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A B S T R A C T   

Asymmetric porphyroclast systems have long been used as independent shear-sense indicators based on their 
clast-tail asymmetry and/or stair-stepping tail geometry. Over the last two decades, advances in exploring the 
mechanical behavior of rigid clasts in a viscous flow has shed new light on understanding the formation of 
porphyroclast systems embedded in noncoaxial viscous flow and subsequently quantifying many aspects of flow 
kinematics. Using examples from naturally deformed rocks combined with results from recent advances, our 
study indicates that: (1) in general, only porphyroclast systems composed of equant-shaped clasts can be treated 
as independent shear-sense indicators; (2) special attention should be given to β-type porphyroclast systems 
composed of high-angle intermediate aspect-ratio clasts, which may contain meaningful information on bulk 
flow kinematics; (3) bookshelf structures cannot serve as independent shear-sense indicators. Multi-criteria and 
thorough three-dimensional shape analyses are suggested for a proper interpretation of flow kinematics in ductile 
shear zones.   

1. Introduction 

In ductile shear zones, relatively large and flow-resistant (rigid) 
minerals, typically partially recrystallized feldspar grains embedded in a 
fine-grained quartz-mica matrix with their mantling tails/wings 
composed of dynamically recrystallized quartz and mica via strain 
softening processes (White et al., 1980), are designated as porphyroclast 
systems (e.g., Passchier and Simpson, 1986) or augen structures (e.g., 
Vidal et al., 1980). The stair-stepping of recrystallized tails, i.e. the 
clast-tail asymmetry of the asymmetric porphyroclast system, has been 
widely used as a reliable kinematic indicator to extrapolate the 
shear-sense of the bulk flow of shear zones (Eisbacher, 1970; Chouk-
roune and Lagarde, 1977; Lister and Price, 1978; Berth�e et al., 1979; 
Simpson and Schmid, 1983; Passchier and Simpson, 1986; Hanmer and 
Passchier, 1991; Passchier, 1994.), although their origins are not yet 
fully understood (cf. Passchier et al., 1992; Passchier and Trouw, 2005; 
Passchier and Coelho, 2006; Griera et al., 2013; Stahr and Law, 2014). In 
the last two decades, a renewed and heated discussion has sprung out of 
two fundamental issues: Do rigid clasts rotate (e.g., Bell et al., 1992; 
Jiang and Williams, 2004; Johnson, 2008, 2009; Bell and Fay, 2016), 
and how do matrix properties impact the rotational behavior of rigid 
clasts in noncoaxial flow (e.g., Marques and Coelho, 2001; Mancktelow 
et al., 2002; Piazolo et al., 2002; ten Grotenhuis et al., 2002; Ceriani 

et al., 2003; Schmid and Podladchikov, 2005; Griera et al., 2011, 2013; 
Frieman et al., 2013; Stahr and Law, 2014; Mulchrone and Meere, 2015; 
Marques, 2016). These issues beg the question of whether or not 
clast-based kinematic criteria can be used as independent shear-sense 
indicators. In other words, what do these questions and related an-
swers imply for the interpretation of flow kinematics, e.g., the impact on 
determining the sense of vorticity and assessing the kinematic vorticity 
number of the bulk flow in ductile shear zones? The goal of this study is 
to refine our knowledge on the kinematic significance of rigid clast 
rotation in a viscous matrix under general shear. 

In this study, the shape characters and the sense of rotation of 
available rigid clasts in naturally deformed rocks, mostly from the 
Zhangbaling schist (Zhang et al., 2007, 2013) and published literatures, 
as well as matrix rheology are carefully examined; third-party criteria 
such as shear bands, quartz oblique fabrics, and quartz c-axis fabrics are 
used as independent shear-sense indicators. The validity of porphyr-
oclast systems as independent shear-sense indicators are discussed in the 
light of recent advances. 

2. Overview on rigid clast rotation 

Early work on porhpyroclast systems and their flow kinematics was 
predominantly performed in the context of simple shear (e.g., Hanmer, 
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1984; Simpson, 1986; van den Driessche and Brun, 1987; Hooper and 
Hatcher, 1988; Passchier and Sokoutis, 1993; ten Brink and Passchier, 
1995), following the classic analytical model of Jeffery (1922) in which 
an isolated rigid single clast was immersed in an infinite isotropic linear 
viscous matrix. In Jeffery’s model, the circular clast rotates synthetically 
at a constant rate of half of the strain rate under applied simple shear 
whereas the minimum and maximum rotation rates of the elliptical clast 
are predicted at the flow-parallel and flow-normal orientations, 
respectively. In the milestone analogue experiment and analytical 
analysis (Ghosh and Ramberg, 1976), ellipsoidal rigid clasts will reach a 
stable position under coupled pure and simple shear. Passchier (1987) 
expanded the work of Ghosh and Ramberg (1976) into a 
three-dimensional analytical analysis, proposing that the rotational 
behavior of rigid clasts in noncoaxial flow would fall into two categories 
if a steady monoclinic isotropic linear viscous matrix is assumed: Clasts 
with aspect ratios exceeding a critical value would rotate towards and 
stop at their stable positions; clasts with a lower aspect ratio would 
rotate continuously in a pulsating rate. 

Questions arose regarding the validity of asymmetric porphyroclast 
systems as an independent shear-sense indicator when it was realized 
that, in several cases, a significant percentage of clasts showed evidence 
of rotation opposite to the bulk flow vorticity, as inferred from clast-tail 
asymmetry at both meso- and microscopic scales (Figs. 1 and 2). The 
occurrence of asymmetric porphyroclast systems with conflicting senses 
of rotation in naturally deformed rocks was interpreted in the light of 
subsimple shear (e.g., Passchier and Simpson, 1986; Passchier, 1987; 
Simpson and De Paor, 1993). Based on pioneering analytical results (e. 
g., Bobyarchick, 1986; Passchier, 1986), Simpson and De Paor (1993) 
turned these observations into a practical approach using the porphyr-
oclast hyperbolic distribution analysis (PHD, De Paor, 1988; Simpson 
and De Paor, 1993, 1997). The significance of their work is to have the 
flow apophyses defined graphically, where the flow apophyses corre-
spond to a pair of irrotational lines or planes in two-dimensional or 
three-dimensional plane-strain or monoclinic strain field (Passchier, 
1998), oriented parallel and obliquely to the flow plane, respectively. 
The terms forward- and backward-rotating clasts were proposed to 
describe the clasts rotation in relation to the shear-sense of the bulk flow 
using a third-party criterion as an independent shear-sense indicator, e. 
g., quartz c-axis fabrics (Simpson and De Paor, 1993). Depending upon 
aspect ratios and initial orientations of the clasts as well as the vorticity 
value of the ductile flow, elliptical clasts were predicted to rotate syn-
thetically and antithetically across the obliquely oriented irrotational 
lines/planes (metastable eigenvectors, Simpson and De Paor, 1993). 
Along with a better understanding of ductile fabrics in general shear, 

new structural criteria were proposed to distinguish forward- and 
backward-rotating clasts (Passchier, 1987; Wallis, 1995; Simpson and 
De Paor, 1993, 1997; Klepeis et al., 1999; Forte and Bailey, 2007) 
although the original purpose was to evaluate flow vorticity under 
subsimple shear. 

The complexities of rotational behavior of rigid clasts in a viscous 
flow get further compounded when matrix properties are taken into 
consideration. Prior to the end of the last century, a simplified matrix 
rheology where rigid clasts are perfectly bonded to the matrix of a 
steady-state isotropic linear flow, was generally assumed. Bell (1985) 
proposed that the rigid clast in an anastomosing network of shear bands 
may remain stationary due to partitioning-induced zero angular velocity 
of the clasts (Johnson, 2008), a scenario of strain localization in the 
matrix and strain partitioning between the clast and viscous matrix 
(Aerden, 2004; Johnson, 2009); the spiral trails in and around the clast 
were interpreted as overprinting of foliations produced in multiphase 
deformation (e.g., Bell et al., 1992; Bell and Fay, 2016). Based on nu-
merical modeling, however, Jiang and Williams (2004) challenged their 
conclusion, claiming that they violate physical basics of angular mo-
mentum balance. Marques and Burlini (2008) concluded that the rota-
tion of the equant-shaped clast in a non-linear viscous flow follows 
Jeffery’s prediction, even when matrix anisotropy such as shear bands 
develops around the clast during deformation. A similar conclusion was 
reached by Fletcher (2009), who through a mathematical approach 
found that the rotation rate of an elliptical clast is independent of the 
matrix anisotropy. On the contrary, using a crystal plasticity numerical 
approach, Griera et al. (2011) argued that the rotational behavior of a 
rigid circular clast is anisotropy dependent: The rigid clast rotation can 
be significantly reduced or fully stopped by the development of shear 
bands when high strain is attained. They also questioned if 
Mohr-Coulomb plasticity is an appropriate description of flow rheology, 
although strain-localization induced matrix anisotropy indeed results in 
limited rotation of the rigid clast (ten Grotenhuis et al., 2002; Fay et al., 
2008). 

The impact of matrix anisotropy on the rotational behavior of the 
rigid clast in viscous flow was also explored in terms of intrinsic fabric 
anisotropy (e.g., Mandal et al., 2005a; Fletcher, 2009; Dabrowski and 
Schmid, 2011; Griera et al., 2013; Frieman et al., 2013), i.e., a viscous 
matrix composed of thin layers with alternating viscosities. Results of 
these numerical models show that the rotation of the circular clast is 
always synthetic relative to the applied shear stress, although it would 
be reduced or even fully stopped with the increase of matrix anisotropy 
(e.g., Dabrowski and Schmid, 2011). However, the final asymmetric 
clast-tail geometry could be very complicated and easily misinterpreted 

Fig. 1. Scanned image of polished rock slice of the 
Zhangbaling schist (XZ plane). Boxes of dashed line 
highlight two types of S2 clasts. The dark- and light- 
color ribbons are composed of fine-grained dynami-
cally recrystallized quartz and extremely fine-grained 
groundmass of plagioclase, respectively. Notice that 
the sense of rotation of the major clasts is top-to-north 
based on the clast-tail asymmetry while the sense of 
vorticity of the bulk flow is top-to-south, determined 
by shear bands, quartz c-axis, and S–C fabrics in 
quartz ribbons (Zhang et al., 2007).   
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in terms of kinematics, particularly when the matrix anisotropy is not 
parallel to the shear zone boundaries (cf. Griera et al., 2013). If defor-
mation is localized to rheologically weak layers and the size of the rigid 
clast is comparable to the width of these layers, a scenario of flow 
confinement (Marques and Cobbold, 1995; Marques and Coelho, 2001; 
Marques et al., 2005a, 2005b, 2014; Griera et al., 2013; Marques, 2016), 
the flow pattern will be significantly altered around the clast; analogue 
and numerical modeling show that reduced, fully inhibited, and 
reversed (antithetic) rotation of elliptical clasts can occur under simple 
shear, depending on the shape and orientation of the clast as well as the 
degree of flow confinement (cf. Marques et al., 2014 and references 
therein). In spite of the controversies around rigid clast rotation that 
have resulted from analytical, analogue, and numerical methods, a 
consensus exists that rigid clast rotation in anisotropic media is yet not 
fully understood (Passchier et al., 1992; Dabrowski and Schmid, 2011; 
Griera et al., 2013), although synthetic rotation is predicted/produced 
for circular clasts in these models. 

Similar effects, particularly antithetic (backward) rotation and clast 
stabilization, were also well documented under simple shear in a series 
of analogue, theoretical, and numerical models (e.g., Ildefonse and 
Mancktelow, 1993; Marques and Coelho, 2001; Mancktelow et al., 2002; 
ten Grotenhuis et al., 2002; Ceriani et al., 2003; Bose and Marques, 
2004; Marques and Bose, 2004; Mandal et al., 2005b; Schmid and 
Podladchikov, 2004, 2005; Mulchrone, 2007; Mancktelow, 2013; Mar-
ques et al., 2014; Mulchrone and Meere, 2015) in which a slipping or 
decoupling boundary between the clast and matrix interface was 
applied, mostly by introducing a weak layer to mimic the dynamically 
recrystallized mantle around the clast. Different from the classic models 
(e.g., Ghosh and Ramberg, 1976; Passchier, 1987) in which the clast is 
assumed to be perfectly welded to the matrix, the rate and sense of 
rotation of the clast in slipping/decoupling mode is considered to be 
determined by factors relating to the shape and orientation of the clast, 
thickness of the weak layer (mantle), and the viscosity contrast between 
the mantling layer and the matrix (e.g., Ceriani et al., 2003; Schmid and 
Podladchikov, 2004, 2005; Mancktelow, 2013). Marques et al. (2014) 
argued that the stair-stepping of the tails, depending upon the rate of 
mantle production (e.g., ten Brink and Passchier, 1995; Bose and Mar-
ques, 2004; Marques and Bose, 2004; Schmid and Podladchikov, 2004, 
2005), is a direct expression of the degree of slipping condition and flow 
confinement; the maximum stair-stepping occurs in the slipping mode 
during confined flow via forward or backward rotation, although the 
backward rotation is limited in both cases. Particularly, the nearly 
identical σ� tails around the elliptical clasts were produced during 
opposite sense of rotation in their analogue experiments (Bose and 
Marques, 2004; Marques and Bose, 2004; Marques et al., 2014), 
implying that the clast-tail asymmetry may only be used as a diagnostic 
proof of the sense of rotation for equant-shaped clasts. 

The presence of clast populations in nature generates another issue: 
The impact of clast interaction on the rotational behavior of the rigid 
clast in a viscous matrix, which has attracted considerable interest. 
Deviated from the classic prediction on single isolated grains (cyclic free 
rotation, Jeffery, 1922), a stable or metastable clast-shape fabric can be 
produced under simple shear via interaction between neighboring clasts 

(e.g., Ildefonse et al., 1992a; Tikoff and Teyssier, 1994; Arbaret et al., 
1996; Piazolo et al., 2002; Jessell et al., 2009; Yamato et al., 2012) even 
if they are not in direct contact (e.g., Ildefonse et al., 1992b; Ildefonse 
and Mancktelow, 1993; Arbaret et al., 2000; Samanta et al., 2003; 
Mandal et al., 2005b). Regardless of the shape and initial orientation of 
the clasts, applied coherent vs. incoherent matrix-clast interfaces (e.g., 
Mandal et al., 2005b) and modeling techniques, similar conclusions 
were drawn from these studies: Concentration of clast populations plays 
a critical role on the rotational behavior of populated clasts due to the 
interaction, i.e., collision, tiling, and impeded rotation (e.g., Ildefonse 
et al., 1992a; Tikoff and Teyssier, 1994; Arbaret et al., 1996) between 
neighboring clasts or perturbation-induced changes in flow pattern 
around the clast (e.g., Ildefonse et al., 1992b; Ildefonse and Mancktelow, 
1993; Samanta et al., 2003; Mandal et al., 2005b). The denser the 
concentration, the stronger the shape fabric, which is inclined to the 
shear direction at a small angle. In the case of nondirect contact (e.g., 
Ildefonse and Mancktelow, 1993; Mandal et al., 2005b), the rotation 
rate could be flow (simple vs. pure shear) and boundary-condition 
dependent; while clustering leads to the imbrication of two or more 
particles, clast rotation is significantly slowed down or prohibited. 
Neverthless, antithetic rotation is observed in both cases and favored by 
increasing concentration of clast populations. Tikoff and Teyssier (1994) 
pointed out that rigid clast rotation is essentially unpredictable due to 
the interaction (i.e., collision, tiling, and impeded rotation) between 
neighboring clasts before the entrained clasts get fully separated. In 
practical application, isolated single grain or those with spacing greater 
than twice the clast size is recommended for extracting kinematic in-
formation about the bulk flow to minimize the impact of clast interac-
tion (e.g., Ildefonse et al., 1992b; Mandal et al., 2003). 

When power-law material was applied to the matrix, which is 
considered a better approximation of natural flow rheology than the 
linear one (e.g., Passchier et al., 1993; ten Brink and Passchier, 1995; 
Masuda and Mizuno, 1996; Pennacchioni et al., 2000; Piazolo et al., 
2002; Schmid and Podladchikov, 2005; Marques and Burlini, 2008; 
Marques et al., 2011a, 2011b; Mancktelow, 2011, 2013; Marques et al., 
2014), it was considered that power-law rheology may influence the 
geometry of the flow pattern around clasts (Passchier et al., 1993; ten 
Brink and Passchier, 1995), leading to the formation of spiral tails 
(δ-like) wrapping around the clast. However, numerical simulations 
(Masuda and Mizuno, 1996; Bons et al., 1997; Pennacchioni et al., 2000) 
indicate that, at least for two-dimensional rigid circular objects, the ef-
fects are not drastic. In general, a stronger shape fabric will develop due 
to the higher stress-strain rate sensitivity in a power-law matrix (e.g., 
Piazolo et al., 2002). Nevertheless, an agreement appears to be achieved 
among researchers that there is no significant deviation of mechanical 
behavior of rigid clasts in a power-law flow as compared to linear flow 
(e.g., Masuda and Mizuno, 1996; Bons et al., 1997; Pennacchioni et al., 
2000; Marques and Burlini, 2008; Xypolias, 2010; Marques et al., 2014). 

When a non-steady flow matrix is assumed (Stahr and Law, 2014), 
which is the case of natural deformation, the sense of rigid clast rotation 
changes instantaneously with changes in strain rate and flow vorticity, 
implying that the rotational behavior of rigid clasts in non-steady flow is 
essentially unpredictable. 

Fig. 2. A: Photomicrograph of asymmetric porphyroclast systems from the Zhangbaling schist, XZ plane, Anhui, China. B: Sketch of Fig. 2A, highlighting conflicting 
sense of rotation, arrows showing the sense of rotation of the clast as inferred from clast–tail asymmetry. 
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Given the complications and controversies addressed in the explo-
rations in the last two decades, the question emerges again: To what 
extent can clast-based kinematic criteria be used as independent shear- 
sense indicators? Is it time to abandon porphyroclast systems as shear- 
sense indicators? 

3. Rigid clast rotation in general (subsimple) shear 

The two basic types of asymmetric porphyroclast systems, σ- and 
δ-type clasts, were first identified based on their shapes of tails/wings 
and clast-tail asymmetry relative to the reference frame (Hanmer, 1984; 
Simpson, 1986). A δ� clast system is characterized by thin wings/tails 
that cross the reference plane (shear plane); a σ� clast system is featured 
by wide wings/tails near the clast and the tails/wings extend along the 
same sides of the shear plane (Fig. 3). A third type of asymmetric por-
phyroclast was distinguished by a ‘naked’ clast and perturbed matrix 
flow without tails/wings around the clast, which is referred to as the θ 
clast (Hooper and Hatcher, 1988; Passchier, 1994). A fourth one was 
recognized by multi-generation tails/wings, a transient structure formed 
during the transition from a δ- to a σ-clast via progressive rotation of the 
clast and consecutive development of tails/wings (Passchier and Simp-
son, 1986; Passchier and Sokoutis, 1993). All of these contrast the 
symmetric φ–clasts where the tails are centered and parallel to the 
general foliation. 

A number of factors have been attributed to the clast-tail asymmetry 
such as perturbed local flow pattern around the clast, the ratio between 
recrystallization rate of tails and rotation rate of the clast, matrix 
rheology (linear vs. power-law flow), viscosity contrast between tails 
and matrix, and the rate of mantle production. Passchier and Simpson 
(1986) proposed that the ratio between dynamic recrystallization rate of 
tails and rotation rate of the clast is one of the most important factors in 
determining the type of a porphyroclast system: The δ� system develops 
when clast rotation is relatively fast and recrystallization slow; the 
σ� system forms when rotation is slow relative to recrystallization, based 
on the result of analogue modeling in which a Newtonian matrix under 
simple shear is applied. This argument is corroborated by the results of 
the ring-shear experiment (Passchier and Sokoutis, 1993). When 
power-law matrix rheology was applied (Passchier et al., 1993; ten Brink 
and Passchier, 1995), spiral tails around the clast were produced, which 
leads to an alternative interpretation that the δ� and σ� type structures 
are merely the products of a power-law and a Newtonian matrix, 
respectively; stair-stepping of tails is determined by 
perturbation-induced changes in flow pattern (eye-shaped vs. 
bow-tie-shaped separatrices). Similar structures, particularly δ� type 

structures with tails wrapping around the clast were produced in both 
analogue (van den Driessche and Brun, 1987) and numerical modeling 
(Bons et al., 1997), in which flow field pattern rather than matrix 
rheology was called for as the primary factor controlling tail geometry. 
Regardless of controversies, it is noteworthy that the same conclusions 
were drawn from these studies: High shear strain is required for the 
formation of δ structures; isoclinal drag folds (rolling structure, van den 
Driessche and Brun, 1987) and even sheath folds develop at tips of the 
clast at high strain as reliable shear-sense indicators (e.g., van den 
Driessche and Brun, 1987; Passchier et al., 1993; ten Brink and 
Passchier, 1995; Arbaret et al., 2001; Rosas et al., 2002; Ceriani et al., 
2003; Mulchrone, 2007; Dabrowski and Schmid, 2011). 

From a series of analogue experiments when the clast is mantled by a 
low-viscosity film under simple shear (e.g., Ceriani et al., 2003; Marques 
and Bose, 2004), Marques and Bose demonstrated that nearly identical 
σ� tails can be produced when nonequant dimensional clasts experience 
opposite sense of rotation in response to changes in flow pattern, leading 
to the interpretation that the σ� and δ� tails are products of slipping and 
nonslipping clast-matrix interfaces, respectively, depending on the rate 
of mantle production. Similar conclusions were reached by Schmid and 
Podladchikov (2004, 2005) via numerical simulations. It has been 
commonly accepted that the clast-tail asymmetry is indicative of the 
sense of clast rotation (e.g., Simpson and Schmid, 1983; Passchier and 
Simpson, 1986; Hanmer and Passchier, 1991; Passchier and Trouw, 
2005; Passchier and Coelho, 2006). Given the complications and con-
troversies, it is necessary to reevaluate and justify the use of porphyr-
oclast systems as shear-sense indicators in practical applications. In the 
following discussions, the term tail is used as a general term for tails and 
wings. 

3.1. The single-grain system 

As predicted by classic models (Ghosh and Ramberg, 1976; Passchier 
and Simpson, 1986; Passchier, 1987), equant-shaped clasts generally 
behave as forward-rotating ‘σ’ and, particularly, ‘δ’ systems mantled 
with well-developed tails at both meso- and microscopic scales under 
subsimple shear (Fig. 4A). Due to the spherical shape, the rotation of 
equant-shaped clasts is immune to the pure-shear component in non-
coaxial flow, always consistent with the sense of the flow vorticity. On 
the other hand, clasts with high aspect ratios (approaching or exceeding 
the critical aspect ratio Rc, Passchier, 1987) tend to evolve into nearly 
symmetric σ systems, characterized by well-developed semi-symmetric 
tails subparallel to the shear plane and low-angle clasts (<10�) inclined 
both clockwise and anticlockwise with respect to the bulk flow direction 

Fig. 3. Classifications of asymmetric mantled porphyroclasts, arrows show the sense of shear.  
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(Fig. 4B). 
The orientation and the sense of rotation of the clasts with inter-

mediate aspect ratios (R ¼～1.5–2.75, e.g., Xypolias, 2010; Zhang and 
Teyssier, 2013) are extremely sensitive to flow vorticity. Forward- and 
backward-rotating ‘σ’ grains are commonly observed in ductile shear 
zones (e.g., Simpson and De Paor, 1993; Klepeis et al., 1999; Forte and 
Bailey, 2007; Zhang and Teyssier, 2013). However, these porphyroclast 
systems, particularly the fully developed ones with well-defined clast--
tail asymmetry, contain no kinematic information about the bulk flow. 
Essentially, there is no discernible geometric difference between a for-
ward- and a backward-rotating ‘σ’ system (Fig. 4C and D), which can 

therefore be considered as mirror images. Thus, without a third-party 
shear-sense indicator or a thorough understanding of flow vorticity (e. 
g., Simpson and De Paor, 1993; Klepeis et al., 1999; Xypolias, 2010; 
Fossen and Cavalcante, 2017), flow kinematics based purely on the 
clast-tail asymmetry could easily be overinterpreted. 

Efforts to better understand the flow kinematics and the rotational 
behavior of rigid clasts in viscous flow never ceased. Klepeis et al. (1999) 
identified a type of backward-rotating ‘σ’ clast, referred to as β2 clasts 
(Fig. 5A), characterized by nearly symmetric broad tails and a 
high-angle antithetic orientation to the bulk flow direction, which is not 
commonly reported. However, shape fabric analysis of the Zhangbaling 

Fig. 4. Photomicrographs of the Zhangbaling schist and the Fucha Shan gneiss. Images are from the XZ planes; the sense of the vorticity, shown by the grey arrows, is 
determined from shear bands, quartz c-axis, and S–C fabrics in quartz ribbons. A: Equant-shaped forward-rotating δ porphyroclast. B: High-aspect-ratio porphyroclast 
with semisymmetrical tails, noticing the low angle between shear plane and the long axis of the clast. C: Backward-rotating σ clast. D: Forward-rotating fractured 
grain of plagioclase with half of δ tails. E: β clast with nearly symmetrical broad tails. F: High-angle porphyroclast with multiple tails and ambiguous sense of rotation. 
G: Domino-type fragmented porphyroclasts (bookshelf structure) and oblique quartz foliation from Fucha Shan gneiss, Anhui, China. H: Interpretation of the 
bookshelf structure in plagioclase. S and C refer to S- and C-planes marked by elongated quartz and quartz ribbons, respectively. Horizontal and vertical arrows 
represent simple and pure shear components. Curved arrows represent flow lines. Horizontal and oblique straight lines show stable and metastable flow eigenvectors, 
respectively. 
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schist (Zhang and Teyssier, 2013) revealed that the long axis of the 
observed β2 clast (Fig. 4E) is parallel or subparallel to the metastable 
eigenvector, suggesting that the rough bilateral symmetry of the broad 
tails was likely produced by non-partitioned pure and simple shear 
components at the metastable position of the clast, which experienced 
the least amount of rotation or irrotation (β2 in Fig. 5A). 

Forte and Bailey (2007) expanded the discussion to the formation of 
porphyroclast systems with the long axis of clasts making high angles to 
the foliation (Fig. 5A, hereafter referred to and abbreviated as S1 grain 
for convenience), postulating that the short foliation-parallel ‘σ’ tails 
were produced from inhibited growth when the clast rotated forwardly 
out of the metastable orientation. Likewise, a porphyroclast system 
characterized by antithetic orientation and fully-developed ‘σ’ tails (S2 
in Fig. 5A) was proposed to form through backward rotation if the long 
axis of the clast was originally oriented off the unstable eigenvector in 
the backward-rotating field. Forte and Bailey (2007) argued that these 
criteria can serve as credible, independent shear-sense indicators. In 
reality, the shape and asymmetry of the clast-tail system could be more 
complicated when clasts rotate passively through the foliation-normal 
orientation. For instance, subvertical clasts with multi-tails (Figs. 4F 
and 5B) were frequently observed in the Zhangbaling schist, a 
zone-narrowing scenario (cf. Zhang et al., 2007; Zhang et al., 2013; 
Zhang and Teyssier, 2013 for the Zhangbaling transpressional tec-
tonics), in which the ‘δ’ tails are likely first generated when the clast 
rotates forwardly out of the metastable position via picking the angular 
velocity, then followed by developing ‘σ’ tails as the clast approaches the 
foliation-normal orientation (labeled as І and ІІ, respectively in Fig. 5B). 
Finally, the ‘δ’ tails would be replaced by the ‘σ’ tails and a forward ‘σ’ 
grain with well-defined clast-tail asymmetry is expected to form in 
response to perturbation-induced changes in flow pattern if deformation 
proceeds. Fundamentally, these high-angle porphyroclast systems are 
transient products of rigid clast rotation, created during acceleration of 
the clast rotation when they sweep through the unfavored 
foliation-normal orientations, forming temporary multi-generation tails 
and wings (Passchier and Simpson, 1986; Passchier and Sokoutis, 1993). 
Accordingly, the formation of a forward ‘δ’ system of intermediate 
aspect ratio is likely but unnecessarily restricted in the quadrant defined 
by the metastable eigenvector and the bisector between the stable and 
metastable eigenvectors in the forward-rotating field. 

3.2. Fractured grains and bookshelf structures 

Fractured grains and bookshelf structures (Choukroune and Lagarde, 
1977; Etchecopar, 1977), typically feldspars, are commonly observed in 
ductile or brittle-ductile shear zones. Strictly speaking, these structures 

are not conventional porphyroclast systems, as they consist of multiple 
grains with complex inter-clast interaction of collision, tiling, and 
impeded rotation (e.g., Tikoff and Teyssier, 1994; Piazolo et al., 2002; 
Jessell et al., 2009). However, since fractured grains and bookshelf 
structures retain important kinematic significance, and rigid clast rota-
tion plays a critical role in their formation, these unconventional por-
phyroclast systems are included in the following discussion. 

The bookshelf structure has been regarded as an independent shear- 
sense indicator (cf. Simpson and Schmid, 1983). Conventionally, a 
bookshelf structure forms as broken crystal fragments rotate in the shear 
direction like a collapsing set of books in a bookshelf, i.e., the micro-
fractures and the long axes of the fractured grains become progressively 
more inclined towards the shear plane as shearing proceeds (Etchecopar, 
1977; Simpson and Schmid, 1983). Simpson and De Paor (1993) pro-
posed that the microfractures develop preferentially along the bisectors 
between the eigenvectors in noncoaxial flow where the clasts undergo 
the maximum angular shear; the fractured grains and the bookshelf 
structure were plotted (maybe not intentionally) in the forward- and 
backward rotating fields (Fig. 5A), respectively, in their analytical work 
(Simpson and De Paor, 1993). However, the probability for single- and 
multifractures developing in the forward- and backward-rotating fields 
should be the same. In the Zhangbaling schist, a pair of fractured 
plagioclase grains with well-developed clast-tail asymmetry was 
observed in the forward-rotating field (Figs. 4D and 5B); the sense of 
rotation of the clasts inferred from the clast-tail asymmetry (stair-step-
ping of the tails) is consistent with other kinematic indicators such as 
quartz c-axis fabrics, S–C fabrics, and shear bands (Zhang et al., 2007, 
2013). Similarly, a domino-type bookshelf structure (Passchier and 
Trouw, 2005) in the transpressional root of the Zhangbaling belt was 
discovered in the backward-rotating field (Figs. 4G and 5B), using quartz 
c-axis and S–C fabrics as shear-sense indicators of the bulk flow (Zhang 
et al., 2007). The formation of this bookshelf structure was interpreted 
as the result of backward rotation in noncoaxial flow when the long axes 
of the fractured feldspars and the microfracture planes (crystal cleavage) 
were originally oriented shallower than the unstable eigenvector 
(Fig. 4H), or alternatively by stabilization of a stack of grains under the 
combined effects of clast interaction and flow confinement during 
antithetic rotation (e.g., Mandal et al., 2005b; Marques et al., 2014). 
Similar observations were made in recent work by Moreira and Dias 
(2018). 

The situation could be more complicated in nature: A pair of book-
shelf structures composed of oppositely dipping fractured feldspar 
grains and microfracture planes (Fig. 6A; note that the left-hand one is 
crosscut by two sets of microfractures, forming a so-called mosaic 
fragmented porphyroclast system according to Passchier and Trouw, 

Fig. 5. A: Proposed asymmetry-based shear-sense indicators in subsimple shear, modified after Simpson and De Paor (1993). B: Asymmetric porphyroclast systems 
with alternative interpretations on sense of rotation of the clast, numbers next to the tail indicating sequential stages of tail development. 
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2005) were observed in the Ailao Shan-Red River shear zone (Tappon-
nier et al., 1990; Leloup et al., 1995), Yunnan, southwestern China. 
Clearly, it is impossible to distinguish which set of the bookshelf struc-
tures was produced via forward or backward rotation based on their 
geometry and inclination directions particularly if a more complex 
history such as multiphase deformation, or slipping clast-matrix 
boundary in flow confinement (note the laminated flow matrix of 
extremely fine-grained quartz and mica around the clasts via dynamic 
recrystallization) is allowed for. Similarly, a pair of bookshelf structures 
from a sheared dike in northeast Brazil confined in pervasively devel-
oped shear bands were disclosed (Fig. 6B). Formation of these conju-
gately fractured feldspar porphyroclasts can be attributed to a number of 
factors, such as the shape and initial orientation of the feldspar grain, 
vorticity value of the bulk flow, clast interaction, flow confinement, and 
deformation partitioning between the clast and matrix, although the 
sense of shear of most of the bookshelf structures in this specific case is 
consistent with that of the bulk flow (Fig. 6C), using shear bands and 
quartz c-axis fabrics as third-party shear-sense criteria. Considering the 
extensively developed shear bands in this rock, perturbed local flow 
pattern around the clasts at sample- and microscopic scales resulted 
from partitioned matrix-clast behavior (e.g., Marques et al., 2005a; 
Marques et al., 2005b; Marques et al., 2014), i.e., strain localization in 
the form of shear bands and restricted freedom of clast rotation between 
shear bands should be largely responsible for the formation of conjugate 
bookshelf structures in a strain-localization and -partitioning induced 
heterogeneous strain field. Nevertheless, fractured clasts or bookshelf 
imbricates can be produced by either forward or backward rotation; the 
use of geometry and asymmetry to extrapolate the flow kinematics is 
neither intuitive nor straightforward. 

3.3. Mica fish 

In kinematic analyses, porphyroclasts such as feldspars are generally 
treated as rigid objects rotating passively in a relatively weaker, viscous 
matrix. Obviously, the rigidity of the porphyroclast is rheology- 
dependent. Thus, formation of mica fish, produced predominantly by 
rigid body rotation and intracrystal sliding (e.g., ten Grotenhuis et al., 
2003; Passchier and Trouw, 2005), can be considered in the same way as 
porphyroclast systems. In fact, a number of minerals, such as tourmaline 
(ten Grotenhuis et al., 2002), sillimanite (Pennacchioni et al., 2001; 
Mancktelow et al., 2002), amphibole (Mancktelow et al., 2002; Zhang 

et al., 2007), and hematite (Ferreira et al., 2016), behave similarly to 
micas in a fine-grained weak matrix, forming mineral fish characterized 
by their long axes oriented at a small angle to the shear plane with 
dynamically recrystallized minerals developing at the tips of the clast, 
particularly for those that are lenticular and platy in shape. 

Just like asymmetric porphyroclast systems, mica fish has long been 
regarded as a reliable shear-sense indicator (e.g., Simpson and Schmid, 
1983; Lister and Snoke, 1984; ten Grotenhuis et al., 2003; Mukherjee, 
2011). However, the same problem resides in the rotational behavior of 
micas in micaceous quartzitic mylonites: determined by well-defined 
clast-tail asymmetry (Fig. 7), the sense of rotation of mica from the 
Ailao Shan-Red River shear zone in Diancangshan opposes the bulk 
sense of shear as determined by quartz S–C and c-axis fabrics, which is 
consistent with the regional kinematic results in previous work (e.g., 
Tapponnier et al., 1990; Leloup et al., 1995). A conflicting sense of 
rotation of mica clasts relative to the sense of the bulk flow can be 
interpreted in several ways: Synthetic glide on (001) planes when the 
cleavage plane of mica crystals are oriented at a small angle to the shear 
plane opposing the simple shearing flow (type 6 of ten Grotenhuis et al., 
2003), antithetic rotation of lenticular mica in confined flow (e.g., 
Marques, 2016) or flow heterogeneity if the viscosity of the mantling 
material is much lower than that of the matrix (e.g., ten Grotenhuis 
et al., 2002; Schmid and Podladchikov, 2005), and/or backward rota-
tion of rigid clasts under subsimple shear due to a combination of initial 
orientation and aspect ratios of the mica, vorticity number of the ductile 
flow, finite strain, etc. Nevertheless, it is reasonable to argue that mica 
fish, behaving as rigid clasts in a weak matrix, cannot be treated as 
reliable independent shear-sense indicators, regardless of their shape 
and orientation. Therefore, great caution must be exercised when using 
mica fish to extrapolate flow kinematics. The same principle should 
apply to the formation of other mineral fish. 

4. Discussion 

The role of clast shape (aspect ratios in 2D) in the rotational behavior 
of rigid clasts embedded in a monoclinic flow is rather straightforward: 
Porphyroclast systems, mostly σ-type systems, composed of high-aspect- 
ratio clasts (>Rc) reach their stable positions via forward and backward 
rotations, lying up- or downstream at low angles to the shear plane as 
predicted (e.g., Ghosh and Ramberg, 1976; Passchier, 1987). However, 
individuals of these porphyroclast systems with well-defined clast-tail 

Fig. 6. A: Mosaic fragmented (left) and domino-type (right) porphyroclasts from Diancangshan, Yunnan, SE China, noticing that the left one is cross-cut by two sets 
of fractures. B: Conjugately fractured feldspar, and C: Domino-type porphyroclasts (bookshelf structures) from NE Brazil. Photomicrographs are from the XZ planes. 
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asymmetry carry no kinematic information of the bulk flow. Strictly 
speaking, the pure-shear component has no effect on the rotation of 
equant-shaped clasts in subsimple shear, which is driven purely by the 
simple-shear component. Therefore, the sense of rotation of a spherical 
clast should reflect literally the sense of vorticity of the bulk flow. 
However, a porphyroclast system from the Zhangbaling schist that was 
composed of a subcircular clast (R < 1.15) (Fig. 8) was diagnosed as 
backward rotating determined by shear bands, quartz oblique foliation 
(S–C fabrics), and quartz c-axis fabric analyses (Zhang et al., 2007). This 
backward-rotation can be either interpreted as an apparent feature 
resulting from an non-optimal cut through the rock (Passchier and 
Williams, 1996), a complex rolling process in three dimensions (Ghosh 
et al., 2003; Frieman et al., 2013; Stahr and Law, 2014; Marques, 2016), 
or the product of backward rotation under combined effects of inco-
herent clast-matrix boundary and flow confinement (e.g., Marques et al., 
2014; Marques, 2016). In nature, deformation is always 
three-dimensional whereas our observations are generally sectional. 
Thus, proper interpretation of deformation kinematics and flow 
rheology always requires a thorough three-dimensional fabric analysis. 

Similarly, individual σ-type porphyroclast system made of 
intermediate-aspect-ratio clast with fully developed clast-tail asymme-
try contains no kinematic significance. Regardless of being stabilized, i. 
e., under coupled pure and simple shear, flow confinement, and/or 
incoherent clast-matrix interface, or not, these matured fabrics (in terms 
of fully developed tails and clast-tail asymmetry) cannot be discrimi-
nated if they are produced by forward- or backward-rotation without a 
third-party criterion e.g., shear bands, quartz c-axis fabrics and oblique 
foliation, rolling structures, and sigmoids (Passchier and Trouw, 2005; 
Passchier and Coelho, 2006, Fig. 5d of Fossen and Cavalcante, 2017), 
although the clast-tail asymmetry or stair-stepping may truly reflect 
their sense of rotation. In contrast, the transient porphyroclast systems, 
i.e., the high-angle clasts with ambiguous, multiple tails (equivalent of 
the complex porphyroclast system of Passchier and Simpson, 1986 and 

Passchier and Sokoutis, 1993), no tails (equivalent of the θ clast of 
Passchier, 1994), the subvertical S1 and back-rotating S2 grains (Forte 
and Bailey, 2007), and the β grains (Figs. 5B and 9) could be kinemat-
ically important. If subsimple shear is assumed, the long axis of the β 
clast signifies the orientation of the instantaneous metastable flow 
eigenvector (Klepeis et al., 1999; Zhang and Teyssier, 2013). Thus, the β 
clast may retain not only information about flow kinematics but also 
about the kinematic vorticity number of the bulk flow, although the β1 
tails (parallel to the metastable eigenvector (Figs. 5A and 9) may only be 
observed in zone-widening (transtensional) deformations. Therefore, it 
is reasonable to argue that β and S (or Z-shaped like rolling structures 
and drag folds of van den Driessche and Brun, 1987) clasts, depending 
on the configuration of the subsimple shear flow field and the orienta-
tion of the metastable flow eigenvector (Fig. 9), are β-clast derived 
(referred to as β-type in Fig. 9 to honor the pioneer): When the long axis 
of the clasts is slightly off the metastable eigenvector no matter if it is its 
initial orientation, a population of β-correlated β2-, S-, and Z-clasts will 
develop via forward and backward rotation. Accordingly, these β-type 
clasts (β-, S-, and Z-clasts) can be regarded as snapshots of the last 
increment of rotation of the rigid clasts in progressive deformation 
(Fossen et al., 2019), frozen in when the system becomes inactive. Given 
the nonsteady-state nature of flow rheology, a full spectrum of the β-type 
clasts are expected to develop from forward or backward rotation due to 
the oscillation of the metastable eigenvector (Stahr and Law, 2014), 
which will be constantly removed from the ‘pool’ of β-clasts (Fig. 9) as 
deformation proceeds. Thus, these unconventional asymmetric por-
phyroclasts may be treated as credible shear-sense indicators under 
progressive subsimple shear, although their application could be limited 
by their rare occurrence and structural subtleties. 

Theoretically, δ tails can be generated only at high strains in response 
to changes of flow pattern in the vicinity of a rigid clast (spherical or 
subspherical clast shape is favored) that experiences permanent syn-
thetic rotation (cf. Passchier and Trouw, 2005; Passchier and Coelho, 
2006; Xypolias, 2010 and references therein), which is widely accepted 
as a reliable shear-sense indicator. A ‘δ’ system defined by 
well-developed stair-stepping of recrystallized tails of quartz was 
detected (highlighted in the lower-right box in Fig. 1). The overall 
clast-tail asymmetry is comparable to a S2 grain (upper-left box in 
Fig. 1); the only difference is that the latter is mantled with σ tails. Shape 
fabric and vorticity analyses revealed that both of them were plotted in 
the backward-rotating field close to the metastable eigenvector, using 
shear bands, quartz c-axis, and S–C fabrics in quartz ribbons as 
shear-sense indicators (Zhang and Teyssier, 2013; Zhang et al., 2013). 
However, formation of such a backward-rotating ‘δ’ system cannot be 
explained by any current analytical, numerical, or experimental model, 
given the fact that the path or room left for backward rotation of this 
rigid clast is limited for the high strains needed in a subsimple shear flow 
field. 

Over the last couple of decades, a number of clast-based methods, i. 
e., the porphyroclast aspect ratio plot (PAR, a modified Rf/φ method, 
Passchier, 1987; Law et al., 2004), the porphyroclast hyperbolic 

Fig. 7. Photomicrograph of mica fish and kinematic interpretation (XZ plane). A: Group 3 mica fish (ten Grotenhuis et al., 2003) from the Red River shear zone, 
Yunnan, China. The sense of vorticity is determined by quartz c-axis and S–C fabrics. B: Backward-rotating kinematics of the mica fish in subsimple shear. 

Fig. 8. Photomicrograph of the Zhangbaling schist characterized by strong 
quartz c-axis fabrics shown by predominant blue-colored quartz ribbons under 
the gypsum plate, indicating top-to-right shearing. The clast-tail asymmetry of a 
subcircular clast (R < 1.15) with well-defined clast� tail asymmetry (the other 
half is missing because it is found right at the edge of the thin section) at the 
lower right corner, suggesting top-to-left sense of rotation, Anhui, China. 
Crossed polars, XZ plane. 
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distribution plot (PHD, Simpson and De Paor, 1993, 1997), and the rigid 
grain net (RGN, a unified PAR and PHD approach, Jessup et al., 2007) 
method have been used for estimating flow vorticity, of which the first 
two are the most commonly used techniques (cf. Xypolias, 2010; Fossen 
and Cavalcante, 2017 and references therein). Strict and idealized pre-
requisites have to be met: The matrix is treated as deforming under 
steady-state isotropic linear monoclinic flow, although nonlinear 
coarse-grained matrix also behaves as a continuum (e.g., Marques and 
Burlini, 2008); a population of perfectly rigid clasts with a full spectrum 
of aspect ratios with low or no inter-clast interaction and no shape 
changes are perfectly bonded to the matrix under homogeneous defor-
mation; and the strain must be large enough to allow clasts to reach their 
stable positions. Law et al. (2004) pointed out that a lack of 
high-aspect-ratio clasts leads to underestimating flow vorticity. Zhang 
and Teyssier (2013) reached the same conclusion, arguing that 
randomness and ambiguity reside inevitably in visually determining the 
cutoff value of Rc and locating the metastable flow eigenvector graphi-
cally due to the absence of high-aspect-ratio clasts or their low-angle 
orientation to the flow plane. Based on the same idealized assump-
tions, Li and Jiang (2011) challenged the reliability of clast-based 
vorticity analysis techniques, arguing that the strain required for stabi-
lization of most clasts in a randomly oriented population is too high for 
natural deformation. They claimed that the reported vorticity numbers 
(in the range of 0.50–0.85) from naturally deformed mylonites, using 
clast-based shape-fabric analysis, could be reproduced in a 
simple-shearing flow due to the complex rotational behavior of rigid 
clasts in three dimensions. Similar conclusions were reached by others 
(e.g., Mancktelow, 2013; Stahr and Law, 2014). Stahr and Law (2014) 
argued further that although the 3D nature of rigid clast rotation is 
indeed complicated, it cannot explain the wide range of vorticity 
numbers (0.50–0.85) quoted by Li and Jiang (2011); reported vorticity 
numbers may not record either the mean kinematic vorticity number 
(Wm, Passchier, 1987) or that of the last flow increment for high-strain 
zones experiencing non-steady state progressive deformation, owing to 
strain-memory induced delayed clast response to the new flow field. In 
fact, these idealized and unrealistic assumptions are hard to justify for 
natural deformation. For instance, Bailey et al. (2004) pointed out that 
flow vorticity tends to be overestimated if the finite strain is not large 
enough to reorient the clasts to their stable position. On the other hand, 

if a slipping clast-matrix boundary is assumed, stable position can be 
reached under simple shear, as shown by a strong shape preferred 
orientation of a large population of clasts (e.g., Pennacchioni et al., 
2001; Marques et al., 2007), although stabilization of clasts in 
high-temperature deformation could be partially attributed to the 
rotation of deformable passive markers (e.g., Tullis, 2002; Passchier and 
Trouw, 2005). 

Over the last two decades, a renewed interest in rigid clast rotation 
embedded in a viscous matrix has emerged. Improvements on analytical 
methods made more sophisticated modeling, particularly numerical 
simulations centered on matrix rheology and fabric anisotropy, possible, 
regardless of modeling techniques and materials applied. Undoubtedly, 
results from these delicate models have shed new light on understanding 
the mechanical behavior of rigid clasts in a viscous flow and subse-
quently quantifying many aspects of flow kinematics, including vorticity 
analysis. Considering extensively developed shear bands, recrystallized 
mantle around the clast, and lamellae- or layer-controlled flow as well as 
densely packed clasts at sample- and microscopic scales, a general 
conclusion can be reached that partitioning of deformation between the 
clast and its matrix is extremely common and important. Accordingly, 
stabilization of rigid clasts in a subsimple shear flow can be achieved 
under lower strain and flow vorticity than those predicted by classic 
models (Ghosh and Ramberg, 1976; Passchier, 1987; Simpson and De 
Paor, 1997), caused by fabric anisotropy, clast-matrix decoupling, flow 
confinement, and clast interactions as discussed above. In other words, 
the vorticity value in naturally deformed rocks can easily be under-
estimated. For instance, a rigid clast may not sense the simple-shear 
component in cases where strain is completely partitioned between 
matrix and clasts. However, the following question emerges: How do we 
justify the applicability of clast-based method on flow vorticity estima-
tion to natural deformation if significant strain partitioning exists? 

Given the complexities associated with rigid clast rotation in nature, 
there is no question that exploration of the rotational behavior of rigid 
clasts in a viscous matrix will continue and trigger more debate and 
discussion. Efforts never cease. 

5. Concluding remarks 

In this study, the shape, orientation, and clast-tail asymmetry of 

Fig. 9. Schematic presentation of possible porhyroclast systems in subsimple shear (top) and an evaluation of credibility of shear-sense indicators as discussed in the 
main text (bottom). Two rolling structures are presented with different shapes and clast orientations, suggesting that rolling (δ) structures are preferentially but 
unnecessarily developing in the quadrant defined by the metastable eigenvector and the bisector between the stable and metastable eigenvectors in the forward- 
rotating field. 
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porphyroclast systems from naturally deformed rocks are carefully 
examined; the sense of rotation of rigid clasts is determined using a 
third-party shear-sense criterion, and the rheological impacts on the 
rotational behavior resulted from recent studies are well addressed. Our 
study indicates that: (1) in general, only porphyroclast systems 
composed of equant-shaped clasts can be treated as independent shear- 
sense indicators; (2) special attention should be given to β-type por-
phyroclast systems, which may contain meaningful information on bulk 
flow kinematics; (3) bookshelf structures cannot serve as independent 
shear-sense indicators either, and; (4) cautions must be taken when 
using mica fish to extrapolate flow kinematics. 
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