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Preface 

This thesis is submitted for the degree of Philosophiae Doctor at the University 

of Bergen. 

The PhD project was carried out in cooperation between the Department of 

Chemistry of the University of Bergen and Equinor ASA, Bergen. Equinor ASA 

provided the funding for this project. The presented work consists of an introductory 

part and five research articles of which two have been published in internationally 

recognised peer-reviewed journals. Three additional manuscripts have been submitted 

to internationally recognised journals of which one was resubmitted after revision. In 

this thesis, chapter 1 provides a brief introduction to the research topic. Chapter 2 

summarised the main research aims and questions. Chapter 3 provides the reader with 

a detailed overview over the analytical techniques that were used to generate the data 

included in this thesis. Chapter 4 is composed of a summary for each of the published 

and submitted manuscript, including the aims, the execution of the study and major 

findings. Chapter 5 provides a condensed summary of the thesis and an outlook to 

further work. The last part of this thesis consists of the published articles and submitted 

manuscripts.  

All analytical work was performed in the research laboratory of Equinor ASA 

in Bergen, except for ICP-MS and XRF analyses which were conducted at the 

Department of Geoscience of the University of Bergen.  

During the three and a half years of research, I had four contributions to 

international conferences, of which the last one is not part of this thesis. A report 

quoting our findings of the first publication was contained in the January edition of the 

German journal “Labor Praxis” in 2018.  

The thesis covers topics ranging from organic and inorganic geochemistry to 

analytical chemistry. 
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Abstract 

Understanding the generation, expulsion and migration of hydrocarbons and the 

associated effects on the molecular composition of generated products plays a major 

role in petroleum system analyses. The presented PhD study is based on a research well 

from the Central Tertiary Basin of Svalbard which has not been investigated in detail 

previously. The core material from this well is of exceptional quality. 

A comprehensive depositional reconstruction of the lithologies of the research 

well has been established by combining inorganic and organic geochemistry. Shedding 

a light on the effects of sulphate reduction on the preserved organic matter quality 

supported a better understanding of the depositional settings and natural quality 

limitations on the present-day organic matter concentration. 

The effects of thermal maturity on the organic matter and on selected biomarker 

compounds as well as on molecular maturity proxies has been investigated. The 

implementation of multivariate statistics has led to the creation of a novel unitless 

biomarker maturity trend. 

Molecular fractionation effects associated with the expulsion and migration of 

hydrocarbons have been investigated. The findings show that polar compounds and 

asphaltenes were preferentially retained in the organic rich layers of the lower 

Frysjaodden Fm. On the other hand, the expelled hydrocarbons have migrated upwards 

and mainly consist of saturated compounds of low polarity. The development of an 

advanced maturity-based back-calculation approach made it possible to calculate the 

amounts of hydrocarbons that have been generated, expelled and migrated with respect 

to their initial organic matter quality and quantity. 

In addition to the geoscientific investigations, two analytical methodologies 

have been developed in the course of this PhD project. The first methodology involves 

the multiple detector coupling to a single gas chromatograph in order to enhance the 

data density per injection and significantly reduce the sample preparation work for 

organic geochemical analyses. The second method is used to monitor the isotopic 
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composition of the Rock-Eval S1 and S2 parameters in an online analysis. This 

analytical setup was described for the first time. The results support a better 

understanding of isotopic fractionation effects introduced by thermal maturation and 

hydrocarbon generation and expulsion. The results from these analyses have also been 

used to confirm the impact of sulphate reduction on the reactive organic matter 

proportion in the Paleocene Eocene transition of the investigated well. 
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1. Introduction 

1.1 Outline 

The following chapter contains a brief introduction to the principles of 

hydrocarbon generation, expulsion and migration as well as the geological background 

of the study area and a description of the wellbore which has been used in the scientific 

publications produced in the course of the PhD thesis.  

1.2 Hydrocarbon generation, expulsion and migration in the subsurface 

1.2.1 Origin and transformation of organic matter 

Elevated concentrations of organic matter are predominantly parts of fine-

grained marine and lacustrine sediments, as well as swamps. Usually, such sediments 

are deposited in low transport energy settings. Due to both polymerisation and 

polycondensation, large molecules form during the diagenesis of the organic matter 

rich sediments. Those humic substances are the precursors for the so-called kerogen. 

Kerogen is a geopolymer consisting of a complex mixture of interconnected organic 

compounds. Kerogen is by definition neither soluble in organic solvents, nor in water. 

According to the specifications used by Killops and Killops (2005) there are five 

different kerogen types, each of which can be differentiated by its specific association 

to a depositional setting and its elemental composition. 

Type I: Liptinite rich, typically of lacustrine origin (high H/C, low O/C ratio). 

Type II: Intermediate between I and III, represents mixtures of marine organic matter 

mixed with terrestrial organic matter e. g. higher land plant material (high H/C, low 

O/C ratio). 

Type II-S: Similar to II, with up to 14% organic sulphur by weight, typically affected 

by sulphate reduction during the deposition or other sources of sulphur, such as 

hydrothermal systems. 
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Type III: Predominantly organic matter from land plants, vitrinite macerals (H/C < 1.0, 

high O/C ratio), 

Type IV: Largely composed of inertinite with minor vitrinite (no hydrocarbon 

generation potential), type IV includes highly oxidised and reworked organic matter. 

The kerogen and its precursors are continuously changed during the burial 

process (Killops and Killops, 2005). The transformation process is initiated by 

microbial reworking of the organic matter during the diagenetic stage. Due to an 

enhanced supply of energy (heat), the transformation continuous into the catagenetic 

and metagenetic thermal degradation stage (Figure 1). The concept of energy supply 

over time is described by thermal maturation. In general, three stages of organic matter 

transformation with respect to the maturity level can be distinguished. 

 

Figure 1: Transformation and maturation of organic matter as a function of 

depth/energy supply (picture modified after Allen and Allen, 2013) 

Diagenesis (i): Sediments which have been deposited under subaquatic 

conditions usually contain a mixture of different substances. Those substances are 

inorganic particles (minerals), organic matter of various sources and living 
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microorganism. As stated by Tissot and Welte (1984), diagenesis is the process in 

which this highly unequilibrated mixture of different components and different origin 

approximates an equilibrium. The initially unconsolidated sediments become 

consolidated and a mild increase in temperature and pressure leads to the first 

transformation of the organic matter. Especially microorganisms are responsible for 

the initial decomposition of organic matter during the diagenesis stage. The microbial 

degradation process leads to the release of CO2, NH4, CH4, H2S and water.  

Catagenesis (ii): As the sediments get buried deeper, a significant increase in 

temperature and pressure leads to the extended transformation of the organic matter 

which is incorporated into the sedimentary layers. The catagenetic phase marks the 

stage in which petroleum is generated (Horsefield and Ruellkoetter, 1994), due to the 

thermally induced decomposition of the kerogen. This decomposition process is mostly 

accomplished by the cracking of covalent C-C bonds (Vandenbroucke et al., 1993). 

During the catagenesis, the transformation of the organic matter leads to a constant 

hydrogen depletion of the residual kerogen. 

Metagenesis (iii): Metagenesis marks the last stage of the thermal evolution of 

the organic matter. During this stage, mostly hydrocarbon gases (methane to pentane), 

H2 and N2 are released from the kerogen network through enhanced cracking 

(Vandenbroucke et al., 1993). When organic-rich sediments have reached the 

metagenetic stage, most of the liquid hydrocarbons are already expelled from the 

source rock, while minor amounts of generated hydrocarbons might be retained in the 

source rock matrix. Those retained hydrocarbons are then subjected to secondary 

cracking which enhances the generation of hydrocarbon gases (Killops and Killops, 

2005). 

1.2.2 Generation and Expulsion related fractionation 

The process of primary migration or expulsion of petroleum describes the 

movement of generated hydrocarbons within fine-grained organic-rich rocks out of the 

generating strata and into adjacent lithologies (Tissot and Welte, 1984; Mann et al., 

1997; Peters et al., 2005). Chemical fractionation between the bitumen phase and the 
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residual organic matter has been related to hydrocarbon expulsion, since petroleum 

reservoir fluids differ from the chemical composition of source rock extracts 

(Mackenzie et al., 1983, Leythaeuser et al., 1984a, b, 1988 a, b, c; Eseme et al., 2007). 

Significant changes in the chemical composition of hydrocarbon mixtures during the 

expulsion process have recently been reported for advanced laboratory experiments 

(Stockhausen et al., 2019) confirming the findings in natural systems and adding to a 

more detailed understanding of the involved processes. Chemical fractionation of the 

expelled organic compounds occurs when the generated fluids migrate out of the source 

rock and towards the adjacent rock sequences of higher porosity, permeability and 

lesser organic carbon contents.  

In general, five different processes of expulsion and primary migration have 

been differentiated by Tissot and Welte (1984). 

(i) Primary migration through separate petroleum droplets, (ii) primary 

migration through organic aggregates; (iii) primary migration of hydrocarbon 

compounds through the solution in pore waters, (iv) primary migration through 

diffusion and lastly (v) the most effective primary migration process, the so-called bulk 

flow or hydrocarbon phase flow. 

The most relevant hydrocarbon mass transport mechanism in the subsurface is 

the petroleum bulk flow (England et al., 1987; Killops and Killops, 2005; Ziegs et al., 

2017). This pressure-driven process requires continuous enrichment of the generated 

hydrocarbon in the pore space of the organic-rich source rocks. The hydrocarbons are 

then pushed out of the pore space into the adjacent lithologies by the elevated pressure 

conditions. The bulk flow can only be initiated when organic-rich source rocks produce 

bitumen continuously to build up a high load pressure (Tissot and Welte, 1984). 

Molecular diffusion in contrast is mainly driven by concentration gradients 

between areas of different chemical potential (Killops and Killops, 2005). This process 

is therefore independent of petroleum bulk flow rates and is of major significance in 

sedimentary sequences of poor to fair hydrocarbon generation potential (Leythaeuser 

et al., 1983; Stainforth and Reinders, 1990; Thomas and Clouse 1990 a, b, c).  



 5 

Mann et al. (1997) concluded that several of the above described processes occur 

in nature simultaneously or subsequently. Those process might then individually 

contribute to the composition of the expelled hydrocarbons. 

Retention and desorption processes based on different molecular properties (e.g. 

solubility and polarity), and the porosity evolution of the effected lithologies controlled 

by kerogen swelling and shrinking are additional factors which control the petroleum 

composition (Ritter, 2003; Erstas et al., 2006; Kelemen et al., 2006, Han et al., 2015; 

Han et al., 2017). 

1.2.3 Composition of generated hydrocarbons and petroleum 

On average, generated petroleum consists of 84% carbon, 13% hydrogen, 1.5% 

sulphur, 0.5% nitrogen and 0.5% oxygen. In addition, metals, metalloids, alkaline earth 

metals and non-metals (Si, Fe, Al, Ti, Ca, Mg, V, Mo, Ni, Ba, Sr, Mn, Pb, Cu, Cr, U) 

have been detected (Pohl and Petrascheck, 2005). The composition of petroleum and 

generated hydrocarbons varies to a large extend, depending on the source, the 

depositional environment and secondary alteration processes. In general, the following 

compound classes are frequently described in petroleum accumulations and produced 

petroleum. 

Paraffins, also known as n-alkanes, are chemical compounds consisting only of 

carbon and hydrogen atoms. A series of linked carbon atoms is called a carbon skeleton. 

Paraffins have the chemical formula CnH2n+2. Economically, the paraffins are the most 

important compounds, since they can easily be processed into valuable products like 

gasoline or other distillates (Pohl and Petrascheck, 2005). 

Naphtenes or cycloalkanes are chemical compounds consisting of one or more 

rings of carbon atoms. Similar to paraffins, naphtenes have single bonds (saturated) 

and consist only of carbon and hydrogen. The general chemical formula for 

cycloalkanes is CnH2n(n+1-g) where n is the number of carbon atoms and g is the number 

of rings in the molecule. Naphtenes build up steroids and terpenes. Cycloalkanes are 

common components of crude oil, with up to 50 wt.%. Their abundance increases with 
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increasing density of the crude oil. High concentrations of naphtenes can cause 

asphaltic residua during the refining process (Pohl and Petrascheck, 2005). 

Aromatics are historically named after their characteristic smell. These 

compounds contain the ring structure of benzene (C6H6). Aromatic molecules have at 

least one ring system with six carbon atoms. The entire molecule is planar, and all 

bonding angles are 120°. Due to the delocalized π-electrons all six carbon bonds are 

equal, and it is not possible to distinguish between single and double bonds. Therefore, 

two mesomeric structural formulas, where single and double bonds alter, are 

conventionally used. In comparison to non-aromatics, aromatics have a comparably 

high enthalpy of bonds, which makes the compounds less reactive (Mortimer, 2007). 

Asphaltenes consist primarily of carbon, hydrogen, oxygen and nitrogen. They 

are part of crude oils and rock extracts and reflect the heaviest compound class. The 

distribution of their molecular masses is in the range of 400 amu – 1500 amu (Pohl and 

Petrascheck, 2005). 

Biomarkers are also known as “geochemical fossils”. Although biomarkers are 

subjected to chemical transformation and rearrangement processes during the 

diagenesis stages, it is in some cases possible to related them to their biological 

precursors (e.g. cell walls of bacteria). Their chemical structure (or rearranged 

structure) is preserved through the processes of diagenesis and partially through the 

catagenesis. Many biomarkers initially have functional groups but lose them during 

diagenesis. Therefore, the products are mainly saturated hydrocarbons, except for 

functionalized components (e.g. lipid acids), which might survive the diagenesis. Due 

to hydration of unsaturated hydrocarbons, aliphatic hydrocarbons, such as hopanes and 

steranes, arise. Instead of hydration, cyclic systems with six carbon atoms and a double 

bond can be aromatized (e.g. monoaromatic steroids). Petroleum contains a relatively 

low amount of lipid biomarkers (< 1wt. %), nevertheless they bear information on the 

source, thermal maturity, migration and biodegradation of a crude oil or rock extract 

(Killops and Killops, 2005). 
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1.3 Geological Background of the study area 

The research well BH 10-2008 is located on Svalbard (Spitzbergen) which is an 

archipelago in the north-western region of the Barents Sea. The northern part of 

Svalbard is partially covered by Palaeozoic sediments, while Mesozoic and Cenozoic 

rocks are dominating the outcrops in the southern part of Svalbard (Ritzmann et al., 

2002). 

Two hypotheses of the tectonic evolution of the Central Tertiary Basin (CTB) 

of Svalbard compete in literature. The first hypothesis suggests that the Paleogene of 

the Central Basin of Svalbard is subdivided into two tectonic regimes, in which the 

Paleocene is followed by an Eocene compression (Steel et al., 1981, 1985; Müller & 

Spielhagen, 1990). Another hypothesis by Bruhns and Steel (2003) and Lüthje (2008) 

suggests that the CTB originated during the Paleocene as a flexural depression 

connected to the west Spitsbergen fold and thrust belt. The latter hypothesis has 

recently been supported by Petersen et al. (2016) through U-Pb age dating of Paleocene 

and Eocene sandstones in the CTB. The basin shape is asymmetrical leading to a 

thickening of the Palaeogene sediment deposits towards the south (Livsic 1974; 

Nøttvedt et al., 1988; Nagy, 2005). 

The sedimentary sources for the Paleocene and Eocene sequences in the Central 

Basin have changed throughout the evolution of the respective sequences. According 

to Bruhns and Steel (2003) the Paleocene sediments were mainly sourced by the 

erosion of Mesozoic rocks in the eastern part of Svalbard whereas the Eocene units 

were fed from the weathering products of Precambrian, Palaeozoic and Mesozoic rocks 

in western regions. 

The central basin fill is comprised of the Lower and Upper Van Mijfjorden 

Group sediments. The lower part consists of Paleocene sediments comprising the 

Firkanten, Basilika and Grumantbyen formations. The upper part of the succession 

consists of the Eocene Frysjaodden, Battfjellet and Aspelintoppen formations (Steel et 

al., 1985; Manum and Throndsen, 1986 Dallmann et al., 1999). The lowermost 

Paleocene Firkanten Fm. mainly represents a deltaic and shoreline to prodelta and shelf 
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depositional environments and is the target of coal mining (Lüthje, 2008; Marshall et 

al., 2015a, b). A specific focus in several scientific investigations is related to the so-

called Paleocene-Eocene Thermal Maximum (PETM) in the CTB (Cui et al., 2011; 

Dypvik et al., 2011; Nagy et al., 2013). In contrast to other PETM locations, where 

negative carbon isotopic extrusions (CIE) correlate with elevated organic carbon 

contents (Sluijs et al., 2006; Stein et al., 2006, Gavrilov et al., 2009; Soliman et al., 

2011), the CTB of Svalbard does not show the same features. The deviation from the 

findings at other localities has been attributed in literature to either high sedimentation 

rates or a possible reduction in the primary productivity (Cui et al., 2011; Harding et 

al., 2011).  

1.3.1 Research well BH 10 – 2008 

Well BH 10-2008 was drilled in 2008 as a cooperation between the Geological 

Survey of Norway and different industry partners (location see Figure 2). The well has 

a total depth of 1084.6 m and penetrated Paleocene and Eocene formations of the 

Tertiary Basin on Svalbard (Figure 3; cf. Grundvåg et al., 2014). The entire sediment 

successions have been cored and provide exceptional study material of the CTB. The 

well section was sedimentological interpreted and studied prior to this PhD thesis by 

Elvebakk et al. (2008), Johannessen et al. (2011), and Grundvåg et al. (2014). 

In the following paragraphs, the depth information below refers to meters of 

measured depth (Figure 3) from the top of the core.  

The stratigraphically oldest formation in the well is the Paleocene Basilika Fm. 

and has been encountered between the end depth of the well at 1084.6 and 930 m and 

consists of silt- and mudstone. The sediments represent a shelf depositional 

environment. The Paleocene Grumantbyen Fm. was observed between 930 m and 812 

m. The formation represents a highly bioturbated sandstone of shallow marine 

environments (Øygard, 2016). The base of the Frysjaodden Fm. was assigned to 812 

m and with a total thickness of about 640 m the top is reached at 175 m. The lower 

section of the Frysjaodden Fm. is of Paleocene age. The transition to Eocene strata is 

marked by a maximum flooding surface at 780 m. 
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Figure 2: Location of the investigated research well BH 10-2008. The right side 

contains the stratigraphy of the Van Mijenfjord Group adapted and redrawn from 

Helland Hansen (1992). The investigated well section reaches a depth of 1084 m 

within the Paleocene Basilika Fm. 

The transition from the Paleocene into the Eocene is interpreted by Cui et al. 

(2011) and Dypvik et al. (2011) to be related to the so-called Paleocene-Eocene 

climatic thermal maximum. Those sediments are part of the Frysjaodden Fm. which is 

a dominant part in the analysed sediments. Sedimentological, the Frysjaodden Fm. is 

separated into three sections. The lower section consists of silt- and clay-stones which 

represent open marine depositional conditions. Those marine depositions persist to the 

base of the Bjørnsonfjellet Mbr. The Bjørnsonfjellet Mbr. is predominantly comprised 

of sandstones with alternating sequences of shale and siltstone. The lowermost section 

of the Bjørnsonfjellet Mbr. (above 415 m) is interpreted as a turbidite layer, 

representing distal basin floor sands. The third and last depositional change within the 
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Frysjaodden Fm. commences at 330 m and reaches up to 175 m in the well. It consists 

of siltstone with interbedded thin layers of sandstone. These strata are related to slope 

depositional conditions. The Eocene Battfjellet Fm. above the Frysjaodden Fm. begins 

at 175 m and the top is reached at 95 m in BH-10-2008. The formation is dominated 

by sandstones with interbedded mud- and claystones pointing to shelf edge to deltaic 

environments. The Eocene Aspelintoppen Fm. is located between 95 m and the top of 

the well. The formation consists mainly of intervals of alternating sand and shale layers 

with intercalated coal horizons of up to 30 cm thickness. The depositional condition is 

interpreted as coastal plain to fluvial-deltaic. The top of the Aspelintoppen Fm. is 

marked by a glacial erosion surface of recent age. 
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Figure 3: Simplified geological record 

of the research well BH 10-2008. The 

formations encountered in the well 

comprise the Basilika Fm., the 

Grumantbyen Fm., the Frysjaodden Fm. 

(including the Bjørnsonfjellet Mbr.), the 

Battfjellet Fm. and the Aspelintoppen 

Fm. Note that the Grumantbyen Fm. was 

not part of the sampling campaign. The 

lithologies in the Grumantbyen Fm. 

consist mainly of highly bioturbated, 

organic lean silt and sandstones. The 

well has a total depth of 1084 m (mD) 

with full core recovery. The figure was 

redrawn after Grundvåg et al., 2014. 



 12 

2. Scope 

Understanding petroleum generation in and migration out of source rocks are 

important elements in the field of petroleum system analysis. To expand existing 

concepts into comprehensive geochemical and physical approaches this PhD study is 

conducted on the topic of primary migration and expulsion of hydrocarbons, using 

concepts that are based on new observations and measurements derived from the core 

material of the research well BH 10-2008. The core material used for the presented 

study has proven to be of exceptional quality in terms of preservation and purity. No 

contaminating mud additives have been used during the drilling process. The well was 

drilled with salt water. 

The described PhD project focusses on the observational aspects of a little 

investigated Cenozoic basin on Svalbard comprising the organic matter containing rock 

depositional environment as well as the state of hydrocarbon generation. This provides 

the framework in which petroleum expulsion and migration is expected to have 

happened, but not to an extent that large mass movements occurred. Bulk, molecular 

and isotopic geochemical parameters were used to attempt a qualitative and 

quantitative description of hydrocarbon migration of the organic rich layers. The aims 

of this study can be subdivided as follows: 

1. Investigation of new geochemical methodologies that might help to 

improve the understanding of molecular and isotopic processes in organic 

geochemistry. 

2. Description and evaluation of depositional environments of organic-rich 

rocks including kerogen characterization and possible sulphate reduction influences. 

3. Description of the thermal maturity of the research well, with special 

focus on the difference between molecular maturity markers in the bitumen and 

kerogen maturity. 
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4. Evaluation and description of molecular fractionation effects of 

compound classes and compounds (i.e. selected biomarkers and light hydrocarbons) 

including potential isotopic fractionation effects. 

5. Evaluation and description of concentration gradients of compound 

classes and selected molecular species within source rocks and adjacent rocks. 

6. Creating a synoptic concept of primary migration and expulsion based on 

project data integrated into existing knowledge. 
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3. Methods and Material 

3.1 Outline 

The following chapter summarises the organic and inorganic geochemical 

methods that were used for this study. Method developments that were part of a 

dedicated research paper are described in the respective section of this thesis book 

(Paper I and Paper III). 

All chemicals used for the presented study were of high analytical grade (HPLC 

grade solvents). All reference and calibration materials have been purchased from 

certified institutions. For more details, the reader is referred to the specific manuscripts. 

All analyses that were performed were quality controlled by repeated analyses 

of NSO-1, JR-1 and SR-1 reference material as described in the Norwegian Industry 

Guide to Organic Geochemical Analyses (Weiss et al., 2000).  

3.2 Sampling 

Sampling was done in the core repository of Equinor ASA in Bergen. The 

1083.6 m long half core of well BH 10 - 2008 was sampled based on visual and 

sedimentological properties as well as based on the results of a pre-screening campaign. 

In sections of optical homogeneous shales, a sampling interval of < 4 m was 

maintained. The organic lean Grumantbyen Fm. has been excluded from the sampling. 

In total 218 samples were taken from the core section and analysed. 

3.3 Sample preparation 

It was determined that the sample material was not affected by drilling mud 

contamination. The research well has been drilled with salt water as the only additive. 

Therefore, no special treatment for drill mud contamination was performed. 

All samples were crushed to analytical fine grade with a pestle and mortar prior 

to analysis.  
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3.4 Organic geochemical analysis 

3.4.1 Solvent extraction and asphaltene precipitaion 

The extraction of sediment samples was done with a Soxtec 2050. The amount 

of sample material subjected to solvent extraction was determined by the Rock-Eval 

S1 value. For the sample material from BH 10-2008 between 15 g and 60 g of sediment 

sample have been extracted. The extraction was accomplished with an azeotropic 

mixture of dichloromethane (DCM) and methanol in a ratio of 97:3 (v:v). Reduced 

copper wires were added to the solvent mixture in order to remove free sulphur from 

the extracts and prevent boiling retardation. The extraction was carried out at 165 °C 

for 4 hours. After the extraction process was completed, the extracts were centrifuged 

for 5 minutes to settle remaining sediment particles. The supernatant was collected, and 

an aliquot was dried and weighed to calculate the extract yield. An internal standard 

containing both saturated and aromatic compounds, was added to the mixture. The 

extracts were concentrated using a gentle stream of N2.  

The asphaltenes were precipitated by adding approximately 40 times the volume 

of the concentrated extracts of cold n-pentane. The mixture was placed in a dark room 

for 8 h until the precipitation was completed. The asphaltene content was quantified by 

weight. 

3.4.2 Group type separation (MPLC) 

The separation of the internal standard spiked extracts into saturated, aromatic 

and NSO (nitrogen, sulphur and oxygen) containing fractions was done on an HP 1100 

series HPLC system connected to an automated fraction collector. The main column 

used for the separation of the compounds classes was a Lichroprep Si 60 (40 – 63 pm), 

preparative HPLC column. A column containing preconditioned Kieselgel 100 was 

used as precolumn. A detailed description of the analytical setup is given in Radke et 

al. (1980). 
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3.4.3 TLC-FID analyses (IATROCScan) 

The distribution of saturated, aromatic and NSO compounds was determined by 

thin-layer chromatography flame ionization detector (TLC-FID). An aliquot of the 

maltene fraction was concentrated to approximately 15 mg extract / ml solvent. Pre-

cleaned Chromarods were spotted with 30 µg of the maltene fraction approximately 

2.5 cm above the lowermost end of the Chromarod. A gentle stream of N2 was used to 

remove excess solvent. After the solvent was dried off, the Chromarods were placed 

into an n-hexane bath (30 minutes for elution of saturates), followed by a toluene bath 

(10 minutes, elution of aromatic compounds). The last bath contained a mixture of 97:3 

(v:v) DCM and methanol (3 minutes for the elution of NSO compounds). After the rods 

have been dried in an oven at 60 °C for 5 minutes, the Chromarods were placed into 

the IATROSCAN where the amounts of the different fractions were determined by 

flame ionization detection.  

3.4.4 Rock-Eval 

The sample material investigated in this PhD study was analysed with a Rock-

Eval 6 analyser. A subsample set was analysed before and after extraction. In addition 

to the standard Rock-Eval bulk method (Behar et al., 2001) all samples were analysed 

with the so-called “Rock-Eval shale method” as proposed by Romero-Sarmiento et al., 

2016. This specific method is supposed to support differentiation between the free and 

adsorbed/refractory hydrocarbons in the sample material by reducing the Rock-Eval 

crucible insertion temperature to 100 °C and introducing a second heating phase into 

the standard Rock-Eval program from 200 °C to 350 °C. The latter temperature is 50 

°C higher than in the Rock-Eval bulk method. The results from the Rock-Eval shale 

method are suggested to be more realistic in terms of comparability to conventional 

solvent extraction yields (Romero-Sarmiento et al., 2016). All data on S1, S2, TOC and 

HI are given in the typical standard parameterization (cf. Behar et al., 2001). 

3.4.5 Elemental analysis coupled isotope ratio mass spectrometry (EA-IRMS) 

To determine the carbon, nitrogen and sulfur content as well as the carbon 

isotopic composition of the total organic carbon (δ13CTOC) an Elementar Vario 
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Pyrocube operated in CNS (carbon, nitrogen and sulfur) mode was used. The 

combustion temperature was set to 1120 °C, the reduction tube was operated at 850 °C. 

The Pyrocube was connected to an Isoprime 100 IRMS (isotopic ratio mass 

spectrometer). 

For elemental analyses, 1 to 10 mg of the sediment sample was put into pre-

extracted tin capsules. For the determination of the TOC and for the measurement of 

the isotopic composition, the samples were inserted into silver capsules. Carbonate 

minerals contained in the sample material, was removed through fumigation with 

hydrochloric acid (HCl) for 4 hours. 

The stable isotope composition of carbon is reported in delta (δ) units as the per 

mil deviation (‰) of the isotopic ratio relative to a known standard: 

𝛿 =  
𝑅𝑆𝑎𝑚𝑝𝑙𝑒 −  𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

 × 1000 

where R is the ratio of 13C/12C. All measurements were normalized to Vienna 

Pee Dee Belemnite (V-PDB) standard. 

3.4.6 GC-FID-MS  

Analyses of saturated and aromatic hydrocarbons were carried out on a two 

column GC-MS-FID system. The instrument consists of an Agilent 6890 GC combined 

with a flame ionization detector (FID) and a mass selective detector (MSD), Agilent 

5973N. The oven is equipped with two chromatographic columns, of which the first 

column is connected to the FID. This column was an Agilent DB-1 capillary column 

(length 20 m, inner diameter 0.1 mm, film thickness 0.2 um). The second column was 

connected to the MSD. The MSD column was an Agilent Ultra-1 (for aromatic 

fractions HP-5 MS of the same dimensions) capillary column (length 50 m, inner 

diameter 0.2 mm, film thickness 0.33 um). Helium was used as the carrier gas. The GC 

oven was programmed with an initial temperature of 70 ºC (hold for 2 minutes), 

afterwards the temperature was increased to 150 ºC at a rate of 5 ºC/min. Finally, the 
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temperature was increased to 325 ºC at a rate of 2 ºC/min. The final temperature was 

held for 15 minutes. 

The MSD was operated in ion impact ionization mode (EI) at 70 eV. The source 

temperature was set to 230 ºC, the quadrupole temperature was set to 150 ºC. 

Major straight chain and branched alkanes were quantified with the signal 

generated from the FID. Trace compounds such as saturated biomarkers, as well as 

aromatic compounds were measured and quantified using the MSD in single ion 

monitoring mode (SIM).  

3.5 Inorganic geochemical analyses 

3.5.1 XRF 

The sample material was ignited at 1000 ºC and the loss of ignition was 

determined by weight. The ignited powders were fused with Li2B4O7 in a Classie-Fluxy 

instrument to make glassy beads. 

Major elements (Al, Ca, Fe, K, and Si) were measured using a Bruker S4 Pioneer 

X-ray fluorescence spectrometer (XRF). The quantification for the measured elements 

was achieved by external calibration curved produced from certified standard 

materials. The quality control is based on the measurement of USGS CRM BCR2 

(Basalt, Columbia River) standard. 

3.5.2 ICP-MS 

For inductively coupled plasma (ICP) coupled to a mass spectrometer (MS) 

analyses, the analytical fine sample powders were ignited at 1000 ºC to remove the 

organic carbon contained in the sample material. The sample was afterwards digested 

in a mixture of HNO3 and HF in a Savillex beaker on a heater plate at 135 ºC. The 

generated, dried solution was diluted in 2N HNO3. Aqua regia (HNO3 /HCl, 1:3, v:v) 

was used in order to remove undissolved oxides. Finally, the concentration of the 

sample solution was adjusted with HNO3. 
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The concentration of trace elements (Ba, Co, Cr, Cs, Cu, Mn, Nb, Ni, Pb, Rb, 

Sc, Sr, Th, Ti, U, V, Y, Zn, Zr, Ga, Mo and the Rare Earth Elements) was measured 

using a Thermo Scientific Element XR High Resolution ICP-MS. External calibration 

curves were produced with multi-element standard solutions prepared from certified 

single element solutions. The quality control is based on the measurement of USGS 

CRM BCR2 (Basalt, Columbia River) standard. 

3.5.3 QEMSCAN 

Quantitative Evaluation of Minerals by Scanning Electron Microscopy 

(QEMSCAN) was performed with a Quanta FEG 650 F scanning electron microscope 

equipped with two Bruker XFlash 5030 energy dispersive detectors (EDS). All 

analyses were performed on selected thin section at 15 kV accelerating voltage and a 

specimen current of 10 nA. For better conductivity, carbon coating was applied to the 

thin sections. The results for major minerals have been verified with additional X-ray 

diffraction (XRD) measurements. 
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4. Main Results 

4.1 Outline 

The following chapter summarizes the aim, execution, and major findings that 

are described in detail in each of the included publications and manuscripts. Five 

individual manuscripts have been prepared in the course of the thesis project. Two of 

the manuscripts are published in peer-reviewed journals (Paper I and Paper III). The 

remaining manuscripts have been submitted in 2019 to international journals and were 

under review at the point the thesis has been submitted. 

4.2 Paper I - Organic geochemical research analytics of the petroleum 

industry - Enhanced data density and method flexibility using gas 

chromatograph multiple detector coupling 

Aim: The aim of the first publication was to introduce a new combination of 

analytical instruments in order to enhance the methodological productivity and data 

density per sample. The concept was to use a set of different detectors and couple them 

to one gas chromatographic system and two multi-purpose samplers to be able to 

analyse multiple sample matrices on a single system and detect and measure different 

compounds and the carbon isotopic composition simultaneously. 

Execution: A single gas chromatograph was connected to a quadrupole time of 

flight mass spectrometer (Q-TOF), a combustion furnace, an isotopic ratio mass 

spectrometer (IRMS), a thermal conductivity detector, and a flame ionization detector 

(FID). By using two columns of which one was a Pora Plot Q in a low thermal mass 

oven (LTM) and a DB-1 it was possible to use the instrument for gases as well as liquid 

samples. The sample split between the different detectors was adjusted by a single four 

port splitter. The split ratio was set by flow restriction. In order to prevent solvent peaks 

from entering the combustion furnace a vent system (pressure operated) was 

developed. Commercially available vent options conduct the solvent peak into the FID 

detector which disables the detector during IRMS analyses. The customized vent 
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option was used to operate all detectors simultaneously. A schematic of the developed 

system is displayed in Figure 4. 

 

Figure 4: Schematic drawing of the developed analytical system. Red lines 

are capillaries that divert the sample into the detector systems. Blue lines 

indicate the flow path for gas samples, green lines indicate the flow path for 

liquid samples (picture from Doerner et al., 2018). 

Findings: The system was tested using different gas and liquid standards (NGS 

reference gas samples and NSO-1 standard oil). It hereby was demonstrated that 

advanced liquid and gas analyses could be performed with the newly developed 

combination of instruments/detectors. In addition, it was shown, that compound 

specific isotope analyses of straight chain alkanes and branched alkanes can be 

performed simultaneously with high resolution mass spectrometry without having to 

inject large volumes (Figure 5). Since the Q-TOF system was always operated in full 

scan mode, the full structural information of individual compounds (e.g. biomarkers) 

was maintained.  
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Figure 5a-d: General data that has been generated with a single injection of 

the saturated NSO-1 fraction. a: The IRMS record for the compound specific 

isotope measurements of n- and i-alkanes. b: High resolution mass 

spectrometry generated from the Q-TOF detector. c: Extracted ion 

chromatogram for m/z 217.1951 ± 10 ppm, showing the steranes. d: Mass 

spectrum of a selected sterane (background subtracted) and elemental 

composition calculation for each fragment with Agilent Qualitative analysis 

software (Figure from Doerner et al., 2018). 

It was found that the separation of the different sample flow lines helps to reduce 

the effects of cross contamination. The latter can cause severe problems especially if 

gas samples and liquid samples are passed through the same flow path.  

Multiple injections with standard and reference materials confirmed that both, 

accuracy and precision of the FID, TCD, and IRMS system are suitable to measure the 

molecular and isotopic composition of gas samples realistically. By using the multi-

purpose sampler in combination with an Isotube® rig, the sample preparation for gas 

sample analyses could be reduced to a minimum. It was demonstrated that the changes 

to the sample/split ratio between the different detectors introduced by temperature 

changes in the GC oven can be neglected. Slight changes in the sample split were 

compensated through the measurement of the sample peaks against the internal 

standard mixture.  

The different detector systems require the use of two computer systems 

simultaneously for the data acquisition as well as three software packages. Although 
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the different software suits were interconnected, it was noticed that the performed 

analyses need to be monitored more frequently when compared to single purpose 

(stand-alone) instruments. The complexity of the system made it also more challenging 

to troubleshoot in cases of analytical failures which potentially can lead to increased 

downtimes of the complex system. 

The generated reference dataset in this study served as a quality control and 

guideline through the other studies that were conducted within this PhD project. 
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4.3 Paper II - Geochemical characterization of the depositional 

environment of Paleocene and Eocene sediments of the Tertiary 

Central Basin of Svalbard 

Aim: The negative carbon isotopic excursion occurring within the Paleocene 

Eocene Thermal Maximum (PETM) on Svalbard has been established in several 

studies and was related to specific environmental conditions that were present during 

that time (e.g. Cui et al., 2011; Harding et al., 2011). In contrast to other PETM 

locations (Sluijs et al. 2006; Stein et al. 2006; Gavrilov et al. 2009; Soliman et al. 2011), 

the Central Tertiary Basin PETM sediments show no elevated organic carbon 

concentrations. Therefore, the aim of this study was to elucidate the reasons for the low 

concentration of organic carbon within the Paleocene Eocene transition. 

The present record of the CTB sediments with an organic and inorganic dataset 

and related interpretation of the depositional conditions should be expanded. The 

generated data and interpretations regarding the depositional condition of the 

investigated research well are the basis for advanced organic geochemical 

interpretations. 

Execution: 218 samples from the well BH 10-2008 have been selected for 

organic and inorganic geochemical analyses. The methods that were used for this study 

comprised elemental analyses (EA) providing the concentrations of carbon, nitrogen 

and sulfur, major and minor elements using X-ray fluorescence (XRF), and inductive 

coupled plasma mass spectrometry (ICP-MS). In addition, carbon isotopic 

measurements on the total organic carbon were performed using an EA-IRMS 

instrument coupling. Thin sections were prepared on a subsample set for quantitative 

evaluation of minerals by scanning (QEMSCAN). 

Findings: The integration of the measured data into the general depositional 

concepts of the CTB helped to better evaluate, understand and describe the depositional 

conditions in the area of the investigated well. The Paleocene and Eocene succession 

consist mainly of siliciclastic rocks with minor carbonate contributions. The 
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depositional reconstruction for the different formations supports findings from earlier 

studies of the CTB at different locations.  

The primary productivity was elevated during the Paleocene Eocene transition 

mainly driven by elevated rates of weathering, enhanced run off and consequently a 

higher nutrient supply. This is reflected in the K/Al elemental ratio in combination with 

total concentrations of Cu and Ni. Interestingly, the proposed elevated primary 

productivity is not fully preserved in the measured TOC of the sediments. Microbially 

induced sulfate reduction had a strong impact on the preservation of the organic matter 

in the sediments during the Paleocene Eocene transition. It was possible to estimate the 

original organic carbon concentration of the sediments before microbial sulfate 

reduction, by using published equations to quantify this process (Lallier-Vergès et al., 

1993; Vetö et al., 1994; Lückge et al., 1999). The results show that the original TOC 

was up to two times higher than the preserved concentration (Figure 6). 

The differentiation between marine versus land plant material input into the 

CTB was determined through the introduction of a C/N ratio endmember calculation. 

It was shown that the organic matter within the Basilika Fm. and the Frysjaodden Fm. 

consist mainly of marine organic matter. The younger Battfjellet Fm. and 

Aspelintoppen Fm. contain higher proportions of higher land plant material. 

The original isotopic composition of the organic matter prior to microbial 

degradation was estimated by combining the restored loss of the original organic 

carbon through sulfate reduction, the contribution of marine versus terrestrial organic 

matter and the measured δ13CTOC. A Rayleigh-fractionation calculation with an 

assumed fractionation factor of α = 1.0025 was used. 
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Figure 6a-c: a: Ternary plot of the total sulfur, TOC and reactive iron system 

(Fe*), the pyrite line is indicating by the solid black line. b: Total sulfur/TOC 

ratio versus depth, indication changes in the oxygen supply during the 

Paleocene Eocene transition. c: loss of organic carbon induced by sulfate 

reduction versus depth, indicating that the loss of TOC was elevated during 

the Paleocene Eocene transition (Figure from Doerner et al., 2019, under 

review). 
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4.4 Paper III - Carbon isotopic analysis of reactive organic matter using 

a new pyrolysis-cryotrapping-isotope ratio mass spectrometry 

method: The isotope variation of organic matter within the S1 and S2 

peaks of Rock-Eval 

Aim: Rock-Eval analyses are frequently conducted in petroleum and organic 

geochemistry research, but only limited knowledge regarding the isotopic composition 

of the standard Rock-Eval parameters is present. The presented methodology is created 

to monitor continuously the isotopic composition of the products generated during a 

Rock-Eval open-system pyrolysis. The proposed methodology supports investigations 

of the carbon isotopic fractionation of organic matter induced by thermal maturation. 

The results improve the understanding of the isotopic composition and differences 

between mature source rocks and expelled petroleum. 

In paper II we found that the impact of sulphate reduction was severe in the 

sedimentary sequences of the Paleocene Eocene transition. The proposed methodology 

might help to elucidate the effects of microbial degradation on the carbon isotopic 

composition of the reactive organic matter contained in respective sample material. 

Execution: The GC system described in paper I was equipped with a pyrolyzer 

unit. The chromatographic column was replaced with a fused silica transfer line without 

coating. Sediment samples were loaded into quartz tubes and pyrolyzed with the 

standard Rock-Eval compatible temperature program. A cryotrap was positioned 

between the combustion furnace and the IRMS detector. With this setup it was possible 

to monitor the composition of the S1 and S2 peaks generated during Rock-Eval 

pyrolysis. The S2 peak was monitored continuously, for each 15 ºC of temperature 

increase during the kerogen pyrolysis. The cryo-trap assured precision and accuracy of 

the measurements as it helped to focus each single peak for the IRMS measurement as 

shown in Figure 7. 
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The sample suite that has been used for this study was comprised of five 

sediment samples from the well BH 10-2008 covering the Paleocene Eocene transition. 

In addition, five samples from extensively studied areas (Mahogany Shale section of 

the Green River Fm. (Western USA), Messel Fm. (Southern Germany), Botneheia Fm. 

(Svalbard), the so-called Jet Rock of the Whitby Mudstone Fm. (United Kingdom), and 

Wealden Fm. (Dorset, United Kingdome) were included. The sample material was used 

to apply the method to sediments originating from a broad range of well-studied 

depositional settings and thereby helping to set the new datatype into an already studied 

context. 

The method was validated with several certified isotopic standards. No 

instrumental related isotopic fractionation was observed. 

 Findings: The new pyrolysis IRMS method allows to measure the carbon 

isotopic composition of the reactive (pyrolysable) fraction of the organic matter of a 

sediment sample and monitor its evolution as a function of increasing thermal stress.  

Figure 7: Chromatographic results for the pyrolysis IRMS method. The FID 

signal is represented by the blue line, the IRMS signal is displayed as red 

peaks. Both signals were recorded simultaneously (Figure adapted from 

Doerner et al., 2019).  
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The isotopic fractionation occurring during the pyrolysis of the S2 proportion of 

the individual samples differed significantly. By combining the observed isotopic 

fractionations with elemental analyses, bulk isotopic analyses, and Rock-Eval analyses, 

interpretations regarding the preservation state and depositional conditions of the 

individual samples were suggested (Figure 8). 

 

Figure 8: Pyrolysis temperature in ºC versus δ13C values of the pyrolysates 

(only S2 proportion). The isotopic values exhibit a clustering into 3 groups. 

The solid lines indicate the average of the isotopic composition of the 

individual groups, shaded areas show the isotopic variation within each 

group. All groups are labeled with the depositional condition under which 

they were deposited (adapted from Doerner et al., 2019). 

It was demonstrated that a better state of organic matter preservation is 

associated with enhanced S2 isotopic fractionation during the pyrolysis experiments. 

This effect is most likely related to the preservation of the original 12C pool contained 

in the organic matter, that is less affected by microbial processes during the deposition. 

In those cases, an isotopic fractionation of up to 3 ‰ was recorded. The sample material 

from the Paleocene Eocene transition from the study well exhibited a comparably 

heavy isotopic signature of the reactive organic matter, especially when compared with 

the isotopic composition of the TOC. Those findings support the severe effect that 

microbial reworking (e.g. sulphate reduction) had on the sedimentary organic matter in 
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the Paleocene Eocene transition. The results point towards a preferential consumption 

of the reactive organic matter proportion during the microbial consumption, which is 

demonstrated by a depletion of 12C of the reactive organic matter of those sediments. 

Although the data set that was presented in the study is not comprehensive, it 

was possible to establish a maturity driven relationship between the isotopic 

composition of the S1 and the S2 proportion of the generated pyrolysates. The isotopic 

difference between the S1 and the S2 approximates each other until peak oil maturities 

at approximately 0.9 % Vreq are reached (Figure 9). Samples that plot outside the 

proposed maturity trend are most likely affected by secondary processes such as 

biodegradation or staining with bitumen from other sources than from the sample itself.  

 

Figure 9: Maturity deduced from the difference of the S2 versus the S1 

isotopic composition (ɛPeak-gen-S1) plotted against the Vreq calculated from 

Rock-Eval Tmax. The green shaded area marks the field of samples that do not 

follow the maturity trend represented by the red arrow. Those samples are 

likely affected by secondary processes. Once oil expulsion and primary 

migration commence, the ɛPeak-gen-S1 can be used as maturity indicator, 

assuming that the S1 proportion is generated exclusively from the S2 

proportion of the respective sample material (adapted from Doerner et al., 

2019). 
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4.5 Paper IV - Qualitative evaluation of molecular maturity markers in 

thermally mature sediments, a case study from Svalbard 

Aim: The aim of the presented paper is to evaluate the thermal maturity of the 

investigated research well BH 10-2008. Molecular maturity biomarkers and their 

different responses to thermal maturity were subject of the investigation. Of special 

interest was to elucidate on the difference in the maturity trends that can be established 

by molecular maturity proxies and the kerogen maturity represented by Rock-Eval 

Tmax measurements. 

Execution: 218 Rock-Eval measurements results were compared with the 

molecular composition of 87 sediment extracts. 47 individual maturity ratios and 

proxies were investigated and subjected to multivariate statistics. Depth trends of 

measured maturity parameters and proxies were compared to those of typical facies 

parameters such as δ13CTOC, total sulphur (TS), atomic organic carbon over nitrogen 

ratio (C/N), and Pristane/Phytane ratios (Pr/Ph). This supports the identification of 

maturity proxies that respond mainly to facies changes and those that are most 

responsive to thermal maturity (Figure 10). 

 

Figure 10: Principal component analyses of maturity and facies parameters. 

Parameters that exhibit a degree of correlation with depth (maturity) are 

indicated as black lines. Small angels between the different parameter vectors 

are indicative for a high degree of correlation, angels of 180 º are indicative 
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for counter correlation, e.g. HI decrease with well depth due to hydrocarbon 

generation (adapted from Doerner et al., 2019; submitted manuscript). 

Findings: The investigated well reaches the main oil window at a depth of 

approximately 780 m, which corresponds to a vitrinite reflectance equivalent of 0.8 % 

Vreq. 

A set of seven molecular maturity proxies was identified that showed the best 

correlation with depth and the least response to facies changes, expressed in a 

correlation coefficient of r2 > 0.7. The most suitable parameters for the study well were 

MPI-1, MPI-2, DMN, TrMN, C29 (ββ/αα+ββ), Pr/nC17, and TMNr.  

In addition, a formula was developed that uses the most responsive maturity 

proxies and combines them in a correlation coefficient weighted, unitless maturity 

trend, in which parameters that exhibit the highest correlation coefficient get the most 

weight. The unitless biomarker maturity trend shows a different slope in the maturity 

trend when compared to the kerogen maturity (Figure 11). It was therefore found that 

the kerogen maturity trend in the investigated well is to some extend decoupled from 

the molecular or liquid maturity trend. 

We demonstrated that even well correlated parameters (e.g. MPI-1) are affected 

by other processes than maturity such as facies changes and solubility differences of 

the compounds incorporated in the MPI-1 calculation, in the kerogen network as 

described by Ritter (2003). Nevertheless, the proposed unitless biomarker maturity 

trend might provide a more reliable parameter especially in oil to source correlation, 

and in cases where it is possible to calibrate the biomarker maturity indicators in the 

source rock section.  
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Figure 11: Normalized maturity trend for the combined maturity proxies, 

consisting of the 7 parameters that exhibit the highest degree of correlation 

with depth and normalized kerogen maturity represented by Tmax. Note that 

the slopes of both trends are different, with the Tmax trend been steeper 

(adapted from Doerner et al., 2019; submitted manuscript). 
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4.6 Paper V - Organic geochemical characterisation of hydrocarbon 

generation and migration at the Paleocene-Eocene transition on 

Svalbard 

Aim: The study described in paper II has shown that the interval prior to the 

onset of the Paleocene Eocene negative carbon isotopic excursion contains relatively 

elevated concentration of organic carbon of up to 3 %. In paper IV it was demonstrated 

that this interval is thermally mature and has reached the peak oil window. The focus 

of this study was therefore to investigate the hydrocarbon generation potential as well 

as expulsion induced molecular fractionation effects of the extended Paleocene Eocene 

transition sequences.  

The calculation of the initial potential of a hydrocarbon generating rock 

sequence and the estimation of the amounts of hydrocarbons that migrated out of those 

organic rich layers are dependent on the use of realistic measurements regarding the 

present-day hydrocarbon content. Therefore, three different methods (solvent 

extraction, Rock-Eval S1 and Rock-Eval Shale method®) are compared in order to use 

the most realistic data for a back-calculation approach in which the amount of 

generated, expelled and migrated hydrocarbons should be determined. 

Execution: A combination of organic geochemical bulk parameters comprising 

Rock-Eval analyses, the Rock-Eval shale method, TLC-FID and molecular analyses of 

selected aromatic and saturated compound was used to investigate potential expulsion 

induced fractionation.  

In order to back-calculate the initial potential of the investigated sedimentary 

sequences and to quantify the amounts of hydrocarbons that migrated out the 

sedimentary section enriched in organic carbon, a back-calculation approach originally 

proposed by Banerjee et al. (1998) was modified and extended. In this approach the 

C/N endmember calculation introduced in paper II was applied to elucidate on the 

kerogen composition of the evaluated sample material. For each samples a 

transformation ratio of the mixed kerogen (mix between kerogen Type II and Type III) 

was calculated, and the initial hydrocarbon potential was subsequently determined.  
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Findings: We demonstrated that the standard Rock-Eval S1 data 

underrepresents the bitumen content in the respective study area when compared with 

solvent extraction and the Rock-Eval shale method. The results presented in this paper 

show that the solvent extraction is the most reliable and realistic parameter regarding 

the total bitumen content of a sedimentary sequence. Based on the presented results it 

might be possible to calibrate standard Rock-Eval results and the more advance 

Rock-Eval shale method results to solvent extraction yields and therefore reduce the 

need for expensive and time intensive solvent extraction.  

The investigated well can be subdivided in two sections, a lower organic rich 

expelling section (source), approximately at 780 m, and an upper receiving (sink) part 

in which hydrocarbons have been migrating into. As shown in Figure 12 the upper 

section is enriched in saturated compounds, while the lower source section contains 

elevated concentrations of asphaltenes and polar compounds, which are preferentially 

retained in the lower, organic rich section. 

 

Figure 12: Distribution of the different compound class fractions in the 

investigated section (saturated, aromatic and NSO compounds). The 

distribution of n-alkanes is represented by the chromatograms on the right 

(adapted from Doerner et al., 2020, submitted). 
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The application of the kerogen mixing back-calculation approach to restore the 

original hydrocarbon potential and subsequent calculation of the amount of migrated 

hydrocarbons provided a realistic outcome when extraction yield and extracted S2ex 

data was used instead of the standard Rock-Eval S1 and S2. The back-calculation 

performed with standard Rock-Eval S1 and S2 data overestimated the migration loss 

and did not result in a hydrocarbon sink in the upper core section, which was indicate 

by molecular and bulk analyses (Figure 13). 

Figure 13: Results from the modified back-calculation approach after 

Banerjee et al., 1998. Scenario I was calculated with standard Rock-Eval 

parameters (S1 and S2) while Scenario II was calculated with extract yield 

and S2ex (adapted from Doerner et al., 2020, submitted).  
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5. Concluding remarks and further work 

5.1 Condensed conclusion 

The presented PhD study is divided into two parts. The first part of the study is 

dealing with the development of new analytical methodologies that support 

geochemical interpretations and data generation. In paper I a new analytical system 

was introduced that used multiple advanced detectors coupled to a single gas 

chromatograph in order to enhance the data density per sample injection. The flexibility 

of the system in combination with a high level of automation are key features in a 

research field that is steadily increasing in its dependence on high amounts of high-

quality data, especially when advanced technologies such as artificial intelligence and 

machine learning shall be implemented. 

The second method development is presented in paper III. The paper describes 

for the first time an online measurement technique measuring the isotopic composition 

of the Rock-Eval S1 and S2 comparable pyrolysates fractions. Although the described 

study contains only limited data, the preservation of organic matter could be tied to its 

specific isotopic fractionation behaviour. The rapid heating rates applied to the sample 

material are not mimicking natural condition, but the results give rise to the assumption 

that isotopic fractionation between the kerogen and the produced liquids is occurring 

in natural system as well. The proposed analytical setup helps to understand the 

isotopic fractionations that are occurring naturally. 

The second part of the presented thesis is dealing with the characterisation of 

the well core from BH 10-2008 that has been drilled in the Central Tertiary basin of 

Svalbard, containing Paleocene to Eocene sediments. The focus was to understand the 

depositional system of those sedimentary sequences as well as to gain insights into the 

molecular fractionation of generated and expelled hydrocarbons in the respective area. 

The depositional setting described in the second paper demonstrated the 

transition from a subaquatic dominated depositional system towards shallow marine 

and deltaic deposition in the upper Eocene formations. A key finding is the high impact 
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of microbial sulphate reduction on the organic matter deposited during the Paleocene 

Eocene transition, resulting in reduced TOC concentrations and a poor preservation 

state of the organic matter. Interestingly, other parameters pointed towards favourable 

organic carbon preserving conditions during the Paleocene Eocene transition. 

The impact of microbial sulphate reduction on the reactive proportion of the 

organic matter could be further supported in paper III. The bulk isotopic composition 

of the TOC of the respective Paleocene Eocene transition sample exhibits a lighter 

carbon isotopic composition than the isotopic composition of the reactive organic 

matter. In combination with a reduced isotopic fractionation of the S2 proportion of the 

organic matter, we confirmed that the overall preservation state of the organic matter 

contained in the Paleocene Eocene transition sediments is poor. 

Nevertheless, a sediment layer containing elevated organic carbon 

concentrations (2.7 % TOC) was found to be located directly below the Paleocene to 

Eocene transition. In order to gain further insights into the thermal maturity of the 

investigated well section, and to get a better understanding of the molecular maturity 

proxies that are commonly used to determine the thermal maturity of rock extracts and 

bitumen, the study described in manuscript IV was conducted. By application of 

multivariate statistics, a set of seven maturity proxies was selected that showed the best 

correlation with depth. It was demonstrated that the kerogen maturity is to some extent 

decoupled from extract maturity. Especially in the Paleocene Eocene transition and 

adjacent sequences it was evident that many of the parameters deviated from a straight 

maturity trend. 

Since an elevated hydrogen index and a reduction in the Tmax readings was 

observed for the sediments of the lower Frysjaodden Fm., this area was subjected to 

further investigations, which are described in paper V. 

Elevated hydrogen indices and a reduction in the Rock-Eval Tmax is frequently 

associated with bitumen staining or hydrocarbon migration. Therefore, the sedimentary 

sequences above and beneath the Paleocene Eocene transition were selected for a more 

detailed study regarding hydrocarbon generation, expulsion and the associated 
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molecular fractionation. The sediments beneath the negative carbon isotopic excursion 

(below the PETM) contained significant amounts of asphaltenes and polar compounds 

that are retained in the organic rich layer. The saturated fraction proportion of the 

generated hydrocarbon migrated upwards into a low organic carbon containing section. 

The expulsion of bitumen has likely contributed to (i) the molecular fractionation of 

the measured compounds and compound classes and (ii) has contributed to the elevated 

values of the hydrogen index and the reduced Tmax values. By applying a modified 

back-calculation approach and using extract yields and S2ex instead of the standard 

Rock-Eval parameters, it was possible to calculate realistic volumes of hydrocarbons 

that have been generated, expelled and migrated. 

5.2 Oulook 

The presented PhD has used well BH 10-2008 as case study to introduce new 

concepts and analytical instrumentation. Those concepts need to be applied to other 

locations or need to be expanded within the Central Tertiary Basin of Svalbard.  

For the findings presented in paper III (Rock-Eval isotopic measurements), it 

would be beneficial to use samples from a natural maturity series and investigate them 

with the new analytical system. Those results might help to get a better understanding 

of the natural isotopic fractionating occurring in the reactive organic matter proportion. 

A source rock to oil correlation in a setting where the source rock has already been 

linked to a specific oil accumulation might be used to compare the isotopic composition 

of the S1 and S2 in the source rock with the reservoir fluids. The results could help to 

understand the secondary migration induced isotopic fractionation better. 

The results presented in paper IV provide insights into the qualitative response 

of maturity markers in rock extracts. In order to advance on the molecular processes 

occurring in the subsurface affecting those maturity parameters, a quantitative model 

is needed which uses quantified molecular data for specific compounds. Solubility, 

polarity parameters, and mass balance calculations might help to gain further insights 

into the molecular processes during hydrocarbon generation and expulsion. The 
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necessary data for this approach has been generated during the PhD thesis and should 

be used to establish a more realistic molecular scale subsurface model. In addition, the 

study area should be extended to other locations/regions and to source rock sequences 

of economic value. This might also provide the opportunity to test the unitless maturity 

indicator on petroleum samples and the corresponding source rocks. 

The back-calculation approach presented in paper V used a TRmix that was based 

on the elemental concentration of carbon and nitrogen. The proposed method might be 

refined with a more direct measurement of the kerogen type, for example maceral 

analyses. The main advantage of this modification would be that effects introduced by 

thermal maturation and initial diagenetic processes on the nitrogen content of the 

sample material can be avoided. 

The investigated area of the CTB is partially covered with 2 D seismic. In a 

further study the proposed concepts and back-calculation approached should be applied 

in a numeric simulation model and compare the results with a conventional basin 

model. Although the amounts of generated and expelled hydrocarbon were quantified, 

a migration loss, for example through the internal, lateral migration of hydrocarbon in 

the source interval itself, could not be calculated or estimated. 
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