
Transformations for array
programming

Ole Jørgen Abusdal

Master Thesis
April 4, 2020

Department of Informatics

University of Bergen

Supervisors
Magne Haveraaen

Jakko Jarvi

Abstract

We present transformations and the domain of array programming, different
takes, the specification of identities for array programming and how such
identities can enable a transformation based approach to array programming.

Acknowledgements

To the people of the PUT research group whose helpful advice, discussions
and positive spirit have been crucial and my parents for their support through
this time.

eX3

This thesis has benefited from the Experimental Infrastructure for Explo-
ration of Exascale Computing (eX3), which is financially supported by the
Research Council of Norway under contract 270053.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Summary . 4
1.2 Outline . 4

2 Transformations 6
2.1 C++ metaprogramming . 6
2.2 Beyond the programmer’s reach? 8

2.2.1 Haskell rewrite rules 12
2.3 Summary . 15

3 Arrays 16
3.1 Introduction . 16
3.2 Index spaces . 17
3.3 Arrays in C . 18
3.4 Arrays in Fortran . 24
3.5 layout and performance . 26
3.6 Strides . 30
3.7 Selecting orderings . 32

3.7.1 Ordering selection example 33
3.8 Summary and insights . 33

3.8.1 Relating gamma and strides 35
3.8.2 Sections of an array . 36

3.8.2.1 Sections and permutations 37

4 A Mathemathics of Arrays 38
4.1 Introduction . 38
4.2 Preliminaries: Vectors . 39

4.2.1 Vector operations: Iota, Take, Drop and Concatenation 40
4.3 MOA fundamentals . 41
4.4 Defining operations . 45

4.4.1 Psi - Array selection 46
4.4.1.1 Resulting shape 46
4.4.1.2 Selected array 46
4.4.1.3 As a partial right monoid action 47

4.4.2 Ravel - flattening . 47
4.4.3 Gamma and change of layout 49
4.4.4 The Psi correspondence theorem 50
4.4.5 Reshaping arrays . 51

4.4.5.1 Reshaping arrays 52
4.4.5.2 Reshaping by cases 53
4.4.5.3 Reshaping to insert one 54

4.4.6 Extending take, drop and concatenate to arrays 57
4.4.6.1 Take . 57
4.4.6.2 Drop . 57
4.4.6.3 Concatenate 58

4.4.7 Rotation . 58
4.4.7.1 Rotation example 59

4.4.8 The point-wise and scalar extension 59
4.4.9 Reduction and scan . 60

4.5 On evaluation of expressions 62
4.6 Summary and related work . 62

5 Modeling A Mathemathics of Arrays in Magnolia 64
5.1 Introduction . 64
5.2 Fundamentals . 64
5.3 Building our building blocks 67
5.4 Indices and shapes . 72
5.5 MOA in Magnolia . 76
5.6 Summary . 81

6 Other array abstractions and libraries 82
6.1 introduction . 82
6.2 Petalisp and array operations 83

6.2.1 The primitives of Petalisp 83
6.2.2 Matrix multiplication in Petalisp 90

6.2.3 Abstraction gains . 92
6.3 Lift . 93

6.3.1 The primitives of Lift 94
6.3.2 Rewriting in Lift . 97
6.3.3 Lift choices . 99

6.4 The need for array abstractions 99

7 A Mathemathics of Arrays applied 101

8 A Mathemathics of Arrays evaluated 114
8.1 introduction . 114
8.2 The original implementation 114
8.3 A first look at applying MOA 120
8.4 Further optimizations . 122
8.5 Final optimizations . 124
8.6 Benchmarking results . 127
8.7 Introducing data redundancy 128
8.8 Multithreading and dimension lifting 130

8.8.1 Dimension lifting on the first dimension 131
8.8.2 Dimension lifting on the last dimension 133
8.8.3 Dimension lifting on all dimensions 134
8.8.4 Benchmarking dimension lifting 135

8.9 Summary . 136

9 Conclusion 138

Appendices 140

A C++ examples 141

B C examples 143

C The affine-linear mapping 149

D Subranges 151

E An unconventional modulo 152

F An unpublished paper on padding and dimension lifting 153

Glossary 166

CHAPTER 1

Introduction

1.1 Background

In typed programming languages a declaration of types and operations on
those types can be regarded as a specification. This degree of specification can
be found in the C programming language. For instance the library function
memcpy whose prototype can be found in the C standard library header
string .h as

void ∗memcpy(void ∗dest , const void ∗ src , s i z e t n) ;

one finds that the more important pieces of information are not conveyed
through the function prototype, but its documentation. A precondition for
calling the function with well defined behavior is that the pointers must not
be null, invalid or point to overlapping memory segments. The documen-
tation is paramount in understanding the effects of calling the function and
what the return value is in relation to its parameters.

Certain languages and libraries incorporate some form of specification to
describe relationships between types and operations. When the language ad-
mits certain properties such as referential transperacy it becomes particularly
easy to reason about it algebraicly. An expression is referred to as referen-
tially transparent if it can be replaced by its corresponding value without

1

changing the meaning of the program. Clearly not the case for memcpy

although we know the value it would return on a successful call is the desti-
nation pointer.

The subset of C that deals with certain arithmethic expressions can be con-
sidered referentially transparent, given that we remain within the bounds of
the arithmethic type(i.e. we do not cause undefined behavior). We could
adopt the point of view that when we write arithmetical expressions in C we
only ever express our intentions. A compiler then translates our intentions to
some machine instructions realizing them that may however very well entirely
reorder our arithmetic expressions according to the usual rules of arithmetic
should it prove better by some measure. Indeed compiling a snippet of integer
arithmetic in C and looking at the relevant assembly output shows this to us:
We see the compiler has chosen the rewrite (a ∗ b) + (a ∗ c) = a ∗ (b+ c) as we

int d i s t r i b u t i v e
(int a , int b , int c)
{

return a∗b+a∗c ;
}

d i s t r i b u t i v e :
lea eax , [rdx+rs i]
imul eax , edi
ret

can only discern one multiplication in the assembly code. Note that the same
does not hold true for floating point arithmetic unless special permission is
given to apply transformations that may lead to a loss of accuracy. There is

f loat n o n d i s t r i b u t i v e
(f loat a , f loat b , f loat c)
{

return a∗b+a∗c ;
}

n o n d i s t r i b u t i v e :
mulss xmm1, xmm0
mulss xmm0, xmm2
addss xmm0, xmm1
ret

some implicit algebra, usually conveyed through a language standard, which
the compiler takes advantage of and subjects code to value preserving trans-
formations on the basis of identities present in the algebra.

With algebraic specification libraries can be empowered with the possibility
of the very same abilities. Perhaps implicit algebras can be moved from
compilers to explicit algebras in libraries?

In a language where libraries can also encode relationships between types and
between operations such that code can be transformed according to these re-
lationships we may avoid the careful deliberation needed in using libraries;

2

instead of crafting optimal combinations of operations often resulting in ar-
cane code, we can write idiomatic code and rest assured that we will still get
optimal code. A consideration that can often make expressions diverge quite
a lot from what we would typically find in the domain we’re modeling is how
certain chains of operations incur an overhead of temporary data structures
from intermediary results that could be eliminated if the operations were
combined.

Relying on transformations, for which a first step is the ability to specify
relationships, we could avoid expressing computations in terms of implemen-
tation minutia for efficiency reasons and move towards expressing computa-
tions as commonly done in various domains. We can summarize the benefits
transformations could yield as:

• Separation of concerns: Transformations can be captured as general
rules or specializations in a library and do not need to proliferate and
thereby obfuscate the intent of code everywhere. Repeatedly trans-
forming certain patterns by hand should be considered a violation of
Don’t Repeat Yourself (DRY).

• Domain knowledge: Many domains are rich with identities that can be
used to direct program transformations and optimizations. By captur-
ing algebras and identities in a suited manner for transformations we
can take advantage of domain knowledge.

From a software engineering perspective the former is of great benefit, al-
though we will mostly explore the latter. As programmers we typically con-
sider the whole of formalisms exposed by a library to be an Application Pro-
gramming Interface (API). An API is our vocabulary as programmers when
attempting to express something in terms of what an API models. Bare
specifications in APIs just involve types and operations along with docume-
nation. Indeed documentation is often a part of specification; we attempt to
convey in natural language properties of the API that may not be possible
to convey within the programming language itself.

Gradually parts of what can been considered informal documentation has
made its way into the languages proper in some formal form. A type of
specification applied to APIs are pre/post-conditions; for example that a
stack must not be empty when attempting to pop an item off the stack and
that a stack is not empty after pushing an item onto the stack. The use
of pre/post-conditions in specification can be found in SPARK/ADA and is
possibly making its way into C++ [19]. The possibility of specifying such
properties in the language such that it can aid the compiler in verifying code

3

correctness is a step up from attempting to manually abide by contracts
presented in documentation.

In contrast to pre/post-condition specification that typically deals with pro-
gram state pre/post-call of some operation, algebraic specification deals with
the relationships between different operations in an API [3].

1.1.1 Summary

Specification is a part of languages and libraries in different forms. For in-
stance usually when we ask a compiler to compile and optimize a program
containing integer arithmetic it often does so following an implicitly specified
algebra; the usual rules of arithmetic algebra. This algebra may be entirely
defined or at least referenced in the language specification. For instance in
the case of Java the language specification for additive operations on nu-
meric types [26] properties such as commutativty, associativity and overlfow
semantics for signed integers types is specified.

Certain programming languages such as Magnolia [14] go a step further and
enable one to specify explicit algebras with its concept language construct,
making intended algebras a part of the language proper.

1.2 Outline

This thesis is a treatment of a transformation based approach to array pro-
gramming with some emphasis on the use of Magnolia, a language developed
at BLDL, for specification. We may at times take a less formal and discus-
sion based approach to conveying the material. The thesis is structured as
follows:

1. Introduction: We have roughly presented the domain and shown that
the use of axioms and transformations in programming is already present
in the form of compiler optimizations for builtin types.

2. Transformations: We discuss different approaches to transformations;
metaprogramming and rewriting systems.

3. Arrays: We cover the basic array primitives typically available in lan-
guages such as C and Fortran their layout in memory. Here we start
building a vocabulary of arrays.

4. A mathematics of arrays: We describe parts of a rich formalism for
arrays and operations on arrays which abstracts away memory layout

4

yet accomodates the ability to select memory layouts.

5. Modeling a mathematics of arrays in Magnolia: We model the Mathe-
matics of Arrays in a limited subset of Magnolia.

6. Other array abstractions and libraries: We present two different takes
on arrays from two different frameworks; Petalisp and Lift.

7. A Mathemathics of Arrays applied: For “6th ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array
Programming” we have presented a treatment of applying a mathe-
matics of arrays to an array programming problem in our submission
“Finite difference methods fengshui: alignment through a mathematics
of arrays.”.

8. A Mathemathics of Arrays evaluated: We evaluate implementations
generated from our application of a mathematics of arrays in “Finite
difference methods fengshui: alignment through a mathematics of ar-
rays.”.

9. Conclusion: We summarize our contributions and results.

5

CHAPTER 2

Transformations

2.1 C++ metaprogramming

An example of a well treaded field is writing a linear algebra library where
we wish to express d=add(add(a,b),c)

typically with add being some infix operator so as to match the usual syn-
tactic convention, where variables a,b,c name vectors. Modeling the domain
like that could be considered a direct implementation. Evaluation order in
nested functions in C++ are implementation defined or unspecified. However
consider that the compiler generates code equivalent to the order determined
by:

t = add (a , b) ;
d = add (t , c) ;

yielding one temporary t. Naturally one might depart from expressing this
as a chain of calls and simply have function add3 such that d = add3(a,b,c)

where add3 is defined as

Vector add3 (const Vector &a , const Vector &b ,
const Vector &c) {
Vector tmp(a . s i z e ()) ;
for (int i = 0 ; i < tmp . s i z e () ; i++) {

6

tmp [i] = a [i]+b [i]+c [i] ;
}
return tmp ;

}

eliminating the temporary t but departing from the nice close match to the
domain’s usual syntactic conventions the direct approach yields. What we
wish is to keep something syntactically close to d=a+b+c and to have this
transform into a call to add3.

Such optimizations are present in the C++ linear algebra library Eigen[13]
which exploits an idiom in C++ called Expression Template (ET)s. This
idiom is a form of Template Metaprogramming (TMP) where one builds
intermediary expressions at compile time that upon complete template in-
stantiation results in a different evaluation of an expression than the usual
semantics of C++ would permit for a direct implementation. In particular
implementing the aforementioned vector addition example directly in C++
would yield temporaries, whereas the ET approach results in exactly one
looping construct as in add3 while keeping the syntactic nicety of the direct
implementation. A minimal example of ETs used in this manner can be
found in A.1

In the case of C++ reaching a form closer to add3 from the double looping
construct and temporary resulting from add(add(a,b),c) can be important for
other reasons than reducing loop predicate overhead or eliminating tempo-
raries as the form will be recognized by the compiler and be subject to an
optimization called vectorization.

In brief, vectorization when mentioned in regard to C++ compiler optimiza-
tions, means transforming a C++ looping construct over arrays such as:

for (i =0; i<N; i++)
c [i] = a [i]+b [i] ;

into something in C++ akin to:

for (i =0; i<N; i+=chunks ize)
c [i] = a [i]+b [i] ;
c [i +1] = a [i +1]+b [i +1] ;

...
c [i+chunksize −1] = a [i+chunksize−1]+b [i+chunksize −1] ;

where what is several statements in the loop is expressing one operation that
loads several array elements, one that sums them and one that stores the

7

result. For the x86 family of Instuction Set Architecture (ISA)s many pro-
vide Single Instruction Multiple Data (SIMD) instructions that realize such
operations. Many compilers do not just use such instructions internally but
expose them as platform dependent compiler intrinsics or builtins, presented
to the programmer as if they were library functions.

The example optimization we presented, only scratches the surface of what is
possible. In fact a notion of “smart” ET was presented in [9] along with the
promise that they “truly allow for a combination of high performance code
with the elegance and maintainability of a domain-specific language”[9, p.
C42]. The additional techniques that earn these ETs the qualifier of smart
is among others that they facilitate SIMD vectorization, fixed size optimiza-
tions, unrolling and blocking techniques relating to cache size optimizations.
The considerations for the latter is a vast field [4]. A useful simplification or
mental model is that one should attempt to arrange memory access patterns
in close proximity to reduce cache misses; all loads and stores are not created
equal. Access to memory present in cache is an order of magnitude faster
than access to memory that must be fetched from the main memory.

Typically we hope to stay within the confines of a language for portability,
meaning adhering to a language standard such as say C++17, while pre-
senting the compiler with constructs that are sure to be recognized and be
amenable to special optimizations(such as e.g. vectorization) when possible.
On the other hand this can lead to tediously hand-optimized and complex
expressions that are difficult and time consuming to grasp the meaning of
as they are far removed from idiomatic expressions in the domain. As such
the pursuit of closely matching or capturing an algebra of a domain is both
a matter of maintainability with respect to the domain and to be able to
embed knowledge of various relations that may hold which can give rise to
automatically deduced optimizations.

2.2 Beyond the programmer’s reach?

Certain optimizations end up hard coded into the compiler and not within
reach for the programmer. An example in Java can be found in The Java Lan-
guage Specification: 15.18.1. String Concatenation Operator + stating[25]:

...An implementation may choose to perform conversion and con-
catenation in one step to avoid creating and then discarding an in-
termediate String object. To increase the performance of repeated
string concatenation, a Java compiler may use the StringBuffer

8

class or a similar technique to reduce the number of intermediate
String objects that are created by evaluation of an expression...

What this amounts to in practice is that the compiler upon seeing String
concatenations, such as for example s1+s2+s3+s4, will avoid producing tem-
poraries by instead copying the String objects’ contents to a buffer and then
upon completion construct a String object with the buffer content. A use-
ful optimization, but the programmer has no easy way of providing such an
optimization for their own types.

Let us revise some relevant Java details to write out an example. A String
in Java is an immutable object or a value object(has value semantics) encap-
sulating an array of characters. The expression s1+s2 where s1 and s2 are
Strings will produce a new String such that it contains an array of characters
being the concatenated arrays of characters in s1 and s2. It is implemented
by allocating a new array fitting both character arrays and then writing the
contents of each respectively to it and wrapping it in a String object. Each
additional concatenation will produce an additional temporary allocation.

A StringBuffer is a wrapper object for the concept of an array you can,
among other things, append Strings to the end of. Here, if you allocate a big
enough buffer, it will only allocate once as you append your Strings to it. In
terms of allocation appending to a StringBuffer is an improvement over the
repeated allocation, deallocation and copies that occur with successive String
concatenation. In terms of complexity we are looking at, for a concatenation
sequence of s1 + s2 + ...+ sn, transforming the left pseudocode into the right
pseudocode below: As we see, with Java String semantics, the amount of

in = s1, s2, . . . , sn
t = s1

f o r i = 2 to n do {
t = t+ si

}
out = t

in = s1, s2, . . . , sn
t = empty b u f f e r
f o r i = 1 to n do {
t = si appended to t

}
out = convert t to a s t r i n g

characters copied we will be doing for iteration i is given by the recurrence
copy(i) = length(si) + copy(i− 1) where copy(2) = length(s1) + length(s2).
The entire amount of copies all =

∑n
i=2 copy(i). By a simple counting ar-

gument we note the characters in sn is copied 1 time, sn−1 is copied 2 times
and so on. Fixing the length of the strings to a constant 1 we see we have
O(n2) copies, compared to the copies for appending to a buffer which is
clearly O(n). One might say trivial, but we make this point to illustrate that

9

rewriting can also be a matter of improved complexity perhaps also in cases
where it’s not as obvious such as after other transformations on code.

Of course, and as an aside, there is still the issue that a StringBuffer will in
principle still require a copy of its contents to a String during construction of
a String from it, in spite of the fact that the StringBuffer might not be used
anymore and its content could safely be moved into the String(i.e. making
the String array refer to the StringBuffer array).

Lets try to capture the optimization with some general algebraic properties.
We do this with some informal set theory. One could imagine taking advan-
tage of specifying the simple algebraic structure monoid which can briefly be
summarized as:

Let M be a set and + be a binary operator + : M ×M →M such that:

• + is associative: a+ (b+ c) = (a+ b) + c

• + has an identity element; there exists1 e ∈M such that for any m ∈M
we have m+ e = e+m = m

Clearly strings as we tend to know them from programming along with the
usual concatenation function satisfies being a monoid. For example String
in Java is M and the concatenation function is + which indeed is associative
and has an identity element being the empty String; s+””== ””+s.

We could then extend the monoid structure with an additional set B and
operation ∗ : M ×B → B such that:

• For b ∈ B and m1,m2 ∈M : (m1 +m2) ∗ b = m2 ∗ (m1 ∗ b)
• For all b ∈ B the identity element e ∈M for + satisfies e ∗ b = b

This extension to a monoid is called a right monoid action. In terms of
programming the extra structure captures a useful relationship between ap-
pending strings to a buffer and string concatenation. What we would want,
again in a Java context, is to specify that a String is a monoid(M) and
that along with a StringBuffer(B) and its append(∗) forming a right monoid
action any time we see String concatenations

m1 +m2 + . . .+mn

1from a practical programming perspective asserting the existence of an element satis-
fying something is better replaced with a function picking exactly the element satisfying
something

10

we know of the identity:

(m1 + (m2 + . . .+mn)) ∗ b = (m2 + . . .+mn) ∗ (m1 ∗ b)

and repeated rewrites will yield:

mn ∗ (mn−1 ∗ (. . . ∗ (m2 ∗ (m1 ∗ b))) . . .)

Thus our entire rewrite leaving out intermediate steps is:

(m1 +m2 + . . .+mn) ∗ b = mn ∗ . . . ∗m1 ∗ b

where ∗ is right-associative or groups from the right.

Now any time the compiler sees long chains of String concatenations it should
in principle be able to replace it with appends to a StringBuffer should we
also add an additional function out : B → M corresponding to the toString
method of a StringBuffer and a function to get an empty buffer(a StringBuffer
constructor, producing the empty buffer) b0 ∈ B such that:

• For all m ∈M : out(m ∗ b0) = m

Now carrying on with more information we attempt to apply out on both
sides of our identity, however with b = b0.

(m1 +m2 + . . .+mn) ∗ b0 = mn . . . ∗m1 ∗ b0

and end up with

out((m1 +m2 + . . .+mn) ∗ b0) = out(mn ∗ . . . ∗m1 ∗ b0)

which we can finally rewrite as

m1 +m2 + . . .+mn = out(mn ∗ . . . ∗m1 ∗ b0)

Let’s spell it out: Chains of String concatenations are the same as taking
the Strings in their order, appending them to an empty StringBuffer and
constructing a String from the StringBuffer.

There’s a couple of things to note here before we move on. In principle
only specifying that a String is a monoid and that along with a StringBuffer
with its functions that form a right monoid action as well as the information
to extract the String from a StringBuffer a compiler with a rewrite system
should be able to match and with successive rewrites eventually get from the

11

left side of our concatenation identity to the right. In that case we do not
need to be able to specify identities of varying term lengths.

Ideally we would want a rewrite system to form either our resulting iden-
tity given enough specification and match sides of identities of varying term
lengths or if we want to avoid too much deduction we need enough expres-
sive power to match left-hand sides of identities such as m1 +m2 + . . .+mn

directly.

Transformations such as these should be within reach of the programmer
as opposed to being solely an artifact of the compiler and prescribed as a
possibility by the language standard.

For most primitive types specified by various languages the same situation
presents itself. In particular for most types in languages that implement
some sort of arithmethic, as we have seen, one can expect that the compiler
will attempt to rearrange the order of evaluation of an expression according
to identities such as for example associativity and distributivity.

While achieving the effect of this certainly is possible in C++ through the
use of for instance ETs it is arguably not something that can easily be done
by someone without good command of the language.

2.2.1 Haskell rewrite rules

An example of a language, or rather a language extension, enabling the
programmer to supply rewrite rules to enable domain-specific optimizations
can be found in the Glasgow Haskell Compiler (GHC) and described in [21].

In it a simple example of an optimization opportunity that may arise is one
that results from inlining, meaning replacing a function call with its definition
with variables substituted for call parameters.

Consider that a programmer has written functions widen(B) and shorten(W)

such that the former widens a byte sized value to a word and the latter short-
ens a word sized value to a byte. As a result of inlining calls the expression
shorten(widen(K)) occurs. The programmer has knowledge about the plat-
form that this is value preserving, that is K ≡ shorten(widen(K)). It would
then be useful for the programmer to be able to codify this knowledge and
enable the compiler to perform such a rewrite. With GHC such a trivial rule
can be written as

import Data . Word(Word32 , Word8)

12

{−# RULES ” pre s e r v ing ” f o r a l l k . shor ten (widen k) = k #−}

{−# NOINLINE widen #−}
widen : : Word8 −> Word32
widen b = fromIntegral b

{−# NOINLINE shor ten #−}
shorten : : Word32 −> Word8
shorten w = fromIntegral w

r = shorten (widen 32)

These operate more or less as follows: Match the left-hand-side expression
and replace it with the right-hand-side expression. One specifies a substitu-
tion rather than an equality. Certain restrictions apply to the left-hand-side
expression [21, p. 2]: It must be a function application and the function
cannot be quantified in the rule.

To be certain that the rule is applied we disallow any inlining of widen and
shorten as no match would occur in such cases. The interplay between inlining
and rewrite rules is also expanded on in [2, p.43-44]. There it is noted that
for some expression a+f(b) inlining or Partial Evaluation (PE) may result in
f(b) being transformed to 0. In that case an identity element rule on monoids
might be applicable for a+0 and thus remove an addition. However inlining
on + should it be for instance vector addition might result in either a lost
opportunity to apply such a rule or having to apply it in the vector addition
loop and then there would be further steps needed to realize the loop does
nothing and can be removed. This serves as an important example of that
the order of transformations matter.

Although a powerful facility in GHC the rewrite system is not without its
perils, as mentioned in [21, p. 2] and [5]. It is worthwhile to reiterate some
of them here:

• The obvious one is that the onus of proof that the rewrite rule expresses
an identity, i.e. if t → t′ then t = t′, and thus that the program still
expresses the same computation after applying the rewrite rule lies
with the programmer. Should there be a mismatch either the program
is wrong, that is it doesn’t match the programmer’s actual intentions,
or the rewrite rule is wrong.

• The more subtle issues lay with a programmer’s understanding of equal-
ity and the need to preserve equality, that is if a = b then f(a) = f(b).

13

Consider modeling a set with a list and implementing set union as
the concatenation of lists and removal of duplicates. Should the pro-
grammer leak access to the representation of the set in some manner,
let us say through asList(S) which simply gives you the underlying
list implementing the set. Consider then that even though for a set
the union operation is commutative very clearly we have the situation
asList(union(A,B)) 6≡ asList(union(B,A)). So asList(S) did not preserve
equality due to being able to make the set abstraction leak its repre-
sentation. A solution is to specify a fixed ordering for asList(S) such
that the order of the representation of the set S never leaks.

• Rules are matched and substitutions performed without any regard
as to whether the righthand side expression really is better by any
measure than the lefthand side expression. Again a consideration for
the programmer.

• If several rules match then an arbitrary of these will be selected to have
its substitution performed.

• It is the responsibility of the programmer that the set of rules provided
are confluent or terminating.

The last issues requires further explanation.

• That a set of rules R are confluent means that for ri ∈ R if there are

different rewrite chains t1
ri−→ . . .

rj−→ t and t1
rx−→ . . .

ry−→ t′ where no
further rewrites can be applied to t or t′ then t = t′

• That a set of rules R are terminating means that there are no infinite
rewrite chains t1

r1−→ t2
r2−→ . . .

It is easy to write a rule that will not be terminating in GHC, which is also
presented in [21, p. 2]. Consider attemping to add the commutative property
of addition:

{−# RULES ”commutative” f o r a l l x y . add x y = add y x #−}

add : : Int −> Int −> Int
add x y = x+y

sum = add 2 8
. . .

This ensures that there is always a rewrite possible and thus the compiler
will be stuck rewriting infinitely when it encounters add 2 8.

14

In regards to confluence and termination Peyton Jones, Tolmach, and Hoare
[21, p. 2] notes that there is considerable literature on proving confluence or
termination of sets of rewrite rules. In particular citing [1] as a considerable
investigation into rewrite rules involving associativity and commutativity.
However due to complications stemming from from other rewrites GHC may
perform(such as inlining) the literature was not directly applicable for the
rewrite system implemented in GHC.

A more pragmatic solution to dealing with confluence and termination may
be restrictions in the form of rewrite strategies as mentioned in “Constructs
& Concepts: Language Design for Flexibility and Reliability” [2, p.42-45].
These for example limit the scope of where a rule may apply.

2.3 Summary

We have surveyed two approaches to transformations in practical use today.
The C++ ET way of creating abstract expressions that are mapped to per-
formant realizations of what they express. Extensions to Haskell that allow
one to specify simple identities and rewrites directly on any Haskell expres-
sion. Both approaches are manners in which to achieve the same end of being
able to write self-optimizing libraries, but require careful considerations to
be made by the programmer; implementing well made ET in C++ requires
expert level C++ proficiency whereas care must be had in Haskell to not
make non-terminating rewrite rules. We are of the opinion that neither tech-
nique is suited for a domain expert to codify their knowledge without also
having a substantial understanding of either technique.

15

CHAPTER 3

Arrays

3.1 Introduction

Array abstractions come in the form of direct language support or in the
form of library support. We will survey some libraries and more involved
array abstractions in another chapter, but first it is pertinent to take a look
at what two languages offer us directly.

A common notion for the many different variations of an array type is that
it can be indexed through an index space I, that is there is an associated
indexing function get : I → T for the array where T is whatever type the
array stores. Typically what is commonly provided by a language or is other-
wise immediately implementable is a function taking one-dimensional indices
get : I1 → T and then multidimensional indexing is realized through a func-
tion flat : In → I1 and composition, i.e. get(flat(i0, . . . , in−1)). The index
space is succintly declared in some manner so let us adopt some notation to
describe it.

16

3.2 Index spaces

Any index space I has a dimensionality, denoted dim(I), that is a positive
integer such that I ⊆ Z× . . .× Z = Zdim(I). Sometimes we will indicate the
dimensionality of the index space I with a superscripted In denoting that
dim(I) = n. Let lower(I) and upper(I) be two dim(I) = n tuples such that:

lower(I) = 〈l0, l1, . . . , ln−1〉 and upper(I) = 〈u0, u1, . . . , un−1〉

indicating a lower bound and an upper bound for the index space I in the
following manner:

I = {〈i0, i1, . . . , in−1〉 | ∀k : lk ≤ ik ≤ uk}

The index components ik themselves will for simplicity’s sake be taken to be
non-negative integers, i.e. ik ∈ {n ∈ Z | n ≥ 0}. They are also subject to
the following constraint:

ik ∈ {lk + j | 0 ≤ j ≤ uk − lk}

We can consider counting valid index components, that is:

ik ∈ {lk + 0︸ ︷︷ ︸
1

, lk + 1︸ ︷︷ ︸
2

, . . . , lk + (uk − lk)︸ ︷︷ ︸
sk

}

from which we can clearly discern1 the relationship that the number of index
components is related to the bounds as follows sk = uk−lk+1 or equivalently
uk = lk + sk − 1 and lk = uk − sk + 1.

An index space can also be entirely described by the concept of a shape, a
concept we first became aware of from “A Mathematics of Arrays” [15], and
a lower bound. A shape for an index space is a tuple:

shape(I) = 〈s0, s1, . . . , sn−1〉

such that sk = uk − lk + 1 and are the number of valid ik components of
indices. An index space is completely determined by its shape and lower
bound as the upper bound is completely determined by uk = lk + sk − 1.

The size of the index space is given by:

size(I) =
∏

shape(I) = s0s1 · · · sn−1

1we skip induction for this trivial matter

17

3.3 Arrays in C

Let us begin by looking at C’s support for multidimensional arrays. One
declares arrays in C as int array[s]; and arrays of “several dimensions” as
int array[s0][s1]· · ·[sn−1];. The first being an array size s of int and the second
being an array size s0 of array size s1 of . . . of array size sn−1 of int. Indexing
arrays in an indexing expression is done by supplying an index array[i] or
for arrays of “several dimensions” array[i0][i1]· · ·[in−1].

Arrays In C declared as shown can be considered to have an index space of
In such that:

shape(In) = 〈s0, s1, . . . , sn−1〉
upper(In) = 〈s0 − 1, . . . , sn−1 − 1〉

lower(In) = 〈0, . . . , 0〉

Strictly speaking this is not entirely correct, which is why we must emphasize
it is only a useful consideration. The correct interpretation is that arrays in
C only take indices of one dimension which is a[i]. Indexing with what may
appear to be indices of several dimensions such as a[i0][i1]· · ·[id−1] is simply
(. . .((a[i0])[i1])· · ·)[id−1]. That is we are indexing into the array a at index
i0 and then indexing into that array at index i1 and so on until we are
indexing into an array at index id−1 as opposed to indexing directly into a

with 〈i0, i1, . . . , id−1〉. In either case we have the same amount of ways to
supply a complete index to an element, so we consider the repeated indexing
as a single bigger index space.

The C11 standard [11, p35 6.2.5 Types: 20] states that arrays describe a
contiguously allocated memory region. That means the memory layout for
arrays are laid out contigously or in other words they have a flat layout. So for
any array with some index space In there must exist a function flat : In → I1.

Let us create an example of two arrays in C and inspect how the compiler
lays them out and treats indexing. We have two read only arrays: three of
three dimensions and of size 8 and one of one dimension and of size 8.

const int three [2] [2] [2] =
{ { {1 ,2} ,{3 ,4} } , { {5 ,6} ,{7 ,8} } } ;
const int one [8] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;

In case the initialization of three is unfamiliar lets review that. The first
(braced) list has lists. These lists correspond to the leftmost dimension.

18

Then either of these have lists which correspond to the middle dimension.
Then within these again we have a list for which the elements correspond to
the rightmost dimension. We also create a function indexing that compares
the two arrays for some indexing over both arrays.

int index ing () {
i f (
three [0] [0] [0] == one [0] &&
three [0] [0] [1] == one [1] &&
three [0] [1] [0] == one [2] &&
three [0] [1] [1] == one [3] &&
three [1] [0] [0] == one [4] &&
three [1] [0] [1] == one [5] &&
three [1] [1] [0] == one [6] &&
three [1] [1] [1] == one [7])
return 5 ;

return 10 ;
}

and compile with all optimizations enabled, and inspect the assembly output.

index ing :
mov eax , 5
ret

one :
. l o n g 1
. l o n g 2
. l o n g 3
. l o n g 4
. l o n g 5
. l o n g 6
. l o n g 7
. l o n g 8

three :
. l o n g 1
. l o n g 2
. l o n g 3
. l o n g 4
. l o n g 5
. l o n g 6
. l o n g 7
. l o n g 8

19

Notice that the compiler has entirely removed any actual access to the arrays
for the indexing we perform in the function indexing. Indeed it knows the
result will be 5. This indeed also shows us what flat must be:

flat = {〈0, 0, 0〉 7→ 0, 〈0, 0, 1〉 7→ 1, . . . , 〈1, 1, 1〉 7→ 7}

In general in C the layout for some “multidimensional array” a is determined
by the ordering which can be inferred by the array type. That is for a
declaration of a[s0][s1]. . .[sd−1] we have an array sized s0 of array sized s1 and
so on until array of size sd−1 of some type. We can consider this arrangement
of arrays within arrays as a tree structure where indexing corresponds to a
traversal in the tree.

From the root, at level 0, we have s0 child nodes to travel to, then from each
of those s1 child nodes to travel to at level 1 and so on until we for practical
reasons say we have 1 at level d− 1 (e.g. staying where we are). We have a
tree of d levels with branching factor si at level i < d− 1 as seen in 3.1

Figure 3.1: array indexing as tree traversal

a

0

0

...

0

0 · · · sd−1 − 1

· · · s1 − 1

...
· · · ...

· · · s0 − 1

0

...
· · · ...

· · · s1 − 1

...

sd−2 − 1

0 · · · sd−1 − 1

L

0

1

2

...

d− 2

d− 1

An indexing a[i0][i1]· · ·[id−1] represents a traversal in the tree view of the
array declared as a[s0][s1]· · ·[sd−1]. With this view each leaf is an element in
the array and an index 〈i0, i1, . . . , id−1〉 corresponds to a traveral in the tree
starting at the root and making the choice of going to the node determined
by i0 (a[i0]) and then going to node determined by i1 (a[i0][i1]) and so
on until we end up in the leaf node determined by id−1 where the element
a[i0][i1]· · ·[id−1] is.

20

Imagine that we first traverse the entire tree depth first by order at level
i of child 0, 1, . . . , si − 1 and for each leaf node we mark it with a number
corresponding to amount of leaf nodes seen so far in the traversal. That
would give the leaves a marking of 0 to s0s1 · · · sd−1− 1. Given any traversal
〈i0, i1, . . . , id−1〉 we would then reach such a marking i in a leaf and this traver-
sal can be seen as retrieving the mapping 〈i0, i1, . . . , id−1〉 7→ i. Constructing
i from 〈i0, i1, . . . , id−1〉 alone is possible by the property that i corresponds to
the number of leaves visited in the depth first traversal such that the paths
to them 〈j0, . . . , jd−1〉 were such that jk < ik for 0 ≤ k ≤ d− 1. We refer to
such paths as under exclusions of 〈i0, i1, . . . , id−1〉.
For any node at level i let l(i) denote the number of leaves reachable from
it. For a node at leaf level, i.e. i = d − 1 we have l(d − 1) = 1 and for any
other node at level i < d − 1 we have l(i) = sil(i + 1); the branching factor
at level i times the number of nodes at the level any of those branches lead
to. The latter assumes a full tree at any internal node and there is always a
full tree rooted at an internal node as all leaves reachable from an internal
node are at the same level. Clearly if some internal node is at level i in the
tree then l(i) = sisi+1 · · · sd−1. Consider a path 〈i0, i1, . . . , id−1〉 into the tree.
For each ik from k = 0 to k = d − 1 we traverse from the node we are in,
starting at the root, to a child determined by ik. Given that we have made
a choice ik we have gone from a node at level k in the tree to a node at level
k+1. The under exclusions made for the choice ik can be counted by finding
the number of leaves reachable from the choices we didn’t make that are
under ik. There are ik such choices, that is we could have made the choices
0, . . . , ik − 1, and each of those are at level k + 1. That means counting the
under exclusions caused by choosing ik is ikl(k+1). We then see for an entire
traversal 〈i0, i1, . . . , id−1〉 counting the under exclusions is the sum:

flat(i0, . . . , id−1)
d−1∑
k=0

ikl(k + 1)

where l(k) is defined as:

l(k) = sksk+1 · · · sd−1

We now have a mapping 〈i0, . . . , id−1〉 7→ i and we can by simple arguments
verify that the mapping is both injective and surjective and thus a bijection.
Given two paths 〈i0, . . . , id−1〉 and 〈j0, . . . , jd−1〉 differing in one or more com-
ponents. Can they be mapped to the same i? No, this would imply there are
two different paths to a leaf in the tree view of the traversal. By construction
we know every leaf has a path to it in the tree. The amount of leaves in the

21

tree is l(0) = s0s1 · · · sd−1. Thus for every i ∈ {0, . . . , l(0)− 1} there exists a
path 〈i0, . . . , id−1〉 such that flat(i0, . . . , id−1) = i.

Let us summarize: For an index 〈i0, . . . , id−1〉 bounded by the index space
defined by 〈s0, . . . , sd−1〉 the flattened ordering is defined by:

flat(i0, i1, . . . , id−1) =
d−1∑
k=0

ikl(k + 1)

=
d−1∑
x=0

(ix

d−1∏
y=x+1

sy) = i0s1 · · · sd−1 + · · ·+ id−2sd−1 + id−1

which tends to be rewritten by distributing out the common factors, which
is more succintly described with the reccurence relation.

K0 = i0

Kx = ix + sxKx−1

Such that we can express flat as:

flat(i0, i1, . . . , id−1) = Kd−1 (3.1)

= id−1 + sd−1(id−2 + sd−2(. . .+ s1i0) . . .) (3.2)

This kind of flattening is called row-major order which groups together in-
dices of equal last index component in the flattened form. That is consider
for 〈s1, s2, s3〉 = 〈5, 4, 3〉 we have flat(2, 1, 3) = 2(4 · 3) + 1(3) + 3 = 30
and flat(2, 1, 4) = 2(4 · 3) + 1(3) + 4 = 31 thus the indices 〈2, 1, 3〉 and
〈2, 1, 4〉 are next to one another in the flattened view whereas flat(3, 1, 3) =
3(4·3)+1(3)+3 = 42 so 〈3, 1, 3〉 is placed 12 away from 〈2, 1, 3〉. A “reversal”
of the computation obtained by re-indexing ix and sx in the definition of flat
by x 7→ d− 1− x to obtain flatr such that we have:

flat(i0, i1, . . . , id−1) = i0s1 · · · sd−1 + · · ·+ id−2sd−1 +id−1

flatr(i0, i1, . . . , id−1) = id−1sd−2 · · · s0 + . . .+ i1s0 +i0

gives us what is called a column-major ordering, which groups together in-
dices of equal first index component(i0) in the flattened form. The simplest
way to think of these two orderings is that row-major ordering is the left-to-
right lexicographical ordering of multidimensional indices whereas column-
major ordering is the right-to-left or colexicographical ordering of multidi-
mensional indices.

22

The naming row-major and column-major ordering is an artifact of how either
“rows” or “columns” of a two-dimensional array are laid out contigously in
a one-dimensional array. If we consider as an example the representation of
a two-dimensional array of 〈i0, i1〉 indices where we consider i0 to indicate
row number and i1 to indicate column number then a row-major ordering of
a 〈3, 3〉 shaped array is given by flat(i0, i1) = i0 · 3 + i1. If we were to iterate
through an array laid out with row-major ordering, the default layout for
arrays of array in C, with the following C code:

int a [3] [3] = { . . . } ;
for (int i 0 =0; i0 <3; i 0++) {

for (int i 1 =0; i1 <3; i 1++) { a [i 0] [i 1] = . . . ; }
}

We would end up with the correspondence seen in figure 3.2 between the “log-
ical” two-dimensional view of the array and its “actual” one-dimensional ma-
chine representation. We are visiting indices in lexicographical ordering, from
least to greatest, that is 〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈1, 1〉, 〈1, 2〉, 〈2, 0〉, 〈2, 1〉, 〈2, 2〉

Figure 3.2: iterating through row-major ordering with column index changing
fastest

0

1

2

0 1 2

0 1 2 3 4 5 6 7 8

If we ordered the access on the row number first and then the column num-
ber, leading to visiting indices in colexicographical order, that is an order of
〈0, 0〉, 〈1, 0〉, 〈2, 0〉, 〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈0, 2〉, 〈1, 2〉, 〈2, 2〉, as in the following C
code:

int a [3] [3] = { . . . } ;
for (int i 1 =0; i1 <3; i 1++) {

for (int i 0 =0; i0 <3; i 0++) { a [i 0] [i 1] = . . . ; }
}

23

We would end up with the correspondence seen in figure 3.3. For the ac-
cess pattern we end up with here with flat(i0, i1) a column-major ordering
flatr(i0, i1) = i1 · 3 + i0 would be a layout that would ensure a linear sweep,
as in 3.2, in the array’s one-dimensional representation.

Figure 3.3: iterating through row-major ordering with row index changing
fastest

0

1

2

0 1 2

0 1 2 3 4 5 6 7 8

3.4 Arrays in Fortran

Let us now turn to Fortran which has traditionally been heavily used in sci-
entific computing, in particular some of its libraries for linear algebra such
as Basic Linear Algebra Subprograms (BLAS)/Linear Algebra Package (LA-
PACK) are said to be some of the most widely used[27, p. 59] scientific
computing libraries.

In Fortran the default index space is different from C. Unless otherwise is
specified then

lower(In) = 〈l0, . . . , lr〉 = 〈1, . . . , 1〉

Arrays in Fortran are truly multidimensional in the sense that multidimen-
sionality is a part of an array’s type whereas in C we only have arrays of one
dimension. Still the underlying memory model on a machine is typically flat
and unless otherwise is specified then column-major ordering is the default
for the underlying memory layout for an array in Fortran.

If we rewrite the C array example in Fortran we will first notice there is no
direct initialization possible for multidimensional arrays. That is we cannot
supply a list structurally matching the layout of the array that will set the
values of the array, except for a one-dimensional array.

For this Fortran supplies the reshape function that will allow us to reinterpret
a flat array as a multidimensional one.

24

function index ing () result (r)
integer : : r
! reshape r e i n t e r p r e t s an array to have a g iven shape
integer , dimension (2 , 2 , 2) : : th ree
three = reshape ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8] , [2 , 2 , 2])
integer , dimension (8) : : one = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]
! & t e l l s the compi ler the s ta tement
! cont inues on the next l i n e
i f (one (1) == three (1 , 1 , 1) .and . &

one (2) == three (2 , 1 , 1) .and . &
one (3) == three (1 , 2 , 1) .and . &
one (4) == three (2 , 2 , 1) .and . &
one (5) == three (1 , 1 , 2) .and . &
one (6) == three (2 , 1 , 2) .and . &
one (7) == three (1 , 2 , 2) .and . &
one (8) == three (2 , 2 , 2)) then

r = 5
else

r = 10
end i f

end function index ing

which then results in the assembly output that has entirely removed any
indexing from the function

i ndex ing :
mov eax , 5
ret

indeed confirming the layout. Arrays in Fortran are different from what
someone coming from a C/C++ background might be used to. As we already
have seen integer, dimension(2,2,2) :: x declares an array of three dimensions
where the index space is I = {〈1, 1, 1〉, . . . , 〈2, 2, 2〉}. Typically the number of
dimensions is called the rank in Fortran. Array declarations are specifying the
shape of an array with its so-called dimension attribute. Fortran allows one
to specify starting and ending index by specifying an extent. A declaration of
a different array integer, dimension(0:1,0:1,0:1) :: y will give the index space
a C/C++ programmer is used to, that is I = {〈0, 0, 0〉, . . . , 〈1, 1, 1〉}, however
the shape of y is the same as for x.

Fortran arrays can be operated on elementwise as we are used to from C or
C++, e.g. x(1,1,1) gets the element in x at 〈1, 1, 1〉. There are also constructs

25

such as sections that allow selecting across an array

integer , dimension (10) : : x
integer , dimension (3) : : y
! i n i t i a l i z e x wi th im p l i c i t do loop
x = (/ (i , i =1 ,10) /)
! i n i t i a l i z e y(1)=x(1)+1 y(2)=x(5)+1 y(3)=x(10)+1
y = x (1 :10 :4)+1
! now y = [2 , 6 , 10]
x (y) = 0
! now x(2)=0 x(6)=0 x(10)=0
! as x i s indexed by y and s e t to 0
! a t each index found in y

which are of the form x(start :stop [: stride]) that represent multiple selections
of indices and as seen where the [: stride] part is optional and if left out
defaults to a stride of one and thus selects a contiguous section of an array.
These can then be combined with operators as seen with y=x(1:10:4)+1. An
equivalent initialization that doesn’t use reshape as in our first example, but
uses sections is:

three (1 : 2 , 1 , 1) = [1 , 2]
th ree (1 : 2 , 2 , 1) = [3 , 4]
th ree (1 : 2 , 1 , 2) = [5 , 6]
th ree (1 : 2 , 2 , 2) = [7 , 8]

We can conclude that the array manipulation primitives in Fortran abstract
operations on arrays and arrays themselves to a much greater extent than
what we are used to from array primitives in languages such as C/C++.

3.5 layout and performance

Access patterns to a multidimensional array are important when the only ab-
straction it really offers is a different view of a flattened array. Let us consider
some language similar to C or Fortran and looping over a multidimensional
array a while reading its values for some computation:

f o r i0 = 0 to s0 − 1 {
f o r i1 = 0 to s1 − 1 {

...
f o r id−1 = 0 to sd−1 − 1 { f(a(i0, i1, . . . , id−1)) }. . .}}

26

For such a looping we could consider {i0 i1 · · · id−1} a shorthand for the
nested loop variables such that the last variable is the fastest changing one
as in the nested for loops. We do not care about the computation, simply the
access pattern into the underlying flat index space. Let us describe it in terms
of Id with a shape shape(Id) = 〈s0, s2, . . . , sd−1〉 and lower(Id) = 〈0, . . . , 0〉.
Let IdRM be the ordering of the index space lexicographically(sorting indices
left-to-right), that is by picking indices 〈i0, i1, . . . , id−1〉 with a loop ordering
of {i0 i1 · · · id−1}, and IdCM be the ordering of the index space colexicograph-
ically(sorting indices right-to-left) that is by picking indices 〈i0, i1, . . . , id−1〉
with a loop ordering of {id−1 id−2 · · · i0}. We are considering the following
two orderings:

IdRM = 〈〈0, . . . , 0〉, 〈0, . . . , 1〉, 〈0, . . . , 2〉, . . . , 〈s0 − 1, . . . , sd−1 − 1〉〉
IdCM = 〈〈0, . . . , 0〉, 〈1, . . . , 0〉, 〈2, . . . , 0〉, . . . , 〈s0 − 1, . . . , sd−1 − 1〉〉

Now let flatview(IdX) be the ordering where flat : Id → I1 has been applied
to every element in an ordering X of Id and equivalently for flatview r(I

d
X)

and flatr : Id → I1. We then have a view of the access pattern we get with
two orderings of multidimensional indices in the flattened index space:

flat(i0, i1, . . . , id−1) = i0s1 · · · sd−1 + · · ·+ id−2sd−1 + id−1

flatview(IdRM) = 〈0, 1, 2, . . . , (s0s1 · · · sd−1 − 1)〉
flatview(IdCM) = 〈0, (1 · s0 . . . sd−1), (2 · s0 . . . sd−1), . . . , (s0s1 · · · sd−1 − 1)〉

For flatview r we have the situation reversed:

flatr(i0, i1, . . . , id−1) = id−1sd−2 · · · s0 + · · ·+ i1s0 + i0

flatview r(I
d
RM) = 〈0, (1 · sd−2 . . . s0), (2 · sd−2 . . . s0), . . . , (s0s1 · · · sd−1 − 1)〉

flatview r(I
d
CM) = 〈0, 1, 2, . . . , s1s2 · · · sd − 1〉

For a row-major ordering IdRM access with flat corresponds to a contiguous
scan through the flat indices as seen in flatview(IdRM). For a column-major
ordering IdCM access with flatr as seen in flatviewr(I

d
CM) corresponds to such

a contiguous scan.

In terms of memory access consider one of the orderings that lead to big
jumps. For example the column-major ordering where we access flat(0, . . . , 0)
and then access flat(1, . . . , 0) which we can see in flatview(IdCM) results in
a read from the index 0 in the array and then the index 1 · s0 . . . sd−1 in
the array. Let’s say we are considering a concrete case of an array of shape

27

Figure 3.4: Memory and cache hierarchies

registers

L1 cache

L2 cache

Core 1

registers

L1 cache

L2 cache

Core n

. . .

L3 cache

Processor

Main memory

〈5000, 5000, 5000〉 storing types of size 8 bytes(i.e. 64 bit words). We read the
first location and then read a location 5000 · 5000 · 8 bytes = 200megabytes
away. This far exceeds most processors cache sizes so we cannot expect that
the next read is in the cache from the reading of the former item. The
machine this thesis was written on has 6 megabytes. At the time of writing
one can expect commodity hardware to have cache sizes in the range of 6-32
megabytes. We will not go into great detail, but it is time to expand on the
costs of memory access.

The way most commodity processors work with respect to memory access is
that they usually have a hierarchy of cache memories that, when the pro-
cessor reads or writes to memory, function as intermediaries. An example
can be seen in figure 3.4 which is a close match to the organization found in
certain processors of x86-64 architecture for which the rest of our discussion
of memory and caching will be directly applicable.

The unit of storage for caches or in other words an entry into a cache is called
a cache line and a common size for a cache line is 64 bytes [10, 11-4 Vol. 3A].
A cache line can be thought of as a replicated faster view of 64 contigous
bytes in main memory. When the processor requests a read from memory
the read is first requested from the cache hierarchy. Either the requested
memory is present in the cache hierarchy and returned, called a cache hit, or
it isn’t and a cache line fill is done. A cache line fill means filling a cache line
with values from main memory and possibly evicting a cache line to make
room for the new cache line. Such an eviction can incur the additional cost
of having to propagate writes made to the to be evicted cache line to main
memory[10, Vol. 3A 11-5].

28

Depending on set write policy(we assume write allocate) when the processor
requests to write to memory the write can first be requested to be done to
the cache hierarchy. Either the requested memory is present in the cache
hierarchy, called a write hit, or it isn’t and a cache line fill is done followed
by a write hit.[10, Vol. 3A 11-5]

An abstract view of cache is as a synchronized and faster view of parts of
main memory where you sometimes pay a synchronization penalty(cache line
fills and propagation of writes). If we request a read of a memory location we
can consider the time it takes to read a cache hit α and the time it takes to
read a cache miss β, for which α < β. We can further differentiate between
the cost in time of reads that are in cache by also considering where in the
cache hierarchy the read will find the memory it needs.

Now let us go back to our initial issue of iterating through and reading all
entries in a multidimensional array. We can devise a very simple cost function
for a traversal t in terms of memory read time from an n size array such that
the total cost is hittα + misstβ where hitt + misst = n and obviously hitt
are cache hits wheras misst are cache misses. For a traversal c that results
in contiguous memory access there should be a cache line of hits after every
miss. For a traveral d that results in discontiguous memory access where
jumps in access are always greater in size than the size of a cache line let us
assume a worst case of almost only misses, we then have approximately the
total cost:

totald ≈missdβ
totalc ≈hitcα

To get a sense of the costs consider that β ≈ 100α if we assume misses
result in reading from main memory and hits are read from the fastest
cache(L1)[12]. In that case we have:

totalc · 1/n ≈ α < 100α ≈ totald · 1/n

Whereas if we change the assumption of hits to be read from the slowest
cache(L3)[20, p.22] we have β ≈ 2.5α:

totalc · 1/n ≈ α < 2.5α ≈ totald · 1/n

In either scenario main memory access as a result of cache misses indicates a
severe slowdown. To provide some concrete evidence for the effects of cache
misses we present, in table 3.1, a small benchmark written in C(run on a
i5-8250U Intel CPU) where we perform two simple calculations:

29

(A) A[i][j] = 2∗A[i][j]

(B) A[i][j] = A[i][j]+B[j][i]

yielding different memory access patterns for 10000 × 10000 arrays. A full
implementation is provided in B.1 which we summarize here as iterat-
ing through the indices and performing the calculations in row-major or-
der(matching the C row-major layout), column-major order and an ordering
called tiling. The latter is an approach where instead of sweeping through
the entire array along either dimensions in one go we divide the array up
into a 1000× 1000 grid of 10× 10 tiles each of which we sweep through and
thereby minimize jumping to jumping within the tile.

Table 3.1: a 3 run avg. of different orderings in seconds

row-major column-major tiling
A 0.81 0.77 0.28
B 0.04 0.05 0.05

3.6 Strides

Recall that a row-major order flattening flat : Id → I1 where shape(Id) =
〈s0, s1, . . . , sd−1〉 was given by

flat(i0, i1, . . . , id−1) = i0s1 · · · sd−1 + i1s2 · · · sd−1 + · · ·+ id−1

and the size of the array is s0 · · · sd−1. We define the notion of a stride
such that stride(〈s0, s1, . . . , sd−1〉, 0) denotes the size of the entire array,
stride(〈s0, s1, . . . , sd−1〉, 1) denotes the size of a 1 increment in the first in-
dex, stride(〈s0, s1, . . . , sd−1〉, 1) denotes the size of a 1 increment in the second
index and so on. We may define it as follows:

stride(〈s0, s1, . . . , sd−1〉, 0) = s0 · · · sd−1

stride(〈s0, s1, . . . , sd−1〉, 1) = flat(1, 0, . . . , 0) = s1 · · · sd−1

stride(〈s0, s1, . . . , sd−1〉, 2) = flat(0, 1, . . . , 0) = s2 · · · sd−1
...

...
...

...
...

stride(〈s0, s1, . . . , sd−1〉, d) = flat(0, 0, . . . , 1) = 1

For example for an array of shape 〈s0, s1, s2〉 = 〈5, 5, 2〉 giving us indices
〈i0, i1, i2〉 we have stride(〈5, 5, 2〉, 1) = 5 · 2 = 10 which means that an incre-
ment by 1 in i0 strides by 10 indices in the array(as it is actually layed out)

30

whereas stride(〈5, 5, 2〉, 2) = 2 means that an increment by 1 in i1 strides by
2 indices in the array. We can consider this example experssed in C:

int a [5] [5] [2] = { . . . } ;
for (int i 0 =0; i0 <5; i 0++) {

for (int i 1 =0; i1 <5; i 1++) {
for (int i 2 =0; i2 <2; i 2++) {

a [i 0] [i 1] [i 2] = . . . ;
}

}
}

Here our loop ordering ensures that we are always incrementing by 1 in
the array’s layout. We could say we have the loop ordering i0, i1, i2 with
i2 being the fastest varying index. If we permuted the loop ordering to
i0, i2, i1(exchanging the two innermost for-loops) we would be striding by 2
in the fastest varying index. It would mean taking us from an access pattern
of 〈0, 1, 2, 3, 4, 5, 6, 7, 9, 10 . . .〉 to 〈0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 10 . . .〉
To summarize our definition of stride, given a shape 〈s0, s2, . . . , sd−1〉 and k
such that 0 ≤ k ≤ d:

stride(〈s0, s1, . . . , sd−1〉, k) = sk · · · sd−1 =
d−1∏
x=k

sx

and for 1 ≤ k ≤ d we have:

stride(〈s0, s1, . . . , sd−1〉, k) = flat(i0, . . . , ik−1, . . . , id−1)

where ix = 1 when x = k − 1 and otherwhise ix = 0.

Seeing as our defintion of flat is:

flat(i0, . . . , id−1) =
d−1∑
x=0

(ix

d−1∏
y=x+1

sy)

We may equivalently define it in terms of stride(〈s0, . . . , sd−1, k〉) as:

flat(i0, . . . , id−1) =
d−1∑
x=0

(ix · stride(〈s0, . . . , sd−1〉, x+ 1))

31

3.7 Selecting orderings

We have defined flat : Id → I1 for shape(Id) = 〈s0, s1, . . . , sd−1〉 as:

flat(i0, . . . , id−1) =
d−1∑
x=0

(ix

d−1∏
y=x+1

sy)

Where indices 〈i0, . . . , id−1〉 ∈ Id are mapped to i ∈ I1 and we say elements of
Id are grouped together in I1 by the ordering on dimensions, from last to first,
of 〈d − 1, d − 2, . . . , 0〉. That means if we take all indices 〈i0, . . . , id−1〉 ∈ Id
and arrange them in a sequence sorted lexicographically we get one where
〈i0, . . . , id−1〉 ∈ Id is placed in the sequence corresponding to where it is
mapped to in n ∈ Id by flat . That is 〈i0, . . . , id−1〉n ⇔ flat(i0, . . . , id−1) = n.
To get a different ordering we may use a bijective function p : {0, . . . , d −
1} → {0, . . . , d− 1} or simpler put a permutation to change the ordering to
〈p(d− 1), p(d− 2), . . . , p(0)〉 and get:

flatp(i0, . . . , id−1) = flat(ip(0), . . . , ip(d−1))

where the permutation must also be applied to the shape used in flat

p′(shape(Id)) = 〈sp(0), sp(1), . . . , sp(d−1)〉

For clarity a complete definition would then be:

flatp(i0, . . . , id−1) =
d−1∑
x=0

(ip(x)

d−1∏
y=x+1

sp(y))

We may in fact regard flat as always being subject to such a permutation,
but when the permutation is the identity permutation id(x) = x then that
doesn’t warrant its mention as flat id = flat .

For instance to get a column-major ordering from our row-major ordering by
default flat that corresponds to specifying the permutation r(x) = d− 1− x
which reverses the order and using the function flatr.

Naturally stride must change according to the permutation:

stridep(〈s0, s1, . . . , sd−1〉, k) = stride(〈sp(0), sp(1), . . . , sp(d−1)〉, k) =
d−1∏
x=k

sp(x)

32

Similarly as with flat we may regard it as always being subject to a permu-
tation stride id = stride that only warrants mentioning when differing from
the identity permutation.

We may define flatp in terms of stridep almost as before:

flatp(i0, . . . , id−1) =
d−1∑
x=0

(ip(x) · stridep(〈s0, . . . , sd−1〉, x+ 1))

3.7.1 Ordering selection example

The permutation concept can be confusing so let us take a moment to make
an example. Consider that we want to index a 4-dimensional array of shape
〈s0, s1, s2, s3〉. We then have our indexing of:

flat id(i0, i1, i2, i3) = i0s1s2s3 + i1s2s3 + i2s3 + i3

Where the identity permutation id can be described by id ≡ 〈0, 1, 2, 3〉 as
short for id = {0 7→ 0, . . . , 3 7→ 3}. Selecting a different permutation such
as for example p ≡ 〈2, 3, 0, 1〉 that is p = {0 7→ 2, 1 7→ 3, 2 7→ 0, 3 7→ 1} will
give us the indexing:

flatp(i0, i1, i2, i3) = i2s3s0s1 + i3s0s1 + i0s1 + i1

Whereas before the indices 〈i0, i1, i2, i3〉 were ordered by 〈3, 2, 1, 0〉 they are
now ordered by 〈1, 0, 3, 2〉.

3.8 Summary and insights

We have studied the abstraction of multidimensional arrays in C and Fortran,
how they map to a flat memory layout and certain implications of different
access patterns and layouts with respect to hardware.

We conclude by introducing a function γ [15, p.11] equivalent to the one
defined in 3.1 (for 0 < d) and summarize the mapping of multidimensional
indices to one-dimensional indices.

Let 〈i0, i1, . . . , id−1〉 ∈ Id where lower(Id) = 〈0, . . . , 0〉 and shape(Id) =
〈s0, s1, . . . , sd−1〉.

33

Then γ : Id×{shape(Id)} → I1 is defined where shape(I1) = 〈s0, s1, . . . , sd−1〉
by:

γ(〈〉, 〈〉) = 0

γ(〈i0〉, 〈s0〉) = i0

γ(〈i0, . . . , id−2, id−1〉, 〈s0, . . . , sd−2, sd−1〉) =

id−1 + sd−1 · γ(〈i0, . . . , id−2〉, 〈s0, . . . , sd−2〉)

Note the addition of an empty index and an empty shape for γ(〈〉, 〈〉). This
is an artifact of how this function is used where it was introduced. A scalar
value such as 1, 2, 3, . . . can be seen as an array of zero dimensions with a
single value index. For 0 < d we have:

γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) = flat(i0, . . . , id−1)

Remark: In an actual implementation an “unfolding” version of γ may be
more desireable the shown “folding” one:

γ(〈〉, 〈〉) = 0

γ(〈i0, i1, . . . , id−1〉, 〈s0, s1, . . . , sd−1〉) =

unfold(〈i1, . . . , id−1〉, 〈s1, . . . , sd−1〉, i0)

unfold(〈i0, i1, . . . , id−1〉, 〈s0, s1 . . . , sd−1〉, r) =

unfold(〈i1, . . . , id−1〉, 〈s1, . . . , sd−1〉, i0 + s0 · r)
unfold(〈〉, 〈〉, r) = r

In γ the order given in 3.3 yields a row-major ordering whereas in 3.4 yields
a column-major ordering. Regardless of order, stride(s, k) with s ordered as
used in γ yields the stride in the flat array.

γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) (3.3)

γ(〈id−1, . . . , i0〉, 〈sd−1, . . . , s0〉) (3.4)

In general we can select a different ordering with γp where p is a permutation
p : {0, . . . , d− 1} → {0, . . . , d− 1} such that:

γp(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) = γ(〈ip(0), . . . , ip(d−1)〉, 〈sp(0), . . . , sp(d−1)〉)

34

In fact we may always regard γ as using a permutation namely the identity
permutation id(x) = x such that γid = γ.

We note that for 0 < d we have:

γp(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) = flatp(i0, . . . , id−1)

=
d−1∑
x=0

(ip(x)

d−1∏
y=x+1

sp(y))

In fact we may lift the restriction that 0 < d for the latter equality to that
0 ≤ d as we have:

γ(〈〉, 〈〉) = 0 =
0−1∑
x=0

(ip(x)

0−1∏
y=x+1

sp(y))

That is we have an empty sum and so it fits with the definition of γ and we
obtain:

γp(〈i0, . . . , id−1)〉, 〈s0, . . . , sd−1〉) =
d−1∑
x=0

(ip(x)

d−1∏
y=x+1

sp(y))

3.8.1 Relating gamma and strides

Given that for 0 < d we have γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) = flat(i0, . . . , id−1)
Recall that flat could be defined in terms of stride as:

flat(i0, . . . , id−1) =
d−1∑
x=0

(ix · stride(〈s0, . . . , sd−1〉, x+ 1))

and thus similarly we may define γ in terms of stride as:

γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) =
d−1∑
x=0

(ix · stride(〈s0, . . . , sd−1〉, x+ 1))

similarly for a permutation p as before we may derive

γp(〈i0, . . . , id−1)〉, 〈s0, . . . , sd−1〉) =
d−1∑
x=0

(ip(x) · stridep(〈s0, . . . , sd−1〉, x+ 1))

35

3.8.2 Sections of an array

Consider defining where indices start(or are mapped to) in the flat index
space when they are of the form 〈i0, . . . , ik−1, ik, . . . , id−1〉 where 0 ≤ k ≤ d,
such that we consider i0, . . . , ik−1 as fixed(or as constants) and ik, . . . , id−1 as
varying(or as variables).

We first note:

γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) =
d−1∑
x=0

(ix

d−1∏
y=x+1

sy)

=
k−1∑
x=0

(ix

d−1∏
y=x+1

sy) +
d−1∑
x=k

(ix

d−1∏
y=x+1

sy)

=
k−1∑
x=0

(ix

k−1∏
y=x+1

sy)
d−1∏
y=k

sy +
d−1∑
x=k

(ix

d−1∏
y=x+1

sy)

We can then define start and relate it to the greater γ expression we just
derived and also our definition of stride:

start(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k) = γ(〈i0, . . . , ik−1〉, 〈s0, . . . , sk−1〉)

=
k−1∑
x=0

(ix

k−1∏
y=x+1

sy)

stride(〈s0, . . . , sd−1〉, k) =
d−1∏
y=k

sy

γ(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉) =
k−1∑
x=0

(ix

k−1∏
y=x+1

sy)
d−1∏
y=k

sy +
d−1∑
x=k

(ix

d−1∏
y=x+1

sy)

Thus we see we can express γ with the partitioning of fixed ix<k and varying
ix>k indices where 0 ≤ k ≤ d as:

γ(〈i0, . . . , ik−1, ik, . . . , id−1〉, 〈s0, . . . , sk−1, sk, . . . , sd−1〉〉) =

start(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k)stride(〈s0, . . . , sd−1〉, k)

+ γ(〈ik, . . . , id−1〉, 〈sk, . . . , sd−1〉)

The practical benefit of this result, which is also obtained in [17], is that for
indices:

〈i0, . . . ik−1︸ ︷︷ ︸
fixed

, ik . . . , id−1︸ ︷︷ ︸
varying

〉

36

we may compute the fixed part, corresponding to

fixed = start(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k)stride(〈s0, . . . , sd−1〉, k)

and compute all the complete indices we would get from adding the varying
part, which are constrained by the shape 〈sk, . . . , sd−1〉, by the ordering the
parameters to the varying part as listed:

indices = {fixed + varying | varying ∈ {0, 1, . . . , (sk · · · sd−1 − 1)}}

With this kind of relationship we are able to express subarrays; the fixed
part selects a subarray and then the varying part offsets into it. Notice
that by having no fixed part the flat indices become the range from 0 to
sk · · · sd−1 − 1 and that these are the flat indices for all multidimensional
indices 〈i0, . . . , id−1〉 to γ with a fixed shape of 〈s0, . . . , sd−1〉. This can be
regarded as a proof that γ with a fixed shape is a bijection between the set
of multidimensional indices denoted by the fixed shape and the set of flat
indices(from 0 to s0 · · · sd−1 − 1) denoted by the product of the fixed shape.

3.8.2.1 Sections and permutations

It can be shown that the central relationship here, that is:

γ(〈i0, . . . , ik−1, ik, . . . , id−1〉, 〈s0, . . . , sk−1, sk, . . . , sd−1〉〉) =

start(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k)stride(〈s0, . . . , sd−1〉, k)

+ γ(〈ik, . . . , id−1〉, 〈sk, . . . , sd−1〉)

Still holds given a permutation p and a definition of startp such that:

startp(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k) =

start(〈ip(0), . . . , ip(d−1)〉, 〈sp(0), . . . , sp(d−1)〉, k)

We then obtain the following:

γp(〈i0, . . . , ik−1, ik, . . . , id−1〉, 〈s0, . . . , sk−1, sk, . . . , sd−1〉〉) =

startp(〈i0, . . . , id−1〉, 〈s0, . . . , sd−1〉, k)stridep(〈s0, . . . , sd−1〉, k)

+ γp(〈ik, . . . , id−1〉, 〈sk, . . . , sd−1〉)

37

CHAPTER 4

A Mathemathics of Arrays

4.1 Introduction

In 1988 Lenore Mullin published her phd. thesis A Mathemathics of Arrays
(MOA) [15] where she builds a theory of arrays as algebraic objects. She
cites Kenneth E. Iverson, the creator of APL, as having a profound impact
on her research.

In this chapter we will present select ideas from her thesis and her view of
arrays. Certain concepts will already be familiar by now such as the idea of
a shape and how it generates an index space. Mullin’s style of specification
is in gradually extending operations; she may introduce an operation for a
certain kind of array and then alter that operation in general for arrays of
another kind.

We proceed in the same fashion as Mullin and gradually build her MOA
vocabulary albeit simplified and with slight deviations to avoid certain com-
plexities while attempting to faithfully convey her ideas.

Remark: We have departed from Mullin’s use of equivalences in describ-
ing arrays of certain classifications. These equivalences however should be
apparent and we will give arrays of certain classifications names to reflect
that.

38

4.2 Preliminaries: Vectors

As the term vector will be used in this chapter the terminology and notation
should be clarified. We are not considering vectors in the typical mathemath-
ical sense, but rather one that is more familiar to a programmer; an ordered,
by index, collection of elements. Other names commonly used is a list or
array. We pick vector as it is the terminology already in use by Mullin(as
well as a popular choice in programming).

We can consider a vector ~x of some non-negative integer size τ ~x ∈ Z≥1

possibly containing elements from some set E, referred to as vectors of E, as
the pair ~x = (f, E) such that:

• For τ ~x = 0 the vector ~x is called an empty vector and f = {}.
• For τ ~x ≥ 0 the vector ~x is called a non-empty vector and

f : {0, . . . , τ ~x− 1} → E

is such that f maps an index i ∈ {0, . . . , τ ~x− 1} to an element e ∈ E

f = {0 7→ e0, . . . , τ ~x− 1 7→ eτ ~x−1|ei ∈ E}

We use the notation ~x = 〈〉 for the empty vector, i.e. when τ ~x = 0 and when
τ ~x ≥ 0 the notation ~x = 〈x0, . . . , xτ ~x−1〉 where this may still be the empty
vector, but if it is not an empty vector we may use it as a function and index
elements ~x[i] = f(i). When mentioning several vectors we implicitly assume
they contain elements from the same set E. We regard the the set of all
vectors given some set of elements E to be:

V (E) = {~x | τ ~x ∈ Z≥ ∧ for all i s.t. 0 ≤ i < τ ~x : ~x[i] ∈ E}

As we may occasionally wish to use a nesting of vectors, e.g. V (V (V (E)))
for vectors of vectors of vectors of E, we will use the notation V 1(E) = V (E)
and V n(E) = V (V (n−1)(E)). This means that V 3(E) = V (V (V (E))). To
be able to refer to the set of all nested vectors with elements from E we
introduce:

V ∗(E) =
∞⋃
i=1

= V i(E)

1Z≥ = {0, 1, 2, . . .}

39

4.2.1 Vector operations: Iota, Take, Drop and Con-
catenation

For some examples we will use the somewhat useful function ι : Z≥0 →
V (Z≥0):

ι n = 〈x0, . . . , xn−1〉 where xi = i

That is ι 0 = 〈〉 and ι 5 = 〈0, 1, 2, 3, 4〉. Another manner of specifying this is
by listing the cases. For n = 0 we get an empty vector, otherwise we get a
vector with elements equal to their index:

ι n = 〈〉 when n = 0
(ι n)[i] = i otherwise, for i s.t. 0 ≤ i < n

Given some vector ~x = 〈x0, . . . , xτ ~x−1〉 we define the vector i ↑ ~x produced
by “taking” the i first elements from ~x and placing them in order in a vector.
We also define the vector i ↓ ~x produced by “dropping” the i first elements
of ~x and placing the remaining in order in a vector. These functions are of
the kind ↑ : Z≥0 × V (E)→ V (E) and ↓ : Z≥0 × V (E)→ V (E).

First we define min : Z≥0 × Z≥0 → Z≥0 in the following manner:

min(a, b) =

{
a when a ≤ b
b otherwise

We then define the vectors resulting from taking or dropping as:

τ (i ↑ ~x) = min(i, τ ~x)

τ (i ↓ ~x) = τ ~x−min(i, τ ~x)

The elements of these vectors are defined by:

~x = 〈x0, . . . , xi−1︸ ︷︷ ︸
i ↑ ~x

, xi, . . . , xτ ~x−1︸ ︷︷ ︸
i ↓ ~x

〉

Or more precisely:

(i ↑ ~x) = 〈〉 when τ (i ↑ ~x) = 0
(i ↑ ~x)[j] = ~x[j] otherwise, where 0 ≤ j < τ (i ↑ ~x)
(i ↓ ~x) = 〈〉 when τ (i ↓ ~x) = 0
(i ↓ ~x)[j] = ~x[j + i] otherwise, where 0 ≤ j < τ (i ↓ ~x)

40

A final and familiar operation on vectors is concatenation. Let ~x and ~y be
vectors. We define their concatenation ~x . ~y, where we think of concatenation
as a function . : V (E)× V (E)→ V (E), as a vector such that:

τ (~x . ~y) = τ ~x+ τ ~y

for ~x = 〈〉 or ~y = 〈〉:

〈〉 . ~y = ~y

~x . 〈〉 = ~x

otherwise for ~x 6= 〈〉 and ~y 6= 〈〉:

(~x . ~y)[i] =

{
~x[i] when 0 ≤ i < τ ~x
~y[i− τ ~x] when τ ~x ≤ i < τ ~x+ τ ~y

Note a few trivially derivable identities from the definition of take(↑), drop(↓)
and concatenation assuming 0 ≤ k ≤ τ ~x then:

k ↑ (~x . ~y) = k ↑ ~x
k ↓ (~x . ~y) = (k ↓ ~x) . ~y

(k ↑ ~x) . (k ↓ ~x) = ~x

With these identities we may for example obtain a short proof of the asso-
ciativity of concatenation:

τ ~x ↑ ((~x . ~y) . ~z) = τ ~x ↑ (~x . ~y) = ~x

τ ~x ↓ ((~x . ~y) . ~z) = (τ ~x ↓ (~x . ~y)) . ~z = ~y . ~z

(~x . ~y) . ~z = (τ ~x ↑ ((~x . ~y) . ~z)) . (τ ~x ↓ ((~x . ~y) . ~z)) = ~x . (~y . ~z)

4.3 MOA fundamentals

Mullin describes an array, denoted by ξ , as having dimensions which is a
non-negative integer δ ξ ∈ Z≥0. Without further qualifications ξ means an
array of unknown dimensions. Aside from an explicit statement δ ξ = n we
may superscript the array with its dimensions ξn to denote the same.

Whatever the dimensionality is for a particular array ξ it has a shape denoted
by ρ ξ = 〈s0, . . . , sδ ξ−1〉, a possibly empty vector 〈〉, of as many non-negative
integers as the array’s dimensions, that is ρ ξ ∈ V (Z≥0) and τ (ρ ξ) = δ ξ .
We classify arrays according to its dimensionality as follows:

41

• A 0-dimensional array ξ0 is a scalar array and its shape is an empty
vector:

ρ ξ0 = 〈〉

• A 1-dimensional array ξ1 is a vector array and its shape is a vector with
a single element:

ρ ξ1 = 〈s0〉

• A δ ξ-dimensional array ξδ ξ where 1 < δ ξ is a multidimensional array
and its shape is a non-empty vector of non-negative integers:

ρ ξδ ξ = 〈s0, . . . , s(δ ξ)−1〉

In either case the shape defines what valid indices for an array are and
by extension how many indices there are. For an array with shape ρ ξ =
〈s0, . . . , sδ ξ−1〉 a valid index~i = 〈i0, . . . , iδ ξ−1〉 is one such that τ~i = δ ξ and:

0 ≤? ~i <? ρ ξ = (0 ≤? ~i) ∧ (~i <? ρ ξ)

Where this shorthand is defined given some relation x R y as:

x R? 〈y0, . . . , yn−1〉 =
n−1∧
i=0

x R yi

〈x0, . . . , xn−1〉 R? 〈y0, . . . , yn−1〉 =
n−1∧
i=0

xi R yi

Note that we consider the empty logical conjunction here(i.e. when n = 0)
to hold. This has the implication that for a scalar array, having the shape
ρ ξ0 = 〈〉, the empty vector is a valid index as 0 ≤? 〈〉 <? 〈〉 holds.

A peculiarity following from the constraints of the shape of an array is that
if there is any element in the shape of an array that is zero then no index
will satisfy the constraints and be a valid index for an array. Such arrays are
considered unique empty arrays. For example for an array of shape 〈s0, s1, s2〉
there are 7 ways to distribute 0 and thus 7 different unique empty arrays for
arrays of dimensionality 3, we will use the notation Θδ ξ to denote such an
empty array.

An array can be regarded as an extension of the vector. That is we can regard
an array as the pair ξ = (fρ ξ , E) where fρ ξ maps an index to an element of
some set E or the function:

fρ ξ : {~i ∈ V (Z≥0) | τ~i = δ ξ ∧ 0 ≤? ~i <? ρ ξ} → E

42

The total amount of elements there are in an array correspond to how many
valid indices there are for the array. We extend the notation we had for
vectors to arrays such that:

τ ξ = |{~i ∈ V (Z≥0) | τ~i = δ ξ ∧ 0 ≤? ~i <? ρ ξ}|
which we discern is:

τ ξ = π (ρ ξ) = π 〈s0, . . . , s(δ ξ)−1〉 = s0 · · · sδ ξ−1

We consider the empty product to be one, corresponding to the fact that for
a scalar array there is exactly one(τ ξ0 = 1) indexable element in the array
and as such a scalar array can never be empty.

We now have a vocabulary of scalar arrays, vector arrays and multidimen-
sional arrays as:

ξ0 = ({〈〉 7→ e}, E)

ξ1 = ({〈i0〉 7→ e0, . . . , 〈iτ ~x−1〉 7→ eτ ~x−1}, E)

ξδ ξ = ({~i0 7→ e0, . . . ,~iτ ~x−1 7→ eτ ξ−1}, E)

We define an indexing notation for the element ~i is mapped to given that ~i
is a valid index for ξ = (f, E) such that:

ξ [~i] = f(~i)

We will need to refer to the set of all arrays so we define it. The set of all
shapes is V (Z≥0) and with that we can define the set of all arrays as:

A(E) = {(fs, E) | for all s ∈ V (Z≥0)}
Partitionings according to our classifications of arrays as either scalar arrays,
vector arrays, and multidimensional arrays are:

As(E) = {ξ ∈ A(E) | δ ξ = 0}
Av(E) = {ξ ∈ A(E) | δ ξ = 1}
Am(E) = {ξ ∈ A(E) | δ ξ > 1}

We want to make a certain mapping for certain classifications of arrays. We
introduce a family of functions gs, gv, gm each on a different subset of all
arrays:

gs : As(E)↔ E a scalar array’s scalar projection
gv : Av(E)↔ V (E) a vector array’s vector projection
gm : Am(E) 7→ V ∗(E) a multidimensional array’s nested vector projection

43

such that scalar arrays are mapped to elements of E and vector arrays are
mapped to vectors of E:

gs(ξ
0) = ξ0[〈〉]

gv(ξ
1) = 〈ξ1[〈0〉], . . . , ξ1[〈τ ξ1 − 1〉]〉

and multidimensional arrays are mapped to nested vectors gm(ξn) ∈ V n(E):

gm(ξn)[i0] · · · [in−1] = ξn[〈i0, . . . , in−1〉] for 0 ≤? 〈i0, . . . , in−1〉 <? ρ ξn

This projection is partial as any empty array cannot be uniquely mapped.
Naturally this could be fixed by changing the projection by mapping such
an array to its shape and expand the the target set of the projection gm :
Am(E) → V ∗(E) ∪ V (Z≥0). We leave this as a remark and note that the
purpose of this projection here is first and foremost to “show” an array in a
terse manner.

Note that the scalar and vector projections are bijective. Think of these
different projections as different ways of viewing arrays. Mullin defines the
array in terms of equivalences. For instance she describes a scalar as equiv-
alent to an array of one element indexable by only one index type with one
value. A vector is equivalent to an array indexable by one index type with
a range of values. Our basically equivalent definition instead avoids this use
of equivalences from the beginning and we instead emphasize the array as
an entity unto itself with bijective projections to other entities in certain
circumstances.

For convenience we define functions over arrays from these projections. For
the nested vector projection:

JξK = gm(ξ)

For the scalar and vector projection:

JξK =

{
gs(ξ) when ξ ∈ As(E)
gv(ξ) when ξ ∈ Av(E)

As the used projections were bijective we may also define its inverse:

JxK−1 =

{
g−1
s (x) when x ∈ E
g−1
v (x) when x ∈ V (E)

44

This means that if we have an array ξ where ρ ξ = 〈2, 2〉 consisting of the
elements:

{ξ [〈0, 0〉] = 0, ξ [〈0, 1〉] = 1, ξ [〈1, 0〉] = 2, ξ [〈1, 1〉] = 3}

then JξK = 〈〈0, 1〉, 〈2, 3〉〉 and for example:

JξK[1][0] = 〈〈0, 1〉, 〈2, 3〉〉[1][0] = 〈2, 3〉[0] = 2 = ξ [〈1, 0〉]

Note the difference between a vector and a vector array. Whereas a vector
is of the form ~x = 〈e0, e1〉 = ({0 7→ e0, 1 7→ e1}, {e0, e1}) a vector array is
of the form x = ({〈0〉 7→ e0, 〈1〉 7→ e1}, {e0, e1}) and we have JxK = 〈e0, e1〉.
Considering a scalar e and the scalar array y = ({〈〉 7→ e, }, {e}) we have
JyK = e.

The covered notation of our interpretation of MOA and certain additional
useful identities is summarized following table:

MOA Description
ξ array
Θ empty array
ξ0 scalar array
ξ1 vector array
ξn array of n dimensions
Θn empty array of n dimensions
δ ξ ∈ Z≥0 dimensions of an array

ξ [~i] element at index of array
Jξ0K = ξ0[〈〉] scalar projection of scalar array
Jξ1K = 〈ξ1[〈0〉], . . . , ξ1[〈τ ξ1 − 1〉]〉 vector projection of vector array
JξnK nested vector projection of array

ρ ξ0 = 〈〉 shape of a scalar array
ρ ξ1 = 〈τ ξ1〉 shape of a vector array
ρ ξ = 〈s0, . . . , s(δ ξ)−1〉 shape of an array
π 〈s0, . . . , s(δ ξ)−1〉 = s0 · · · sδ ξ−1 product of a shape’s elements
τ ξ = π (ρ ξ) total amount of elements in an array

4.4 Defining operations

Now we gradually expand the notion of arrays and operations on arrays. We
first introduce an abstract indexing operation. Then we describe it in rela-
tionship to a certain ordering on the elements, a layout, which in program-
ming terms can be used to actually implement such an array. Operations

45

are always described in terms of the abstract indexing notion and separates
description of array operations from layout.

4.4.1 Psi - Array selection

We define a function that given an index vector and an array selects an array:

ψ : {(~i, ξ) ∈ V (Z≥0)×A(E) | τ~i ≤ δ ξ ∧ 0 ≤? ~i <? τ~i ↑ ρ ξ} → A(E)

In other words the array selection function maps an index and array to an
array given that the size of the index is less than or equal to the dimensions
of the array and the index is constrained by the shape produced by taking
the τ~i first elements of the shape of the array.

4.4.1.1 Resulting shape

For any array selection the array selected has a shape corresponding to the
removal of the τ~i first elements from the shape:

ρ (~i ψ ξ) = τ~i ↓ ρ ξ

and correspondingly the change in dimensions, which is entirely dependent
on the shape, is δ (~i ψ ξ) = τ (ρ (~i ψ ξ)) = δ ξ − τ~i. Note the shape for three
different cases and its implications:

• For τ~i = 0 we have ρ (〈〉 ψ ξ) = 0 ↓ ρ ξ = ρ ξ

• For τ~i = δ ξ we have ρ (~i ψ ξ) = δ ξ ↓ ρ ξ = 〈〉
• For 0 < τ~i < δ ξ we have ρ (~i ψ ξ) = τ~i ↓ ρ ξ and:

– Any ~j s.t. 0 <? ~j ≤? τ~i ↓ ρ ξ is a valid index for ~i ψ ξ

– Any such ~j where also τ ~j = δ ξ−τ~i is s.t. τ (~i . ~j) = δ ξ and 0 ≤?
~i . ~j <? ρ ξ . The latter, recalling that (τ~i ↑ ρ ξ) . (τ~i ↓ ρ ξ) = ρ ξ ,
follows from that:

(0 ≤? ~i <? τ~i ↑ ρ ξ) ∧ (0 ≤? ~j <? τ~i ↓ ρ ξ)⇒ 0 ≤? ~i . ~j <? ρ ξ

4.4.1.2 Selected array

Here we define the array selected for ~i ψ ξ by cases:

• For τ~i = 0 we have an empty index and the selection is:

〈〉 ψ ξ = ξ

46

• For τ~i = δ ξ we have a full index and the selection is:

~i ψ ξ s.t. J~i ψ ξK = ξ [~i]

• For 0 < τ~i < δ ξ we have a partial index and the selection is:

~i ψ ξ

Where all ~j s.t. they are a full and valid index for ~i ψ ξ , that is
τ ~j = δ ξ − τ~i and 0 ≤? ~j <? τ~i ↓ ρ ξ , must select in ξ to produce the
array a full selection would yield:

~j ψ (~i ψ ξ) = (~i . ~j) ψ ξ

4.4.1.3 As a partial right monoid action

Recall our coverage of a right monoid action 2.2. Given a monoid (M,+, e),
that is some set M , a binary and associative operation + : M ×M → M
and an identity element e ∈ M . The monoid is a right monoid action on S
if there is an operation ∗ : M × S → S where:

• For all m1,m2 ∈M and all s ∈ S we have (m1 +m2)∗s = m2 ∗(m1 ∗s).
• For all s ∈ S we have e ∗ s = s

We can introduce a weakening for the case of partiality [8]. In that case let
the operation be partial ∗ : M × S 7→ S where:

• If for m1,m2 ∈M and s ∈ S it is the case that (m1 +m2) ∗ s is defined
and m2∗(m1∗s) is defined then that implies (m1+m2)∗s = m2∗(m1∗s).
• For all s ∈ S it is the case that e ∗ s is defined and e ∗ s = s

Clearly V (Z≥0), . , 〈〉) is a monoid. If ~i, (~i . ~j) ∈ V (Z≥0) are valid indices
of ξ that is ~j ψ ξ and (~i . ~j) ψ ξ are defined then that implies ~j ψ (~i ψ ξ) =
(~i . ~j) ψ ξ . Furthermore for all ξ ∈ A(E) we have 〈〉 ψ ξ = ξ . Thus
the monoid V (Z≥0), . , 〈〉) is a right monoid action on ψ. This may shorten
the specification of ψ given that there is already knowledge of monoids and
partial right monoid actions.

4.4.2 Ravel - flattening

The function rav : A(E) → A(E) maps an array ξ to a vector array ξ1

such that τ (rav ξ) = τ ξ1. If ξ has indices~i0, . . . ,~iτ ξ−1 the elements at these

47

indices in ξ , i.e. ξ [~i0], . . . , ξ [~iτ ξ−1], all occur in some order in rav ξ indexed
by 〈0〉, . . . , 〈τ ξ − 1〉.
Before we proceed note that for a scalar array ξ0 there is only one arrange-
ment:

Jrav ξ0K = 〈Jξ0K〉
For a vector array ξ1 we want to pick the arrangement:

Jrav ξ1K = Jξ1K

Let rav be defined in terms of a bijective function dependent on the shape
of the array ρ ξ :

fρ ξ : {~i0, . . . ,~iτ ξ−1} ↔ {〈0〉, . . . , 〈τ ξ − 1〉}

that picks an arrangement satisfying the covered cases for ξ0, ξ1 and in
general for ξ :

(rav ξ)[fρ ξ(~i)] = ξ [~i]

There are (τ ξ)! such functions; as many as there are ways to permute an
ordering of τ ξ elements. We choose the function γ(~i, ρ ξ) from 3.8 such that
our arrangement becomes:

(rav ξ)[〈γ(~i , ρ ξ)〉] = ξ [~i]

Or stated equivalently:

Jrav ξK[γ(~i , ρ ξ)] = ξ [~i]

Recall that for an array ξ and a valid index ~i such that τ~i = δ ξ we had the
identity J~i ψ ξK = ξ [~i]. Thus we may, for such cases, derive:

J~i ψ ξK = (rav ξ)[〈γ(~i , ρ ξ)〉] = Jrav ξK[γ(~i , ρ ξ)]

From an implementors perspective Jrav ξK[γ(~i, ρ ξ)] is an interpretation of
a layout on a vector that realizes a higher dimensional array abstraction.
The abstract notion of an array ξ and array selection ψ which aren’t tied
to any arrangement of elements gives us a tool to reason about what should
happen to arrays when we apply operations on them. Indeed this is how
Mullin proceeds to define operations. First however we consider our choices
in regards to layout.

48

4.4.3 Gamma and change of layout

Given an array ξ such that ρ ξ = ~s and ~i is a valid index for ξ the function
γ(~i, ~s) is introduced in an equivalent manner to the one in given in 3.8:

γ(~i, ~s) =

0 τ~i = τ ~s = 0
~i [0] τ~i = τ ~s = 1
~i [n− 1] + ~s [n− 1]γ((n− 1) ↑ ~i, (n− 1) ↑ ~s) τ~i = τ ~s = n > 1

Recall the reformulations of γ in 3.8.2. We define those here as well in terms
of our MOA vocabulary. Given k such that 0 ≤ k ≤ δ ξ and a valid index ~i
for ξ we have:

γ(~i, ~s) =
τ ~s−1∑
k=0

~i[k]π (k + 1 ↓ ~s)

stride(~s, k) = π (k ↓ ~s)
start(~i, ~s, k) = γ(k ↑ ~i, k ↑ ~s)

γ((k ↑ ~i) . (k ↓ ~i), ~s) = start(~i, ~s, k)stride(~s, k) + γ(k ↓ ~i, k ↓ ~s)

This is a specific layout and as mentioned in 3.8 we can select a differ-
ent one by a permutation p(〈x0, . . . , xn−1〉) = 〈xp′(0), . . . , xp′(n−1)〉 where
p′ : {0, . . . , n − 1} ↔ {0, . . . , n − 1} is some bijective function. We could
in fact always regard γ as using some permutation and consider the one we
have provided here as the identity permutation, i.e. the one that does noth-
ing. From this viewpoint we consider the layout we have provided γid where
id(x) = x and can regard the layout selected for an array as γid if the γ shown
here is used. In general we define the layout given by some permutation p
as:

γp(~i, ~ρ ξ) = γ(p(~i), p(~ρ ξ))

If we consider layout to be a propery of the array, given some permutation
p as mentioned, and denote this by naming or marking the array with this
permutation ξp then indexing is defined by:

J~i ψ ξpK = Jrav ξpK[γ(p(~i), p(ρ ξ))]

Suppose we have an array ξp1 , i.e. we have named it the permuation p1

indicating its layout, and we wish to change the array’s layout according to
a different permutation p2 to get the array ξp2 which is identical in value
at all indices. What we wish to do then is to iterate through rav ξp1 and
rearrange it to the differently layed out rav ξp2 . This is trivial to implement

49

if we decide to simply allocate new memory and fill a new array. In that
case we simply perform the assignment of ξp2 such that J~i ψ ξp2K = J~i ψ ξp1K
holds for all valid indices. If we however disallow reallocation we must find
the permutation swap such that Jrav ξp1K[i] = Jrav ξp2K[swap(i)] for all valid
indices and, as the name would imply, imperatively rearrange the array by
swapping elements. An example of such a permutation which takes you from
row-major layout to column-major layout is to simply reverse the flat array
or equivalently the permuting of its elements by the swapping implied by
swap(i) = n− i− 1 where n is the length of the array.

In the rest of this treatment we will ignore layout selection or change and
assume a fixed layout γid and simply refer to it as γ. The point of the ψ array
selection abstraction is to hide the concern of layout and thus describe the
change in elements at indices of arrays, over operations, in terms of layout
independent indexing.

4.4.4 The Psi correspondence theorem

Consider some array ξ ∈ A(E) with a shape ρ ξ . Pick a subarray with the
partial and valid index ~v, i.e. τ ~v ≤ δ ξ and 0 ≤? ~v <? (τ ~v) ↑ ρ ξ , that is
~v ψ ξ .

Then we have an array with shape ρ (~v ψ ξ) = (τ ~v) ↓ ρ ξ . Let ~u be a valid
index for this array, i.e τ ~u = δ ξ − τ ~v and 0 ≤? ~u <? (τ ~v) ↓ ρ ξ , so we arrive
at the scalar array ~u ψ (~v ψ ξ) which we may write as:

~u ψ (~v ψ ξ) = (~v . ~u) ψ ξ

Now we wish to compute the element at every valid index ~u of ~v ψ ξ . Note
how the shape of the array is the concatenation:

ρ ξ = ((τ ~v) ↑ ρ ξ) . ((τ ~v) ↓ ρ ξ)

and recall we have:

J~u ψ (~v ψ ξ)K = J(~v . ~u) ψ ξK
= Jrav ξK[γ(~v . ~u, ρ ξ)]

= Jrav ξK[γ(~v . ~u, ((τ ~v) ↑ ρ ξ) . ((τ ~v) ↓ ρ ξ))]

With parameters to γ in this form we see that we may apply the reformulated

50

γ that applies start and stride:

stride(ρ ξ, k) = π (k ↓ ρ ξ)

start(~i, ρ ξ, k) = γ(k ↑ ~i, k ↑ ρ ξ)

γ((k ↑ ~i) . (k ↓ ~i), ρ ξ) = start(~i, ρ ξ, k)stride(ρ ξ, k) + γ(k ↓ ~i, k ↓ ρ ξ)

Thus we get(with k = τ ~v, ~i = ~v . ~u):

J~u ψ (~v ψ ξ)K = Jrav ξK[γ(~v, τ ~v ↑ ρ ξ)π (τ ~v ↓ ρ ξ) + γ(~u, τ ~v ↓ ρ ξ)]

Now consider that we want to access every index that constitutes a valid and
full index in the subarray ~v ψ ξ . That means all ~u such that 0 ≤? ~u <?

τ ~v ↓ ρ ξ . However we do not care in which order. We know γ(~u, τ ~v ↓ ρ ξ)
will give us indices k in the range 0 ≤ k < π (τ ~v ↓ ρ ξ) We may write this
range as the vector ι (π (τ ~v ↓ ρ ξ)).

We now extend our vocabulary of vectors of non-negative integers slightly
such that ~x • ~y = ~z means ~z[i] = ~x[i] • ~y[i] for all i s.t. 0 ≤ i < k where we
require that • is some binary arithmetic operation and τ ~z = τ ~x = τ ~y = k.

Then we may complete the description of computing all full indices ~u for
~v ψ ξ in its flattening as:

J~u ψ (~v ψ ξ)K = Jrav ξK[~i [x]]

~i = γ(~v, τ ~v ↑ ρ ξ)π (τ ~v ↓ ρ ξ) + ι (π (τ ~v ↓ ρ ξ))

Where 0 ≤ x < π (τ ~v ↓ ρ ξ). This idea is mostly due to the Psi correspon-
dence theorem [17, p. 506]. This is a substantial improvement over repeated
γ computations to perform operations over a subarray.

4.4.5 Reshaping arrays

We define reshaping in terms of the partial function:

•
ρ : V (Z≥0)×A(E) 7→ A(E)

Which maps a shape and an array to an array with the associated shape.

ρ (~s
•
ρ ξ) = ~s

51

4.4.5.1 Reshaping arrays

Given an array ξ and a shape ~s the function ~s
•
ρ ξ is defined whenever 0 ≤? ~s

and ξ 6= Θ we don’t allow reshaping an empty array as we wouldn’t be able
to assign elements to any indices.

• For a valid index 0 ≤? ~i <? ~s its element at that index is defined as:

J~i ψ (~s
•
ρ ξ)K = Jrav ξK[γ(~i, ~s) mod (τ ξ)]

In other words indexing that would fall outside of Jrav ξK instead wraps
around in it.

• Otherwise if there are no valid indices as one or more elements of the
shape ~s are zero, we are reshaping to an empty array:

(~s
•
ρ ξ) = Θτ ~s

Example: Suppose we want to reshape an array ξ which is such that JξK =

ι 3 = 〈0, 1, 2〉 according to a shape 〈2, 3〉. This array is 〈2, 3〉 •ρ ξ and we
index it as follows:

J〈i0, i1〉 ψ (〈2, 3〉 •ρ ξ1)K = Jrav ξK[γ(〈i0, i1〉, 〈2, 3〉) mod (τ ξ)]

= (ι 3)[i1 + 3 · i0 mod 3]

for every index ~i = 〈i0, i1〉 <? 〈2, 3〉:

J〈0, 0〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈0 + 3 · 0 mod 3〉] = (ι 3)[0] = 0

J〈0, 1〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈1 + 3 · 0 mod 3〉] = (ι 3)[1] = 1

J〈0, 2〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈2 + 3 · 0 mod 3〉] = (ι 3)[2] = 2

J〈1, 0〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈0 + 3 · 1 mod 3〉] = (ι 3)[0] = 0

J〈1, 1〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈1 + 3 · 1 mod 3〉] = (ι 3)[1] = 1

J〈1, 2〉 ψ (〈2, 3〉 •ρ ξ)K = (ι 3)[〈2 + 3 · 1 mod 3〉] = (ι 3)[2] = 2

In terms the array’s nested vector projection we see we have reshaped JξK =

ι 3 = 〈0, 1, 2〉 into J〈2, 3〉 •ρ (ι 3)K = 〈〈0, 1, 2〉, 〈0, 1, 2〉〉. which can be layed

out flatly as Jrav (〈2, 3〉 •ρ ξ)K = 〈0, 1, 2, 0, 1, 2〉.

52

4.4.5.2 Reshaping by cases

We inspect the values of ~s
•
ρ (rav ξ) by cases. For ~s such that:

• π ~s = 0, at least one element in the shape vector is zero:

~s
•
ρ (rav ξ) = Θδ ξ

• π ~s 6= 0 or equivalently 0 <? ~s then either:

– ~s = 〈〉 and we are reshaping to a scalar array, which we may index
as follows:

J〈〉 ψ (〈〉 •ρ (rav ξ))K = Jrav ξK[γ(〈〉, 〈〉) mod (τ (rav ξ))]

= Jrav ξK[0 mod 1]

= Jrav ξK[0]

– ~s 6= 〈〉 and we are reshaping to an array that is not a scalar array

~s
•
ρ ξ = ~s

•
ρ (rav ξ)

From these it follows[15, p. 14] that for all arrays ξ reshape is valid for:

ξ = (ρ ξ)
•
ρ (rav ξ) = (ρ ξ)

•
ρ ξ

Example: Now consider that we want to represent a 5 × 5 matrix of the
kind:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

Let us interpret this as desiring a nested vector mapping for the array of:

Jm5×5K = 〈〈0, 1, 2, 3, 4〉,
〈5, 6, 7, 8, 9〉,
〈10, 11, 12, 13, 14〉,
〈15, 16, 17, 18, 19〉,
〈20, 21, 22, 23, 24〉〉

53

Recall that ι 25 = 〈0, 1, . . . , 24〉 and assume we have Jm25K = ι 25 and the
shape we want is 〈5, 5〉 whereas the shape of m25 is 〈25〉. The desired array

can be described as m5×5 = 〈5, 5〉 •ρ m25. Let’s check that 13 is at 〈2, 3〉 (i.e.
that for 〈i0, i1〉 we have i0 selecting row and i1 selecting column) as expected:

J〈2, 3〉 ψ m5×5K = J〈2, 3〉 ψ (〈5, 5〉 •ρ m25)K
= Jrav m25K[γ(〈2, 3〉, 〈5, 5〉) mod τ m25]

= (ι 25)[3 + 5 · 2 mod 25] = (ι 25)[13] = 13

4.4.5.3 Reshaping to insert one

There is a special case of reshaping that is worth some extra mention. Sup-
pose we wish to reshape some array ξ to have a shape where 1 is either
prepended to it, appended to it or inserted in it. That is we want to have a
shape ~s = (k ↑ ρ ξ) . 〈1〉 . (k ↓ ρ ξ) which would yield indices of the form
~j = (k ↑ ~i) . 〈0〉 . (k ↓ ~i) where 0 ≤ k ≤ δ ξ and ~i is a valid full index for
ξ . Reshaping ξ to the shape ~s and indexing it with ~j yields:

J~j ψ (~s
•
ρ ξ)K = Jrav ξK[γ(~j , ~s) mod τ ξ]

We know ~j will never exceed the size of τ ξ in γ(~j , ~s) as π ~s = τ ξ and thus
we may state:

J~j ψ (~s
•
ρ ξ)K = Jrav ξK[γ(~j , ~s)]

where by definition the elements of ξ are arranged in rav ξ as follows:

J~i ψ ξK = Jrav ξK[γ(~i , ρ ξ)]

We assert that γ(~j , ~s) = γ(~i , ρ ξ) for some chosen k where 0 ≤ k ≤ δ ξ

γ(~j , ~s) = γ((k ↑ ~i) . 〈0〉 . (k ↓ ~i), (k ↑ ρ ξ) . 〈1〉 . (k ↓ ρ ξ))

for this problem we will require some slight reformulations, recall that:

γ(~i, ~s) =
τ ~s−1∑
x=0

~i [x]π (x+ 1 ↓ ~s)

We could split out the product of the sum and represent the sum as a sum
over the pointwise product, i.e. (~x · ~y)[i] = ~x [i]~y [i], between a vector of
strides and the index vector. Let strides(~s) denote the vector of size τ ~s such
that:

strides(~s)[i] = stride(~s, i+ 1) = π (i+ 1 ↓ ~s)

54

We need to map products over vectors so let e~x = ~y where ~y[i] = e~x[i].
Naturally such maps distributes over concatenation e(~x . ~y) = e~x . e~y. Then
some crucial relationships of strides are:

strides(〈s〉 . ~s) = 〈π ~s 〉 . strides(~s)

strides(~x . ~y) = (π ~y)strides(~x) . strides(~y)

where the first identity follows trivially from the definition of strides while the
second can be derived by induction with the first as the basis. The identities
also follow from that the vector strides(~s) is the reversed prefix product of ~s
with s0 replaced with 1 and then reversed. That is we take 〈s0, s1, s2, s3〉, get
〈1, s3, s2, s1〉, get the prefix product 〈1, s3, s2s3, s1s2s3〉 and then the reversal
yields 〈s1s2s3, s2s3, s3, 1〉 which would be the result of strides(〈s0, s1, s2, s3〉).
This is perhaps better understood with the recurrence:

strides(~s)[i] =

{
1 when i = τ ~s− 1
~s [i+ 1]strides(~s)[i+ 1] when i < τ ~s− 1

The identities for strides allow us to derive the following:

~x = k ↑ ρ ξ
~y = k ↓ ρ ξ

strides((~x . 〈1〉) . ~y) = (π ~y)strides(~x . 〈1〉) . strides(~y)

= (π ~y)((π 〈1〉)strides(~x) . strides(〈1〉)) . strides(~y)

= (π ~y)(strides(~x) . strides(〈1〉)) . strides(~y)

= (π ~y)strides(~x) . (π ~y)strides(〈1〉) . strides(~y)

= (π ~y)strides(~x) . 〈π ~y 〉 . strides(~y)

With strides we can reformulate our sum as:
τ ~s−1∑
x=0

~i [x]π (x+ 1 ↓ ~s) =
τ ~s−1∑
x=0

(~i · strides(~s))[x]

and equivalently we now have:

γ(~i , ~s) =
∑

~i · strides(~s)

Notice we remove the ranges as they are implicit properties of the vector.
We shall rely on certain trivial identities that we omit proof of:∑

~x . ~y =
∑

~x+
∑

~y

τ ~x = τ ~u ∧ τ ~y = τ ~v ⇒ (~x . ~y) · (~u . ~v) = (~x · ~u) . (~y · ~v)

τ ~x = τ ~y ⇒ k ↑ (~x · ~y) = (k ↑ ~x) · (k ↑ ~y)

τ ~x = τ ~y ⇒ k ↓ (~x · ~y) = (k ↓ ~x) · (k ↓ ~y)

55

Now returning to our original problem we have:

γ(~j , ~s) = γ((k ↑ ~i) . 〈0〉 . (k ↓ ~i), (k ↑ ρ ξ) . 〈1〉 . (k ↓ ρ ξ))

=
∑

~j · strides(~s)

we list ~j and the formerly derived strides(~s)

~j = (k ↑ ~i) . 〈0〉 . (k ↓ ~i)
strides(~s) = (π ~y)strides(~x) . 〈π ~y〉 . strides(~y)

and as they are the same size pairwise we may write:

~j · strides(~s) = ((k ↑ ~i) · (π ~y)strides(~x)) . (〈0〉 · 〈π ~y〉) . ((k ↓ ~i) · strides(~y))

= ((k ↑ ~i) · (π ~y)strides(~x)) . 〈0〉 . ((k ↓ ~i) · strides(~y))

which leads us to the sum, recalling that ~x = k ↑ ρ ξ and ~y = k ↓ ρ ξ :

γ(~j, ~s) =
∑

~j · strides(~s)

=
∑

(k ↑ ~i) · (π ~y)strides(~x) +
∑

(k ↓ ~i) · strides(~y)

=
∑

(k ↑ ~i) · (π ~y)strides(~x) . (k ↓ ~i) · strides(~y)

=
∑

((k ↑ ~i) . (k ↓ ~i)) · ((π ~y)strides(~x) . strides(~y))

=
∑

~i · strides(~x . ~y) =
∑

~i · strides(ρ ξ) = γ(~i, ρ ξ)

So in summary: When we perform a reshape of ξ to have a shape of ~s =
(k ↑ ρ ξ) . 〈1〉 . (k ↓ ρ ξ) for k such that 0 ≤ k ≤ δ ξ then for a valid index ~i

of ξ we have a valid index (k ↑ ~i) . 〈0〉 . (k ↓ ~i) of ~s
•
ρ ξ and its values are

defined by:

J((k ↑ ~i) . 〈0〉 . (k ↓ ~i)) ψ ~s
•
ρ ξK = Jrav ξK[γ(~i, ρ ξ)]

The motivation for expanding a bit on this particular case is, as we shall soon
get to, that we will define concatenation along the first dimension for arrays
with the requirement that two arrays can only be concatenated together if
the tail of their shapes are identical. So an array of shape 〈3, 5, 5〉 can only
be concatenated with one of shape 〈x, 5, 5〉. However it is natural to want
to concatenate together an array of shape 〈3, 5, 5〉 with one of 〈5, 5〉. The
result here shows us we can do that at no cost by reshaping the array of
shape 〈5, 5〉 to one of shape 〈1, 5, 5〉. Not dealing with this concatenation in
the definition of concatenation makes the requirements and definition of it
simpler.

56

4.4.6 Extending take, drop and concatenate to arrays

There is a natural extension of take, drop and concatenate for vectors to
arrays, specifically along the first dimension, that is consistent with our defi-
nitions for vectors. These are also largely consisten with Mullin’s definitions.
We specifically exclude the arrays that are scalar array, so we define the set
of arrays that exclude them:

A(E)>0 = {ξ ∈ A(E) | δ ξ 6= 0}

All the identities that held for take, drop and concatenate for vectors also
hold for arrays.

4.4.6.1 Take

Given an array ξ with shape ρ ξ we define the function:

↑∗ : Z≥0 ×A(E)>0 → A(E)

Such that:
ρ (i ↑∗ ξ) = 〈min(i, (ρ ξ)[0])〉 . (1 ↓ ρ ξ)

Where when min(i, (ρ ξ)[0]) = (ρ ξ)[0] then it is the original array:

i ↑∗ ξ = ξ

Otherwise given a valid index ~j, i.e 0 ≤? ~j <? ρ (i ↑∗ ξ), it is an array with
values:

J~j ψ (i ↑∗ ξ)K = J~j ψ ξK

4.4.6.2 Drop

Given an array ξ with shape ρ ξ we define the function:

↓∗ : Z≥0 ×A(E)>0 → A(E)

such that:

ρ (i ↓∗ ξ) = 〈(ρ ξ)[0]−min(i, (ρ ξ)[0])〉 . (1 ↓ ρ ξ)

Where when min(i, (ρ ξ)[0]) = (ρ ξ)[0] then it is an empty array:

i ↓∗ ξ = Θδ ξ

otherwise, given a valid index ~j, i.e 0 ≤? ~i <? ρ (i ↓∗ ξ), it is an array with
values:

J~j ψ (i ↓∗ ξ)K = J〈j + (ρ ξ)[0]〉 ψ ξK

57

4.4.6.3 Concatenate

Given arrays ξ1 and ξ2 with we define their concatenation ξ1 .∗ ξ2 such that:

.∗ : {(ξ1, ξ2) ∈ A(E)>0 ×A(E)>0 | (1 ↓ ρ ξ1) = (1 ↓ ρ ξ2)} → A(E)

That is concatenation is defined for arrays of matching elements in every but
the first element of their shapes or when either array is empty.

The shape of a concatenation of arrays is defined as:

ρ (ξ1 .∗ ξ2) = 〈(ρ ξ1)[0] + (ρ ξ2)[0]〉 . (1 ↓ ρ ξ1)

and its values are defined for valid indices ~i where 0 ≤? ~i <? ρ (ξ1 .∗ ξ2) as:

J~i ψ (ξ1 .∗ ξ2)K =

{
J~i ψ ξ1K when ~i[0] < (ρ ξ1)[0]

J~j ψ ξ2K when (ρ ξ1)[0] ≤~i[0] < (ρ ξ1)[0] + (ρ ξ2)[0]

where ~j = 〈~i[0]− (ρ ξ1)[0]〉 . (1 ↓ ~i) which is a valid index for ξ2.

Note for a valid index such that~i = 〈i〉 . (1 ↓~i) we have the identity following
from (1 ↓ ~i) ψ (〈i〉 ψ (ξ1 .∗ ξ2)) = (〈i〉 . (1 ↓ ~i)) ψ (ξ1 .∗ ξ2) that:

〈i〉ψ (ξ1 .∗ ξ2) =

{
〈i〉 ψ ξ1 when i < (ρ ξ1)[0]
〈i− (ρ ξ1)[0]〉 ψ ξ2 when (ρ ξ1)[0] ≤ i < (ρ ξ1)[0] + (ρ ξ2)[0]

4.4.7 Rotation

Here we describe an operation rotate right � : Z≥0 ×A(E) 7→ A(E) and
rotate left 	 : Z≥0 ×A(E) 7→ A(E) sometimes called shift, that reorders
the elements in an array:

For i ∈ Z≥0 and ξ such that δ ξ ≥ 1 we define:

ρ (i � ξ) = ρ (i 	 ξ) = ρ ξ

If 〈j〉 is a valid, possibly partial, index for i � ξ or i 	 ξ , i.e. 0 ≤ j < (ρ ξ)[0],
the array at that index is defined as:

〈j〉 ψ (i � ξ) = 〈(j − i) mod (ρ ξ)[0]〉 ψ ξ

〈j〉 ψ (i 	 ξ) = 〈(j + i) mod (ρ ξ)[0]〉 ψ ξ

In case of a partial index we are reordering indexing along the first dimension.
For vector arrays it is exactly:

〈j〉 ψ (i � ξ1) = 〈(j − i) mod τ ξ1〉 ψ ξ1

〈j〉 ψ (i 	 ξ1) = 〈(j + i) mod τ ξ1〉 ψ ξ1

58

4.4.7.1 Rotation example

Consider the array from before m5×5. The rotation 1 � m5×5 makes us index
it as follows:

〈j〉 ψ (〈i〉 ψ (1 � m5×5)) = 〈j〉 ψ (〈i− 1 mod 5〉 ψ m5×5)

= 〈i− 1 mod 5, j〉 ψ m5×5

Which will result in the “matrix” changing as follows:

Jm5×5K =

〈〈0, 1, 2, 3, 4〉,
〈5, 6, 7, 8, 9〉,
〈10, 11, 12, 13, 14〉,
〈15, 16, 17, 18, 19〉,
〈20, 21, 22, 23, 24〉〉

J1 � m5×5K =

〈〈20, 21, 22, 23, 24〉
〈0, 1, 2, 3, 4〉
〈5, 6, 7, 8, 9〉,
〈10, 11, 12, 13, 14〉,
〈15, 16, 17, 18, 19〉〉

There is another natural way of defining rotation2 in terms of taking and
dropping. We define it correctly for one complete rotation and give it the
name shuffle and the direction of the shuffle. Let l = (ρ ξ)[0], we then have:

shuffleright(i, ξ) = (l − i ↓∗ ξ) .∗ (l − i ↑∗ ξ)

shuffleleft(i, ξ) = (i ↓∗ ξ) .∗ (i ↑∗ ξ)

In order to make it correct for any rotation we may simply perform the
modulo for i and obtain:

shuffleright(i mod l, ξ) = i � ξ

shuffleleft(i mod l, ξ) = i � ξ

4.4.8 The point-wise and scalar extension

Given ξ1 ∈ A(E) and ξ2 ∈ A(E) such that ρ ξ1 = ρ ξ2. If we have a binary
function

op : E × E → E

Then we point-wise extend it to apply over arrays such that we get an array
of unchanged shape:

ρ (ξ1 opp ξ2) = ρ ξ1 = ρ ξ2

For valid indices ~i where τ~i = δ (ρ (ξ1 opp ξ2)) we define:

J~i ψ (ξ1 opp ξ2)K = J~i ψ ξ1K op J~i ψ ξ2K
2credits due to Benjamin Chetioui

59

For ξ ∈ A(E) if we have a unary function uop : E → E we point-wise extend
it to apply over arrays such that we get an array of unchanged shape:

ρ (uopp ξ) = ρ ξ

For valid indices ~i where τ~i = δ ξ we define:

J~i ψ (uopp ξ)K = uop J~i ψ ξK

We define the scalar extension for an array ξ ∈ A(E) of a binary operation
op : E × E → E and ξ0 ∈ A(E) as a shape preserving operation:

ρ (ξ0 ops ξ) = ρ (ξ ops ξ
0) = ρ ξ

For valid indices ~i where τ~i = δ ξ we define:

J~i ψ (ξ0 ops ξ)K = Jξ0K op J~i ψ ξK

J~i ψ (ξ ops ξ
0)K = J~i ψ ξK op Jξ0K

4.4.9 Reduction and scan

A useful operation over vectors in a programming or mathematics setting
is to compute the sum or product over one. A generalization of this is the
reduction operation, here along the first dimension.

Given an array ξ ∈ A(E) and a binary operation op : E × E → E such
that id(op) picks an identity element for op. That is for any e ∈ E we
have op(e, id(op)) = e = op(id(op), e) we define the reduction operation
reduceop : A(E) 7→ A(E) in terms of the point-wise extension of op. Note
the partiality; reduction is undefined for a scalar array.

First we decide that the shape of a reduction is the removal of an element in
the case of a vector array or the removal of a dimension otherwise:

ρ (reduceop(ξ1)) = 〈(ρ ξ1)[0]−min(1, (ρ ξ1)[0])〉
ρ (reduceop(ξ)) = 1 ↓ ρ ξ

We then decide the resulting array. Given ξ such that δ ξ ≥ 1 we have for
an empty array:

reduceop(Θ) = (1 ↓ ρΘ)
•
ρ (Jid(op)K−1)

This means we assign, by a reshape, the identity element for the operation
at every element of an array with the required shape. For a scalar array we
define it as:

reduceop(ξ0) = ξ0

60

For a vector array we define it as:

reduceop(ξ1) = (〈0〉 ψ ξ1) ops reduceop(1 ↓∗ ξ1)

Otherwise for any other array we define it as:

reduceop(ξ) = (〈0〉 ψ ξ) opp reduceop(1 ↓∗ ξ)

Is this definition sound? We need to inspect the shapes to determine this.
We see that it has a proper definition in the case of the empty array and a
vector array. In the case of any other array ξ we know the shape of 〈0〉 ψ ξ
will be ρ (〈0〉 ψ ξ) = 1 ↓ ρ ξ . Recalling the definition for drop for arrays we
have:

ρ (1 ↓∗ ξ) = 〈(ρ ξ)[0]−min(1, (ρ ξ)[0])〉 . (1 ↓ ρ ξ)

and we see ρ (reduceop(1 ↓∗ ξ)) = 1 ↓ ρ (1 ↓∗ ξ) = 1 ↓ ρ ξ which satisfies the
requirements for the point-wise extension; the shapes are the same for both
parameters of the point-wise extended operation.

Example: Consider a vector array such that ρ ξ = 〈10〉 and J〈i〉 ψ ξK = i,
that is JξK = ι 10. We compute reduce+(ξ) were id(+) = 0.

First observe that 〈0〉 ψ (i ↓∗ ξ1) = 〈i〉 ψ ξ1 and 1 ↓∗ (i ↓∗ ξ1) = (i+ 1) ↓∗ ξ1

as long as the dropping does not empty the array. Thus a repeated expansion
gives us:

reduce+(ξ) = (〈0〉 ψ ξ) +s . . .+s (〈9〉 ψ ξ) +s reduce+(10 ↓∗ ξ)

and the last term is

reduce+(10 ↓∗ ξ) = reduce+(Θ) = 〈〉 •ρ Jid(+)K−1 = ξ0

where Jξ0K = id(+) = 0 and we get:

Jreduce+(ξ)K = J〈0〉 ψ ξK +s . . .+s J〈9〉 ψ ξK +s Jreduce+(10 ↓∗ ξ)K
= 0 + . . .+ 9 + 0 = 45

Another useful construct is to keep the intermediary reductions. That is for
a sum 0 + 1 + 2 + 3 + 4 we would want a sequence of 0, 0 + 1, 0 + 1 + 2, 0 +
1 + 2 + 3, 0 + 1 + 2 + 3 + 4. Mullin has opted to call this a scan, but it is also
called a prefix sum.

Let scan : A(E) 7→ A(E) be a function that produces the array of all
intermediary reductions steps taken by reduce. Note the partiality; scan

61

being defined in terms of reduction is also undefined for a scalar array. Its
shape is:

ρ (scanop(ξ)) = ρ ξ

It is defined for empty arrays as:

scanop(Θ) = Θ

For a vector array as:

scanop(ξ1) = scanop((τ ξ − 1) ↑∗ ξ) .∗ reduceop(ξ)

Otherwise for any other array as:

scanop(ξ) = scanop((δ ξ − 1) ↑∗ ξ) .∗ reduceop(ξ)

4.5 On evaluation of expressions

It is important to stress that the intent in specifying these operations is not to
indicate an efficient implementation. The symbolic expansion and evaluation
of these expressions would likely be a horribly slow way of performing such
reductions. Rather the motivation is that we can specify these operations
and manipulate them as expressions that compose and have reduction steps
towards forms which we can generate code for. There are many considerations
to be had in finding the right way to implement an expression. For instance
do we move data when we rotate or do we reinterpret the index space? If we
are working with a small array and reading from it billions of times perhaps
it’s best to perform the data move to remove the reindexing and modulo
operations. However if the size of the array is in the billions it is likely a very
bad to perform the data move and wise to stick with a reindexing approach.

4.6 Summary and related work

We have shown the basic building blocks of MOA and its view of arrays.
There is a substantial body of work in Mullin’s thesis which simply cannot
be covered here. Certain aspects we have seen before like reduction but also
other operations are covered in her thesis[15]. Most array operations(e.g.
concatenation, take, drop and rotation) are extended to work along any di-
mension. The ψ indexing is extended to allow for array left arguments such
that it selects several indices(so it can be provided an array of valid indices
to select an array of values). Previous work has shown[18] it is feasible to

62

describe a reduction order on MOA expressions that will yield a form that
is possible to realize as performant array code. Compilation of performant
array code from MOA expressions is also explored in[17] which suggest using
a technique that has come to be called dimension lifting of arrays in which
an array is partitioned in subarrays to model a spread of a computation over
an array such that the subarrays can be sent off to be computed indepen-
dently(spread over threads, over a network of machines, etc.). In certain
cases where the Psi correspondence theorem may be applied(when multidi-
mensional indices do not end up being used in the computation itself and
must be kept) such subarrays may be entirely freed from the branching over-
head of nested loopings and we believe these kinds of forms are particularly
admissible for vectorization. We will later provide some data points towards
this end, but we will not make a strong claim as to whether this is the case
as more investigation is needed.

63

CHAPTER 5

Modeling A Mathemathics of Arrays in Magnolia

5.1 Introduction

In this chapter we will go through parts of a specification of MOA in Mag-
nolia. We will only use the specification or interface facility of Magnolia and
focus on the use of the concept construct in Magnolia. In Magnolia the con-
cept construct can be seen as similar to the interface construct in Java or the
typeclass in Haskell that both specify what operations types must support
or the contract that must be upheld for an implmentation of the concept.
However in Magnolia specifying axioms is also part of such a specification.
This has two obvious uses; to generate tests for any implemetation of the
concept to check that axioms hold and to rewrite expressions according to
the assertions of axioms.

We will take a tutorial-like approach as we walk through parts of our MOA
specifications.

5.2 Fundamentals

We begin by specifying that a semigroup is a type and an associative opera-
tion on that type.

64

concept Semigroup = {
type S ;
function op (a : S , b : S) : S ;
axiom assoc iat iveAxiom (a : S , b : S , c : S) {

assert op (op (a , b) , c) == op (a , op (b , c)) ;
}

} ;

Here we read the declaration type s; as declaring that any implementation
implementing this concept must provide a type named S. Furthermore a
function op, and a function in the pure mathemathical sense, must be pro-
vided such that it takes two values of type S and results in a type S when
applied. The axiom declaration axiom associativeAxiom(a:S, b:S, c:S) can
be interpreted as a collection of assertions that must hold for all values of
parameters passed to it. Here as mentioned before we may choose to use this
as a way of rejecting an implementation of the concept as non-conforming to
the specification. Another interpretation is to view axioms asserting truths
such that in any expression, in an implementation conforming to the semi-
group concept, we may substitute op(op(a,b),c) with op(a,op(b,c)) and get an
equivalent implementation.

There is a re-use or mixin mechanism in Magnolia concepts, which we will use
to specify a monoid. A monoid is a semigroup that has an identity element.

concept Monoid = {
use Semigroup [S => M] ;
function i d e n t i t y () :M;
axiom identityAxiom (a :M){

assert op (i d e n t i t y () , a) == a ;
assert op (a , i d e n t i t y ()) == a ;

}
} ;

Here use Semigroup [S =>M]; does two things. It will perform the renaming
[S =>M], i.e. replace the symbol name S with the symbol name M, on
every declaration in Semigroup. Then the inclusion of use ... is to perform
the union of the declarations in Semigroup [S =>M] and Monoid. Thus the
complete expansion after the union is:

concept Monoid = {
type M;
function op (a :M, b :M) :M;
function i d e n t i t y () :M;

65

axiom assoc iat iveAxiom (a :M, b :M, c :M) {
assert op (op (a , b) , c) == op (a , op (b , c)) ;

}
axiom identityAxiom (a :M){

assert op (i d e n t i t y () , a) == a ;
assert op (a , i d e n t i t y ()) == a ;

}
} ;

Where any ordering of declarations are all equivalent. In our MOA specifi-
cation we found that the psi indexing was a partial right action:

concept Part ia lR ightAct ion = {
use Monoid ;
type S ;
//predicate such that defined(m,s)

//holds when action(m,s) is defined

predicate de f ined (m:M, s : S) ;
function ac t i on (m:M, s : S) : S guard de f ined (m, s) ;
axiom ActionAxiom (m1:M, m2:M, s : S)
guard de f ined (m1, s) && de f ined (m2, s) {

assert ac t i on (op (m1,m2) , s) ==
act i on (m2, ac t i on (m1, s)) ;

}
axiom identityAxiom (s : S) {

assert ac t i on (i d e n t i t y () , s) == s ;
}

} ;

Here we see two new constructs introduced; the predicate and the guard. A
predicate operates as expected; it either holds or does not hold depending
on its parameters. A guard expression following a function has the effect
that the predicate expression that follows the guard statement must hold in
order for the function to be applied. A guard on an axiom similarly state
that the axiom applies when the guard expression holds. For functions the
guard expression may be seen as dealing with partiality. For axioms we may
consider an unguarded axiom such as:

axiom ActionAxiom (m1:M, m2:M, s : S) { . . . }

as for all values m1:M, m2:M and s :S the assertions in {...} hold whereas

axiom ActionAxiom (m1:M, m2:M, s : S)
guard de f ined (m1, s) && de f ined (m2, s) { . . . }

66

is to be interpreted as for all m1:M, m2:M and s :S where defined(m1,s) and
defined(m2,s) hold then the assertions in {...} hold.

5.3 Building our building blocks

Now we have couple of specifications we can combine and use, but we need
some more. In Magnolia there is a large amount of concepts in its standard
library, but we will not rely on them in an effort to have this be a stand-alone
effort. This naturally has the effect of certain types being underspecified, but
they shall suffice for our use. First is a non-negative integer specification that
should be substituted with a fully specified non-negative integer specification.

concept Int = {
predicate < (a : Int , b : Int) ;
predicate <= (a : Int , b : Int) ;

//Gives us zero and addition

use Monoid [M => Int , i d e n t i t y => zero , op => +] ;

//Gives us one and multiplication

use Monoid [M => Int , i d e n t i t y => one , op => ∗] ;

function − (a : Int , b : Int) : Int guard b <= a ;
function min (a : Int , b : Int) : Int ;

axiom minAxiom(a : Int , b : Int) {
assert (a <= b) => min (a , b) == a ;
assert (b < a) => min (a , b) == b ;

}

// l < u && l <= i < u, sometimes written i in [l,u)

predicate inRange (i : Int , l : Int , u : Int) ;

// l <= u && l <= i <= u, sometimes written i in [l,u]

predicate i nRange Inc lu s ive (i : Int , l : Int , u : Int) ;

axiom inRangeAxiom
(i : Int , l o w e r I n c l u s i v e : Int , upper : Int)
guard l o w e r I n c l u s i v e < upper {

assert inRange (i , l o w e r I n c l u s i v e , upper) <=>
(l o w e r I n c l u s i v e <= i) && (i < upper) ;

}

67

axiom inRangeInclusiveAxiom
(i : Int , l o w e r I n c l u s i v e : Int , uppe r Inc lu s i v e : Int)
guard l o w e r I n c l u s i v e <= uppe r Inc lu s i v e {

assert i nRange Inc lu s ive (i , l o w e r I n c l u s i v e , uppe r Inc lu s i v e)
<=> (l o w e r I n c l u s i v e <= i) && (i <= uppe r Inc lu s i v e) ;

}
} ;

We have intentionally underspecified the Int type as describing non-negative
integers is not the main focus here. We turn our focus to the vector which is
fundamental in further specification.

concept Vector = {
use Int ;
//The Vector type

type V;
//The element type

type E;

function s i n g l e t o n (e :E) :V;
function s i z e (v :V) : Int ;
function get (i : Int , v :V) :E guard i < s i z e (v) ;
function take (i : Int , v :V) :V;
function drop (i : Int , v :V) :V;
// Here cat is short for conCATenate

use Monoid [M => V, op => cat , i d e n t i t y => empty] ;

That is the function and type declaration part of our needed vector type. We
consider them self-explanatory however someone not as biased would need
to read documentation to understand these operations. However documen-
tation can have wildly varying formalisms for explaining what is going on.
In Magnolia with axioms we have one consistent way, we proceed to specify
our functions:

axiom emptySizeAxiom () {
assert s i z e (empty ()) == zero () ;

}
axiom s ing le tonSizeAxiom (e :E) {

assert s i z e (s i n g l e t o n (e)) == one () ;
}
axiom gets ing letonAxiom (e :E) {

assert get (zero () , s i n g l e t o n (e)) == e ;
}

68

axiom VectorEmptyeqAxiom () {
assert empty () == empty () ;

}
axiom VectorNonemptyeq (i : Int , l :V, r :V)
guard s i z e (l) != zero () && s i z e (l) == s i z e (r) &&

inrange (i , z e ro () , s i z e (l)) {
assert get (i , l) == get (i , r) ;

}
axiom takeSizeAxiom (i : Int , v :V) {

assert s i z e (take (i , v)) == min (i , s i z e (v)) ;
}
axiom dropSizeAxiom (i : Int , v :V) {

assert s i z e (drop (i , v)) == s i z e (v)−min (i , s i z e (v)) ;
}
axiom takeEmptyAxiom (i : Int , v :V)
guard s i z e (take (i , v)) == zero () {

assert take (i , v) == empty () ;
}
axiom dropEmptyAxiom (i : Int , v :V)
guard s i z e (drop (i , v)) == zero () {

assert drop (i , v) == empty () ;
}
axiom takeNonEmptyAxiom (i : Int , j : Int , v :V)
guard s i z e (take (i , v)) != zero () &&
inRange (j , ze ro () , s i z e (take (i , v))) {

var taken = take (i , v) ;
assert get (j , taken) == get (j , v) ;

}
axiom dropNonEmptyAxiom(i : Int , j : Int , v :V)
guard s i z e (drop (i , v)) != zero () &&
inRange (j , ze ro () , s i z e (drop (i , v))) {

var dropped = drop (i , v) ;
assert get (j , dropped) == get (j+i , v) ;

}
axiom catSizeAxiom (v1 :V, v2 :V) {

assert s i z e (cat (v1 , v2)) == s i z e (v1)+ s i z e (v2) ;
}
axiom catAxiom (i : Int , v1 :V, v2 :V)
guard v1 != empty () && v2 != empty () &&
inRange (i , z e ro () , s i z e (cat (v1 , v2))) {

var v1v2 = cat (v1 , v2) ;
assert inRange (i , z e ro () , s i z e (v1)) =>

get (i , v1v2) == get (i , v2) ;

69

assert inRange (i , s i z e (v1) , s i z e (v1)+ s i z e (v2)) =>
get (i , v1v2) == get (i−s i z e (v1) , v2) ;

}
//This axiom contains enough to

//prove the associativity axiom

axiom takedropcatAxiom (k : Int , v1 :V, v2 :V)
guard zero () <= k && k <= s i z e (v1) {

assert take (k , cat (v1 , v2)) == take (k , v1) ;
assert drop (k , cat (v1 , v2)) == cat (drop (k , v1) , v2) ;
assert cat (take (k , v1) , drop (k . v1)) == v1 ;

}
} ;

Recall in MOA we used the notion of lifting a relations such that for ex-
ample x <∗ 〈i0, . . . , in−1〉 ⇔ x < i0 ∧ . . . ∧ x < in−1 and 〈i0, . . . , in−1〉 <∗
〈s0, . . . , sn−1〉 ⇔ i0 < s0 ∧ . . . ∧ in−1 < sn−1 we specify that as a lifted
relation.

concept L i f t e d R e l a t i o n s = {
use Vector ;

predicate r (l :E, r :E) ;
predicate po intwi s e (v1 :V, v2 :V) ;
predicate a l l (e :E, v :V) ;

axiom pointwiseEmptyAxiom () {
assert po intwi s e (empty () , empty ()) ;

}
axiom pointwiseNonemptyAxiom (v1 :V, v2 :V, i : Int)
guard s i z e (v1) == s i z e (v2) &&

s i z e (v1) != zero () &&
inRange (i , z e ro () , s i z e (v1)) {

assert po intwi s e (v1 , v2) => r (get (i , v1) , get (i , v2)) ;
}
axiom allEmptyAxiom (e :E) {

assert a l l (e , empty ()) ;
}
axiom allNonemptyAxiom (e :E, v :V, i : Int)
guard s i z e (v) != zero () && inRange (i , z e ro () , s i z e (v)) {

assert a l l (e , v) => r (e , get (i , v)) ;
}

} ;

70

Then we have an additional useful and recurring concept called a reduction
which can be used to specify sums or products. Another common name for
this concept is a right fold. It is the concept that given a binary function
and an identity element we can perform a reduction over the vector.

concept Reduction = {
use Vector ;

function binop (l :E, r :E) :E ;
function i d e n t i t y () : E ;
function reduce (v :V) :E ;

axiom reductionAxiom (v :V) {
assert s i z e (v) == zero () =>

reduce (v) == i d e n t i t y () ;

assert s i z e (v) != zero () =>
reduce (v) == binop (get (zero () , v) ,

reduce (drop (one () , v))) ;
}

} ;

We also will need to be able to apply a function over vector’s elements. We
introduce a map that applies a binary function over the vector that maps e
to g(v, e) where v is some supplied value and e is the old vector element.

concept BMap = {
use Vector ;

function bop (e1 :E, e2 :E) :E ;
function bopmap(e :E, V:V) :V;

axiom bmappedemptyAxiom(e :E) {
assert bopmap(e , empty ()) == empty () ;

}

axiom bmappedNonemptyAxiom(i : Int , v :V, e :E)
guard zero () < s i z e (v) && inRange (i , z e ro () , s i z e (v)) {

assert s i z e (bopmap(e , v)) == s i z e (v) ;
assert get (i , bopmap(e , v)) == bop (e , get (i , v)) ;

}
} ;

71

Finally we add the ability to generate a vector from a function. This is
typically a very useful operation and will be used to specify the iota vector.

// Generating a vector with a function

concept FunctionToVector = {
use Vector ;

function f (i : Int) :E ;
function make(s i z e : Int) : Vector ;

axiom makeZeroAxiom () {
assert make(zero ()) == empty () ;

}
axiom makeAxiom(i : Int , s i z e : Int)
guard inRange (i , z e ro () , s i z e) {

assert get (i , make(s i z e)) == f (i) ;
}

} ;

5.4 Indices and shapes

Now we will use our vector concept to specify a vector of non-negative inte-
gers. This is needed for indices and shapes which are just vectors of integers.
Here we will use certain additonaly constucts of Magnolia, namely the ability
to name a renaming and use it several times.

renaming IntVectorR = [V => IntVector , E => Int] ;
concept IntVector = {
use Vector [IntVectorR] ;
// common reductions + and *

use Reduction [IntVectorR]
[reduce => sum ,

i d e n t i t y => zero ,
binop => +] ;

use Reduction [IntVectorR]
[reduce => product ,

i d e n t i t y => one ,
binop => ∗] ;

// common maps + and *

use BMap [IntVectorR]
[bop => + ,
bopmap => +] ;

use BMap [IntVectorR]

72

[bop => ∗ ,
bopmap => ∗] ;

use L i f t e d R e l a t i o n s [IntVectorR]
[r => < ,
po in tw i s e => < ,
a l l => <] ;

use L i f t e d R e l a t i o n s [IntVectorR]
[r => <= ,
po intwi s e => <= ,
a l l => <=] ;

} ;

Recall the iota function, which is an empty vector for a parameter of zero or
can be generated by the identity function for parameters above zero.

concept I o ta = {
use FunctionToVector [IntVectorR]

[make => i o ta ,
f => id] ;

axiom id (i : Int) {
assert id (i) == i ;

}
} ;

It will be useful to specify permutations of the iota vector. In particular
this is a means of checking that a gamma function given a shape and its
mapping, collected in a vector, of all possible indices for that shape results
in a vector that is a permutation of the iota vector for the size of the index
space determined by the shape.

concept Permutation = {
use Int ;
use IntVector ;
use I o ta ;

// for any element i in the vector i < size(v)

predicate bounded (v : IntVector) ;

axiom boundedEmptyAxiom () {
assert bounded (empty ()) ;

}
axiom boundedNonemptyAxiom (i : Int , v : IntVector)
guard inRange (i , z e ro () , s i z e (v)) && zero () < s i z e (v) {

73

assert bounded (v) => get (i , v) < s i z e (v) ;
}

//This function , taking v such that any element e in v

//is such that e < size(v), must first perform

//the assignment b[i] = size(v) for 0 <= i < size(v) and

//then the assignment b[v[i]] = v[i] for 0 <= i < size(v)

//thus the postcondition is that for any 0 <= i < size(v)

//b[i] <= size(v) and b is the result of reorder

//

//If any b[i] == size(v) at least two elements in v were

//equal. If not all were distinct and b is now iota

function r eo rde r (v : IntVector) : IntVector
guard bounded (v) ;

axiom reorderEmptyAxiom () {
assert r eo rde r (empty ()) == empty () ;

}

axiom reorderNonEmptyAxiom (i : Int , v : IntVector)
guard inRange (i , z e ro () , s i z e (v)) && bounded (v) {

assert get (get (i , v) , r eo rde r (v)) == get (i , v) ;
}
axiom reorderValuesNonEmptyAxiom (i : Int , v : IntVector)
guard inRange (i , z e ro () , s i z e (v)) && bounded (v) {

assert get (i , r e o rde r (v)) <= s i z e (v) ;
}

//predicate that holds if v is

//a permutation of the iota vector

predicate permutation (v : IntVector) ;

axiom permutationAxiom (p : IntVector) guard bounded (v) {
assert i o t a (s i z e (p)) == reo rde r (p) ;

}
} ;

Now we have enough to cover the gamma function and related.

concept Gamma = {
use IntVector ;
use I o ta ;

74

function gamma(i : IntVector , s : IntVector) : Int ;
function s t r i d e (s : IntVector , k : Int) : Int ;
function s t a r t (i : IntVector , s : IntVector , k : Int) : Int ;

axiom gamma(i : IntVector , s : IntVector)
guard s i z e (i) == s i z e (s) && i < s {

var s i z e = s i z e (i) ;
assert zero () == s i z e =>

gamma(i , s) == zero () ;

assert one () == s i z e =>
gamma(i , s) == get (zero () , i) ;

assert one () < s i z e =>
gamma(i , s) == get (s i z e−one () , i) +
get (l a s t , i)∗gamma(take (s i z e−one () , i) ,

drop (s i z e−one () , i)) ;
}

axiom strideStartGammaAxiom
(k : Int , i : IntVector , s : IntVector)
guard s i z e (i) == s i z e (s) && i < s &&
inRange Inc lu s ive (k , ze ro () , s i z e (s)) {

assert s t r i d e (s , k) == product (drop (k , s)) ;

assert s t a r t (i , s , k) == gamma(take (k , i) , take (k , s)) ;

assert gamma(cat (take (k , i) , drop (k , i)) , s) ==
s t a r t (i , s , k) ∗ s t r i d e (s , k) + gamma(drop (k , i) ,

drop (k , s)) ;
}

function s e c t i o n (i : IntVector , s : IntVector) : IntVector
guard s i z e (i) <= s i z e (s) && i < take (s i z e (i) , s) ;

axiom sectionAxiom (i : IntVector , s : IntVector)
guard s i z e (i) <= s i z e (s) && i < take (s i z e (i) , s) {

var o f f s e t s = i o t a (product (drop (k , s))) ;
var s t a r t = s t a r t (i , s , s i z e (i)) ;
assert s e c t i o n (i , s) == s t a r t + o f f s e t s ;

}
} ;

75

5.5 MOA in Magnolia

Finally we have arrived at a point where we can specify MOA in Magnolia.
Here we will use most of our concepts so far. However to make our spec-
ification independent of a fixed bijection between multidimensional indices
and unidimensional indices we will only specify that we need a bijection.
The strategy here is to specify that our gamma function mapped over all
multidimensional indices must result in the iota vector when reordered.

concept GammaMap = {
use IntVector ;
use Vector [E => IntVector , V => I n d i c e s] ;

function gamma(i : IntVector , s : IntVector) : Int ;

//The collection of gamma(i,s) with i from ix

function gammaMap(ix : Ind i ce s , s : IntVector) : IntVector ;

axiom emptyAxiom (s : IntVector) {
assert gammaMap(empty () , s) == empty () ;

}

axiom nonEmptyAxiom(i : Int , i x : Ind i c e s , s : IntVector)
guard zero () < s i z e (i x) && inRange (i , z e ro () , s i z e (i s)) {

assert s i z e (gammaMap(ix , s)) == s i z e (i x) ;
assert get (i , gammaMap(ix , s)) == gamma(get (i , i x) , s) ;

}
} ;

With concepts we can partition MOA into the fundamental definitions and
operations. First we specify the fundamental definitions of MOA.

concept MOA = {
use Int ;
use I o ta ;

//The array type

type A;

//The element type

type E;

//The shape and any index of an array is a Vector of Int

use IntVector ;

76

//Projection to get the defining properties of an array

function dimensions (a :A) : Int ;
function shape (a :A) : IntVector ;
function s i z e (a :A) : Int ;

axiom sizeAxiom (a :A) {
assert s i z e (a) == product (shape (a)) ;

}

predicate s ca la rArray (a :A) ;
predicate vectorArray (a :A) ;
predicate multiArray (a :A) ;

axiom a r rayC la s s i f i c a t i onAx iom (a :A) {
assert zero () == dimensions (a) <=> s ca la rArray (a) ;
assert one () == dimensions (a) <=> vectorArray (a) ;
assert one () < dimensions (a) <=> multiArray (a) ;

}

//Scalar projection of scalar array

function t oSca l a r (a :A) :E guard s ca la rArray (a) ;
function f romScalar (e :E) :A;
axiom sca larPro ject ionAxiom (e :E) {

assert t oSca l a r (f romScalar (e)) ;
}

//Vector projection of vector array

function toVector (a :A) : Vector guard vectorArray (a) ;
function fromVector (v : Vector) :A;
axiom project ionAxiom (v : Vector) {

assert toVector (fromVector (v)) == v ;
}
//Array selection with psi

use Part ia lR ightAct ion [M => IntVector ,
S => A,
op => cat ,
a c t i on => ps i ,
d e f i ned => va l id Index] ;

predicate inShape (i : IntVector , s : IntVector) ;
axiom inShapeAxiom (i : IntVector , s : IntVector) {

assert inShape (i , s) <=>

77

s i z e (i) == s i z e (s) && i < s ;
}

predicate f u l l I n d e x (i : IntVector , a :A) ;
axiom fu l l IndexAxiom (i : IntVector , a :A) {

assert f u l l I n d e x (i , a) <=>
s i z e (i) == dimensions (a) &&
inShape (i , shape (a)) ;

}

predicate p a r t i a l I n d e x (i : IntVector , a :A) ;
axiom part ia l IndexAxiom (i : IntVector , a :A) {

assert p a r t i a l I n d e x (i , a) <=>
s i z e (i) < dimensions (a) &&
inShape (i , take (s i z e (i) , shape (a))) ;

}

//We specify the meaning of a valid index

//for which psi is defined

axiom validIndexAxiom (i : IntVector , a :A) {
assert va l id Index (i , a) <=>

f u l l I n d e x (i , a) | | p a r t i a l I n d e x (i , a) ;
}

axiom psiIndexingShapeAxiom (i : IntVector , a :A)
guard va l id Index (i , a) {

assert shape (p s i (i , a)) == drop (s i z e (i) , shape (a)) ;
}

function rav (a :A) :A;
axiom ravDimensionsAxiom (a :A) {

assert dimensions (rav (a)) == one () ;
}
axiom ravScalarAxiom (a :A) guard s ca la rArray (a) {

assert toVector (rav (a)) == s i n g l e t o n (t oSca l a r (a)) ;
}
axiom ravVectorAxiom (a :A) guard vectorArray (a) {

assert toVector (rav (a)) == toVector (a) ;
}

//Given a shape produce all full indices in the shape

function i n d i c e s (s : IntVector) : I n d i c e s ;
axiom ind icesS izeAxiom (s : IntVector) {

78

assert s i z e (i n d i c e s (s)) == product (s) ;
}
axiom zeroIndicesAxiom (s : IntVector)
guard product (s) == zero () {

assert i n d i c e s (s) == empty () ;
}
axiom oneIndicesAxiom (s : IntVector)
guard product (s) == one () {

assert get (zero () , i n d i c e s (s)) == empty () ;
}
axiom indicesUniqueAxiom (i : Int , j : Int , s : IntVector)
guard one () < product (s) && i != j &&
inRange (i , z e ro () , product (s)) &&
inRange (i , z e ro () , product (s)) {

assert get (i , i n d i c e s (s)) != get (j , i n d i c e s (s)) ;
}

//This will introduce the gamma function

use GammaMap;
//We require that it is a bijection

//between multiindices and uniindices

axiom bjectiveGammaAxiom (s : IntVector) {
assert i o t a (product (s)) ==

reo rde r (gammaMap(i n d i c e s (s) , s)) ;
}

axiom ravAnyAxiom (i : IntVector , a :A)
guard f u l l I n d e x (i , a) {

assert t oSca l a r (p s i (i , a)) ==
get (gamma(i , shape (a)) , toVector (rav (a))) ;

}
} ;

We have now have the fundamental definitions of MOA in a concept. No-
tice we have not specified any operations. These can be defind piecewise as
needed. As an example we will specify the outer product from MOA that
corresponds to computing the Kronecker product. It is not indexed iden-
tically(as a 2d-matrix) as it preserves sub-matrices. In brief the Kronecker
product can be described given matrices A and B:

A =

[
1 2
3 4

]
B =

 5 6 7 8
9 10 11 12
13 14 15 16

79

then the Kronecker product is:

A⊗B =

[
1×B 2×B
3×B 4×B

]
Where we define × as some binary operation:

x×B =
x× 5 x× 6 x× 7 x× 8
x× 9 x× 10 x× 11 x× 12
x× 13 x× 14 x× 15 x× 16

Notice with the matrix formulation it becomes hard to refer to the sub-
matrices of the resulting computation. This is information that is preserved
in the MOA formulation, this is a topic that is explored further in [16] where
the inspiration for this example is from. We now model this in MOA as an
example of specification with MOA in Magnolia.

concept OuterProduct = {
use MOA;
function op (e1 :E, e2 :E) :E ;
function opM(e :E, a :A) :A;

axiom opMAxiom(e :E, a :A, i : IntVector)
guard inShape (i , a) {

assert shape (opM(e , a)) == shape (a) ;
assert p s i (i , opM(e , a)) == op (e , p s i (i , a)) ;

}

function two () : Int ;
axiom numbersAxiom () {

assert two () == one ()+one () ;
}

function outer (a :A, b :A) : a
guard dimensions (a) == two () &&

dimensions (b) == two () ;

axiom outerShapeAxiom (a :A, b :A) guard
dimensions (a) == two () && dimensions (b) == two () {

assert shape (outer (a , b)) == cat (shape (a) ,
shape (b)) ;

}

As can be seen we first describe the operations we need for the product. That
opM(which corresponds to ×) is op with a provided element applied over an

80

array. We describe needed shapes for the outer operation and describe the
resulting shape in terms of the shapes of its parameters. We then describe
the change in values of the resulting array of outer.

axiom outerValuesAxiom (a :A, b :A, i j k l : IntVector)
guard dimensions (a) == two () && dimensions (b) == two () &&

inShape (i j k l , shape (outer (a , b))) {
var i j = take (two () , i j k l) ;
var k l = drop (two () , i j k l) ;
assert p s i (i j k l , outer (a , b)) ==

p s i (kl , opM(p s i (i j , a) , b)) ;
}

} ;

This completes our specification of an outer product and is an example of
MOA put to use. The value produced here is that we have a layout in-
dependent description of an operation for which we can supply any given
bijective gamma function and experiment with different memory layouts of
the operation. Every operation in MOA is described in this fashion.

5.6 Summary

We have described the fundamental parts of MOA in Magnolia based on the
simplified MOA described in the former chapter. We have focused on a lim-
ited subset of what is available in Magnolia and we have opted to specify from
scratch. Many concepts are already in Magnolia, but it is not as instructive
to simply use them here. In a specification meant for inclusion in Magnolia’s
libraries we would rely on many of its specifications, among them likely a
better integer specification, which in this treatment is likely underspecified.
The specification of operations so far are concerned with the “what” and
the “how” at the logical level where arrays are described in terms of shapes
and values with respect to layout independent abstract indexing, or in other
words arrays described in terms of their Denotational Normal Form (DNF).
When a layout is selected and abstract indexing is translated to concrete
indexing we have description of arrays and operations in their Operational
Normal Form (ONF). We have now considered the former(DNF) to comple-
tion and will move on to the latter(ONF), but we first take a break from
MOA to consider other array abstractions and libraries.

81

CHAPTER 6

Other array abstractions and libraries

6.1 introduction

As we saw in the array programming chapter there are important perfor-
mance considerations when a programmer is given an array type and is free
to choose the iteration order over its index space. One might argue that the
basic constructs offered in C and the sligthly more involved constructs in
Fortran devolve into little more than a thin veil over flat access to memory
for such considerations. Certainly what is to be expressed in terms of com-
putation cannot be the only concern; the order of computation must be an
important concern for performant computations.

In this chapter we will review array libraries that raise the level of abstraction
for array programming. These can be considered as Domain Specific Lan-
guage (DSL)s specifically for array programming. These abstracted views of
arrays can be quite involved and we cannot delve into all facets of them, but
we pick some and attempt to convey their conceptual essence, theoretical
underpinnings and usefulness in abstraction.

82

6.2 Petalisp and array operations

Petalisp [7], is a Common Lisp library that attempts to generate high per-
formance parallel array computations with a Just In Time Compiler (JIT)
for its array operations.

It is conceptually simple with only a single data structure which is the strided
array and four operations on it. We will attempt to avoid language details
and instead focus on the underlying concepts of the library. The focus will
be to explain the primitives given and consider their expressiveness.

6.2.1 The primitives of Petalisp

An array in Petalisp need not have a contiguous index space. That is an index
space of {0, 2, 4, 6} is perfectly valid and would be expressed by range(0, 6, 2).
Multidimensional indices are expressed through several such ranges. We
begin by defining the concept of a range and then the Petalisp Array:

• A range is a space R ⊂ Z where xl, xu, s ∈ Z and xl < xu given by:

range(xl, xu, s) = {x ∈ Z | xl ≤ x ≤ xu ∧ ∃(k ∈ Z)[x = xl + ks]}

from which we summarize that:

– xl is the inclusive lower bound

– xu is the inclusive upper bound

– s is the stride1

such that:

range(xl, xu, s) = {xl + ks | k ∈ {0, 1, . . . , n} ∧ xl ≤ xl + ks ≤ xu}
= {xl = xl + 0s, xl + 1s, . . . , xl + ns = xu}

remark: As xu is inclusive range(0, 5, 2) is an invalid range whereas
range(0, 4, 2) is a valid range. The size of the range n is not given but
can be computed from the constraints as xu = xl+ns yields n = xu−xl

s
.

• A strided array of n dimensions is a function f : R1 × · · · × Rn → O
where O is a set of objects and Ri are defined by ranges. We will refer
to the domain of f and its index space interchangably.

1take care not to confuse this use of the word stride with former use of the word stride

83

Petalisp uses the terminology of an array having a shape and a list of ranges
is Petalisp’s representation for the shape of an array [7, p. 13]. That is if an
array has a domain determined by range(l1, u1, s1) × · · · × range(ln, un, sn)
then its shape is the list or tuple 〈〈l1, u1, s1〉, . . . , 〈ln, un, sn〉〉.
We shall use Petalisp’s definition of a shape for our review of Petalisp, but
however note that we could have stuck to the definition of a shape we already
have some familiarity with by letting an index space defined by:

range(l1, u1, s1)× · · · × range(ln, un, sn)

have the shape:

〈u1 − ll
s1

+ 1, . . . ,
un − ln
sn

+ 1〉

and instead speak of arrays with equivalent domains or index spaces, deter-
mined by a list of ranges, as in the case of equivalent shapess only equally
sized index spaces can be inferred.

For the domain of strided arrays we shorten R1×· · ·×Rn to R1,...,n onwards.
Again note the possibility of expressing discontigous index spaces. Let s =
〈〈0, 10, 5〉, 〈0, 3, 1〉〉. The index space for a strided array with shape s defining
its domain is given by {0, 5, 10} × {0, 1, 2, 3}. As seen here the first index
position for example “strides” from 0 to 5.

Petalisp mainly consists of four operations on these strided arrays:

• Application: c = apply(g, a, b) denotes an array where g is binary
function over objects g : O × O → O and a, b are arrays of identical
shape such that if i is a valid index then c(i) = f(a(i), b(i)).

Example: The elementwise sum of two arrays apply(+, a, b).

• Reduction: b = reduce(g, a) denotes either an object O when a is
1-dimensional or an n − 1 dimensional array of index space R1,...,n−1

that is the result of reducing an n dimensional array a of index space
R1,...,n along the last axis with a binary function g : O ×O → O.

We define reduction for an array a with index space R1,...,n by cases
n = 1 and n > 1:

Remark: The reduction operator is largely modelled after the Com-
mon Lisp reduction function. We may deviate slightly from its exact
details in that we specify that the binary operator g must be commu-
tative and associated with an identity element s.t. identity(g) = e and
g(e, k) = g(k, e) = k.

84

Figure 6.1: reduce with a function g

xl xl + s xl + 2s xl + 3s xl + 4s xl + 5s xl + 6s xl + 7s

g

g

g

g

g

g

g

For the case when n = 1 and a has domain defined by range(xl, ul, s),
the result is an object:

reduce(g, a) = foldr(identity(g), xl)

foldr(r, i) =

{
foldr(g(r, i), i+ s) i ≤ xu
r otherwise

see figure 6.1 if this is unclear. Note that if g is associative the opera-
tion can be reordered as seen in figure 6.2.

For the case when n > 1 and a has domainR1,...,n whereRn = range(xl, xu, s),
the result is an array with domain R1,...,n−1 such that:

(reduce(g, a))(i1, . . . , in−1) = reduce(g, {k(x) = a(i1, . . . , in−1, x) | x ∈ Rn})

Example: Consider an array a with a shape of 〈〈1, 3, 1〉, 〈5, 7, 1〉〉, i.e.

85

Figure 6.2: reduce with an associative function g

xl xl + s xl + 2s xl + 3s xl + 4s xl + 5s xl + 6s xl + 7s

g g g g

g g

g

a has domain {1, 2, 3} × {5, 6, 7}

a = {〈1, 5〉 7→ 1, 〈2, 5〉 7→ 2, 〈3, 5〉 7→ 3,

〈1, 6〉 7→ 4, 〈2, 6〉 7→ 5, 〈3, 6〉 7→ 6,

〈1, 7〉 7→ 7, 〈2, 7〉 7→ 8, 〈3, 7〉 7→ 9 }

then we have for R2 = range(5, 7, 1):

reduce(+, a) = {1 7→ reduce(+, {k(x) = a(1, x)|x ∈ R2}),
2 7→ reduce(+, {k(x) = a(2, x)|x ∈ R2}),
3 7→ reduce(+, {k(x) = a(3, x)|x ∈ R2}) }

which results in

reduce(+, a)(i) = {1 7→ 0 + 1 + 4 + 7 = 12,

2 7→ 0 + 2 + 5 + 8 = 15,

3 7→ 0 + 3 + 6 + 9 = 18 }

We may regard this example as the sum of the rows in the 3×3 matrix1 2 3
4 5 6
7 8 9

For an array representing a cube of elements the reduction with addition
would be a bottom plane where each point in that plane is the sum of
the elements intersecting a normal line starting there in the cube.

86

• Fusion: Given two arrays a, b then fuse(a, b) is defined when the arrays
have an index space, where a’s is Ra

1,...,n and b’s is Rb
1,...,n, such that given

any Ra
i = range(al, au, s) and Rb

i = range(bl, bu, s) then bl = au + s, i.e.
a range of b at dimension i starts one s stride from where a range of a
at dimension i ends.

The index space of fuse(a, b) is defined as R
fuse(a,b)
1,...,n such that R

fuse(a,b)
i =

range(al, bu, s) where Ra
i = range(al, au, s) and Rb

i = range(bl, bu, s).
The values of fuse(a, b) is defined as:

fuse(a, b)(i1, . . . , in) =

{
a(i1, . . . , in) when 〈i1, . . . , in〉 ∈ Ra

1,...,n

b(i1, . . . , in) when 〈i1, . . . , in〉 ∈ Rb
1,...,n

In effect fuse(a, b) = a ∪ b. It’s clearly the case that fusion is asso-
ciative(by associativity of union) and thus we can collapse big fusions
together and write fuse(a1, a2, . . . , an) = a1 ∪ . . . ∪ an.

Example: Let the index space of a(x, y) = x be defined by the shape
〈〈1, 3, 1〉, 〈1, 3, 1〉〉 and of b(x, y) = x by the shape 〈〈4, 6, 1〉, 〈4, 6, 1〉〉.
The condition to fuse these two arrays together are met and thus
fuse(a, b) is equivalent to the array defined by

fuse(a, b)(x, y) =

{
a(x, y) when 〈x, y〉 ∈ range(1, 3, 1)× range(1, 3, 1)

b(x, y) when 〈x, y〉 ∈ range(4, 6, 1)× range(4, 6, 1)

which we can consider to represent the matrix1 1 1 4 4 4
2 2 2 5 5 5
3 3 3 6 6 6

The requirement that one fuse together arrays that don’t overlap is
likely because it allows for either a very simple implementation of copy-
ing non-overlapping elements from two arrays to a new array or as we
shall consider further that we may create a structure that satisfies an
array-like interface, but that really dispatches indexing to a referenced
array. By making arrays resulting from fusion(s) outwardly keep a
singular range while internally maintaining its subdivisions into con-
stituent ranges, selecting which referenced array an index must be from
is possible in an efficient manner. Notice that in order to select which
underlying array an index must be from it is sufficient to discriminate
into which range a single index component falls; a consequence of the
non-overlap.

87

Consider a fused array that is the result of many fusions, i.e.

fuse(a1, . . . , am)

where fuse(a1, . . . , am) has an index space of R1,...,n as do any ai. Along
the kth dimension fuse(a1, . . . , am) has the range Rk = range(xl, xu, s)
and this range can be subdivided into each of the ranges for the arrays
ai. Consider the upper bounds for each of these ranges 〈u1, . . . , um〉 s.t.
ui is the upper bound for ai. Recall that every bound ui is expressible
as ui = xl + kis so the sequence 〈u1, u2, . . . , um may be considered as
〈k1, k2, . . . , km〉 where ki = ui−xl

s
.

Determining which range an index’s kth component x = xl + kxs be-
longs in, given that it does belong in the fused range, can be determined
by finding where kx belongs in the sequence 〈k1, k2, . . . , km〉, i.e. if it
belongs below k1 then it is an index into a1, if it below in k2 but below
k2 then it is an index into a2 and so on. This can computed efficiently
by subrange(k1, k2, . . . , km−1) which is detailed in appendix D.

There also is a variation of fusion fuse∗(a, b) in Petalisp that relaxes
the requirement of non-overlap. In that case dispatch to an array is
done by first checking the rightmost argument or in a long chain the
innermost and rightmost.

• Reference: Given an array a with index space R1,...,n, a shape s and
either an affine-linear transformation T : R1,...,n → R′1,...,m or a non-
invertible broadcasting function F : R′1,...,m → R′1,...,n we define that
reshape(a, s, T) denotes an array b with index space R′1,...,m determined
by the shape s and its values determined by the affine-linear transfor-
mation:

b(i1, . . . , im) = a(j1, . . . , jn) where T (j1, . . . , jn) = 〈i1, . . . , im〉.

or the case of a non-invertible broadcasting function reshape(a, s, F)

b(i1, . . . , im) = a(j1, . . . , jn) where F (i1, . . . , in) = 〈j1, . . . , jm〉.

An affine-linear transformation can be summarized as a mapping that
preserves lines, more details are given in C. Petalisp is able to compute
the inverse T−1 : R1,...,m → R1,...,n.

Example: Given the array a(x) = x for 1 ≤ x ≤ 5 and the affine-linear
transformation T (x) = x− 5 then reshape(a, 〈6, 10, 1〉), T) is the array
b(x) = a(T (x)) for 6 ≤ x ≤ 10

88

Remark: Consider nested reshapings:

b = reshape(reshape(a, s1, T1), s2, T2)

Then the values b(j1, . . . , jm) are given by a(i1, . . . , in) where2

T−1
1 ◦ T−1

2 (j1, . . . , jm) = 〈i1, . . . , in〉

and we have the identity

reshape(reshape(a, s1, T1), s2, T2) = reshape(a, s2, T2 ◦ T1)

In the case that we have a non-invertible broadcasting function

reshape(reshape(a, s1, T), s2, F)

We can still find its values by indices given by T−1 ◦ F , but can no
longer collapse the reshaping.

The manner in which one actually creates new arrays is by using reshape
and fuse. A special variant of reshape that breaks the rules that we will
call reshape∗ also exists that lifts the requirement that the transformation
is affine-linear and can be used on anything that can be acted upon with
respect to indexing as a strided array; e.g. a Common Lisp function or a
Common Lisp vector.

A final deviation is a variation of apply that we will call apply∗ which lifts
the requirement that all arrays must have identical shape. In the case
that apply∗(g, a, b) is such that the arrays have different shapes then an
attempt is made to find a common index space for the arrays with two
reshapings i.e. a′ = reshape(a, s, F1) and b′ = reshape(b, s, F2) such that
apply∗(g, a, b) = apply(g, a′, b′) and where the broadcasting functions repeat
values along dimensions.

In particular if a has shape 〈〈1, N, 1〉, 〈1, 1, 1〉〉 and b has shape 〈〈1, 1, 1〉, 〈1,M, 1〉〉
they will be found to have a common index space of 〈〈1, N, 1〉, 〈1,M, 1〉〉
when passed to apply∗. We will have apply∗(g, a, b) = apply(g, a′, b′) where
a′(x, y) = a(x, 1) and b′(x, y) = b(1, y). Repetition of values are thus sub-
stituted for missing values. This conceptually allows one to regard certain

2note ◦ means application order composition i.e. (f ◦ g)(x) = f(g(x))

89

arrays, when using this operation, as dense representation arrays where apply
otherwise would have required. We do not cover the particularities of this
inference beyond the repetition of one value.

These operations in Petalisp only serve to create an expression that can be
evaluated. The Petalisp strategy is to build an expression graph and at
runtime analyse the dataflow of what is needed for a requested value and
evaluate only as much computation as is needed to produce this value.

6.2.2 Matrix multiplication in Petalisp

Consider describing matrix multiplication with these primitives. We assume
we have an M × N matrix represented by the strided array AMN with the
index space defined by a shape 〈〈1,M, 1〉, 〈1, N, 1〉〉 and a N × K matrix
represented by the strided array BNK with index space defined by the shape
〈〈1, N, 1〉, 〈1, K, 1〉〉.
In case the result we are after is not clear, we are looking for an M × K
matrix which we will call CMK , such that its values are as follows:

CMK(m, k) =
n∑
i=1

AMN(m, i)BNK(i, k)

We consider first reshaping AMN with the shape sM1N to obtain AM1N and
BNK with the shape s1KN to obtain B1KN where:

sM1N = 〈〈1,M, 1〉, 〈1, 1, 1〉, 〈1, N, 1〉〉
s1kN = 〈〈1, 1, 1〉, 〈1, K, 1〉, 〈1, N, 1〉〉

The affine-linear transformations needed are

T1(m,n) = 〈m, 1, n〉 and T−1
1 (m, k, n) = 〈m,n〉

T2(n, k) = 〈1, k, n〉 and T−1
2 (m, k, n) = 〈n, k〉

We may then define the reshapings as:

AM1N = reshape(AMN , sM1N , T1)

B1KN = reshape(BNK , s1KN , T2)

We now consider the result of apply∗ with multiplication on these:

CMKN = apply∗(×, AM1N , B1KN)

90

As the shapes do not match an attempt is made to find a common index
space and sMKN = 〈〈1,M, 1〉, 〈1, K, 1〉, 〈1, N, 1〉〉 is such a candidate as both
arrays’ values can be broadcast into arrays such that the requirements of
apply are met:

CMKN = apply∗(×, AM1N , B1KN)

= apply(×, reshape(AM1N , sMKN , F1), reshape(B1KN , sMKN , F2))

where the broadcasting functions F1, F2 are determined by the apply∗ oper-
ator to be:

F1(m, k, n) = 〈m, 1, n〉
F2(m, k, n) = 〈1, k, n〉

The indices for values of these nested reshapings, keeping in mind that AM1N

and B1kN are themselves reshapings, are now determined by:

(T1 ◦ F1)(m, k, n) = T−1
1 (m, 1, n) = 〈m,n〉 where F1(m, k, n) = 〈m, 1, n〉

(T2 ◦ F2)(m, k, n) = T−1
2 (1, k, n) = 〈n, k〉 where F2(m, k, n) = 〈1, k, n〉

Thus if we name these reshapings and consider their values we have:

AMKN = reshape(AM1N , sMKN , F1)

AMKN(m, k, n) = AMN(m,n)

BMKN = reshape(B1KN , sMKN , F2)

BMKN(m, k, n) = BNK(n, k)

Thus we can consider CMKN to have the values:

CMKN = apply(×, AMKN , BMKN)

CMKN(m, k, n) = AMKN(m, k, n)×BMKN(m, k, n)

CMKN(m, k, n) = AMN(m,n)×BNK(n, k)

If we reduce CMKN with additon to get CMK

CMK = reduce(+, CMKN)

then by definition of reduce our result CMK will have values:

CMK(m, k) = (reduce(+, CMKN))(m, k)

= reduce(+, {k(x) = CMKN(m, k, x) | x ∈ {1, . . . , N}})
= reduce(+, {k(x) = AMN(m,x)×BKN(x, k) | x ∈ {1, . . . , N}})

Which is clearly the result we were looking for. The example we’ve just
gone through is much more concisely expressed Petalisp’s implementation
language Common Lisp as presented in [7]:

91

(defun matr ix−mult ip l i ca t i on (A B)
(β #’+
(α #’∗

(−> A (τ (m n) (n m 1)))
(−> B (τ (n k) (n 1 k))))))

however it may be more difficult to follow, in particular the subtleties of
how α(apply∗) performs broadcasting to match arrays. There isn’t a direct
correspondance to the primitives we’ve presented either; for instance the
reshape(−>) here can work out the shape from its parameters and τ is either
the affine-linear transformation or a broadcasting.

6.2.3 Abstraction gains

After building an expression nothing is yet evaluated. Were we to use our
matrix multiplication expression in a larger expression that only used a single
row of the matrix then in the compilation of the larger expression only the
single row would be evaluated. In a benchmark [7, p. 16] Petalisp is com-
petitive with a popular numerical and array programming library NumPy;
an indication that there may be merit to the direction Petalisp has taken.

The abstraction of application and reduction as primitives lend themselves
to the automatic introduction of parallelism. The fuse abstraction is used to
abstract arrays that are spread in memory as a singular array. However it
can also conceivably abstract over arrays that are spread over a network.

The abstraction of the array type in terms of a function that requires a
certain index space also nets an important gain over regular arrays. Where
before we would either split our program into array access and functions or
waste space and fill an array with a value that could very well be determined
from its index , e.g. f(x) = x or some other pattern, we can now simply
program against the function yielding the values we would fill in as an array.
In combination with reshape we can have a sparse representation of a matrix.

For example consider representing a sparse matrix with zeroes everywhere
except for along its diagonal. That could be represented by having a function

f(x, y) =

{
1 when x = y

0 otherwise

and a shape 〈〈1, 5, 1〉, 〈1, 5, 1〉〉 to which we wish to overlay the values of a

92

flat array g = {1 7→ a, . . . , 5 7→ e} along the diagonal giving us:
a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 e

We then have a few options. One is we can reshape the flat array to an
array with the same shape with a the transform T (x, y) = x and use apply
with multiplication on it and f to obtain the array. Each access then to
a zeroed spot would require a multiplication, which presumably could be
optimized away as a compilation step. Other options involve fusing together
and reshaping several smaller arrays.

In general the more we can abstract with a small set of primitives the more
we get for free as optimization becomes a separate concern.

6.3 Lift

Lift [23] is a compiler for a DSL, the Lift Intermediate Language(IL), aiming
at representing array computations with a functional set of primitive opera-
tions and a basic array type that closely match easily constructed OpenCL
code, in other words primitive operations and types have been carefully cho-
sen for ease of compilation. The purely functional semantics of the DSL and
that the means of constructing computations is nested or composed pure
functions results in a lot of intermediate results, this however is offset by
automatic transformation into “fused” functions that eliminate these inter-
mediaries.

The Lift IL is actually two DSLs one of which is a high-level DSL which
compiles to a low-level DSL [23, p. 82] which very closely corresponds to
OpenCL primitives. There is quite some difference between the memory
model for OpenCL and the typical single linear memory model one might
be used to in typical programming paradigms. In particular OpenCL ex-
poses a hierarchy of separate memory areas that must be effectively utilized
when using OpenCL to offload highly parallelizable work to a Graphics Pro-
cessing Unit (GPU) where these separate memory areas actually have direct
hardware implementations. The low-level DSL further exposes parameters
required to take these memory areas into consideration.

We consider the high-level DSL and refer to it as Lift IL. The Lift IL has
been described through a denotational semantics in “Generating performance

93

portable code using rewrite rules: from high-level functional expressions to
high-performance OpenCL code” [24] for a dependently typed λ-calculus de-
scribing an array type and operations on it along with rewrite rules on the
operations. The rewrite rules are split into two categories: so-called algorith-
mic ones and OpenCL specific ones. For the dependently typed λ-calculus
and in later publications on Lift operations are described along the lines of
equations and transformations are derived or proved correct with equational
reasoning.

The result of compiling the low-level Lift IL is OpenCL which in turn can be
compiled to run on a GPU. We are mostly interested in what Lift describes
as arrays, its expressiveness and its algorithmic rewrite rules so we will take
a more informal approach over very rigorous examination of its denotational
semantics. We do not present the actual DSL but rather a terse metalanguage
close to the one used to describe the high-level Lift IL in most publications.

6.3.1 The primitives of Lift

Here present a semi-formal metalanguage to describe the primitives of Lift.
A function is declared f : (T1, . . . , Tk) → T and has the usual set-theoretic
interpretation of f : T1× . . .×Tk → T where T, T1 . . . , Tk are sets interpreted
as types. We allow functions to have explicitly named parameters in their
declaration g : (n1 : T1, . . . , nk : Tk) → T ≡ g : (T1, . . . , Tk) → T and we use
a shorthand for partial application by creating an unordered list of bindings
α = {ni = xi | 1 ≤ i ≤ k} and if np, . . . , np+|α| are the parameters not bound
in α but retaining their order in g then gα : (np : Tp, . . . , np+|α| : Tp+|α|) and
gα(np, . . . , np+|α|) = g(n1, . . . , nk).

A type Int = {0, 1, 2 . . .} is assumed to exist, which is a compile-time integer
constant for which basic integer arithmethic can be performed at compile-
time.

If T or T1, T2 . . . are types then:

• [T]n is the type of an array of n elements of type T , indexed by values
from 0 inclusive to n− 1 inclusive of type Int . Values of this type are
written [t0, . . . , tn−1] where ti is of type T and i is its index.

• 〈T0, T2, . . . , Tn−1〉 is the type of an n-tuple, indexed by values from 0
inclusive to n− 1 inclusive of type Int . Values of this type are written
〈t1, . . . , t2〉 where the value ti has type Ti and i is its index.

If f : T2 → T3 and g : T1 → T2 are functions then f ◦ g : T1 → T3 is the
function (f ◦ g)(x) = f(g(x)). Sometimes it is more natural to reverse the

94

order of composition which we allow with g; f = f ◦g s.t. (g; f)(x) = f(g(x))
and we allow a reversed application s.t. x; g; f = (g; f)(x). In long chains we
will number compositions as follows x; g;1 g;2 ;3 g. With this vocabulary we
can present a selection of operations. It is assumed that the user can provide
pure functions and flat arrays (i.e. [T]n where T cannot be an array) to be
used with these operators:

• Map a function over an array

map : (f : T → U, a : [T]n)→ [U]n

map(f, [t0, . . . , tn−1]) = [f(t0), . . . , f(tn−1)]

• Reduce an array with a binary function

reduce : (z : U, f : (u : U, t : T)→ U, a : [T]n)→ [U]1

reduce(z, f, [t0, . . . , tn−1]) = [z; f{t = t0};1 · · · ;n−1 f{t = tn−1}]

• Iterate a function g on an array m times

iterate : (m : Int , g : [T]n → [T]n, a : [T]n,)→ [T]n

iterate(m, g, a) = a;map{f = g};1 · · · ;mmap{f = g}

• Zip two arrays together as an array of tuples

zip : (l : [T]n, r : [U]n)→ [〈T,U〉]n
zip([t0, . . . , tn−1], [u0, . . . , un−1]) = [〈t0, u0〉, . . . , 〈tn−1, un−1〉]

• Join an array of arrays together

join : ([[T]n]m,)→ [T]n×m

join([[t0, . . . , t0+n−1], . . . , [tn(m−1), . . . , tn(m−1)+n−1]] =

[t0, . . . , t0+n−1, . . . , tn(m−1), . . . , tn(m−1)+n−1]

• Split an array into an arrays of arrays, m must divide n i.e. n = mk
where k is a positive integer. Here i ranges over the new indexing i.e. i ∈
{0, . . . , (n/m)− 1}

split : (m : Int , a : [T]n)→ [[T]m]n/m

split : (m : Int , [t0, . . . , tn−1]) =[[t0, . . . , t0+m−1], . . .

, [tmi+0, . . . , tmi+m−1], . . .

, [tm((n/m)−1)+0, . . . , tm(n/m)+m−1]]

95

Note that we can regard split as consuming a function a : {0, . . . , n−1} → T
and producing a function g : {0, . . . , n/m} → {[a(mi+0), . . . , a(mi+m−1)] |
0 ≤ i ≤ n/m− 1}

• Accessor functions for arrays and tuples

at : (i : Int , [T]n)→ T

at(i, [t0 . . . , tn−1]) = ti

get : (i : Int , 〈T0, . . . , Tn−1〉)→ Ti

get : (i, 〈t0, . . . , tn−1〉) = ti

We can easily discern a relationship between at and split

at(x, at(y, split(s, a))) = at(x, [at(a, sy + 0), . . . , at(sy + s− 1)])

= at(a, sy + x)

Alternatively we may write this identity in compositional style:

a; split{m = s}; at{i = y}; at{i = x} = at(a, sy + x)

Which without applying arguments becomes:

split{m = s}; at{i = y}; at{i = x} = at{i = sy + x)}

To construct multidimensional arrays(in the array of arrays fashion) one must
start from flat arrays which are then “reinterpreted” through split. Notice
that split corresponds to adding a dimension whereas join corresponds to
removing a dimension. For example creating a 3 by 3 matrix in this manner
corresponds to laying out 9 elements in an array and splitting it by 3 and
conversely flattening it again corresponds to joining.

The only representation available for arrays in OpenCL, the eventual com-
pilation target, is the flat array of floating point or integer types. Thus
the array of array construct is solely a compile-time construct. As such it
is of particular interest how arrays are compiled so we must delve into the
intermediary compile-time representation of arrays.

Certain primitive operations can be regarded as only changing how values
are accessed. For the ones presented these are zip, split and join. In Lift
representing this change is referred to as creating a view(of an array) and
is detailed in [23, p. 79] where such primitives applied to an array do not
result in any copies of array values but instead a structure representing the
change in access to arrays and a reference to the original array. This view is
an intermediary compile-time structure that is eliminated after facilitating

96

access to values. For several nestings of view altering primitives a chain of
nodes are created that store the change in type and indexing. Constructing
an index for an array that is the result of such a chain of primitives then is
the process of composing indexing functions generated for these in reverse
order of construction. For instance consider an array being created by the
chain of primitives:

zip(l, r); split{m = k1}; split{m = k2}

where the arrays zipped together are of size n. A chain of nodes is created
where the first node generated by zip references the two which we assume are
flat arrays l and k, the first split then references the zip and the second split
references the first split . Upon any value being read from the resulting array
this construction may be seen as zip wrapping two arrays and providing an
indexing function f : Int → [〈L,R〉]n where [L]n and [R]n are the types of
l, r respectively. The first split provides a new indexing function g : Int →
[[〈L,R〉]k1]n/k1 . The second split provides yet another indexing function h :
Int → [[[〈L,R〉]k1]k2]n/k1/k2]. Any indexing then corresponds to expanding
these by providing zero(for the array itself) up to three array indices and a
tuple index(for a single value). For example we can evaluate indexing for a
full indexing by using the nested at identity twice:

zip(l, r); split{m = k1}; (split{m = k2}; at{i = i1}; at{i = i2});
at{i = i3}; get{i = i4}

=zip(l, r); (split{m = k1}; at{i = k2i1 + i2}; at{i = i3}); get{i = i4}
=zip(l, r); at{i = k1(k2i1 + i2) + i3}; get{i = i4}
=get(i4, at(k1(k2i1 + i2) + i3, zip(l, r)))

We omit covering further primitives and consider how Lift describes the var-
ious interactions between primitive operations that are admissable to rewrite
rules.

6.3.2 Rewriting in Lift

Given that a certain combination of primitives expresses an algorithm one
wishes to implement Lift then analyses the expression and attempt to per-
form substitution into equivalent expressions, according to certain identities
encoded in Lift. An example of two such for Lift [24, p. 5] are:

• Decomposing iterate:

iterate(x+ y, g, a) = iterate(x, g, iterate(y, g, a))

97

A justification is given by equational reasoning and some assumptions
making it informal:

iterate(x+ y, g, a) = a; map{f = g};1 · · · ;x+y map{f = g}
= a; map{f = g};1 · · · ;x ; map{f = g}

;x+1 · · · ;x+y map{f = g}
= a; iterate{m = x, g = g}; iterate{m = y, g = g}
= iterate(x+ y, g, a)

• Composing maps:

map(f,map(g, [t0, . . . , tn−1])) = map(f ◦ g, [t0, . . . , tn−1])

A justification follows from function composition:

map(f,map(g, [t0, . . . , tn−1])) = map(f, [g(t0), . . . , g(tn−1)])

= [f(g(t0)), . . . , f(g(tn−1))]

= map(f ◦ g, [t0, . . . , tn−1])

These are fairly self-evident identities and are encoded in Lift as rewrite rules.
The interface for writing more rules is through extending a certain aspect of
the implementation of Lift. As an aside, something that might be somewhat
alarming in languages that can rely on rewrite rules is perhaps the reliance
on, as we have succumbed to here as well albeit for presentation only, is the
informal hand-waving about identites that while good for pedagogical pur-
poses so as to not drown in minutiae does not instill trust in things actually
being identities. For a proper industry standard tool a formal specification
and mechanized verification should be applied.

Instead of going further into language details, we turn to what rewriting
strategy is employed in Lift. In this discussion we consider some expression
e built from the operations we have listed some of3 If some rewrite applies
e→ e′ then e′ is a new expression where one substitiution has been applied.
Lift considers any rule that can apply to e as generating a search space and

3Note that there is a subtstantial amount more primitive operations and identities,
especially as Lift’s high-level language is translated to the low-level language where pa-
rameters pertaining to OpenCL are exposed.

98

performs several random walks in the search space:

Walk 1: e→ e1 → e2

Walk 2: e→ e3 → e4

Walk 3: e→ e6 → e7

Walk 4: e→ e8 → e9

Automatic search space pruning is performed by emitting code for the ex-
pression resulting for each walk and measuring its performance in runs, this
is referred to as a Monte-Carlo descent[24, p. 8]. The best performing walk’s
path is fixed and search continues from it until no rules apply. To optimize
this process Lift has a macro facility to compose several steps should one
notice that a certain pattern of steps is always taken and better expressed as
one monolithic step.

6.3.3 Lift choices

The primitives of Lift have been picked with the intent that there exist a
high performing implementation of the primitives or they easily decompose
to one[6, p. 3] on the targeted hardware. This may suggest why the array
construct of Lift is kept relatively simple and the focus on chaining opera-
tions.

6.4 The need for array abstractions

In this chapter we have reviewed different approaches to an array vocabulary
where the common theme is abstraction to achieve adaptable array code.
The adaptation varies; runtime JIT compilation, spread memory hierarchies
or substitutable array types by relying on an interface. Specifying identities
and enabling transformations based on them is central to compiling these
abstractions. A move towards a logical view of the array affords us a par-
titioning of implementations into an algorithm level and a implementation
concern level. We can then potentially avoid rewriting algorithms in detail
and instead focus on how to adapt algorithms based on implementation con-
cerns such as distributing computation over multiple CPU or GPU cores or
a cluster of machines and varying memory models.

When one depends on a concrete array type, as opposed to an array interface,
a usage or data pattern could emerge that would greatly benefit from a

99

change in the underlying implementation. For arrays, should a sparse array
be desirable for a certain problem(a data pattern), a hard dependency on
primitive arrays(e.g. C arrays) would prevent this optimization even though
the algorithm using the array would only require an interface that both types
would satisfy.

A more far-reaching concern is that a hard dependency on a certain array
type locks the algorithm described to the computational paradigm and mem-
ory model exposed by the array type. What we mean by this is that if the
method provided to perform computations over arrays is setting and getting
values at indices in some sequence in a flat memory model, and there is no
real need to express an algorithm in such terms, then that would exclude
offloading the same algorithm or execution in, for example, a parallel exe-
cution paradigm with a spread hierarchy of memory. In this case we must
revert to reimplementing the algorithm in its entirety to adapt it to changing
situations.

100

CHAPTER 7

A Mathemathics of Arrays applied

Here we present a contribution to the “6th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming”
in which we apply MOA through modeling key aspects of it in Magnolia and
applying it to rewrite an array problem within the vocabulary of MOA from
which we will attempt to generate efficient array code. It shall serve as a
starting point to answer the question: Can we find a set of rules to, given a
MOA description of an array computation, generate efficient code from our
Magnolia modeling of MOA expressions.

There were several authors of this paper. The author of this thesis partic-
ipated in checking the correctness of the MOA derivations and contributed
the Magnolia translations of said MOA derivations. Note that the provided
paper here does not correspond to the one in the provided DOI, but one
where a sign error has been corrected.

There is a follow-up paper in appendix F in which new developments are
included.

101

Finite Difference Methods Fengshui: Alignment
through a Mathematics of Arrays

Benjamin Chetioui
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway

benjamin.chetioui@uib.no

Lenore Mullin
College of Engineering and Applied

Sciences
University at Albany, SUNY

Albany, NY, USA
lmullin@albany.edu

Ole Abusdal
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway
ole.abusdal@student.uib.no

Magne Haveraaen
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway

https://www.ii.uib.no/~magne/

Jaakko Järvi
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway

jaakko.jarvi@uib.no

Sandra Macià
Barcelona Supercomputing Center

(BSC - CNS)
Barcelona, Spain

sandra.macia@bsc.es

Abstract
Numerous scientific-computational domains make use
of array data. The core computing of the numerical
methods and the algorithms involved is related to multi-
dimensional array manipulation. Memory layout and the
access patterns of that data are crucial to the optimal
performance of the array-based computations. As we
move towards exascale computing, writing portable code
for efficient data parallel computations is increasingly
requiring an abstract productive working environment.
To that end, we present the design of a framework for
optimizing scientific array-based computations, building
a case study for a Partial Differential Equations solver.
By embedding the Mathematics of Arrays formalism
in the Magnolia programming language, we assemble
a software stack capable of abstracting the continuous
high-level application layer from the discrete formula-
tion of the collective array-based numerical methods and
algorithms and the final detailed low-level code. The
case study lays the groundwork for achieving optimized
memory layout and efficient computations while preserv-
ing a stable abstraction layer independent of underlying
algorithms and changes in the architecture.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARRAY ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6717-2/19/06. . . $15.00
https://doi.org/10.1145/3315454.3329954

CCS Concepts • Software and its engineering →
Software design engineering;

Keywords Mathematics of Arrays, Finite Difference
Methods, Partial Differential Equations, Psi calculus,
Magnolia

ACM Reference Format:
Benjamin Chetioui, Lenore Mullin, Ole Abusdal, Magne Hav-
eraaen, Jaakko Järvi, and Sandra Macià. 2019. Finite Differ-
ence Methods Fengshui: Alignment through a Mathematics
of Arrays. In Proceedings of the 6th ACM SIGPLAN In-
ternational Workshop on Libraries, Languages and Compil-
ers for Array Programming (ARRAY ’19), June 22, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3315454.3329954

1 Introduction
Given an address space, the data layout and the pattern
of accessing that data are fundamental for the efficient ex-
ploitation of the underlying computer architecture. The
access pattern is determined by a numerical algorithm,
which may have been tuned to produce a particular pat-
tern. The data layout may have to be adjusted explicitly
to a given pattern and the computer hardware architec-
ture. At the same time, high-performance environments
are evolving rapidly and are subject to many changes.
Moreover, numerical methods and algorithms are tradi-
tionally embedded in the application, forcing rewrites
at every change. Thus the efficiency and portability of
applications are becoming problematic. Under this sce-
nario, software or hardware modifications usually lead to
a tedious work of rewriting and tuning throughout which
one must ensure correctness and efficiency. To face this
scenario, the scientific community suggests a separation
of concerns through high-level abstraction layers.

Burrows et al. identified a Multiarray API for Finite
Difference Method (FDM) solvers [8]. We investigate the

102

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

fragment of the Mathematics of Arrays (MoA) formal-
ism [22, 23] that corresponds to this API. MoA gives us
the ψ-calculus for optimizing such solvers. We present
a full system approach from high level coordinate-free
Partial Differential Equations (PDEs) to preparing for
the layout of data and code optimization, using the MoA
as an intermediate layer and the Magnolia programming
language [5] to explore the specifications. In this frame-
work, a clean and natural separation occurs between
application code, the optimization algorithm and the
underlying hardware architecture, while providing ver-
ifiable components. We fully work out a specific test
case that demonstrates an automatable way to optimize
the data layout and access patterns for a given architec-
ture in the case of FDM solvers for PDE systems. We
then proceed to show that our chosen fragment of the
rewriting system defined by the ψ-calculus makes up
a canonical rewriting subsystem, i.e. one that is both
strongly normalizing and confluent.

In the proposed system, algorithms are written against
a stable abstraction layer, independent of the underly-
ing numerical methods and changes in the architecture.
Tuning for performance is still necessary for the efficient
exploitation of different computer architectures, but it
takes place below this abstraction layer without disturb-
ing the high-level implementation of the algorithms.

This paper is structured as follows. Section 2 presents
the related work, and a concise literature review of the
state of the art. Section 3 introduces the general software
stack composition and design used for our purposes. Sec-
tion 4 details the optimizations and transformation rules.
The PDE solver test case showcasing the framework is
presented in Section 5. Finally, conclusions are given in
Section 6.

2 Related work
Whole-array operations were introduced by Ken Iver-
son [18] in the APL programming language, an implemen-
tation of his notation to model an idealized programming
language with a universal algebra. Ten years later, shapes
were introduced to index these operations by Abrams [1].
Attempts to compile and verify APL proved unsuccessful
due to numerous anomalies in the algebra [34]. Specif-
ically, ισ was equivalent to ι⟨ σ ⟩, where σ is a scalar
and ⟨ σ ⟩ is a one element vector. Moreover, there was
no indexing function nor the ability to obtain all indices
from an array’s shape. This caused Perlis to conclude
the idealized algebra should be a Functional Array Cal-
culator based on the λ-calculus [34]. Even with this, no
calculus of indexing was formulated until the introduc-
tion of MoA [22]. MoA can serve as a foundation for
array/tensor operations and their optimization.

Numerous languages emerged with monolithic or whole-
array operations. Some were interpreted (e.g. Matlab
and Python), some were compiled (e.g. Fortran90 and
TACO [19]) and some were Object Oriented with pre-
processing capabilities (e.g. C++ with expression tem-
plates [9, 32]). Current tensor (array) frameworks in
contemporary languages, such as Tensorflow [33] and
Tensor Toolbox [4] provide powerful environments to
model tensor computations. None of these frameworks
are based on the ψ-calculus.

Existing compilers have various optimizations that can
be formulated in the ψ-calculus, e.g. loop fusion (equiva-
lent to distributing indexing of scalar operations in MoA)
and loop unrolling (equivalent to collapsing indexing
based on the properties of ψ and the ψ-correspondence
Theorem (PCT) in MoA [23]). Many of the languages
mentioned above implement concepts somewhat cor-
responding to MoA’s concept of shape and its index-
ing mechanism. It is, however, the properties of the
ψ-calculus and its ability to obtain a Denotational Nor-
mal Form (DNF) for any computation that make it
particularly well-suited for optimization.

Hagedorn et al. [13] pursued the goal of optimizing
stencil computations using rewriting rules in LIFT.

3 Background, design and technologies
We present the design of our library-based approach
structured by layers. Figure 1 illustrates this abstract
generic environment. At the domain abstraction layer,

Figure 1. Layer abstraction design; generic environment
approach.

code is written in the integrated specification and pro-
gramming language Magnolia, a language designed to
support a high level of abstraction, ease of reasoning, and
robustness. At the intermediate level, the MoA formal-
ism describes multi-dimensional arrays. Finally, through
the ψ-correspondence theorem, the array abstraction
layer is mapped to the final low-level code.

103

Finite Difference Methods Fengshui ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

3.1 Magnolia
Magnolia is a programming language geared towards
the exploration of algebraic specifications. It is being
designed at the Bergen Language Design Laboratory [5];
it is a work in progress and is used to teach the Program
Specification class at the University of Bergen, Norway.
Magnolia’s strength relies in its straightforward way of
working with abstract constructs.

Magnolia relies primarily on the concept module, which
is a list of type and function declarations (commonly
called a signature) constrained by axioms. In Magnolia,
an axiom defines properties that are assumed to hold;
it however differs from the usual axioms in mathemat-
ics in that an axiom in Magnolia may define derived
properties. Functions and axioms may be given a guard,
which defines a precondition. The satisfaction module
serves to augment our knowledge with properties that
can be deduced from the premises, typically formatted
to indicate that a concept models another one.

Magnolia is unusual as a programming language in
that it does not have any built-in type or operation,
requiring that everything be defined explicitly. Magnolia
is transpiled to other languages, and thus, the actual
types the programmer intends to use when running their
program must be defined in the target language.

3.2 Mathematics of Arrays
MoA [22, 23] is an algebra for representing and describing
operations on arrays. The main feature of the MoA
formalism is the distinction between the DNF, which
describes an array by its shape together with a function
that defines the value at every index, and the Operational
Normal Form (ONF), which describes it on the level of
memory layout. The MoA’s ψ-calculus [23] provides a
formalism for index manipulation within an array, as well
as techniques to reduce expressions of array operations
to the DNF and then transform them to ONF.

The ψ-calculus is based on a generalized array indexing
function, ψ, which selects a partition of an array by a
multidimensional index. Because all the array operations
in the MoA algebra are defined using shapes, represented
as a list of sizes, and ψ, the reduction semantics of ψ-
calculus allow us to reduce complex array computations
to basic indexing/selection operations, which reduces
the need for any intermediate values.

By the ψ-correspondence theorem [23], we are able
to transform an expression in DNF to its equivalent
ONF, which describes the result in terms of loops and
controls, starts, strides and lengths dependent on the
chosen linear arrangement of the items, e.g. based on
hardware requirements.

Figure 2. Layer abstraction design; detailed environ-
ment designed for a PDE solver.

3.2.1 Motivation behind DNF and ONF
The goal behind the DNF and the ONF is to create an ide-
alized foundation to define most — if not all — domains
that use tensors (arrays). Using MoA, all of the transfor-
mations to the DNF can be derived from the definition
of the ψ function and shapes.

This view has a long history [1] and, when augmented
by the λ-calculus [6], provides an idealized semantic
core for all arrays [26, 27]. Array computations are very
prevalent. A recent Dagstuhl workshop [2, 3] reported
the pervasiveness of tensors in the Internet of things,
Machine Learning, and Artificial Intelligence (e.g. Kro-
necker [24]) and Matrix Products [11]. Moreover, they
dominate science [12, 21] in general, especially signal
processing [25, 28, 30, 31] and communications [29].

3.3 PDE solver framework
Figure 2 illustrates the design structured by layers for the
PDE solver framework we describe. The first abstraction
layer defines the problem through the domain’s concepts.
At this level, PDEs are expressed using collective and con-
tinuous operations to relate the physical fields involved.
Through the functions encapsulating the numerical meth-
ods, the high-level continuous abstraction is mapped to
a discrete array-based layer. A Magnolia specification
of the array algebra defined by the MoA formalism and
the ψ-calculus has been developed at this level. This
algebra for arithmetic operations and permutations over
multi-dimensional arrays defines the problem through
collective array operations in a layout independent man-
ner. At this point, array manipulation functions and
operations may be defined in the MoA formalism and
reduced according to the ψ-reduction process. This pro-
cess simplifies an expression through transformational

104

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

and compositional reduction properties: the rewriting
rules. From the user’s array-abstracted expression we
obtain an equivalent optimal and minimal semantic form.
Finally, the indexing algebra of the ψ-calculus relates the
monolithic operations to elemental operations, defining
the code on processors and memory hierarchies through
loops and controls. The ψ-correspondence theorem is
the theorem defining the mapping from the high-level
abstracted array expressions to the operational expres-
sions, i.e. from a form involving Cartesian coordinates
into one involving linear arranged memory accesses.

4 MoA transformation rules
4.1 ψ-calculus and reduction to DNF
Multiarrays, or multidimensional arrays, have a shape
given by a list of sizes ⟨s0 . . . sn−1⟩. For example, a 6
by 8 matrix A has the shape ⟨6 8⟩. The index for a
multiarray is given by a multi-index ⟨i0 . . . in−1⟩. For
position j of the multi-index, the index ij is in the range
0 ≤ ij < sj . This sets the vocabulary for talking about
multiarrays. In the following Magnolia code and in the
rest of the paper, we will assume that the following types
are declared:

• type MA, for Multiarrays;
• type MS, for Multishapes;
• type MI, for Multi-indexes;
• type Int, for Integers.

All these types will have (mapped) arithmetic operators.
Important functions on a multiarray are:

• the shape function ρ, which returns the shape of a
multiarray, e.g. ρA = ⟨6 8⟩;

• the ψ function, which takes a submulti-index and
returns a submultiarray, e.g. ⟨⟩ψA = A and ρ(⟨3⟩ψA) =
⟨8⟩ is the subarray at position 3;

• the rotate function θ, which rotates the multiar-
ray: p θx A denotes the rotation of A by offset p
along axis x (rotate does not change the shape:
ρ(p θx A) = ρA).

With respect to ψ, rotate works as:

⟨ i0 . . . ix ⟩ ψ (p θ0 A) = ⟨ (i0 + p) mod s0 . . . ix ⟩ψA
The rotate operation can be used to calculate, for each
element, the sum of the elements in the adjacent columns,
(1 θ0 A) + ((−1) θ0 A), which is a multiarray with the
same shape as A. Applying ψ to the expression gives the
following reduction:

⟨i0⟩ ψ ((1 θ0 A) + ((−1) θ0 A)) = ⟨(i0 + 1) mod s0⟩ ψ A +

⟨(i0 − 1) mod s0⟩ ψ A
These above MOA functions can be declared in Magnolia,
with axioms stating their properties.
/∗∗ Extract the shape of an array. ∗/

function rho(a:MA) : MS;
/∗∗ Extract subarray of an array. ∗/
function psi(a:MA, mi:MI) : MA;
/∗∗ Rotate distance p along axis . ∗/
function rotate(a:MA, axis:Int, p:Int) : MA ;
axiom rotateShape(a:MA, ax:Int, p:Int) {

var ra = rotate(a,ax,p);
assert rho(ra) == rho(a);

}
axiom rotatePsi(a:MA, ax:Int, p:Int, mi:MI) {

var ra = rotate(a,ax,p);
var ij = pmod(get(mi,ax)+p,get(rho(a),ax));
var mj = change(mi,ax,ij);
assert psi(ra,mi) == psi(a,mj);

}
axiom plusPsi(a:MA, b:MA, mi:MI)

guard rho(a) == rho(b) {
assert rho(a+b) == rho(a);
assert psi(a+b,mi) == psi(a,mi) + psi(b,mi);

}
Note how we are using ρ and ψ to define operations on
multiarrays. The ρ operator keeps track of the resulting
shape. The ψ operator takes a partial multi-index and
explains the effect of the operation on the subarrays. In
this way the ψ operator moves inward in the expression,
pushing the computation outwards towards subarrays
and eventually to the element level. The concatenation
property for ψ-indexing is important for this,

⟨ j ⟩ ψ (⟨ i ⟩ ψ A) ≡ ⟨ i j ⟩ ψ A.

axiom psiConcatenation(ma:MA, q:MI, r:MI) {
var psiComp = psi(psi(ma,q), r);
var psiCat = psi(ma, cat(q,r));
assert psiComp == psiCat;

}
The rules above, for rotation and arithmetic, show how
ψ moves inwards towards the multiarray variables. When
this process stops, we have reached the DNF. All other
multiarray functions have then been removed and re-
placed by their ψ definitions. What is left to figure out
and what we will tentatively in this paper is how to build
the DNF.

Burrows et al [8] made the case that the operations
defined above augmented with mapped arithmetic con-
stitute a sufficient basis to work with any FDM solver of
PDE systems. It does not matter what language the orig-
inal expression comes from (Python, Matlab, Fortran, C,
etc). With the syntax removed and the tokens expressed
as an AST, the DNF denotes the reduced semantic tree
and could be returned to the syntax of the originating

105

Finite Difference Methods Fengshui ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

language, with interpretation or compilation proceeding
as usual.

4.2 Transformation rules
The MoA defines many rewriting rules in order to reduce
an expression to its DNF. Working with those, we got
the insight that the goal of the reduction is to move
the call to ψ inwards to apply it as early as possible in
order to save computations, and that there are enough
rules to allow us to move ψ across any type of operation
(Multiarray on Multiarray, scalar on Multiarray).

For the sake of this particular example, we limited
ourselves to a subset of the transformation rules in the
MoA. We show that this constitutes a rewriting system
that is canonical.

Let us first introduce the rules we are using. In the
rules, the metavariables indexi, ui and sci respectively
denote multi-indexes, multiarrays and scalars. The metavari-
able op is used for mappable binary operations such as
×, + and −, that take either a scalar and a multiarray or
two multiarrays as parameters and return a multiarray.

index ψ (ui op uj)
R1

(index ψ ui) op (index ψ uj)

index ψ (sc op u)
R2

sc op (index ψ u)

k ≥ i =⇒ ⟨ sc0 . . . sci . . . sck ⟩ ψ (sc θi u)
R3⟨ sc0 . . . ((sci + sc) mod (ρ u)[i]) . . . sck ⟩ ψ u

Proving that a rewriting system is canonical requires
proving two properties [20]:

1. the rewriting system must be confluent;
2. the rewriting system must be strongly normalizing

(reducible in a finite number of steps).
For a rewriting system, being confluent is the same

as having the Church-Rosser property [20], i.e. in the
case when reduction rules overlap so that a term can be
rewritten in more than one way, the result of applying
any of the overlapping rules can be further reduced to the
same result. If a term can be derived into two different
terms, the pair of the two derived terms is called a
critical pair. Proving that a rewriting system is confluent
is equivalent to proving that every critical pair of the
system yields the same result for both of its terms.

Our rules above of the rewriting system can not gener-
ate any critical pair; the system is thus trivially confluent.

Now, we must prove that the rewriting system is
strongly normalizing: the system must yield an irre-
ducible expression in a finite number of steps for any
expression. To that end, we assign a weight w ∈ N to the
expression such that w represents the "weight" of the
expression tree. We define the weight of the tree as the
sum of the weight of each (index ψ) node. The weight

i ψ

op

ui uj

op

i ψ

uj

i ψ

uj

Figure 3. Rule 1 and its application.

i ψ

op

sc u

op

sc i ψ

u

Figure 4. Rule 2 and its application.

of each one of these nodes is equal to 3h, where h is the
height of the node.

Since N is bounded below by 0, we simply need to
prove that the application of each rule results in w strictly
decreasing to prove that our rewriting system is strongly
normalizing.

For each one of our three rules, we draw a pair of
trees representing the corresponding starting expression
on the left and the resulting expression from applying
the rule on the right. Then, we verify that w strictly
decreases from the tree on the left to the tree on the
right. We call wl the weight of the left tree and wr the
weight of the right tree. Figures 3, 4 and 5 illustrate
these trees.

In the three figures, we assume that the tree rooted
in the iψ node has height h′. Since the iψ node has a
parameter, it is never a leaf and we have h′ > 0.

In Figure 3, the starting expression has the weight
wl = 3h

′
. The resulting expression from applying R1,

however, has the weight wr = 2× 3h
′−1 = 2

3wl, which is
less than wl. In Figure 4, the starting expression has the
weight wl = 3h

′
. The resulting expression from applying

R2, however, has the weight wr = 3h
′−1 = 1

3wl, which is
less than wl. In Figure 5, the starting expression has the
weight wl = 3h

′
. The resulting expression from applying

R3, however, has the weight wr = 3h
′−1 = 1

3wl, which
is less than wl.

106

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

i ψ

θj

sc u

i′ψ

u

Figure 5. Rule 3 and its application.

Since w strictly decreases with every rewrite, the sys-
tem is strongly normalizing. Since it is also confluent, it
is canonical.

4.3 Adapting to hardware architecture using
ONF

Once we have reduced an expression to its DNF, if we
know about the layout of the data it uses, we can build
its ONF. Assuming a row major layout, let us turn
⟨ i ⟩ ψ ((1 θ0 A) + ((−1) θ0 A)) into its ONF.
To proceed further, we need to define three functions: γ,
ι and rav.

• rav is short for Ravel, which denotes the flattening
operation, both in APL and in MoA. It takes a
multiarray and reshapes it into a vector. We there-
fore use rav to deal with the representation of the
array in the memory of the computer.

• γ takes an index and a shape and returns the cor-
responding index in the flattened representation
of the array1. γ is not computable unless a spe-
cific memory layout is assumed, which is why this
decision has to be taken before building the ONF.
One can note that rav and γ are tightly connected
in defining flattened array accesses as γ encodes the
layout while rav is defined in terms of γ. For FDM,
it is important therefore to figure out the right
memory layout such that rotations are completed
in an efficient fashion.

• ι is a unary function, which takes a natural num-
ber n as its parameter and returns a 1-D array
containing the range of natural numbers from 0 to
n excluded. It is used to build strides of indexes
needed by the ONF.

With these operations defined, we can proceed. We
first apply the ψ-correspondence theorem followed by
applying γ.

∀i s.t. 0 ≤ i < 6

⟨ i ⟩ ψ ((1 θ0 A) + ((−1) θ0 A))

≡ (rav A)[γ(⟨ (i+ 1) mod 6 ⟩ ; ⟨ 6 ⟩)× 8 + ι8] +

1Here, only γ on rows is considered, but other γ functions exist

(rav A)[γ(⟨ (i− 1) mod 6 ⟩ ; ⟨ 6 ⟩)× 8 + ι8]

≡ (rav A)[((i+ 1) mod 6)× 8 + ι8] +

(rav A)[((i− 1) mod 6)× 8 + ι8]

Secondly, we apply rav and turn ι into a loop to reach
the following generic program:

∀j s.t. 0 ≤ j < 8

A[((i+ 1) mod 6)× 8 + j] +

A[((i− 1) mod 6)× 8 + j]

The ONF is concerned with performance, and is where
cost analysis and dimension lifting begins.

Regarding pure cost analysis, at this point, it is still
possible to optimize this program: unfolding the loops
gives us the insight that the modulo operation is only
ever useful on the 0th and 5th row. Thus, by splitting
the cases into those that require the modulo operation
to be run and those that do not, we may achieve better
performance.

Now imagine breaking the problem over 2 processors.
Conceptually, the dimension is lifted. It is important to
note that the lifting may happen on any axis, especially in
the current case where we are dealing with rotations on a
given axis. If we happen to apply dimension lifting on the
axis on which we are rotating, we may not be able to split
the memory perfectly between the different computing
sites. This could require inter-process communication,
or duplication of memory.

In this case, since we are rotating on the 0th axis,
we pick axis 1 as the candidate to be lifted. The loop
on j is then split into 2 loops because we now view
the 2-D resultant array as a 3-D array A′ with shape
⟨ 6 2 8/2 ⟩ = ⟨ 6 2 4 ⟩ in which axis 1 corresponds to
the number of processors. Therefore, we get:

∀i, j s.t. 0 ≤ i < 6, 0 ≤ j < 2

⟨ i j ⟩ ψ ((1 θ0 A
′) + ((−1) θ0 A

′))

≡ (rav A′)[γ(⟨ ((i+ 1) mod 6) j ⟩ ; ⟨ 6 2 ⟩)× 4 + ι4] +

(rav A′)[γ(⟨ ((i− 1) mod 6) j ⟩ ; ⟨ 6 2 ⟩)× 4 + ι4]

≡ (rav A′)[(((i+ 1) mod 6)× 2 + j)× 4 + ι4] +

(rav A′)[(((i− 1) mod 6)× 2 + j)× 4 + ι4]

This reduces to the following generic program:

∀k s.t. 0 ≤ k < 4

A′[((i+ 1) mod 6)× 4× 2 + j × 4 + k] +

A′[((i− 1) mod 6)× 4× 2 + j × 4 + k]

As discussed above, there are other ways to achieve
splitting of the problem across several computing sites.
In general, the size of the array and the cost of accessing
different architectural components drive the decision to

107

Finite Difference Methods Fengshui ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

break the problem up over processors, GPUs, threads,
etc. [16, 17].

If a decision was made to break up the operations
over different calculation units, the loop would be the
same but the cost of performing the operation would
be different. This decision is therefore completely cost-
driven.

Continuing with dimension lifting, a choice might be
made to use vector registers. This is, once again, a cost-
driven decision, which may however be decided upon
statically, prior to execution.

If we were to break our problem up over several pro-
cessors and using vector registers, it would conceptually
go from 2 dimensional to 4 dimensional, using indexing
to access each resource. The same process can be applied
to hardware components [11], e.g. pipelines, memories,
buffers, etc., to achieve optimal throughput.

5 PDE solver test-case
Coordinate-free numerics [10, 14] is a high-level approach
to writing solvers for PDEs. Solvers are written using
high-level operators on abstract tensors. Take for in-
stance Burgers’ equation [7],

∂u⃗

∂t
+ u⃗ · ∇u⃗ = ν∇2u⃗,

where vector u⃗ denotes a time and space varying velocity
vector, t is time, and the scalar ν is a viscosity coefficient.
Burgers’ equation is a PDE involving temporal (∂

∂t) and
spatial (∇) derivative operations. Applying an explicit
second order Runge-Kutta time-integration method, the
coordinate-free time-integrated equation can be coded
in Magnolia as follows.

procedure burgersTimestep
(upd u:Tensor1V, obs dt:R, obs nu:R) = {

var u_t = nu * laplacian(u))
- dot(u,gradient(u));

var u_substep = u + dt/2 * u_t;
u_t = nu * laplacian(u_substep)

- dot(u_substep,gradient(u_substep));
u = u + dt * u_t;

};
Note how close this code follows the mathematical high-
level formulation (5). We can lower the abstraction level
of this code by linking it with a library for 3D cartesian
coordinates based on continuous ringfields [15]. Next it
can be linked with a library for finite difference meth-
ods choosing, e.g., stencils ⟨− 1

2 , 0,
1
2 ⟩ and ⟨1,−2, 1⟩ for

first and second order partial derivatives, respectively.
This takes us to a code at the MoA level, consisting of
rotate and maps of arithmetic operations [8]. With some
reorganisation, we end up with the solver code below, ex-
pressed using MoA. The code calls the snippet six times

forming one full time integration step, one call for each
of the three dimensions of the problem times two due
to the half-step in the time-integration. The variables
dt,nu,dx are scalar (floating point). The first two come
from the code above, while dx was introducd by the finite
difference method. The variables u0,u1,u2 are multiar-
rays (3D each), for each of the components of the 3D
velocity vectorfield. These variables will be updated dur-
ing the computation. The variables c0,c1,c2,c3 and c4
are numeric constants. Three temporary multiarray vari-
ables v0,v1,v2 are computed in the first three snippet
calls, due to the half-step. They are then used in the last
three snippet calls to update u0,u1,u2.

procedure step
(upd u0:MA, upd u1:MA, upd u2:MA,
obs nu:Float, obs dx:Float, obs dt:Float) {

var c0 = 0.5/dx;
var c1 = 1/dx/dx;
var c2 = 2/dx/dx;
var c3 = nu;
var c4 = dt/2;

var v0 = u0;
var v1 = u1;
var v2 = u2;
call snippet(v0,u0,u0,u1,u2,c0,c1,c2,c3,c4);
call snippet(v1,u1,u0,u1,u2,c0,c1,c2,c3,c4);
call snippet(v2,u2,u0,u1,u2,c0,c1,c2,c3,c4);
call snippet(u0,v0,v0,v1,v2,c0,c1,c2,c3,c4);
call snippet(u1,v1,v0,v1,v2,c0,c1,c2,c3,c4);
call snippet(u2,v2,v0,v1,v2,c0,c1,c2,c3,c4);

};
In the actual snippet code, d1a,d2a,d1b,d2b,d1c,d2c

and shift_v are temporary multiarray variables. The
shift function takes as first argument the multiarray
being shifted, then the direction of the shift, and lastly
the distance for the rotational shift.

procedure snippet
(upd u:MA, obs v:MA,
obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float, obs c1:Float, obs c2:Float,
obs c3:Float, obs c4:Float) {

var shift_v = shift (v, 0, -1);
var d1a = -c0 * shift_v;
var d2a = c1 * shift_v - c2 * u0;
shift_v = shift (v, 0, 1);
d1a = d1a + c0 * shift_v;
d2a = d2a + c1 * shift_v;

108

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

shift_v = shift (v, 1, -1);
var d1b = -c0 * shift_v;
var d2b = c1 * shift_v - c2 * u0;
shift_v = shift (v, 1, 1);
d1b = d1b + c0 * shift_v;
d2b = d2b + c1 * shift_v;

shift_v = shift (v, 2, -1);
var d1c = -c0 * shift_v;
var d2c = c1 * shift_v - c2 * u0;
shift_v = shift (v, 2, 1);
d1c = d1c + c0 * shift_v;
d2c = d2c + c1 * shift_v;

d1a = u0 * d1a + u1 * d1b + u2 * d1c;
d2a = d2a + d2b + d2c;
u = u + c4 * (c3 * d2a - d1a);

};
In essence, snippet is computing 1/3 of the half-step of
the PDE, using common calls to rotate to compute one
first and one second order partial derivative.

5.1 Reduction using MoA
Using the reduction rules defined in the ψ-calculus, and
turning our snippet code into an expression, we can
reduce the code to a DNF representation. In the follow-
ing, we spell out some of the transformation steps. The
equation

snippet = u+ c4 ×
(c3 × (c1 × (((−1) θ0 v) + (1 θ0 v) + ((−1) θ1 v) +

(1 θ1 v) + ((−1) θ2 v) + (1 θ2 v))− 3c2u0) − c0 ×
(((1 θ0 v)− ((−1) θ0 v)) u0 +

((1 θ1 v)− ((−1) θ1 v)) u1 +

((1 θ2 v)− ((−1) θ2 v)) u2))

is a transcription of the snippet code above.
We use the notation θx to denote a rotation around

the xth axis, represented in Magnolia by calls to
shift(multiarray, axis, offset).

The Magnolia implementation of the snippet makes
heavy use of the multiarrays d1x and d2x, where x de-
notes the axis around which the multiarray is rotated in
lexicographical order (a corresponds to the 0th axis, b
to the 1st and so on). For the sake of easing into it, let
us start by building a generic DNF representation for
d2x. All the steps will be detailed explicitly in order to
gain insights on what is needed and what is possible.

⟨ i j k ⟩ ψ d2x = ⟨ i j k ⟩ ψ (c1 × ((−1) θx v) + c1 ×
(1 θx v)− c2 × u0)

(distribute ψ over +/-)

= ⟨ i j k ⟩ ψ (c1 × ((−1) θx v)) + ⟨ i j k ⟩ ψ
(c1 × (1 θx v)) − ⟨ i j k ⟩ ψ (c2 × u0)

(extract constant factors)

= c1 × (⟨ i j k ⟩ ψ ((−1) θx v)) + c1 ×
(⟨ i j k ⟩ ψ(1 θx v))− c2 × (⟨ i j k ⟩ ψ u0)

(factorize by c1)

= c1 × (⟨ i j k ⟩ ψ ((−1) θx v) + ⟨ i j k ⟩ ψ
(1 θx v))− c2 × (⟨ i j k ⟩ ψ u0)

Using the MoA’s concatenation of index property, we
can now define ⟨ i ⟩ ψ d2x. However, this is only reducible
if x = 0. The reason is that to reduce an expression using
a rotation on the xth axis further, one needs to apply
ψ with an index of at least x + 1 elements. Therefore,
to reduce d21, we need an index vector with at least
2 elements, while we need a total index containing 3
elements to reduce d22. With that in mind, we can try
to reduce d21:

⟨ i j ⟩ ψ d21 = c1 × (⟨ i j ⟩ ψ((−1) θ1 v) + ⟨ i j ⟩ ψ
(1 θ1 v))− c2 × (⟨ i j ⟩ ψ u0)

(reducing rotation)

= c1 × (⟨ i ((j − 1) mod s1) ⟩ ψ v +

⟨ i ((j + 1) mod s1) ⟩ ψ v) −
c2 × (⟨ i j ⟩ ψ u0)

For x = 2, we apply the same process with a total index:

⟨ i j k ⟩ ψ d22 = c1 × (⟨ i j k ⟩ ψ ((−1) θ2 v) +

⟨ i j k ⟩ ψ (1 θ2 v))− c2 × (⟨ i j k ⟩ ψ u0)

(reducing rotation)

= c1 × (⟨ i j ((k − 1) mod s2) ⟩ ψ v +

⟨ i j ((k + 1) mod s2) ⟩ ψ v)− c2 ×
(⟨ i j k ⟩ ψ u0)

Now we can define the ONF of the expression, which
is the form we will use in our actual code. Let’s define it
for d21:

109

Finite Difference Methods Fengshui ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

(rav d21)[γ(⟨ i j ⟩ ; ⟨ s0 s1 ⟩)× s2 + ιs2] = c1 ×
((rav v)[γ(⟨ i ((j − 1) mod s1) ⟩ ; ⟨ s0 s1 ⟩)× s2 + ιs2] +

(rav v)[γ(⟨ i ((j + 1) mod s1) ⟩ ; ⟨ s0 s1 ⟩)× s2 + ιs2]) −
c2 × (rav u0)[γ(⟨ i j ⟩ ; ⟨ s0 s1 ⟩)× s2 + ιs2]

(apply γ on both sides)

(rav d21)[(i× s1 × s2 + j × s2 + ιs2] = c1 ×
((rav v)[i× s1 × s2 + ((j − 1) mod s1)× s2 + ιs2] +

(rav v)[i× s1 × s2 + ((j + 1) mod s1)× s2 + ιs2]) −
c2 × (rav u0)[i× s1 × s2 + j × s2 + ιs2]

The optimization can be done similarly for d22. The fact
that d22 can only be reduced using a total index means
that snippet too can only be fully reduced using a total
index.

⟨ i j k ⟩ ψ snippet
= ⟨ i j k ⟩ ψ (u+ c4 × (c3 × (c1×
(((−1) θ0 v) + (1 θ0 v) + ((−1) θ1 v) +

(1 θ1 v) + ((−1) θ2 v) + (1 θ2 v)) −
3c2u0) − c0(((1 θ0 v)− ((−1) θ0 v)) u0 +

((1 θ1 v)− ((−1) θ1 v)) u1 + ((1 θ2 v) +

((−1) θ2 v)) u2)))

(distribute ψ over + and -)

= ⟨ i j k ⟩ ψ u+ (⟨ i j k ⟩ ψ c4 × (c3 ×
(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) + ((−1) θ2 v) +

(1 θ2 v))− 3c2u0))) − ⟨ i j k ⟩ ψ
(c0 × (((1 θ0 v)− ((−1) θ0 v)) u0+

((1 θ1 v)− ((−1) θ1 v)) u1 +

((1 θ2 v)− ((−1) θ2 v)) u2)))

(extract constant c4, c3, and c0)

= ⟨ i j k ⟩ ψ u+ c4 × (c3 × (⟨ i j k ⟩ ψ
(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) +

((−1) θ2 v) + (1 θ2 v))− 3c2u0)) −
c0 × (⟨ i j k ⟩ ψ
(((1 θ0 v)− ((−1) θ0 v)) u0 +

((1 θ1 v)− ((−1) θ1 v)) u1 +

((1 θ2 v)− ((−1) θ2 v)) u2)))

(distribute ψ over +, ×, and -)

= ⟨ i j k ⟩ ψ u+ c4 × (c3 × (⟨ i j k ⟩ ψ
(c1 × (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) +

((−1) θ2 v) + (1 θ2 v))) −
⟨ i j k ⟩ ψ (3c2u0))− c0×
(⟨ i j k ⟩ ψ ((1 θ0 v)− ((−1) θ0 v)) ×
⟨ i j k ⟩ ψ u0 +

⟨ i j k ⟩ ψ ((1 θ1 v)− ((−1) θ1 v)) ×
⟨ i j k ⟩ ψ u1 +

⟨ i j k ⟩ ψ ((1 θ2 v)− ((−1) θ2 v)) ×
⟨ i j k ⟩ ψ u2))

(extract constant factors c1 and 3× c2)

= ⟨ i j k ⟩ ψ u+ c4 × (c3 × (c1 ×
(⟨ i j k ⟩ ψ (((−1) θ0 v) + (1 θ0 v) +

((−1) θ1 v) + (1 θ1 v) + ((−1) θ2 v) +

(1 θ2 v)))− 3c2(⟨ i j k ⟩ ψ u0)) − c0 ×
(⟨ i j k ⟩ ψ ((1 θ0 v)− ((−1) θ0 v)) ×
⟨ i j k ⟩ ψ u0 +

⟨ i j k ⟩ ψ ((1 θ1 v)− ((−1) θ1 v)) ×
⟨ i j k ⟩ ψ u1 +

⟨ i j k ⟩ ψ ((1 θ2 v)− ((−1) θ2 v)) ×
⟨ i j k ⟩ ψ u2))

(distribute ψ over + and -)

= ⟨ i j k ⟩ ψ u+ c4 × (c3 × (c1 ×
(⟨ i j k ⟩ ψ ((−1) θ0 v) +

⟨ i j k ⟩ ψ (1 θ0 v) +

⟨ i j k ⟩ ψ ((−1) θ1 v) +

⟨ i j k ⟩ ψ (1 θ1 v) +

⟨ i j k ⟩ ψ ((−1) θ2 v) +

⟨ i j k ⟩ ψ (1 θ2 v))− 3c2

(⟨ i j k ⟩ ψ u0)) − c0 ×
((⟨ i j k ⟩ ψ (1 θ0 v) −
⟨ i j k ⟩ ψ ((−1) θ0 v)) ×
⟨ i j k ⟩ ψ u0 +

(⟨ i j k ⟩ ψ (1 θ1 v) −
⟨ i j k ⟩ ψ ((−1) θ1 v)) ×
⟨ i j k ⟩ ψ u1 +

(⟨ i j k ⟩ ψ (1 θ2 v) −
⟨ i j k ⟩ ψ ((−1) θ2 v)) ×

110

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

⟨ i j k ⟩ ψ u2))

(translate rotations into indexing)

= ⟨ i j k ⟩ ψ u+ c4 × (c3 × (c1 ×
(⟨ ((i− 1) mod s0) j k ⟩ ψ v +

⟨ ((i+ 1) mod s0) j k ⟩ ψ v +

⟨ i ((j − 1) mod s1) k ⟩ ψ v +

⟨ i ((j + 1) mod s1) k ⟩ ψ v +

⟨ i j ((k − 1) mod s2) ⟩ ψ v +

⟨ i j ((k + 1) mod s2) ⟩ ψ v) −
3c2(⟨ i j k ⟩ ψ u0)) − c0 ×
((⟨ ((i+ 1) mod s0) j k ⟩ ψ v −
⟨ ((i− 1) mod s0) j k ⟩ ψ v) ×
⟨ i j k ⟩ ψ u0 +

(⟨ i ((j + 1) mod s1) k ⟩ ψ v −
⟨ i ((j − 1) mod s1) k ⟩ ψ v) ×
⟨ i j k ⟩ ψ u1+
(⟨ i j ((k + 1) mod s2) ⟩ ψ v −
⟨ i j ((k − 1) mod s2) ⟩ ψ v) ×
⟨ i j k ⟩ ψ u2))

In Magnolia, the DNF can be captured as such:

procedure snippetDNF(
upd u:MA, obs v:MA,
obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float, obs c1:Float,
obs c2:Float, obs c3:Float, obs c4:Float,
obs mi:MI) {

var s0 = shape0(v);
var s1 = shape1(v);
var s2 = shape2(v);

u =
psi(mi,u) + c4*(c3*(c1*(
psi(mod0(mi-d0,s0),v) +
psi(mod0(mi+d0,s0),v) +
psi(mod1(mi-d1,s1),v) +
psi(mod1(mi+d1,s1),v) +
psi(mod2(mi-d2,s2),v) +
psi(mod2(mi+d2,s2))) - 3*c2* psi(mi,u0)) -
c0 * ((psi(mod0(mi+d0,s0),v) -
psi(mod0(mi-d0,s0),v)) * psi(mi,u0) + (
psi(mod1(mi+d1,s1),v) -
psi(mod1(mi-d1,s1),v)) * psi(mi,u1) + (
psi(mod2(mi+d2,s2),v) -

psi(mod2(mi-d2,s2),v)) * psi(mi,u2)));
}

Now, we can transform snippet into its ONF form:

(rav snippet)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] =
(rav u)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] + c4 × (c3 × (c1 ×
(rav v)[γ(⟨ ((i− 1) mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +
(rav v)[γ(⟨ ((i+ 1) mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +
(rav v)[γ(⟨ i ((j − 1) mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)] +
(rav v)[γ(⟨ i ((j + 1) mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)] +
(rav v)[γ(⟨ i j ((k − 1) mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)] +
(rav v)[γ(⟨ i j ((k + 1) mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)])−

3c2(rav u)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] − c0 ×
(((rav v)[γ(⟨ ((i+ 1) mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)]−
(rav v)[γ(⟨ ((i− 1) mod s0) j k ⟩ ; ⟨ s0 s1 s2 ⟩)])×

(rav u0)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

((rav v)[γ(⟨ i ((j + 1) mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)]−
(rav v)[γ(⟨ i ((j − 1) mod s1) k ⟩ ; ⟨ s0 s1 s2 ⟩)])×

(rav u1)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)] +

((rav v)[γ(⟨ i j ((k + 1) mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)]−
(rav v)[γ(⟨ i j ((k − 1) mod s2) ⟩ ; ⟨ s0 s1 s2 ⟩)])×

(rav u2)[γ(⟨ i j k ⟩ ; ⟨ s0 s1 s2 ⟩)]))

This is how far we can go without specific information
about the layout of the data in the memory and the
architecture. The current form is still fully generic, with
γ and rav parameterized over the layout. The Magnolia
implementation of this generic form is as follows:

procedure moaONF (
upd u:MA,
obs v:MA,
obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float, obs c1:Float,
obs c2:Float, obs c3:Float, obs c4:Float,
obs mi:MI){

var s0 = shape0(v);
var s1 = shape1(v);
var s2 = shape2(v);

var newu =
get(rav(u),gamma(mi,s)) + c4*(c3*(c_1*
get(rav(v),gamma(mod0(mi-d0,s0),s)) +
get(rav(v),gamma(mod0(mi+d0,s0),s)) +
get(rav(v),gamma(mod1(mi-d1,s1),s)) +
get(rav(v),gamma(mod1(mi+d1,s1),s)) +
get(rav(v),gamma(mod2(mi-d2,s2),s)) +

111

Finite Difference Methods Fengshui ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

get(rav(v),gamma(mod2(mi+d2,s2),s))) -
3 * c_2 get(rav(u),gamma(mi,s)) - c_0 *
((get(rav(v),gamma(mod0(mi+d0,s0),s)) -
get(rav(v),gamma(mod0(mi-d0,s0),s))) *
get(rav(u_0),gamma(mi,s)) +
(get(rav(v),gamma(mod1(mi+d1,s1),s)) -
get(rav(v),gamma(mod1(mi-d1,s1),s))) *
get(rav(u_1),gamma(mi,s)) +
(get(rav(v),gamma(mod2(mi+d2,s2),s)) -
get(rav(v),gamma(mod2(mi-d2,s2),s))) *
get(rav(u_2),gamma(mi,s))));

set(rav(u),gamma(mi,s),newu);
}
In Section 4.3, we defined the layout of the data as

row-major. Thus we can optimize the expression further
by expanding the calls to γ:

(rav snippet)[i× s1 × s2 + j × s2 + k] =

(rav u)[i× s1 × s2 + j × s2 + k] + c4 × (c3 × (c1 ×
(rav v)[((i− 1) mod s0)× s1 × s2 + j × s2 + k] +

(rav v)[((i+ 1) mod s0)× s1 × s2 + j × s2 + k] +

(rav v)[i× s1 × s2 + ((j − 1) mod s1)× s2 + k] +

(rav v)[i× s1 × s2 + ((j + 1) mod s1)× s2 + k] +

(rav v)[i× s1 × s2 + j × s2 + ((k − 1) mod s2)] +

(rav v)[i× s1 × s2 + j × s2 + ((k + 1) mod s2)])−
3c2(rav u)[i× s1 × s2 + j × s2 + k] − c0 ×

(((rav v)[((i+ 1) mod s0)× s1 × s2 + j × s2 + k]−
(rav v)[((i− 1) mod s0)× s1 × s2 + j × s2 + k])×

(rav u0)[i× s1 × s2 + j × s2 + k] +

((rav v)[i× s1 × s2 + ((j + 1) mod s1)× s2 + k]−
(rav v)[i× s1 × s2 + ((j − 1) mod s1)× s2 + k])×

(rav u1)[i× s1 × s2 + j × s2 + k] +

((rav v)[i× s1 × s2 + j × s2 + ((k + 1) mod s2)]−
(rav v)[i× s1 × s2 + j × s2 + ((k − 1) mod s2)])×

(rav u2)[i× s1 × s2 + j × s2 + k]))

At this point, as indicated in section 4.3, we can con-
vert our expression into several subexpressions in order
to distinguish the general case from anomalies (i.e cases
that require the modulo operation to be applied on any
axis). This general case is in ONF and we can use it for
code generation or to perform additional transformations,
specifically dimension lifting.

6 Conclusion
Through the full analysis of an FDM solver of a PDE,
we were able to extract a rewriting subsystem most rele-
vant to our specific problem out of the rewriting rules
provided by the ψ-calculus. Then, we proved that this
particular set of rewriting rules constitutes a canonical
rewriting system, getting one step closer to fully au-
tomating the optimization of array computations using
the MoA formalism.

We are now working on the implementation of our op-
timizations to measure their impact on the performance
of the solver for different architectures, and can report
results in the near future.

By working out an approach from high level coordinate-
free PDEs down to preparing for data layout and code
optimization using MoA as an intermediate layer through
the full exploration of a relevant example, we pave the
way for building similar systems for any problem of the
same category. High-efficiency code can thus easily be
explored and generated from a unique high-level abstrac-
tion and potentially different implementation algorithms,
layouts of data or hardware architectures.

Because tensors dominate a significant portion of
science, future work may focus on figuring out what
properties can be deduced from the complete ψ-calculus
rewriting system with a goal to extend this currently
problem-oriented approach towards a fully automated
problem-independent optimization tool based on MoA.

Given the scale of the ecosystem impacted by this
kind of work, such prospects are very attractive.

References
[1] Philip Samuel Abrams. 1970. An APL machine. Ph.D. Dis-

sertation. Stanford University, Stanford, CA, USA.
[2] Evrim Acar, Animashree Anandkumar, Lenore Mullin, Seb-

nem Rusitschka, and Volker Tresp. 2016. Tensor Comput-
ing for Internet of Things (Dagstuhl Perspectives Work-
shop 16152). Dagstuhl Reports 6, 4 (2016), 57–79. https:
//doi.org/10.4230/DagRep.6.4.57

[3] Evrim Acar, Animashree Anandkumar, Lenore Mullin, Seb-
nem Rusitschka, and Volker Tresp. 2018. Tensor Comput-
ing for Internet of Things (Dagstuhl Perspectives Workshop
16152). Dagstuhl Manifestos 7, 1 (2018), 52–68. https:
//doi.org/10.4230/DagMan.7.1.52

[4] Brett W. Bader, Tamara G. Kolda, et al. 2015. MATLAB
Tensor Toolbox Version 2.6. Available online. http://www.
sandia.gov/~tgkolda/TensorToolbox/

[5] Anya Helene Bagge. 2009. Constructs & Concepts: Language
Design for Flexibility and Reliability. Ph.D. Dissertation. Re-
search School in Information and Communication Technology,
Department of Informatics, University of Bergen, Norway, PB
7803, 5020 Bergen, Norway. http://www.ii.uib.no/~anya/phd/

[6] Klaus Berkling. 1990. Arrays and the Lambda Calculus. Tech-
nical Report 93. Electrical Engineering and Computer Science
Technical Reports.

[7] Johannes Martinus Burgers. 1948. A mathematical model
illustrating the theory of turbulence. In Advances in applied

112

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA B. Chetioui, L. Mullin, O. Abusdal, M. Haveraaen, J. Järvi, S. Macià

mechanics. Vol. 1. Elsevier, 171–199.
[8] Eva Burrows, Helmer André Friis, and Magne Haveraaen. 2018.

An Array API for Finite Difference Methods. In Proceedings of
the 5th ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (ARRAY
2018). ACM, New York, NY, USA, 59–66. https://doi.org/
10.1145/3219753.3219761

[9] J. A. Crotinger et al. 2000. Generic Programming in POOMA
and PETE. Lecture Notes in Computer Science 1766 (2000).

[10] Philip W. Grant, Magne Haveraaen, and Michael F. Webster.
2000. Coordinate free programming of computational fluid
dynamics problems. Scientific Programming 8, 4 (2000), 211–
230. https://doi.org/10.1155/2000/419840

[11] Ian Grout and Lenore Mullin. 2018. Hardware Consider-
ations for Tensor Implementation and Analysis Using the
Field Programmable Gate Array. Electronics 7, 11 (2018).
https://doi.org/10.3390/electronics7110320

[12] John L. Gustafson and Lenore M. Mullin. 2017. Tensors
Come of Age: Why the AI Revolution will help HPC. CoRR
abs/1709.09108 (2017). arXiv:1709.09108 http://arxiv.org/
abs/1709.09108

[13] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei
Gorlatch, and Christophe Dubach. 2018. High Performance
Stencil Code Generation with Lift. In Proceedings of the
2018 International Symposium on Code Generation and Op-
timization (CGO 2018). ACM, New York, NY, USA, 100–112.
https://doi.org/10.1145/3168824

[14] Magne Haveraaen, Helmer André Friis, and Tor Arne Jo-
hansen. 1999. Formal Software Engineering for Computational
Modelling. Nord. J. Comput. 6, 3 (1999), 241–270.

[15] Magne Haveraaen, Helmer André Friis, and Hans Munthe-
Kaas. 2005. Computable Scalar Fields: a basis for PDE
software. Journal of Logic and Algebraic Programming 65, 1
(September-October 2005), 36–49. https://doi.org/10.1016/j.
jlap.2004.12.001

[16] H. B. Hunt III, L. Mullin, and D. J. Rosenkrantz. 1998.
Experimental Design and Development of a Polyalgorithm
for the FFT. Technical Report 98–5. University at Albany,
Department of Computer Science.

[17] Harry B. Hunt III, Lenore R. Mullin, Daniel J. Rosenkrantz,
and James E. Raynolds. 2008. A Transformation–Based Ap-
proach for the Design of Parallel/Distributed Scientific Soft-
ware: the FFT. CoRR abs/0811.2535 (2008). arXiv:0811.2535
http://arxiv.org/abs/0811.2535

[18] K. Iverson. 1962. A Programming Language. John Wiley and
Sons, Inc. New York.

[19] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato,
and Saman Amarasinghe. 2017. The Tensor Algebra Compiler.
Proc. ACM Program. Lang. 1, Article 77 (Oct. 2017), 29 pages.
https://doi.org/10.1145/3133901

[20] J. W. Klop, Marc Bezem, and R. C. De Vrijer (Eds.). 2001.
Term Rewriting Systems. Cambridge University Press, New
York, NY, USA.

[21] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decom-
positions and Applications. SIAM Rev. 51, 3 (September
2009), 455–500. https://doi.org/10.1137/07070111X

[22] Lenore Mullin. 1988. A Mathematics of Arrays. Ph.D. Dis-
sertation.

[23] Lenore Mullin and Michael Jenkins. 1996. Effective Data
Parallel Computation Using the Psi-Calculus. Concurrency
Journal (1996).

[24] L Mullin and J Raynolds. 2014. Scalable, Portable, Verifiable
Kronecker Products on Multi-scale Computers. Constraint
Programming and Decision Making. Studies in Computational

Intelligence, Vol. 539. Springer, Cham.
[25] L. Mullin, E. Rutledge, and R. Bond. 2002. Monolithic

Compiler Experiments using C++ Expression Templates. In
Proceedings of the High Performance Embedded Computing
Workshop (HPEC 2002). MIT Lincoln Lab, Lexington, MA.

[26] Lenore M. Restifo Mullin, Ashok Krishnamurthi, and Deepa
Iyengar. 1988. The Design And Development of a Basis,
alphaL, for Formal Functional Programming Languages with
Arrays Based on a Mathematics of Arrays. In Proceedings of
the International Conference on Parallel Processing, ICPP
’88, The Pennsylvania State University, University Park, PA,
USA, August 1988. Volume 2: Software.

[27] L.M. R. Mullin. 1991. Psi, the Indexing Function: A Basis
for FFP with Arrays. In Arrays, Functional Languages, and
Parallel Systems. Kluwer Academic Publishers.

[28] Lenore R. Mullin. 2005. A uniform way of reasoning about
array-based computation in radar: Algebraically connecting
the hardware/software boundary. Digital Signal Processing
15, 5 (2005), 466–520.

[29] L. R. Mullin, D. Dooling, E. Sandberg, and S. Thibault. 1993.
Formal Methods for Scheduling, Routing and Communication
Protoc ol. In Proceedings of the Second International Sympo-
sium on High Performance Distributed Computing (HPDC-2).
IEEE Computer Society.

[30] L. R. Mullin, D. J. Rosenkrantz, H. B. Hunt III, and X.
Luo. 2003. Efficient Radar Processing Via Array and Index
Algebras. In Proceedings First Workshop on Optimizations
for DSP and Embedded Systems (ODES). San Francisco, CA,
1–12.

[31] Paul Chang and Lenore R. Mullin. 2002. An Optimized QR
Factorization Algorithm based on a Calculus of Indexing.
DOI: 10.13140/2.1.4938.2722.

[32] Jeremy G. Siek and Andrew Lumsdaine. 1998. The Matrix
Template Library: A Generic Programming Approach to High
Performance Numerical Linear Algebra. In Proceedings of the
Second International Symposium on Computing in Object-
Oriented Parallel Environments. Springer-Verlag, London,
UK, UK. http://dl.acm.org/citation.cfm?id=646894.709706

[33] Google Brain Team. 2015. https://www.tensorflow.org/.
[34] Hai-Chen Tu and Alan J. Perlis. 1986. FAC: A Functional

APL Language. IEEE Software 3, 1 (Jan. 1986), 36–45.

113

CHAPTER 8

A Mathemathics of Arrays evaluated

8.1 introduction

We carry on from the previous chapter to getting a sense of what improve-
ment we can expect from our application of MOA. For this endeavour we
proceed as follows: First we port the original solver code, i.e. before ap-
plying MOA, to C. We then do the same for the solver code after applying
MOA. We consider further optimizations. Note we do not make any consid-
erations as to what the algorithm we are implementing is doing; it is simply
a benchmarking tool, we are concerned with how it is doing things.

8.2 The original implementation

We started out with an implementation of a PDE solver in Magnolia. Which
we elect to port to C as the existing compiler toolchain for Magnolia may
introduce some undesirable overhead. The algorithm consists of a step which
takes as parameters three multidimensional arrays along with some constants
and then alter the arrays in a kernel of computation called snippet.

114

//For the parameter upd u0:MA, u0 is a multidimensional

//array that is upd(atable). The upd qualifier means this

//procedure parameter can be read from and written to;

//a call to the procedure can alter the value of a variable

//passed to it as an effect of the call. A qualifier of

//obs(erve) means the parameter can only be read from.

procedure s tep (upd u0 :MA, upd u1 :MA, upd u2 :MA,
obs nu : Float , obs dx : Float , obs dt : Float) {

var c0 = 0.5/ dx ;
var c1 = 1/dx/dx ;
var c2 = 2/dx/dx ;
var c3 = nu ;
var c4 = dt /2 ;

var v0 = u0 ;
var v1 = u1 ;
var v2 = u2 ;

ca l l sn ippet (v0 , u0 , u0 , u1 , u2 , c0 , c1 , c2 , c3 , c4) ;
ca l l sn ippet (v1 , u1 , u0 , u1 , u2 , c0 , c1 , c2 , c3 , c4) ;
ca l l sn ippet (v2 , u2 , u0 , u1 , u2 , c0 , c1 , c2 , c3 , c4) ;
ca l l sn ippet (u0 , v0 , v0 , v1 , v2 , c0 , c1 , c2 , c3 , c4) ;
ca l l sn ippet (u1 , v1 , v0 , v1 , v2 , c0 , c1 , c2 , c3 , c4) ;
ca l l sn ippet (u2 , v2 , v0 , v1 , v2 , c0 , c1 , c2 , c3 , c4) ;

} ;

The kernel of computation called snippet should be fairly straightforward to
understand although there are some operations that perhaps require some
clarification. For instance the shift operation moves the entire contents of
the array indicated by its first parameter, in the dimension of the second
parameter, by a distance indicated by the third parameter. Elements that
fall outside of bounds wrap around, i.e. modular wraparound. One may
notice this is perhaps not ideal; it is better to not move any data at all and
instead alter indexing. However given that this was orignally code that was
run on a GPU, the penalty in that case would perhaps have been negligible.

procedure sn ippet (upd u :MA, obs v :MA,
obs u0 :MA, obs u1 :MA, obs u2 :MA,
obs c0 : Float , obs c1 : Float , obs c2 : Float ,
obs c3 : Float , obs c4 : Float) {

115

var s h i f t v = s h i f t (v , 0 , −1) ;
var d1a = −c0 ∗ s h i f t v ;
var d2a = c1 ∗ s h i f t v − c2 ∗ u0 ;
s h i f t v = s h i f t (v , 0 , 1) ;
d1a = d1a + c0 ∗ s h i f t v ;
d2a = d2a + c1 ∗ s h i f t v ;

s h i f t v = s h i f t (v , 1 , −1) ;
var d1b = −c0 ∗ s h i f t v ;
var d2b = c1 ∗ s h i f t v − c2 ∗ u0 ;
s h i f t v = s h i f t (v , 1 , 1) ;
d1b = d1b + c0 ∗ s h i f t v ;
d2b = d2b + c1 ∗ s h i f t v ;

s h i f t v = s h i f t (v , 2 , −1) ;
var d1c = −c0 ∗ s h i f t v ;
var d2c = c1 ∗ s h i f t v − c2 ∗ u0 ;
s h i f t v = s h i f t (v , 2 , 1) ;
d1c = d1c + c0 ∗ s h i f t v ;
d2c = d2c + c1 ∗ s h i f t v ;

d1a = u0 ∗ d1a + u1 ∗ d1b + u2 ∗ d1c ;
d2a = d2a + d2b + d2c ;
u = u + c4 ∗ (c3 ∗ d2a − d1a) ;

} ;

In porting this to C(conforming to at least C99) we omit details on the step
code as it is uninteresting. We only provide the snippet/kernel code here,
but will make available the entire source for a complete implementation. For
the rest of the snippets of code we consider that the arrays are of the shape
S = 〈s0, s1, s2〉, thus we define asize = s0s1s2 to be the total amount of
elements in the array and we lay them out in a row major order in memory
and access them with a fixed gamma(i, j, k) = is1s2 + js2 + k.

Listing 8.1: C port A

#define APPLY(x) for (int x=0;x<a s i z e ; x++)
stat ic void s n i p p e t o r i g (
double ∗u ,
double ∗ restr ict v ,
double ∗ restr ict u0 ,
double ∗ restr ict u1 ,
double ∗ restr ict u2 ,

116

double c0 , double c1 ,
double c2 , double c3 ,
double c4 ,
struct temps∗ t)

{
//block 1

//var shift_v = shift (v, 0, -1);

s h i f t 0 (v , t−>s h i f t v , −1);

//var d1a = -c0 * shift_v;

APPLY(i) {
(t−>d1a) [i] = (t−>s h i f t v) [i]∗(− c0) ;

}

//var d2a = c1 * shift_v - c2 * u0;

APPLY(i) {
(t−>d1a) [i] = (t−>s h i f t v) [i]∗ c1 − c2∗u0 [i] ;

}

//shift_v = shift (v, 0, 1);

s h i f t 0 (v , t−>s h i f t v , 1) ;

//d1a = d1a + c0 * shift_v;

APPLY(i) {
(t−>d1a) [i] = (t−>d1a) [i] + c0 ∗(t−>s h i f t v) [i] ;

}

//d2a = d2a + c1 * shift_v;

APPLY(i) {
(t−>d2a) [i] = (t−>d2a) [i]+c1 ∗(t−>s h i f t v) [i] ;

}
//Block 2

//shift_v = shift (v, 1, -1);

s h i f t 1 (v , t−>s h i f t v ,−1) ;

//var d1b = - c0 * shift_v;

APPLY(i){
(t−>d1b) [i] = −c0 ∗(t−>s h i f t v) [i] ;

}

//var d2b = c1 * shift_v - c2 * u0;

117

APPLY(i){
(t−>d2b) [i] = c1 ∗(t−>s h i f t v) [i] − c2∗u0 [i] ;

}
// shift_v = shift (v, 1, 1);

s h i f t 1 (v , t−>s h i f t v , 1) ;

//d1b = d1b + c0 * shift_v

APPLY(i) {
(t−>d1b) [i] = c0 ∗(t−>s h i f t v) [i] ;

}

//d2b = d2b + c0 * shift_v

APPLY(i) {
(t−>d2b) [i] = (t−>d2b) [i] + c0 ∗(t−>s h i f t v [i]) ;

}
//Block 3

//shift_v = shift (v, 2, -1);

s h i f t 2 (v , t−>s h i f t v ,−1) ;

//var d1c = - c0 * shift_v;

APPLY(i) {
(t−>d1c) [i] = −c0 ∗(t−>s h i f t v) [i] ;

}

//var d2c = c1 * shift_v - c2 * u0;

APPLY(i) {
(t−>d2c) [i] = c1 ∗(t−>s h i f t v) [i] − c2∗u0 [i] ;

}
// shift_v = shift (v, 2, 1);

s h i f t 2 (v , t−>s h i f t v , 1) ;

//d1c = d1c + c0 * shift_v

APPLY(i) {
(t−>d1c) [i] = (t−>d1c) [i] + c0 ∗(t−>s h i f t v) [i] ;

}

//d2c = d2c + c0 * shift_v

APPLY(i) {
(t−>d2c) [i] = (t−>d2c) [i] + c0 ∗(t−>s h i f t v) [i] ;

}

//d1a = u0 * d1a + u1 * d1b + u2 * d1c;

118

APPLY(i) {
(t−>d1a) [i] = u0 [i] ∗ (t−>d1a) [i] + u1 [i] ∗ (t−>d1b) [i] +
u2 [i] ∗ (t−>d1c) [i] ;

}

//d2a = d2a + d2b + d2c;

APPLY(i) {
(t−>d2a) [i] = (t−>d2a) [i] + (t−>d2b) [i] + (t−>d2c) [i] ;

}

//u = u + c4 * (c3 * d2a - d1a);

APPLY(i) {
u [i] = u [i] + c4 ∗ (c3 ∗ (t−>d2a) [i] − (t−>d1a) [i]) ;

}
}

The shifting operation is straightforward, but one is included for complete-
ness.

Listing 8.2: shifting along the 0th axis

stat ic i n l i n e void s h i f t 0 (double ∗v , double ∗out ,
int d i s t anc e)

{
int i j k =0;
for (int i =0; i<s0 ; i++) {

for (int j =0; j<s1 ; j++) {
for (int k=0;k<s2 ; k++, i j k++) {

out [i j k] = v [gamma(mod(i+di s tance , s0) , j , k)] ;
}

}
}

}

We note that this implementation mainly has two immediately discernable
undesirable properties. It does several passes over the arrays spread over
many operations and it moves quite a lot of data around in its shift oper-
ations. It also requires the use of temporaries in addition to the arrays it
operates on.

119

8.3 A first look at applying MOA

In our conference paper we ended at one step after the following stage, i.e.
we had expanded gamma. The following is the direct port of the resulting
MOA interpretation of the kernel of computation called snippet. Note that
we may omit the parameters to the kernel snippet in some of the following
examples. Whenever this is the case they are simply the same as in preceding
examples.

Listing 8.3: C port B

// row major indexing

stat ic inl ine int gamma(int i , int j , int k)
{

return i ∗ s1 ∗ s2 + j ∗ s2 + k ;
}

stat ic void snippetONF1 (
double ∗u ,
double ∗ restr ict v ,
double ∗ restr ict u0 ,
double ∗ restr ict u1 ,
double ∗ restr ict u2 ,
double c0 , double c1 ,
double c2 , double c3 ,
double c4)
{

for (int i =0; i<s0 ; i++) {
for (int j =0; j<s1 ; j++) {

for (int k=0; k<s2 ; k++) {
u [gamma(i , j , k)] =
u [gamma(i , j , k)] + c4 ∗ (c3 ∗ (c1 ∗
v [gamma((mod(i −1, s0)) , j , k)] +
v [gamma((mod(i +1, s0)) , j , k)] +
v [gamma(i , (mod(j −1, s1)) , k)] +
v [gamma(i , (mod(j +1, s1)) , k)] +
v [gamma(i , j , (mod(k−1, s2)))] +
v [gamma(i , j , (mod(k+1, s2)))]) −
3 ∗ c2 ∗ u [gamma(i , j , k)] − c0 ∗
((v [gamma((mod(i +1, s0)) , j , k)] −
v [gamma((mod(i −1, s0)) , j , k)]) ∗
u0 [gamma(i , j , k)] +
(v [gamma(i , (mod(j +1, s1)) , k)] −
v [gamma(i , (mod(j −1, s1)) , k)]) ∗

120

u1 [gamma(i , j , k)] +
(v [gamma(i , j , (mod(k+1, s2)))] −
v [gamma(i , j , (mod(k−1, s2)))]) ∗
u2 [gamma(i , j , k)])) ;

}
}

}
}

Comparing this to the MOA expression reached in the conference paper we
see it is essentially a one-to-one translation. Comparing it to the original
code 8.1 the immediate difference is that it does one pass over the arrays.
We have collected operations into one pass instead of over several passes,
one per operation. We opt to make this a little more human-friendly by
extracting some subexpressions.

Listing 8.4: exctracting subexpressions

u [gamma(i , j , k)] =
u [gamma(i , j , k)] + c4 ∗ (c3 ∗

(c1 ∗
v [gamma((mod(i −1, s0)) , j , k)] +
v [gamma((mod(i +1, s0)) , j , k)] +
v [gamma(i , (mod(j −1, s1)) , k)] +
v [gamma(i , (mod(j +1, s1)) , k)] +
v [gamma(i , j , (mod(k−1, s2)))] +
v [gamma(i , j , (mod(k+1, s2)))])

− 3 ∗ c2 ∗ u [gamma(i , j , k)] − c0 ∗

((v [gamma((mod(i +1, s0)) , j , k)] −
v [gamma((mod(i −1, s0)) , j , k)]) ∗
u0 [gamma(i , j , k)] +

(v [gamma(i , (mod(j +1, s1)) , k)] −
v [gamma(i , (mod(j −1, s1)) , k)]) ∗
u1 [gamma(i , j , k)] +

(v [gamma(i , j , (mod(k+1, s2)))] −
v [gamma(i , j , (mod(k−1, s2)))]) ∗
u2 [gamma(i , j , k)])) ;

Thus we obtain a more readable form for further exploration. Again, note

121

nothing but readability has changed here.

Listing 8.5: C port C

stat ic void snippetONF1experimental1 (. . .) {
int i , j , k ;
double vi jnk , v i jpk , vni jk , vpi jk , v in jk , v ip jk ;
double m, n ;

for (i =0; i<s0 ; i++) {
for (j =0; j<s1 ; j++) {

for (k=0; k<s2 ; k++) {
v i jnk = v [gamma(i , j , mod(k−1, s2))] ;
v i j pk = v [gamma(i , j , mod(k+1, s2))] ;
vn i j k = v [gamma(mod(i −1, s0) , j , k)] ;
vp i j k = v [gamma(mod(i +1, s0) , j , k)] ;
v in jk = v [gamma(i , mod(j −1, s1) , k)] ;
v ip jk = v [gamma(i , mod(j +1, s1) , k)] ;

m = c1 ∗ vn i j k + vp i j k + v in jk +
v ip jk + v i jnk + v i jpk ;

n = (vp i j k − vn i j k) ∗ u0 [gamma(i , j , k)] +
(v ip jk − v in jk) ∗ u1 [gamma(i , j , k)] +
(v i jpk − v i jnk) ∗ u2 [gamma(i , j , k)] ;

u [gamma(i , j , k)] +=
c4 ∗ (c3 ∗ m − 3 ∗ c2 ∗ u [gamma(i , j , k)] − c0 ∗ n) ;

}
}

}
}

8.4 Further optimizations

We now make an attempt to optimize the code from 8.5. What we may do is
to expand the gamma index calculations and avoid needless recomputations
in the looping. Sometimes this is referred to as hoisting recomputations out
of loops. This however is really expected to be done automatically by the
compiler when optimizations are enabled.

Listing 8.6: C port D

122

stat ic void snippetONF1experimental2 (. . .) {
int i , j , k , i j k ;
double vi jnk , v i jpk , vni jk , vpi jk , v in jk , v ip jk ;
double m, n ;

int gi , gj , pmgi , nmgi , pmgj , nmgj ;

i j k =0;
for (i =0; i<s0 ; i++) {

g i = i ∗ s1 ∗ s2 ;
nmgi = mod(i −1, s0)∗ s1 ∗ s2 ;
pmgi = mod(i +1, s0)∗ s1 ∗ s2 ;

for (j =0; j<s1 ; j++) {
g j = j ∗ s1 ;
nmgj = mod(j −1, s1)∗ s1 ;
pmgj = mod(j +1, s1)∗ s1 ;

for (k=0; k<s2 ; k++, i j k++) {
v i jnk = v [g i+g j+mod(k−1, s2)] ;
v i j pk = v [g i+g j+mod(k+1, s2)] ;

vn i j k = v [nmgi+g j+k] ;
vp i j k = v [pmgi+g j+k] ;

v in jk = v [g i+nmgj+k] ;
v ip jk = v [g i+pmgj+k] ;

m = c1 ∗ vn i j k + vp i j k + v in jk +
v ip jk + v i jnk + v i jpk ;

n = (vp i j k − vn i j k) ∗ u0 [i j k] +
(v ip jk − v in jk) ∗ u1 [i j k] +
(v i jpk − v i jnk) ∗ u2 [i j k] ;

u [i j k] += c4 ∗ (c3 ∗ m − 3 ∗ c2 ∗ u [i j k] − c0 ∗ n) ;
}

}
}

}

123

8.5 Final optimizations

We now make more drastic transformations. First, we see that modular
arithmethic operations only interfere for the cases where we are at the be-
ginning or end of the bounds of an array. Thus it then makes sense to split
the looping domain in three parts:

〈0, 0, 0〉 → 〈1, 1, 1〉
〈1, 1, 1〉 → 〈s0 − 2, s1 − 2, s2 − 2〉

〈s0 − 2, s1 − 2, s2 − 2〉 → 〈s0 − 1, s1 − 1, s2 − 1〉

Furthermore seeing as we are iterating through the arrays in a lexicograph-
ical order on indices(from right component to left) 〈i, j, k〉 we know that
if 〈ix, jx, kx〉 < 〈iy, jy, ky〉 such that 〈iy, jy, ky〉 is the least such index that
satisfies that condition then gamma(iy, jy, ky) = gamma(ix, jx, kx) + 1. In
the cases where we cannot eliminate modular arithmethic we still need the
indices. We do this by keeping counting them upward in sync with a flat
incrementation. i.e. we keep 〈i, j, k〉 in sync with gamma(i, j, k) = ijk.

Listing 8.7: C port E

stat ic void snippetONF1experimental3 (. . .) {
double vi jnk , v i jpk , vni jk , vpi jk , v in jk , v ip jk ;
int gi , g j ;
double m, n ;
struct lpvar l ;
int s t a r t , stop ;

// loop (i,j,k) from (0,0,0) to (1,1,1)

s t a r t = 0 ;
stop = gamma(1 , 1 , 1) ;
l = (struct lpvar){0 , 0 , 0} ;

// ijk = i*s2*s1+j*s2+k

for (int i j k=s t a r t ; i j k<stop ; i j k ++,succ(& l)) {

g i = (l . i)∗ s1 ∗ s2 ;
g j = (l . j)∗ s2 ;

v i j nk = v [g i+g j+mod(l . k−1, s2)] ;
v i j pk = v [g i+g j+mod(l . k+1, s2)] ;

124

vn i j k = v [mod(l . i −1, s0)∗ s1 ∗ s2+g j+l . k] ;
vp i j k = v [mod(l . i +1, s0)∗ s1 ∗ s2+g j+l . k] ;
v in jk = v [g i+mod(l . j −1, s1)∗ s2+l . k] ;
v ip jk = v [g i+mod(l . j +1, s1)∗ s2+l . k] ;

m = c1 ∗ vn i j k + vp i j k + v in jk + v ip jk + v i jnk + v i jpk ;
n = (vp i j k − vn i j k) ∗ u0 [i j k] +

(v ip jk − v in jk) ∗ u1 [i j k] +
(v i jpk − v i jnk) ∗ u2 [i j k] ;

u [i j k] += c4 ∗ (c3 ∗ m − 3 ∗ c2 ∗ u [i j k] − c0 ∗ n) ;
}

// loop (i,j,k) from (1,1,1) to (s2-2,s1-2,s0-2)

s t a r t = stop ;
stop = gamma(s0−2, s1−2, s2 −2);
for (int i j k=s t a r t ; i j k < stop ; i j k++) {

v i jnk = v [i j k −1] ;
v i j pk = v [i j k +1] ;
vn i j k = v [i j k−s1 ∗ s2] ;
vp i j k = v [i j k+s1 ∗ s2] ;
v in jk = v [i j k−s2] ;
v ip jk = v [i j k+s2] ;

m = c1 ∗ vn i j k + vp i j k + v in jk + v ip jk + v i jnk + v i jpk ;
n = (vp i j k − vn i j k) ∗ u0 [i j k] +

(v ip jk − v in jk) ∗ u1 [i j k] +
(v i jpk − v i jnk) ∗ u2 [i j k] ;

u [i j k] += c4 ∗ (c3 ∗ m − 3 ∗ c2 ∗ u [i j k] − c0 ∗ n) ;
}

// loop (i,j,k) from (s2-2,s1-2,s0-2) to (s2-1,s1-1,s0-1)

s t a r t = stop ;
stop = gamma(s0−1, s1−1, s2 −1);
l = (struct lpvar){ s0−2, s1−2, s2−2};

for (int i j k=s t a r t ; i j k<stop ; i j k ++,succ(& l)) {

g i = (l . i)∗ s1 ∗ s2 ;
g j = (l . j)∗ s2 ;

v i j nk = v [g i+g j+mod(l . k−1, s2)] ;

125

v i jpk = v [g i+g j+mod(l . k+1, s2)] ;
vn i j k = v [mod(l . i −1, s0)∗ s1 ∗ s2+g j+l . k] ;
vp i j k = v [mod(l . i +1, s0)∗ s1 ∗ s2+g j+l . k] ;
v in jk = v [g i+mod(l . j −1, s1)∗ s2+l . k] ;
v ip jk = v [g i+mod(l . j +1, s1)∗ s2+l . k] ;

m = c1 ∗ vn i j k + vp i j k + v in jk +
v ip jk + v i jnk + v i jpk ;

n = (vp i j k − vn i j k) ∗ u0 [i j k] +
(v ip jk − v in jk) ∗ u1 [i j k] +
(v i jpk − v i jnk) ∗ u2 [i j k] ;

u [i j k] +=
c4 ∗ (c3 ∗ m − 3 ∗ c2 ∗ u [i j k] − c0 ∗ n) ;

}
}

For completeness we include the 〈i, j, k〉 incrementation logic.

Listing 8.8: incrementation logic

struct lpvar {
int i ;
int j ;
int k ;

} ;

stat ic void inl ine succ (struct lpvar ∗ l){
l−>k++;
i f ((l−>k)==s2){

l−>k=0;
l−>j ++;
i f ((l−>j)==s1) {

l−>j =0;
l−>i ++;
i f ((l−>i)==s0) {

l−>i =0;
}

}
}

}

126

8.6 Benchmarking results

We now turn to measuring the effects of these optimizations. The problem
size is fixed as arrays of shape 〈50, 50, 50〉 i.e. of 50 · 50 · 50 = 125000
elements. The step code is run with the differently optimized kernels 50
times in repetition and timed. That is timing is done as follows:

Listing 8.9: benchmarking timing

// One core ONF

memcpy(chunk , s ta r t , t o t a l ∗ s izeof (double)) ;
p r i n t f (”ONF 1−core \n”) ;
begin = c lock () ;
for (int i =0; i <50; i++)

step (u0 , u1 , u2 , s nu , s dx , s dt , snippetONF1) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time :% l f \n” , t spent) ;

The following results measured in seconds are produced with gcc 9.2.1 and
clang 8.0.0 on an i5-8250U Intel CPU.

Table 8.1: gcc

-O0 -O1 -O2 -O3
A 3.182 0.717 0.648 0.550
B 3.474 0.374 0.360 0.356
C 2.187 0.373 0.367 0.369
D 0.834 0.371 0.366 0.366
E 0.529 0.375 0.377 0.087

Table 8.2: clang

-O0 -O1 -O2 -O3
A 3.121 0.893 0.525 0.543
B 3.631 0.629 0.365 0.365
C 2.281 0.640 0.363 0.363
D 0.847 0.425 0.364 0.364
E 0.530 0.383 0.254 0.254

127

8.7 Introducing data redundancy

Taking another look at 8.3 we see that modular arithmetic only needs to be
done at the boundaries of arrays. A technique to eliminate such boundary
cases is by padding the array with its wraparound elements. That is if we
have the array of values 〈x0, . . . , xn−1〉 and we are attempting to retrieve,
in an iteration through the array, element i + 1 mod n and i − 1 mod n that
is the same as iterating through the array 〈x′0, x′1, . . . , x′n, x′n+1〉 where x′0 =
xn−1, x

′
n+1 = x0 and the middle elements are the old array, i.e. for 1 ≤ k ≤ n

we have x′k = xk−1. We must change our iteration from i = 0, . . . , i = n− 1
to i = 1, . . . , i = n. We can then change the retrievals of i + 1 mod n and
i− 1 mod n simply to i+ 1 and i− 1. In this little example we have bumped
up the size from n to n + 2 but have eliminated n instances of modular
arithmethic. We will refer to this technique of data redundancy as padding.

For our case in 8.3 we pad the contiguous chunks of the last dimension. We
have a cubical array of shape 〈s, s, s〉 and thus total size s3 so we get a shape
with padding of 〈s, s, s+ 2〉 and a total size of s3 + 2s2.

Listing 8.10: Padding

stat ic inl ine int gamma2(int i , int j , int k)
{

return i ∗ s1 ∗ s2padded + j ∗ s2padded + k ;
}
stat ic void SC PADDING (. . .) {

for (int i =0; i<s0 ; i++) {
for (int j =0; j<s1 ; j++) {

for (int k=1; k<s2 +1; k++) {
u [gamma2(i , j , k)] =
u [gamma2(i , j , k)] + c4 ∗ (c3 ∗ (c1 ∗
v [gamma2((mod(i −1, s0)) , j , k)] +
v [gamma2((mod(i +1, s0)) , j , k)] +
v [gamma2(i , (mod(j −1, s1)) , k)] +
v [gamma2(i , (mod(j +1, s1)) , k)] +
v [gamma2(i , j , k−1)] +
v [gamma2(i , j , k +1)]) −
3 ∗ c2 ∗ u [gamma2(i , j , k)] − c0 ∗
((v [gamma2((mod(i +1, s0)) , j , k)] −
v [gamma2((mod(i −1, s0)) , j , k)]) ∗
u0 [gamma2(i , j , k)] +
(v [gamma2(i , (mod(j +1, s1)) , k)] −
v [gamma2(i , (mod(j −1, s1)) , k)]) ∗
u1 [gamma2(i , j , k)] +

128

(v [gamma2(i , j , k+1)] −
v [gamma2(i , j , k−1)]) ∗
u2 [gamma2(i , j , k)])) ;

}
// update the padding values

u [gamma2(i , j , 0)] = u [gamma2(i , j , s2)] ;
u [gamma2(i , j , s2 +1)] = u [gamma2(i , j , 0)] ;

}
}

}

As can be seen in 8.10 we have eliminated modular arithmethic for the looping
variable of the last dimension at the cost of a one time expansion preprocess-
ing phase(not shown) where the 3-dimensional array is padded, the need to
update the padding values as values are changed and upon completion a one
time shortening to remove the padding(not shown).

We benchmark 8.10 against 8.3 with various array sizes. In this table we list
the unpadded size s meaning we are operating with 〈s, s, s〉 shaped arrays
and the padded array is a 〈s, s, s + 2〉 shaped array. The measurements are
in seconds and were done on a Intel(R) Xeon(R) Gold 6130 CPU running at
2.10GHz.

Table 8.3: gcc 8.2.0 -O3

s unpadded padded
50 0.128 0.079
128 3.119 2.586
256 25.90 22.09
512 216.6 199.7

In principle this padding procedure should be able to be done on all dimen-
sions at once however the cost of maintaining the padding values and the
increase in memory usae may outweigh its benefits.

Padding is likely a more significant improvement in a multicore or multipro-
cessor utilizing implementation of the problem where access far apart incurs
the cost of either memory access that is not local to a core in a NUMA
architecture or communication costs when spread across several processors.
Although the initial motivation for padding was to remove modular arith-
metic perhaps it is more relevant that with padding when there are not too
many boundary conditions then it is likely that a cache line already contains

129

the boundary cases. That is with a cache line of 64 bytes and word size of
8 bytes then a load at an index of an array will put 8 words(from the index
and onwards) in a cache line. Of these 1 was the requested index, 6 may
have been within an original unpadded array, but 1 would require filling a
new cache line if not already present in a cache line. Eliminating a cache line
fill for every boundary condition can be important depending on the size of
its compounding effect.

As it may be unclear we stress that a drawback of padding is the irregularity
it introduces. Consider an example of looping over a two-dimensional array
here shown as nested arrays whose flat repesentation is retrieved by removing
the inner bracketing:

〈〈x0,0, x0,1, . . . , x0,n−1〉, . . . , 〈xn−1,0, xn−1,1, . . . , xn−1,n−1〉〉

imagine in our iteration we are performing an indexing of the form were we
need to get xi,n+1mod n and xi,−1mod n at each index. We pad the array accord-
ingly to simply need the indexing xi,j+1 and xi,j−1. Now we have eliminated
the need for the modular arithmethic, but we need to skip the padding values;
we cannot eliminate all branching overhead by simply incrementing an index
into the flat representation of the array. Padding changes the iteration space
and introduces irregularity that requires bookeeping; profiling is needed on
a case by case basis for whether padding makes sense.

8.8 Multithreading and dimension lifting

We now investigate different ways of partitioning the array in a multithread-
ing setting, the tool of choice is to Open Multi-Processing (OpenMP) which
enables, among other things, annotating looping with pragmas to indicate
splitting of work by iteration space. Although it may be inferred we offer
some explanation of the used tools.

#pragma omp p a r a l l e l for schedu le (stat ic) \
num threads (THREADS)

for (int i =0; i<K; i++) { . . . }

Here we have annotated a loop such that the iteration space of i will be
split among the given number of threads. The master thread will split off
iterations blocks, the size of which are statically decided(exact size can be
specified as well), to each thread which will run the loop. This is a simple
fork/join model of concurrency on the outermost loop. Another directive
that can be specified in a parallel for pragma is to specify a collapse.

130

#pragma omp p a r a l l e l for c o l l a p s e (2)
for (int i =0; i<K; i++) {

for (int j =0; j<L ; i++) { . . . }
}

This will fuse the iteration space to something like the following:

#pragma omp p a r a l l e l for
for (int f =0; f<K∗L ; f++) {

int i = f /L ; int j = f % L ;
. . .

}

In the following experiments we do not change the layout of the array in
any way, we simply regard and iterate through it differently. Given an array
〈s, s, s〉 with its elements layed out in a row-major order consider the notation
of {i j k} to denote looping variables that iterate through the array with the
rightmost variable being the fastest changing variable.

8.8.1 Dimension lifting on the first dimension

Given that T divides s We may consider the transformation of 〈s, s, s〉 7→
〈T, s/T, s, s〉 where we get corresponding iteration variables of {p i j k}. Here
we regard T as the amount of threads allocated and we want to partition
〈s, s, s〉 such that each thread gets its own contiguous chunk of memory to
iterate through. We can achieve this through parallelization of the outer-
most looping variable p and changing the gamma(i, j, k) function we are
using to gamma ′(p, i, j, k) = gamma(p(s/T) + i, j, k). A challenge presents
itself where operations are applied to i in the original body of our loop. Such
operations must propagate into our new gamma ′ and create modified ver-
sion. That is we may originally have gamma(i + 1 mod s0, j, k) which must
become gamma ′i+1 (p, i, j, k) = gamma(p(s/T) + i + 1 mod s0, j, k) and simi-
larily gamma ′i−1 (p, i, j, k) = gamma(p(s/T) + i− 1 mod s0, j, k)

Listing 8.11: dimension lifting on first dimension

stat ic inl ine int gammaDL(int p , int i , int j , int k)
{

return (p∗ s0 /THREADS+i)∗ s1 ∗ s2 + j ∗ s2 + k ;X
}
// here MN means mod negative

stat ic inl ine int gammaDLMN(int p , int i , int j , int k)

131

{
return mod(p∗ s0 /THREADS+i −1, s0)∗ s1 ∗ s2 + j ∗ s2 + k ;

}
// here MP means mod positive

stat ic inl ine int gammaDLMP(int p , int i , int j , int k)
{

return mod(p∗ s0 /THREADS+i +1, s0)∗ s1 ∗ s2 + j ∗ s2 + k ;
}
stat ic void MC DL ON THREADS (. . .) {

#pragma omp p a r a l l e l for schedu le (stat ic) \
num threads (THREADS)

for (int p=0;p<THREADS; p++) {
for (int i =0; i<s0 /THREADS; i++) {

for (int j =0; j<s1 ; j++) {
for (int k=0; k<s2 ; k++) {

u [gammaDL(p , i , j , k)]=
u [gammaDL(p , i , j , k)] + c4 ∗ (c3 ∗ (c1 ∗
v [gammaDLMN(p , i , j , k)] +
v [gammaDLMP(p , i , j , k)] +
v [gammaDL(p , i , mod(j −1, s1) , k)] +
v [gammaDL(p , i , mod(j +1, s1) , k)] +
v [gammaDL(p , i , j ,mod(k−1, s2))] +
v [gammaDL(p , i , j ,mod(k+1, s2))]) −
3 ∗ c2 ∗ u [gammaDL(p , i , j , k)] − c0 ∗
((v [gammaDLMP(p , i , j , k)] −
v [gammaDLMN(p , i , j , k)]) ∗
u0 [gammaDL(p , i , j , k)] +
(v [gammaDL(p , i ,mod(j +1, s1) , k)] −
v [gammaDL(p , i , mod(j −1, s1) , k)]) ∗
u1 [gammaDL(p , i , j , k)] +
(v [gammaDL(p , i , j , mod(k+1, s2))] −
v [gammaDL(p , i , j ,mod(k−1, s2))]) ∗
u2 [gammaDL(p , i , j , k)])) ;

}
}

}
}

}

132

8.8.2 Dimension lifting on the last dimension

Let T divide s and let us consider the transformation 〈s, s, s〉 7→ 〈s, s, T, s/T 〉
and the corresponding looping of {i j p k}. Much the same considerations
must be made for this case as in the case of the dimension lifting on the first
dimension. We present an implementation for this case without remarking
upon its essentialy equivalent form.

Listing 8.12: dimension lifting on last dimensiton

stat ic inl ine int gammaDLK(int i , int j , int c , int k)
{

return i ∗ s1 ∗ s2 + j ∗ s2 + c ∗(s2 / s 2 s p l i t) + k ;
}
stat ic inl ine int gammaDLKMN(int i , int j , int c , int k)
{

return i ∗ s1 ∗ s2 + j ∗ s2 + mod(c∗ s2 / s 2 s p l i t + k−1, s0) ;
}
stat ic inl ine int gammaDLKMP(int i , int j , int c , int k)
{

return i ∗ s1 ∗ s2 + j ∗ s2 + mod(c∗ s2 / s 2 s p l i t + k+1, s0) ;
}
stat ic void MC DL ON DIMK (. . .) {
//assuming cache line of 64 bytes,

//try to spread by at least that

#pragma omp p a r a l l e l for c o l l a p s e (2) \
schedu le (static , 8) num threads (THREADS)

for (int i =0; i<s0 ; i++) {
for (int j =0; j<s1 ; j++) {

for (int c =0; c<s 2 s p l i t ; c++) {
for (int k=0; k<s2 / s 2 s p l i t ; k++) {

u [gammaDLK(i , j , c , k)] =
u [gammaDLK(i , j , c , k)] + c4 ∗ (c3 ∗ (c1 ∗
v [gammaDLK(mod(i −1, s0) , j , c , k)] +
v [gammaDLK(mod(i +1, s0) , j , c , k)] +
v [gammaDLK(i ,mod(j −1, s1) , c , k)] +
v [gammaDLK(i ,mod(j +1, s1) , c , k)] +
v [gammaDLKMN(i , j , c , k)] +
v [gammaDLKMP(i , j , c , k)]) −
3 ∗ c2 ∗ u [gammaDLK(i , j , c , k)] − c0 ∗
((v [gammaDLK((mod(i +1, s0)) , j , c , k)] −
v [gammaDLK((mod(i −1, s0)) , j , c , k)]) ∗
u0 [gammaDLK(i , j , c , k)] +
(v [gammaDLK(i , mod(j +1, s1) , c , k)] −

133

v [gammaDLK(i ,mod(j −1, s1) , c , k)]) ∗
u1 [gammaDLK(i , j , c , k)] +
(v [gammaDLKMP(i , j , c , k)] −
v [gammaDLKMN(i , j , c , k)]) ∗
u2 [gammaDLK(i , j , c , k)])) ;

}
}

}
}

}

8.8.3 Dimension lifting on all dimensions

Let T divide s and let us consider the transformation:

〈s, s, s〉 7→ 〈T, T, T, s/T, s/T, s/T 〉

and the corresponding looping variables of {ti tj tk i j k }. Here we let T
denote a sub-cube size; we subdivide our s×s×s cube into a T ×T ×T grid
sub-cubes where each sub-cube contains s/T ×s/T ×s/T elements. We alter
the stride of the looping variables ti, tj, tk from 1 to T and consider them
to select an offset into a sub-cube ie. 〈ti = 3T, tj = 2T, tk = 0T 〉 denotes
sub-cube 〈3, 2, 0〉 which has the elements gamma(i, j, k) where 3T ≤ i <
3T + T, 2T ≤ j < 2T + T, 0 ≤ k < T . This technique is often referred to as
tiling and our sub-cubes are in fact 3-dimensional tiles.

Listing 8.13: Dimension lifting for tiling

stat ic void MC DL TILED (. . .) {
#pragma omp p a r a l l e l for c o l l a p s e (3) \
schedu le (stat ic) num threads (THREADS)

for (int t i =0; t i<s0 ; t i+=s0 / s 0 t i l e s) {
for (int t j =0; t j<s1 ; t j+=s1 / s 1 t i l e s) {

for (int tk =0; tk<s2 ; tk+=s2 / s 2 t i l e s) {
for (int i=t i ; i<t i+s0 / s 0 t i l e s ; i++) {

for (int j=t j ; j<t j+s1 / s 1 t i l e s ; j++) {
for (int k=tk ; k<tk+s2 / s 2 t i l e s ; k++) {

u [gamma(i , j , k)] =
u [gamma(i , j , k)] + c4 ∗ (c3 ∗ (c1 ∗
v [gamma((mod(i −1, s0)) , j , k)] +
v [gamma((mod(i +1, s0)) , j , k)] +
v [gamma(i , (mod(j −1, s1)) , k)] +
v [gamma(i , (mod(j +1, s1)) , k)] +

134

v [gamma(i , j , (mod(k−1, s2)))] +
v [gamma(i , j , (mod(k+1, s2)))]) −
3 ∗ c2 ∗ u [gamma(i , j , k)] − c0 ∗
((v [gamma((mod(i +1, s0)) , j , k)] −
v [gamma((mod(i −1, s0)) , j , k)]) ∗
u0 [gamma(i , j , k)] +
(v [gamma(i , (mod(j +1, s1)) , k)] −
v [gamma(i , (mod(j −1, s1)) , k)]) ∗
u1 [gamma(i , j , k)] +
(v [gamma(i , j , (mod(k+1, s2)))] −
v [gamma(i , j , (mod(k−1, s2)))]) ∗
u2 [gamma(i , j , k)])) ;

}
}

}
}

}
}

}

8.8.4 Benchmarking dimension lifting

For each of the dimension liftings we have benchmarked them on various
machines with an array of shape 〈512, 512, 512〉, which with a double size of
8 bytes yields right above 1GB of data to process. Furthermore the amount of
threads used is set at 32. Many of the machines we have run these dimension
liftings on have more cores than 32 threads. Granted we have not taken steps
to ensure a one to one relation between a thread and a core or that memory
allocations are ensured to be local to a core with a thread’s workload; such
considerations is a topic for further examination and may very well turn out
to be crucial for further improvements.

For the following table of results the measurements are in seconds. S is short
for a single threaded implementation corresponding to one found in listing
8.3, the rest are multithreaded. DL(i) is short for a dimension lifted imple-
mentation on the first dimension corresponding to one found in listing 8.11,
DL(k) is short for a dimension lifted implementation on the last dimension
corresponding to one found in listing 8.12 and DL(tiled) is short for a dimen-
sion lifted implementation corresponding to one found in listing 8.13. For
DL(i) we have opted to split the dimension by the number of threads(32).
For DL(k) we have opted to split the dimension by 8. For DL(tiled) we have
opted to split all dimensions by 8 (making each tile of size 64× 64× 64).

135

Table 8.4: gcc 8.2.0 -O3 -march=native -mtune=native

Method x86 Intel 1 x86 Intel 2 x86 Amd AArch Arm
S 236.2 174.6 299.7 659.1

DL(i) 68.9 82.8 58.5 110.2
DL(k) 61.7 82.9 65.4 89.7

DL(tiled) 89.5 145.2 77.5 116.2

Table 8.5: Models

Machine Model Cores Ghz max
x86 Intel 1 Xeon(R) Gold 6130 16× 2 2.1
x86 Intel 2 Xeon(R) Silver 4112 4 2.6
x86 Amd EPYC 7601 32× 2 2.6

AArch Arm ThunderX2 99xx 32× 2 2.5

Table 8.6: Cache sizes

Machine L1 L2 L3
x86 Intel 1 32K 1024K 22528K
x86 Intel 2 32K 1024K 8448K
x86 Amd 32K 512K 8192K

AArch Arm 32K 256K 32768K

8.9 Summary

We have examined the effects of using MOA to reformulate a piece of code
heavily reliant on array operations. To take a high level look at the im-
provement made we can summarize it as going from a several pass style of
computation to fusing operations and doing computations in one pass. In a
sense we may regard this as going from an expression of the form g(f(h(a)))
to constructing a composition and applying it (g ◦ f ◦ h)(x). From a purely
mathemathical sense there is nothing interesting there, but from a program-
ming sense such compositions can have dramatic effects. Where before, given
that x is an array and the functions affect its elements, we went from three
passes through a possibly big chunk of memory to one pass. This is one
kind of optimization that MOA affords us; it elevates our thinking to larger
concerns where the fusion of operations becomes a more easily expressible
optimization.

136

When we have described our operations and what we want to compute we
may explore considerations of iteration, data layout and specific considera-
tions for the hardware the computation is to run on. This separation of con-
cerns is as mentioned before the DNF in which we describe arrays by their
shape and a function or some assignment of values at every index, how val-
ues change under operations and the ONF which takes the DNF description
and relates an array to an arrangement in memory. Here we have considered
certain ONF transformations in an effort to trigger further optimizations or
to paralellize the code. It is likely that the removal of looping may trigger
better vectorization of array code, which may account for the significant im-
provement in one case. The exploration of this optimization space is one of
great tedium where it is easy to make mistakes. This suggests we should
further formalize and semi-automate this particular exploration space; ax-
iom directed code generation could be useful tool in this area. Exploring the
optimizations that do occur is somewhat of an arcane art of reading through
generated assembly which is generally a special case for differing architectures
and processors.

We argue that the optimization exploration space should be expressible in
the language itself with some kind of axiom system on statements and ex-
pressions. Take for instance nested loops that are admissible to be unrolled
at boundary cases of some operation: Here we have a contrived and simple

for i = 0 to 100 {
for j = 0 to 10 {

a [mod(j + 1 , 1 0)] = . . . ;
a [mod(j −1 , 1 0)] = . . . ;

}
}

for i = 0 to 100 {
a [1] = . . . ;
a [9] = . . . ;
for j = 1 to 9 {

a [mod(j + 1 , 1 0)] = . . . ;
a [mod(j −1 , 1 0)] = . . . ;

}
a [1] = . . . ;
a [9] = . . . ;

}

example, but one could imagine much more complicated nesting and expres-
sions. We have two choices here. We can keep this form of expressing the
problem and write a transformation system that gradually moves out state-
ments until we reach the righthand side from the lefthand side. Alternatively
we could consider the need for such exploration as a sign that we are missing
something in the formalism that was used to generate the code; that it should
have been removed at a higher level.

137

CHAPTER 9

Conclusion

We conclude our exploration of transformations for array programming by
retracing our steps. We have explored some of the transformation systems in
practical use in programming languages as well as up-and-coming languages
and frameworks, in particular for array programming. We have explored the
array concept in its many variations and have devoted a significant amount
of the thesis to examining one, namely MOA. Is there one all-encompassing
array formalism? Likely not; although we may shrug and say, in MOA,
the indices fitting the shape of 〈2, 2, 2〉 are isomorphic to the same indices
but negative, an actual user may refuse to accept that they must perform
this translation and use something like Petalisp instead. While evaluating
MOA we(more than the author), noted that the indices fitting a shape of
〈5, 1, 5〉,〈1, 5, 5〉 or 〈1, 5, 5〉 are all isomorphic to the ones fitting 〈5, 5〉 and
pondered a notion of compression such that such arrays could be used as a
〈5, 5〉 shaped array. The conveniences offered by an array formalism should
not be discounted in evaluating its merits or likelihood of being put to use
by the masses. As such we believe work remains in gathering variations of
the array concept and investigating whether MOA or extensions of MOA can
acommodate them.

Concepts in array formalisms recur and the formalisms that can capture a
great deal of our real world problems are worthile objects of study. We
believe we have made a case for MOA with the results achieved in putting

138

it to use to describe a select problem, generating efficient code by hand from
that description and showing we can tune and adapt the code by thinking in
terms of the constructs the formalism provides.

We believe we have shown that MOA is rife with identities and especially
admissible for a transformation based approach for deriving array code and
is also powerful as a vehicle of thought contrasted with the reasoning one
can achieve by thinking in terms of loops and single pass updates of arrays.
All too often without abstraction we, at the very least this author, end up
lost in a fog where progress can be made but progress is greatly hampered
by all details being present at the same time instead of at different tiers of
an unravelable abstraction such as is the case with the tiers of MOA in the
form of the DNF and the ONF.

We believe that to effectively put formalisms such as MOA to use will require
a transformation based approach to programming libraries seeing as the dis-
tance from description to code can be far, although every step along the way
can be described. We have shown work in this direction with Petalisp and
Lift and whereas rewriting and metaprogramming has long been a technique
employed in Haskell(rewrite rules) and C++(expression templates) for writ-
ing libraries with some ability to self-optimize according to codified identities,
these facilities are often difficult to use. They are often an afterthought or a
technique without any support from the language.

Some make monolithic compilers for each formalism to generate code. This
we argue is the wrong approach as it black boxes too large an aspect of going
from(e.g.) algebraic specification to code. Rather the formalisms should be
collected in the form of domain knowledge, such as can be can be gathered
in a language like Magnolia with its axiomatic specification facility, and a
programmable rewrite system should be made for code generation from such
domain knowledge. As well as being a stage of code generation, the domain
knowledge should also be a part of the stage we would like to call axiom
directed exploratory programming. When prompted a compiler should list
admissible transformations at a certain expression for an axiom directed kind
of programming. We hope to see such directions further explored.

139

Appendices

140

APPENDIX A

C++ examples

Listing A.1: Minimal ET example of a vector type wrapping fixed size integer
arrays

#include <iostream>
#include <s t d l i b . h>

template <typename A, typename B>
class Sum
{

public :
expl ic it Sum(const A &a , const B &b)
: a (a)
, b (b) {}
std : : s i z e t s i z e () const {

return a . s i z e () ;
}
int operator [] (s td : : s i z e t i) const {

return a [i]+ b [i] ;
}
private :
const A &a ;
const B &b ;

} ;

141

template <typename A, typename B>
Sum <A,B> operator +(const A &a , const B &b)
{

return Sum <A,B>(a , b) ;
}

template <std : : s i z e t N>
class Vector
{

public :
Vector (int (&v) [N]) : v (v) {}
int operator [] (s td : : s i z e t i) const {

return v [i] ;
}
std : : s i z e t s i z e () const {return N;}
template <typename A>
Vector & operator=(const A &expr) {

for (std : : s i z e t i =0; i<expr . s i z e () ; ++i)
v [i] = expr [i] ;

return ∗ this ;
}
private :
int ∗v ;

} ;
int main () {

int a [] = {1 , 2 , 3 , 4 , 5} ;
int b [] = {6 , 7 , 8 , 9 , 10} ;
int c [] = {11 ,12 ,13 ,14 ,15} ;
int d [] = {0 , 0 , 0 , 0 , 0} ;

Vector va (a) ;
Vector vb (b) ;
Vector vc (c) ;
Vector vd (d) ;

vd = va+vb+vc ;

for (auto e : d)
std : : cout << e << ’ \n ’ ;

return 0 ;
}

142

APPENDIX B

C examples

Listing B.1: benchmark of various memory access patterns

#include <s t d i o . h>
#include <s t d l i b . h>
#include <time . h>

#define MAX 10000
#define BLOCK 10

int A[MAX] [MAX] ;
int B[MAX] [MAX] ;
int C[MAX] [MAX] ;

void f i l l (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

R[i] [j] = i+j ;
}

}
}

void copy (int S [MAX] [MAX] , int D[MAX] [MAX])

143

{
for (int i =0; i< MAX; i++) {

for (int j =0; j< MAX; j++) {
D[i] [j]=S [i] [j] ;

}
}

}

int check (int X[MAX] [MAX] , int Y[MAX] [MAX] , const char ∗ s t r)
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

i f (X[i] [j] != Y[i] [j]) {
p r i n t f (”%s \n” , s t r) ;
return 1 ;

}
}

}
return 0 ;

}

void rowmajorA (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

R[i] [j] = R[i] [j] + B[j] [i] ;
}

}
}

void columnmajorA (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

R[j] [i] = R[j] [i] + B[i] [j] ;
}

}
}

void t i l i n g A (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i+=BLOCK) {

144

for (int j =0; j< MAX; j+=BLOCK) {
for (int i i=i ; i i <i+BLOCK; i i ++) {

for (int j j=j ; j j<j+BLOCK; j j ++) {
R[i i] [j j] = R[i i] [j j] + B[j j] [i i] ;

}
}

}
}

}

void rowmajorB (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

R[i] [j] = 2∗R[i] [j] ;
}

}
}

void columnmajorB (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i++) {
for (int j =0; j< MAX; j++) {

R[j] [i] = 2∗R[j] [i] ;
}

}
}

void t i l i n g B (int R[MAX] [MAX])
{

for (int i =0; i< MAX; i+=BLOCK) {
for (int j =0; j< MAX; j+=BLOCK) {

for (int i i=i ; i i <i+BLOCK; i i ++) {
for (int j j=j ; j j<j+BLOCK; j j ++) {

R[i i] [j j] = 2∗R[i i] [j j] ;
}

}
}

}
}

int main ()
{

145

int e r r o r =0;
c l o c k t begin ;
c l o c k t end ;
double t spent ;

f i l l (A) ;
f i l l (B) ;

rowmajorA (A) ;
copy (A,C) ;
f i l l (A) ;
columnmajorA (A) ;
e r r o r += check (A,C, ”rowmajorA”) ;

f i l l (A) ;
t i l i n g A (A) ;
copy (A,C) ;
f i l l (A) ;
rowmajorA (A) ;
e r r o r += check (A,C, ” t i l i n g A ”) ;

f i l l (A) ;
rowmajorB (A) ;
copy (A,C) ;
f i l l (A) ;
columnmajorB (A) ;
e r r o r += check (A,C, ”rowmajorB”) ;

f i l l (A) ;
t i l i n g B (A) ;
copy (A,C) ;
f i l l (A) ;
rowmajorB (A) ;
e r r o r += check (A,C, ” t i l i n g B ”) ;

p r i n t f (” Correc tnes s check : ”) ;
i f (e r r o r == 0) {

p r i n t f (” Passed !\n”) ;
} else {

p r i n t f (” Fa i l ed !\n”) ;
e x i t (1) ;

}

146

p r i n t f (”Computation : A = A+B\n”) ;
f i l l (A) ;
p r i n t f (”Row major\n”) ;
begin = c lock () ;
rowmajorA (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

f i l l (A) ;
p r i n t f (”Column major\n”) ;
begin = c lock () ;
columnmajorA (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

f i l l (A) ;
p r i n t f (” T i l i n g \n”) ;
begin = c lock () ;
t i l i n g A (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

p r i n t f (”Computation : A = 2∗A\n”) ;
f i l l (A) ;
p r i n t f (”Row major\n”) ;
begin = c lock () ;
rowmajorB (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

f i l l (A) ;
p r i n t f (”Column major\n”) ;
begin = c lock () ;
columnmajorB (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

f i l l (A) ;

147

p r i n t f (” T i l i n g \n”) ;
begin = c lock () ;
t i l i n g B (A) ;
end = c lock () ;
t spent = (double) (end − begin) / CLOCKS PER SEC;
p r i n t f (” time : %l f \n” , t spent) ;

return 0 ;
}

148

APPENDIX C

The affine-linear mapping

Consider vector spaces over integers, that is let s ∈ Z, u, v, t ∈ Zn and
f, g, T : Zn → Zn.

The mapping f is said to be linear if it satisfies:

f(u+ v) = f(u) + f(v) additivity

f(cu) = cf(u) homogeneity

The mapping g is said to be affine if:

g(u) = u+ v affinity

That is one can regard g as translating or moving a point u to u+ v.

An affine-linear transformation is the composition of an affine and a linear
transformation. That is, let g(x) = x + t be an affine transformation and f
be a linear transformation, then then an affine-linear transformation can be
defined as

T (x) = g(f(x)) = f(x) + t

Affine-linear transformations have some well-known properties:

149

• Points on lines are mapped to points on lines(lines to lines)

• Parallel lines remain parallel

• Ratios between points are preserved (e.g. the midpoint on a line is
mapped to the midpoint of the line it is mapped to)

150

APPENDIX D

Subranges

Consider a sequence of bounds for non-negative integers ki ∈ {z ≥ 0 | z ∈ Z}
such that k0 = 0 < k1 < · · · < kn < kn+1 and an integer 0 ≤ k ≤ kn+1.

We wish to determine in which subrange k fits, meaning if ki−1 < k ≥ ki
then it fits in the i− 1th subrange. For k0 = 0 < k1 < · · · < kn < kn+1 there
are n+ 1 subranges {0, 1, . . . , n}.
Consider k fitting a subrange, then:

k ≥ ki ⇒ k − ki − 1 < 0

ki < k ⇒ 0 < k − ki
and then define

cmp(x, k) = clamp(x− k − 1)

clamp(x) =

{
1 when x < 0

0 otherwise

The subrange i fits in can then be computed by counting how many subranges
it doesn’t fit into:

subrange(k, k1, k2, . . . , kn−1) = cmp(k, k1) + cmp(k, k2) + · · ·+ cmp(k, kn−1)

151

APPENDIX E

An unconventional modulo

A peculiar convention in Mullin’s work in MOA is to define, for non-negative
integers, that amod 0 = a. Certainly it cannot be interpreted as the re-
mainder of integer division by 0 which as we know is undefined. However
we may yet interpret it meaningfully. The first and obvious interpretation is
that amod b = r = a − qb where a = qb + r for non-negative integers, thus
amod 0 = a = a− q · 0. This is the interpretation Mullin provides..

We can also make sense of it by considering it to produce the remainder of
slicing division for non-negative integers rather than the remainder of regular
division. Slicing division [22] can be defined as a/sb = a/((b−s1)+1) where /
is integer division and a−s b = a−min(a, b) is sometimes called a saturating
subtraction(from saturation arithmetic). Slicing division is a way of making
division total for the non-negative integers. Under this interpretation we
have a/s0 = a/((0 −s 1) + 1) = a/1 = a and as such a is the remainder of
a/s0. In other cases slicing division is equivalent to regular integer division.

152

APPENDIX F

An unpublished paper on padding and dimension lifting

As a result of the COVID-19 outbreak the planned “7th ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array
Programming” was first postponed and then cancelled. We had prepared
and submitted the following paper, which will likely find another venue.
This is again a paper with many authors and in the work therein the author
of this thesis contributed benchmarking results as well as aided in checking
of definitions.

153

Padding Stencil Computations in the Mathematics of
Arrays Formalism

Benjamin Chetioui
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway
benjamin.chetioui@uib.no

Ole Abusdal
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway
ole.abusdal@student.uib.no

Magne Haveraaen
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway
https://www.ii.uib.no/~magne/

Jaakko Järvi
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway

jaakko.jarvi@uib.no

Lenore Mullin
College of Engineering and Applied

Sciences
University at Albany, SUNY

Albany, NY, USA
lmullin@albany.edu

Abstract
Multi-dimensional array manipulation constitutes a core
component of numerous numerical methods, e.g. finite dif-
ference solvers of Partial Differential Equations (PDEs). The
efficiency of such computations are tightly connected to
traversing array data in a hardware-friendly way.

TheMathematics of Arrays (MoA) allow us to reason about
array computations at a high level, and enable systematic
transformations of array-based programs. In a previous paper
we investigated stencil computations, and proved that these
can be reduced to Denotational Normal Form (DNF).
Here we demonstrate another set of transformations on

array expressions: the Operational Normal Forms (ONFs)
which allow us to adapt array computations to hardware
characteristics. The ONF transformations start from the DNF
array format. Alongside the ONF transformations, we extend
MoA with the rewriting rules pertaining to padding. These
new rules allow both a simplification of array indexing and a
systematic approach to introducing halos (ghost cells) to PDE
solvers, thus reducing the cost of communication between
different computation loci.

CCS Concepts • Software and its engineering → Soft-
ware design engineering;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ARRAY ’20, June ??, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords Mathematics of Arrays, Finite Difference Meth-
ods, PDE Solvers, High-Performance Computing

ACM Reference Format:
Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi,
and Lenore Mullin. 2020. Padding Stencil Computations in the
Mathematics of Arrays Formalism. In Proceedings of the 7th ACM
SIGPLAN International Workshop on Libraries, Languages and Com-
pilers for Array Programming (ARRAY ’20), June ??, 2020, London,
United Kingdom. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In the past few decades, a large variety of high-performance
computing (HPC) architectures has appeared. On the path
towards exascale computing, the emergence of an equally
varying set of architectures is expected. Software for HPC
therefore needs to be highly adaptable. This includes ad-
justing to, among others, different memory hierarchies and
changing intra- and interprocess communication hardware.
This is especially important for large scale computations, e.g.
Partial Differential Equation (PDE) solvers. One important
class of PDE solvers are the Finite Difference Methods (FDM).
FDM solvers are stencil-based array computations.
Our previous work [3] established means of transform-

ing stencil-based array code to Denotational Normal Form
(DNF). These are irreducible expressions in the language of
the Mathematics of Arrays (MoA). Given knowledge of the
target parallel distribution andmemory layout, another set of
transformations takes a DNF expression to the architecture-
aware Operational Normal Form (ONF), which we describe
in Section 4. ONF transformations include the dimension
lifting operation that reshapes an array so as to split it con-
veniently over different computation loci (whether they be
threads, cores, or even systems).

The contribution of this paper is a formalisation of MoA’s
ONF along with a new extension of the MoA operations to

154

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

S MDL MDLSL MDLTM
CPU 1 225.74 70.96 66.66 61.81
CPU 2 299.42 59.16 68.14 68.70
CPU 3 172.71 85.97 85.59 117.11
CPU 4 660.53 85.06 72.80 77.86

Table 1. Execution time (in seconds) of a PDE solver imple-
mentation depending on hardware and dimension lifting pa-
rameters. The gray background marks the fastest version(s)
of the solver for each row. The labels are as follows: S: Single
core (no Dimension Lifting); MDL: Multicore (Dimension
Lifting on 0-th dimension); MDLSL: Multicore (Dimension
Lifting on 𝑛 − 2-th dimension); MDLTM: Multicore (Dimen-
sion Lifting on 0-th dimension using tiled memory); CPU 1:
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz; CPU 2: AMD
EPYC 7601 32-Core; CPU 2: Intel(R) Xeon(R) Silver 4112 CPU
@ 2.60GHz; and CPU 2: ThunderX2 99xx.

deal with padding of data. This gives a framework for trans-
forming regular array stencil code to distributed code with
halo zones (also referred to as ghost cells in the literature).
The paper is organised as follows; next is a motivation

section, then a discussion of related work. Section 4 subse-
quently covers the required prerequisites in MoA and our
previous work at the DNF layer. Section 5 explains dimen-
sion lifting, padding and data layout, giving both their formal
definitions and select examples. We then have a short look
at some experiments and conclude in Section 7.

2 Motivation
To motivate our work, we ran the PDE solver presented in
our previous work [3] on a set of experimental architectures.
We also implemented some of the ONF transformations on
the code. Table 1 shows a matrix where each column corre-
sponds to a different version of the solver and each row to
different hardware. It is clear from the table that different
architectures benefit from different transformations. While
on CPU 1 the dimension lifting on 0-th axis and tiled memory
approach performs best, it is clearly inefficient compared
to the other dimension lifting-based scenarios on CPU 3.
The seemingly inconsistent variations in performance, and
the sheer number of different memory layouts, outline the
need for a vehicle for easy exploration of different mem-
ory layouts, so that programmers can get close-to-optimal
performance with as little effort as possible for any given
architecture. In the following, we demonstrate that MoA,
when extended with operations for padding, provides us
with enough expressivity to accomplish just that.

3 Related
Ken Iverson introduced whole-array operations in the APL
programming language [6]. Building on further explorations
by Abrams [1], Mullin created the Mathematics of Arrays

formalism [8] in order to address various shortcomings of
the universal algebra underlying APL (most notably the lack
of a calculus for indexing). MoA is intended to serve as a
foundation for exploring and optimizing array/tensor opera-
tions. Mullin further explored MoA through case studies of
scientific algorithms, including QR Decomposition [10], and
Fast Fourier Transforms (FFTs) [5]. The latter paper intro-
duced the dimension lifting operation that is crucial to our
work.

Burrows et al. identified an array API for FDM solvers
of PDEs [2]. We previously explored the fragment of MoA
corresponding to this API and concluded that stencil compu-
tations could systematically be reduced to a normal form at
the DNF level [3]. Other researchers have also looked into
optimizing stencil computations, such as Hagedorn et al. [4],
who augmented LIFT with the same operations we explore
here for that purpose.

4 Background and Notation
4.1 Mathematics of Arrays
We give a short introduction, following roughly the presen-
tation in our earlier paper [3], to the MoA algebra [8, 9] for
representing and describing operations on arrays. MoA de-
fines a set of rules, the 𝜓 -calculus, for manipulating array
shapes and expressions. By systematically applying a set
of terminating rewriting rules, we can transform an array
expression to a single array with standard layout and op-
erations on the array elements, the Denotational Normal
Form (DNF). DNF can further be transformed into a corre-
sponding Operational Normal Form (ONF), which represents
the array access patterns in terms of start, stride and length.
Together with dimension lifting, this lets us reorganize the
memory layout and data access patterns, and to thus take
into account distribution of data and memory hierarchies,
data locality, etc., a flexiblity needed for current and future
hardware architectures.

4.1.1 Notation and operations
The dimension of an array 𝐴 is denoted dim(𝐴). We de-
fine the shape of an 𝑛-dimensional array 𝐴 as a list of sizes
⟨𝑠0 . . . 𝑠𝑛−1⟩. The size of an array is the number of elements
it contains, i.e. size(𝐴) = 𝑠0 × · · · × 𝑠𝑛−1. An empty array is
an array with size 0, i.e. an array of which at least one of the
shape components is 0. For example, a 6 by 8 matrix𝑀 is a
2-dimensional array with shape ⟨6 8⟩ and size 48. The con-
tent of an array 𝐴 at a given index is defined by an indexing
function relevant to the abstraction layer we are considering.
We summarize the core operations of MoA used in this

paper below.

Relevant operations at the DNF level At the DNF level,
we make use of the following core operations:

155

ARRAY ’20, June ??, 2020, London, United Kingdom

• the shape function 𝜌 returns the shape of an array, e.g.
𝜌 (𝑀) = ⟨6 8⟩;

• the indexing function𝜓 takes an index, that is to say
a list ⟨𝑖0 . . . 𝑖𝑘⟩ where 𝑘 < dim(𝐴), and an array
𝐴, such that 0 ≤ 𝑖 𝑗 < 𝑠 𝑗 for 𝑗 ∈ {0, . . . , 𝑘} where
𝜌 (𝐴) = ⟨𝑠0 . . . 𝑠𝑛−1⟩, and returns the subarray of 𝐴
at this position. For all arrays 𝐴, ⟨⟩ 𝜓 𝐴 = 𝐴. In our
example, 𝑁 = ⟨3⟩ 𝜓 𝑀 is the subarray of𝑀 at position
3 with the shape 𝜌 (𝑁) = ⟨8⟩. When the length of the
index is the same as the dimension of 𝐴, we call the
index a total index. Using𝜓 , we can thus describe the
content of an array for each index;

• we may change the shape of an array, reshape it, as
long as the size of said array remains the same. Let
𝑠 ′ = ⟨𝑠 ′0 . . . 𝑠 ′

𝑘
⟩ such that 𝑠 ′0 × · · · × 𝑠 ′

𝑘
= size(𝐴), then

𝐴′ = reshape(𝑠 ′, 𝐴) gives the array 𝐴′ with the same
size and elements as 𝐴, but such that 𝜌 (𝐴′) = 𝑠 ′;

• The binary function take, given an 𝑛-dimensional ar-
ray𝐴 with 𝜌 (𝐴) = ⟨𝑠0 . . . 𝑠𝑛−1⟩ and a positive (respec-
tively negative) integer 𝑡 , 0 ≤ |𝑡 | ≤ 𝑠0, returns the
slice of 𝐴 that contains the first (respectively last) |𝑡 |
subarrays of 𝐴. Thus, we have that: 𝜌 (take(𝑡, 𝐴)) =
⟨|𝑡 | 𝑠1 . . . 𝑠𝑛−1⟩ and for 𝑖 ∈ {0, . . . |𝑡 | − 1},

⟨𝑖⟩ 𝜓 take(𝑡, 𝐴) =
{
⟨𝑖⟩ 𝜓 𝐴 𝑡 ≥ 0
⟨𝑠0 + 𝑡 + 𝑖⟩ 𝜓 𝐴 otherwise;

• The binary function drop, given an 𝑛-dimensional ar-
ray 𝐴 with 𝜌 (𝐴) = ⟨𝑠0 . . . 𝑠𝑛−1⟩ and a positive (re-
spectively negative) integer 𝑡 , 0 ≤ |𝑡 | ≤ 𝑠0, returns
the slice of 𝐴 stripped of its first (respectively last)
|𝑡 | subarrays. Thus, we have that: 𝜌 (drop(𝑡, 𝐴)) =
⟨𝑠0 − |𝑡 | 𝑠1 . . . 𝑠𝑛−1⟩ and for 𝑖 ∈ {0, . . . , 𝑠0 − |𝑡 | − 1},

⟨𝑖⟩ 𝜓 drop(𝑡, 𝐴′) =
{
⟨𝑖 + 𝑡⟩ 𝜓 𝐴 𝑡 ≥ 0
⟨𝑖⟩ 𝜓 𝐴 otherwise;

• The function cat concatenates two arrays 𝐴, 𝐵 with
compatible shapes, i.e. two arrays whose shapes differ
only in their first component. Let 𝐴 and 𝐵 be two
arrays with shapes 𝜌 (𝐴) = ⟨𝑠0 𝑠1 . . . 𝑠𝑛−1⟩ and 𝜌 (𝐵) =
⟨𝑠 ′0 𝑠1 . . . 𝑠𝑛−1⟩, respectively. Concatenation of 𝐴 and
𝐵 is defined by 𝜌 (cat(𝐴, 𝐵)) = ⟨(𝑠0 + 𝑠 ′0) 𝑠1 . . . 𝑠𝑛−1⟩
and

⟨𝑖⟩ 𝜓 cat(𝐴, 𝐵) =
{
⟨𝑖⟩ 𝜓 𝐴 𝑖 < 𝑠0

⟨𝑖 − 𝑠0⟩ 𝜓 𝐵 otherwise.

Since the empty array with shape ⟨0 𝑠1 . . . 𝑠𝑛−1⟩ is
compatible with the arrays of shape ⟨𝑠0 𝑠1 . . . 𝑠𝑛−1⟩, it
is easy to see that this gives us a monoid structure with
concatenate as the binary operation and the empty
array with compatible shape as neutral element.
For an array𝐴 with 𝜌 (𝐴) = ⟨𝑠0 . . . 𝑠𝑛−1⟩, the relation
cat(take(|𝑘 |, 𝐴), drop(|𝑘 |, 𝐴)) = 𝐴 holds for |𝑘 | ≤ 𝑠0.

We can also define a relaxed version of concatenation
which adequately reshapes one of its parameters 𝐵 in
2 situations:
1. if 𝐵 is an empty array, then 𝐵 can automatically be

reshaped to the empty array with compatible shape
with regards to the other parameter;

2. if𝐵 has shape 𝜌 (𝐵) = ⟨𝑠1 . . . 𝑠𝑛−1⟩ and ⟨1 𝑠1 . . . 𝑠𝑛−1⟩
is a shape compatible with regards to the other pa-
rameter, then 𝐵 can automatically be reshaped to
⟨𝑠1 . . . 𝑠𝑛−1⟩.

In the following, we overload cat also with the relaxed
version;

• The rotation function \ rotates an array. We write
𝑝 \𝑖 𝐴 to represent the rotation of 𝐴 by offset 𝑝 along
axis 𝑖 . Since a rotation is just some kind of a permuta-
tion, 𝜌 (𝑝 \𝑖 𝐴) = 𝜌 (𝐴). Informally, given 𝑠𝑖 (the shape
component of 𝐴 for axis 𝑖), \𝑖 is defined as follows:

𝑥𝑖 𝜓 (𝑝 \𝑖 𝐴) =
{
cat(drop(|𝑝 |, 𝐵), take(|𝑝 |, 𝐵)) 𝑝 < 0
cat(drop(𝑠𝑖 − 𝑝, 𝐵), take(𝑠𝑖 − 𝑝, 𝐵)) 𝑝 ≥ 0

where 𝐵 = 𝑥𝑖 𝜓 𝐴 and 𝑥𝑖 = ⟨𝑘0 . . . 𝑘𝑖−1⟩ is a valid
partial index in 𝐴.

Relevant operations at the ONF level Towork at the ONF
level, we add the following operations:

• The Ravel operator rav is the flattening operation (bor-
rowed from APL). It takes a multidimensional array
and reshapes it into a unidimensional array (i.e. a vec-
tor). We use rav to transport an array into its corre-
sponding representation in memory;

• The indexing function 𝛾 , given an index and the shape
of an array, returns the corresponding index in the
flattened representation of the array. 𝛾 requires knowl-
edge of the specific memory layout of the array, which
is why it can only be used at the ONF level. In the same
way that 𝜓 is used to determine the content of 𝐴 at
each index at the DNF level, 𝛾 is used to determine the
content of rav(𝐴) at each index at the ONF level;

• The range (or stride) operator], given a positive integer
𝑛, returns a 1-dimensional array such that ⟨𝑖⟩𝜓] (𝑛) = 𝑖
for 0 ≤ 𝑖 < 𝑛.

Formal definitions for the operations described above can
be found in Mullin’s original work [8]. Section 5 defines new
operations and extends the notation of MoA to express the
transformations required to work with padded data, both
with and without dimension lifting.

4.2 PDE Solver Framework
We remind the reader of the PDE solver framework that we
use as an example; we follow roughly our earlier descrip-
tion [3]. Figure 1 illustrates the solver’s design structured
by layers. The first abstraction layer defines the problem
through the domain’s concepts: PDEs are expressed using
collective and continuous operations to relate the physical

156

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

Figure 1. Layer abstraction design; detailed environment
designed for a PDE solver (figure taken and adapted from
our previous work [3]).

fields involved. Through the functions encapsulating the nu-
merical methods, the high-level continuous abstraction is
mapped to a discrete array-based layer. The MoA algebra
defines the problem through collective array operations in
a layout independent manner. At this point, array manipu-
lation functions and operations may be defined in the MoA
formalism and reduced according to the𝜓 -reduction process.
From the user’s array-abstracted expression we obtain an
equivalent optimal and minimal semantic form.
Our prior work [3] developed the rewriting system re-

quired for obtaining this DNF; the present paper focuses on
the third and lowest-level layer of the figure. On this layer,
the indexing algebra of the𝜓 -calculus relates the monolithic
operations to elemental operations, defining the code on
processors and memory hierarchies through loops and con-
trols. We use the 𝜓 -correspondence theorem to transform
the high-level abstracted array expressions into operational
expressions, i.e. from a form involving Cartesian coordinates
into one involving linearly arranged memory accesses.

5 Memory Layout in the MoA
In the rest of the paper, we assume a row-major memory
layout. Let 𝐴 be an array with shape ⟨6 8⟩. Consider the
DNF expression ⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴) + (−1 \0 𝐴)). Assuming a
one-core processor, we apply the𝜓 -correspondence theorem
to transform it to the corresponding ONF expression:

∀𝑖 𝑠 .𝑡 . 0 ≤ 𝑖 < 6
⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴) + (−1 \0 𝐴))

≡ (rav𝐴) [𝛾 (⟨(𝑖 + 1) mod 6⟩; ⟨6⟩) × 8 +]8]+
(rav𝐴) [𝛾 (⟨(𝑖 − 1) mod 6⟩; ⟨6⟩) × 8 +]8] .

We follow up by applying 𝛾 :

≡ (rav𝐴) [((𝑖 + 1) mod 6) × 8 +]8]+
(rav𝐴) [((𝑖 − 1) mod 6) × 8 +]8] .

Applying rav and turning] into a loop we get the following
generic program:

∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 8
𝐴[((𝑖 + 1) mod 6) × 8 + 𝑗]+
𝐴[((𝑖 − 1) mod 6) × 8 + 𝑗] .

Optimizations would still be possible here, but they would
require a cost analysis of the operations used in the program
(addition, multiplication and modulo). In this paper, we do
not concern ourselves with such optimizations, but instead
explore the effects of dimension lifting.
We call dimension lifting the action of “splitting” a given

axis of the shape of an array into two or more dimensions.
This allows us to establish a correspondence between the
shape of the array and the underlying hardware architecture,
which may help achieve better performance. We explain
dimension lifting first with an example, then a formal defini-
tion follows in Section 5.1.
Assume we have two one-core processors. We decide to

apply dimension lifting on axis 1 of 𝐴, to create 𝐴′ whose
shape is ⟨6 2 8

2 ⟩ = ⟨6 2 4⟩, in which axis 1 now corresponds
to the number of cores. We get the following:

∀𝑖, 𝑗 𝑠 .𝑡 . 0 ≤ 𝑖 < 6, 0 ≤ 𝑗 < 2
⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴′) + (−1 \0 𝐴′))

≡ (rav𝐴′) [𝛾 (⟨((𝑖 + 1) mod 6) 𝑗⟩; ⟨6 2⟩) × 4 +]4]+
(rav𝐴′) [𝛾 (⟨((𝑖 − 1) mod 6) 𝑗⟩; ⟨6 2⟩) × 4 +]4]

≡ (rav𝐴′) [(((𝑖 + 1) mod 6) × 2 + 𝑗) × 4 +]4]+
(rav𝐴′) [(((𝑖 − 1) mod 6) × 2 + 𝑗) × 4 +]4] .

This reduces to the following generic program:

∀𝑘 𝑠.𝑡 . 0 ≤ 𝑘 < 4
𝐴′[((𝑖 + 1) mod 6) × 4 × 2 + 𝑗 × 4 + 𝑘]+
𝐴′[((𝑖 − 1) mod 6) × 4 × 2 + 𝑗 × 4 + 𝑘] .

The two programs above are equivalent, but use a differ-
ent looping structure — they are adapted to two different
hardware architectures.

While dimension lifting can be carried out across any axis
(or axes, dimension lifting can be performed on several axes
simultaneously), this choice should be guided the memory
hierarchy and by the operations involved in the expression.
For example, the rotations above are applied on axis 0; if we
were to perform dimension lifting on this axis, we would
not be able to perfectly split the memory between the two
processors. This case would require either inter-process com-
munication or some kind of data redundancy (discussed in
Section 5.1).

157

ARRAY ’20, June ??, 2020, London, United Kingdom

5.1 Padding
In high-performance computing, it is often desirable to trans-
form code to use less costly operations in lieu of more expen-
sive ones. For example, even on today’s hardware, division
and modulo operations remain considerably more expensive
than multiplication and addition [7].
The example above uses a modulo operation on the in-

dex. Below we describe a padding operation on DNF expres-
sions that transforms the shape and content of an array to
introduce data redundancy. We then show two examples
where this data redundancy eliminates expensive operations
that are applied to edge cases during conversion to ONF.
Example 1 shows how the padding operations defined in Sec-
tion 5.1.1 eliminatemodulo operations in a single core setting.
The padding operations are then generalized to work in a
setting involving dimension lifting in Section 5.1.2; Exam-
ple 2 puts them to work to reduce the need for inter-process
communication in a distributed setting.

Increasing data redundancy is a way to get rid of expensive
operations, but it may also carry further benefits: carefully
chosen padding may increase data locality, e.g. by ensuring
that relevant slices of an array do not span over more cache
lines than necessary.

5.1.1 One Core with Constant Memory Access Cost
We informally define padding an array as the action of prepend-
ing or appending data to it. For our purposes, we want these
data to be specific slices of the array. In order to define and
properly use the prepending (referred to as left padding) and
appending (referred to as right padding) operations in MoA,
we introduce some new notation, operations, and properties.

Definition 1. Given an 𝑛-dimensional array 𝐴 and an in-
terger 𝑖 ∈ Z/𝑛Z, we define the shorthand notation

𝐴 ⟨𝑘0 ... 𝑘𝑖 ⟩ = ⟨𝑘0 . . . 𝑘𝑖⟩ 𝜓 𝐴.

Definition 2. Given an 𝑛-dimensional array 𝐴′ such that

𝜌 (𝐴′) = ⟨𝑠0 . . . 𝑠𝑛−1⟩
we write

𝜌’(𝐴′) = ⟨𝑠0𝑏0,𝑒0 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩
the shape of 𝐴′ annotated with the shape information of the
𝑛-dimensional slice 𝐴 of 𝐴′ defined by

𝜌 (𝐴) = ⟨𝑒0 − 𝑏0 . . . 𝑒𝑛−1 − 𝑏𝑛−1⟩
and

𝐴 ⟨𝑘0 ... 𝑘𝑛−1 ⟩ = 𝐴′
⟨𝑘0+𝑏0 ... 𝑘𝑛−1+𝑏𝑛−1 ⟩ .

For 𝑖 ∈ Z/𝑛Z, if a given dimension 𝑠𝑖 is not annotated, we
assume 𝑏𝑖 = 0 and 𝑒𝑖 = 𝑠𝑖 . For an array 𝐴′, if the result of
𝜌’(𝐴′) is left unspecified, we assume 𝜌’(𝐴′) = 𝜌 (𝐴′).
Definition 3. Given an array 𝐴 such that

𝜌’(𝐴) = ⟨𝑠0𝑏0,𝑒0 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩

and an integer 𝑖 ∈ Z/𝑛Z we define the right padding operation
on axis 𝑖 as padr𝑖 (𝐴) = 𝐴 (𝑟) such that

𝐴 (𝑟)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩)

for 𝑗, 𝑘 𝑗 integers such that 0 ≤ 𝑗 < 𝑖 , 0 ≤ 𝑘 𝑗 < 𝑠 𝑗 .
The shape of 𝐴 (𝑟) is given by

𝜌’(𝐴 (𝑟)) = ⟨𝑠0𝑏0,𝑒0 . . . (𝑠𝑖 + 1)𝑏𝑖 ,𝑒𝑖 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩.
In the same way, we define the left padding operation on axis 𝑖
as padl𝑖 (𝐴) = 𝐴 (𝑙) such that

𝐴 (𝑙)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 𝑒𝑖−𝑏𝑖−1⟩, 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩).

The shape of 𝐴 (𝑙) is given by

𝜌’(𝐴 (𝑙)) = ⟨𝑠0𝑏0,𝑒0 . . . (𝑠𝑖 + 1)𝑏𝑖+1,𝑒𝑖+1 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩.
Finally, we call unpadl (respectively unpadr) the inverse func-
tion of padl (respectively padr).

Proposition 1. For a given axis 𝑖 , padl𝑖 and padr𝑖 are com-
mutative, i.e.

padl𝑖 ◦ padr𝑖 = padr𝑖 ◦ padl𝑖 .
Proposition 1 can be proven using associativity of cat.

Proposition 2. Let 𝐴 be an array without right padding, i.e.
an array such that

𝜌’(𝐴) = ⟨𝑠0𝑏0,𝑒0 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩
with 𝑒𝑖 = 𝑠𝑖 for all 𝑖 ∈ Z/𝑛Z. For an axis 𝑖 of 𝐴 and an integer
𝑚 ∈ {0, . . . , 𝑠𝑖 }, let 𝐴 (𝑟𝑚) = padr𝑚𝑖 (𝐴). Then, the following
holds:

𝐴 (𝑟𝑚)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚, drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩))) .

In the same way, for 𝐴 an array without left padding and
𝐴 (𝑙𝑚) = padl𝑚𝑖 (𝐴), then we have

𝐴 (𝑙𝑚)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(drop(𝑒𝑖 − 𝑏𝑖 −𝑚, take(𝑒𝑖 − 𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)),

𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩).
Proof 1. We want to prove that

𝐴 (𝑟𝑚)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ (1)

= cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚, drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))
This can be done by induction on𝑚.
Base step: assume𝑚 = 0, then

𝐴 (𝑟0)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(0, drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

⇔ padr0𝑖 (𝐴)⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, 𝜖)
⇔ 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, 𝜖)
⇔ 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩ = 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩
Inductive step: assume there exists𝑚 satisfying𝑚 < 𝑠𝑖 − 𝑏𝑖
such that Equation 1 holds. Then, we have that

𝐴 (𝑟 (𝑚+1))
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚 + 1, drop(𝑏𝑖 ,

𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))
158

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

⇔ padr𝑖 (𝐴 (𝑟𝑚))⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚 + 1,
drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

⇔ cat(cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚, drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩))),
𝐴 (𝑟𝑚)

⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+(𝑠𝑖+𝑚)−𝑒𝑖 ⟩) = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚 + 1,
drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

⇔ cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, cat(take(𝑚, drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)),
𝐴 (𝑟𝑚)

⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+(𝑠𝑖+𝑚)−𝑒𝑖 ⟩)) = cat(𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚 + 1,
drop(𝑏𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

⇔ 𝐴 (𝑟𝑚)
⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+(𝑠𝑖+𝑚)−𝑒𝑖 ⟩ = 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑚⟩

⇔ 𝐴 (𝑟𝑚)
⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+(𝑒𝑖+𝑚)−𝑒𝑖 ⟩ = 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑚⟩

⇔ 𝐴 (𝑟𝑚)
⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑚⟩ = 𝐴 ⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑚⟩

which is given by definition, since 𝑏𝑖 +𝑚 is a valid index in
𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩ . □

Similarly, a proof for the second case of Proposition 2 can
be made by induction on𝑚.

Remark 1. For simplicity, we ignore the case when𝑚 > 𝑠𝑖 for
an axis 𝑖 in Proposition 2, as it would require chaining several
concatenation operations since take does not behave well in
that case. However, it works the same way in principle.

Proposition 3. Let 𝑥, 𝑥1, 𝑥2 be 𝑛-dimensional MoA expres-
sions and op a binary map operation such that

𝑥 = 𝑥1 op𝑥2

then on any axis 𝑖 of 𝑥1 and 𝑥2, we have that

𝑥 = unpadr𝑖 (padr𝑖 (𝑥)) = unpadr𝑖 (padr𝑖 (𝑥1) op padr𝑖 (𝑥2)) .
Similarly, we have that

𝑥 = unpadl𝑖 (padl𝑖 (𝑥)) = unpadl𝑖 (padl𝑖 (𝑥1) op padl𝑖 (𝑥2)) .
This idea is trivially extensible to unary map operations.

Proof 2. Since op is a binary map operation, we have:

(padr𝑖 (𝑥1) op padr𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =
cat(𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩ , 𝑥1⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩) op
cat(𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩ , 𝑥2⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩)

⇔ (padr(𝑥1) op padr𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =
cat(𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩ ,

𝑥1⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩)
⇔ unpadr𝑖 (padr𝑖 (𝑥1) op padr𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =

𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩

⇔ unpadr𝑖 (padr𝑖 (𝑥1) op padr𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ = 𝑥 ⟨𝑘0 ... 𝑘𝑖−1 ⟩
⇔ unpadr𝑖 (padr𝑖 (𝑥1) op padr𝑖 (𝑥2)) = 𝑥 .

□

Proof 3. Since op is a binary map operation, we have:
(padl𝑖 (𝑥1) op padl𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =
cat(𝑥1⟨𝑘0 ... 𝑘𝑖−1 𝑒𝑖−𝑏𝑖−1⟩ , 𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩) op
cat(𝑥2⟨𝑘0 ... 𝑘𝑖−1 𝑒𝑖−𝑏𝑖−1⟩ , 𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩)

⇔ (padl𝑖 (𝑥1) op padl𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =
cat(𝑥1⟨𝑘0 ... 𝑘𝑖−1 𝑒𝑖−𝑏𝑖−1⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1 𝑒𝑖−𝑏𝑖−1⟩ ,

𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩)
⇔ unpadl𝑖 (padl𝑖 (𝑥1) op padl𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =

𝑥1⟨𝑘0 ... 𝑘𝑖−1⟩ op 𝑥2⟨𝑘0 ... 𝑘𝑖−1⟩

⇔ unpadl𝑖 (padl𝑖 (𝑥1) op padl𝑖 (𝑥2))⟨𝑘0 ... 𝑘𝑖−1 ⟩ = 𝑒 ⟨𝑘0 ... 𝑘𝑖−1 ⟩
⇔ unpadl𝑖 (padl𝑖 (𝑥1) op padl𝑖 (𝑥2)) = 𝑒.

□

Proposition 4. Let 𝑥, 𝑥 ′ be 𝑛-dimensional unpadded MoA
expressions, 𝑗 an axis of 𝑥 ′ and 𝑟 an integer such that

𝑥 = 𝑟 \ 𝑗 𝑥
′

then on any axis 𝑖 of 𝑥 ′, we have that

𝑥 = unpadr𝑚2
𝑖 (unpadl𝑚1

𝑖 (padl𝑚1
𝑖 (padr𝑚2

𝑖 (𝑥))))
= unpadr𝑚2

𝑖 (unpadl𝑚1
𝑖 (𝑟 \ 𝑗 padl𝑚1

𝑖 (padr𝑚2
𝑖 (𝑥 ′))))

holds if either one of the following cases holds:
1. 𝑗 ≠ 𝑖 ;
2. 𝑟 = 0;
3. 𝑟 < 0 and𝑚2 ≥ |𝑟 |;
4. 𝑟 > 0 and𝑚1 ≥ 𝑟 .

Proof 4. We do not prove cases 1 and 2 of Proposition 4 since
they are trivial (in case 1, padding does not affect the rotation,
and in case 2 we have 0 \ 𝑗 𝑥 ′ = 𝑥 ′). We thus want to prove
that

𝑖 = 𝑗, 𝑟 < 0,𝑚2 ≥ |𝑟 | =⇒
𝑥 = unpadr𝑚2

𝑖 (unpadl𝑚1
𝑖 (𝑟 \ 𝑗 padl𝑚1

𝑖 (padr𝑚2
𝑖 (𝑥 ′))))

Using Proposition 2, we can write padl𝑚1
𝑖 (padr𝑚2

𝑖 (𝑥 ′)) as an
array 𝐴 such that

𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩
= cat(pl, cat(𝑥 ′

⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, drop(𝑏𝑖 , 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))))

where pl represents the left-padding of the array. Since 𝑥 ′ is
originally unpadded, we rewrite 𝐴 as:

𝐴 ⟨𝑘0 ... 𝑘𝑖−1 ⟩
= cat(pl, cat(𝑥 ′

⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, drop(0, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))))

= cat(pl, cat(𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))) .

Since 𝑟 < 0, we have:
(𝑟 \𝑖 𝐴)⟨𝑘0 ... 𝑘𝑖−1 ⟩

= cat(drop(|𝑟 |, cat(pl, cat(𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩)))),

take(|𝑟 |, cat(pl, cat(𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩)))))

= cat(drop(|𝑟 |, cat(cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(𝑚2, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))),

159

ARRAY ’20, June ??, 2020, London, United Kingdom

take(|𝑟 |, cat(pl, cat(𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩, take(𝑚2, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))))) .

Using Proposition 1, we get

unpadr𝑚2
𝑖 (unpadl𝑚1

𝑖 (𝑟 \𝑖 𝐴)) = unpadl𝑚1
𝑖 (unpadr𝑚2

𝑖 (𝑟 \𝑖 𝐴)),
and since𝑚2 ≥ |𝑟 |, we have

unpadr𝑚2
𝑖 (𝑟 \𝑖 𝐴))⟨𝑘0 ... 𝑘𝑖−1 ⟩

= drop(|𝑟 |, cat(cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩),

take(𝑚2 − (𝑚2 − |𝑟 |), 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

= drop(|𝑟 |, cat(cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(|𝑟 |, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))).

We can thus write:

unpadl𝑚1
𝑖 (unpadr𝑚2

𝑖 (𝑟 \𝑖 𝐴)))⟨𝑘0 ... 𝑘𝑖−1 ⟩
= drop(𝑚1, drop(|𝑟 |, cat(cat(pl, 𝑥 ′

⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(|𝑟 |, 𝑥
′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))))

= drop(𝑚1 + |𝑟 |, cat(cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(|𝑟 |, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))) .

Since 𝑟 is a valid rotation offset in 𝑥 ′, we can write

drop(𝑚1 + |𝑟 |, cat(cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(|𝑟 |, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩)))

= cat(drop(𝑚1 + |𝑟 |, cat(pl, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩)), take(|𝑟 |, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))

= cat(drop(|𝑟 |, 𝑥 ′
⟨𝑘0 ... 𝑘𝑖−1 ⟩), take(|𝑟 |, 𝑥

′
⟨𝑘0 ... 𝑘𝑖−1 ⟩))

= 𝑟 \𝑖 𝑥
′
⟨𝑘0 ... 𝑘𝑖−1 ⟩

and thus

𝑥 = unpadr𝑚2
𝑖 (unpadl𝑚1

𝑖 (𝑟 \ 𝑗 padl𝑚1
𝑖 (padr𝑚2

𝑖 (𝑥 ′))))
by function extensionality. □
The proof for case 4 follows the same pattern as case 3 on the
opposite side of the array.

Proposition 5. Given an expression 𝑥 with

𝜌’(𝑥) = ⟨𝑠0𝑏0,𝑒0 . . . 𝑠𝑛−1𝑏𝑛−1,𝑒𝑛−1 ⟩
and a padding 𝑝 on an axis 𝑖 ∈ Z/𝑛Z such that

𝑝 = padl𝑚1
𝑖 padr𝑚2

𝑖 ,

define the expression

𝑥 ′ = 𝑝 (𝑥).
Then, evaluating 𝑥 ′ in indexes whose 𝑖-th component 𝑘𝑖 is such
that𝑚1 ≤ 𝑖 < 𝑠𝑖 +𝑚1 is equivalent to evaluating 𝑥 in all of its
indexes. We call the values𝑚1 and𝑚2 consumption speed for
a given axis 𝑖 in the following, and define a function speed𝑖 on
expressions such that

speed𝑖 (𝑥 ′) = (𝑚1,𝑚2).
Example 1. Consider once again the following DNF expres-
sion:

𝑥 = ⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴) + (−1 \0 𝐴)),
with

𝐴 =

(
1 2 3
4 5 6

)
.

This time, 𝜌 (𝐴) = ⟨2 3⟩. After applying the𝜓 -correspondence
theorem like in the previous example, this reduces to the
following generic program:
∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 3
𝐴[((𝑖 + 1) mod 2) × 3 + 𝑗]+
𝐴[((𝑖 − 1) mod 2) × 3 + 𝑗] .

In order to get rid of the mod operation, we create a new
array 𝐴′ such that

𝐴′ = padl0 (padr0 (𝐴))
From Definition 3, we have that

𝜌’(𝐴′) = ⟨41,3 3⟩
and

𝐴′ =
©«

4 5 6
1 2 3
4 5 6
1 2 3

ª®®®¬
.

By definition of padr and padl, we have the following:
𝑥 = unpadr0 (unpadl0 (padl0 (padr0 (𝑥))))
= unpadr0 (unpadl0 (padl0 (padr0 ((1 \0 𝐴) + (−1 \0 𝐴))))) .

By applying Proposition 3, we get:
𝑥 = unpadr0 (unpadl0 (padl0 (padr0 ((1 \0 𝐴) + (−1 \0 𝐴)))))
= unpadr0 (unpadl0 (padl0 (padr0 (1 \0 𝐴))+

padl0 (padr0 (−1 \0 𝐴)))).
Finally, we apply Proposition 4, and get:

𝑥 = unpadr0 (unpadl0 (padl0 (padr0 (1 \0 𝐴))+
padl0 (padr0 (−1 \0 𝐴))))

= unpadr0 (unpadl0 ((1 \0 padl0 (padr0 (𝐴)))+
(−1 \0 padl0 (padr0 (𝐴)))))

= unpadr0 (unpadl0 ((1 \0 𝐴′) + (−1 \0 𝐴′))) .
We can now transform it to ONF; the bounds of the relevant
indices 𝑖 and 𝑗 are given by Proposition 5. Thus, we have the
following:
∀𝑖 𝑠 .𝑡 . 1 ≤ 𝑖 < 4 − 1

⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴′) + (−1 \0 𝐴′))
≡ (rav𝐴′) [𝛾 (⟨𝑖 + 1⟩; ⟨4⟩) × 3 +]3]+
(rav𝐴′) [𝛾 (⟨𝑖 − 1⟩; ⟨4⟩) × 3 +]3] .

We then apply 𝛾 , rav and turn] into a loop, and we get the
following generic program:
∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 3
𝐴′[(𝑖 + 1) × 3 + 𝑗]+
𝐴′[(𝑖 − 1) × 3 + 𝑗] .

Finally, we apply unpadr0 unpadl0 and retrieve the exact
same result as we would have gotten evaluating 𝑥 . Notice
that thanks to the notion of consumption speed, we managed

160

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

to avoid computing the result of the expression for irrele-
vant indices. In the end, both of the expressions had 6 loop
iterations, but we managed to get rid of the expensive mod
operation by adding data redundancy into 𝐴.

5.1.2 Non-Uniform Memory Access
Consider now that the example expression is embedded
within a loop and needs to be executed several times. Then,
in order to avoid the mod operation at each iteration, the
array must be padded at each iteration as well.

Considering hardware and software implementations, it is
reasonable to investigate a case in which the application of
a big padding operation 𝑝 = padl𝑛𝑖 padr𝑚𝑖 for some positive
integers 𝑛,𝑚, 𝑖 at a given point in the program is cheaper
than applying parts of 𝑝 in different parts of the program. For
example, if the padding operation depends on inter-process
communication, it is usually significantly cheaper to open
one socket and send four elements than to open two sockets
each sending two elements (each opened connection prob-
ably also requiring synchronization of some sort, etc). We
however consider unpadding to have negligible cost.
But, to be able to reduce the number of loci where a

padding operation is required and to use the resulting padding
efficiently, we need to define a slightlymore complex padding
function as well as further notation. We also need to define
the notion of padding exhaustion.
Informally, padding exhaustion corresponds to reaching

the state where there is not enough unconsumed padding
left to apply the expression. Ideally, this state is reached at
the end of the computation of all the expressions; if it is
reached in the middle of execution, however, the padding
must be replenished to proceed.

Definition 4. Given a 𝑛-dimensional array 𝐴(dl) such that

𝜌 (𝐴(dl)) = ⟨𝑠0 . . . 𝑠𝑛−1⟩
we write

𝜌 (dl) (𝐴(dl)) = ⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑠𝑛−1dl(𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1) ⟩
the shape of 𝐴(dl) annotated with the shape information of the
underlying 𝑛-dimensional array 𝐴 defined by

𝜌 (𝐴) = ⟨(𝑒0 − 𝑏0) × 𝑑0 . . . (𝑒𝑛−1 − 𝑏𝑛−1) × 𝑑𝑛−1⟩
such that 𝑠𝑖 ≡ 0 mod 𝑑𝑖 for 𝑖 ∈ Z/𝑛Z and

𝐴 ⟨𝑘0 ... 𝑘𝑛−1 ⟩ = 𝐴(dl)

⟨dlb(𝐴(dl))
0 (𝑘0) ... dlb(𝐴

(dl))
𝑛−1 (𝑘𝑛−1) ⟩

with

dlb(𝐴
(dl))

𝑖 (𝑘) =
⌊

𝑘

𝑒𝑖 − 𝑏𝑖

⌋
× 𝑠𝑖
𝑑𝑖

+ 𝑏𝑖 + 𝑘 mod (𝑒𝑖 − 𝑏𝑖).

Note that the notation provided by 𝜌’ is a special case of the
notation provided by 𝜌 (dl) where 𝑑𝑖 = 1 for all 𝑖 ∈ Z/𝑛Z. The
notations 𝑏𝑖 , 𝑒𝑖 and dl(1, 𝑏𝑖 , 𝑒𝑖) are thus considered equivalent
in the following.

Definition 5. Given an array 𝐴 such that

𝜌 (dl) (𝐴) = ⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑠𝑛−1dl(𝑑0,𝑏𝑛−1,𝑒𝑛−1 ⟩,
and an axis 𝑖 , we write 𝑞𝑖 =

𝑠𝑖
𝑑𝑖
. We then define the dimension

lifting operation on axis 𝑖 as dlift𝑖 (𝐴) = 𝐴(lift) such that 𝐴(lift)

has 𝑛 + 1 dimensions,

𝜌 (dl) (𝐴(lift)) = ⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑑𝑖 𝑞𝑖𝑏𝑖 ,𝑒𝑖 . . . 𝑠𝑛−1dl(𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1) ⟩,
and

𝐴
(lift)
⟨𝑘0 ... 𝑘𝑖−1 ⟩ = take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩))

for any valid index ⟨𝑘0 . . . 𝑘𝑖−1⟩ in 𝐴(lift).

Definition 6. Consider an array 𝐴 such that

𝜌 (dl) (𝐴) = ⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑠𝑛−1dl(𝑑0,𝑏𝑛−1,𝑒𝑛−1 ⟩.
In a MoA setting without any notion of padding, any array is
implicitly annotated with 𝑑𝑖 = 1, 𝑏𝑖 = 0 and 𝑒𝑖 = 𝑠𝑖 on any
given axis 𝑖 . However, the dimension lifting operation on axis 𝑖
if 𝑑𝑖 = 1 is the identity operation. To properly use dlift as it is
defined above, we do the following: assuming 𝑏𝑖 = 0 and 𝑒𝑖 = 𝑠𝑖
for a given axis 𝑖 of 𝐴, we define the prelift operation on that
axis for any 𝑑 such that 𝑠𝑖 ≡ 0 mod 𝑑 as 𝐴(pl) = prelift𝑖 (𝑑,𝐴),
such that

𝜌 (dl) (𝐴(pl)) = ⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑠𝑖dl(𝑑,0,𝑠𝑖 /𝑑) . . . 𝑠𝑛−1dl(𝑑0,𝑏𝑛−1,𝑒𝑛−1 ⟩
and

𝐴 ⟨𝑘0 ... 𝑘𝑛−1 ⟩ = 𝐴
(pl)
⟨𝑘0 ... 𝑘𝑛−1 ⟩ .

The precondition on prelift𝑖 means that it can only be applied
to arrays that are unpadded on axis 𝑖 .

Definition 7. Given an array 𝐴 with shape

⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . 𝑠𝑛−1dl(𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1 ⟩
and an integer 𝑖 ∈ Z/𝑛Z we define the right pre-dimension
lifting padding operation on axis 𝑖 as dlpadr𝑖 (𝐴) = 𝐴(rdl) such
that

dlift𝑖 (𝐴(rdl))⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 ,

𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)),
𝐴 ⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩)

for 𝑗, 𝑘 𝑗 integers such that 0 ≤ 𝑗 < 𝑖 , 0 ≤ 𝑘 𝑗 < 𝑠 𝑗 . Not that we
consider operations on the axis 𝑖 to be done in Z/𝑛Z, e.g. for
𝑖 = 0, we have 𝑘𝑖−1 = 𝑘𝑛−1.
The shape of 𝐴(rdl) is given by

𝜌 (dl) (𝐴(rdl))
=⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . (𝑠𝑖 + 𝑑𝑖)dl(𝑑𝑖 ,𝑏𝑖 ,𝑒𝑖) . . . 𝑠𝑛−1dl(𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1 ⟩.

In the sameway, we define the left pre-dimension lifting padding
operation on axis 𝑖 as dlpadl𝑖 (𝐴) = 𝐴(ldl) such that

dlift𝑖 (𝐴(ldl))⟨𝑘0 ... 𝑘𝑖−1 ⟩ = cat(𝐴 ⟨𝑘0 ... ((𝑘𝑖−1−1)×𝑞𝑖+𝑒𝑖−𝑏𝑖−1) mod 𝑠𝑖 ⟩,
take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)))

The shape of 𝐴(ldl) is given by

𝜌 (dl) (𝐴(rdl))
161

ARRAY ’20, June ??, 2020, London, United Kingdom

=⟨𝑠0dl(𝑑0,𝑏0,𝑒0) . . . (𝑠𝑖 + 𝑑𝑖)dl(𝑑𝑖 ,𝑏𝑖+1,𝑒𝑖+1) . . . 𝑠𝑛−1dl(𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1 ⟩.
Finally, we call dlunpadl (respectively dlunpadr) the inverse
function of dlpadl (respectively dlpadr).
Proposition 6. For a given axis 𝑖 , dlpadl𝑖 and dlpadr𝑖 are
commutative, i.e.

dlpadl𝑖 ◦ dlpadr𝑖 = dlpadr𝑖 ◦ dlpadl𝑖 .
Proposition 6 can be proven using the associativity of cat.

Proposition 7. Let 𝐴,𝐴(rdl) be two arrays and 𝑖 an integer
such that

𝐴(rdl) = dlpadr𝑖 (𝐴).
Then,

unpadr𝑖 (dlift𝑖 (𝐴(rdl))⟨𝑘0 ... 𝑘𝑖−1 ⟩) (2)
= take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩))

holds. In the same way, for an array 𝐴(ldl) such that

𝐴(ldl) = dlpadl𝑖 (𝐴),
then, we have

unpadl𝑖 (dlift𝑖 (𝐴(ldl))⟨𝑘0 ... 𝑘𝑖−1 ⟩) (3)
= take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)).

Proof 5. We give a proof for Equation 2:

unpadr𝑖 (dlift𝑖 (𝐴(rdl))⟨𝑘0 ... 𝑘𝑖−1 ⟩)
= unpadr𝑖 (cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)),

𝐴 ⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩))
= take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)) .

□

Proof 6. We give a proof for Equation 3:

unpadl𝑖 (dlift𝑖 (𝐴(ldl))⟨𝑘0 ... 𝑘𝑖−1 ⟩)
= unpadl𝑖 (cat(𝐴 ⟨𝑘0 ... ((𝑘𝑖−1−1)×𝑞𝑖+𝑒𝑖−𝑏𝑖−1) mod 𝑠𝑖 ⟩,

take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩))))
= take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩))

□

Informally, Proposition 7 tells us that for a given array
𝐴(dl) resulting from padding and dimension lifting an array𝐴
on an axis 𝑖 , unpadding and concatenating all the subarrays
resulting from the dimension lifting operation is the same
as concatenating them and dlunpadding the result.
Proposition 8. Let 𝐴 be an array without right padding on
its 𝑖-th axis, i.e. an array such that

𝜌 (dl) (𝐴) = ⟨𝑠0𝑑𝑙 (𝑑0,𝑏0,𝑒0) . . . 𝑠𝑛−1𝑑𝑙 (𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1) ⟩
with 𝑒𝑖 = 𝑠𝑖 , 𝑖 ∈ Z/𝑛Z. Given an integer𝑚 ∈ {0, . . . , 𝑠𝑖 }, let
𝐴(rdlm) = dlpadr𝑚𝑖 (𝐴). Then, the following holds:

dlift𝑖 (𝐴(rdlm))⟨𝑘0 ... 𝑘𝑖−1 ⟩
= cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)),
take(𝑚,𝑑𝑟𝑜𝑝 (((𝑘𝑖−1 + 1) × 𝑞𝑖 + 𝑏𝑖) mod 𝑠𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)))

In the same way, for 𝐴 an array without left padding and
𝐴(ldlm) = dlpadl𝑚𝑖 (𝐴), then
dlift𝑖 (𝐴(ldlm))⟨𝑘0 ... 𝑘𝑖−1 ⟩

= cat(drop(𝑒𝑖 − 𝑏𝑖 −𝑚, take(𝑒𝑖 − 𝑏𝑖 , drop((𝑘𝑖−1 − 1) × 𝑞𝑖 mod 𝑠𝑖 ,
𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩))), take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝐴 ⟨𝑘0 ... 𝑘𝑖−2 ⟩)))

holds.

A proof for Proposition 8 may be written using induction
on𝑚, similarly to Proof 1.

Proposition 9. Let 𝑥, 𝑥1, 𝑥2 be 𝑛-dimensional MoA expres-
sions with identical shapes and op a binary map operation
such that

𝑥 = 𝑥1 op𝑥2
then on any axis 𝑖 of 𝑥1 and 𝑥2, we have that

𝑥 = dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥)))) (4)
= dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥1)) op

dlift𝑖 (dlpadr𝑖 (𝑥2)))).
Similarly, we have that

𝑥 = dlunpadl𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadl𝑖 (𝑥)))) (5)
= dlunpadl𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadl𝑖 (𝑥1)) op

dlift𝑖 (dlpadl𝑖 (𝑥2)))).
This idea is trivially extensible to unary map operations.

Proof 7. Since op is a binary map operation, we have:

(dlift𝑖 (dlpadr𝑖 (𝑥1)) op dlift𝑖 (dlpadr𝑖 (𝑥2)))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =
cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝑥1⟨𝑘0 ... 𝑘𝑖−2⟩)),

𝑥1⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩) op
cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝑥2⟨𝑘0 ... 𝑘𝑖−2⟩)),

𝑥2⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩)
⇔ (dlift𝑖 (dlpadr𝑖 (𝑥1)) op dlift𝑖 (dlpadr𝑖 (𝑥2)))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =

cat(take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝑥1⟨𝑘0 ... 𝑘𝑖−2⟩))
op take(𝑞𝑖 , drop(𝑘𝑖−1 × 𝑞𝑖 , 𝑥2⟨𝑘0 ... 𝑘𝑖−2⟩)),

𝑥1⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩

op 𝑥2⟨𝑘0 ... ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩)
⇔ (dlift𝑖 (dlpadr𝑖 (𝑥1)) op dlift𝑖 (dlpadr𝑖 (𝑥2)))⟨𝑘0 ... 𝑘𝑖−1 ⟩ =

(dlift𝑖 (dlpadr𝑖 (𝑥1 op𝑥2)))⟨𝑘0 ... 𝑘𝑖−1 ⟩
⇔ dlift𝑖 (dlpadr𝑖 (𝑥1)) op dlift𝑖 (dlpadr𝑖 (𝑥2)) =

dlift𝑖 (dlpadr𝑖 (𝑥1 op𝑥2))
⇔ dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥1)) op

dlift𝑖 (dlpadr𝑖 (𝑥2)))) =
dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥1 op𝑥2))))

⇔ dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥1)) op
dlift𝑖 (dlpadr𝑖 (𝑥2)))) = 𝑥1 op𝑥2

⇔ dlunpadr𝑖 (dlunlift𝑖 (dlift𝑖 (dlpadr𝑖 (𝑥1)) op
162

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

dlift𝑖 (dlpadr𝑖 (𝑥2)))) = 𝑥 .

□
The proof for Equation 5 follows the same pattern as above.
Since it does not provide any additional insight, We do not
develop it here.

Proposition 10. Let 𝑥, 𝑥 ′ be 𝑛-dimensional unpadded MoA
expressions, 𝑗 an axis of 𝑥 ′ and 𝑟 an integer such that

𝑥 = 𝑟 \ 𝑗 𝑥
′

then on any axis 𝑖 of 𝑥 ′, we have that

𝑥 = dlunpadr𝑚2
𝑖 (dlunpadl𝑚1

𝑖 (dlunlift𝑖 (dlift𝑖 (
dlpadl𝑚1

𝑖 (dlpadr𝑚2
𝑖 (𝑥))))))

= dlunpadr𝑚2
𝑖 (dlunpadl𝑚1

𝑖 (dlunlift𝑖 (
𝑟 \ 𝑗 dlift𝑖 (dlpadl𝑚1

𝑖 (dlpadr𝑚2
𝑖 (𝑥 ′))))))

holds if either one of the following cases holds:

1. 𝑗 ≠ 𝑖 ;
2. 𝑟 = 0;
3. 𝑟 < 0 and𝑚2 ≥ |𝑟 |;
4. 𝑟 > 0 and𝑚1 ≥ 𝑟 .

A proof for Proposition 10 may be given by following the
same pattern as Proof 4.

Example 2. Consider once again the following DNF expres-
sion:

𝑥 = ((1 \0 𝐴) + (−1 \0 𝐴)),
with

𝐴 =

©«

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18

ª®®®®®®®¬
.

This time, we define 𝜌 (𝐴) = ⟨6 3⟩. Given an index ⟨𝑖 𝑗⟩ into
𝑥 , we apply the𝜓 -correspondence theorem [9] and get the
following reduced generic program running on 1 core:

∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 3
𝐴[((𝑖 + 1) mod 6) × 3 + 𝑗]+
𝐴[((𝑖 − 1) mod 6) × 3 + 𝑗] .

We wish to distribute the computation over 2machines. This
can be achieved by a combination of dimension lifting and
padding. To distribute the computation over 2 machines it is
natural to perform dimension lifting along the 0-th axis of
𝐴, taking 𝑑0 = 2. We thus start out by creating a new array
𝐴(pl) such that

𝐴(pl) = prelift0 (2, 𝐴).
From Definition 6, we have that

𝜌 (dl) (𝐴(pl)) = ⟨6dl(2,0,3) 3⟩.

Since prelift0 does not modify the layout of the array it op-
erates on in any way, we have

𝑥 = ((1 \0 𝐴(pl)) + (−1 \0 𝐴(pl))) .
We are now ready to start padding 𝐴(pl). In this case, we
would like the 2 workers to only communicate at the start
and at the end of the computation. To do that, we need to
provide each machine with enough padding to do all of the
required computations on its own.

This is very similar to what we did in Example 1. We create
a new array 𝐴′(pl) such that

𝐴′(pl) = dlpadl0 (dlpadr0 (𝐴(pl))) .
From Definition 7, we have that

𝜌 (dl) (𝐴′(pl)) = ⟨10dl(2,1,4) 3⟩
and

𝐴′(pl) =

©«

16 17 18
1 2 3
4 5 6
7 8 9
10 11 12
7 8 9
10 11 12
13 14 15
16 17 18
1 2 3

ª®®®®®®®®®®®®®®®¬

.

Finally, we create an array 𝐴(lift) = dlift0 (𝐴′(pl)). From Defi-
nition 5, we have:

𝜌 (dl) (𝐴(lift)) = ⟨2 51,4 3⟩
and

𝐴(lift)
⟨0⟩ =

©«

16 17 18
1 2 3
4 5 6
7 8 9
10 11 12

ª®®®®®¬

𝐴(lift)
⟨1⟩ =

©«

7 8 9
10 11 12
13 14 15
16 17 18
1 2 3

ª®®®®®¬
.

By definition of dlpadr and dlpadl, we have the following:
𝑥 = dlunpadr0 (dlunpadl0 (dlpadl0 (dlpadr0 (𝑥))))
= dlunpadr0 (dlunpadl0 (dlunlift0 (dlift0 (dlpadl0 (dlpadr0 (𝑥))))))
= dlunpadr0 (dlunpadl0 (dlunlift0 (dlift0 (dlpadl0 (dlpadr0 (
(1 \0 𝐴) + (−1 \0 𝐴))))))).

By applying Proposition 9, we get:
𝑥 = dlunpadr0 (dlunpadl0 (dlunlift0 (dlift0 (dlpadl0 (dlpadr0 (

(1 \0 𝐴) + (−1 \0 𝐴)))))))
= dlunpadr0 (dlunpadl0 (dlunlift0 (

163

ARRAY ’20, June ??, 2020, London, United Kingdom

dlift0 (dlpadl0 (dlpadr0 (1 \0 𝐴)))+
dlift0 (dlpadl0 (dlpadr0 (−1 \0 𝐴)))))) .

Finally, we apply Proposition 10, and get:

𝑥 = dlunpadr0 (dlunpadl0 (dlunlift0 (
dlift0 (dlpadl0 (dlpadr0 (1 \0 𝐴)))+
dlift0 (dlpadl0 (dlpadr0 (−1 \0 𝐴))))))

= dlunpadr0 (dlunpadl0 (dlunlift0 (
(1 \0 dlift0 (dlpadl0 (dlpadr0 (𝐴))))+
(−1 \0 dlift0 (dlpadl0 (dlpadr0 (𝐴)))))))

= dlunpadr0 (dlunpadl0 (dlunlift0 ((1 \0 𝐴(lift)) + (−1 \0 𝐴(lift))))).
We can now transform the resulting expression 𝑥 to ONF for
each machine. The bounds of 𝑖 and 𝑗 are once again given
by Proposition 5. Thus, for 𝑐 ∈ {0, 1}, we have the following:
∀𝑖 𝑠 .𝑡 . 1 ≤ 𝑖 < 5 − 1

⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴(lift)
⟨𝑐 ⟩) + (−1 \0 𝐴(lift)

⟨𝑐 ⟩))
≡ (rav𝐴(lift)

⟨𝑐 ⟩) [𝛾 (⟨𝑖 + 1⟩; ⟨5⟩) × 3 +]3]+
(rav𝐴(lift)

⟨𝑐 ⟩) [𝛾 (⟨𝑖 − 1⟩; ⟨4⟩) × 3 +]3] .
We then apply 𝛾 , rav and turn] into a loop, and we get the
following generic program:

∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 3

𝐴(lift)
⟨𝑐 ⟩ [(𝑖 + 1) × 3 + 𝑗]+

𝐴(lift)
⟨𝑐 ⟩ [(𝑖 − 1) × 3 + 𝑗] .

Finally, we join the results using dlunlift0 and apply dlunpadl0
and dlunpadr0 to obtain the same result as we would have
gotten evaluating 𝑥 directly. Moreover, in this case, both
expressions had the same number of loop iterations, and
exactly all the padding was consumed in the computation.

In practice however, what we studied above corresponds
to a single step of the PDE solver. Assume the same scenario
as above, except that the solver actually runs this step 2
times. For simplicity, we build a function step such that, for
a given array 𝐴, step(𝐴) = 𝑥 . Written as a MoA expression,
2 executions of step would be written as step2 (𝐴).
According to Proposition 5, we have speed0 (𝑥) = (1, 1).

Thus, for the padding to last 2 steps and thus avoid padding
exhaustion before the end of the full computation, we need
to pad the 0-th axis of 𝐴𝑚𝑙 times on the left and𝑚𝑟 times
on the right, where𝑚𝑙 and𝑚𝑟 are given by:

(𝑚𝑙 ,𝑚𝑟) = 2 × speed0 (𝑒) = 2 × (1, 1) = (2, 2).
We start again by creating an 𝐴′(pl2) such that

𝐴′(pl2) = dlpadl20 (dlpadr20 (𝐴(pl))) .
From Definition 7, we have that

𝜌 (dl) (𝐴′(pl2)) = ⟨14dl(2,2,5) 3⟩

and

𝐴′(pl2) =

©«

13 14 15
16 17 18
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
1 2 3
4 5 6

ª®®®®®®®®®®®®®®®®®®®®®®®¬

.

Then, we create an array 𝐴(lift2) = dlift(𝐴′(pl2)). From Defini-
tion 5, we have:

𝜌 (dl) (𝐴(lift2)) = ⟨2 72,5 3⟩
and

𝐴(lift2)
⟨0⟩ =

©«

13 14 15
16 17 18
1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

ª®®®®®®®®®¬

𝐴(lift2)
⟨1⟩ =

©«

4 5 6
7 8 9
10 11 12
13 14 15
16 17 18
1 2 3
4 5 6

ª®®®®®®®®®¬

.

Once again, using Proposition 9 and Proposition 10, we get
the equation

step2 (𝐴) = dlunpadr20 (dlunpadl20 (dlunlift0 (step2 (𝐴(lift2))))).
We can now transform the resulting expression 𝑥 to ONF for
each machine. The bounds of 𝑖 and 𝑗 are once again given
by Proposition 5. Thus, for 𝑐 ∈ {0, 1}, we have the following:
∀𝑖 𝑠 .𝑡 . 1 ≤ 𝑖 < 7 − 1

⟨𝑖 𝑗⟩ 𝜓 ((1 \0 𝐴(lift)
⟨𝑐 ⟩) + (−1 \0 𝐴(lift)

⟨𝑐 ⟩))
≡ (rav𝐴(lift)

⟨𝑐 ⟩) [𝛾 (⟨𝑖 + 1⟩; ⟨7⟩) × 3 +]3]+
(rav𝐴(lift)

⟨𝑐 ⟩) [𝛾 (⟨𝑖 − 1⟩; ⟨7⟩) × 3 +]3] .
We one again apply 𝛾 , rav and turn] into a loop, and we get
the following generic program:
∀𝑗 𝑠 .𝑡 . 0 ≤ 𝑗 < 3

𝐴(lift)
⟨𝑐 ⟩ [(𝑖 + 1) × 3 + 𝑗] +𝐴(lift)

⟨𝑐 ⟩ [(𝑖 − 1) × 3 + 𝑗] .

164

ARRAY ’20, June ??, 2020, London, United Kingdom B. Chetioui, O. Abusdal, M. Haveraaen, J. Järvi, L. Mullin

No padding Padding third axis Padding second axis
227.12 199.79 196.90

Table 2. Execution time (in seconds) of a 3-dimensional PDE
solver implementation with different padding parameters on
a single core (CPU: Intel Xeon Gold 6130 CPU @ 2.10GHz).

At that point, we can rewrite our expression as such:
step2 (𝐴)

= dlunpadr20 (dlunpadl20 (dlunlift0 (step2 (𝐴(lift2)))))
= dlunpadr0 (dlunpadl0 (dlunlift0 (step(
dlift0 (dlunpadr0 (dlunpadl0 (dlunlift0 (step(𝐴(lift2)))))))))).

But here, as given by Proposition 7, applying
dlift0 dlunpadr0 dlunpadl0 dlunlift0

to step(𝐴(lift2)) is equivalent to applying unpadr0 and unpadl0
once to both 𝐴(lift2)

⟨0⟩ and 𝐴(lift2)
⟨1⟩ . As a result, for 𝑐 ∈ {0, 1},

𝜌 (dl) (unpadr0 (unpadl0 (𝐴(lift2)
⟨𝑐 ⟩))) = ⟨51,4 3⟩.

The rest of the computation follows the single step dis-
tributed case study presented directly above. Notice that
in this case, 4 intermediate rows of the result were computed
twice (once on each machine), resulting in 4 additional outer
loop iterations compared to the equivalent single machine
unpadded 2-step case. Thus, getting rid of inter-process com-
munication in this case involved both data redundancy and
duplicated calculations. Whether it is worth it to perform
calculations several times instead of exchanging states be-
tween the different computation loci has to be determined
based on hardware-dependent cost functions.

6 Experiments
We extended the scenario depicted in Example 1 to our im-
plementation of a PDE solver using a (−1, 0, 1) stencil along
every axis; that is to say that at every derivation step, the
left and right padding operation are applied once along the
specified axis. The execution times of 50 derivation steps
given different padding parameters are gathered in Table 2.
We see a performance improvement of roughly 10% be-

tween the original code in which no padding was applied
and the cases with padding on either axis. Though the elimi-
nation of the modulo operation at the edges of the padded
axis likely reduces the execution time a little, most of the
performance improvement is due to better data locality and
thus better cache line usage.

7 Conclusion
We have successfully shown that MoA provides the required
building blocks to discuss padding as well as data distri-
bution given an arbitrary architecture, and thus that it is
well-suited to explore the space of optimal computations for

array expressions at a high level of abstraction. Along the
way, we have built 2 examples demonstrating exactly how
to use these notions to optimize stencil computations. We
expect future work to focus on better qualifying the benefits
of using the aforementioned approach instead of already
existing solutions; moreover, with the present results as well
as those from our previous work focusing on the DNF [3],
we will attempt to build a compiler from high-level array
expressions to highly efficient code on a given architecture.

Acknowledgments
The research presented in this paper has benefited from the
Experimental Infrastructure for Exploration of Exascale Com-
puting (eX3), which is financially supported by the Research
Council of Norway under contract 270053.

References
[1] Philip Samuel Abrams. 1970. An APL machine. Ph.D. Dissertation.

Stanford University, Stanford, CA, USA.
[2] Eva Burrows, Helmer André Friis, and Magne Haveraaen. 2018. An

Array API for Finite Difference Methods. In Proceedings of the 5th
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming (ARRAY 2018). ACM, New York, NY,
USA, 59–66. https://doi.org/10.1145/3219753.3219761

[3] Benjamin Chetioui, Lenore Mullin, Ole Abusdal, Magne Haveraaen,
Jaakko Järvi, and Sandra Macià. 2019. Finite Difference Methods
Fengshui: Alignment through a Mathematics of Arrays. In Proceed-
ings of the 6th ACM SIGPLAN International Workshop on Libraries,
Languages and Compilers for Array Programming (ARRAY 2019). Asso-
ciation for Computing Machinery, New York, NY, USA, 2–13. https:
//doi.org/10.1145/3315454.3329954

[4] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. 2018. High Performance Stencil Code Gener-
ation with Lift. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization (CGO 2018). ACM, New York, NY,
USA, 100–112. https://doi.org/10.1145/3168824

[5] Harry B. Hunt III, Lenore R. Mullin, Daniel J. Rosenkrantz, and James E.
Raynolds. 2008. A Transformation–Based Approach for the Design of
Parallel/Distributed Scientific Software: the FFT. CoRR abs/0811.2535
(2008). arXiv:0811.2535 http://arxiv.org/abs/0811.2535

[6] K. E. Iverson. 1962. A Programming Language. Wiley, New York.
[7] Daniel Lemire, Owen Kaser, and Nathan Kurz. 2019. Faster remainder

by direct computation: Applications to compilers and software libraries.
Softw., Pract. Exper. 49, 6 (2019), 953–970. https://doi.org/10.1002/spe.
2689

[8] Lenore Mullin. 1988. A Mathematics of Arrays. Ph.D. Dissertation.
Syracuse University.

[9] Lenore M. R. Mullin and Michael A. Jenkins. 1996. Effective data
parallel computation using the Psi calculus. Concurrency - Practice
and Experience 8, 7 (1996), 499–515. https://doi.org/10.1002/(SICI)
1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1

[10] Paul Chang and Lenore R. Mullin. 2002. An Optimized QR Fac-
torization Algorithm based on a Calculus of Indexing. DOI:
10.13140/2.1.4938.2722.

165

Glossary

API (Application Programming Interface) In a programming language set-
ting this typically means the types and operations on types exposed as
some logical unit. 3, 4

APL (A programming Language) a dynamically typed programming lan-
guage developed in the 1960s by Kenneth E. Iverson centered around
the multidimensional array as its fundamental data type and operators
on it. 38

BLAS (Basic Linear Algebra Subprograms) is a specification of a set of low-
level routines for performing linear algebra operations for which there
exists many implementations, among others a reference implementation
in Fortran.. 24, 167

BLDL BLDL Bergen Language Design Laboratory. 4

confluent confluent In term rewriting systems a set of rules for rewriting
terms are said to be confluent if, when different chains of rewrites may
apply, making different choices does not yield a different final term. 14

DNF DNF Denotational Normal Form. 81, 137, 139

DRY (Don’t Repeat Yourself) a principle of software engineering promoting
the removal of needless repetition. 3

166

DSL (Domain Specific Language) A language tailored specifically for a cer-
tain domain. 82, 93, 94

ET (Expression Template) A way of building abstract intermediary expres-
sions with template metaprogramming in C++. 7, 8, 12, 15

GHC (Glasgow Haskell Compiler) A popular Haskell compiler. 12–15

GPU (Graphics Processing Unit) a highly parallel, in terms of operations,
processing unit typically found in commodity graphics cards and initial-
lyintended used for vector operations in graphics and image processing
but suited for any parallel workload operating on large blocks of vec-
tors. 93, 94, 115

inlining inlining the substitution of a function body for function call, re-
moving call overhead but potentially adding to compiled code size. 12,
13, 15

ISA (Instuction Set Architecture) An abstract model of a computer describ-
ing an instruction set, data types, what state there is and the effects
of executing instructions in terms state change. 8

JIT (Just In Time Compiler) A just in time compiler is a run-time compiler.
It compiles code during the execution of a program and can take advan-
tage of run-time information(such as hot paths) that is only available
during program execution. 83

LAPACK (Linear Algebra Package) is library for numerical linear algebra,
initially released in 1992 in Fortran 77 and moved to Fortran 90 2018,
usually implemented in terms of the routines BLAS provides. 24

MOA (A Mathemathics of Arrays) an algebra describing a view of multidi-
mensional arrays, in particular indexing them in relation to operations
over them. 38, 45, 49, 62–64, 66, 70, 76, 79–81, 101, 114, 120, 121, 136,
138, 139, 152

NUMA NUMA Non-uniform memory access. 129

NumPy NumPy a library for numerical analysis written in Python. 92

ONF ONF Operational Normal Form. 81, 137, 139

167

OpenCL OpenCL is a framework for writing programs that run on a va-
riety of processors, among them the heavily parallell GPUs found on
commodity graphics cards. 93, 94, 96, 98

OpenMP (Open Multi-Processing) A set of language extensions for e.g. C,
C++, Fortran that eases the task of paralell programming by providing
simple annotations that instruct how to parallelize code. 130

PDE PDE Partial Differential Equation. 114

PE (Partial Evaluation) the fixing of values in a function and evaluating
the function to yield a new function, a trivial example is fixing n=1
in divide(m,n) transforming divide into the identity function. In a
programming context such a transformation may transform a function
call into a value as its result is fully determined by fixing one parameter.
13

SIMD (Single Instruction Multiple Data) Typically a set of CPU instruc-
tions, some for loading N machine words from memory in one instruc-
tion into a special purpose register, some for operations between such
special purpose registers and some for storing these special purpose
registers back into memory. The purpose being data-level parallelism,
operating in a single instruction on vectors of machine words rather
than several instructions for each machine word. 8

SPARK/ADA SPARK/ADA a programming language that is a subset of
ADA extended with various additional abilities aiding in program ver-
ficiation. 3

terminating terminating In term rewriting systems a set of rules for rewrit-
ing terms are said to be terminating if no infinite chain of rewrites is
possible. 14

TMP (Template Metaprogramming) a metaprogramming technique involv-
ing compile-time filling of templates(code with holes), the generation
of which may involve a fully Turing complete language as in the case
of C++. 7

x86 x86 a family of instruction set architectures. 8

x86-64 x86-64 a family of instruction set architectures that includes 64-bit
modes of operation. 28

168

Bibliography

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge university press, 1999.

[2] Anya Helene Bagge. “Constructs & Concepts: Language Design for
Flexibility and Reliability”. PhD thesis. PB 7803, 5020 Bergen, Nor-
way: Research School in Information and Communication Technology,
Department of Informatics, University of Bergen, Norway, 2009. isbn:
978-82-308-0887-0. url: http://bldl.ii.uib.no/phd/bagge-phd-
web.pdf.

[3] Anya Helene Bagge and Magne Haveraaen. “Specification of generic
APIs, or: why algebraic may be better than pre/post”. In: Proceed-
ings of the 2014 ACM SIGAda annual conference on High integrity
language technology, HILT 2014, Portland, Oregon, USA, October 18-
21, 2014. Ed. by Michael Feldman and S. Tucker Taft. ACM, 2014,
pp. 71–80. isbn: 978-1-4503-3217-0. doi: 10.1145/2663171.2663183.
url: https://doi.org/10.1145/2663171.2663183.

[4] Ulrich Drepper. “What every programmer should know about mem-
ory”. In: Red Hat, Inc 11 (2007), p. 2007.

[5] Glasgow Haskell Compiler User’s Guide: 13.33. Rewrite rules. url:
https://downloads.haskell.org/~ghc/8.6.5/docs/html/users_

guide/index.html (visited on 2019).
[6] Bastian Hagedorn et al. “High performance stencil code generation

with lift”. In: Proceedings of the 2018 International Symposium on
Code Generation and Optimization, CGO 2018, Vösendorf / Vienna,
Austria, February 24-28, 2018. Ed. by Jens Knoop et al. ACM, 2018,

169

http://bldl.ii.uib.no/phd/bagge-phd-web.pdf
http://bldl.ii.uib.no/phd/bagge-phd-web.pdf
https://doi.org/10.1145/2663171.2663183
https://doi.org/10.1145/2663171.2663183
https://downloads.haskell.org/~ghc/8.6.5/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/8.6.5/docs/html/users_guide/index.html

pp. 100–112. doi: 10.1145/3168824. url: https://doi.org/10.
1145/3168824.

[7] Marco Heisig and Harald Köstler. “Petalisp: run time code genera-
tion for operations on strided arrays”. In: Proceedings of the 5th ACM
SIGPLAN International Workshop on Libraries, Languages, and Com-
pilers for Array Programming, ARRAY@PLDI 2018, Philadelphia, PA,
USA, June 19, 2018. Ed. by Sven-Bodo Scholz and Olin Shivers. ACM,
2018, pp. 11–17. doi: 10.1145/3219753.3219755. url: https://doi.
org/10.1145/3219753.3219755.

[8] Christopher Hollings. “Partial actions of monoids”. In: Semigroup Fo-
rum. Vol. 75. 2. Springer. 2007, pp. 293–316.

[9] Klaus Iglberger et al. “Expression Templates Revisited: A Performance
Analysis of Current Methodologies”. In: SIAM J. Scientific Computing
34.2 (2012). doi: 10.1137/110830125. url: https://doi.org/10.
1137/110830125.

[10] Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. url: https:
//software.intel.com/sites/default/files/managed/39/c5/

325462-sdm-vol-1-2abcd-3abcd.pdf (visited on 2019).
[11] International standard ISO / IEC 9899 Programming languages C -

reference number ISO/IEC 9899:1999(E), Second Edition 1999-12-01.
ISO, 1999.

[12] Latency Numbers Every Programmer Should Know. url: https://

people.eecs.berkeley.edu/~rcs/research/interactive_latency.

html (visited on 2019).
[13] Linear Algebra library Eigen. url: http://eigen.tuxfamily.org

(visited on 2019).
[14] Mouldable programming Magnolia. url: https://bldl.ii.uib.no/

dmpl.html (visited on 2019).
[15] Lenore Mullin. “A Mathematics of Arrays”. PhD thesis. Dec. 1988.
[16] Lenore M Mullin and James E Raynolds. “Tensors and nd Arrays:

A Mathematics of Arrays (MoA), psi-Calculus and the Composition
of Tensor and Array Operations”. In: arXiv preprint arXiv:0907.0796
(2009).

[17] Lenore Mullin and M Jenkins. “Effective data parallel computation
using the Psi calculus”. In: Concurrency: Practice and Experience 8
(Sept. 1996). doi: 10.1002/(SICI)1096-9128(199609)8:7<499::
AID-CPE230>3.0.CO;2-1.

[18] Lenore Mullin and Scott Thibault. “A Reduction semantics for array
expressions: the PSI compiler”. In: Department of Computer Science,
University of Missouri-Rolla, Rolla, Missouri 65401 (1994).

170

https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3219753.3219755
https://doi.org/10.1145/3219753.3219755
https://doi.org/10.1145/3219753.3219755
https://doi.org/10.1137/110830125
https://doi.org/10.1137/110830125
https://doi.org/10.1137/110830125
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
http://eigen.tuxfamily.org
https://bldl.ii.uib.no/dmpl.html
https://bldl.ii.uib.no/dmpl.html
https://doi.org/10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1

[19] P0542R5 Support for contract based programming in C++. url: https:
//isocpp.org/files/papers/p0542r5.html (visited on 2019).

[20] Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon
5500 processors. url: https://software.intel.com/sites/products/
collateral/hpc/vtune/performance_analysis_guide.pdf (visited
on 2019).

[21] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by
the rules: rewriting as a practical optimisation technique in GHC”.
In: 2001 Haskell Workshop. ACM SIGPLAN. Sept. 2001. url: https:
//www.microsoft.com/en-us/research/publication/playing-by-

the-rules-rewriting-as-a-practical-optimisation-technique-

in-ghc/.
[22] Colin Runciman. “What About the Natural Numbers?” In: Comput.

Lang. 14.3 (1989), pp. 181–191. doi: 10.1016/0096-0551(89)90004-
0. url: https://doi.org/10.1016/0096-0551(89)90004-0.

[23] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: a
functional data-parallel IR for high-performance GPU code genera-
tion”. In: Proceedings of the 2017 International Symposium on Code
Generation and Optimization, CGO 2017, Austin, TX, USA, Febru-
ary 4-8, 2017. Ed. by Vijay Janapa Reddi, Aaron Smith, and Lingjia
Tang. ACM, 2017, pp. 74–85. isbn: 978-1-5090-4931-8. url: http:

//dl.acm.org/citation.cfm?id=3049841.
[24] Michel Steuwer et al. “Generating performance portable code using

rewrite rules: from high-level functional expressions to high-performance
OpenCL code”. In: Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2015, Vancou-
ver, BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and
John H. Reppy. ACM, 2015, pp. 205–217. isbn: 978-1-4503-3669-7.
doi: 10.1145/2784731.2784754. url: https://doi.org/10.1145/
2784731.2784754.

[25] The Java Language Specification: 15.18.1. String Concatenation Oper-
ator +. url: https://docs.oracle.com/javase/specs/jls/se8/
html/jls-15.html#jls-15.18.1 (visited on 2019).

[26] The Java Language Specification: 15.18.2. Additive Operators (+ and
-) for Numeric Types. url: https://docs.oracle.com/javase/

specs/jls/se13/html/jls-15.html#jls-15.18.2 (visited on 2019).
[27] Divakar Viswanath. Scientific Programming and Computer Architec-

ture. MIT Press, 2017.

171

https://isocpp.org/files/papers/p0542r5.html
https://isocpp.org/files/papers/p0542r5.html
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://doi.org/10.1016/0096-0551(89)90004-0
https://doi.org/10.1016/0096-0551(89)90004-0
https://doi.org/10.1016/0096-0551(89)90004-0
http://dl.acm.org/citation.cfm?id=3049841
http://dl.acm.org/citation.cfm?id=3049841
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1145/2784731.2784754
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.18.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.18.1
https://docs.oracle.com/javase/specs/jls/se13/html/jls-15.html#jls-15.18.2
https://docs.oracle.com/javase/specs/jls/se13/html/jls-15.html#jls-15.18.2

	Introduction
	Background
	Summary

	Outline

	Transformations
	C++ metaprogramming
	Beyond the programmer's reach?
	Haskell rewrite rules

	Summary

	Arrays
	Introduction
	Index spaces
	Arrays in C
	Arrays in Fortran
	layout and performance
	Strides
	Selecting orderings
	Ordering selection example

	Summary and insights
	Relating gamma and strides
	Sections of an array
	Sections and permutations

	A Mathemathics of Arrays
	Introduction
	Preliminaries: Vectors
	Vector operations: Iota, Take, Drop and Concatenation

	MOA fundamentals
	Defining operations
	Psi - Array selection
	Resulting shape
	Selected array
	As a partial right monoid action

	Ravel - flattening
	Gamma and change of layout
	The Psi correspondence theorem
	Reshaping arrays
	Reshaping arrays
	Reshaping by cases
	Reshaping to insert one

	Extending take, drop and concatenate to arrays
	Take
	Drop
	Concatenate

	Rotation
	Rotation example

	The point-wise and scalar extension
	Reduction and scan

	On evaluation of expressions
	Summary and related work

	Modeling A Mathemathics of Arrays in Magnolia
	Introduction
	Fundamentals
	Building our building blocks
	Indices and shapes
	MOA in Magnolia
	Summary

	Other array abstractions and libraries
	introduction
	Petalisp and array operations
	The primitives of Petalisp
	Matrix multiplication in Petalisp
	Abstraction gains

	Lift
	The primitives of Lift
	Rewriting in Lift
	Lift choices

	The need for array abstractions

	A Mathemathics of Arrays applied
	A Mathemathics of Arrays evaluated
	introduction
	The original implementation
	A first look at applying MOA
	Further optimizations
	Final optimizations
	Benchmarking results
	Introducing data redundancy
	Multithreading and dimension lifting
	Dimension lifting on the first dimension
	Dimension lifting on the last dimension
	Dimension lifting on all dimensions
	Benchmarking dimension lifting

	Summary

	Conclusion
	Appendices
	C++ examples
	C examples
	The affine-linear mapping
	Subranges
	An unconventional modulo
	An unpublished paper on padding and dimension lifting
	Glossary

