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Abstract 

Background 

Surgical excision of the primary tumor is an essential part of breast cancer treatment. 

While breast cancer prognosis has improved dramatically over the past decades, late 

relapses after apparently successful primary treatment are still an unresolved clinical 

issue. Locoregional recurrences can be challenging and there is no cure in the case of 

distant metastases. 

Purpose and aims 

The general aim of the project was to evaluate the influence of tissue trauma and 

wound healing on metastatic relapse of breast cancer.  

Methods 

Detailed studies of relapse patterns and dynamics in several retrospective breast 

cancer patients’ series were evaluated and related to surgical interventions as well as 

patients’ factors like body mass index and perioperative events. 

Results 

A relapse pattern with multiple metastases of similar size was discovered in 

subgroups of patients, suggestive of a growth synchronizing event on dormant 

micrometastases. A peak in early relapses after delayed reconstructions supported the 

hypothesis that tissue trauma and wound healing may stimulate pre-existing occult 

tumor deposits. The effect seems to be different if surgery involves the removal of a 

tumor in the breast or not. Patients factors and perioperative events can modulate this 

effect. 

Conclusions 

This work demonstrates that tissue trauma and wound healing can have an impact on 

distant relapse dynamics in breast cancer. The mechanisms of this link remain to be 

fully elucidated in order to become targets for intervention. 
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1. Introduction 

1.1 Breast cancer 

1.1.1 Epidemiology 

Breast cancer is the most frequent malignancy in women, globally causing 24,2% of 

all cancer and 15% of all cancer death in women, making it the cancer form 

responsible for most female cancer deaths worldwide (1). Breast cancer in men is a 

rare disease, although with a worse prognosis, presumably caused by a different 

biology as well as lower awareness of the disease leading to later diagnosis (2).  

In Norway, median age at breast cancer diagnosis for women is 62 years, and the 

incidence is increasing. Some of this may be explained by improvement in diagnosis 

after introduction of mammography screening programs. However, the increase is 

also evident in women both below and above the age of inclusion in the screening 

program indicating other factors may be causing an actual increase in development of 

breast cancer. Risk factors include lifestyle aspects such as postmenopausal obesity 

(3), smoking (4), physical inactivity (5), low parity (6) and prolonged estrogen 

replacement therapy at menopause (7). Breast cancer survival has improved 

substantially over the past decades, reaching a 5-year relative survival rate of 90 %. 

Still, the risk of metastasis and breast cancer death remains after the 5-year time 

point, as demonstrated by a 15-year survival rate of 76 %. Manifest metastatic disease 

is considered incurable, and for stage IV disease, meaning distant metastases are 

present, 5-year survival is 29 %(8).  

 

1.1.2 Diagnosis 

Breast cancer is most commonly discovered by palpation of a lump in the breast or 

axilla or retraction of skin or nipple. Clinical findings suspicious of malignancy are 

evaluated with mammography and biopsy. Since the introduction of a mammography 

screening program and its expansion regarding age groups included, an increasing 
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proportion of breast cancer cases are detected before symptoms arise. The 

combination of increasing incidence and decreasing mortality has been attributed to 

earlier diagnosis, in combination with improved treatment. Criticism of this view has 

claimed that over half of screen detected breast cancers represent over-diagnosis of 

small tumors of unknown clinical importance (9). This has been refuted by others 

claiming there is a decline also in advanced breast cancer incidence. The Norwegian 

research council found in its evaluation of the mammography screening program a 

30% reduction in breast cancer related mortality among participants in the program 

(10). 

 

1.1.3 TNM-classification and staging 

Breast cancer stage is determined by tumor size (T), lymph node status (N) and 

presence or absence of distant metastases (M) as outlined in table 1, and informs on 

prognosis and choice of therapy (11). Breast cancers are categorized as primary 

operable or primary inoperable according to staging, see table 2 (12). For the primary 

inoperable cases, unless distant metastases are present, down staging may be 

attempted by neoadjuvant treatment with chemotherapy or endocrine therapy, the 

purpose being to reduce tumor size and thus shift the stage to an operable stage, and 

thereby to improve prognosis.  
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Table 1. TNM Classification, 8th Edition 

T0 No evidence of primary tumor 

T1 ≤2 cm (greatest dimension) 

T2 >2-5 cm 

T3 >5 cm 

T4 Involving chest wall/skin 

  

N0 No regional lymph node metastases 

N1 Movable axillary lymph node metastases 

N2 Fixated axillary lymph nodes or 

metastases to internal mammary nodes 

N3 Supra- or infraclavicular lymph node 

metastases or combination of internal 

mammary and axillary lymph node 

metastases 

  

M0 No distant metastases present 

M1  Distant metastases present 
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Table 2. Operability according to stage level 

Primary operable  Primary inoperable 

Stage I T1N0M0 Stage II T3N0M0 

Stage II T0-2N1M0 Stage III T0-2N2M0 

 T2N0M0  T3N1-2M0 

   T4N0-2M0 

   T0-4N3M0 

  Stage IV T1-4N0-3M1 

 

 

1.2 Treatment 

Treatment modalities for breast cancer consist of local therapy: surgery and 

radiotherapy, and systemic therapy: endocrine therapy, chemotherapy and targeted 

therapy. Treatment decisions are guided by anatomical considerations such as tumor 

size and lymph node involvement, molecular markers like estrogen receptor (ER), 

progesterone receptor (PGR) and human epithelial growth factor receptor 2 (HER2), 

and lately also genetic alterations such as BRCA mutational status (13). Gene 

expression profiles have recently been demonstrated to distinguish subgroups of 

patients with a very low risk of relapse where chemotherapy can be safely omitted 

(14, 15). Increasingly tailored treatment, targeting aberrant pathways according to 

molecular markers is rapidly evolving, exploring the weaknesses of the particular 

cancer of the individual patient. 
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1.2.1 Surgery 

Surgical removal of the primary tumor can roughly be divided into mastectomy, 

where the entire breast is removed, and breast conserving surgery, meaning excision 

of the tumor with an additional margin, with most of the breast left intact. Both breast 

conserving surgery and mastectomy is accompanied by sentinel node biopsy, 

meaning excision of the breasts first draining lymph node. If this lymph node 

contains a metastasis >2 mm in diameter, axillary lymph node dissection has been 

recommended to all patients. Current recommendations allow for omitting lymph 

node dissection if certain criteria are fulfilled, such as planned systemic adjuvant 

treatment, even in the presence of a positive sentinel node. This approach is 

demonstrated to not increase risk of relapse (16), and reflects the shift in role of a 

positive sentinel node from a locoregional problem, best managed by local 

interventions to a biomarker of disseminated disease (17). Norwegian national 

guidelines state that surgical, oncological and cosmetic circumstances should be 

taken into consideration when planning surgery for breast cancer, with oncological 

principles given highest priority. Breast conserving surgery is in general preferred, 

and when combined with postoperative radiotherapy the procedure has not 

demonstrated inferior outcome compared to mastectomy (18, 19). 

 

1.2.2 Radiotherapy 

The purpose of postoperative radiotherapy is to reduce the risk of a locoregional 

relapse, but has also been demonstrated to improve disease specific survival. Thus, it 

must also indirectly reduce distant recurrences (20). Radiotherapy is recommended 

for all patients after breast conserving surgery, large or locally advanced primary 

tumor, lymph node positive disease or where clear surgical margins were not 

achieved (12). Radiotherapy is administered after chemotherapy when this is 

indicated, otherwise after the postoperative period. 
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1.2.3 Endocrine therapy 

For estrogen receptor positive tumors, endocrine therapy can prevent systemic 

relapses when used in the adjuvant setting, and improve survival for patients with 

metastatic disease. Studies indicate clinical benefit when as little as 1% of tumor cells 

are positive for estrogen receptor, or 10% for progesterone receptor (21-23). Pre-

menopausal women are recommended treatment with a selective estrogen receptor 

modulator, tamoxifen, for five years, for high risk patients combined with ovarian 

suppression with goserelin, thereafter evaluating menopausal status. If the patient 

remains premenopausal, and is considered in a medium to high risk group, prolonged 

tamoxifen for another five years has been demonstrated to further reduce recurrences 

and mortality (24). This illustrates the persistent risk of late relapse for this group of 

patients. For postmenopausal women, the primary choice is an aromatase inhibitor for 

five years (12).  

 

1.2.4 Chemotherapy 

The rationale behind systemic adjuvant chemotherapy is the risk that the cancer may 

be systemic at the time of diagnosis. Cytotoxic drugs target dividing cells. As cancer 

cells in general are rapidly dividing, they are susceptible to such drugs, as can be 

deducted by the one-third breast cancer mortality reduction compared to no 

chemotherapy (25). The benefit of this reduction in relative risk depends on the 

absolute risk, without chemotherapy, which must be taken into consideration as all 

chemotherapy regimens come with adverse side effects. Short term side effects 

include nausea, hair loss and immunosuppression, increasing attention is also given to 

long term adverse effects like fatigue, cognitive impairment, neuropathy  and 

cardiovascular disease (26). As a consequence, more focus is given to de-escalating 

chemotherapy treatment as much as possible while maintaining oncologic outcome 

through better biomarkers and personalized treatment (27). The indication for 

adjuvant chemotherapy is determined by stage and expression status of hormonal- 

and HER2 receptors. For the low-risk patient group with ER+HER2-N0 status, it is 
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recommended to perform gene expression analyses to evaluate if chemotherapy can 

be safely omitted (27). When chemotherapy is indicated, it should in general include 

an anthracycline. In Norway, epirubicin, in combination with cyclophosphamide is 

given, for triple-negative and other high risk patients, followed by a taxane. 

Neoadjuvant chemotherapy may be used to reduce tumor size prior to surgery. Other 

advantages may be easier evaluation of treatment effect as the intact primary tumor 

may be evaluated for responsiveness. There has also been demonstrated a trend 

towards improved over all and disease free survival for preoperative compared to 

postoperative chemotherapy, possibly reflecting a benefit of early treatment of 

distant, undetected, micrometastases (28).  

 

1.2.5 Targeted therapy 

Targeted therapy is directed at defined molecular targets in the particular tumor of the 

individual patient. As such, endocrine therapy may be considered a form of targeted 

therapy as it is only given to patients with tumors expressing hormone receptors and 

these receptors are what the therapy targets. Still, by tradition, targeted therapy does 

not usually encompass endocrine therapy. An advantage of targeted therapies is that 

they, in general, come with milder side effects compared to chemotherapy. The first 

successful targeted therapy for breast cancer is usually ascribed to trastuzumab, a 

monoclonal antibody targeting HER2-receptors, preventing homodimerization and 

thus activation, with response demonstrated in the HER2 amplified subgroup of 

breast cancer (29). Introduction of cyclin dependent kinases (CDK)4/6-inhibitors is 

another example of successful targeted therapy for breast cancer. This group of 

compounds targets the transition from G1 to S-phase of the cell cycle, crucial for cell 

proliferation. In breast cancer, effect has been demonstrated in hormone receptor 

positive, HER2 negative metastatic disease in combination with endocrine therapy 

(30-32), and trials in the adjuvant setting are ongoing (NCT03078751, 

NCT02513394). 
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1.2.6 Immunotherapy 

The dramatic responses to immunotherapy observed in tumor forms like melanoma 

and lung cancer (33) have, disappointingly, not been seen in breast cancer. So far, the 

small clinical benefit that has been reported is limited to the triple negative subtype, 

presumably because of a higher mutational load and elevated numbers of tumor 

infiltrating lymphocytes (34, 35). Trials further exploring a potential higher benefit 

by selection of patients, biomarkers, combinations with chemotherapy and timing of 

immunotherapy are ongoing (NCT03740893, NCT03395899, NCT03591276).  

 

1.3 Reconstruction 

The breast is an important part of the female body, regarding gender identity, self-

confidence and sexuality. The strong wish for breast reconstruction in a large 

proportion of breast cancer treated patients is well acknowledged (36). Surgery is the 

corner stone of breast cancer treatment, but concerns have been raised regarding the 

oncological safety of breast reconstructive surgery. This has been evaluated in several 

studies with diverging results (37-39). Reconstructive techniques available today 

include relatively small surgical procedures such as implant based reconstruction, to 

more extensive flap-based reconstructions and bilateral correction procedures. 

Immediate reconstruction should, according to Norwegian guidelines be considered 

for all patients where mastectomy is indicated (12). Delayed reconstruction, one year 

after adjuvant local and systemic treatment is completed and no evidence of 

metastatic disease has emerged, was previously considered most appropriate, and is 

still preferred for some patients.  Despite robust data demonstrating no survival 

benefit over breast conserving surgery (19, 40), mastectomy rates for early breast 

cancer are rising in the US (41). The reasons for this are not well understood but may 

be attributed to patients’ overestimation of risk of recurrence, not sufficiently 

reciprocated by treating physicians. While mastectomy rates in Norway are 

decreasing (42), the need for plastic surgery to restore appearance after breast cancer 

treatment remains, although in a different form. Oncoplastic techniques, meaning 
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usage of plastic surgery techniques during cancer surgery to maintain shape and to 

some extent volume of the breast, are increasingly used. As a rule of thumb, breast 

conserving surgery involving removal of more than 15% of the breast volume is not 

considered likely to result in an acceptable cosmetic result unless oncoplastic 

techniques are applied (43). 

 

1.4 Tumor biology and the hallmarks of cancer 

Cancer is characterized by loss of normal control mechanisms regulating proliferation 

and homeostasis, transforming a normal cell into a cancer cell. The complexity of 

these control systems is mirrored in the multifaceted alterations present in cancer. In 

2000, Hanahan and Weinberg published a review article describing a set of functional 

capabilities, or hallmarks, shared by most, if not all cancers, rationalizing this 

complexity (44). These were: self-sufficiency in growth signals, insensitivity to anti-

growth signals, evasion of apoptosis, limitless replicative potential, sustained 

angiogenesis and tissue invasion and metastasis. These capabilities are acquired by 

gain of function mutations in oncogenes and loss of function mutations in tumor 

suppressor genes, caused by insertions, deletions, genomic rearrangements, copy 

number alterations and epigenetic modifications. To these hallmarks two emerging 

hallmarks were later added: deregulating cellular energetics and avoiding immune 

destruction. Additionally, two enabling characteristics: 1) genome instability and 

mutation and 2) tumor promoting inflammation were included (45). This represents a 

move from an important, but reductionist focus of cancer as a disease of the genome, 

to an understanding of tumors as complex tissues with aberrations also in stroma and 

non-cancerous cells. 

 

1.5 Tumor heterogeneity 

Breast cancer is a heterogeneous group of malignancies with variable genetic 

characteristics resulting in different prognoses and responses to therapy. The classic 
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subgrouping according to hormone receptor status and HER2 amplification status 

guides treatment decisions as these markers are predictive of response to antiestrogen 

and anti-HER2 directed therapy respectively. They also inform of prognosis and 

relapse dynamics. The triple negative breast cancers, meaning cancer cells lacking 

expression of estrogen and progesterone receptors and not displaying HER2 

amplification, have the worst prognosis (46) whereas the estrogen receptor positive 

cancers have the most favorable outcome (47).  

The seminal publication on breast cancer subtyping based on gene expression profiles 

by Sørlie et al divided breast cancer into five distinct groups with different outcome, 

luminal A, luminal B, normal breast like, ERBB2+ and basal like (48). These groups 

somewhat, although not completely, overlap with traditional cell surface markers. 

The luminal A and B being ER positive and HER2 negative, the basal like being 

mainly triple negative and the ERBB2+ being HER2 enriched. The tumor 

microenvironment is also diverse in the different types of breast cancer. One example 

is the higher levels of immune cell infiltration in triple negative cancer, suggestive of 

a higher likelihood of effect of immunotherapy (49). While these are examples of 

inter-patient heterogeneity, meaning differences between patients, breast cancer also 

demonstrates intra-patient heterogeneity referring to differences between tumor 

manifestations within the same patient. Whole genome sequencing has demonstrated 

significant variation in alterations and mutations between the primary tumor and its 

metastases, with most metastases having acquired additional driver mutations not 

present in the primary tumor. This may be a result of both selective pressure from 

therapy and the immune system, as well as continued acquisition of mutations as an 

effect of deficient DNA-repair mechanisms (50). 

 

1.6 Relapse patterns 

The relapse patterns vary with breast cancer subgroup. The triple negative, basal like, 

tumors have the highest risk of relapse the first five years after primary treatment and 

the estrogen receptor positive ones, particularly the luminal A subgroup the lowest 
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(51). The risks, however, are time dependent, meaning that while the risk of relapse 

declines for the high-risk tumors after the first years, the risk is stable for a subgroup 

of the low risk tumors (52, 53), with relapses occurring as late as 25 years after 

apparently successful primary treatment. In addition to tumor characteristics, patient 

factors like overweight and obesity have been demonstrated to influence the relapse 

dynamics in breast cancer (54). A bimodal relapse pattern of breast cancer after 

primary therapy has been demonstrated in multiple patient series, with a first peak in 

relapses after roughly two years, and a second one at five to six years (Fig 1) (54-56).  

 

Fig. 1 First demonstration of the bimodal relapse pattern in breast cancer, from the 

Milan series, n=1173. Reprinted from (55) with permission. 

 

The first peak is, although not uncontroversially, explained by some to be elicited by 

a stimulating effect of primary tumor surgery, while the latter is considered to be the 

result of an accumulation of stochastic mutational events (57). Metastasis 



 26 

organotropism is the tendency for a given cancer form to metastasize to certain 

organs. Breast cancer preferentially metastasizes to bone, liver, lungs and brain, with 

some variation between subtypes (58). While locoregional relapses may be diagnosed 

at routine follow up, distant metastases are usually detected when they cause 

symptoms, as follow up in Norway does not include imaging or blood sampling to 

detect biochemical alterations. It has repeatedly been demonstrated that physical 

examination and mammography are as effective as extensive follow up regimens 

regarding recurrence detection, overall survival and quality of life (59). As speed of 

metastatic development is heterogeneous, and patients vary in their proneness to seek 

medical advice when experiencing symptoms, distant metastases may have been 

present for a short or long time when diagnosed. 

 

1.7 The metastatic process 

Metastatic cancer is, with very few exceptions, incurable, and a majority of cancer-

associated deaths can be attributed to metastatic disease (60). Understanding the 

processes leading from localized to systemic cancer disease is therefore of utmost 

importance. In order to metastasize, cancer cells must undergo a series of events, all 

of which are, to a varying degree of success, attempted counteracted by the host (61).  

The first step in the metastatic cascade is detachment of cancer cells from the primary 

tumor and invasion into surrounding tissue matrix (62). This requires a 

reprogramming of the cells, from an epithelial state into a more mesenchymal, and 

thereby migratory phenotype. This process has been termed EMT, epithelial-to-

mesenchymal transition (63, 64) and will be expanded on in the subsequent section 

on wound healing. The invasive cells must then penetrate the blood or lymphatic 

vessel walls to intravasate to be transported to distant organ sites (65). In the blood 

stream, the cancer cells will encounter a range of host immune cells, which, 

depending on the degree of neoantigen expression and immune regulatory surface 

proteins on the cancer cell, may recognize it as foreign and elicit an immune response 

(66). In addition, the physical conditions with extensive shear stress must be 
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overcome (67). Other constituents of the intravasal environment may be beneficial to 

cancer cell survival. Platelets have been suggested to protect circulating tumor cells 

both by physically masking them with fibrinogen and by secreting factors such as 

transforming growth factor β (TGF-β) and platelet derived growth factor (PDGF) that 

inhibit anti-tumor immune activity (68).  

Upon arrival at a suitable metastatic niche, the cancer cell must extravasate and lodge 

in the pericapillary regions of the target organ. This process will most likely be very 

heterogeneous depending on the target organ, where bone marrow and liver with 

fenestrated capillaries, will permit passive diffusion of cancer cells. At the other end 

of the scale we find the blood-brain barrier needed to be penetrated in order to 

establish metastases in the central nervous system. After having succeeded with 

extravasation, the cells must undergo a mesenchymal-to-epithelial transition to regain 

proliferative traits needed to colonize the target organ (69). The metastatic process is 

documented to be highly ineffective, experimental evidence suggests that as few as 

0,02% of circulating tumor cells are able to form macrometastases despite the fact 

that the early steps are highly efficient (70). As early as in the 1880’s, Stephen Paget 

launched his “seed and soil”-theory, stating that in order for cancer to metastasize, the 

best suited cancer cell (seed) needs to find, and interact with, a receptive 

microenvironment (soil), this theory, to a large extent still holds forth today (71).  

 

1.8 Tumor dormancy 

1.8.1 Definitions and mechanisms 

Tumor dormancy, first described in 1954 (72), refers to a reversible state of little to 

no growth of cancer cells with maintained malignant potential and can be divided 

along several different axes. Primary tumor dormancy, where people harbor 

microscopic tumors without ever having been diagnosed with cancer, has been 

demonstrated in autopsy studies to be very frequent (73). Metastatic dormancy on the 

other hand is characterized by a latency to manifest metastatic disease after 
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apparently successful primary tumor treatment, thus resulting from early 

dissemination and a period of dormancy at the metastatic site. This has been ascribed 

to a maladaptation to the new microenvironment of the metastatic site, which may be 

quite different from the organ of origin, not permitting growth of the cancer cell until 

it has acquired new characteristics, better suited to this new milieu, or the 

microenvironment changes (74). Cancer treatment with chemotherapy can also 

induce dormancy, as has been demonstrated in vivo to be mediated by type I 

interferon (IFN) signaling. A clinical correlate in human was suggested by an 

association between serum IFN-β during neoadjuvant chemotherapy and longer time 

to recurrence (75). Withdrawal of hormonal stimulation can maintain cancer in the 

dormant state, as can be deducted from both the benefit of extended endocrine 

therapy, even after 5 years (24, 76), and by the synchronization of metastasis growth 

at ended adjuvant endocrine treatment, presented by us in this current work (77). In 

an ovariectomized immunocompromised mouse model, ER+ breast cancer 

micrometastases remained dormant until hormone therapy was initiated (78). 

The distinction can also be made between intrinsic dormancy, caused by genetic or 

epigenetic mechanisms within the cancer cell (79), and extrinsic dormancy, where 

micrometastases are kept dormant by immune control (80), angiogenesis restriction 

(81) or growth factor deprivation (82). Partly overlapping with the classification of 

intrinsic and extrinsic dormancy is the concept of cellular dormancy, cell cycle arrest 

in G0 phase of individual cells and population-based dormancy where there is a 

balance between proliferation and apoptosis (83). These classifications or variants of 

tumor dormancy are not mutually exclusive and can thus exist in the same patient at 

the same time.  

 

1.8.2 Clinical evidence of dormancy  

The fact that some cancer forms, breast cancer being perhaps the most widely 

recognized, can give rise to metastatic disease years or decades after primary 

treatment is considered indirect evidence of a period of dormancy as this cannot be 



 29 

convincingly explained by other models of tumor growth (55). Evidence for immune 

mediated dormancy stems from the occurrence of donor derived cancer, where organ 

recipients, under immune suppressive treatment, develop cancer originating from 

donors considered cured from cancer, most frequently melanoma (84) but also other 

cancer forms, including breast (85). The cancer-immune system interaction is 

considered to span a scale of escape, equilibrium and elimination (86). Most cells 

undergoing malignant transformation are recognized and eliminated by the immune 

system. Some are able to escape the immune killing and cause clinical cancer. 

Micrometastatic dormancy is proposed to exist in a state of equilibrium with the 

immune system, where the micrometastatic deposit is prevented from expanding but 

able to survive.  

 

1.8.3 Biomarkers of dormancy 

A marker for the presence or absence of disseminated dormant cancer cells would be 

important information for follow-up of cancer patients. As of now, there is no 

clinically validated biomarker of dormant cancer. In breast cancer, the presence of 

disseminated tumor cells in the bone marrow after primary treatment is an 

independent prognostic marker (87), but we are not yet capable of distinguishing if 

these cells are truly dormant and harbor the potential of awakening. From basic 

science, the nuclear receptor NR2F1 displays potential as a marker of dormancy, and 

is currently being explored in clinical samples in breast cancer as well as other tumor 

forms (88, 89). Liquid biopsies are significantly easier and less invasive than bone 

marrow aspiration and have also demonstrated usefulness as a prognostic biomarker 

of late recurrence. In a series of ER positive, HER2 negative patients, without 

evidence of recurrence five years after primary treatment, detection of circulating 

tumor cells at five years was significantly associated with relapse (90). In a small 

group of late relapsing breast cancer patients, significantly differential expression of 

miRNA-21 and miRNA-200c was discovered in plasma at primary treatment 

compared to non-relapsing patients (91). TGF-β2 (92), bone morphogenic protein 
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(BMP) (93), growth arrest specific (GAS6) (94), retinoic acid, and IFN-β (75) are 

other systemic markers explored for potential clinical utility as biomarkers for tumor 

dormancy. 

 

1.9 Wound healing and cancer as a wound 

The process of wound healing is a carefully orchestrated series of events involving 

multiple local and systemic changes, all with the intent to restore tissue homeostasis, 

regain function and protect from infection. Whether the wound is caused by a 

traumatic event or deliberately inflicted by surgery, successful healing is crucial, as 

demonstrated by the major health issues caused by deficient wound healing capacity 

seen in diabetic patients amongst others. The analogy of cancer as “wounds that do 

not heal” was first presented by Harold Dvorak in 1986, mainly relating to the 

similarity of cancer stroma to granulation tissue (95). As described below, and 

previously reviewed by us (96), this metaphor holds true also when examining the 

wound healing phases and signaling today. 

 

1.9.1 The immediate response 

The first phase, initiated at tissue trauma, is blood clotting, if the injury involves 

blood vessels. The blood clot, predominantly consisting of cross-linked fibrin and 

platelets, previously considered merely a temporary physical sealing of the wound, is 

now known to have several biological functions such as release of growth factors 

from platelet granules and induction of vascular permeability by histamine and VEGF 

(97). VEGF also has immunosuppressive effects, potentially releasing cancer cells 

from immune restriction (98). Fig 2a. This, together with complement activation 

rapidly leads to the next phase, inflammation by chemoattraction of inflammatory 

cells. The cocktail of growth factors and other cytokines released by platelets upon 

activation has the potential to promote proliferation and migration of cancer cells 

(68). 
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1.9.2 Inflammation 

First to arrive are the neutrophils, followed by macrophages and lymphocytes. 

Neutrophils secrete prostaglandin E2 (PGE2), and reactive oxygen species (ROS), 

further fueling inflammation with the purpose of eradicating invading bacteria (99). 

Macrophages also secrete PGE2 when stimulated by pro-inflammatory cytokines 

such as IL-6, and bacterial lipopolysaccharides (LPS)(100). PGE2 is prominent 

among the inflammatory mediators that also exert tumor-sustaining effects (101, 

102). Fig 2b. Among its functions in wound healing, that can also be utilized by 

cancer, are stimulation of proliferation, migration and angiogenesis, leading on to the 

next phase. 

 

1.9.3 Proliferation, re-epithelialization and contraction.  

Keratinocytes and fibroblasts from the wound margins are stimulated to migrate into 

the wound and proliferate, mainly by TGF-β which is secreted from activated 

platelets in the early phase and later by several cell types (103). In keratinocytes, this 

is preceded by a partial epithelial-to-mesenchymal-transition, EMT, whereby the 

keratinocytes downregulate cell-to-cell contact and hemidesmosomes, rearrange the 

cytoskeleton, extend lamellipodia and secrete proteases to be able to degrade 

connective tissue and move into the granulation tissue of the wound (104). Again, 

these mechanisms, when applied to cancer cells, facilitate invasion and dissemination 

and thus metastatic seeding. Fig 2c. In cancer, the EMT is more frequently complete, 

characterized by complete loss of cell-to-cell adhesions and expression of 

mesenchymal marker proteins like vimentin, resembling early embryogenesis, as 

opposed to the partial EMT in wound healing keratinocytes (64). In physiological 

wound healing, the keratinocytes, by an as of yet undetermined signal, reverts to the 

epithelial phenotype at completion of wound healing. For cancer cells to regain their 

proliferative potential, a mesenchymal-to-epithelial transition, MET, is also necessary 
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as the decision between EMT/MET state determines if the cell should “go or grow”. 

In wound healing, this MET takes place at the final phase, resolution and remodeling 

(103).  

 

1.9.4 Resolution and remodeling 

Resolution and remodeling is the least well understood and mapped phase of wound 

healing. Evidence of the importance of an ordered end of inflammation, proliferation 

and scar tissue deposition is seen both in chronic wounds and development of keloid 

scars where this final phase is hampered (105). Wnt signaling initiates epidermal 

development programs to re-stratify keratinocytes, this phase also includes regrowth 

of appendages (106), MMPs degrades and remodels the extracellular matrix to form 

organized collagen and proteoglycans, neutrophils and macrophages undergo 

apoptosis or return to the vasculature and inflammation resolves. Fig 2d. 

 



 33 

 

 



 34 

Fig. 2 a) The immediate response. Activated platelets release growth factors that 

recruit inflammatory cells and stimulate vessel sprouting, re-epithelialization and 

degradation of matrix, but may also stimulate pre-existing dormant tumor cells at a 

distant site to proliferate and migrate. b) Inflammation. Neutrophils and macrophages 

secrete growth factors, cytokines, reactive oxygen species (ROS) and prostaglandin 

E2 (PGE2), fueling an inflammatory response in the wound and surrounding tissues. 

Systemic levels increase, and these factors are also known to be able to stimulate 

proliferation and migration of tumor cells. Systemic release of cortisol and adrenaline 

stimulates T-regulatory cells and can thus aid in cancer immune evasion. c) 

Proliferation, migration and contraction. Sprouting vessels produce tumor-promoting 

factors such as TGF-β. In order to re-epithelialize the wound surface, keratinocytes 

undergo a partial EMT. Fibroblasts generate scar-tissue and can aid cancer cells in 

invasion and migration. d) Resolution and remodeling. In normal tissue, 

inflammation and proliferation resolves by unknown mechanisms when tissue is 

regenerated, inflammatory cells return to the vasculature. A stiff, fibrotic 

environment can determine cytoskeletal reorganization inducing proliferation and 

metastasis formation in cancer cells located in this environment. Adapted from (96), 

with permission. 

 

1.10 Tissue trauma and cancer 

Surgical removal of the tumor was one of the first successful approaches to treat 

cancer, and to this day remains the cornerstone in curative treatment of many primary 

tumors. Breast cancer, however, is a clear example of the limitations of surgery. The 

repeated relapse of breast cancer, after successful removal of the primary tumor, led 

to increasingly aggressive surgical procedures. The most dramatic example being the 

mutilating ultra-radical mastectomies by Halstead in the late 1800s, based on the idea 

that relapse would be avoided by taking the tumor by its roots. Systematic follow-up 

of these patients demonstrated the futility of this practice as no improvement in 

distant relapse-free survival was detected after these very extensive surgeries (107). 
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The fact that the cancer could relapse, regardless of the extent of surgery, inspired the 

idea that dissemination to distant sites could be by the hematogenous route and thus 

independent of the anatomic limitations of the breast and associated lymph nodes. In 

an impressive effort to determine what physiological signaling could stimulate 

growth of metastases, the Fisher brothers, in the 1950’s and 60’s, performed a series 

of animal experiments testing a vast array of different interventions in rats implanted 

with a mammary carcinosarcoma. The stimuli ranged from anticoagulants and 

nutrition to the pituitary gland, thyroid and importantly, surgical trauma, which 

resulted in an increase in liver metastases after both laparotomy and liver resection 

(108, 109).  

When considering the events that must take place in order for a wound to heal, as 

outlined above, it is almost intuitive that cancer can benefit from the involved 

signaling: cells must proliferate and migrate, blood vessels must be made more 

permeable for cells to enter into and exit from the bloodstream. Add to that tumor 

fueling inflammation, an inevitable part of wound healing and the stage seems set for 

tumor growth and metastasis (45). Ample preclinical and clinical evidence of such an 

effect in many cancer forms has been published (110-113). It must be mentioned, 

however, that the exact opposite effect, namely inhibition of tumor growth by 

surgical trauma in adjacent tissue, has also been reported from animal models. In this 

study, the growth restrictive effect after repeated full skin excision was attributed to 

competition for growth factors (114). The survival benefit of surgically removing the 

primary tumor is undisputable and will remain an important part of cancer treatment 

in the foreseeable future. The systemic biological response to surgery, however, may 

be better understood and harnessed in order to minimize undesired cancer stimulating 

effects. 

 

1.11 Perioperative interventions 

As outlined above, the biology of tissue trauma and wound healing is complex and 

may have significant systemic effects. In addition, a range of systemic interventions 
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are made in the perioperative period to improve short term outcome and perioperative 

morbidity and mortality. This includes good hemostatic technique to reduce bleeding, 

prevention of infection and thromboembolism. To make large surgical procedures 

possible, anesthesia and analgesia are also necessary. Both the tissue trauma of 

surgery per se and the associated systemic interventions may have long term impact 

on oncologic outcome, and are attracting increasing attention (115, 116). Most reports 

on effects on oncologic outcome of perioperative interventions are based on 

retrospective analyses, thus the risk of a bias in selection of patients for the 

considered intervention is clearly present.  

From retrospective studies, intravenous anesthesia with propofol seems to improve 

oncologic outcome compared to inhalation anesthesia with sevoflurane, in breast 

cancer (117) and other cancer forms (118, 119). In a prospective randomized 

controlled trial of breast cancer surgery however, no statistically significant 

difference in 2-year relapse free survival was detected (120). A large, randomized 

study comparing short- and long-term survival between propofol and sevoflurane at 

primary surgery is currently recruiting patients with breast, colon or rectal cancer 

(NCT01975064).  

Treatment with NSAIDS (non-steroidal anti-inflammatory drugs) in the perioperative 

period has been suggested to have a beneficial effect on oncologic outcome. This has 

been supported by retrospective clinical data (121, 122) and pre-clinical studies (123, 

124), but again failed to demonstrate improved disease-free survival in a prospective 

trial of high risk breast cancer patients (125). 

The risk of thromboembolism is elevated both after surgery and the often 

accompanying immobilization and in cancer patients in general (126). 

Perioperatively, low molecular weight heparin is administered when the risk of 

thromboembolism is considered elevated, by patient factors such as obesity, 

cardiovascular comorbidity, smoking and active malignant disease, or surgery factors 

such as long duration of procedures. Epidemiological studies have suggested a 

survival benefit to cancer patients treated with low molecular weight heparin beyond 
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prevention of thrombosis, although results are inconsistent (127). Experimental 

systems have demonstrated anti-cancer properties of this class of drugs such as 

reduced sphere formation, migration, invasion, and angiogenesis (128, 129). A 

randomized controlled trial has demonstrated a survival benefit of a short course of 

low molecular weight heparin in patients with metastatic cancer, although no 

significant effect was seen in the breast cancer subgroup (130). 

 

1.12 Escape from dormancy 

Stimulated growth of cancer lesions after tissue trauma and wound healing has been 

demonstrated repeatedly, both in clinical and experimental settings (110, 112, 113). 

As mechanisms of dormancy are not yet fully understood, the evidence for how tissue 

trauma and wound healing can facilitate escape from dormancy is less clear.  

Coherent with the concepts of extrinsic and population-based dormancy is the theory 

of an angiogenic switch being capable of inducing escape from dormancy. This was 

first proposed by dr Judah Folkman in the 1970’s. According to his work, tumors of 

1-2 mm in size are restricted from further growth by lack of sufficient blood supply 

(131). At some time point, the hypoxia resulting from this hypoperfusion stimulates 

production of angiogenic factors such as VEGF, FGF, angiopoietins and others, 

causing blood vessels to sprout and supply the tumor with oxygen and nutrients to 

support further growth (132). This switch, from a non-angiogenic to angiogenic 

phenotype mediating escape from dormancy has been demonstrated in animal 

models, but as of yet lacks a convincing clinical correlate (133, 134). Another angle 

of the vascular-dormancy interaction is the proposal of the perivascular niche of 

stable vessel as dormancy inducing and maintaining via enrichment of 

thrombospondin-1, while tip cells of sprouting neovasculature produce periostin and 

TGF-β, promoting metastatic growth (135). 

The primary tumor is suggested to be capable of maintaining microscopic metastases 

in a dormant state, in models demonstrated to be mediated by production of 
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angiogenesis inhibitors (136) or immune modulation by IL-1β (137). Accordingly, 

removal of the primary tumor may have a dual stimulating effect on metastasis 

development, both through removing the tumor homeostatic restraint and stimulating 

growth by physiological wound healing signaling. 

Others have demonstrated escape from breast cancer dormancy in animal models 

mediated by inflammation (138), the key mechanisms suggested to be neutrophil 

extracellular traps (139), tumor associated macrophages (124), and neutrophils (138) 

respectively. The inflammatory stimuli in these studies has come from tobacco smoke 

(139), LPS injection (138) and surgical trauma (124, 140). In another publication, 

active inflammation was not necessary to induce escape from dormancy, but rather 

the fibrotic remodeling of the stroma after inflammation, by collagen-I enrichment 

(141). 

The intrinsic cellular machinery mediating the escape from dormancy has been 

demonstrated in vitro to be a shift in the balance of phosphorylation of ERK in 

relation to p38 induced by uPAR (142). Other models emphasize the role of 

EMT/MET in the transition from dormancy (138, 143). An in vivo model of breast 

cancer dormancy found an activation of the EMT program, mediated by transcription 

factor Zeb1 in previously dormant cells stimulated by LPS-injection (138). Adding to 

the complexity, mechanisms of escape from dormancy may be organ specific, in a 

mouse model of breast cancer, the TGF-β antagonist Coco reactivated dormant cancer 

cells in the lung, but not in other organs (74). 

 

1.13 Targeting dormancy 

With the mechanisms of dormancy maintenance and evasion still incompletely 

understood, how to best therapeutically target this problem is not determined. Non-

dividing, metabolically inactive cells are not considered susceptible to conventional 

cancer treatment (144). Still, there are a number of trials targeting residual disease in 

breast cancer with additional systemic therapy after standard of care adjuvant 
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treatment (NCT00248703, NCT03032406, NCT03400254, NCT01545648). In these 

studies, residual disease is defined by persistent tumor cells in the bone marrow after 

chemotherapy, and it may be argued that these cells were resistant to standard therapy 

rather than truly dormant.  

It has been proposed that one feasible approach to target dormant tumor cells would 

be to stimulate escape from dormancy, as the cells would, once awakened be 

susceptible to conventional cancer treatment such as chemotherapy and targeted 

therapy (145, 146). The argument against this is that since no cancer treatment today 

guarantees complete eradication of all malignant cells, one might risk inducing 

clinically manifest metastatic disease in a patient that without this attempt to treat 

never would have suffered from a relapse. Still, it has been attempted in a phase I trial 

in prostate cancer that was terminated due to low accrual. The strategy in this study 

was to mobilize dormant prostate cancer cells from the bone marrow to the blood 

stream by an anti-CXCR4 agent and then to target these cells with docetaxel 

(NCT02478125).  

Another suggestion is to develop therapeutics capable of maintaining dormancy. One 

phase II trial investigating the capacity of 5-AZA and ATRA to induce and maintain 

dormancy in prostate cancer treated patients with a biochemical relapse is currently 

recruiting patients (NCT03572387). This seems attractive, as dormant cells cause no 

problem to the host. However, experience from long term adjuvant treatment, such as 

endocrine treatment in breast cancer informs us that adherence to long term 

preventive treatment is low (147). It is difficult to motivate patients’ adherence to 

therapy over time, where they may experience side effects, but no immediate benefit, 

and where for a majority, the treatment makes no difference as they would never have 

had a relapse even without therapy. Perhaps the most feasible approach today, with 

our limited understanding of tumor dormancy mechanisms, would be short-term 

prevention of escape from dormancy at times when risk is augmented, such as 

perioperatively. 
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2. Purpose and aims 

General aim: 

The general aim of the project was to evaluate the influence of tissue trauma and 

wound healing on metastatic relapse of breast cancer. 

Specific aims: 

 To explore the relapse patterns in breast cancer patients presenting with first 

relapse for signs of synchronization of growth of metastases (paper I). 

 To evaluate relapse dynamics after delayed reconstruction in breast cancer 

treated patients (paper II) 

 To investigate the effect on recurrence dynamics after second surgery in breast 

cancer treated patients in different clinical and surgical situations (paper III).  

 To further examine the impact of events like complications, comorbidity and 

reoperations in the perioperative period for stimulating effects on relapse 

dynamics (paper IV) 
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3. Materials and methods 

3.1 Patients 

Paper I is based on a retrospective series of 209 consecutive patients presenting with 

first relapse in breast cancer at Haukeland University Hospital between January 2005 

and December 2009. All diagnoses were verified and validated in the patients’ records. 

Time to recurrence was determined by time from primary surgery to occurrence of the 

first recorded distant metastasis. Exclusion criteria were: synchronous primaries and 

metastases, evidence of metastatic disease within 2 months after primary surgery, 

primary tumor not removed, local recurrences and patients with secondary, non-breast 

cancer. In addition, 12 patients had missing essential information. Thus, 180 patients 

remained for analysis of metastatic pattern, (Fig 3). Generally, a CT scan at time of 

first recorded metastasis was used to determine disease burden, but other radiologic 

modalities were also used. A single investigator (HD) measured all numbers and sizes 

of metastases according to RECIST 1.1 modified by including both lytic and blastic 

bone metastases. 

 

 

 

 

 

 

Fig. 3 Inclusion and exclusion criteria paper I 

Paper II and IV are based on all mastectomy breast cancer patients who underwent 

delayed reconstructive surgery at Haukeland University Hospital, Bergen, Norway, 

after primary treatment for breast cancer between 1977 and 2007. After exclusions by 

Breast cancer relapse cohort n=209 

Excluded n=29 

   Metastases < 2 months after primary n=4 

   Intact primary tumor n=1 

   Local relapse n=8 

   Second, non-breast cancer n=4 
   Missing information n=12 

Study population n=180 
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criteria outlined in fig 4, the study group consisted of 312 patients. For paper IV, each 

patient’s record was studied to determine comorbidity, BMI, perioperative medication, 

reoperations and type and grade of complications according to CTCAE (Common 

Terminology Criteria for Adverse Events) version 4.0. Complications included in the 

analysis were: bleeding, systemic infection, local wound infection, mastitis, hematoma, 

seroma, necrosis, pulmonary embolus, pneumonia and flap dehiscence, all within 30 

days after surgery. Smoking status was categorized as current, previous or never 

smoker. Duration of surgery was extracted from the surgery planning software of our 

hospital (Orbit version 4.0). 

 

 

 

 

 

 

 

 

Fig. 4 Inclusion and exclusion criteria reconstruction study population and matched 

control group. 

Paper III is a comparison of the breast reconstruction patients’ series (REC) from 

paper II described above, and patients from three randomized clinical trials suffering 

from ipsilateral breast tumor recurrence (IBTR) (148) or contralateral breast cancer 

(CBC) (18, 149, 150) during follow-up. These studies were conducted to evaluate 

different surgical and radiotherapy approaches at primary tumor removal. Patient and 

tumor characteristics of these databases are shown in table 3.  

Breast reconstruction cohort n= 445 Control population from the Norwegian 
cancer registry n= 1341  

Matched control group  
(no reconstruction) n= 312.  

Study population. Reconstruction,  
n= 312 

Excluded n= 132 

 DCIS/LCIS n= 72 

 BCT n= 53 

 No cancer n= 1 

 Occurrence of other malignancies n= 4 

 Recurrence before reconstruction n= 3 

Missing information n=1 

Excluded n= 473 

 DCIS/LCIS n= 37 

 Reconstructed n= 179 

 BCT n= 196 

Missing information n= 61 

Matching on T, N, age, follow up free from 
recurrence 



 43 

 

Table 3. Patient and tumor characteristics 

 IBTR (338) CBC 

(239) 

Rec (312) Controls (312) 

Median age at diagnosis 

(years) 

45 48 48 49 

25%-75% 39-52 42-56 42-53 43-53 

Range 21-69 22-75 29-73 28-71 

Tumor size (%) 

  T1 

  T2 

  T3/4 

  Missing 

 

85 

12 

- 

3 

 

84 

15 

- 

1 

 

61 

29 

8 

2 

 

62 

30 

7 

1 

Node negative (%) 70 64 68 67 

Node positive (%) 30 36 32 33 

ER negative (%) 16 16 20 19 

ER positive (%) 63 53 70 70 

ER missing (%) 21 31 10 11 
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3.2 Control group 

The control group for paper II is based on a population from the Norwegian Cancer 

Registry comprising 1341 patients with breast cancer surgery in the same time period 

as our study population, that had not undergone reconstructive surgery. For data quality 

purposes, patient’s records were studied for validation of diagnosis, patient and tumor 

characteristics, adjuvant therapy, reconstructive surgery (excluded from the control 

group), time of first recurrence, and recurrent site in the same way as was done with 

the cases. Among the 1341 patients, a total of 473 patients were excluded leaving 868 

patients, whose characteristics are shown in Table 3, which hereafter will be labeled 

‘‘control group.’’ From this group, a one-to-one match with identical T- and N-stage, 

age at diagnosis and a recurrence free follow-up time equal to or greater than time from 

primary treatment to reconstruction for the matched case, was selected for each 

reconstructed patient. A reference day was created for each control, representing time 

from primary surgery to reconstruction for the matched case. 

3.3 In vivo model 

In an attempt to study the mechanisms of escape from dormancy stimulated by tissue 

trauma and wound healing, we turned to an in vivo model. We decided to use a murine 

tumor cell line as systemic effects of tissue trauma and wound healing could not be 

properly evaluated without an intact host immune system. We decided to use the Balb/c 

syngeneic mammary carcinoma line D2A1-d, described as retaining the ability to 

extravasate into lung parenchyma after intravenous injection, but failing to proliferate 

and form macrometastases in the absence of extrinsic stimulation (138). Cells were 

injected through the tail vein of female 8-week-old BALB/c mice to produce lung 

micrometastases, animals were subjected to mastectomy of the fourth mammary fat 

pad. In a second pilot study, we also labelled the cells with GFP, for easier detection 

of micrometastases and, more importantly, to induce an immune response described by 

others to result in an extrinsically imposed dormancy (124, 151). To be able to monitor 

tumor growth in real time, these animals were injected with cells both in the mammary 

fat pad and into the tail vein. None of these mice underwent surgery. In both pilot 
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studies, animals were sacrificed after 4-6 weeks and organs and tumors harvested for 

investigation. Formalin fixed, paraffin embedded lungs and orthotopic tumors were 

sectioned and stained with H&E and GFP (Invitrogen GFP Polyclonal antibody A-

6455, 1:5000).  

3.4 Statistical methods 

In paper I, standard deviation (SD) from size and number of metastases was calculated 

for each patient. The choice of SD as a marker of synchronization was based on the 

assumption that synchronized growth initiation would result in multiple metastases of 

similar size and thus result in a low SD, while unsynchronized, or random growth 

initiation would give few metastases of different size, resulting in a high SD. This is 

again based on the assumption that patients experiencing relapse undergo a period with 

resting occult micrometastases with restricted growth prior to their first relapse. These 

dormant micrometastases might be sensitive to systemic growth stimulating signaling, 

such as growth factors, cytokines etc., and thus, escape from dormancy, and start 

growing simultaneously.  

The median value of SD was used as cut-off value and patients, were grouped as ‘‘low 

SD’’ and ‘‘high SD’’, accordingly. Associations between different categorical 

variables were assessed by Pearson’s Chi-square test. Continuous variables not 

following the normal distribution were compared between two or more groups using 

the Mann–Whitney U tests. Univariate survival analyses were performed by the 

product-limit procedure (Kaplan–Meier method). Differences between categories were 

tested by the log-rank test. 

In paper II, event dynamics were studied by estimating with the life-table method the 

hazard rate for recurrence, i.e., the conditional probability of manifesting recurrence 

given that the patient is clinically free from any recurrence at the beginning of the time 

interval. The probability of recurrence over time, i.e., crude cumulative incidence 

(CCI), was estimated according to a proper nonparametric estimator adjusting for the 

presence of competing events and compared by the Gray test(152). A discretization of 

the time axis in six-month units was applied and a Kernel-like smoothing 
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procedure(153) was adopted. For multivariable regression analysis, the piecewise 

exponential model was used. The piecewise exponential model provides a flexible 

semiparametric tool in the study of the hazard function for survival data, in the same 

fashion as a Cox regression model (154). The log-hazard function was modeled as an 

additive function of the baseline log-hazard and the covariate effects. Statistical 

analyses were done using R3.02 software for Windows with Epi package added. 

In paper III, distant metastasis free survival times were calculated as time from second 

surgery (IBTR, CBC or REC respectively) to metastatic relapse or last documented 

follow-up with no evidence of disease. Relapse dynamics were analyzed with t=0 at 

the time of second surgery, separate analyses were performed investigating the 

influence of time from first to second surgery, grouped in 12-month intervals. Second 

primary tumors, including new contralateral breast cancer, were considered competing 

events leading to censoring at the time of occurrence. The distant metastasis dynamics 

was studied by estimating with the life-table method the hazard rate for recurrence, i.e., 

the conditional probability of manifesting recurrence given that the patient is clinically 

free from any recurrence at the beginning of the interval. 

In paper IV, relapse dynamics were evaluated by using the life-table method for the 

hazard rate of recurrence, as in paper II. Curve smoothing was done with natural 

splines, polynomial inverse third order. Differences between groups were analyzed 

with the Mann-Whitney U-test for continuous variables and X 2-test for categorical 

variables. 

3.5 Ethical considerations 

Ethical approval for the studies was granted by the Regional Ethical Committee (REK 

Vest): 15025. All animal experiments were conducted in accordance with the 

regulations of the Norwegian state commission for laboratory animals, which are 

consistent with the European convention for the protection of vertebrate animals used 

for experimental and other scientific purposes and Council of Europe (ETS 123) and 

approved by the Norwegian Food Safety Authority, FOTS ID 12083, and the Animal 

care and use program at the University of Bergen. 
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3.6 Methodological considerations 

The use of standard deviation of metastases as a marker of synchronized growth (Paper 

I) is novel and thus needs to be confirmed in different data sets. There is also a 

possibility that size dependency of SD makes direct comparison between very small 

and very large metastatic lesions inaccurate. The choice of the median SD as a cut off 

value between synchronized and non-synchronized was chosen due to a lack of 

previous data or biological rationale for another value, and to avoid strong influence of 

extreme values.  

 

The fact that breast cancer follow-up in Norway only includes imaging upon symptoms 

or other reasons to suspect distant metastases such as biochemical alterations, 

introduces uncertainty regarding duration and growth rate of metastases. This may have 

diluted the observed effect. Expanding the studies to multiple centers would have 

augmented sample sizes and made statistical significant results more robust and 

reliable. It would also, however, introduce a risk of inter-observer variability in 

measurements of metastatic lesions on radiological images and other variables 

dependent on some level of observer interpretation. No statistical tests were used to 

predetermine sample size in any of the studies, as the direction and magnitude of effects 

were unknown. The reliability of subgroup analyses of different reconstructive 

methods regarding relapse dynamics is also limited due to small number of patients 

and few events in this group.  

 

Retrospective studies of patients’ groups call for careful consideration of selection 

criteria. A risk of selection bias in paper II could be an accumulation of early relapses 

in the no reconstruction control group, as any sign of metastatic disease is a 

contraindication for delayed breast reconstruction. This was accounted for in the 

present study by only including controls with a follow up free from relapse at least as 

long as time from primary surgery to reconstruction for the matched case.  

 

The piecewise exponential model used in paper II was proposed by Iacobelli et al (155), 

and although not as common as the widely used Cox proportional hazard model, it has 
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several advantages in the current analyses. It does not assume proportional hazards, 

that is the idea that the covariates will have a proportional effect that is constant over 

time, making it better suited to study disease dynamics over time. Other survival 

models generally assume that an intermediate event, in our case the breast 

reconstruction, only has a constant, multiplicative effect on the baseline hazard after 

its occurrence. Such an assumption may lead to a clinically relevant bias as the 

intermediate event may act not only by multiplying the baseline risk, but also changing 

the following dynamics. In our work, to allow for non-proportional hazard in 

estimating the effect of event occurrence, time elapsed from the event occurrence to 

the end point of interest, namely the new time scale induced, was also accounted for in 

the model. Thus, we included both the event itself, breast reconstruction, follow-up 

time from the event and time since primary tumor removal in the multiple timescale 

model. Time since event occurrence was set to 0, before its occurrence as well as for 

those patients who did not experience it. 
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4. Summary of results 

Paper I was the first published systematic evaluation of metastatic pattern regarding 

sizes and numbers in breast cancer patients. Bone- (38 %), lung- (30 %) and liver 

metastases (23 %) were the most frequent metastatic sites. The median number of 

lesions measured was 7 (mean 6). We proposed the standard deviation (SD) of size 

and number of metastases as a marker of synchronized growth. Median SD in the 

population was 5.4 mm. Patients were grouped as ‘‘non-synchronized’’ if they had a 

SD above median or if they had only one measurable lesion, and as ‘‘synchronized’’ 

if they had a SD below median. The mean SD of metastatic lesions seemed to be 

lower in the first 3 years after primary surgery, although this trend was not 

statistically significant. As delayed recurrences as well as periods of tumor dormancy 

seem to be more frequent in lymph node negative patients (156, 157) we analyzed 

this group separately. We demonstrated a significantly more synchronized relapse 

pattern in early relapsing, lymph node negative patients compared to late relapsing 

(median 3.1 vs. 5.7, Mann–Whitney test, p = 0.018) and in patients without systemic 

adjuvant therapy (median 2.5 vs. 6.4, Mann–Whitney test, p = 0.005. Fig 5). Also, a 

significant drop in SD was observed at the time of ended adjuvant endocrine 

treatment, comparing between year 4-5, just before ended treatment, and year 5-8, the 

years after (median 13.1 vs. 3.9, Mann–Whitney test, p = 0.021). In the analyses of 

survival, no difference was present for SD of metastases or time between primary 

diagnosis and recurrence. Low tumor load at time of first recurrence, measured by 

sum of diameters of metastatic lesions, demonstrated significantly increased overall 

survival (Log Rank p=0.001). 
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Fig. 5 Metastatic pattern of patients without systemic treatment (N=62). The plots 

show the mean of standard deviation (SD) of size and number of metastases at first 

recurrence (±SE) by time after primary surgery. Box plot of mean SD according to 

early recurrences (0-3 years) versus late recurrences (>3 years). 

Paper II investigated the relapse dynamics after delayed breast reconstruction. 

Median time to reconstruction for the 312 patients was 33 months (range: 1–362 

months). Median follow-up after reconstruction was 137 months. Within 10 years 

after primary surgery, 39 of the 312 reconstructed patients developed local (5), 

regional (6), or distant (31) relapse, compared to 52 patients in the matched control 

group (local 10, regional 3, distant 39). When setting time of origin at reconstructive 
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surgery, we demonstrated a bimodal relapse pattern after delayed breast 

reconstruction in patients treated for breast cancer, similar to that observed after 

primary breast cancer surgery, with peaks at 18 months and five years. The early 

relapse peak was higher in patients undergoing more extensive surgical procedures, 

suggesting a dose-dependent effect. There was no difference in recurrence free 

survival between extensive reconstructive surgery and simple implant surgery (Gray 

test, p = 0.86). Timing of the peak was unaffected, both by extent of reconstructive 

surgery and time interval between primary cancer treatment and reconstruction. 

Known risk factors for recurrence, nodal status and tumor size, affected the height of 

the recurrence peak, but again, not the timing. The new timescale introduced by 

delayed reconstructive surgery demonstrated an increase in hazard ratio for relapse 

for reconstructed patients, compared to matched control patients the first two years. 

After this, the risk seems to be lower, although not statistically significant, thus it 

may not be considered constant (Fig 6). Our results indicate an independent 

stimulating effect of surgery on pre-existing micrometastases, resulting in a transitory 

increased risk of relapse the first two years after reconstruction compared with not 

reconstructed patients, thereafter a decreased risk. Importantly, this did not translate 

into a worse long term disease-free survival for reconstructed patients compared to 

the not reconstructed. 
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Fig. 6 Hazard rate ratio for recurrence between reconstructed patients and controls in 

relation to time since reconstruction or reference day. Dotted lines represent 95% CI. 

Paper III interrogated the distant metastasis stimulating effect by different second 

surgical procedures. Our hypothesis was that the distant metastasis stimulating effect 

would be different if the second surgery involved removal of a tumor in the breast or 

not. This was based on the assumption that a primary tumor may exert a homeostatic, 

or growth restricting effect on distant metastases and thus the removal of this tumor 

would allow growth of these metastases. Surgery per se has also been demonstrated 

to accelerate metastasis development and our aim was to separate these effects. We 

compared relapse dynamics in 3 databases of patients undergoing second surgery in 

different clinical situations, namely surgery for ipsilateral breast tumor recurrence, 

surgery for contralateral breast cancer and delayed breast reconstructive surgery, 

where no tumor removal is involved. Despite the fact that these patients were accrued 

over a wide time-span, the main prognostic factors are remarkably homogenous, with 

the exception of primary tumor size which was larger in reconstructed patients. In all 

three patients’ series, the relapse dynamics revealed a bimodal pattern with a major 

peak at 18 months and a lower one at 5-6 years. The levels of recurrence risk were 

different. Patients operated for IBTR had the highest risk of developing distant 
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metastasis, the reconstructed patients the lowest and patients operated for a 

contralateral breast cancer an intermediate risk. Also, the time interval from primary 

cancer treatment to second surgery was influential on recurrence risk for surgery 

involving removal of a tumor in the breast, with higher early peaks if the second 

surgery was performed less than three years after primary treatment. For 

reconstructed patients, time from primary treatment did not influence risk of relapse 

(Fig 7). 

 

Fig. 7 Hazard rate for recurrence with T=0 at second surgery. All groups display a 

bimodal pattern with peaks at 18-24 months and 5 years. Time to second surgery 

changes the height of the first peak when tumor removal is involved, but not in 

reconstruction. 

Paper IV further explored the oncological impact of the perioperative period at 

breast reconstruction. The majority of patients, 68%, had at least one reoperation, the 

early reoperations were almost exclusively caused by a complication while later 

reoperations had a higher rate of aesthetic indications. 28% of all patients 
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experienced a complication grade ≥2. In the group undergoing autologous flap 

reconstructions 56% had at least one complication grade ≥2. These patients also had a 

significantly higher rate of reoperations. When exploring relapse dynamics, we 

demonstrated an augmented stimulating effect on relapses in patients experiencing 

complications in the perioperative period as well as in overweight and obese patients.  

The in vivo models have so far failed to produce publishable results. In the first pilot, 

a single mouse displayed lung macrometastases at sacrifice, one of the no surgery 

controls. Micrometastases were not detected in any mice. This led us to doubt the 

behavior of the D2A1-d-cells in our hands, both regarding their ability to extravasate 

and colonize the lung tissue and their dormancy in the absence of stimulation. For the 

second pilot, we took the following measures to address these concerns. First, 

numbers of mice were increased to improve robustness and reliability of the results. 

Second, all cells were labelled with GFP for improved detection of micrometastases, 

and also because GFP has been demonstrated to induce an immune response in 

BALB/c mice (151) potentially resulting in an extrinsically imposed dormancy of 

labelled cancer cells (124). At sacrifice after 6 weeks, 15 of the 19 mice had 

macroscopic orthotopic tumors. The orthotopic tumors were heterogeneous in GFP 

positivity; some were completely negative, while others displayed 20-70% positive 

cells. Lung macrometastases was found in one mouse, this did not stain positive for 

GFP. We found GFP positive lung micrometastases in four additional mice. 
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5. Discussion 

5.1 Discussion of results 

In order to evaluate the importance of tissue trauma and wound healing on metastatic 

relapse of breast cancer we studied patterns and dynamics of breast cancer recurrence 

in relation to patient and tumor characteristics as well as interventions. A theory 

building on a period of tumor dormancy before, during or after primary surgery 

would result in a higher likelihood of finding a solitary metastasis at first recurrence 

than of finding multiple metastases. However, this holds true only by assuming there 

is no synchronized internal clock in the dormant tumor cells and no external signal to 

synchronize growth (158). 

 

For the entire patient series in paper I, there was no significant difference in SD of 

metastatic lesions between early and late relapsing patients, thus it may be considered 

a negative study. As this was a very heterogeneous group regarding patient and tumor 

characteristics, as well as treatment in the primary setting, this should perhaps not be 

surprising. The finding of a significantly lower SD in early relapsing patients with no 

systemic adjuvant treatment suggests that primary cancer surgery may indeed 

synchronize growth of metastases, and that this effect is counteracted by systemic 

treatment. According to treatment guidelines, fewer of the lymph node negative 

patients would be expected to have received systemic adjuvant treatment, this was not 

adjusted for in the analyses in paper I, so the observed difference for this subgroup 

may in part be ascribed to this fact. Furthermore, the distinct drop in SD of 

metastases at the time of ended endocrine treatment both supports the idea of 

systemic treatment acting as a break on dormant micrometastases and serves as proof 

of principle of SD as a marker for synchronized growth. In other words, synchronized 

growth may be a result of either the appearance of a growth stimulating signal like 

surgery, or the removal of a growth inhibitory restraint like systemic adjuvant 

treatment, both assuming the existence of dormant micrometastases. 
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Our work demonstrated a relapse pattern fitting with the idea of synchronized growth 

of dormant metastases in early relapsing, lymph node negative breast cancer patients. 

As a similar recording of size and number of metastases at first relapse has not been 

published, our findings need to be confirmed in other, preferably larger, datasets. This 

may allow for closer analyses of how different subgroups of breast cancer relapse, 

relate distribution of metastases to time and treatment and reveal novel aspects of 

metastasis biology.  

 

To evaluate the possible stimulating effect on breast cancer recurrence by surgical 

trauma and wound healing, we turned to delayed breast reconstruction. This allowed 

us to study this effect in a pure and standardized setting, unaffected by primary tumor 

properties and adjuvant treatment, and with a higher likelihood that any 

micrometastases would truly be dormant as reconstruction is only offered in the 

absence of suspected metastatic disease. This would also circumvent the argument 

that relapses after primary surgery is a result of physical dissemination of tumor cells 

from the breast by the surgical intervention (159). We discovered a relapse pattern 

after delayed breast reconstruction coherent with a stimulating effect of the surgical 

procedure on pre-existing micrometastases. The effect size was dependent on the 

underlying relapse risk of the patient, with higher early peaks in lymph node positive 

patients and with larger primary tumor size. Timing and magnitude were not affected, 

supporting the hypothesis that surgical factors act on the subclinic metastatic state of 

the host. The fact that the hazard rate of later relapses was decreased in reconstructed 

patients further supports the hypothesis that the surgical procedure accelerates growth 

of occult distant micrometastases that would otherwise have appeared at a later time. 

A study by Isern et al found a higher risk of relapse in reconstructed patients 

compared to mastectomy alone, this remained statistically significant in multivariable 

analysis (38). That study, however, suffered from a suboptimal matching of cases and 

controls regarding important prognostic factors such as lymph node status. In our 

study, the pattern of a transitory increase in relapses the first two years after 

reconstruction, followed by a reduction was evident also in the multiple timescale 

multistate model. This model takes into account the joint effect of prognostic factors 
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as well as the effect of the change in hazard rate by specific stimulating events, here 

reconstruction, occurring at different time points.  

 

In accordance with other reports, we found a slightly better long-term outcome in 

reconstructed patients compared to controls (37, 160, 161). The reason for this is at 

present undetermined, but may be explained by higher socioeconomic status and 

lower comorbidity in patients opting for breast reconstructions, factors that are also 

associated with a lower risk of relapse (162). In other aspects, other groups have 

reported contradictory results to ours, with no sign of an acceleration of relapses after 

delayed reconstruction (37). This discrepancy may be caused by a different selection 

of patients for reconstructive procedures in different institutions, or different rates of 

complications to surgery. Indeed, in the study by Geers et al (37), prognostic factors 

were significantly different, in favor of reconstructed patients, regarding age, tumor 

size, and lymph node status compared to controls. They also included implant-based 

reconstructions in the non-reconstruction control group, this was also permitted in a 

similar study with no evident difference in relapses after autologous reconstruction 

(163). The argument was that the surgical trauma is significantly smaller in implant 

based reconstructions compared to reconstructions with autologous tissue flaps. 

While this is undoubtedly true, it may still be above the threshold for a systemic 

effect on dormant micrometastases, potentially obscuring differences between these 

groups. In a large-scale in vivo study, the implantation of a small sponge, and even a 

mere two centimeter cutaneous incision, immediately sutured, was enough to promote 

outgrowth of tumors of mammary gland origin at a distant site in mice (124).  

 

Results from preclinical studies, mainly performed in mice models of breast cancer, 

have provided convincing evidence of a link between inflammation, tissue trauma or 

wound healing and escape from tumor dormancy (111, 124, 138, 139). These include 

both transgenic and syngeneic allograft mouse tumor models. While mouse studies 

have certainly yielded enormous insight into many aspects of tumor biology, species 

differences as well as the representativeness of murine tumors to their human 
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counterparts must be taken into consideration, and results cannot always be assumed 

transferable.  

 

In an attempt to model surgery induced escape from dormancy in vivo in this work, 

we encountered several problems illustrative of the difficulties in modelling 

dormancy. First, in expanding cells in vitro, there is an inherent risk of selecting for 

less dormant and more aggressive clones in each cycle. Even though passaging was 

kept to a minimum, a certain number is inevitable for transduction, expansion, sorting 

etc. The fact that some tumors, both orthotopic and in lungs, had no GFP expression 

while others were composed mainly of GFP positive cells can be due to instability of 

the transduction, or selective advantage of GFP-negative cells in some mice. In vitro, 

the transduction seemed stable, with >95% of cells being positive after two passages. 

The conditions encountered in the complex biologic system of the mice, with fully 

functional immune system, may of course have altered this. Intravenous injection of 

cancer cells to produce lung metastases includes only the later steps of the metastatic 

cascade, assuming that the earlier steps, up until extravasation, have already taken 

place. Surgical trauma in the model did not involve removal of a tumor in the breast. 

This may be considered an advantage as it eliminates variation due to tumor size, 

immune infiltration and vascularization of the primary tumor and thus gives a more 

standardized trauma and wound healing situation. On the other hand, such a model 

does not take into account the possible effect on metastases exerted by the primary 

tumor. Further development of an in vivo model is ongoing in our group. 

 

To explore the effect on oncologic outcome of different events and conditions at 

reconstructive surgery, we investigated surgical and medical complications, patient 

factors like comorbidity and BMI at reconstruction in our cohort, presented in paper 

IV. We discovered a surprisingly high rate of reoperations and complications in all 

patients, and particularly patients undergoing autologous flap reconstructions. We 

showed that complications in the perioperative period, as well as overweight and 

obesity, add to the metastasis relapse accelerating effect, further establishing the 

perioperative period as important to metastasis biology.  
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In paper III we demonstrated relapse dynamics following subsequent surgeries after 

breast cancer treatment to be similar to the dynamics previously reported after 

primary tumor surgery. Again, we saw that the surgical procedures exerted their 

effects on the underlying risk of relapse of the patients, IBTR (ipsilateral breast tumor 

recurrence) being a well-known risk factor for developing distant metastases; 

coherently, these patients had the highest hazard rate for relapses. The fact that the 

patients’ series in paper III differ in the primary treatment needs some careful 

consideration. On the one hand, it may be considered a limitation as all patients in the 

reconstruction series were treated with mastectomy while patients experiencing an 

IBTR had breast conserving surgery in the primary setting and CBC (contralateral 

breast cancer) patients where a mix of the two. Thus, the varying effects observed in 

relapse dynamics after second surgery may be attributed to events in the primary 

treatment. On the other hand, the fact that we still observe such similar relapse 

dynamics after second surgical procedures, despite different primary treatment can be 

taken as support of the conclusion that this is actually an independent stimulating 

event. The difference in how time between first and second surgery affects the risk 

level for patients undergoing surgical excision of a tumor in the breast but not in 

reconstructive surgery, suggests two separate effects on distant dormant metastases: 

one of tissue trauma and wound healing per se and another of the removal of a growth 

restraining tumor. 

 

It has been suggested that the early peak in relapses may be a statistical artefact, 

caused by more frequent follow-up in the time after surgery and thus an accumulation 

of relapses in this time period, while later relapses, and relapses in no surgery 

controls, may go undetected for a varying length of time, resulting in a more even 

distribution. While this might be true for locoregional relapses, follow-up does not 

include imaging or biochemical analyses directed at detecting distant metastases. 

Indeed, it has been demonstrated that even when adopting more extensive follow-up 

regimens, 85% of distant metastases are diagnosed after symptomatic presentation 

(55). 
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5.2 Strengths 

All our data are based on extensive patient and tumor characteristics, for paper I and 

II extracted from clinical records, by the authors, and are thus both comprehensive 

and reliable. Biochemical measurements and radiological imaging come from the 

hospital patients’ records and are thus produced by equipment and protocols verified 

and calibrated to the high standards required for clinical use. The IBTR and CBC 

groups in paper III come from randomized controlled trials with thorough and 

systematic recording of clinical data. The long follow-up time, over ten years for all 

studies on relapse dynamics, is another strength, one necessary to be able to properly 

evaluate relapse dynamics for patients with such good prognosis, and when aiming at 

studying tumor dormancy. The relapse pattern of breast cancer, with a bimodal 

distribution of relapses, as well as the timing of relapse peaks is very similar to 

publications from other institutions. 

5.3 Limitations 

The main limitation of our studies is their retrospective nature precluding any 

conclusions regarding causality. The relatively small number of patients is another 

major limitation, giving wide confidence intervals, diminishing the external validity 

of results and the possibility of extensive subgroup analyses. Locoregional relapses 

may be diagnosed at routine breast cancer follow up, distant metastases, however, are 

usually detected when they cause symptoms, as follow up in Norway does not include 

imaging or blood sampling to detect biochemical alterations. Timing of metastatic 

development is heterogeneous, and patients vary in their tendency to seek medical 

advice when experiencing symptoms, thus metastases may have been present for a 

short or long time when diagnosed, this limits the accuracy of our estimations of 

timing of relapses. 
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As most analysed patients in our studies were treated before the introduction of HER2-

directed therapy, data on HER2-status was unavailable for the vast majority of patients, 

preventing specific subgroup analyses on the triple-negative cancers. 

 

The highest level of evidence to support or refute a link between physical trauma and 

relapse of cancer would have to be obtained from randomized controlled trials (164). 

Such a trial on surgery induced metastatic relapse, however, is hardly feasible, neither 

regarding ethical approval or patient inclusion. Accumulated retrospective data, from 

well matched series of cases and controls, supported by pre-clinical investigations, 

seem to be the best available evidence today. 
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6. Conclusions 

In conclusion, this work demonstrates that tissue trauma and wound healing can have 

an impact on distant relapse dynamics in breast cancer. In our material, the effect is 

modulated by extent of surgical trauma as well as the patients’ inherent risk as 

determined by tumor and patient properties. In paper I we proposed SD of metastases 

at first relapse as a marker of synchronized growth, and demonstrated lower SD of 

metastases in early recurrent, lymph node negative patients and in patients not 

receiving adjuvant systemic treatment, coherent with a growth synchronizing effect 

of primary tumor surgery. In paper II we demonstrated an acceleration of relapses 

after delayed breast reconstruction resulting in a distinct peak 18 months after 

reconstruction. This effect was more evident in patients with higher pre-existing risk 

of relapse, and in patients undergoing more extensive reconstructive procedures. In 

paper III, we found similar relapse dynamics with peaks at 18 months and 5-6 years 

after second surgery in breast cancer treated patients, regardless of whether the 

surgery included removal of a tumor in the breast or not. The time interval between 

first and second surgery modulated the effect when a breast tumor was removed, 

leading to a higher first peak in early relapsing patients. The effect on distant 

metastasis dynamics of reconstruction was unaffected by time interval. This supports 

the theory of two separate effects on distant metastasis, one by surgery and wound 

healing per se, and another by disrupting tumor homeostasis. Paper IV supports the 

perioperative period as biologically important for oncologic outcome by the 

relationship between complications to reconstructive surgery and further acceleration 

of relapses. It also showed that host factors such as overweight and obesity modulates 

this effect, possibly by an inherent low grade systemic inflammation associated with 

these conditions. In total, this work demonstrates an impact of tissue trauma and 

wound healing on relapse patterns and dynamics in breast cancer, which may be 

explained by stimulated escape from dormancy of occult micrometastases, warranting 

careful selection of patients for surgical procedures and optimization of perioperative 

care. 
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7. Future perspectives 

The field of tumor dormancy has been intriguing scientists for a long time, but it is 

only in the last few decades that this phenomenon has been the focus of systematic 

pre-clinical, clinical and epidemiological studies. We are only scratching the surface 

of this elusive property of some cancers, including how to detect and manage it. In 

our view, accumulated evidence, since the pioneering work of Bernhard Fisher up 

until today, compels us to regard breast cancer as a systemic condition, with the 

patient potentially harboring multiple micrometastases, even before the detection of 

the primary tumor. These minuscule cancer deposits are, as all cells and tissue, 

susceptible to events and signals in the body. Surgery is, and has for centuries been 

the main pillar in breast cancer treatment. If, as we and others suggest, surgical tissue 

trauma can indeed awaken dormant micrometastases, it would be a violation against 

the first principle of medicine, primum non nocere, first do no harm.  

 

With increasing understanding of metastasis biology, adjuvant local and systemic 

treatment have improved outcome for breast cancer patients substantially. In the late 

20th and early 21st century, neoadjuvant preoperative treatment was introduced, and 

its benefit is seen in a number of patients. The systemic impact of events in the 

perioperative period, however, is only beginning to be explored, and may be an area 

with potential for substantial improvement in patient outcome. Our group has studies 

in the pipeline of interventions around the time of surgical procedures in cancer 

patients to prevent the possible detrimental, unintentional effects of tissue trauma and 

wound healing. 

 

We and others have presented convincing results of an impact on distant metastasis 

development by surgery, fitting with an induction of escape from tumor dormancy. 

The detection of a tiny metabolically inactive, non-dividing cell or group of cells in 

the human body is inherently difficult. Catching it at the time it transits from this 

dormant state to proliferation, in order to study the nature of this escape is perhaps 

even more challenging. Fortunately, we, and scientists across the world, are willing to 
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face this challenge. Results by our group and others are not yet mature to change 

recommendations for clinical practice, regarding breast reconstruction or other 

surgical procedures in patients potentially harboring occult, dormant 

micrometastases. As this link is being further characterized and understood, we 

anticipate discovery of targets for intervention, and thus development of preventive 

medications to maintain the disseminated tumor cells in a dormant state throughout 

the patients’ lifespan, or even to eradicate the dormant cancer cells to ensure freedom 

from metastatic relapse. 
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Abstract A significant variation in the metastatic pattern

among breast cancer patients exists. Clinical observations

suggest that these differences are related to time to recur-

rence (TTR), thus suggesting a common systemic growth

signal at the time of surgery. Our goal was to identify a

marker for synchronized growth of micrometastases. To

quantify the metastatic pattern at first relapse, 180 patients

with metastatic breast cancer were studied. Standard

deviation (SD) of lesions size and lesion number was cal-

culated and served as a marker for variation. Patients with

low SD (multiple/similar sized lesions) were assumed to

have synchronized growth, whereas patients with high SD

were assumed to have unsynchronized growth. Patients

were grouped according to TTR; early (\ 3 years-) or late

([ 3 years- after surgery). In patients not receiving sys-

temic adjuvant treatment, median SD was significantly

lower in the early group (2.5 mm) compared with 6.4 mm

in the late group (p = 0.005). In node negative patients,

median SD was significantly lower in the early group

(3.0 mm) when compared with the late group (5.7 mm,

p = 0.02). An additional drop in SD was observed imme-

diately after end of adjuvant endocrine therapy. Our results

identify SD as a marker of synchronized metastatic growth

in breast cancer. A metastatic phenotype characterized by

multiple similar sized metastases, suggesting synchronized

onset of growth of micrometastases was predominantly

found in patients recurring early after surgery and was

counteracted by adjuvant treatment. Systemic growth sig-

nals caused by surgery might be antagonized during the

time window following surgery.

Keywords Breast cancer � Surgery � First relapse �
Metastases � Radiology � Adjuvant treatment � Metastatic

pattern � Tumor dormancy

Introduction

Breast cancer has a long natural history and is infamous for

its propensity for late relapses when compared with most

other cancer types [1]. Even clinically undetectable, tiny

tumors can shed malignant cells into the circulation. Sev-

eral biomarkers like ER, Her2, TNM-classification, and

gene expression signatures [2–5] can readily be applied to

predict early local or early distant disease recurrence within

5 years of diagnosis. On the other hand, no biomarkers

have been proven clinically useful to predict late relapse [6,

7]. In cases with delayed relapse, the nonlinearity of dis-

ease progression gives an indication of the presence of

periods with tumor dormancy [8, 9]. Early micrometastatic

foci, single cells, clusters of cells, or microscopic tumors

can be restricted in growth over periods of time by inability

to recruit blood vessels [10], by immunesurveillance [11],

by cell cycle arrest [12], by tumor microenvironment

(TME) interactions [13] as well as by iatrogenic depletion
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of growth stimulatory hormones in the case of ER? breast

cancer [14]. Interestingly, there are several experimental

tumor models suggesting that dormant cancer can turn into

rapidly progressing disease by growth systemic signals [8,

15, 16]. Moreover, systemic growth signals caused by tis-

sue trauma and wound healing has been shown to initiate

and synchronize growth of dormant micrometastases [17,

18]. Also clinical consequences of tissue trauma and

wound healing have been discussed, as recently reviewed

by Ceelen et al. [19]. Although controversial, in a series of

clinical studies on human breast cancer, Demicheli et al.

[20–22] suggest that the tissue trauma caused by the pri-

mary surgery alone is able to alter the growth kinetics of

dormant micrometastases and reduce time to recurrence.

We hypothesize that activation of systemic growth sig-

nal cascade in breast cancer patients with dormant mi-

crometastases might result in synchronized growth and thus

the detection of multiple similar sized macrometastases at

the time of first recurrence. Consequently, the detection of

multiple similar sized metastases might serve as a marker

of synchronized growth kinetics in these patients. In con-

trast, detection of solitary metastases or oligometastases

with large size variation is more likely to occur when the

metastases grow independently in the absence of a syn-

chronizing signal. In the present study, we aimed to

quantify size and number of metastatic lesions in relation to

time between primary surgery and first relapse. We further

hypothesized that growth of dormant micrometastases can

be preceded by a synchronizing event like increased levels

of wound healing associated growth factors following

surgery or sudden withdrawal of anti-endocrine therapy.

Moreover, we suggested that metastatic synchronization

can be quantified by the standard deviation of size and

number of metastases at time of first recurrence, as a

marker of variation in the metastatic pattern. We focused

on two clinically relevant candidate events that could lead

to systemic synchronization of dormant micrometastases

common to a majority of breast cancer patients; wound

healing after primary surgery and cessation of endocrine

adjuvant therapy.

Methods

The study base for this retrospective analysis consists of 209

consecutive patients treated for metastatic breast cancer

between January 2005 and December 2009 at the Depart-

ment of Oncology, Haukeland University Hospital, Norway.

The hospital covers a population of 500,000, and all new

diagnosedmetastatic breast cancer patients in the population

are referred to the regional center. All patients registered

with an ICD-10 code for breast cancer (C 50.X) aswell as one

or more codes for metastases (C 77.X–C 79.X) were iden-

tified and all diagnoses were verified and validated in the

patient records. Time to recurrence (TTR) was recorded as

time between primary surgery and time of occurrence of first

recorded metastasis. Patients with synchronous metastases

and primaries, patients with evidence of metastatic disease

within 2 months of surgery, patients that did not have their

primary tumor removed, local recurrences, and patients with

secondary (non-breast) cancers were excluded. Cases with

measurable metastatic disease according to RECIST 1.1,

modified by inclusion of both lytic and blastic bone lesions,

were studied. Blastic bone metastases occur frequently in

breast cancer and were regarded as evaluable for the pur-

poses of this study. Thus, 180 patients were available for

analyses of metastatic pattern.

At the time of first relapse, all patients underwent

thorough staging with radiology, biochemistry, and clinical

examination. Most patients were subjected to multiple

radiology modalities like CT-scan, bone scan, MRI, ultra-

sound, and chest X-ray. All radiology and clinical tumor

measurements were re-examined and the following vari-

ables were recorded; radiology modality, size of each

metastatic lesion according to modified RECIST 1.1,

number of metastases, and affected organs. Patients with

more than 10 metastases were recorded as ‘‘[10’’. For each

case, the standard deviation (SD) of the different sizes of

the metastases was calculated. SD was used as a marker for

variability in the metastatic pattern. Thus, a patient with

multiple similar sized metastases at the time of first

recurrence would present with a ‘‘low SD’’ (Fig. 1a),

whereas a patient with, i.e., one large and two small

metastases would have a ‘‘high SD’’ (Fig. 1b?c). Patients

with solitary metastases (n = 41, 23 %) were excluded

from analyses of SD. No patients underwent metastasec-

tomy. To justify for the effect of tumor size on SD, we also

examined the potential use of alternative metric measures

of the metastases (SD divided by sum of diameters, SD

divided by mean diameter, SD divided by the square root

of the mean as well as SD divided by log mean) for their

potential use as markers for synchronized growth.

The median value of SD was used as cut-off value and

patients, were grouped as ‘‘low SD’’ and ‘‘high SD’’,

accordingly. Associations between different categorical

variables were assessed by Pearson’s Chi-square test.

Continuous variables not following the normal distribution

were compared between two or more groups using the

Mann–Whitney U tests. Univariate survival analyses were

performed by the product-limit procedure (Kaplan–Meier

method). Differences between categories were tested by the

log-rank test.
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Results

The key demographics and pathologic and clinical char-

acteristics of 180 patients recorded at the time of first

recurrence are shown in Table 1. A majority of the patients

were Stage 1–2 (88 %), ER ? (77 %), Her2- (77 %).

Bone- (38 %), lung- (30 %) and liver metastases (23 %)

were the most frequent metastatic sites. For the majority of

the patients (58 %), a CT-scan was the most appropriate

modality for tumor size measurements. For patients with

bone metastases, MRI (30 %) was the preferred modality,

whereas ultrasound (lymph nodes) and x-ray (bone

metastases and MRI contraindications) were used in some

cases (12 %).

Median time to recurrence was 53 months (2.6–305),

and no significant difference was present according to

stage, primary tumor grade, or Her2 status in this popula-

tion. ER negative patients (Log Rank p\ 0.001) and

younger patients (below median) (Log Rank p = 0.01) had

significantly shorter time to recurrence, median 28 versus

62 months and median 42 and 69, respectively. The annual

hazard rate of recurrence for the whole study population is

shown in Fig. 2.

Initially, we investigated the number and size of detec-

ted metastases in our patient population. The median

number of lesions measured was 7 (mean 6). Still, some

patients presented with more than 10 lesions and were

recorded as ‘‘[10’’, accordingly. Forty-one (23 %) patients

had only one measurable lesion at the time of first recur-

rence. Thus, SD was available in 142 patients. Median SD

in the population was 5.4 mm. Patients were grouped as

‘‘non-synchronized’’ if they had a SD above median or if

they had only one measurable lesion, and as ‘‘synchro-

nized’’ if they had a SD below median. Median sum of

diameters of metastatic lesions was 76 mm (10–697)

(Table 2).

We then analyzed in each patient the SD of metastatic

lesions in relation to time to recurrence. As illustrated in

Fig. 3a?b, the mean SD of metastatic lesions seemed to be

lower in the first 3 years after primary surgery, although

this trend was not statistically significant. Moreover, as

delayed recurrences as well as periods of tumor dormancy

are more evident in the node negative patient [23, 24], we

analyzed this group of patients separately. In this subset of

patients, there was a significantly lower SD in patients who

experienced early disease recurrence (B 3 years) when

compared to those with delayed recurrence[ 3 years

(median 3.1 vs. 5.7, Mann–Whitney test, p = 0.018)

(Fig. 3c?d). Similarly, SD was significantly lower during

the first three years after primary surgery in patients not

receiving systemic adjuvant treatment (median 2.5 vs. 6.4,

Mann–Whitney test, p = 0.005) (Fig 3e?f). There was no

significant association between SD and time after surgery

in patients receiving adjuvant systemic treatment.

Adjuvant endocrine treatment might affect the growth

kinetics of dormant micrometastases. Consequently, we

asked if a second drop in SD occurred at the time of

withdrawal of endocrine treatment (5 years of tamoxifen or

aromatase inhibitors). As expected, following the end of

endocrine treatment at year 5, there was a second drop in

SD (Fig 4a). When comparing the period just before end of

endocrine treatment (year 4–5) with the period immedi-

ately after end of endocrine treatment (year 5–8) SD was

significantly lower in the latter period (median 13.1 vs. 3.9,

Mann–Whitney test, p = 0.021, Fig 4b).

Low SD was significantly associated with low histo-

logical grade in primary tumors (Pearson Chi Square

p = 0.002), the absence of liver metastases (Pearson Chi

Fig. 1 Patient with multiple similar sized metastases at the time of

first recurrence and with low standard deviation (SD) of size and

number of metastatic lesions (a). Patient with one large liver

metastasis (red line) and two small metastases lung metastases at

the time of the first recurrence (only one is shown here, red arrow)

and with high SD (b, c)
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Square p = 0.001), and the presence of lung metastases

(Pearson Chi Square p = 0.02). No statistically significant

association was found between SD and ER status, Her2

status, radiology modality, nodal status, or stage. Other

metric measures of themetastases (seemethods) did not give

significant information in addition to the analyses of SD.

Table 1 Patient characteristics

Number of patients Percent

Age

\40 6 3

40–49 25 14

50–59 43 24

60–69 48 27

C70 58 32

Nodal status

pN0 89 50

pN1 79 44

pN2 8 4

pN3 4 2

Tumor size

T1 (\2 cm) 74 41

T2 (2–5 cm) 92 51

T3 ([5 cm) 12 7

T4 2 1

Stage

1 47 26

2A 63 35

2B 49 27

3A 15 9

3B 2 1

3C 4 2

Grade

1 27 18

2 74 49

3 50 33

Missing 29

HR status

Neg 41 23

Pos 139 77

Her2 status

Neg 80 80

Pos 20 20

Missing 80

Adjuvant treatment

None 62 35

Endocrine 97 55

Chemotherapy 62 35

Radiology modalitya

CT-scan 104 58

MRI 55 30

Otherb 21 12

Metastatic site

Bone 68 38

Lymph nodes 31 17

Lung 54 30

Liver 41 23

Table 1 continued

Number of patients Percent

Brain 9 5

Other 21 12

Key demographic and pathological characteristics including age,

nodal status, tumor size, stage, grade, HR status, and Her2 status at

the time of primary surgery in 180 patients recorded with metastases

from breast cancer during 2005–2009 at Haukeland University Hos-

pital, Norway
a Refers to the radiology modality used for the analysis of metastases

number and size
b Ultrasound, chest x-ray, clinical measurement (caliper)
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Fig. 2 Annual recurrence hazard rate (± SE) in 180 patients

recorded with metastatic breast cancer at Haukeland university

Hospital during 2005–2009

Table 2 Metastatic pattern

Median Mean Min–max

Number of lesions counteda 7 6 1–[10
P

diameter of lesions per case (mm) 76 99 10–697

Standard deviation of lesions

per case (mm)

5.4 8.3 0–58

Time to recurrence (months) 53 69 2.6–305

Analysis of metastatic pattern at first recurrence in 180 cases of

metastatic breast cancer treated at Haukeland University Hospital,

Norway. Tumor measurements are in accordance with RECIST 1.1
a If[10 lesions, n = 10
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Finally, in the analyses of overall survival between time

of first recurrence and death, significantly increased sur-

vival was present in ER ? cases (Log Rank p = 0.05),

Her2 positive cases (Log Rank p = 0.008) as well as in

cases with low tumor load as measured by sum of diame-

ters of metastatic lesions at time of first recurrence (Log

Rank p = 0.001). No survival differences were present for

SD, liver metastases, lung metastases, stage at primary

diagnosis, or time between primary diagnosis and

recurrence.

Discussion

This study was initiated following the clinical observation

of variation in metastatic patterns in patients referred to our

ward at the time of first metastatic recurrence from breast

cancer. Whereas some patients presented with solitary or

oligometastases of varying size, other patients showed

multiple similar sized metastases in one or more organs.

We further observed that patients in the latter category

were frequently diagnosed with metastatic disease shortly
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recurrences (0–3 years) versus late recurrences (3 ? years), all cases.
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after primary surgery, shortly after delayed breast recon-

struction, or shortly after end of adjuvant endocrine treat-

ment. Delayed recurrence of breast cancer metastases is

frequently observed in patients with estrogen receptor (ER)

positive disease in particular [5]. An annual recurrence rate

of 2 %, for as long as 15 years even after 5 years of

tamoxifen [25] or aromatase inhibitors [26], prevents these

patients from considering themselves as cured even for

decades.

The prominent variation in time between primary sur-

gery and first relapse in breast cancer suggests that there is

a great heterogeneity among patients or in the inherent

biology of the tumor cells per se. In some cases, a steady

growth of metastases and a constant risk of relapse can be

inferred by modeling the time of primary tumor detection

in relation to the time of relapse as well as the size and

number of metastases [27]. In addition, tumor dormancy

also in primary tumors is frequently found in the breast, the

prostate, and the thyroid gland of undiagnosed patients in

various autopsy materials [28], further supporting the

existence of growth inhibiting mechanisms or the absence

of growth stimulating signals.

In spite of otherwise favorable prognosis when com-

pared with node positive (N?) patients, some node nega-

tive (N0) patients do relapse with metastatic tumor growth.

In large patient series, the relapses observed in the node

negative patients also show a tendency of occurring later

when compared with node positive patients [23, 24]. Even

tiny tumors might eventually recur at distant sites in spite

of radical surgery at the primary stage. The station by

station model of breast cancer progression put forward by

Halsted over a century ago [29] followed by large and

mutilating ultra-radical surgery procedures has been

replaced by less invasive methods [30–33]. Recently, also

the value of lymph node dissection even in sentinel node

positive patients has been challenged [34]. The multimodal

approaches including limited surgery with immediate

reconstruction, limited irradiation, and effective systemic

adjuvant therapy, presently give the best total outcome

regarding both survival and quality of life. Nevertheless, in

spite of all the recent achievements in the treatment of

primary breast cancer, about 10 percent of patients even-

tually relapse [35]. Even if the concept of tumor dormancy

in breast cancer seems to be well established, several

controversies concerning the clinical impact exist [36].

Little is known about what mechanisms control dormancy

in human micrometastatic disease, and even more impor-

tant; what physiologic processes can cause the suspension

of dormancy and thereby fatal disease relapse. The Gom-

pertzian model of human breast cancer growth as discussed

by Norton [37], or more complicated models as suggested

by Speer et al. [38], can predict progression of the unper-

turbed primary tumor and are widely applied in the plan-

ning of adjuvant trials. Several mathematical models have

been applied to describe different relapse scenarios with

regard to time, size, and number of metastases [27, 37, 39].

Still, the lack of knowledge on the mechanisms controlling

tumor dormancy and tumor growth spurts renders these

models as crude approximations when it comes to pre-

dicting relapse in individual patients. The typically highly

variable remission periods between resection and relapse in

breast cancer patients are inexplicable by continuous

growth of metastases [40–42] and imply some degree of

growth restriction of occult micrometastases.

In theory, assuming a situation with a period of tumor

dormancy before, during or after primary surgery, the

likelihood of finding a solitary metastasis at the time of first

recurrence is statistically higher than finding multiple

metastases. This assumption is valid only if there is no

synchronized internal clock in the metastatic tumor cells or

no systemic signal to synchronize metastatic growth. Still,

in the clinic, we frequently observe patients with multiple
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adjuvant endocrine treatment. *Mann–Whitney test
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similar sized metastases at first recurrence even many years

after removal of the primary tumor. These observations

support the concept that there might be a systemic event

simultaneously breaking the dormant state of micrometas-

tases. In addition to immunosuppression [11] and hormone

deprival [14], it has been suggested that wound healing

following the primary surgery might be one such syn-

chronizing signal, by turning on the angiogenic switch in

dormant micrometastases and thereby activating angio-

genesis [16–18]. The frequently observed peak in the

hazard ratio of relapse around 18 months, independent of

primary tumor stage [20, 25, 43], has been attributed to the

systemic response to primary surgery of breast tumors [44].

In order to find clinical support for a possible association

between time of primary surgery and synchronized growth

of dormant micrometastases, we studied the metastatic

pattern in 180 breast cancer patients at the time of first

recurrence. We established the SD of the measured sizes of

the metastases as a potential marker for synchronized

growth. It is a possible drawback in our material that our

patients, in most cases, presented with symptoms or bio-

chemical alterations before the diagnosis of recurrence was

established. In Norway, there is no requirement for routine

radiological examinations during follow-up. Thus, our data

does not give exact information on how long the lesions

might have been detectable by radiology ahead of diag-

nosis, nor of the growth rate. There is a possibility that the

power of SD as a marker for synchronized growth is

diluted by this weakness. Still, as a marker to identify cases

with low variation versus high variation in number and size

of metastases (i.e., synchronized vs. non-synchronized), SD

was superior to other metric estimates (see methods) by

computational simulation, especially when a Gompertzian

growth pattern was assumed. Nevertheless, there is a pos-

sibility that the size dependency of SD makes direct

comparison between the very small and the very large

metastatic lesions inaccurate. To our knowledge, this

approach has not been previously reported, and thus needs

to be confirmed in separate datasets.

We found that the SD was lower in early recurrences

(0–3 years after surgery), and this difference was statisti-

cally significant in node negative patients. The difference

between the node negative and the node positive patients

might be due to the difference in the overall prognosis. In

node positive patients, the micrometastatic spread is fre-

quently more advanced at the time of primary surgery and

the growth into macrometastases might already have been

initiated. In contrast, regarding the node negative patients,

our results indicate that the dormancy of systemic mi-

crometastases seems to be more susceptible to a systemic

synchronizing growth signal. This is in line with the

observed delayed recurrences in node negative patients in

large patient materials [23, 24]. Sixty-five percent of our

patients received systemic adjuvant treatment after primary

surgery. The sole intention of this treatment is to prevent or

at least delay growth of micrometastases, and this effect

was also reflected in a significantly lower SD in early

recurrences observed in cases not given adjuvant treatment.

This finding might suggest that adjuvant systemic treat-

ment prevents the effect of the synchronizing systemic

signal on the tumor cells during the time immediately after

surgery. Importantly, delayed initiation of adjuvant che-

motherapy has recently been shown to be associated with

significantly worse outcome [45], further underlining the

importance of the time window immediately following the

surgical procedure. We also cannot rule out the possibility

that the association between SD and time to recurrence

found in node negative cases is, in part, due to the

increased use of adjuvant treatment in node positive cases.

As expected, there was a second drop in SD directly after

end of adjuvant endocrine treatment in ER ? patients.

From this, we might infer that the removal of the estrogen

receptor or aromatase inhibitors acts as a second systemic

signal to synchronize growth of occult micrometastases

kept dormant during estrogen deprival. This expected

finding also serves as an internal control for the utility of

SD as a marker of synchronized growth. In comparison to

ER-, the ER? population recurs later [1], and this was

also the case in our study. An alternative explanation for

the delayed relapse and prolonged dormant state of the

slow growing ER? tumors could be the requirement of an

spontaneous enabling sub-clonal evolution in these cells

[46], which would occur independently in individual cells

over time. The subsequent macrometastases are then likely

to be asynchronous. Still, there was no significant associ-

ation between ER status and SD. This suggests that syn-

chronization occurs at a similar rate in ER positive and

negative patients. Low SD correlated with low histologic

grade in the primary tumors and suggests that synchronized

metastatic growth is more frequent in cases with lower

tumor heterogeneity. Still, no significant association

between histologic grade and time to recurrence was found.

Synchronized growth, quantified by low SD, showed an

inverse association in lung metastases and liver metastases.

Whereas in the lung, the SD was found to be lower when

compared with other sites, SD was significantly higher in

the liver, suggesting a different growth dynamic between

different organs. Still, most of our patients presented with

lesions at multiple sites. In a recent report by Cummings

et al. [47] 197 autopsies on patients that died of breast

cancer were examined in detail. Of a total of 150 patients,

the 46 patients who underwent surgical treatment of the

primary tumor were significantly more likely to develop

liver metastases, suggesting a role of acute wound healing

Breast Cancer Res Treat (2014) 146:627–636 633

123



after surgery in activating dormant micrometastases in the

liver. Similar findings have also been reported by others

[48]. Experimental studies have also reported the role of

post-surgical wound healing in stimulating growth of liver

metastases [16]. Levels of wound healing associated

growth factors like Vascular Endothelial Growth Factor

show great heterogeneity between patients and also

between peripheral blood and locally at the wound site

[49]. Studies also show that levels of angiogenesis inhibi-

tors might change following surgery or radiation therapy of

the primary tumor [50, 51].

The effect of surgery on macrometastases has been an

unresolved issue addressed in multiple retrospective trials

studying the impact of removal of the breast in patients

with stage IV disease at presentation [52, 53]. Still, sev-

eral of these trials have been significantly biased based on

inclusion criteria. Nevertheless, surgical treatment in

patients with synchronous metastases is frequently rec-

ommended to increase local control, although overall

survival benefit remains to be proven [53]. Recently, a

clinical study on 350 women with stage IV disease at

presentation, randomized between surgical removal of

primary tumor and axillary lymph nodes and systemic

therapy, or systemic therapy alone, was presented by

Badwe et al. [54]. Although a significant increase in local

control was found, the distant site progression free sur-

vival was significantly decreased after surgery. Thus,

suggesting a detrimental effect of the surgical procedure,

as put forward by Fisher et al. [55]. No difference in

overall survival was found.

In conclusion, our results identify the standard deviation

of number and size of metastases at first recurrence as a

marker of synchronized growth of breast cancer metasta-

ses. Furthermore, significantly lower SD in early recur-

rences in node negative patients and patients not given

adjuvant systemic treatment suggests a link between the

surgical procedure and early synchronized metastatic

growth, which might be inhibited by systemic adjuvant

treatment. Further research that aim to identify the sys-

temic growth signals caused by surgery and wound healing,

might open additional therapeutic opportunities during the

time window around or immediately after surgical

intervention.
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Abstract The purpose of this study was to characterize the

recurrence dynamics in breast cancer patients after delayed

reconstruction. We hypothesized that surgical reconstruc-

tion might stimulate dormant micrometastases and reduce

time to recurrence. All mastectomy breast cancer patients

with delayed surgical reconstruction at Haukeland

University Hospital, between 1977 and 2007, n = 312,

were studied. Our control group consisted of 1341 breast

cancer patients without reconstruction. For each case, all

patients in the control group with identical T and N stages

and age ±2 years were considered. A paired control was

randomly selected from this group. 10 years after primary

surgery, 39 of the cases had relapsed, compared to 52 of the

matched controls. The reconstructed group was analyzed

for relapse dynamics after mastectomy; the first peak in

relapses was similarly timed, but smaller than for the

controls, while the second peak was similar in time and

size. Second, the relapse pattern was analyzed with

reconstruction as the starting point. A peak in recurrences

was found after 18 months, and a lower peak at the 5th–6th

year. The height of the peak correlated with the extent of

surgery and initial T and N stages. Timing of the peak was

not affected, neither was the cumulative effect. The relapse

pattern, when time origin is placed both at mastectomy and

at reconstruction, is bimodal with a peak position at the

same time points, at 2 years and at 5–6 years. The timing

of the transition from dormant micrometastases into clini-

cally detectable macrometastases might be explained by an

enhancing effect of surgery.

Keywords Breast cancer � Surgery � Breast
reconstruction � Recurrence dynamics � Tumor dormancy �
Multivariate regression

Introduction

The major cause of breast cancer mortality is metastatic

disease, and the prevention of metastatic spread and growth

is the aim of primary local and systemic therapy [1]. Still,

after initial treatment with curative intent, breast cancer is

known for its potential to cause late relapse. Even tiny

tumors, undetectable by physical, biochemical, or radio-

logical examination, can shed malignant cells into the

circulation and eventually cause recurrences up to 20 years

after the primary surgery [1]. The current view of breast

cancer as a systemic disease at the time of diagnosis was

introduced by Fisher in the late 1960s [2]. The concept of

tumor dormancy has been proposed [3–6] as an explanation

of the latency of metastatic disease, and the past and cur-

rent research is beginning to unravel the mechanisms of

maintenance as well as disruption of dormancy [7]. Early

micrometastatic foci can be restricted in growth over

periods of time by inability to recruit blood vessels [8], by
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immune surveillance [9, 10], by cell cycle arrest [11], or by

tumor–microenvironment (TME) interactions [12].

Signs of stimulation of micrometastases after surgical

intervention have been observed in experimental and epi-

demiological studies and evaluated in mathematical models

[13–15]. Furthermore, clinical investigations support an

enhancing effect on the growth of metastases after surgical

primary tumor removal [16, 17]. Tissue trauma and sub-

sequent wound healing have been shown to cause both

local and systemic growth signaling cascades, and might

thereby possibly alter the dormant state of occult

micrometastases [18, 19]. In a previous study, our findings

indicated the presence of synchronized tumor growth in

metastatic breast cancer [20]. In some reports on human

cancers such as primary breast cancer [21], ovarian [22],

colorectal [23], lymphoma [24], and others, tissue trauma

has been associated with tumor progression. It was pro-

posed that the primary surgery by itself can represent a

stimulating event responsible for the peak in the incidence

of metastatic disease observed around 2 years postopera-

tively independent of tumor stage [25–27]. In light of these

findings, questions have been raised regarding the safety of

delayed reconstructive surgery. Both increased and reduced

risk of recurrence was reported after delayed breast

reconstruction [28, 29]. The aim of the present study was to

characterize the recurrence dynamics in breast cancer

patients that underwent delayed reconstructive surgery. We

hypothesized that delayed reconstructive surgery might

stimulate preexisting, occult dormant micrometastases and

alter the recurrence dynamics.

Patients and methods

Study population

The study population for this retrospective analysis consists

of all mastectomy breast cancer patients who underwent

delayed reconstructive surgery at Haukeland University

Hospital, Bergen, Norway, and had their primary treatment

between 1977 and 2007. The respective reconstructive

procedures were implant surgery, implants combined with

flaps, deep inferior epigastric perforator (DIEP) flaps, and

transverse rectus abdominis myocutaneous (TRAM) flaps.

Distinction was not made between single- and multistage

surgery. Altogether, 312 patients were included after

exclusion of patients for whom both tumor size and nodal

status were not known as well as patients with secondary,

nonbreast cancers and DCIS (ductal carcinoma in situ)

(Fig. 1). The hospital covers a population of 600,000, and

in this period, all late reconstructive surgical interventions

following breast cancer in the region were performed here.

Each patient’s record was studied to validate diagnosis,

patient and tumor characteristics, adjuvant therapy, time

and type of reconstructive surgery, time of first recurrence,

and recurrent site.

Control group

We received a control population from the Norwegian

Cancer Registry comprising 1341 patients with breast

cancer surgery in the same time period that had not

undergone reconstructive surgery. Reporting breast cancer

treatment to this registry is mandatory for all physicians in

Norway, and the latest published evaluation from 2007

showed a 99 % completeness of data [30]. For data quality

purposes, patient’s records were studied for validation of

diagnosis, patient and tumor characteristics, adjuvant

therapy, reconstructive surgery (excluded from the control

group), time of first recurrence, and recurrent site in the

same way as was done with the cases. Among the 1341

patients, a total of 473 patients were excluded (see Fig. 1

for details) leaving 868 patients, whose characteristics are

shown in Table 1, which hereafter will be labeled ‘‘control

group.’’

Matching

For each patient in the reconstruction group, all patients in

the control group with identical T and N stages,

age ± 2 years, and follow-up without recurrence equal to

or longer than the time to reconstruction of the respective

matched reconstructed patient were considered. In this

initial step, each case could have a number of candidate

controls of 0-X. A reference day was calculated for each of

the controls in these groups representing time from primary

surgery for the control plus time from primary surgery until

reconstruction for the matched case. Therefore, time from

primary surgery until reconstruction/reference day could

by calculated for cases and controls, respectively. A paired

control was randomly selected from this group. If this

group was empty, increased age interval up to 5 years was

allowed as a first step, and in a few cases when the age

difference was considered clinically relevant (e.g., pre- vs

postmenopausal), patients with similar, but not identical T

classification (e.g., T2 instead of T1) within the right age

interval were considered. This group of 312 patients, whose

characteristics are shown in Table 1, will be hereafter

labeled ‘‘matched control group.’’

Follow-up

Time to recurrence (TTR) was recorded as the time from

primary surgery to recurrence. The endpoint of primary

interest was the first evidence of recurrence: survival times

were calculated as the time elapsed since primary surgery
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Breast reconstruction cohort n= 445 Control population from the Norwegian 
cancer registry n= 1341.

Matched control group
(no reconstruction) n= 312 

Study population (reconstruction) 
n= 312

Excluded n= 132
DCIS/LCIS n= 72
BCT n= 53
No cancer n= 1
Occurrence of other malignancies n= 4
Recurrence before reconstruction n= 3
Missing information n=1

Excluded n= 473
DCIS/LCIS n= 37
Reconstructed n= 179
BCT n= 196
Missing information n= 61
Control group = 868

Matching on T, N, age,  follow up free from 
recurrence1

Fig. 1 Inclusion and exclusion

criteria employed to achieve

case, control, and matched

control populations. DCIS

ductal carcinoma in situ, LCIS

lobular carcinoma in situ, BCT

breast-conserving therapy. 1

Recurrence-free follow-up time

equal to or longer than the time

to reconstruction of the

respective matched

reconstructed patient

Table 1 Patient, tumor, and treatment characteristics

Reconstruction

group n = 312 (%)

Control group

n = 868 (%)

Matched control

n = 312 (%)

Year of primary diagnosis

1977–1989 15 (4.8) 57 (6.6) 25 (8.0)

1990–1999 99 (31.7) 298 (34.3) 109 (34.9)

2000–2009 198 (63.5) 513 (59.1) 178 (57.1)

Median age at diagnosis 48.0 50.0 49.0

Mean age at diagnosis 48.1 50.7 48.7

Age\50 171 (54.8) 397 (45.7) 171 (54.8)

Age C50 141 (45.2) 471 (54.3) 141 (45.2)

Tumor size

T1 190 (60.9) 379 (43.7) 192 (61.5)

T2 91 (29.2) 332 (38.2) 94 (30.1)

T3 22 (7.1) 87 (10.0) 21 (6.7)

T4 2 (0.6) 43 (5.0) 2 (0.6)

Missing 7 (2.2) 27 (3.1) 3 (0.9)

Nodes

Negative 212 (67.9) 428 (49.3) 210 (67.3)

Positive 100 (32.1) 421 (48.5) 102 (32.7)

Missing 19 (2.2)

ER status

Negative 61 (19.6) 190 (21.9) 60 (19.2)

Positive 218 (69.9) 544 (62.7) 216 (69.2)

Missing 33 (10.6) 134 (15.4) 36 (11.5)

Adjuvant endocrine treatment

No 117 (37.5) 238 (27.4) 115 (36.9)

Yes 136 (43.6) 379 (43.7) 132 (42.3)

Missing 59 (18.9) 251 (28.9) 65 (20.8)

Adjuvant chemotherapy

No 144 (46.2) 327 (37.7) 136 (43.6)

Yes 143 (45.8) 305 (35.2) 125 (40.1)

Missing 25 (8.0) 235 (27.1) 51 (16.3)
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to recurrence or to the last documented follow-up with no

evidence of disease. Both locoregional recurrence and

distant metastasis were defined as the events of interest,

whereas all new primary tumors, including contralateral

breast cancers, were considered competing events, thus for

these patients survival times were censored at the time of

their occurrence. Adjuvant local and/or systemic treatment

was given according to national guidelines at the given

time period and was not affected by delayed breast

reconstruction. Follow-up after curative breast cancer

treatment in Norway does not include radiologic evaluation

or blood samples other than upon clinical suspicion of

distant metastases. Thus, diagnosis of relapse is most

commonly made after patients’ experience of symptoms.

Even when adopting more meticulous follow-up regimens,

more than 85 % of recurrences are detected following

symptomatic alert and not at controls [31]. Oncological

follow-up is not influenced by reconstructive surgery.

Statistical analysis

The event dynamics were studied by estimating with the

life-table method the hazard rate for recurrence, i.e., the

conditional probability of manifesting recurrence given

that the patient is clinically free from any recurrence at the

beginning of the interval. The probability of recurrence

over time, i.e., crude cumulative incidence (CCI), was

estimated according to a proper nonparametric estimator

adjusting for the presence of competing events and com-

pared by the Gray test [32]. A discretization of the time

axis in six-month units was applied and a Kernel-like

smoothing procedure [33] was adopted. For multivariable

regression analysis, the piecewise exponential model was

used. The piecewise exponential model provides a flexible

semiparametric tool in the study of the hazard function for

survival data, in the same fashion as a Cox regression

model [34]. The log-hazard function was modeled as an

additive function of the baseline log-hazard and the

covariate effects. For estimation of the piecewise expo-

nential model, the follow-up time was split into 3-month

disjoint intervals and the event rate was assumed to be

constant within each interval. The model accounts for

reconstruction as a time-dependent covariate (i.e., switch-

ing from 0 to 1 at the time it was performed). The model

was extended to account for the new timescale induced by

reconstructive surgery, namely the time elapsed since

reconstruction to the endpoint of interest [35]. For practical

purposes, time since reconstruction assumed the value 0,

before its occurrence, as well as for the controls.

Available prognostic factors were taken into account to

adjust the multivariable regression model. These included

age at diagnosis, pathologic tumor size (T2–T4 vs. T1),

nodal status (N? vs. N0), and estrogen receptor status

(ER? vs. ER-), with time-dependent effect (by introduc-

ing Time (since primary tumor surgery) * ER interaction).

To allow for the estimation of baseline hazard, both

timescales were modeled via Natural Splines with 5 knots

(corresponding to the quantiles of event times only). For

age at diagnosis, a possible nonlinear effect was also tested.

Statistical analyses were done using R3.02 software for

Windows, with Epi package added.

Results

Of the 312 patients, 302 had reconstructive surgery within

180 months and 291 within 120 months after primary

surgery, whereas the remaining 10 had longer time to

reconstruction. Median time to reconstruction was

33 months (range: 1–362 months). Median follow-up after

reconstruction was 137 months. Within 10 years after pri-

mary surgery, 39 of the 312 reconstructed patients devel-

oped local (5), regional (6), or distant (31) relapse,

compared to 52 patients in the matched control group (local

10, regional 3, distant 39).

As a first step, the recurrence dynamics for the recon-

structed patients were analyzed with the time origin at

primary cancer surgery (Fig. 2, blue line). As expected, a

bimodal hazard rate pattern was observed, with an early

less prominent peak in comparison with the second later

one. When the recurrence dynamics were analyzed with

reconstructive surgery as the time origin, a distinct early

peak in recurrences was found around 18 months postre-

construction, followed by a second lower peak at the 5th–

6th year (Fig. 2, red line). The height of this peak was

dependent on the extent of surgery. More extensive surg-

eries like deep inferior epigastric perforator (DIEP) flaps,

0

0.005

0.01

0.015

0.02

0.025

0.03

0 12 24 36 48 60 72 84 96 108 120

Si
x 

m
on

th
s 

ha
za

rd
 ra

te

Months

Recurrence post reconstruction 

t=0 at Reconstruction

t=0 at Surgery

Fig. 2 Recurrence pattern for the reconstructed patients (n = 312)

with T = 0 set at reconstruction (red line) and at primary surgery

(blue line). X-axis represents time in months. Y-axis represents six-

month hazard rate
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transverse rectus abdominis myocutaneous (TRAM) flaps,

and combined implant and flap surgery as compared with

simple implant resulted in a higher peak for the former

(Fig. 3). The timing of the peak was not affected by the

extent of surgery. There was no difference in recurrence-

free survival between extensive reconstructive surgery and

simple implant surgery (Fig. 4, Gray test, p = 0.86).

Similarly, the height of the recurrence peaks, but not the

timing, was dependent on known risk factors such as nodal

involvement and T stage (Fig. 5).

The relapse pattern for the matched control group, when

the time origin was set at mastectomy, followed the

expected bimodal pattern with a first, dominant early peak

and a second less marked peak at 5 years after primary

surgery (Fig. 6), as frequently demonstrated in previous

studies. When the time origin was moved to the reference

day, the hazard rate curve appears as a simple distortion of

the previous one (figure not reported). Unlike the recon-

structed patients, no definite trait was detectable. The

recurrence incidence was slightly reduced for the recon-

structed patients in comparison with matched control

patients, although the difference was not statistically sig-

nificant (Fig. 7, Gray test, p = 0.08).

The multiple scale analysis supports the hypothesis of a

transitory significant increase of recurrence risk during the

first two years after reconstruction/reference day for

reconstructed patients in comparison with the not recon-

structed patients. In the multivariable regression model,

where all 868 patients in the control group were analyzed,

all factors that were considered confirmed their expected

prognostic impact, including the time-dependent effect of

ER status, whereas age at diagnosis did not. The hazard

ratio (HR) was higher in node-positive patients and in those

with increasing tumor size (Table 2). The multiple time-

scale model allows for understanding whether the time

effect, induced by reconstruction occurrence, may be rel-

evant for the subsequent risk of developing unfavorable

events. To better interpret the model, a graph showing the

effect of the timescale induced by reconstruction surgery is

shown in Fig. 8. The figure shows how the hazard ratio for

recurrence between reconstructed patients and control

patients (with the same clinical and pathological features

and with the same follow-up time since primary tumor

surgery) may not be considered constant during the sub-

sequent follow-up time. Although not fully significant with

a moderately wide confidence interval, it shows an

increased risk for the reconstructed patients within the first

2 years, with a peak at about 18 months after surgery and

decreasing thereafter. Of note, the recurrence dynamics

following reconstructive surgery were unaffected by the

time from primary surgery to reconstruction, both in timing

and magnitude.

Discussion

To our knowledge, this is the first study investigating the

dynamics of recurrences occurring after delayed breast

reconstruction in breast cancer patients. The main result of

our analysis is that when the time origin is set at the

reconstruction date, the hazard rate for ensuing recurrence

displays a first main peak in the 2nd year and a later minor

peak at the 5th–6th year after reconstruction (Fig. 2, red

line). The recurrence risk for the same patients, when the

time origin is placed at mastectomy, is bimodal with peak

positions at the same time points relative to mastectomy,

after 2 and 5–6 years (Fig. 2, blue line), as expected [31].

Thus, when the time origin is moved for each reconstructed

patient to the reconstruction date, the recurrence risk pat-

tern is similar to that observed following primary mastec-

tomy. Of note, time origin displacement reveals an increase

of the early peak with a concomitant decrease of the late

level of recurrence risk (Fig. 2), suggesting that recurrence

redistribution is associated with the reconstruction

maneuver which could be said to act as a wave breaker for

recurrences. These findings suggest that mastectomy and

reconstruction induce similar biological effects on sub-

clinical preexisting metastases.

The effects of primary mastectomy have been investi-

gated in both animals and humans during the past century

[36]. An unintentional effect of surgery in breast cancer

patients with clinically undetectable micrometastatic dis-

ease has been explained by a paradigm based on the con-

cepts of tumor homeostasis, tumor dormancy, and surgery-
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Fig. 3 Recurrence pattern according to surgical intervention demon-

strates an enhanced, but similarly timed, effect by increased extent of

trauma. Blue line patients receiving a unilateral implant. Red line

patients receiving more extensive surgery. X-axis represents time in

months since reconstructive surgery. Y-axis represents six-month

hazard rate. DIEP deep inferior epigastric perforator, TRAM trans-

verse rectus abdominis myocutaneous flap
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related enhancement of metastasis growth [37]. The model

assumes both cellular and micrometastatic tumor dor-

mancy, with ordered transitions between these two quies-

cent states and subsequent development of overt metastasis

and, subsequently, a transient phase of acceleration of

metastatic growth. Preclinical studies have pointed to an

angiogenic switch as a possible involved mechanism, in

which the microenvironment is altered by tissue trauma to

become proangiogenic with increased levels of VEGF and

reduced levels of angiogenesis inhibitors such as TSP-1

[8]. Others have focused on the role of surgery-induced

immunomodulation with demonstration of a stimulatory

interaction between cells of the innate immune system and

adjacent cancer cells [38]. The truth may lie in both models

as the immune and angiogenic systems have multiple

points of intersection [39]. Our findings support the con-

cept that also delayed breast reconstruction may accelerate

metastatic growth in subjects with dormant metastatic foci

similar to the effects observed after primary surgery. This

explanation is further supported by the finding that surgical

approaches with different extents result in different recur-

rence risks, although with the same time rhythm (Fig. 3).

Specifically, the more extensive reconstruction modalities

DIEP/TRAM and bilateral surgical procedures give rise to

a higher early peak in comparison with unilateral implant

surgery. This difference is limited to the recurrence risk

level, which is differently modulated within the same time

cadence, while the two types of reconstruction do not affect

long-term outcome differently (Fig. 4).

The proposed explanation assumes that the risk of

clinical appearance of metastasis is dependent on the action

of surgery-related factors on the subclinical metastatic state

of the host. This assumption is confirmed by the marked

influence of both tumor size and nodal status on the hazard

Fig. 4 The probability of

recurrence over time, i.e., Crude

Cumulative Incidence (CCI),

was estimated according to

proper nonparametric estimator

adjusting for the presence of

competing events and was

compared between groups by

the Gray test. Simple unilateral

implant (black line) and more

extensive surgery such as DIEP/

TRAM or bilateral procedures

(red line). X-axis represents

time since reconstruction in

months. There is no observable

difference between the groups
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Fig. 5 Subgroup analysis of recurrence pattern by known prognostic

factors. Increasing T and N stages are associated with an enhancing

effect on preexisting recurrence risk. Left figure demonstrates the

recurrence dynamics for node-positive (red line) and node-negative

(blue line) reconstructed patients. Right figure demonstrates the

recurrence dynamics for reconstructed patients with tumors [2 cm
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level (Fig. 5). At diagnosis, these two well-known prog-

nostic factors indicate the recurrence risk during the dis-

ease course. Thus, it is coherent that an additional

triggering factor, such as delayed surgical reconstruction,

may result in different outcomes when patients with dif-

ferent underlying recurrence risk are involved.

When studying the relation between outcomes of

patients undergoing delayed reconstruction in comparison

with patients undergoing mastectomy without reconstruc-

tion, crucial problems emerge. In addition to the retro-

spective nature of such studies, the reconstructed group is

characterized by a selection event not yet occurred (and

therefore unknown) at the mastectomy time and, moreover,

occurring at varying patient-related times during follow-up,

thus raising important issues in the statistical analysis. To

overcome these drawbacks, we used two different

approaches. In the first approach, which has been fre-

quently adopted in this field in spite of its intrinsic naivety

[28, 29], we performed a matched random choice of the

control patients. For each reconstructed patient, we ran-

domly identified a matched control patient with similar

initial characteristics, selecting her among the not recon-

structed patients who were disease free at the date of

reconstruction of the considered patient. This matching

modality resulted in a good balance between the two sets of

patients (Table 1) and avoided drawbacks detectable in

published reports, such as dissimilar patient characteristics

(e.g., age) [40] or dissimilar prognostic factors [28, 29]. In
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Fig. 6 Recurrence pattern for the reconstructed patients and the

matched control patients with T = 0 at primary surgery. Red line

reconstructed patients. Blue line control patients. X-axis represents

months since primary surgery. Y-axis represents six-month hazard

rate

Fig. 7 The probability of recurrence over time, i.e., Crude Cumula-

tive Incidence (CCI), was estimated according to proper nonpara-

metric estimator adjusting for the presence of competing events and

was compared between groups by the Gray test. Red line recon-

structed patients. Blue line matched control patients. Despite match-

ing by age, time of diagnosis, and T and N stage, there is a

nonsignificant trend for a more favorable prognosis in the recon-

structed patients. X-axis represents time in months since reconstruc-

tion/reference day (see m&m) for reconstructed patients and control

patients, respectively. Y-axis represents accumulated recurrence-free

survival

Table 2 Hazard ratio for recurrence according to tumor

characteristics

HR 95 % CI

ER pos versus neg (18 months) 0.30 0.19 0.47

ER pos versus neg (60 months) 1.77 0.81 3.86

T2 versus T1 1.91 1.43 2.56

T3 versus T1 2.78 1.89 4.09

T4 versus T1 3.13 1.91 5.11

N? versus N- 1.98 1.52 2.59
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addition, the recurrence dynamics of matched controls,

when time origin was set at mastectomy (Fig. 6, blue line),

was coherent with the analogous hazard rate pattern

observable in similar patients from different databases [31].

It displays a first peak significantly higher than the corre-

sponding peak of reconstructed patients (Fig. 6, red line)

revealing that, in spite of the balanced initial prognostic

factors, matched control patients display worse prognosis

than reconstructed patients. This finding is consistent with

a population-based registry study analyzing Danish women

who received reconstruction with implants only [41].

In the second approach, we addressed the analysis in the

framework of multiple timescales in multistate models [35].

The regression analysis involved all 868 control patients

and 312 reconstructed patients. It accounted for the joint

effect of prognostic factors (e.g., tumor size, nodal status,

etc.) and, most importantly, the change in the hazard rate for

recurrence resulting from specific events, such as recon-

struction, occurring at varying time points. The multiple

scale analysis provides evidence that following recon-

struction women suffer a transitory, significant increase of

recurrence risk during the first 2 years in comparison with

not reconstructed patients (Fig. 8). This finding provides

structural evidence for the enhancing effect of reconstruc-

tive surgery on subclinical metastases, which brings on the

temporary raise of clinically evident recurrences. Such

behavior is suggestive when it is considered in the light of

the above-reported model. Indeed, the whole pattern would

suggest that the early peak may be caused by an event that

has been brought forward, and in the absence of recon-

struction were to be expected at a later time. Taken together,

the two analysis approaches provide evidence that recon-

structed patients (a) suffer increased surgery-related recur-

rence rate following the usual bimodal pattern and

(b) display disease-free survival that is not worse (maybe

even better) than that of not reconstructed patients (Fig. 8).

Although not directly comparable, the recurrence pat-

tern analysis apparently diverges somewhat from a previ-

ous investigation where trauma or intervening surgical

procedures unrelated to cancer were not associated with an

increased rate of breast cancer recurrence [42]. Still, the

fact that the effect of delayed reconstruction on the

recurrence dynamics does not translate into reduced

recurrence-free or overall survival is in keeping with most

reports on the same subject [28, 29, 40, 41, 43]. The reason

underlying the similar or relatively better long-term out-

come of reconstructed patients is presently undetermined.

Patients opting for reconstruction tend to be younger and

have less comorbidity. Most studies to date have focused

on immediate reconstruction [43–45]. We are inclined to

ascribe this finding to selection bias of patients receiving

reconstruction due to factors here unaccounted for, such as

socioeconomic conditions and better general health. The

former factor is related to the finding that patients who are

of lower socioeconomic status are more likely to have a

recurrence than women of higher social class [46].

Fig. 8 Multiple timescale analysis of the hazard ratio for recurrence

between the reconstructed patients and the controls in relation to time

since reconstruction. Dotted lines represent 95 % CI. X-axis

represents months since reconstruction/reference day. Y-axis repre-

sents the ratio between the six-month hazard for recurrence between

reconstructed patients and controls
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Furthermore, current smokers or diabetic patients are not

accepted for microvascular free (DIEP) or pedicle flap

surgery (TRAM). In addition, body mass index, which is a

prognostic factor in cancer [47, 48], would not be higher

than 30 in patients offered advanced reconstruction. Most

patients undergoing DIEP or TRAM procedures have a

secondary or even tertiary surgery performed due to cos-

metic purposes or complications. Thus, the observations

are measurements of the effect from the first extensive

reconstructive surgical procedure, independent of the

duration of reconstructive surgery or the number of surgi-

cal events. Again, such subsequent procedures might rep-

resent a possible bias and the observed effects might

therefore be diluted.

In conclusion, our study indicates that reconstructive

breast cancer surgery constitutes an independent stimulat-

ing event on the growth of micrometastases leading to

accelerated relapse rates. The effect is similar to that

observed after primary breast cancer surgery. Importantly,

this does not translate into worse long-term disease-free

survival. Our results may provide indirect evidence that

immediate reconstruction would be more beneficial than

delayed as this obviates one possible growth stimulating

event. Still, randomized trials assessing this question are

not ethically or practically feasible. Further studies are

ongoing and will shed more light on tumor biological

mechanisms behind the observed phenomenon.
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Abstract

Background: The aim of the research was to separate the distant metastasis (DM) enhancing effect due to breast
tumour removal from that due to surgical manoeuvre by itself.

Methods: DM dynamics following surgery for ipsilateral breast tumour recurrence (IBTR), contralateral breast cancer
(CBC) and delayed reconstruction (REC), which was performed after the original breast cancer surgical removal, was
analysed. A total of 338 patients with IBTR, 239 with CBC and 312 with REC were studied.

Results: The DM dynamics following IBTR, CBC and REC, when assessed with time origin at their surgical treatment,
is similar to the analogous pattern following primary tumour removal, with a first major peak at about 18 months
and a second lower one at about 5 years from surgery. The time span between primary tumour removal and the
second surgery is influential on DM risk levels for IBTR and CBC patients, not for REC patients.

Conclusions: The role of breast tumour removal is different from the role of surgery by itself. Our findings suggest
that the major effect of reconstructive surgery is microscopic metastasis acceleration, while breast tumour surgical
removal (either primary or IBTR or CBC) involves both tumour homeostasis interruption and microscopic metastasis
growth acceleration. The removal of a breast tumour would eliminate its homeostatic restrains on metastatic foci,
thus allowing metastasis development, which, in turn, would be supported by the forwarding action of the
mechanisms triggered by the surgical wounding.

Keywords: Breast cancer, Recurrence dynamics, Metastasis development, Second surgery, Tumour homeostasis,
Surgery-related metastasis acceleration

Background
In the middle of the nineteenth century, the arguments
set out by Virchow, who suggested that the disease starts
as a single focus within the breast, then migrates to the
axillary lymph nodes and ultimately to distant organs,
supported the Halsted operation that was adopted as the
default therapy worldwide [1]. However, among resected
patients, 30% of node-negative and 75% of node-positive
women still developed distant metastases and succumbed
[2]. The failure of mastectomy and other more aggressive
operations to cure patients and, moreover, novel

biology-based assumptions on the disease course [3] sug-
gesting that the extent of local treatment does not affect
survival supported a reduction of the extent of surgery.
Additionally, clinical investigations and mathematical
modelling advocated that surgical resection might not al-
ways be beneficial [4, 5] providing evidence that, while it
favourably modifies the natural history of breast cancer
for the majority of patients, it may also hasten the meta-
static development for a number of them, by triggering
growth of occult tumour deposits. The concepts under-
lying this new model extended to the clinical level the re-
sults of a protracted history of investigations lasting more
than a century [6].
Helpful hints about the new model were achieved

from analyses of post-resection recurrence dynamics in
early breast cancer patients undergoing potentially
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curative removal of the primary tumour [7, 8]. A model
assuming post-surgery acceleration of disease progres-
sion by a burst of growth in previously dormant micro-
metastases appeared to best fit the clinical data. Similar
findings were observed in non-small cell lung cancer [9].
While this acceleration apparently occurs at the time of
local treatment, it is still not deciphered whether this ef-
fect can be ascribed to primary tumour removal (e.g. to
removal of inhibitory factors) or to the surgical
manoeuvre per se (e.g. CTC release, immune suppres-
sion and pro-angiogenic stimulus of wounding) or to
both. This differentiation is important as it may open a
window to new therapeutic approaches.
Clues about this subject may be detected by the ana-

lysis of the recurrence dynamics in patients who
undergo subsequent breast surgical manoeuvres during
the follow-up of the disease in addition to primary
tumour surgical removal. Patients undergoing conserva-
tive surgery for their primary tumour may experience ip-
silateral breast tumour recurrence (IBTR), and others
may be diagnosed contralateral breast cancer (CBC)
whatever the surgical approach for the primary tumour
has been. Moreover, some patients undergoing mastec-
tomy as the first surgical treatment call for breast recon-
struction (REC) and undergo aesthetical surgery. We
hypothesized different metastatic recurrence dynamics
associated with the different surgical procedures due to
the clinical presence (IBTR and CBC) or absence (REC)
of a tumour reservoir in the breast. Therefore, we report
here findings from the analysis of distant metastasis
(DM) dynamics following IBTR, CBC and REC, which
was carried out with the aim of unravelling the different
roles, if any, of the two possible factors, i.e. breast
tumour removal and surgical manoeuvre by itself.

Patients and methods
At the National Cancer Institute of Milan, three ran-
domized clinical trials have been carried out in the past,
investigating the role of different surgical approaches for
primary tumour removal. Moreover, since preliminary
results of the first trial on the breast-conserving treat-
ment for early breast cancer, which provided evidence
that conservative surgery plus chest wall radiotherapy
was comparable to more aggressive resections [10], pa-
tients received breast-conserving treatment as routine
practice outside randomized clinical trials (out-trial
patients). All axillary node-positive (N+) patients were
offered systemic adjuvant treatment with cyclophospha-
mide + methotrexate + fluorouracil (CMF) or CMF plus
doxorubicin, while no further post-surgical systemic
treatment was recommended to axillary node-negative
(N−) patients. Adjuvant hormone therapy was not uti-
lized within the randomized clinical trials and seldom
employed for out-trial patients, as it was not considered

mandatory at that time. Two other randomized clinical
trials were accomplished on patients who, following
mastectomy or breast-conserving treatment, were found
to be axillary node positive (N+). Patients with one to
three positive axillary lymph nodes were randomly allo-
cated to receive either 12 courses of CMF or 8 courses
of the same regimen followed by 4 courses of doxorubi-
cin, while patients with > 3 positive axillary nodes were
randomized to receive either four courses of doxorubicin
followed by 8 courses of CMF or 2 courses of CMF and
1 course of doxorubicin for a total of 12 courses. All
clinical data from patients enrolled into the reported
clinical trials or treated outside of trials were systematic-
ally recorded and stored in standard format. Detailed de-
scriptions of patients, treatments and follow-up
modalities have been reported elsewhere [10–14]. In par-
ticular, data for patients suffering IBTR are reported in
ref. [15].
A further database was analysed, including all breast

cancer patients undergoing mastectomy who underwent
delayed reconstructive surgery at Haukeland University
Hospital, Bergen, Norway. The reconstructive proce-
dures were implant surgery, implants combined with
flaps, deep inferior epigastric perforator flaps and trans-
verse rectus abdominis myo-cutaneous flaps. A paired
control was randomly selected from patients with identi-
cal T and N stages, age ± 2 years, and follow-up without
recurrence equal to or longer than the time to recon-
struction of the respective matched reconstructed pa-
tient (defined as “reference time”, i.e. the time origin for
the analysis of DM dynamics for controls). Patient char-
acteristics and details of the study have been reported in
ref. [16]. All studies supplying the analysed databases
were approved by the institutional ethics committees
and review boards in accordance with the Declaration of
Helsinki.
The analysis of recurrence dynamics was focused on

DM as the first event after the second surgery (the
studied timing periods are outlined in Fig. 1): DM-free
survival times were calculated as time elapsed since the
second surgery (for IBTR, CBC or REC) to DM occur-
rence or to the last documented follow-up with no evi-
dence of disease. Second primary tumours, including
contralateral breast cancers, were considered as com-
peting events, and the corresponding event-free
survival times were censored at the time of their occur-
rence. The DM dynamics was studied by estimating
with the life-table method the hazard rate for DM, i.e.
the conditional probability of manifesting DM during a
certain time span, given that the patient is clinically
DM free at the beginning of the interval [17]. A
discretization of the time axis in 6-month units was ap-
plied, and a Kernel-like smoothing procedure [18] was
adopted.
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Results
A CONSORT diagram for IBTR, CBC and REC patients
and matched controls is reported in Fig. 2.
Among patients undergoing conservative surgery, 92%

received chest wall radiation therapy, mostly at the total
dose of 50 Gy (daily dose 2 Gy) with high energy plus 10
Gy (daily dose 2 Gy) as a boost with orthovoltage to the
ipsilateral breast. Following the diagnosis of IBTR or
CBC, the treatment was decided on an individual basis.
Median follow-up times after IBTR and after CBC were
151 months and 144 months, respectively. The number
of patients suffering DM diagnosis within 10 years from
IBTR and CBC was 138 and 84, respectively.
In the Norwegian study, the matched control group in-

cluded patients who were extracted from a total of 868 (see
the “Patients and Methods” section in ref. [16]). Median
follow-up after reconstruction or reference time for con-
trols was 137months. The number of patients suffering
DM within 10 years for REC and controls was 44 and 45,
respectively.
Main patient characteristics at primary tumour treat-

ment are reported in Table 1. In spite of the wide time
span of patient accrual, the homogeneity of main prog-
nostic factors across the databases, with the exception of
tumour size in REC patients, is noteworthy. Axillary
node involvement is near identical, as well as the fre-
quency of ER-positive and ER-negative tumours among
assessed ones, despite the fact that ER content was mea-
sured at different frequencies in the three series. Any-
way, the DM dynamics of ER+ and ER− cancer have
similar timing pattern [19] and, therefore, no modifica-
tion of surgery effects on the time patterns was expected
by oestrogen receptor levels. Moreover, as analysed pa-
tients suffering IBTR and CBC did not receive adjuvant
endocrine therapy just like 42% of ER+ reconstructed
patients, the question of whether endocrine therapy may
alter DM patterns in a modern cohort remains open.
HER2 status was not available and, accordingly, no spe-
cific treatment was administered.

The distribution of surgical treatments for IBTR, CBC
or REC during the follow-up subsequent to primary
tumour removal is reported in Fig. 3. Reconstructions
were performed mainly during the first 5 years (median
time 2.5 years) while IBTR removal had a more pro-
tracted distribution (median time 4.3 years) and a struc-
tured pattern [20]. CBC treatments have a steadier
pattern consistent with the notion that the occurrence
of a CBC may be considered a random event not
time-related with primary tumour [21, 22].
The DM dynamics was analysed for the four groups

in a timeframe with t = 0 at second surgery (Figs. 4
and 5 solid lines). Moreover, the influence of the time
elapsed from primary tumour removal to the second
surgical manoeuvre [time to second surgery] on the
hazard rate for DM pattern was investigated as well
(Figs. 4 and 5 dashed lines). The hazard rate pattern is
similar for the three surgical groups with a first major
peak at about 18 months and a second lower one at
about 5 years from the second surgery, although the
three levels of recurrence risk are different. Time to
second surgery is apparently not influential for recon-
structed patients, whereas it changes the first peak
height for the other sets, showing that the influence is
maximal for early re-operations, decreases afterwards
and apparently disappears for time to second surgery
values larger than 2 to 3 years. To ascertain whether
factors known to be influent on the risk level may
drive the described phenomenon, we analysed the
DM dynamics by time to second surgery in IBTR pa-
tients pooled by axillary node status (node positive vs
node negative) and by second surgery extent (mastec-
tomy vs conservative surgery). In all analysed subsets,
the time to second surgery aroused the same hazard
rate pattern, as Fig. 5 exemplifies for the axillary
nodal involvement. A comparison between REC pa-
tients and controls for DM hazard rate pattern is re-
ported in Fig. 6, where the accelerating effect of
surgery on the DM dynamics is quite evident.

Fig. 1 Analysed times: time to second surgery (from primary cancer surgery to surgery for ipsilateral breast tumour recurrence (IBTR), contralateral
breast cancer (CBC) or breast reconstruction (REC)) and time to distant metastasis (from the second surgery to the appearance of distant metastasis)
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Discussion
Our analysis on breast cancer patients undergoing breast
surgery for IBTR, CBC and REC provides two main re-
sults: (1) the DM dynamics following a new breast surgi-
cal manoeuvre performed after primary tumour removal
is similar to the analogous dynamics following primary
tumour removal and (2) the time span between the two
operations is not associated with changes in peak timing;
yet, for IBTR and CBC patients, it is related to progres-
sive reduction of DM risk levels, while REC patients dis-
play similar DM risk levels for all time spans.
It should be emphasized that the three surgeries are per-

formed in different clinical situations. Surgery for IBTR is
strictly related to the specific multimodal dynamics of
IBTR appearance [15] while CBC diagnosis and

subsequent removal is an independent event with steady
hazard rate [21, 22] and, finally, REC surgery is related to
the patient’s desire and only indirectly to clinical condi-
tions. Therefore, when comparative analyses among pa-
tients with such different tumour-host settings at the time
of surgery display similar behaviours, they are reasonably
attributable to the act of treatment per se. Our findings
suggest that there is a metastasis-enhancing effect in all
surgical interventions, which displays, however, different
traits related to whether a macroscopic breast tumour is
removed or not.
The enhancing effect of surgical primary tumour re-

moval on metastatic disease is well supported by a long
history of investigations [6] and from a few clinical stud-
ies in humans (e.g. [23]). It enables to explain the

Fig. 2 A CONSORT diagram for IBTR, CBC, REC and control patients. Analysed data were from trials carried out between 1975 and 1990 (IBTR,
CBC) and between 1977 and 2007 (REC, controls)
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multipeak pattern of the hazard rate for recurrence in
patients with early breast cancer undergoing surgery or
surgery plus adjuvant chemotherapy [7]. Here, we con-
firm that this enhancing effect is observable even when
surgical manoeuvres are performed in the breast area at
a later date. The result of our analysis apparently

diverges from the outcome of a previous investigation
on the same subject [24] suggesting that traumas or
intervening surgical procedures unrelated to cancer are
not associated with an increased cumulative rate of
breast cancer recurrence in a 2-year window. Although
this discrepancy may be related to the shortness of the

Table 1 Patient characteristics

IBTR (338) CBC (239) Rec (312) Controls (312)

Median age at diagnosis (years) 45 48 48 49

25%–75% 39–52 42–56 42–53 43–53

Range 21–69 22–75 29–73 28–71

Tumour size (%)

T1 85 84 61 62

T2 12 15 29 30

T3/4 – – 8 7

Missing 3 1 2 1

Node negative (%) 70 64 68 67

Node positive (%) 30 36 32 33

ER negative (%) 16 16 20 19

ER positive (%) 63 53 70 70

ER missing (%) 21 31 10 11

Fig. 3 Distribution of surgical treatments for IBTR (red line), CBC (fuchsia line) and reconstruction (blue line) during the follow-up with t = 0 at
primary tumour removal. RECs were performed mainly during the first 5 years (median time 2.5 years) while IBTR removal had a more protracted
distribution (median time 4.3 years) and CBCs had a steadier pattern consistent with the notion that the occurrence of a CBC may be considered
a random event
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analysed interval, a subtler inference could be consid-
ered on the basis of the known topological specificity of
cell populations [25, 26] and of the finding that, in an
animal model, acceleration in tumour growth by
mobilization of bone marrow-derived cells may be dif-
ferent after operative injuries to different organs [27]. In-
deed, one could speculate that surgery in the breast area
may stimulate distant breast cancer foci, unlike surgery
in other sites. Unfortunately, this hypothesis cannot be
disentangled since data on non-breast interventions
were not available for comparison.
Of note, the hazard rate peaks, in particular the first

one, have different heights in IBTR, CBC and REC (Fig. 4).
This occurrence is in keeping with the notion that the
sudden acceleration of metastasis development takes ac-
tion on the underlying DM dynamics, which is different in
IBTR, CBC and REC patients. Indeed, patients with IBTR
have an intrinsic high risk of DM (similar to N+ patients)

that was unpredictable by the usual prognostic factors at
the initial treatment and that is revealed when IBTR
emerges in advance of the competing DM events [15, 28].
In comparison with these patients, women suffering CBC
display a considerably lower first hazard rate peak (about
60% peak to peak) in keeping with the concept that CBC
is a second primary, unrelated to the first one [21, 29, 30].
Accordingly, patients with CBC actually fit to a population
with “average” DM risk [31]. Finally, patients undergoing
REC have better prognosis due to favourable selection cri-
teria: they had no previous recurrence event and factors
such as smoking, obesity and diabetes excluded patients
from being offered complex breast reconstructive proce-
dures. Moreover, the baseline risk in this population may
be influenced by features here not accounted for, such as
socioeconomic conditions, better general health and low
body mass index, which is recently emerging as a prog-
nostic factor in breast cancer [32].

Fig. 4 Distant metastasis dynamics following surgery for IBTR, contralateral breast tumour and reconstruction (t = 0 at second surgery). The hazard
rate pattern is similar for the three groups with a first major peak at about 24 months and a second lower one at about 5 years. The analysis was
performed for all patients (bold lines) and, moreover, by time from primary tumour removal to second surgery as well (dashed lines). While this
factor is not influent for reconstructed patients, it changes the first peak height for surgeries removing neoplastic nodules if the time to second
surgery is less than about 3 years. Confidence intervals on the estimated hazard rates at the first peak position are reported for all patients and
those with time to second surgery more than 48. Y-axis reports hazard rates for DM, i.e. the conditional probability of manifesting DM during an
interval of 6 months, given that the patient is clinically DM free at the beginning of the interval. X-axis units are months between primary tumour
removal and the second surgical manoeuvre
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While there is a substantial body of evidence indicat-
ing that the surgery-associated tissue trauma and wound
healing can promote growth, angiogenesis and meta-
static ability of cancers [33], data on the possible homeo-
static connection between primary tumour and its
metastases are lacking. Our finding that the time to sec-
ond surgery is influential on the risk level only for IBTR
and CBC patients and not for REC patients suggests that
tumour removal, which occurs in the former groups
only, plays a specific role on metastasis development.
This idea is in agreement with the recalled model of
breast cancer metastatic development [7] if one takes
into account that the manifestation of IBTR or CBC, i.e.
of a macroscopic breast tumour, is preceded by a num-
ber of months of subclinical disease. According to the
tumour homeostasis concept [7], during this time span,
the growing tumour exerts constraints on distant micro-
scopic foci, somehow mimicking the homeostatic pro-
cesses underlying the control of size in adult organs and
organisms [34, 35]. Although the molecular characteris-
tics of these mechanisms are largely unknown, recent re-
ports have provided initial interesting findings [36, 37],
which may have oncological important implications as
well [38].
In patients suffering IBTR or CBC, a number of meta-

static foci are related to the previous breast cancer, al-
though a few of them may be associated with the new
breast neoplastic lump. The emerging restrictive inter-
ference results into some freeze of the microscopic

metastases in the conditions existing when the new
homeostatic action is starting. Taking into account the
hazard rate dynamics for the DM related to the primary
breast cancer [7], such a freeze should have effects de-
pending on time to second surgery: the shorter this time,
the higher the underlying DM risk. Consequently, while
the DM dynamics after the IBTR or CBC removal main-
tains the usual time-related pattern, the corresponding
hazard rate level would depend on time to second sur-
gery. Following 2 to 3 years, the time to second surgery
loses its prognostic value, in keeping with the drop of
DM risk attributable to the primary breast cancer [7].
The finding that patients undergoing REC do not

present any effect from the time to second surgery, while
displaying the usual time-related pattern in the
post-reconstruction DM dynamics, suggests that the re-
constructive surgical manoeuvre, in the absence of any
breast tumour removal, may act on metastasis develop-
ment differently from IBRT and CBC surgical removal.
As a working hypothesis, it may be assumed that surgi-
cal manoeuvres prominently act on the microenviron-
ment of tumour foci turning it into conducive (e.g. by
activating angiogenesis) and thus sustaining growth [39].
This facilitating action would simply speed up the clin-
ical appearance of some metastases that would emerge
later according to their own dynamics. This hypothesis
is suggested by the comparison between the hazard rate
patterns for DM in REC patients and in the matched
paired control group (Fig. 6). This comparison suggests

Fig. 5 Distant metastasis dynamics following surgery for IBTR (t = 0 at IBTR) in patients with axillary node positive (left) or negative (right). The
analysis was performed for all patients and, moreover, by time from primary tumour removal to surgery for IBTR. While nodal status affects the
risk level, which is higher for node-positive patients, the time to surgery for IBTR is still influential on the first peak height if it is less than about 3
years. Y-axis reports hazard rates for DM, i.e. the conditional probability of manifesting DM during an interval of 6 months, given that the patient
is clinically DM free at the beginning of the interval. X-axis units are months between primary tumour removal and the second
surgical manoeuvre
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that the reconstruction is associated with a decrease of
the hazard rate for DM at the fourth year and a con-
comitant increase of the hazard rate at the second year.
The present findings are coherent with and integrate

the evidence coming from separate studies on IBTR and
REC, resorting to advanced time scale statistical model-
ling [16, 40]. The overall picture provided support to the
biological hypothesis, underlying the observed distant
metastasis dynamics following surgeries performed after
primary breast cancer surgical removal, according to
different tumour homeostasis-related and surgical
wound-related effects on metastasis development.
The analysed databases did not included data on

HER2, preventing investigations on triple-negative
patients. Moreover, we could not analyse the possible
role of anaesthetic management, which potentially
influences the long-term outcome most probably in
patients undergoing more extended surgery [41], due
to missing information about this factor.

Conclusions
In summary, the findings of the present analysis support
the concept that the impact of breast tumour surgical

removal (either primary or IBTR or CBC) on micro-
scopic metastases is twofold, inasmuch as two different
factors, i.e. tumour homeostasis interruption and surgi-
cal wound effects, are involved. The removal of a breast
tumour would result into the sudden elimination of
the restrains on metastatic foci, thus allowing metas-
tasis development, which, in turn, would be supported
by the forwarding action of the mechanisms triggered
by the surgical wounding. This surgery-related
phenomenon would underlie the behaviour of DMs in
the REC group, where no detectable tumour deposit
is removed. While associations of such latter
phenomenon with surgical-related inflammatory con-
ditions and different anaesthesia modalities are sug-
gested from a few clinical data [41–43], the biological
mechanisms underlying tumour homeostasis are
largely unknown. Investigations in this field are
urgently warranted.
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Fig. 6 DM dynamics for reconstructed patients and paired controls. Following surgery for reconstruction (t = 0 at second surgery), the hazard rate
for DM displays a common pattern that is not dependent on the time from primary tumour removal to second surgery. On the contrary, the
analogous analysis for controls (t = 0 at reference time, as defined in the “Patients and methods” section) displays a progressive change of the
DM dynamics that is compatible with the time-related DM risk expected after primary tumour removal in the absence of the further surgical
manoeuvre. Y-axis units are hazard rates for DM, i.e. the conditional probability of manifesting DM during an interval of 6 months, given that the
patient is clinically DM free at the beginning of the interval. X-axis units are months between primary tumour removal and the second
surgical manoeuvre

Demicheli et al. Breast Cancer Research           (2019) 21:57 Page 8 of 10



Acknowledgements
This work was partly supported by the Associazione Italiana per la Ricerca sul
Cancro AIRC. The authors thank anonymous reviewers for their very useful
comments.

Funding
None.

Availability of data and materials
The datasets analysed during the current study are available from the
corresponding author on reasonable request.

Authors’ contributions
RD contributed to the conceptualization, formal analysis, writing of the
original draft and writing as well as reviewing and editing of the manuscript.
HD and OS provided the resources and contributed to the writing as well as
reviewing and editing of the manuscript. EB provided the resources and
contributed to the formal analysis, writing of the original draft and writing as
well as reviewing and editing of the manuscript. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
All studies supplying the analysed databases were approved by the
institutional ethics committees and review boards in accordance with the
Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Laboratory of Medical Statistics, Biometry and Bioinformatics “Giulio A.
Maccacaro”, Department of Clinical Sciences and Community Health,
University of Milan Campus Cascina Rosa, Fondazione IRCCS Istituto
Nazionale Tumori, via Vanzetti 5, 20133 Milan, Italy. 2Department of
Oncology, Haukeland University Hospital, N 5021 Bergen, Norway.
3Department of Clinical Science, University of Bergen, N 5012 Bergen,
Norway. 4Centre of Cancer Biomarkers, University of Bergen, N 5012 Bergen,
Norway. 5Laboratory of Medical Statistics and Epidemiology, “Giulio A.
Maccacaro”, Department of Clinical Sciences and Community Health,
University of Milan, Milan, Italy.

Received: 18 October 2018 Accepted: 16 April 2019

References
1. Baum M, Demicheli R, Hrushesky W, Retsky M. Does surgery unfavourably

perturb the “natural history” of early breast cancer by accelerating the
appearance of distant metastases? Eur J Cancer. 2005;41:508.

2. Brinkley D, Haybittle JL. A 15 year follow up study of patients treated for
carcinoma of the breast. British J Radiology. 1968;41:215.

3. Fisher B. Laboratory and clinical research in breast cancer: a personal
adventure: the David A. Karnofsky memorial lecture. Cancer Res. 1980;40:3863.

4. Demicheli R, Retsky MW, Swartzendruber DE, Bonadonna G. Proposal for a new
model of breast cancer metastatic development. Ann Oncol. 1997;8:1075.

5. Retsky MW, Demicheli R, Swartzendruber DE, Bame PD, Wardwell RH,
Bonadonna G, et al. Computer simulation of a breast cancer metastasis
model. Breast Cancer Res Treat. 1997;45:193.

6. Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID. The effects of
surgery on tumor growth: a century of investigations. Ann Oncol. 2008;19:1821.

7. Demicheli R, Retsky MW, Hrushesky WJM, Baum M. Tumor dormancy and
surgery-driven dormancy interruption in breast cancer: learning from
failures. Nature Clin Pract Oncol. 2007;4:699.

8. Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast
cancer after primary therapy. J Clin Oncol. 1996;14:2738.

9. Demicheli R, Fornili M, Ambrogi F, Higgins K, Boyd JA, Biganzoli E, et al.
Recurrence dynamics for non-small-cell lung cancer: effect of surgery on
the development of metastases. J Thorac Oncol. 2012;7:723.

10. Veronesi U, Banfi A, Del Vecchio M, Saccozzi R, Clemente C, Greco M, et al.
Comparison of Halsted mastectomy with quadrantectomy, axillary
dissection, and radiotherapy in early breast cancer: long-term results. Eur J
Cancer Clin Oncol. 1986;22:1085.

11. Veronesi U, Luini A, Del Vecchio M, Greco M, Galimberti V, Merson M, et al.
Radiotherapy after breast preserving surgery in women with localized
cancer of the breast. N Engl J Med. 1993;328:1587.

12. Veronesi U, Volterrani F, Luini A, Saccozzi R, Del Vecchio M, Zucali R, et al.
Quadrantectomy versus lumpectomy for small size breast cancer. Eur J
Cancer. 1990;26:671.

13. Moliterni A, Bonadonna G, Valagussa P, Ferrari L, Zambetti M.
Cyclophosphamide, methotrexate, and fluorouracil with and without
doxorubicin in the adjuvant treatment of resectable breast cancer with one
to three positive axillary nodes. J Clin Oncol. 1991;9:1124.

14. Buzzoni R, Bonadonna G, Valagussa P, Zambetti M. Adjuvant chemotherapy
with doxorubicin plus cyclophosphamide, methotrexate, and fluorouracil in
the treatment of resectable breast cancer with more than three positive
axillary nodes. J Clin Oncol. 1991;9:2134.

15. Demicheli R, Ardoino I, Ambrogi F, Agresti R, Biganzoli E. Significance of
ipsilateral breast tumour recurrence after breast conserving treatment: role
of surgical removal. Chin J Cancer Res. 2013;25:22.

16. Dillekås H, Demicheli R, Ardoino I, Jensen SA, Biganzoli E, Straume O. The
recurrence pattern following delayed breast reconstruction after
mastectomy for breast cancer suggests a systemic effect of surgery on
occult dormant micrometastases. Breast Cancer Res Treat. 2016;158:169.

17. Marubini E, Valsecchi M. Analysing survival data from clinical trials and
observational studies. Chichester: Wiley; 2004.

18. Ramlau-Hansen. Smoothing counting process intensities by means of Kernel
functions. Ann Statistics. 1983;11:453.

19. Demicheli R, Ardoino I, Boracchi P, Coradini D, Agresti R, Ferraris C,
Gennaro M, Hrushesky WJ, Biganzoli E. Recurrence and mortality
according to estrogen receptor status for breast cancer patients
undergoing conservative surgery. Ipsilateral breast tumour recurrence
dynamics provides clues for tumour biology within the residual breast.
BMC Cancer. 2010;30(10):656.

20. Demicheli R, Ardoino I, Boracchi P, Lozza L, Biganzoli E. Ipsilateral breast
tumour recurrence (IBTR) dynamics in breast conserving treatments with or
without radiotherapy. Int J Radiat Biol. 2010;86:542.

21. Rasmussen CB, Kjær SK, Ejlertsen B, Andersson M, Jensen MB, Christensen J,
et al. Incidence of metachronous contralateral breast cancer in Denmark
1978-2009. Int J Epidemiol. 2014;43:1855.

22. Demicheli R, Biganzoli E, Boracchi P, Greco M, Retsky MW. Recurrence dynamics
does not depend on the recurrence site. Breast Cancer Res. 2008;10:R83.

23. Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ. Outgrowth of
human liver metastases after resection of the primary colorectal tumor: a
shift in the balance between apoptosis and proliferation. Int J Cancer. 2006;
119:1249.

24. Allawi Z, Cuzick J, Baum M. Does trauma or an intercurrent surgical
intervention lead to a short-term increase in breast cancer recurrence rates?
Ann Oncol. 2012;23:866.

25. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic
demarcation by positional variation in fibroblast gene expression programs.
PLoS Genet. 2006;2:1084.

26. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, et
al. Endothelial cell diversity revealed by global expression profiling. Proc
Natl Acad Sci. 2003;100:10623.

27. Takemoto Y, Li TS, Kubo M, Ohshima M, Ueda K, Harada E, et al. Operative
injury accelerates tumour growth by inducing mobilization and recruitment
of bone marrow-derived stem cells. Surgery. 2011;149:792.

28. Fisher B, Anderson D, Fisher ER, Redmond C, Wickerham DL, Wolmark N, et
al. Significance of ipsilateral breast tumour recurrence after lumpectomy.
Lancet. 1991;338:327.

29. Broet P, de la Rochefordiere a, Scholl SM, Fourquet A, Mosseri M, Durand JC,
et al. Contralateral breast cancer: annual incidence and risk parameters. J
Clin Oncol. 1995;13:1578.

30. Janschek E, Kandioler-Eckersberger D, Ludwig C, Kappel S, Wolf B, Taucher S,
et al. Contralateral breast cancer: molecular differentiation between
metastasis and second primary cancer. Breast Cancer Res Treat. 2001;67:1.

Demicheli et al. Breast Cancer Research           (2019) 21:57 Page 9 of 10



31. Verkooijen HM, Chatelain V, Fioretta G, Vlastos G, Rapiti E, Sappino AP,
Bouchardy C, Chappuis PO. Survival after bilateral breast cancer: results from
a population-based study. Breast Cancer Res Treat. 2007;105:347.

32. Chan DS, Norat NT. Obesity and breast cancer: not only a risk factor of the
disease. Curr Treat Options in Oncol. 2015;16:22.

33. Ceelen W, Pattyn P, Mareel M. Surgery, wound healing, and metastasis:
recent insights and clinical implications. Crit Rev Oncol Hematol. 2014;89:16.

34. Potter CJ, Xu T. Mechanisms of size control. Curr Opin Genet Dev. 2001;11:279.
35. Stanger BZ. The biology of organ size determination. Diabetes Obes Metab.

2008;10 Suppl 4:16.
36. Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development,

homeostasis and regeneration. Curr Opin Cell Biol. 2018;49:99.
37. Wang Y, Yu A, Yu FX. The hippo pathway in tissue homeostasis and

regeneration. Protein Cell. 2017;8:349.
38. Hong L, Cai Y, Jiang M, Zhou D, Chen L. The Hippo signaling pathway in

liver regeneration and tumorigenesis. Acta Biochim Biophys Sin. 2015;47:46.
39. Retsky MW, Demicheli R, Hrushesky WJM, Forget P, DeKock M, Gukas I, et al.

Reduction of breast cancer relapses with perioperative non-steroidal anti-
inflammatory drugs: new findings and a review. Curr Med Chem. 2013;20:4163.

40. Gennaro M, Di Cosimo S, Ardoino I, Veneroni S, Mariani L, Daidone MG, de
Braud F, Apolone G, Biganzoli E, Demicheli R. Dynamics of the hazard for
distant metastases after ipsilateral breast tumor recurrence according to
estrogen receptor status: an analysis of 2851 patients. Breast. 2018;40:131.

41. Sessler DI, Riedel B. Anesthesia and cancer recurrence: context for divergent
study outcomes. Anesthesiology. 2019;130:3.

42. Pérez-González O, Cuéllar-Guzmán LF, Soliz J, Cata JP. Impact of regional
anesthesia on recurrence, metastasis, and immune response in breast
cancer surgery: a systematic review of the literature. Reg Anesth Pain Med.
2017;42:751.

43. Love RR, Love SM. Peri-operative biology in primary breast cancer: a
credible therapeutic target. Breast Cancer Res Treat. 2016;156(3):411.

Demicheli et al. Breast Cancer Research           (2019) 21:57 Page 10 of 10



IV





Graphic design: Com
m

unication Division, UiB  /  Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230852729 (print)
9788230861110 (PDF)


	154551 Hanna Elisabet Dillekås_Elektronisk
	154551 Hanna Elisabet Dillekås_innmat
	154551 Hanna Elisabet DillekåsElektronsk_bakside

