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Highlights

• Mixed integer linear programming model for offshore wind farm mainte-
nance

• Deterministic scenario based model supporting decisions on vessel fleet
composition

• Derives a practical decision rule to schedule maintenance operations

• Illustrates the underestimation of the cost by a complete information
model

• Applies the procedure to a practical case
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Abstract

Maintenance costs account for a large part of the total cost of an offshore wind
farm. Several models have been presented in the literature to optimize the fleet
composition of the required vessels to support maintenance tasks. We provide
a mixed integer linear programming (MILP) description of such a model, where
on the higher level, the fleet composition is decided and on the lower level the
maintenance operations are scheduled for a set of weather and breakdown sce-
narios. A drawback of deciding an a priori information schedule for the coming
year is that, the weather outcomes and breakdowns are not known in advance.
Consequently, given a fleet composition, its corresponding maintenance costs
are underestimated compared to what can be realised in practice under incom-
plete information. Therefore, we present a heuristic that simulates the practical
scheduling and may provide a better cost estimate. The latter method is used to
evaluate a fleet composition based on available information and it is compared
with the MILP solution based on a priori information.

Keywords: Scheduling, Offshore Wind Farm, Heuristic, Fleet composition,
Maintenance planning

1. Introduction

The offshore wind energy industry is expected to continue its growth ten-
dency in the near future. The European Wind Energy Association expects in its
Central Scenario by 2030 a total installed capacity of 66 GW of offshore wind
in the EU [4]. Offshore wind farms (OWFs) are large scale infrastructures,
requiring a large fleet of vessels able to perform operations and maintenance
(O&M) tasks on the installed turbines and therefore relying on non-renewable
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energy resources to be operative. Operation and maintenance constitute up to
as much as one third of the running costs of OWF installations [14]. Therefore,
optimising the efficiency of resources used for O&M tasks of an OWF becomes
extremely important in order to make them economically viable and to reduce
CO2 emissions.

Recent deterministic and stochastic formulations for fleet composition and
optimisation of maintenance operations at OWF’s can be found in [5] and [7]. A
recent literature review on decision support systems (DSS) for OWF’s is given
by [8].

In [10], a mathematical model for maintenance operations for onshore wind
farms is introduced. It determines the best time for maintenance operations con-
sidering the performance of the turbines and the resources that are available.
A stochastic optimization model for opportunistic maintenance of offshore wind
farms is presented by Besnard et al. [2]. Opportunistic maintenance is a term
used in literature to express that sending out maintenance teams is based on
forecasts of generation data. Their model is based on a rolling horizon, up-
dating the maintenance plan daily, according to production and wind forecast
data. Another opportunistic maintenance method is presented in [11], schedul-
ing preventive operations when a component reaches its calculated reliability
threshold. Reference [13] presented a mathematical model and a rolling horizon
heuristic for scheduling maintenance operations at multiple OWF.

In [3, 9] and [16], a model for maintenance routing and scheduling at off-
shore wind farms based on the Dantzig-Wolfe decomposition method has been
implemented. In fact, [9] extends and combines the models in [3] and [16]. In
that work, a mixed integer linear model is solved for each subset of turbines
to generate all feasible routes and maintenance schedules for the vessels for
each period. The routes take several constraints into account, such as weather
conditions, the availability of vessels and the number of technicians available
at the operation and maintenance base. In [17], a two-stage stochastic model
is presented to determine a cost-optimal fleet size and mix for O&M tasks at
offshore wind farms for the total expected lifetime of the OWF. For that, the
study considers time periods fixed to three months.

In the current work, we make the following contribution to the literature
on decision support systems for O&M tasks at OWFs: (1) We present a MILP
model to select a fleet of vessels to perform O&M tasks at OWFs, based on
a priori information. (2) We introduce a heuristic for scheduling O&M tasks
using a set of available vessels. (3) We conduct a numerical study comparing
the MILP model solution with the heuristic, illustrating the effect of a priori
information for this type of MILP models.

The basis of our investigation is a scenario based MILP model, which like
the models in [7] and [17], decides on the vessel fleet composition. It is based
on a more extensive model on fleet size and mix decisions in [15]. Such models
use a priori information to perform the scheduling and use that to evaluate the
vessel fleet composition and base selection, i.e. the weather conditions (wind
speed and wave height) and breakdowns happening during a scenario of a year
are known beforehand. The research question in the current paper is whether
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the vessel fleet composition may be affected when maintenance scheduling is
done in a heuristic way following a practical decision rule given the available
information at the time of maintenance scheduling.

We investigate this question in the following way. Section 2 describes the
practical decision problem of operating an OWF and selecting a fleet to support
its maintenance tasks. Section 3 describes an MILP model, which simultane-
ously determines the maintenance scheduling as well as the fleet composition.
In Section 4, a heuristic for the operational stage of the model is presented. Sec-
tion 5 presents a computational study used to compare the outcomes of both
procedures. Finally, Section 6 summarises our findings.

2. Problem definition

This section describes the maintenance planning problem related to a fleet
of vessels for an offshore wind farm during a planning horizon, based on a more
extensive model of fleet size and mix decisions in [15]. The aim is to find an
optimal fleet of vessels and a collection of maintenance tasks to be performed on
the wind turbines. That model contains a detailed description of the operational
scheduling dealing with each individual action, i.e. breakdown. Our vision
also distinguishes periods (shifts) of 12 hours, but aggregates the scheduling of
individual breakdowns into a group that still requires repair.

Two types of maintenance tasks are considered. Preventive maintenance
tasks are meant to prevent failures and prolong the lifetime of wind turbines.
Examples include visual inspection, changing of consumables, oil sampling, and
tightening of bolts [12]. Corrective maintenance tasks are needed to repair
broken down wind turbines. There is a one-to-one correspondence between
failure type and corrective task type.

The number of necessary preventive tasks of each type to be performed is
predefined at the beginning of the year. Corrective tasks are only needed after
a specific failure occurs in a wind turbine. The planner is confronted in each
scenario with failures occurring dynamically and weather conditions, including
wind speed and wave height. For each shift, the scenario events consist of
weather condition data and a turbine failure list with a specification of the type
of required (repair) tasks. There is a downtime cost associated to the lack of
electricity production in turbines during the execution of a maintenance task.
Downtime costs are also considered for broken down turbines, incurred for the
shifts from diagnose until reparation.

To perform maintenance tasks, a fleet of vessels is needed. A vessel type
has properties such as the type of maintenance tasks it can perform, capacity
for transferring technicians, a depreciation cost over the planning horizon, a
sailing speed, and a threshold for wind speed and wave height above which it
cannot sail and transfer technicians to the turbines. Every vessel is associated
to a base, from which it travels to the wind farm to perform maintenance tasks.
Each base has a certain vessel capacity, a capacity to accommodate technicians,
an associated cost and coordinates which provide its distance to the wind farm.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The decision problem includes a number of candidate bases that can be
used and a number of vessel types associated to them. Each vessel type is
able to support a particular set of patterns, from the base they are associated
with. A pattern consists of one or several maintenance tasks to be performed
at the OWF that fits in a shift, including the time it takes the vessel type to
perform a round trip visiting the OWF from their base. For each shift the
available vessels are able to perform a single pattern of the possible ones that
are associated to their type and their base. Some patterns from different vessel
types and associated to different bases might be virtually the same, containing
the same list of tasks to be performed during the shift. Their cost and time
required may vary, considering the speed of the vessel or the distance from their
base to the OWF. Some task types do not require the vessel to be present at
the turbine. This facilitates performing several tasks in parallel in a single time
shift. It is irrelevant whether a pattern contains tasks that run in parallel or
sequentially, as long as they meet the time constraints of a shift and the vessel
type can accommodate enough technicians to perform the tasks. Moreover,
some task types take longer than the time available in a single shift. Each
pattern includes the time dedicated to each task in order to keep track of how
many tasks have been finished. If a long task is initiated in one shift, it does not
necessarily have to be continued in the following. However, for corrective tasks,
downtime costs are incurred for all shifts until the task is finished and the failure
in the turbine has been repaired. In summary, a pattern is associated to a vessel
type and a base and consists of a list of tasks and associated dedication time
and costs. Section 3.3 describes the process to generate the possible patterns
and their costs.

Decisions actually take place on two levels: the first (tactical) level decides
which bases to use and which vessels should be available during the planning
horizon period under consideration. The second (operational) level schedules
operations including which patterns to support by which available vessel in every
shift of the planning horizon. The random events the planner is confronted with
consist of weather conditions preventing use of vessels for maintenance and the
possible failures of turbines that require corrective maintenance tasks.

3. MILP model description

Like in the models of [7] and [17], the tactical level decisions are evalu-
ated based on a scenario approach, where the planner has a priori information
to schedule the operational maintenance tasks. Our model keeps track of the
number of tasks rather than considering each task individually. The following
symbols are used to describe the mathematical optimisation model.
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Sets
K Set of bases
V Set of vessel types
Vk Set of vessel types that can operate from base k, Vk ⊆ V
S Set of scenarios of weather and breakdown outcomes
Tvs Set of shifts during which weather in scenario s allows vessel v to sail
Γ Set of maintenance task types
NP Set of planned preventive maintenance task types, NP ⊆ Γ
NC Set of corrective maintenance task types, NC ⊆ Γ
P Set of all possible patterns
Pkv Set of possible patterns for vessel of type v operating from base k

Parameters
T Number of shifts in the planning horizon
Fk Fixed cost per year of operating base k
Gv Charter cost for using a vessel of type v ∈ V over the complete

planning horizon
Dts Downtime income loss of performing a task in scenario s in shift t
Hts Hourly downtime cost in shift t of scenario s
Cp Cost of executing pattern p ∈ Pkv from base k with vessel type v
CPi Penalty cost for not executing a maintenance task of type i ∈ Γ
Ni Time (hours) required to finish a maintenance task of type i ∈ Γ
PPi Number of planned preventive maintenance tasks of type i ∈ NP
Mk Number of technicians available at base k ∈ K in each shift
MPp Required personnel (number of technicians) to execute pattern p
Qkv Maximum number of vessels of type v that can operate from base

k
Bi Time (hours) one can spend on a task of type i in one shift
Aip Number of tasks of type i worked on in pattern p
Ps Probability of scenario s
Yits Number of failures of type i ∈ NC accumulated in shifts 1, . . . , t

in scenario s
.

Tactical decision variables
yk ∈ {0, 1} Equal to 1 if base k is used, 0 otherwise
xkv ∈ {0, . . . , Qkv} Number of vessels of type v operated from base k
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Operational decision variables
wits ∈ Z+ Number of corrective maintenance tasks of type i ∈ NC worked

on during shift t in scenario s
qits ∈ Z+ Number of preventive maintenance tasks of type i ∈ NP

worked on during shift t in scenario s
upts ∈ Z+ Number of vessels executing pattern p during shift t in scenario

s
w̄its ∈ Z+ Number of turbines down during scenario s in shift t requiring

finishing a corrective maintenance task of type i ∈ NC
q̄is ∈ Z+ Number of preventive maintenance tasks of type i ∈ NP not

completed in scenario s at the end of the planning horizon

In order to solve the model, the bounds on the variables should be set as sharp
as possible to facilitate pre-solving operations of an LP solver that filters out
those variables with a value of zero and nonbinding constraints. The parameter
Qkv is an upper bound on the number of vessels that can be used from each
base. Therefore, the number of patterns that can be performed in a shift for a
particular scenario is bounded by the total capacity of vessels for the considered
bases. The sum of the vessel capacity of each base and the maximum number of
tasks for each type that can be performed in a single pattern is an upper bound
on the number of each preventive and corrective task that can be performed in
a certain shift. The number of broken down turbines at a certain shift is smaller
than or equal to the total number of occurrences of failures Yits thus far. The
number of preventive tasks not performed at the end of the horizon is bounded
by the number of planned preventive tasks PPi. We define the following bounds:

0 ≤ xkv ≤ Qkv, k ∈ K, v ∈ V (1)

0 ≤ upts ≤
∑

k∈K

∑

v∈Vk
Qkv p ∈ P, s ∈ S, t ∈ {1, . . . , T} (2)

0 ≤ wits ≤
∑

k∈K

∑

v∈Vk
Qkv max

p∈Pkv

Aip i ∈ NP, s ∈ S, t ∈ {1, . . . , T} (3)

0 ≤ qits ≤
∑

k∈K

∑

v∈Vk
Qkv max

p∈Pkv

Aip i ∈ NC, s ∈ S, t ∈ {1, . . . , T} (4)

0 ≤ w̄its ≤ Yits i ∈ NC, s ∈ S, t ∈ {1, . . . , T} (5)

0 ≤ q̄is ≤ PPi i ∈ NP, s ∈ S (6)

3.1. Objective function

The objective is to minimise the fixed costs of operating the bases and the
charter cost of the selected vessels, the costs of all performed patterns through-
out the planning horizon, the downtime costs associated with the running main-
tenance tasks or persistent failures and the penalty costs of preventive and cor-
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rective task types that are not finished within the planning horizon:

min
∑

k∈K
Fkyk +

∑

k∈K

∑

v∈Vk
Gvxkv +

∑

s∈S
Ps


∑

k∈K

∑

v∈Vk

∑

p∈Pkv

T∑

t=1

Cpupts


+

(7)

∑

s∈S
Ps

( ∑

i∈NP

T∑

t=1

HtsBiqits +
∑

i∈NC

T∑

t=1

Dtsw̄its +
∑

i∈NP
CPiq̄is +

∑

i∈NC
CPiw̄iTs

)

The first two terms of the objective function (7) cover the costs for the tactical
decisions: cost of bases and vessels. The first term refers to the fixed costs for
operating the chosen base(s) during the planning horizon. The second defines
the charter costs for the available fleet of vessels during the planning horizon.

The following terms cover the expected operational costs of the model, where
the cost of each scenario is multiplied by its probability. The third term of the
objective function (7) determines the cost of operating the patterns during the
planning horizon. Terms four and five describe the downtime costs of preventive
and corrective task types, respectively. While the downtime costs for preventive
task types are only incurred while a task is taking place on a turbine, downtime
for a corrective task starts from the moment the breakdown occurs and continues
until the shift in which it has been repaired. The last two terms are related to
penalty costs. Term six is the penalty incurred for the preventive maintenance
task types that are not performed within the planning horizon while term seven
is the penalty for not finishing all corrective tasks.

3.2. Constraints for tactical and operational decisions

There is only one constraint on the tactical level describing the usual relation
that base k should be in use, if one wants to station vessels there, and set the
bounds of the maximum number of each vessel type for each base.

xkv ≤ Qkvyk k ∈ K, v ∈ V (8)

The tactical decision directly influences the possibilities of the operational plan-
ning. A larger fleet allows to perform more patterns each shift. Constraints on
the operational level are given by the following inequalities:

8
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∑

p∈Pkv

upts ≤ xkv, k ∈ K, v ∈ V, s ∈ S, t ∈ {1, . . . , T} (9)

∑

v∈Vk

∑

p∈Pkv

MPpupts ≤Mkyk, k ∈ K, s ∈ S, t ∈ {1, . . . , T} (10)

∑

k∈K

∑

v∈Vk

∑

p∈Pkv

Aipupts − qits ≥ 0, i ∈ NP, s ∈ S, t ∈ {1, . . . , T} (11)

∑

k∈K

∑

v∈Vk

∑

p∈Pkv

Aipupts − wits ≥ 0, i ∈ NC, s ∈ S, t ∈ {1, . . . , T} (12)

w̄its ≥ Yits −
Bi
Ni

t∑

τ=1

wiτs, i ∈ NC, s ∈ S, t ∈ {1, . . . , T} (13)

t∑

τ=1

wiτs ≤
⌈
Ni
Bi
Yits

⌉
, i ∈ NC, s ∈ S, t ∈ {1, . . . , T} (14)

q̄is ≥ PPi −
Bi
Ni

T∑

t=1

qits, i ∈ NP, s ∈ S (15)

upts = 0, p ∈ P, t ∈ {1, . . . , T} \ Tvs (16)

Constraint (9) bounds operations on the availability of sufficient vessels at
each base. Each available vessel has the potential to contribute by performing
one of its possible patterns each shift. Constraint (10) limits operations due to
available personnel at the bases. Constraints (11) and (12) link the assignment
of individual tasks to planned patterns and availability of vessels, for preventive
and corrective types respectively.

The model keeps track of the number of broken down turbines w̄its requiring
to finish a corrective task of type i, as the affected turbines incur downtime
costs. To repair a breakdown of type i ∈ NC requires Ni

Bi
shifts to be worked

on. If Bi = Ni, sum
∑t
τ=1 wiτs gives the number of completed tasks type i

from shift 1 up to shift t. If Ni > Bi the sum is larger than the number of
repairs. Assuming a FIFO assignement of tasks (first to break down, first to
be repaired), the number of repaired turbines cannot be bigger than this sum
divided by Ni

Bi
. Constraint (13) states that the number of breakdowns w̄its that

have not been repaired at shift t cannot be smaller than the cumulative number
of breakdowns minus the number of repairs. Constraint (14) ensures that the
number of times work took place on tasks of type i cannot be bigger than that
required by broken down turbines up to shift t, i.e. at shift t, you cannot repair
turbines that have not been broken down yet up to moment t. For preventive
tasks it is only necessary to check the number of not performed tasks at the
end of the time horizon. Constraint (15) keeps track of that. The number of
preventive tasks type i not finalized in scenario s is the number to be done
minus the number of hours spent on the task divided by the necessary hours to
finish it.
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Implicitly, constraints (13),(14) and (15) imply that the individual task
schedule follows from a FIFO approach for preventive and corrective task types,
where the first task that has been started is the first to be ended. Such an
assumption is needed: if each task was treated as an individual task, the model
would become intractable for small instances. Finally, constraint (16) prevents
patterns to be performed during shifts in which the weather conditions exceed
the threshold of wind speed or wave height for the vessel type used to execute
the pattern.

3.3. Generating columns (bundles and patterns) for the model

The basic decisions of the scheduler relate to the number upts of vessels
sent out (number of trips) to perform maintenance tasks. The data Aip that
specifies the number of tasks of type i to be worked on for Bi hours during a trip
are based on feasible patterns, previously crafted by the decision maker. This
section describes an automatic procedure to generate the feasible maintenance
patterns p ∈ Pkv for every base and vessel type combination to compute the
data Aip.

Table 1 illustrates the idea of the outcome of the procedure. For each base-
vessel combination, we would like to know which activities i can be worked on
during one trip to the wind farm. One row-vector in Pkv describes Aip. The
specific data is based on the case described in 5.1 with 4 different task types i.

Table 1: Possible efficient patterns that can be performed from each base-vessel combination
with 4 task types. Data for base set K = {K1,K2,K3} and vessel set V = {V1, V2, V3, V4} as
outlined in Section 5.1

k v P
K1 V1 {(0, 0, 4, 0)}
K1 V2 {(0, 0, 4, 0)}
K1 V3 {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K1 V4 {(6, 0, 0, 0), (3, 3, 0, 0), (2, 2, 2, 0), (3, 0, 3, 0),

(0, 3, 3, 0), (0, 0, 6, 0), (0, 0, 0, 1)}
K2 V1 {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K2 V2 {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K2 V3 {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K2 V4 {(6, 0, 0, 0), (3, 3, 0, 0), (0, 6, 0, 0), (2, 2, 2, 0),

(3, 0, 3, 0), (0, 3, 3, 0), (0, 0, 6, 0), (0, 0, 0, 1)}
K3 V1 {(3, 0, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K3 V2 {(3, 0, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K3 V3 {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0, 4, 0), (0, 0, 0, 1)}
K3 V4 {(6, 0, 0, 0), (3, 3, 0, 0), (2, 2, 2, 0), (3, 0, 3, 0),

(0, 3, 3, 0), (0, 0, 6, 0), (0, 0, 0, 1)}

As sketched in Section 2, some task types do not require the vessel to be
present at the turbine during the operation such that these types can be run in
parallel and they are denoted by the set Γpv. We first pack those tasks in what
we will call a bundle of parallel tasks and in a second stage, we will add a task
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that requires the vessel to be present in what will be called a pattern. As can
be observed in Algorithm 1, the first step is the generation of bundles and after
that these bundles are used to generate the patterns adding non-parallel tasks.

In fact, we want to generate all possible combinations of tasks that fit in the
time frame and do not exceed the number of technicians that can come along
on the trip. This is done by a recursive algorithm, Algorithm 2, that generates
all combinations of task types from Γpv that can be run in parallel.

A bundle b is defined as a quadruple (List, Time, Cost, Tech) specifying the
list of tasks, the time needed to execute the tasks, the cost and the number of
technicians required, respectively. Each task in List is performed at a different
turbine and they are run in parallel. During the execution of a bundle, the vessel
docks to the first turbine, offloads the task materials and technicians required
and then moves to another turbine until all the tasks are started. When finished,
the vessel recollects the technicians and returns to base. The duration (Time) of
a bundle consists of the set up time (setupTimei) for its tasks and the docking
time (docktimev) at each turbine when dropping off and when picking up the
technicians. With respect to the time Bi spent on a single task, we have to
keep in mind they are run in parallel. The procedure has to take into account
the number of technicians Techv allowed on vessel v and the number of hours
TMXkv it may stay at the Offshore wind farm. TMXkv follows from the travel
time to and from the wind farm to be subtracted from the time of a shift.

Algorithm 1 Generate set of patterns for a base-vessel combination

Require: base k, vessel v ∈ Vk, Techv, docktimev, distance to OWF, vessel
speed of v, fuel costs per km of v
Global: sets Bkv and Pkv
Determine TMXkv from the travel time, compute travel cost and Techv
b = (∅, 0,travel cost,0) . Define empty bundle
Bkv = build bundle(b, k, v) . Alg. 2
Pkv=build pattern(Bkv,k, v) . Alg. 3
return Pkv

Algorithm 2 build bundle

Require: bundle b=(List,Time,Cost,Time), base k, vessel v ∈ Vk
Global: Techv, TMXkv, docktimev, setupTimei, Bi, i ∈ Γpv

for all i ∈ Γpv do . For all the task types that can be executed in parallel
Add i to List and update Cost, Tech, Time
if this fits, i.e. Time ≤ TMXkv and Tech ≤ Techv then

Define new bundle b̂=(List,Time,Cost,Tech)

Bkv = Bkv ∪ {b̂} . add b̂ to set of bundles

Recursive call to build bundle(b̂,k, v)
return Bkv . Set of bundles of tasks for k, v

11
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The procedure determines the initial travel cost of the trip from the distance
from k to the wind farm. Then, starting with b = (∅, 0, travelcost, 0) builds a
set Bkv of bundles of tasks for each vessel using the set of tasks Γ specified for
each vessel Γv. The lists of the bundles are unordered with repetitions of the
same task types.

Algorithm 3 build pattern

Require: Bkv, base k, vessel v ∈ Vk
Global: Techv, TMXkv, sets Pkv and Γnv: set of tasks requiring vessel to be
present

Pkv = Bkv . Copy the set of bundles into the set of tasks for k, v
for all i ∈ Γnv do . For the non-parallel task types

for all b ∈ Bkv do For all bundles k, v
Add i to List and update Cost, Tech, Time of b
if this fits, i.e. Time ≤ TMXkv and Tech ≤ Techv then

Define new pattern p̂=(List,Time,Cost,Tech)
Pkv = Pkv ∪ {p̂} . add p̂ to set of patterns

return Pkv . Set of possible patterns for base-vessel combination k, v

Algorithm 3 then uses the bundles to combine them with the task types that
require the vessel to be present the so-called non-parallel task types in Γnv to
derive the pattern sets Pkv. To create a sharp set description, a dominance
procedure is run over the pattern sets. Let List1 and List2 be such that List1 ⊆
List2, then the pattern with List1 is removed.

4. Operational scheduling based on available information

In this section, we discuss a scheduler (decision rule) for the operational
part of the model. In each shift t, a plan is made for the next shift given the
information. In contrast to the MILP approach, no anticipation of weather
conditions and failures in the turbines is taken into account. In the notation,
we will use similar symbols without the scenario index. Available information
consists on one hand of the state of the system depending on earlier decisions
and on the other hand on weather circumstances for the coming shift and the
average situation compared to the rest of the year.

The stochastic events consist of 1) the observation of a breakdowns Yit,
2) the next shift prediction of the wave height identifying the set Tv defining
possible patterns p that can be selected with vessel v (if wave height is too high,
vessel v cannot sail out), and 3) the next shift prediction of hourly loss of energy
production due to downtime of a turbine. The current repair state is given by
the number of broken down turbines still requiring tasks of type i. However,
the observed state is more refined: The number of additional hours to be spent
on broken down turbines requiring task i such that the turbines are operational
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again. For a corrective task i ∈ NC this is described by

RmainHourit = NiYit −Bi
t−1∑

z=1

qiz, i ∈ NC. (17)

Moreover, the planner keeps track of the number of preventive tasks of type i
that still have to be done from shift t up to end of horizon T . For preventive
tasks i ∈ NP, we also translate that to the number of required hours

RmainHourit = NiPPi −Bi
t−1∑

z=1

qiz, i ∈ NP. (18)

In terms of the symbols of the MILP model, in each shift a plan is made that
consists of deciding on upt, i.e. which trips to carry out next shift given the
limitation of the weather T . The relative profit of this selection can be called
a fitness function fp for each pattern p to be scheduled. The focus of the
scheduler is rather pattern oriented instead of vessel oriented. Given the current
weather situation, it determines which vessels can sail and from that derives
the complete set of possible patterns to be carried out. The selection of the
following pattern has a greedy heuristic character, choosing the one with the
largest fitness and recalculating the fitness of the remaining trips. Notice, that
the gain of performing a trip may be lower than the cost of performing it, which
represents the situation that the fitness is smaller than zero and correspondingly
there may be available vessels that are not selected to perform a pattern. The
success of the scheduler depends of course on the used fitness calculation. The
cost of performing a pattern is relatively easy to estimate. On one hand we have
the trip cost Cp and on the other hand the downtime cost Ht

∑
i∈NP BiAip of

the preventive tasks to be performed. The fitness of a pattern is given by

fp = Ep + Sp − Cp −Ht

∑

i∈NP
BiAip (19)

confronting the relative gains of performing pattern p expressed by the gain
Ep in electricity production of repaired turbines and the potential gain Sp of
avoiding end of horizon penalties. Let the average hourly energy production
for month m be hm,m = 1, . . . , 12. For the benefit of repairing a broken down
turbine we roughly take the average advantage R =

∑12
m=1 hm for generating

energy during one hour. The contribution of performing pattern p to the energy
production due to repairs is estimated as

Ep = R(T − t)
∑

i∈NC

min{RmainHourit, AipBi
Ni

}. (20)

Notice that this advantage depends on the number of broken down turbines via
the number of hours still needed for corrective task type i to repair turbines.

To determine the advantage with respect to end of horizon penalties, the
planner keeps track of the number of preventive tasks type i that have been
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Algorithm 4 OWFscheduler

Require: shift t to be planned, broken down turbines Yit, vessel plan x, infor-
mation vessel v may sail out Tv
Global: Ni, PPi, Pkv, Cp, Bi and Ht

Update RmainHourit = NiYit −Bi
t−1∑
z=1

qiz, i ∈ NC

Update RmainHourit = NiPPi −Bi
t−1∑
z=1

qiz, i ∈ NP
U = ∅ . U : Set of feasible patterns
for all k, v with xkv > 0 do

if t ∈ Tv then
U = U ∪ Pkv

Determine fitness fp for each pattern p ∈ U according to (19)
Find r = argmaxp∈U fp . Greedy heuristic choice
while fr > 0 and there exist vessels without assigned pattern do

for Chosen pattern r and all tasks i with Air > 0 do
RmainHourit = max{RmainHourit −BiAir, 0}
Remove the used vessel and update U correspondingly
Update fitness fp for each pattern p ∈ U according to (19)
Find r = argmaxp∈U fp . Greedy heuristic choice

return Which vessel is going to perform which pattern next shift t

carried out so far. The planner could aim at distributing the preventive tasks
evenly over the horizon as depicted by the blue line in Figure 1. However, there is
global information on monthly averages of wind speed, based on historic weather
data which translates to the average hourly electricity production averaged of
a month hm. The planner aims at carrying out more tasks in the month where
γm = 1

hm
is high. We assume he aims at having carried out a fraction

ϕm =

∑m
z=1 γz

1
12

∑12
z=1 γz

(21)

of preventive tasks during month m as sketched by the green line in Figure 1.
Let ϕt be the interpolated value for shift t. The planner perceives to be behind
schedule with the performance indicator

Iit = max{0, (1− ϕt)PPi −
⌈
RmainHourit

Ni

⌉
}, i ∈ NP (22)

For the broken down turbines, this indicator could be perceived as the number
of turbines that are still not repaired

Iit =

⌈
RmainHourit

Ni

⌉
, i ∈ NC. (23)
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(15) The perception on potential saving Sp of performing pattern p on the end
of horizon penalties can be taken as

t

T

∑

i∈Γ

AipBi

Ni
IitCPi (24)

such that this valuation increases linearly towards the end of horizon. The
evaluation of the operational cost of a certain vessel plan defined by xkv can
be done by simulating the decision rule in Algorithm 4 over the complete time
horizon for a number of scenarios keeping track of the costs.

Figure 1: Linear and monthly average approaches to guide scheduling preventive tasks

5. Computational illustration

In the MILP model, the lower level operational planning cost provides a
lower bound for the incurred cost due to failures and downtime. By formulating
the operational tasks in a one-shot model, in principle all the scenario is known
beforehand and earlier tasks can be planned based on a priori knowledge of fail-
ures that will occur later, i.e. anticipation is allowed. This makes the planning
in principle cheaper than what is possible in reality. On the other hand, due
to the nature of the variable w̄its, there is a tension in the optimal outcome to
start repairing a failure as soon as possible by a corrective task.
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In this section, we discuss the amount of underestimation for specific realistic
data confronting the optimal MILP outcome of the lower level for scenarios with
the heuristic decision rule defined in Section 4. The model and the heuristic
have been compared for an instance similar to the one published in [6].

The MILP has been implemented for the bi-level model using GAMS in-
terface [1], and solved using the CPLEX solver, setting the optimality gap at
1%.

5.1. A case study

We consider an OWF consisting of 125 turbines. The planning horizon is
one year and the periods represent 12 hour shifts and include a return trip from
the base the vessel is located to the OWF and a bundle of tasks. In practical
terms there are 730 periods. There are three available bases K = {K1,K2,K3}
around the OWF, each of which can accommodate up to 48 technicians and
they are located at 110, 61 and 86 kilometers respectively from the OWF. The
cost of using each of them, for the entire time horizon is Fk = 2, 6 and 7 million
monetary units (mu) respectively.

Four types of vessels are considered: V = {V1, V2, V3, V4}. Each base has
space to allow two vessels of type V1, two of type V2, four of type V3 and one of
type V4. Vessel type V4 is able to accommodate up to 30 technicians, while the
rest has space for only 12. The cost of having a vessel during the whole planning
horizon for vessel types V1, V2, V3 and V4 is, respectively, Gv = 1224, 2500, 750
and 7200 thousand mu. Vessel types V1 and V2 can travel at a speed of 20
knots, while vessel types V3 and V4 can travel at 40 knots. In practical terms
this means that vessel types V1 and V2 require about 5.94, 3.3 and 4.64 hours
to perform a return trip between bases K1, K2 and K3 respectively while vessel
types V3 and V4 require half of that time, allowing more time to perform tasks
in each shift.

There are two preventive task types γ1, γ2 and two corrective task types
γ3, γ4. All vessel types are able to perform all the task types considered, i.e.
Γ = {γ1, γ2, γ3, γ4}. Task type γ4 requires the vessel supporting the operation
to be present at the turbine while the task is performed, whereas task types
γ1, γ2, γ3 can be run in parallel. The vessel drops a group of technicians at each
turbine that is going to be supported during the shift. The time required to
perform task types γ1, γ2, γ3 and γ4 is Ni = 60, 100, 3 and 7.5 hours respectively.
The maximum time per period and turbine that a group of technicians can
support a task type is Bi = 6 hours. Consequently, only tasks of type γ3 can
be performed in a single shift. The penalty cost for not executing a preventive
task type is CPi = 10 million mu. For corrective tasks of type γ3, the cost is
CPγ3 = 50, 000 mu, and for type γ4, the penalty cost rises to CPγ4 = 50, 0000
mu. The patterns for each combination of base and vessel type are generated
following the procedure described in Algorithms 2 and 3.

For our case study, the number of planned preventive tasks is PPγ1 = 125
and PPγ1 = 60. The number of corrective task types corresponds to the number
of failures of the turbines and depends on the scenario. A scenario consists of
the events of the failures of the turbines and the weather conditions for every
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period. Failures that require corrective task types γ3 and γ4 follow a binomial
distribution. The rate of failures for a corrective task of type γ3 is 5 times per
turbine per year, and 3 times per turbine a year for failures that require a task
of type γ4. Weather conditions are taken from historical weather data. For each
scenario, a report file containing a year of wind speed and wave height data of
the OWF area is picked.

5.2. Discussion of results

Table 2: Associated costs for the MILP optimal solution and the heuristic in thousands
mu for vessel plans X1 and X2. The columns represent the total costs (Total), pattern costs
(Pattern), preventive downtime costs (P.D.), corrective downtime costs (C.D.), the operational
costs (Operational) as a sum of pattern P.D. and C.D. costs and the tactical costs (Tactical),
as the costs of chartering vessels and using the bases selected.

Total Pattern P. D. C. D. Operational Tactical
MILP X1 10986 5060 1118 558 6736 4250
MILP X2 11472 5127 1028 315 6470 5000

HEUR. X1 13402 5346 2296 1510 9152 4250
HEUR. X2 12959 5436 1235 1288 7959 5000

For comparing the performance of the heuristic for the operational stage with
the optimal solution of the MILP problem, two vessel plans are considered. The
first one is the optimal solution for the MILP, (X1), which consists of using
three vessels of type V3 from base K1. The second vessel plan (X2) consists of
a more expensive plan using four vessels of type V3 from base K1 in order to
provide more slack for the operational planning.

A set of 20 scenarios of weather data and failures has been generated. For
each scenario, the heuristic has been run and the MILP problem has been solved
for vessel plans (X1) and (X2). Table 2 presents the average value of the 20
scenarios for the total cost, executing patterns cost, preventive and corrective
downtime costs and operational stage costs for vessel plans X1 and X2, running
the heuristic and solving the MILP problem. Preventive and corrective penalty
costs are not included in Table 2, since they result to be zero for the generated
scenarios.

The MILP a priori information solution for X1 has a total cost of nearly 11
million mu, while the heuristic for X1 has a cost of 13.4 million mu. Considering
only the costs of the operational stage, the MILP a priori information solution is
6.73 million mu, while the heuristic reaches 9.15 million mu. Downtime costs for
corrective tasks is about 2.7 times higher than the MILP cost. For preventive
tasks the cost doubles that of the MILP solutions. This shows that the heuristic
does not perform well for X1 with the optimal MILP a priori information setting.
In a real setting, when failures and weather conditions are not known in advance,
that tactical plan might not be optimal, as the evaluation of the relaxed vessel
plan X2 shows.

For X2, the deviation between the two solutions is quite different. The
MILP a priori information solution for the operational stage is 6.47 million mu,
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reducing only slightly the costs of X1. However, the heuristic reduces that cost
to 7.95 million mu, and this reduction comes mostly by handling preventive
tasks much better, reducing the cost by half compared to vessel plan X1. It
can be observed that the downtime cost for corrective tasks, incurred by broken
down turbines until they are repaired, is the only cost significantly higher for the
heuristic compared to the MILP solution costs, for both plans X1 and X2. This
can be explained considering that the MILP model has a priori information
for when the failures occur for all the periods of the problem, being able to
anticipate corrective tasks early in time. In contrast, the cost of performing the
patterns, which constitutes the major cost of operating the OWF and is not
related with uncertain events, is only 6% above the one provided by the MILP.
So for the heuristic simulating the situation when no a priori information is
available, the relaxed vessel plan X2 is optimal, despite the higher tactical cost.
This means, what an a priori MILP solution does not show is that using more
investment in additional material, may in practice work out better due to the
ability to react on uncertain events.

6. Conclusion

Models in the literature on selecting an optimal vessel fleet composition for
operations and maintenance tasks at OWFs during a planning horizon typically
follow a deterministic approach using a priori information. The models are
confronted with weather conditions and turbine failures. Weather conditions
may prevent vessels sailing and execute tasks at the OWF, while turbine failures
result in new corrective maintenance tasks. However, weather conditions and
failures are unknown in practice. Therefore, a deterministic approach using
a priori information to find the optimal solution for the operational stage only
provides a lower bound on the maintenance costs in the operational stage. In the
current paper, a MILP model for the fleet composition using a priori information
is presented. The question is: What are the costs if the scheduler applies a
heuristic rule based on the information available in practice? This means, the
heuristic is not based on a priori information, only having knowledge of weather
and failure events at the beginning of each shift. The results show that the
heuristic performs well when the tactical vessel plans include enough vessels
to cover the demand of O&M tasks at the OWF and allows for slack in the
scheduling compared to the optimal MILP solution. Although the performance
costs of the heuristic for the chosen scheduling are only 6% above the optimal
lower bound, for the corrective tasks, where (stochastic) failures have to be
repaired, the cost is about four times higher than that given by the MILP. This
illustrates the effect of anticipation in an a priori information situation. The
value of evaluating the fleet composition in a realistic setting is that probably
the best vessel plan contains more vessels in practice than that predicted by
an a priori information model, as the additional investment facilitates recourse
actions on random events.
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