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Abstract
A b-coloring of a graph G is a proper coloring of its vertices such that each color class contains a
vertex that has at least one neighbor in all the other color classes. The b-Coloring problem asks
whether a graph G has a b-coloring with k colors. The b-chromatic number of a graph G, denoted
by χb(G), is the maximum number k such that G admits a b-coloring with k colors. We consider
the complexity of the b-Coloring problem, whenever the value of k is close to one of two upper
bounds on χb(G): The maximum degree ∆(G) plus one, and the m-degree, denoted by m(G), which
is defined as the maximum number i such that G has i vertices of degree at least i− 1. We obtain a
dichotomy result for all fixed k ∈ N when k is close to one of the two above mentioned upper bounds.
Concretely, we show that if k ∈ {∆(G) + 1− p,m(G)− p}, the problem is polynomial-time solvable
whenever p ∈ {0, 1} and, even when k = 3, it is NP-complete whenever p ≥ 2. We furthermore
consider parameterizations of the b-Coloring problem that involve the maximum degree ∆(G) of
the input graph G and give two FPT-algorithms. First, we show that deciding whether a graph G
has a b-coloring with m(G) colors is FPT parameterized by ∆(G). Second, we show that b-Coloring
is FPT parameterized by ∆(G) + `k(G), where `k(G) denotes the number of vertices of degree at
least k.
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1 Introduction

Given a set of colors, a proper coloring of a graph is an assignment of a color to each of its
vertices in such a way that no pair of adjacent vertices receive the same color. In the deeply
studied Graph Coloring problem, we are given a graph and the question is to determine
the smallest set of colors with which we can properly color the input graph. This problem
is among Karp’s famous list of 21 NP-complete problems [14] and since it often arises in
practice, heuristics to solve it are deployed in a wide range of applications. A very natural
such heuristic is the following. We greedily find a proper coloring of the graph, and then
try to suppress any of its colors in the following way: say we want to suppress color c. If
there is a vertex v that has received color c, and there is another color c′ 6= c that does not
appear in the neighborhood of v, then we can safely recolor the vertex v with color c′ without
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34:2 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

making the coloring improper. We terminate this process once we cannot suppress any color
anymore.

To predict the worst-case behavior of the above heuristic, Irving and Manlove defined the
notions of a b-coloring and the b-chromatic number of a graph [12]. A b-coloring of a graph
G is a proper coloring such that in every color class there is a vertex that has a neighbor in
all of the remaining color classes, and the b-chromatic number of G, denoted by χb(G), is
the maximum integer k such that G admits a b-coloring with k colors. We observe that in a
b-coloring with k colors, there is no color that can be suppressed to obtain a proper coloring
with k − 1 colors, hence χb(G) describes the worst-case behavior of the previously described
heuristic on the graph G. We consider the following two computational problems associated
with b-colorings of graphs.

Input: Graph G, integer k
Question: Does G admit a b-coloring with k colors?

b-Coloring

Input: Graph G, integer k
Question: Is χb(G) ≥ k?

b-Chromatic Number

We would like to point out an important distinction from the “standard” notion of proper
colorings of graphs: If a graph G has a b-coloring with k colors, then this implies that
χb(G) ≥ k. However, if χb(G) ≥ k then we can in general not conclude that G has a
b-coloring with k colors. A graph for which the latter implication holds as well is called
b-continuous. This notion is mostly of structural interest, since the problem of determining
if a graph is b-continous is NP-complete even if an optimal proper coloring and a b-coloring
with χb(G) colors are given [2].

Besides observing that χb(G) ≤ ∆(G) + 1 where ∆(G) denotes the maximum degree of G,
Irving and Manlove [12] defined the m-degree of G as the largest integer i such that G has i
vertices of degree at least i− 1. It follows that χb(G) ≤ m(G). Since the definition of the
b-chromatic number originated in the analysis of the worst-case behavior of graph coloring
heuristics, graphs whose b-chromatic numbers take on critical values, i.e. values that are
close to these upper bounds, are of special interest. In particular, identifying them can be
helpful in structural investigations concerning the performance of graph coloring heuristics.

In terms of computational complexity, Irving and Manlove showed that both b-Coloring
and b-Chromatic Number are NP-complete [12] and Sampaio observed that b-Coloring
is NP-complete even for every fixed integer k ≥ 3 [17]. Panolan et al. [16] gave an exact
exponential algorithm for b-Chromatic Number running in time O(3nn4 log n) and an
algorithm that solves b-Coloring in time O(

(
n
k

)
2n−kn4 logn). From the perspective of

parameterized complexity [6, 8], it has been shown that b-Chromatic Number is W[1]-hard
parameterized by k [16] and that the dual problem of deciding whether χb(G) ≥ n−k, where
n denotes the number of vertices in G, is FPT parameterized by k [11].

Since the above mentioned upper bounds ∆(G) + 1 and m(G) on the b-chromatic number
are trivial to compute, it is natural to ask whether there exist efficient algorithms that
decide whether χb(G) = ∆(G) + 1 or χb(G) = m(G). It turns out both these problems are
NP-complete as well [10, 12, 15]. However, it is known that the problem of deciding whether
a graph G admits a b-coloring with k = ∆(G) + 1 colors is FPT parameterized by k [16, 17].
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The Dichotomy Result. One of the main contributions of this paper is a complexity
dichotomy of the b-Coloring problem for fixed k, whenever k is close to either ∆(G) + 1 or
m(G). In particular, for fixed k ∈ {∆(G) + 1− p,m(G)− p}, we show that the problem is
polynomial-time solvable when p ∈ {0, 1} and, even in the case k = 3, NP-complete for all
fixed p ≥ 2. More specifically, we give XP time algorithms for the cases k = m(G), k = ∆(G),
and k = m(G)− 1 which together with the FPT algorithm for the case k = ∆(G) + 1 [16, 17]
and the aforementioned NP-hardness result for k = 3 complete the picture. We now formally
state this result.

I Theorem 1. Let G be a graph, p ∈ N and k ∈ {∆(G) + 1− p,m(G)− p}. The problem of
deciding whether G has a b-coloring with k colors is
(i) NP-complete if k is part of the input and p ∈ {0, 1},
(ii) NP-complete if k = 3 and p ≥ 2, and
(iii) polynomial-time solvable for any fixed positive k and p ∈ {0, 1}.

Maximum Degree Parameterizations. The positive results in our dichotomy theorem
provide XP-algorithms to decide whether a graph has a b-coloring with a number of colors
that either precisely meets or is one below one of two upper bounds on the b-chromatic
number, with the parameter being the number of colors in each of the cases. Towards more
“flexible” tractability results, we consider parameterized versions of b-Coloring that involve
the maximum degree ∆(G) of the input graph G, but ask for the existence of b-colorings
with a number of colors that in general is different from ∆(G) + 1 or ∆(G).

I Theorem 2. Let G be a graph. The problem of deciding whether G has a b-coloring with
m(G) colors is FPT parameterized by ∆(G).

One of the crucially used facts in the algorithm of the previous theorem is that if we ask
whether a graph G has a b-coloring with k = m(G) colors, then the number of vertices of
degree at least k is at most k. We generalize this setting and parameterize b-Coloring by
the maximum degree plus the number of vertices of degree at least k.

I Theorem 3. Let G be a graph. The problem of deciding whether G has a b-coloring with
k colors is FPT parameterized by ∆(G) + `k(G), where `k(G) denotes the number of vertices
of degree at least k in G.

We now argue that parameterizing by only one of the two invariants used in Theorem 3
is not sufficient to obtain efficient parameterized algorithms. From the result of Kratochvíl et
al. [15], stating that b-Coloring is NP-complete for k = ∆(G)+1, it follows that b-Coloring
is NP-complete when ∆(G) is unbounded and `k(G) = 0. On the other hand, Theorem 1(ii)
implies that b-Coloring is already NP-complete when k = 3 and ∆(G) = 4. Together, this
rules out the possibility of FPT- and even of XP-algorithms for parameterizations by one of
the two parameters alone, unless P = NP.

Parameterizations of graph coloring problems by the number of high degree vertices have
previously been considered for vertex coloring [1] and edge coloring [9]. Throughout the text,
proofs of statements marked with “♣” are deferred to the full version [13].

2 Preliminaries

We use the following notation: For k ∈ N, [k] ..= {1, . . . , k}. For a function f : X → Y and
X ′ ⊆ X, we denote by f |X′ the restriction of f to X ′ and by f(X ′) the set {f(x) | x ∈ X ′}.
For a set X and an integer n, we denote by

(
X
n

)
the set of all size-n subsets of X.

MFCS 2019



34:4 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

Graphs. Throughout the paper a graph G with vertex set V (G) and edge set E(G) ⊆
(

V (G)
2
)

is finite and simple. We often denote an edge {u, v} ∈ E(G) by the shorthand uv. For
graphs G and H we denote by H ⊆ G that H is a subgraph of G, i.e. V (H) ⊆ V (G) and
E(H) ⊆ E(G). We often use the notation n ..= |V (G)|. For a vertex v ∈ V (G), we denote
by NG(v) the open neighborhood of v in G, i.e. NG(v) = {w ∈ V (G) | vw ∈ E(G)}, and by
NG[v] the closed neighborhood of v in G, i.e. NG[v] ..= {v} ∪ NG(v). For a set of vertices
X ⊆ V (G), we let NG(X) ..=

⋃
v∈X NG(v) \X and NG[X] ..= X ∪NG(X). When G is clear

from the context, we abbreviate “NG” to “N”. The degree of a vertex v ∈ V (G) is the size
of its open neighborhood, and we denote it by degG(v) ..= |NG(v)| or simply by deg(v) if G
is clear from the context. For an integer k, we denote by `k(G) the number of vertices of
degree at least k in G.

For a vertex set X ⊆ V (G), we denote by G[X] the subgraph induced by X, i.e. G[X] ..=
(X,E(G) ∩

(
X
2
)
). We furthermore let G−X ..= G[V (G) \X] be the subgraph of G obtained

from removing the vertices in X and for a single vertex x ∈ V (G), we use the shorthand
“G− x” for “G− {x}”.

A graph G is said to be connected if for any 2-partition (X,Y ) of V (G), there is an
edge xy ∈ E(G) such that x ∈ X and y ∈ Y , and disconnected otherwise. A connected
component of a graph G is a maximal connected subgraph of G. A path is a connected graph
of maximum degree two, having precisely two vertices of degree one, called its endpoints.
The length of a path is its number of edges. Given a graph G and two vertices u and v, the
distance between u and v, denoted by distG(u, v) (or simply dist(u, v) if G is clear from the
context), is the length of the shortest path in G that has u and v as endpoints.

A graph G is a complete graph if every pair of vertices of G is adjacent. A set C ⊆ V (G)
is a clique if G[C] is a complete graph. A set S ⊆ V (G) is an independent set if G[S] has no
edges. A graph G is a bipartite graph if its vertex set can be partitioned into two independent
sets. A bipartite graph with bipartition (A,B) is a complete bipartite graph if all pairs
consisting of one vertex from A and one vertex from B are adjacent, and with a = |A| and
b = |B|, we denote it by Ka,b. A star is the graph K1,b, with b ≥ 2, and we call center the
unique vertex of degree b and leaves the vertices of degree one.

Colorings. Given a graph G, a map γ : V (G)→ [k] is called a coloring of G with k colors.
If for every pair of adjacent vertices, uv ∈ E(G), we have that γ(u) 6= γ(v), then the coloring
γ is called proper. For i ∈ [k], we call the set of vertices u ∈ V (G) such that γ(u) = i the
color class i. If for all i ∈ [k], there exists a vertex xi ∈ V (G) such that
(i) γ(xi) = i, and
(ii) for each j ∈ [k] \ {i}, there is a neighbor y ∈ NG(xi) of xi such that γ(y) = j,
then γ is called a b-coloring of G. For i ∈ [k], we call a vertex xi satisfying the above two
conditions a b-vertex for color i.

Parameterized Complexity. Let Σ be an alphabet. A parameterized problem is a set
Π ⊆ Σ∗×N. A parameterized problem Π is said to be fixed-parameter tractable, or contained
in the complexity class FPT, if there exists an algorithm that for each (x, k) ∈ Σ∗×N decides
whether (x, k) ∈ Π in time f(k) · |x|c for some computable function f and fixed integer c ∈ N.
A parameterized problem Π is said to be contained in the complexity class XP if there is
an algorithm that for all (x, k) ∈ Σ∗ × N decides whether (x, k) ∈ Π in time f(k) · ng(k) for
some computable functions f and g.

A kernelization algorithm for a parameterized problem Π ⊆ Σ∗ × N is a polynomial-time
algorithm that takes as input an instance (x, k) ∈ Σ∗×N and either correctly decides whether
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(x, k) ∈ Π or outputs an instance (x′, k′) ∈ Σ∗×N with |x′|+ k′ ≤ f(k) for some computable
function f for which (x, k) ∈ Π if and only if (x′, k′) ∈ Π. We say that Π admits a kernel if
there is a kernelization algorithm for Π.

3 Hardness Results

In this section we prove the hardness results of our complexity dichotomy. First, we show
that b-Chromatic Number and b-Coloring are NP-complete for k = m(G)− 1 = ∆(G),
based on a reduction for the case k = m(G) due to Havet et al. [10].

I Theorem 4 (♣). b-Chromatic Number and b-Coloring are NP-complete, even when
k = m(G)− 1 = ∆(G).

The previous theorem, together with the result that b-Coloring is NP-complete when k =
∆(G) + 1 [15] and when k = m(G) [10], proves Theorem 1(i). We now turn to the proof
of Theorem 1(ii), that is, we show that b-Coloring remains NP-complete for k = 3 if
k = ∆(G) + 1− p or k = m(G)− p for any p ≥ 2, based on a reduction due to Sampaio [17].
Note that the following proposition indeed proves Theorem 1(ii) as for fixed p ≥ 2, we have
that 3 ∈ {∆(G) + 1− p,m(G)− p} if and only if ∆(G) = p+ 2 or m(G) = p+ 3.

I Proposition 5 (♣). For every fixed integer p ≥ 2, the problem of deciding whether a graph
G has a b-coloring with 3 colors is NP-complete when ∆(G) = p+ 2 or m(G) = p+ 3.

Since b-Chromatic Number and b-Coloring are known to be NP-complete when
k = ∆(G) + 1 [15], we make the following observation which is of relevance to us since in
Section 5.2, we show that b-Coloring is FPT parameterized by ∆(G) + `k(G).

I Observation 6. b-Chromatic Number and b-Coloring are NP-complete on graphs with
`k(G) = 0, where k is the integer associated with the respective problem.

4 Dichotomy Algorithms

In this section we give the algorithms in our dichotomy result, proving Theorem 1(iii). We
show that for fixed k ∈ N, the problem of deciding whether a graph G admits a b-coloring with
k colors is polynomial-time solvable when k = m(G) (Sect. 4.2), when k = ∆(G) (Sect. 4.3),
and when k = m(G)− 1 (Sect. 4.4), by providing XP-algorithms for each case.

A natural way of solving the b-Coloring problem is to first try to identify a set of k
b-vertices, color them bijectively with colors from [k], and for each vertex in the set a set
of k − 1 neighbors that can be colored in such a way that the vertex becomes a b-vertex
for its color. Then try to extend the resulting coloring to the remainder of the graph. We
enumerate all such sets and colorings, and show that the extension problem is solvable in
polynomial time in each of the above cases.

The strategy of identifying the set of b-vertices and subsets of their neighbors that make
them b-vertices was (for instance) also used to give polynomial-time algorithms to compute
the b-chromatic number of trees [12] and graphs with large girth [4]. We capture it by
defining the notion of a b-precoloring in the next subsection.

4.1 b-Precolorings
All algorithms in this section are based on guessing a proper coloring of several vertices in the
graph, for which we now introduce the necessary terminology and establish some preliminary
results.

MFCS 2019



34:6 A Complexity Dichotomy for Critical Values of the b-Chromatic Number

I Definition 7 (Precoloring). Let G be a graph and k ∈ N. A precoloring with k colors of a
graph G is an assignment of colors to a subset of its vertices, i.e. for X ⊆ V (G), it is a map
γX : X → [k]. We call γX proper, if it is a proper coloring of G[X]. We say that a coloring
γ : V (G)→ [k] extends γX , if γ|X = γX .

We use the following notation. For two precolorings γX and γY with X ∩ Y = ∅, we
denote by γX ∪ γY the precoloring that colors the vertices in X according to γX and the
vertices in Y according to Y , i.e. the precoloring γX∪Y

..= γX ∪ γY defined as follows: for all
v ∈ X ∪ Y , if v ∈ X, then γX∪Y (v) = γX , and if v ∈ Y then γX∪Y (v) = γY (v).

Next, we define a special type of precoloring with the property that any proper coloring
that extends it is a b-coloring of the graph.

I Definition 8 (b-Precoloring). Let G be a graph, k ∈ N, X ⊆ V (G) and γX a precoloring.
We call γX a b-precoloring with k colors if γX is a b-coloring of G[X]. A b-precoloring γX is
called minimal if for any Y ⊂ X, γX |Y is not a b-precoloring.

It is immediate that any b-coloring can be obtained by extending a minimal b-precoloring,
a fact that we capture in the following observation.

I Observation 9. Let G be a graph, k ∈ N, and γ a b-coloring of G with k colors. Then,
there is a set X ⊆ V (G) such that γ|X is a minimal b-precoloring.

The next observation captures the structure of minimal b-precolorings with k colors.
Roughly speaking, each such precoloring only colors a set of k b-vertices and for each b-vertex
a set of k− 1 of its neighbors that make that vertex the b-vertex of its color. We will use this
property in the enumeration algorithm in this section to guarantee that we indeed enumerate
all minimal b-precolorings with a given number of colors.

I Observation 10. Let γX be a minimal b-precoloring with k colors. Then, X = B ∪ Z,
where
(i) B = {x1, . . . , xk} and for i ∈ [k], γX(xi) = i, and
(ii) Z =

⋃
i∈[k] Zi, where Zi ∈

(
N(xi)
k−1

)
and γX(Zi) = [k] \ {i}.

We are now ready to give the enumeration algorithm for minimal b-precolorings.

I Lemma 11 (♣). Let G be a graph on n vertices and k ∈ N. The number of minimal
b-precolorings with k colors of G is at most

β(k) ..= nk ·∆k(k−1) · (k − 1)!k, (1)

where ∆ ..= ∆(G) and they can be enumerated in time β(k) · kO(1).

4.2 Algorithm for k = m(G)
Our first application of Lemma 11 is to solve the b-Coloring problem in the case when
k = m(G) in time XP parameterized by k. It turns out that in this case, we are dealing with
a Yes-instance as soon as we found a b-precoloring in the input graph that also colors all
high-degree vertices (see Claim 12.1).

I Theorem 12. Let G be a graph. There is an algorithm that decides whether G has a
b-coloring with k = m(G) colors in time nk2 · 2O(k2 log k).

Proof. Let D ⊆ V (G) denote the set of vertices in G that have degree at least k. Note that
by the definition of m(G), we have that |D| ≤ k.
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I Claim 12.1 (♣). G has a b-coloring with k colors if and only if G has a b-precoloring γX

such that D ⊆ X and there exists S ⊆ D such that γX |(X\S) is a minimal b-precoloring.

The algorithm enumerates all minimal b-precolorings with k colors and for each such precol-
oring, it enumerates all colorings of the vertices D. If combining one such pair of precolorings
gives a b-precoloring, it returns a greedy extension of it; otherwise it reports that there is no
b-coloring with k colors, see Algorithm 1.

Algorithm 1 Algorithm for b-Coloring with k = m(G).

Input :A graph G
Output :A b-coloring with m(G) colors if it exists, No otherwise.

1 foreach minimal b-precoloring γX : X → [k] do
2 foreach precoloring γD\X : (D \X)→ [k] do
3 if γX∪D

..= γX ∪ γD\X is proper then return a greedy extension of γX∪D;
4 return No;

The correctness of the algorithm follows from the fact that it enumerates all precolorings
that can satisfy Claim 12.1. We discuss its runtime. By Lemma 11, we can enumerate all
minimal b-precolorings with k colors in time β(k) ·kO(1). For each such minimal b-precoloring,
we also enumerate all colorings of D. Since |D| ≤ k, this gives an additional factor of kk to
the runtime which (with ∆ ≤ n) then amounts to β(k) · kk · kO(1) ≤ nk2 · 2O(k2 log k). J

4.3 Algorithm for k = ∆(G)
Next, we turn to the case when k = ∆(G). Here the strategy is to again enumerate all
minimal b-precolorings, and then for each such precoloring we check whether it can be
extended to the remainder of the graph. Formally, we use an algorithm for the following
problem as a subroutine.

Input: A graph G, an integer k, and a precoloring γX : X → [k] of a set X ⊆ V (G)
Question: Does G have a proper coloring with k colors extending γX?

Precoloring Extension (PrExt)

Naturally, Precoloring Extension is a hard problem, since it includes Graph Col-
oring as the special case when X = ∅. However, when ∆(G) ≤ k − 1, then the problem
is trivially solvable: we simply check if the precoloring at the input is proper and if so, we
compute an extension of it greedily. Since each vertex has degree at most k − 1, there is
always at least one color available. The case when k = ∆(G) has also been shown to be
solvable in polynomial time.

I Theorem 13 (Thm. 3 in [5], see also [7]). There is an algorithm that solves Precoloring
Extension in polynomial time whenever ∆(G) ≤ k.

I Theorem 14. There is an algorithm that decides whether a graph G has a b-coloring with
∆(G) colors in time nk+O(1) · 2O(k2 log k).

Proof (sketch). For each minimal b-precoloring γX , we apply the algorithm for PrExt of
Theorem 13. If it finds a proper coloring extending γX , we return it, and if there is no
successful run of the algorithm for PrExt, we return No. The details are given in the full
version [13]. J

MFCS 2019
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4.4 Algorithm for k = m(G)− 1
Before we proceed to describe the algorithm for b-Coloring when k = m(G) − 1, we
show that the algorithm of Theorem 13 can be used for a slightly more general case of
Precoloring Extension, namely the case when all high-degree vertices in the input
instance are precolored.

I Lemma 15 (♣). There is an algorithm that solves an instance (G, k, γX) of Precoloring
Extension in polynomial time whenever maxv∈V (G)\X deg(v) ≤ k.

I Theorem 16. There is an algorithm that decides whether a graph G has a b-coloring with
k = m(G)− 1 colors in time nk2+O(1) · 2k2 log k.

Proof (sketch). Let D denote the set of vertices of degree at least k + 1 in G. By the
definition of m(G), we have that |D| ≤ k + 1. We first enumerate all minimal b-precolorings
of G, and for each such precoloring, we enumerate all precolorings of D. Since given a
b-precoloring γX with D ⊆ X, we have that every vertex in V (G) \X has degree at most k,
we can apply the algorithm of Lemma 15 to verify whether there is a proper coloring of G
that extends γX . If so, we output that extension. If no such precoloring can be found, then
we conclude that we are dealing with a No-instance. We give the details of the algorithm
and its correctness proof in the full version [13].

It remains to argue the runtime. We enumerate β(k) (see (1)) minimal b-precolorings in
time β(k) · kO(1) using Lemma 11. For each such precoloring, we enumerate all precolorings
of D \ X. Since |D| ≤ k + 1, there are at most kk+1 such colorings. Finally, we run the
algorithm for PrExt due to Lemma 15 which takes time nO(1). The total runtime becomes
β(k) · kO(1) · kk+1 · nO(1) ≤ nk2+O(1) · 2k2 log k. J

5 Maximum Degree Parameterizations

In this section we consider parameterizations of b-Coloring that involve the maximum
degree ∆(G) of the input graph G. In Section 5.1 we show that we can solve b-Coloring
when k = m(G) in time FPT parameterized by ∆(G) and in Section 5.2 we show that
b-Coloring is FPT parameterized by ∆(G) + `k(G).

Both algorithms presented in this section make use of the following reduction rule, which
has already been applied in [16, 17] to obtain the FPT algorithm for the problem of deciding
whether a graph G has a b-coloring with k = ∆(G) + 1 colors, parameterized by k.

I Reduction Rule 17 ([16, 17]). Let (G, k) be an instance of b-Coloring. If there is a
vertex v ∈ V (G) such that every vertex in N [v] has degree at most k − 2, then reduce (G, k)
to (G− v, k).

5.1 FPT Algorithm for k = m(G) parameterized by ∆(G)
Sampaio [17] and Panolan et al. [16] independently showed that parameterized by ∆(G),
it can be decided in FPT time whether a graph G has a b-coloring with ∆(G) + 1 colors.
In this section we show that in the same parameterization, it can be decided in FPT time
whether a graph has a b-coloring with m(G) colors.

I Theorem (Thm. 2, restated). There is an algorithm that given a graph G on n vertices
decides whether G has a b-coloring with k = m(G) colors in time 2O(k4·∆) + nO(1) <

2O(∆5) + nO(1), where ∆ ..= ∆(G).
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Proof. We apply Reduction Rule 17 exhaustively to G and consider the following 3-partition
(D,T,R) of V (G), where D contains the vertices of degree at least k, T the vertices of degree
precisely k − 1 and R the remaining vertices, i.e. R ..= V (G) \ (D ∪ T ). Since we applied
Reduction Rule 17 exhaustively, we make

I Observation 2.1. Every vertex in R has at least one neighbor in D ∪ T .

We pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct vertices
b1, b2 ∈ B, we have that dist(b1, b2) ≥ 4.
Case 1 (|B ∩ T | < k).1 We show that for any vertex in u ∈ V (G) \ B, there is a vertex
v ∈ B such that dist(u, v) ≤ 4. Suppose u ∈ D ∪ T . Since we did not include u in B, it
immediately follows that there is some v ∈ B such that dist(u, v) < 4. Now suppose u ∈ R.
By Observation 2.1, u has a neighbor w in D ∪ T and by the previous argument, there
is a vertex v ∈ B such that dist(w, v) < 4. We conclude that dist(u, v) ≤ 4. Using this
observation, we now show that in this case, the number of vertices in G is polynomial in k
and ∆.

I Claim 2.2. If |B ∩ T | < k, then |V (G)| ≤ O(k4 ·∆).

Proof. Note that (B ∪D,S1, . . . , S4) constitutes a partition of V (G), where Si is the set of
vertices of V (G)\(B∪D) that are at distance exactly i from B. Since |B∩T | < k and |D| ≤ k,
we have that |B ∪D| < 2k, and therefore |S1| < 2k ·∆. By the definition of m(G), all the
vertices in S1 ∪ . . .∪S4 have degree at most k− 1. This implies that |Si| < (k− 1)i−1 · 2k ·∆.
We conclude that the number of vertices in G is at most 2k+2k ·∆·

∑4
i=1(k−1)i−1 = O(k4 ·∆).

C

By Claim 2.2, we can solve the instance in Case 1 in time 2O(k4·∆) using the algorithm of
Panolan et al. [16].
Case 2 (|B ∩ T | ≥ k). Let B′ ⊆ B ∩ T with |B′| = k and denote this set by B′ =
{x1, x2, . . . , xk}. We show that we can construct a b-coloring γ : V (G)→ [k] of G such that
for i ∈ [k], xi is the b-vertex of color i. For i ∈ [k], we let γ(xi) ..= i. Next, we color the
vertices in D. Recall that |D| ≤ k, so we can color the vertices in D injectively with colors
from [k], ensuring that this will not create a conflict on any edge in G[D]. Furthermore,
consider i, j ∈ [k] with i 6= j. Since dist(xi, xj) ≥ 4, we have that N(xi) ∩N(xj) = ∅. In
particular, there is no vertex in D that has two or more neighbors in B′. To summarize, we
can conclude that we can let γ color the vertices of D in such a way that:
(i) γ is injective on D, and
(ii) γ is a proper coloring of G[B′ ∪D].

These two items imply that for each xi (i ∈ [k]), its neighbors N(xi) ∩D receive distinct
colors which are also different from i. Let ` ..= |N(xi)∩D|. It follows that we can let γ color
the remaning (k− 1)− ` neighbors of xi in an arbitrary bijective manner with the (k− 1)− `
colors that do not yet appear in the neighborhood of xi.

After this process, xi is a b-vertex for color i. We proceed in this way for all i ∈ [k].
Since for i, j ∈ [k] with i 6= j we have that dist(xi, xj) ≥ 4, it follows that there are no edges
between N [xi] and N [xj ] in G. Hence, we did not introduce any coloring conflict in the
previous step. Now, all vertices in G that have not yet received a color by γ have degree at
most k − 1, so we can extend γ to a proper coloring of G in a greedy fashion.

We summarize the whole procedure in Algorithm 2. We now analyze its runtime. Clearly,

1 This case is almost identical to [16, Case II in the proof of Theorem 2].
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Algorithm 2 An algorithm that either constructs a b-coloring of a graph G with m(G)
colors, or reports that there is none, and runs in FPT time parameterized by ∆(G).

Input :A graph G with k = m(G) // More generally, graph G with
`k(G) ≤ k

Output :A b-coloring with k colors of G if it exists, and No otherwise.
1 Apply Reduction Rule 17 exhaustively;
2 Let (D,T,R) be a partition of V (G) such that for all x ∈ D, degG(x) ≥ k, for all

x ∈ T , degG(x) = k − 1, and R = V (G) \ (D ∪ T );
3 Let B ⊆ D ∪ T be a maximal set such that for distinct b1, b2 ∈ B, dist(b1, b2) ≥ 4;
4 if |B ∩ T | < k then // Case 1
5 Solve the instance in time 2O(k4·∆) using the b-Coloring algorithm [16];
6 if the algorithm of [16] returned a b-coloring γ then return γ;
7 else return No;
8 else // Case 2, i.e. |B ∩ T | ≥ k
9 Pick a size-k subset of B ∩ T , say B′ ..= {x1, . . . , xk};

10 Initialize a k-coloring γ : V (G)→ [k];
11 For i ∈ [k], let γ(xi) ..= i;
12 Let γ color the vertices of D injectively such that γ remains proper on G[B′ ∪D];
13 For i ∈ [k], let γ color N(xi) ∩D such that xi is the b-vertex of color i;
14 Extend the coloring γ greedily to the remainder of G;
15 return γ;

exhaustively applying Reduction Rule 17 can be done in time nO(1). As mentioned above,
Case 1 can be solved in time 2O(k4·∆). In Case 2, the coloring of G[B′ ∪D] can be found in
time O(k2), and extending the coloring to the remainder of G can be done in time nO(1).
The claimed bound follows. J

I Remark 18 (♣). Algorithm 2 solves the problem of deciding whether G admits a b-coloring
with k colors in time 2O(k4·∆) + nO(1) whenever `k(G) ≤ k.

Furthermore, in the proof of Theorem 2, we provide a polynomial kernel for the problem: In
Case 1, we have a kernelized instance on O(k4 ·∆) vertices (see Claim 2.2) and in Case 2,
we always have a Yes-instance.

I Corollary 19. The problem of deciding whether a graph G has a b-coloring with k = m(G)
colors admits a kernel on O(k4 ·∆) = O(∆5) vertices.

5.2 FPT Algorithm Parameterized by ∆(G) + `k(G)

The next parameterization of b-Coloring involving the maximum degree that we consider
is by ∆(G) + `k(G). We show that in this case, the problem is FPT. By Observation 6 we
know that b-Coloring is NP-complete on graphs with `k(G) = 0, and by Theorem 1, it is
NP-complete even when k = 3 and ∆(G) = 4. Hence, there is no FPT- nor XP-algorithm for a
parameterization using only one of the two above mentioned parameters unless P = NP. Note
that the algorithm we provide in this section can be used to solve the case of k = m(G) for
which we gave a separate algorithm in Section 5.1, see Algorithm 2. However, Algorithm 2 is
much simpler than the algorithm presented in this section, and simply applying the following
algorithm for the case k = m(G) results in a runtime of 2O(kk+3·∆) +nO(1) which is far worse
than the runtime of 2O(k4·∆) + nO(1) of Theorem 2.
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I Theorem (Thm. 3, restated). There is an algorithm that given a graph G on n vertices
decides whether G has a b-coloring with k colors in time 2O(`·∆·min{`,∆}`+2) + nO(1), where
∆ ..= ∆(G) and ` ..= `k(G).

Proof. The overall strategy of the algorithm is similar to Algorithm 2. We can make the
following assumptions. First, if ` ≤ k, then we can apply Algorithm 2 directly to solve the
instance at hand, see Remark 18. Hence we can assume that k < `. Furthermore, k ≤ ∆ + 1,
otherwise we are dealing with a trivial No-instance; we have that k ≤ min{` − 1,∆ + 1}.
Furthermore, we can assume that k > 2, otherwise the problem is trivially solvable in time
polynomial in n.

We consider a partition (D,T,R) of V (G), where the vertices in D have degree at least
k, the vertices in T have degree k − 1 and the vertices in R have degree less than k − 1. We
assume that Reduction Rule 17 has been applied exhaustively, so Observation 2.1 holds, i.e.
every vertex in R has at least one neighbor in D ∪ T .

Now, we pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct
vertices b1, b2 ∈ B, distG(b1, b2) ≥ `+ 3.
Case 1 (|B ∩ T | < k). By the same argument given in Case 1 of the proof of Theorem 2,
we have that any vertex in T ∪R is at distance at most `+ 3 from a vertex in B. We now
give a bound on the number of vertices in G in terms of ` and ∆.

I Claim 3.1 (♣). If |B ∩ T | < k, then |V (G)| = O(` ·∆ ·min{`,∆}`+2).

By the previous claim, we can solve the instance in time 2O(`·∆·min{`,∆}`+2) in this case,
using the exact exponential time algorithm for b-Coloring due to Panolan et al. [16].
Case 2 (|B ∩ T | ≥ k). Let B′ ⊆ B ∩ T be of size k and denote it by B′ ..= {x1, . . . , xk}.
The strategy in this case is as follows: We compute a proper coloring of G[D], and then
modify it so that can be extended to a b-coloring of G. In this process we will be able to
guarantee for each i ∈ [k], that either xi can be the b-vertex for color i, or we will have found
another vertex in D that can serve as the b-vertex of color i. The difficulty here arises from
the following situation: Suppose that in the coloring we computed for G[D], a vertex xi has
two neighbors in D that received the same color. Then, xi cannot be the b-vertex of color i
in any extension of that coloring, since deg(xi) = k − 1, and k − 1 colors need to appear the
neighborhood of xi for it to be a b-vertex. However, recoloring a vertex in N(xi) ∩D might
create a conflict in the coloring of G[D]. These potential conflicts can only appear in the
connected component of G[D ∪B′] that contains xi. We now show that each component of
G[D ∪B′] can contain at most one such vertex, by our choice of the set B.

I Claim 3.2 (♣). Let C be a connected component of G[D ∪B′]. Then, C contains at most
one vertex from B′.

Throughout the following, for i ∈ [k], we denote by Ci the connected component of G[D∪B′]
that contains xi, and by `i the number of vertices of Ci, i.e. `i

..= |V (Ci)|. By Claim 3.2,
Ci 6= Cj , for all i, j ∈ [k], i 6= j. We now show that each neighbor of xi has no neighbor in
D ∩N [B′] outside of V (Ci) ∪N [xi].

I Claim 3.3 (♣). Let i ∈ [k], and y ∈ N(xi)\D. Then, NG[y]∩(D∪N [B′]) ⊆ V (Ci)∪N [xi].

Let C∅ be the set of connected components of G[D∪B′] that do not contain any vertex from
B′. We observe that any proper coloring of G[D ∪B′] can be obtained from independently
coloring the vertices in C1, . . . , Ck, and C∅. If for some i ∈ [k], Ci is a trivial2 component,

2 We call a connected component of a graph trivial if it contains only one vertex.
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C1
C2 C4 C∅ D

T

R

x1
x2 x3 x4

C3

Figure 1 Illustration of the structure of a graph G in the proof of Theorem 3 where k = 4.
Here, B′ = {x1, . . . , x4} and C1, . . . , C4 are the components of G[D ∪ B′] containing x1, . . . , x4,
respectively. Note that all vertices in T are of degree 3, all vertices in R of degree at most 2 and all
vertices in R have a neighbor in D ∪ T .

then N(xi) ∩D = ∅. Hence, we can assign xi any color without creating any conflict with
the remaining vertices in G[D ∪B′]. On top of that, Claim 3.3 ensures that assigning a color
to a neighbor of any xi (that is not contained in D) cannot create a coloring conflict with
any vertex in D ∪N [B′] that is not contained in V (Ci) ∪N [xi]. We illustrate the structure
of G in Figure 1.

I Claim 3.4 (♣). Let i ∈ [k] and let γ : V (Ci)→ [k] be a proper coloring of Ci. Then, one
can find in time O(k2 · `2i ) a set Yi ⊆ NG(xi) \D and a proper coloring δ : V (Ci) ∪ Yi → [k]
of G[V (Ci) ∪ Yi] that has a b-vertex for color i.

We now wrap up the treatment of this case. We compute a proper k-coloring γ of
G[D ∪ B′] using standard methods [3]. We derive from γ another k-coloring δ of some
induced subgraph of G[D ∪NG[B′]] containing D ∪B′. For each i ∈ [k], we do the following.
With input γ|V (Ci) we compute a proper k-coloring δi of G[V (Ci) ∪ Yi] using Claim 3.4,
where Yi is the set returned by its algorithm, and we let δ|V (Ci)∪Yi

..= δi. Finally, we let
δ|V (C∅)

..= γ|V (C∅). As for i 6= j, Ci and Cj are distinct connected components of G[D ∪B′]
and by Claim 3.3, this construction is well-defined and there is no color conflict between
any pair of vertices zi, zj where zi ∈ V (Ci) ∪ Yi and zj ∈ V (Cj) ∪ Yj for i 6= j. Since for
each i ∈ [k] we applied Claim 3.4, δ is a b-precoloring of G. All vertices in G that have not
received a color so far (recall that δ colors all vertices in D) have degree at most k− 1, so we
can extend the coloring δ greedily to the remainder of G and eventually obtain a b-coloring
of G. The runtime of 2O(`·∆·min{`,∆}`+2) + nO(1) is argued for in the full version [13]. J

Similar to above, we obtained a kernel for the problem. While this result does not provide
a polynomial kernel for the parameterization ∆ + `, it does give a polynomial kernel if we
consider the problem for fixed values of ` and parameter ∆.

I Corollary 20. The problem of deciding whether a graph G admits a b-coloring with k colors
admits a kernel on O(` ·∆ ·min{`,∆}`+2) vertices, where ∆ ..= ∆(G) and ` ..= `k(G).

6 Conclusion

We have presented a complexity dichotomy for b-Coloring with respect to two upper bounds
on the b-chromatic number, in the following sense: We have shown that given a graph G and
for fixed k ∈ {∆(G) + 1 − p,m(G) − p}, it can be decided in polynomial time whether G
has a b-coloring with k colors whenever p ∈ {0, 1} and the problem remains NP-complete
whenever p ≥ 2, already for k = 3.
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The most immediate question left open in this work is the parameterized complexity of
the b-Coloring problem when k ∈ {m(G),∆(G),m(G)− 1}. In all of these cases, we have
provided XP-algorithms, and it would be interesting to see whether these problems are FPT
or W[1]-hard. We showed that b-Coloring is FPT parameterized by ∆(G) + `k(G), where
`k(G) denotes the number of vertices of degree at least k in G, and this is optimal in the
sense that there is no FPT nor XP algorithm for the problem parameterized by only one of
the two invariants. It would be interesting to see if one could devise an FPT-algorithm for
the parameterization that replaces the maximum degree by the number of colors.
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