphic representation of results from CCK-8 assays to determine cell viability of U251, U87MG, A172, and

NHA treated with different concentrations of GG for 24 and 48 h. Data points are the percentage (%; OD450 treated/OD450 untreated) relative to untreated cells at

same time point. (B) Graphic representation of results from colony formation assays for U87MG and U251 under treatment with different concentrations of GG. (C)

Fluorescence images of EdU incorporation in U87MG and U251 cells treated with GG or DMSO for 48 h. Cells were stained with Apollo 567 (red) to detect EdU and

DAPI (blue) to highlight nuclei, and images were merged (magnification, 100×). Graphic representation of cell number and EdU content of U87MG and U251 treated

with different concentrations of GG for 24 h. The percentage of EdU+ cells (EdU positive/DAPI positive × 100%) was determined in 4 random fields per sample. (D)

Graphic representation of cell cycle distribution obtained using PI staining and flow cytometry. Data points are the percentage of cells in G0/1, S and G2/M in U87MG

and U251 at 24 h after treatment. All data are expressed as the mean ± SD of values from experiments performed in triplicate. ***P < 0.001 compared to controls.
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dissected, and frozen in liquid nitrogen or fixed in formalin for
further analysis.

Immunohistochemistry
Tumors were removed from sacrificed mice, fixed in 4%
paraformaldehyde and paraffin-embedded. Paraffin-embedded
samples were sectioned (4µm) and fixed on glass slides.
Epitope retrieval of sections was performed in 10 mmol/L
citric acid buffer at pH7.2 heated in a microwave. Slides were
subsequently incubated with the primary antibody (rabbit anti-
Ki67 1:200 dilutions) at 4◦C overnight followed by HRP-
conjugated secondary antibody for 1 h at room temperature.
Antibodies were detected using the substrate diaminobenzidine
(DAB, Beyotime; Shanghai, China), and slides were counter-
stained with hematoxylin (Beyotime; Shanghai, China).

Plotting and Statistical Analysis
Each assay was performed at least three times independently.
Data analysis was performed using GraphPad Prism 6.01
software (San Diego, CA, USA). Data were reported as the
mean ± SD. The statistical significance of data was evaluated
using Student’s t test between two groups and one-way analysis
of variance (ANOVA) among more groups. Differences were
considered to be significant at the following P-values: ∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001.

RESULTS

GG Reduces Viability and Proliferation of
GBM Cells in vitro
To begin to determine whether GG might be cytotoxic to
GBM, we exposed GBM cell lines and NHA to GG in vitro
and evaluated cell growth in several assays. Treatment with
increasing concentrations of GG resulted in growth inhibition of
U251, U87MG and A172 cells in a dose-dependent manner, as
assessed in a cell viability assay (Figure 1A). In contrast, NHA
were more resistant to treatment with increasing concentrations
of GG, indicating that GG might be selective for tumor cells
at certain concentrations. Increasing concentrations of GG
led to decreased colony numbers in U251 and U87MG cells
(Figure 1B and Supplementary Figure 1B), with no colonies
appearing under treatment with 150µM GG. These results were
confirmed in EdU assays. EdU incorporation was also reduced
in a dose-dependent manner in both U251 and U87MG cells
treated with increasing concentrations of GG, indicating that
the molecule also inhibited cell proliferation (Figure 1C). These
results indicated that GG potently arrested proliferation in GBM
cells in a dose-dependent manner.

GG Induces G0/G1 Cell Cycle Arrest in
GBM Cells
To determine whether GG induces cell cycle arrest in GBM cells,
exponentially growing U87MG and U251 cells were treated with
150µMGG for 24 h, and the cell cycle distribution was examined
using flow cytometry. We chose to treat cells with 150µM GG
based on the results of the cell viability curves (Figure 1A), as this
concentration is also non-toxic to NHA. GBM cells accumulated

in G0/G1 under GG treatment compared to controls (∼10–
20%; Figure 1D and Supplementary Figure 1C). We next used
western blotting to determine the levels of several G1/S cell cycle
checkpoint proteins in GBM cells under GG treatment. Proteins
associated with cell proliferation, including CCND1, CDK4, and
PCNA, were reduced by ∼2–3×, while a protein critical for
executing G1 cell cycle arrest, cyclin-dependent kinase inhibitor
p21, increased by∼2–3× (Supplementary Figures 2A,B). These
results demonstrated that levels of key checkpoint proteins
paralleled GG induced cell cycle arrest.

GG Induces Apoptosis in GBM Cells
We next investigated whether GG induced apoptosis in GBM
cells. GBM cells were treated with 150µM GG for 48 h and first
examined using an live cell apoptosis assay to detect cleaved
caspase-3/7. The number of cells positive for activated caspase-
3/7 increased significantly after treatment with GG compared
to controls (15–20%; Figure 2A). The results were corroborated
through analysis of ANXA5-FITC and PI staining of treated
cells using flow cytometry. Apoptosis was significantly increased
in tumor cells treated with GG relative to controls (26.67 and
30.42%, U87MG and U251, respectively; Figure 2B).

We also examined levels of apoptosis-related proteins,
including Bcl-2, Bax and cleaved-PARP1, in GG-treated GBM
cells by western blotting. Bcl-2, an inhibitor of apoptosis,
was down-regulated in cells ∼4×, while Bax and cleaved-
PARP1, mediators of apoptosis, were increased ∼2.5×
or 30× (in a dose-dependent manner) (Figure 2C and
Supplementary Figure 2C). These results indicated that
apoptosis in part mediated the reduced viability of GBM cells
exposed to GG.

GG Induces Pyroptosis in GBM Cells
Pyroptosis is a form of cell death that is critical in pathogen
infection. It can be induced by canonical caspase-1
inflammasomes or through activation of caspase-4,−5, and
−11 by cytosolic lipopolysaccharide (20–22). This process
is mainly mediated by the gasdermin family sharing a pore-
forming domain (23). Chemotherapy drugs have been reported
to induce pyroptosis through caspase-3 cleavage of GSDME in
primary human cells (24). To determine whether pyroptosis
contributes to reduced cell viability in GBM cells, we first
examined expression of GSDME in human glioma using the
genomic data in TCGA and Rembrandt databases. GBMs
expressed higher levels of GSDME relative to normal brain
(Figure 3A). However, no significant increase in GSDME
was associated with glioma grade in the Rembrandt database
(Supplementary Figure 3A). To determine whether GSDME
expression was associated with survival, Kaplan–Meier survival
curves were generated based on the median value of GSDME
expression in GBM in the TCGA database (http://cancergenome.
nih.gov) (25). Although GSDME expression was significantly
higher than in normal samples, overall survival (OS) was
not significantly different between GBM high GSDME and
GBM low GSDME (P = 0.322; Figure 3B). However, based
on the Rembrandt database (http://www.betastasis.com/
glioma/rembrandt/) (26), the survival time of GBM patients
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FIGURE 2 | GG induces mitochondrial apoptosis and pyroptosis in GBM cells. (A) Fluorescence images of caspase-3 activity assay in U87MG and U251 cells treated

with GG or DMSO for 48 h. Cells were stained with CellEventTM Caspase-3/7 Green Detection Reagent (Green) to detect cleaved caspase-3 and Hoechst33342

(blue) to highlight nuclei. Images were merged (magnification, 40×). Graphic representation of the percentage of caspase-3 cleaved cells of U87MG and U251 treated

with DMSO or 150µM GG for 48 h. The percentage of caspase-3 cleaved cells (caspase-3 activated/ Hoechst33342 positive × 100%) was determined in 4 random

fields per sample. (B) Flow cytometric analysis of ANXA5-FITC and PI staining for the determination of apoptosis in U87MG and U251 cells after treatment of DMSO

or 150µM GG for 48 h. (C) Western blotting analysis of lysates (20 µg) prepared from U87MG and U251 cells treated with DMSO or GG at the indicated

concentrations for 48 h. Membranes were incubated with antibodies against cleaved-PARP1, Bcl-2, BAX, and ACTB (protein loading control). All data are expressed

as the mean ± SD of values from experiments performed in triplicate. ***P < 0.001 compared to controls.

with higher expression of GSDME was significantly shorter
than that of patients with lower expression (P = 0.022;
Supplementary Figure 3B).

We next investigated the possible involvement of
pyroptosis at the molecular level in GG-treated cells by
western blotting. N-terminal fragment of GSDME rather
than GSDMD was significantly increased in GG-treated
U87MG and U251 in dose-dependent manner relative
to controls (Figure 3C and Supplementary Figure 3C).
Morphological features were also consistent with pyroptosis.
Phase-contrast images revealed that characteristic large bubbles
in the plasma membrane formed in dying cells, and whole
cells displayed swelling typical of the process (Figure 3D).
Finally, the release of LDH was also significantly elevated
in both U87MG and U251, indicating that GG treatment

interrupted the integrity of the cell membrane in GBM cells

(Supplementary Figure 3D). In conclusion, both pyroptosis and
apoptosis contributed to GG-induced cell death in GBM cells
in vitro.

Inhibition of Pyroptosis Aggravates
Nuclear DNA Damage in GBM Cells
To confirm that pyroptosis in GG-treated cells was mediated by
GSDME, we knocked down GSDME in U87MG and U251 using
siRNA. qRT-PCR and westernbloting analyses demonstrated that
siRNA efficiently knocked down GSDME at the mRNA and
protein levels in both U87MG and U251 (Figures 3E,F and
Supplementary Figure 3E). Growth curves generated from cell
viability assays revealed no significant difference between si-
GSDME and control groups (Supplementary Figure 3F). LDH
release was also decreased in cells with GSDME knockdown
relative to controls (Supplementary Figure 3D). As pyroptosis
and apoptosis are two processes engaging programmed cell
death, we investigated whether loss of GSDME affected
levels of proteins typically associated with apoptosis. In
cells transfected with GSDME siRNAs, the treatment of GG
markedly increased the patch of p-H2AX—a marker of nuclear
damage (Figures 3G,H). The results of immunoblotting further
confirmed this phenomenon. Co-treatment of RNAi and GG
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FIGURE 3 | GG induces GSDME-mediated pyroptosis. (A) Graphic representation of the mRNA expression of GSDME in GBM in the TCGA database. (B)

Kaplan–Meier survival curves for patients with GBM GSDME high and GBM GSDME low from the TCGA database. (C) Western blotting analysis of lysates (20 µg)

prepared from U87MG and U251 cells treated with DMSO or GG at the indicated concentrations for 48 h. Membranes were incubated with antibodies against

GSDMD, GSDME, and ACTB (protein loading control). (D) Images of U87MG and U251 cells after treatment of DMSO or 150µM GG for 48 h under phase-contrast

microscopy (magnification, 200×). Graphic representation of results from (E) qRT-PCR and (F) western blotting analysis validates the efficiency of si-GSDME.

Immunofluorescence staining of p-H2A.X (Ser139) after corresponding treatment (600X) in U87MG (G) and U251 (H). Western blotting analysis performed to detect

levels of cleaved-PARP1, p-H2A.X (Ser139) and ACTB after knock-down of GSDME in U87MG (I) and U251 (J). All data are expressed as the mean ± SD of values

from experiments performed in triplicate. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to controls.

led to increases in nuclear DNA damage-related proteins,
including cleaved-PARP1 and p-H2AX (∼3–5×; Figures 3I,J
and Supplementary Figures 3G,H). Taken together, our results
demonstrated that inhibition of pyroptosis aggravated nuclear
DNA damage in GBM cells in vitro, indicating a possible
influence of pyrostosis to the extent of apoptosis when treating
glioblastoma cells with GG.

GG Induces Autophagy in GBM Cells
in vitro
Previous studies have suggested that GG exerts its anticancer
effect by inducing autophagy (11, 27). We therefore investigated

the relationship betweenGG and autophagy in human glioma cell
lines U251 and U87MG in vitro. We generated U87MG cells with
stable expression of GFP-RFP-MAP1LC3B. Under GG treatment,
the number of MAP1LC3B fluorescent puncta increased in
U87MG cells (Figure 4A). Transmission electron microscopy
(TEM) is the gold standard for detecting autophagosomes,
which are characterized by their double-membrane structure and
contents. TEM revealed that the number of autophagosomes
was increased after GG treatment (Figure 4B). Finally, the
expression of MAP1LC3B-II and SQSTM1 was measured by
western blotting. Alterations in the levels of these proteins,
increased MAP1LC3B-II with simultaneous decreased SQSTM1,
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FIGURE 4 | GG induces autophagy in GBM cells. (A) Fluorescence images of GFP-RFP-MAP1LC3B stably expressed in U87MG treated with 150µM GG or DMSO

for 48 h. The puncta visible due to GFP (green) and RFP (red) indicate formation of autophagosomes. The nuclei are stained blue with Hoechst33342. (B) Images from

transmission electron microscopy of U87MG treated with 150µM GG or DMSO for 48 h. The arrows highlight the autophagosomes. Scale bars: left figure 1.2µm,

right figure 0.4µm. (C) Western blotting analysis performed on lysates (20 µg) to detect levels of ATG5, BCLN1, SQTM1, MAP1LC3B, and ACTB in U87MG and

U251 cells after treatment of DMSO or 150µM GG. U87MG pretreated with (D) 3-MA (5mM) or (E) CQ (10µM) for 20min, followed by exposure to 150µM GG or

DMSO for another 48 h. Western blotting analysis performed to detect levels of MAP1LC3B and ACTB in U87MG. All data are expressed as the mean ± SD of values

from experiments performed in triplicate.

were consistent with enhanced and efficient autophagic flux
(Figure 4C and Supplementary Figure 4C).

Autophagy inhibitors were used to further probe the
mechanism of GG-induced autophagy. We co-treated U87MG
andU251 cells with GG and 3-methyladenine (3-MA; Selleck,TX,
USA) or CQ, which block early and late phases of autophagy,
respectively, and examined protein levels by western blotting.
Co-incubation of cells with GG and 3-MA (5mM) for 48 h led
to decreased MAP1LC3B-II. In contrast, combined treatment
with GG and CQ (10µM) led to increased expression of both
SQSTM1 and MAP1LC3B-II, compared to GG treatment alone
(Figures 4D,E and Supplementary Figures 4A,B,D–G). These
results thus indicated that GG induced autophagy through
molecules classically associated with the process.

GG Induces Autophagy Through Activation
of the AMPK/mTOR Pathway in GBM Cells
The mammalian target of rapamycin (mTOR) is a protein
serine/threonine kinase and a key regulator of autophagy. (mTOR
senses the levels of intracellular ATP, growth factors, and insulin,
and thus, changes in intracellular nutrition and energy (28).

Thus, we examined whether mTOR and other proteins in the

pathway were involved in GG-induced autophagy in GBM cells.

We first examined mTOR, which became dephosphorylated
at Ser2448 in GG-treated U87MG cells and indicated that

induction of autophagy by GGwasmTOR-dependent (Figure 5A
and Supplementary Figure 5A). Previous studies have shown

that GG activates AMP-Activated protein kinase (AMPK) (11),
which suppresses mTOR and thus enhances autophagy flux.
AMPK is a heterotrimeric complex composed of an α catalytic
subunit, a β regulatory subunit and a γ regulatory subunit
with phosphorylation of the AMPKα at the Thr172 site which
is essential for AMPK activation. Phosphorylated AMPKα

Thr172 was significantly increased in GG-treated U87MG cells
(Figure 5A). To further verify that GG-induced autophagy was
AMPK dependent, U87MG cells were treated with GG and the
AMPK inhibitor Compound C (20µM) (Selleck Chemicals, TX,
USA) for 48 h. Compound C treatment led to reduced levels of
P-AMPKα Thr172 and attenuated GG-induced autophagy flux,
as determined by decreased levels of MAP1LC3B-II (Figure 5B
and Supplementary Figure 5B). We also detected downstream
molecules of AMPKα as energy receptors, such as ACC,
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FIGURE 5 | GG induces protective autophagy through activation of the AMPK/mTOR pathway. (A) Western blotting analysis performed on lysates (20 µg) for

AMPKα, P-AMPKα (Thr172), mTOR, P-mTOR (Ser2448), MAP1LC3B and ACTB in U87MG and U251 cells treated with DMSO or 150µM GG for 48 h. (B) Western

blotting analysis performed on lysates (20 µg) for AMPKα, P-AMPKα (Thr172), mTOR, P-mTOR (Ser2448), MAP1LC3B and ACTB after co-incubation of U87MG cells

with GG and AMPK inhibitor Compound C. (C) Graphic representation of results of downstream molecules of the AMPK pathway from qRT-PCR for after exposure to

150µM GG or DMSO for 48 h. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to controls. (D) Western blotting analysis of lysates (20 µg) prepared from U87MG

and U251 cells treated with DMSO or 150µM GG for 48 h. Membranes were incubated with antibodies against AMPKα, P-AMPKα (Thr172), P-ACC (Ser79), PDK,

HMGCR and ACTB. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to controls. Western blotting analysis performed to detect levels of cleaved-PARP1, BAX,

GSDMD, GSDME, and ACTB in (E) U87MG and U251 pretreated with 3-MA (10mM), followed by exposure to 150µM GG or DMSO for another 48 h. All data are

expressed as the mean ± SD of values from experiments performed in triplicate. ***P < 0.001 compared to controls.

Phosphorylated ACC (Ser79), PDK2 (Thr172), HMGCR. Their
changes also confirmed the activation of the AMPK pathway
(Figures 5C,D and Supplementary Figure 5C). These results
indicated that the AMPK/mTOR pathway was involved in GG-
induced autophagy in GBM cells.

Inhibition of Autophagy Enhances
Aggravates GG-Induced Apoptosis and
Pyroptosis in GBM Cells
Current research has demonstrated that the relationship
between autophagy and apoptosis can be mutually exclusive or
coordinated in programmed cell death (29, 30). We therefore
investigated the relationship between autophagy, apoptosis, and
pyroptosis in GBM cells under treatment with 150µM GG. On
western blotting analysis, apoptosis-related proteins, such as Bax
and cleaved-PARP1, as well as the pyroptosis-related protein N-
GSDME, were increased in GG-treated U87MG and U251 cells
in the presence of 3-MA, an inhibitor of autophagy (Figure 5E
and Supplementary Figure 5D). Taken together, 150µM GG

simultaneously induced apoptosis, pyroptosis, and protective
autophagy in GBM cells in culture.

GG Inhibits Growth of GBM Cells in vivo
The therapeutic efficacy of GG was assessed in an orthotopic
tumor model derived from U87MG-luciferase expressing cells
implanted in athymic mice. Tumor growth was evaluated
using luciferase bioluminescence. GG treatment significantly
suppressed tumor growth relative to vehicle control in
tumor bearing mice (at 3 weeks, ∼25 × 107 vs. ∼ 40 ×

107 photons/s, GG vs. vehicle control; Figures 6A,B and
Supplementary Figure 6). The combined administration of GG
and CQ was more effective compared to GG monotherapy (∼20
× 107 vs.∼25× 107 photons/s, GG+CQ vs. GG; Figures 6A,B).
However, there was no significant difference between CQ treated
animals and controls. The weight of GG and GG + CQ-treated
animals were also increased relative to controls at 2 and 3 weeks
following initiation of treatment (P < 0.05; Figure 6C). Tissue
protein immunoblotting yielded similar results to those in GBM
cell lines (Figure 6D).
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FIGURE 6 | GG inhibits tumor growth in an orthotopic model for GBM in mice. (A) U87MG cells expressing luciferase were orthotopically implanted into athymic nude

mice, and tumor growth was monitored using the PerkinElmer IVIS Spectrum for detection of bioluminescence. Bioluminescent signals were measured at days 7, 14,

and 21 after implantation. (B) Bioluminescence values plotted as a function of time in days to assess tumor growth (days 7, 14, and 21). (C) Graphic representation of

results from weight of athymic mice in each experimental group (days 0, 7, 14, and 21). (D) Western blotting analysis performed on lysates (20 µg) prepared from

xenografts to detect protein levels of MAP1LC3B and ACTB in each experimental group. (E) Images of immunohistochemical staining for Ki67 in tumors from each

group as indicated (scale bars: 50µm). All data are expressed as the mean ± SD of values from experiments performed in triplicate. *P < 0.05 and **P < 0.01

compared between the 2 treatments.

Immunohistochemistry performed on tissue sections from
xenografts also demonstrated that Ki67, a marker of cell
proliferation, was decreased in GG and GG + CQ-treated
tumors compared to untreated controls (Figure 6E). Therefore,
GG suppressed tumor growth in vivo, and combined treatment
with an inhibitor of autophagy enhanced GG-induced tumor
growth inhibition.

DISCUSSION

The antineoplastic effect of GG has been observed in a
variety of tumors, including leukemia (31), colon cancer (32),
retinoblastoma (33), and breast cancer (34). As a natural
medicinal extract, GG exhibits low toxicity to the animal and
non-specificity, with regard to tumor tissues, which differs
from chemically synthesized drugs. Therefore, a molecular
understanding of the antineoplastic characteristics of GG might
be of value in the treatment of human GBM, which responds
poorly to current therapeutic approaches. GG has been shown
to inhibit cell migration and invasion of the GBM cell line
A172 under non-toxic doses depending on its ability to activate
ADAM9 and Erk1/2 (35). Nonetheless, our experiments paid
attention to the phenomenon that GG induces not only apoptosis
and pyroptosis, which inhibit GBM growth in vitro and in vivo,
but also autophagy.

Autophagy is a cellular process that is extremely conserved
in evolution. When cells are under stress due to energy levels
incompatible with growth/survival, autophagy is the process
whereby organelles and proteins are digested into amino acids
and essentially recycled to maintain cell survival. Continuous
cellular proliferation, insufficient blood supply, aerobic glycolysis
and infiltration of inflammatory cells render tumor cells relatively
energy-deficient so that they maintain a high level of autophagy.
Lack of energy is often accompanied by hypoxia, which is a
hallmark of GBM. Hypoxia induces autophagy as a mechanism
of protection and survival. Therefore, tumor cells tend to engage
autophagy for various reasons. Many antitumor treatments,
including chemotherapy, radiation therapy, and common drugs,
have been reported to modulate cellular autophagy (36, 37). In
the case of GG, the treatment may induce energy stress in GBM
cells and thus, autophagy; tumor cells face the choice between
survival and death. In our work, we prefer to consider this
state as the damage state. Survival requires maintaining normal
organelle function and a sufficient energy supply. Cell death is a
process that also requires energy and generation of the necessary
components. The energy produced through autophagy may
therefore be used to prepare for either cell survival or cell death.
Therefore, to consider autophagy as only a protective function
might not be sufficient, and we cannot simply assume that drugs
inducing autophagy are always beneficial to tumor cells. So-called
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FIGURE 7 | A hypothetical mechanism of GG exerted antitumor activity in GBM cells. GG induces autophagy through the AMPK/mTOR signaling pathway and

induces mitochondrial apoptosis and pyroptosis in GBM cells. When autophagy is blocked, apoptosis, and pyrosis increase significantly. Crosstalk between apoptosis

and pyrosis may exist due to mediation of the processes by some of the same proteins.

protective autophagy might simply halt the damage state, and
thus protect cells from proceeding down a cell death pathway
(Figure 7).

While crosstalk between apoptosis and autophagy is well-
established, the relationship between autophagy and pyroptosis
remains poorly defined. Although it was initially identified
in bacterial immunity, pyroptosis has become an increasingly
acknowledged form of programmed cell death occurring in
biological scenarios including tumor therapy and chronic
inflammation. Many studies have shown that GSDME is highly
expressed in normal tissues but silenced in cancers due to
promoter hypermethylation. This pattern of expression is
consistent with a role as a putative tumor suppressor (38,
39). In GBM, however, the situation is reversed; GSDME is
highly expressed relative to normal tissue. Increased expression
of GSDME may represent a unique opportunity to exploit
pyroptosis in the treatment of GBM. When we blocked
autophagy in vitro, pyroptosis increased in GBM cells. In vivo,
combination therapy in xenograft models in mice significantly

improved survival. Our studies confirm that antineoplastic drugs
combined with autophagy inhibitors provide a basis for cocktail
therapy. Pyroptosis differs from apoptosis, however, in a critical
aspect; the cell membrane is damaged by the N-terminal region
of GSDME during pyroptosis, which releases cellular contents
into the extracellular environment. The released cellular contents
have the potential to stimulate inflammation and may initiate
an anti-tumor immune response. Thus, pyroptosis may have
synergistic effects with current anti-tumor immunotherapy. In
addition, certain tumor cells have anti-apoptosis mechanisms,
and the existence of pyroptosis pathwaymay be an important way
for drugs to kill tumor cells.

In summary, we have examined the role of apoptosis
and pyroptosis, two mechanisms which induce programmed
cell death, in GG-induced inhibition of GBM cell growth,
and found that the molecule simultaneously activates both
processes. However, data from other studies is controversial.
Some studies have demonstrated that pyroptosis suppresses the
apoptotic pathway in macrophages (40, 41), while in some
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cell lines, the process has been shown to occur as secondary
necrosis after apoptosis (24). Recent reports have however
confirmed that GSDME is a critical substrate of caspase-
3 and a key mediator of non-immune cell pyroptosis (24).
We thus propose that GG treatment induces concomitant
apoptosis and pyroptosis at the molecular level through the same
upstream pathway, activation of caspase-3, and therefore, the
two processes may interact for efficient execution of cell death
in response to treatment. Future studies are thus warranted
to determine the relative contribution of these two processes
to the anti-neoplastic effects of GG as well as the specific
molecules involved.
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Supplementary Figure 1 | (A) Molecular structure of GG. (B) Image of colony

formation assays in U87MG and U251 after treatment with the indicated

concentrations of GG for 2 weeks. Cells were fixed and stained with crystal violet.

(C) Graphic representation of cell cycle distribution (PI) analyzed by flow cytometry

for U251 and U87MG cells treated with 150µM GG or DMSO for 48 h.

Supplementary Figure 2 | (A) Western blotting analysis of lysates (20 µg)

prepared from U87MG and U251 cells treated with DMSO or GG at the

concentrations indicated for 48 h. Membranes were incubated with antibodies

against CDH2, MMP2, CDK4, CCND1, P21, PCNA, and ACTB (protein loading

control). (B) Quantitation of protein levels of CDH2, MMP2, CDK4, CCND1, P21,

PCNA, and ACTB. (C) Quantitation of protein levels of cleaved-PARP1, Bcl-2,

BAX, and ACTB in Figure 2C. ∗P < 0.05 and ∗∗P < 0.01 compared to controls.

Supplementary Figure 3 | (A) Graphic representation of the mRNA expression of

GSDME in glioma and Non-tumor in the Rembrandt database. (B) Kaplan–Meier

survival curves for glioma patients with higher expression of GSDME and lower

expression of GSDME. (C) Quantitation of protein levels of N-GSDME and ACTB

of Figure 3C. (D) Graphic representation of LDH Release Assay in U87MG and

U251 cells with knock-down of GSDME compared to controls. (E) Quantitation of

protein levels of GSDME and ACTB of Figure 3F. (F) Graphic representation of

Cell Counting Kit-8 between control and knockdown of GSDME in U87MG and

U251. Quantitative histogram of C-PARP-1 and P-H2A.X (Ser139) in U87MG (G)

and U251 (H) cells. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001

compared to controls.

Supplementary Figure 4 | (A) Western blotting analysis performed to detect

levels of MAP1LC3B and ACTB in U251 treated with 3-MA (5mM) for 20min,

followed by exposure to 150µM GG or DMSO for another 48 h. (B) Western

blotting analysis performed to detect levels of MAP1LC3B and ACTB in U251 CQ

(10µM) for 20min, followed by exposure to 150µM GG or DMSO for another

48 h. (C) Quantitative histogram of Figure 4C. Quantitation of protein levels of

MAP1LC3B-II, SQSTM1 and ACTB in U87MG (D,E) and U251 (F,G) cells after

corresponding treatment. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P <

0.0001 compared to controls.

Supplementary Figure 5 | (A) Quantitative of protein levels of AMPK-a,

P-AMPK-a (Thr172), mTOR, P-mTOR (Ser2448) and MAP1LC3B-II and ACTB in

U87MG and U251 after exposure to 150µM GG or DMSO for 48 h. (B)

Quantitative histogram of Figure 5B. (C) Quantitative of protein levels of AMPK-a,

P-AMPK-a (Thr172), P-ACC (Ser79), PDK2, HMGCR treated with DMSO or GG

(150µM) in in U87MG and U251. (D) Quantitative histogram of Figure 5E. ∗P <

0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001 compared to controls.

Supplementary Figure 6 | Tumor growth was monitored using the PerkinElmer

IVIS Spectrum for detection of bioluminescence. Bioluminescent signals were

measured at days 7, 14, and 21 after implantation.
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