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Abstract 

Background: Despite adequate glycemic control, the risks of perinatal complications 

and fetal macrosomia are increased in pregnancies with pregestational diabetes 

(PGDM). Maternal overweight, obesity and excess gestational weight gain add 

significantly to the risk of large for gestational age offspring in PGDM pregnancies. 

Umbilical perfusion of the fetal liver has a key role in regulating fetal growth. We 

hypothesized that PGDM alters umbilical venous distribution and fetal liver blood 

flow depending on maternal anthropometry and glycemic control. 

Aims: The aims were to study a population with PGDM to 1) Compare the 

longitudinal development of the venous liver flow with a low-risk population 2) 

Assess the relation between maternal HbA1C and fetal venous liver flow 3) Explore 

the influence of maternal body mass index (BMI) and weekly gestational weight gain 

(GWG) on the venous liver flow 4) Test if fetal flow was related to birthweight 

differently in PGDM compared with the reference population.  

Materials and methods: In a prospective longitudinal observational study, 49 

women with PGDM underwent monthly ultrasound examinations in gestational 

weeks 20 – 36. The time average maximum blood velocity was measured by Doppler 

in the umbilical vein (UV), ductus venosus (DV), left portal vein (LPV) and portal 

vein (PV). The inner vessel diameter was measured in UV, DV and PV, and the blood 

flow was calculated. Flow was normalized for estimated fetal weight.  

 

Mean and percentile curves were modelled by multilevel regression and compared 

with reference curves from a low-risk population (n=160). In addition, differences 

between mean fetal flow z -scores in the PGDM and low-risk populations were tested 

by independent sample t-test. HbA1C was measured in the first trimester and the 

relation to fetal venous flow was assessed by multilevel regression. 

 

Pre-pregnancy BMI and weekly GWG were calculated from self-reported pre-

pregnancy weight and maternal height, and the last maternal weight that was 

measured before delivery. ANOVA was used to test fetal flow differences between 

the BMI and GWG categories, and to test differences between birthweight in fetal 

flow categories. The impact of BMI and weekly GWG on the fetal flow variables was 

investigated by log-likelihood statistics. 

 
Results: Compared with the reference, UV flow, LPV velocity, umbilical venous 

liver flow and total venous liver flow were larger, and the DV flow was smaller in 

PGDM pregnancies. In the PGDM population birthweights were high and when 
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normalized for estimated fetal weight the UV and total venous liver flow were 

smaller than the reference values. The most prominent deviations from the reference 

curves were seen after 30 weeks of gestation and near term.  

 

DV shunting and PV fraction of total venous liver flow were negatively, and LPV 

velocity positively related to first trimester HbA1C.  

 

There was a graded positive association between UV flow, umbilical venous liver 

flow, total venous liver flow, LPV velocity and birthweight, and this effect was more 

pronounced in PGDM pregnancies than in the low-risk reference population.  BMI 

and GWG modified venous liver flow to a larger extent in PGDM pregnancies than in 

the reference population. Overweight women with PGDM had the highest umbilical 

venous liver flow, total venous liver flow and LPV velocity, while PV fraction was 

lower. Those with excessive GWG had the largest UV flow, umbilical venous liver 

flow and LPV velocity, and lower PV fraction, compared with the other GWG 

categories.  
 
Conclusion: This study provides new insight to the fetal development and the 

physiological mechanisms contributing to increased risks in PGDM pregnancies. UV 

flow to the liver was prioritized at the expense of DV shunting. Reduced DV shunting 

could increase neonatal risks by inhibiting fetal compensatory responses to hypoxia 

near term and during labour. 

 

Increased distribution of UV blood to the liver contributed to larger birthweight in 

PGDM pregnancies, and maternal glycemic control influences the distribution of fetal 

liver flow.  After 30 gestational weeks however, the blunted development of the 

umbilical venous liver flow caused an increasing mismatch between fetal growth and 

venous blood supply in the third trimester. The modification of fetal flow and 

birthweight by BMI and GWG was larger in PGDM pregnancies than in the reference 

population.  

 

Our study supports the concept that fetal liver perfusion is an important regulator of 

fetal growth.  We found this mechanism to be augmented in PGDM pregnancies.  

  



 12 

What was already known What this study adds 

Paper I 

In low-risk pregnancies, umbilical venous (UV) 
and normalized UV flow increase during the 
second half of pregnancy with blunting near term. 

In fetal growth restriction (FGR) the UV flow is 
reduced depending on the degree of circulatory 

compromise. UV flow is higher in macrosomic 
fetuses of healthy women, also when normalized 
for fetal weight. 

In low-risk pregnancies, 20-30% of the UV flow 

is shunted through the ductus venosus (DV). Non-

diabetic macrosomic fetuses shunt less UV blood 
through the DV in late pregnancy. In FGR a 

higher proportion of the UV flow is shunted 
through the DV.  

 

In pregnancies with pregestational diabetes 
mellitus (PGDM) UV flow was larger than in 
low-risk pregnancies, but reduced when 

normalized for fetal weight. 

In pregnancies with PGDM, the DV flow, 

normalized DV flow and DV shunt fraction 
were lower, and this reduction was more 
pronounced near term. There was a negative 

relation between the degree of DV shunting, and 
maternal glycemic control in the first trimester 

(HbA1C).  

The difference in estimated flow between the 
reference and pregnancies with PGDM was 

caused by larger UV size, and lower DV flow 
velocity.  

Paper II 

The flow velocity in the left portal vein, portal 

vein flow and contribution to the total venous 
liver supply increases towards term in low-risk 

pregnancies. In macrosomic fetuses of healthy 
mothers, liver flow volumes are higher than the 

reference, but similar when the flow is normalised 

for fetal weight. In fetal growth restriction the 
total venous liver flow is reduced, also relative to 

fetal weight. 

Fetal liver volume is positively related to HbA1C 
in pregnancies with diabetes.  

 

In PGDM pregnancies, the fetal venous liver 

flow was larger than the reference before 30 
gestational weeks. After this time, when 

normalized for fetal weight, total venous liver 
flow was smaller. 

The left portal vein velocity as a measure of UV 

flow to the right liver lobe was positively related 
to maternal glycemic control in the first 

trimester, while the portal fraction of the total 
venous liver flow was negatively related to first 
trimester HbA1C, in PGDM pregnancies.  

Paper III 

In low-risk pregnancies, low maternal weight 
gain is associated with a preferential supply of 

UV blood to the left liver lobe.  

In PGDM maternal weight and weight gain is 
related to degree of overgrowth and macrosomia, 

even when the maternal glycemic control is good.  

 

 

The association between UV flow distribution 
and birthweight was more pronounced in PGDM 

pregnancies than in the low-risk population. 

In pregnancies with PGDM, body mass index 
and gestational weight gain modified fetal 

venous liver flow. Maternal overweight and 
excessive weight gain was associated with 

higher umbilical and total venous liver flows. 

Women with PGDM combined with overweight 
or excessive weight gain gave birth to neonates 

with the highest birthweights.  
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1. Introduction 

1.1 Diabetes in pregnancy 

1.1.1 History 

Descriptions of a condition causing “too great emptying of urine” appeared in Egypt 

around 1500 B.C and “sweet urine” was noted in India, but it was the Greek 

physician Aretaeus (probably 1
st
 century A.D) who first defined diabetes (Fig.1) (3).  

Until the discovery of insulin in 1921, by the Banting, Best and MacLeod 

collaboration, treatment was primitive and life expectancy short for people with 

diabetes mellitus (4, 5).  Consequently, pregnancies in women with diabetes were 

very rare, and according to the 1920 edition of Williams Textbook of Obstetrics, the 

prognosis was “ominous for mother and child”.  Indeed, women with diabetes were 

“giving birth astride of a grave” (6).  

 

Figure 1 Portrait of Aretaeus (Courtesy of the Bibliothèque Nationale de France), who 
authored On the Causes, Symptoms and Cure of Acute and Chronic Diseases (7). 
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1.1.2 Definitions and epidemiology 
The International Association of Diabetes in Pregnancy Study Group (IADPSG) and 

the World Health Organization (WHO) have reclassified hyperglycemia in pregnancy 

into three groups; diabetes diagnosed in pregnancy expected to continue postnatally 

(DIP), gestational diabetes (GDM) (8, 9) and pregestational diabetes (PGDM) 

diagnosed before pregnancy; type 1 or type 2 diabetes mellitus.  Other forms of 

diabetes will not be discussed in this thesis. 

In 2016 WHO estimated the global prevalence of diabetes to be 8.5%, an almost 

fourfold increase since 1980, reflecting the rise in risk factors such as overweight and 

obesity (10).  These factors also affect women of fertile age, but mainly because of 

variations in the diagnostic criteria for GDM and ethnic differences, reported 

prevalence of diabetes in pregnancy range widely, from 2 – 25% (11, 12).  According 

to the Medical Birth Registry of Norway, 5.8% of women had diabetes in pregnancy 

in 2016; 3.7/1000 type 1 diabetes mellitus (DM), 1.9/1000 type 2 DM and 51.5/1000 

GDM (13).  In 2017 the IADPSG recommendations for GDM were incorporated into 

Norwegian guidelines, and the prevalence of GDM is expected to reach 8 – 10% (14).  

Fortunately, the prognosis in PGDM pregnancies has improved greatly over the last 

century (5).  Still, the advances in medical therapy and routines for close clinical 

follow-up have not resulted in outcomes for women with PGDM approximating those 

of the background population (15).  The mothers have increased risks of preeclampsia 

and operative delivery (16), and in a Dutch nationwide study the combined perinatal 

morbidity in type 1 DM pregnancies was 80% (17).  Complications such as 

congenital anomalies, premature delivery, macrosomia, neonatal intensive care 

admission, neonatal hypoglycemia and perinatal death are more frequent in PGDM 

pregnancies (16-20). 
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1.2 Maternal and fetal physiology 

1.2.1 The normal development 
During the embryonic period, the 3

rd
 to 8

th
 week of gestation, organs develop from 

three germ layers (organogenesis).  Diffusion is no longer sufficient for nutrition, and 

the complex formation of the cardiovascular system initiates.  

The fetal venous system 
Three major pairs of veins can be distinguished from gestational week 5; the vitelline, 

umbilical and cardinal veins.  The vitelline veins drain the yolk sac and form the 

hepatic sinusoids, and from this anastomotic network the portal vein (PV) develops.  

The umbilical veins drain the chorion and connect to the hepatic sinusoids, the right 

vein disappears, and the left umbilical vein (UV) then becomes the dominant vessel 

for blood flow from the placenta.  The cardinal veins develop to become the venous 

drainage of the embryo, including the formation of the proximal inferior vena cava 

(IVC) (21).  With increasing UV flow the ductus venosus (DV) forms, and by the 8
th

 

gestational week DV is a well-defined shunt between the UV and the IVC (Fig. 2) 

(22).  

The fetal liver 
From endodermal epithelium at the distal end of the foregut, the liver bud forms in 

gestational week 3.  Epithelial liver cords, the vitelline veins and the umbilical veins 

develop to become hepatic sinusoids, and the afferent and efferent venous network of 

the fetal liver is formed through complex vessel growth and asymmetric degeneration 

of vessels (23).  The afferent veins include the UV, PV and DV, and the efferent 

system is constituted of the hepatic veins (24).  
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Figure 2 After the 8th gestational week the ductus venosus forms a shunt between the 
umbilical vein and inferior vena cava. The vitelline veins form the superior mesenteric, 

splenic and portal veins. The left umbilical vein has become the dominant vein for flow from 

the placenta. Reprinted with permission from T. Kiserud; The ductus venosus in the human 

fetus (Univ. of Trondheim, 1994) 

Fetal blood 
Hematopoiesis occurs in the liver during fetal life (25).  Fetal erythrocytes are larger 

than adult erythrocytes, with a shorter life span, and the fetal hemoglobin 

concentration reaches 18 g/dL near term (26).  The feto-placental blood volume is 

approximately 125 mL/kg fetal weight or 10 – 12% of the body weight at term (27).  

The combined cardiac output per kilo fetal weight, approximately 400 ml/min/kg, is 

constant during pregnancy (28-30).  There is a high capacity for diffusion between 

the fetal compartments making blood volume compensation in response to events like 

hypoxia possible (31).  
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Figure 3 The venous supply to the fetal liver. A cross section of the fetal abdomen, with 

black arrows indicating physiological blood flow directions in the fetal liver (grey). The left 

liver lobe is supplied entirely by well-oxygenated umbilical venous (UV) blood (red), then 

UV blood is shunted through the ductus venosus (DV). Typically, UV blood blends in with 

deoxygenated portal blood (PV) (blue) to feed the right liver lobe; UV, umbilical vein; DV, 

ductus venosus; LPV, Left portal vein; PV, portal vein; S, spine; V, stomach 

Venous anatomy and oxygenation 
Nutrient- and oxygen-rich blood from the placenta enters the fetus through the UV.  

Most of the UV blood is distributed to the fetal liver, first via UV branches to the left 

liver lobe (Fig. 3).  A fraction of the UV blood is directed to the heart through the 

DV.  The rest of the UV blood is distributed to the right liver lobe through the left 

portal vein (LPV) where it blends blood form the portal vein (PV) (Fig. 3 and 4) (32).   

The intraabdominal part of the UV, between the abdominal wall and the DV, is a 

relatively large fetal vein; the UV diameter grows from 2.5 to 6 mm during the last 

half of pregnancy (32).  The DV remains a slender, trumpet shaped structure, with 

diameter 1mm, rarely up to 2 mm, and length 15 mm in the third trimester (32, 33).  
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Mavrides et al. demonstrated no sphincter at the DV inlet, but described an elastin-

rich shelf structure and a narrow inlet, facilitating accelerated blood velocity through 

the DV (34).  Also, a single layer of longitudinally arranged smooth muscle cells 

along the entire length of the DV were present.  This allows active regulation of the 

vessel diameter, in response to stimuli (see below; Regulation of venous flow) (35). 

The LPV is the short venous section, about 1 cm, between the DV and the right portal 

vein (Fig. 3).  UV blood is normally directed to the right liver lobe through the LPV, 

but under certain conditions the LPV flow can reverse.  The LPV is therefore 

described as a watershed area; between the umbilical venous and the portal venous 

circulation (36).  Blood with low oxygen saturation (30%) from the spleen, stomach, 

pancreas and intestine is collected in the PV and transported to the right liver lobe 

(37).  The right liver lobe thus receives a mixture of blood with high and lower 

oxygen content, through the LPV and PV (Fig. 3) (38). 

Distinct pathways in the circulation enable the fetus to prioritize supply of blood to 

vital organs:  Highly oxygenated blood from the UV is distributed through the “via 

sinistra”; the DV, foramen ovale, left atrium, left ventricle and ascending aorta.  The 

anatomical and functional qualities of the DV, the IVC and the atrial septum, create a 

preferential flow of well-oxygenated blood to the left atrium (39, 40), mainly 

supplying the coronary arteries and the brain.  Through the “via dextra”, 

deoxygenated blood from the superior and inferior vena cava flow to the right atrium, 

right ventricle, pulmonary trunk, ductus arteriosus and descending aorta (23, 37).  

The highest oxygen saturation in the fetal circulation is in the UV and is reported to 

be 80%.  The lowest saturation is 30 – 35% in the IVC and PV (41).  The left liver 

lobe is thus perfused by highly oxygenated UV blood, from which the left liver of 

fetal lamb extracts only 10 – 15% of the available O2 (42).  Flow from the left and 

medial hepatic vein is therefore another source of oxygen, and this blood is 

preferentially streamed into the “via sinistra”, with some spillover to the right side of 

the atrial septum.  This reduces the difference in oxygen saturation in fetal lamb, 
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between the “via sinistra” (SaO2 55 – 60%), and the “via dextra” (SaO2 40 – 45%) 

(37, 43).  

Distribution of fetal venous flow 
In humans, the DV shunt fraction (proportion of UV blood shunted through the DV) 

is 30% in week 20 and decreases to 20 % from week 30 of pregnancy (32, 44).  

Consequently, 70 – 80% of the UV blood perfuses the liver, illustrating the high 

priority of this organ under physiological conditions (45).  

Similar to the UV and DV flows, LPV flow velocity steadily increases from 

gestational week 20, reaching a plateau in week 36 (36).  The PV flow also increases 

during the last half of pregnancy and the PV fraction (contribution of PV flow to total 

venous liver flow) rises from 14% at mid-gestation to 20% near term (45, 46).   

Regulation of venous flow 
Pressure, viscosity and vascular resistance influence the flow and distribution of UV 

blood.  The umbilico-caval pressure gradient, the difference in pressure between the 

UV and the IVC, drives the blood flow through the DV and the liver vasculature.  

Viscosity has a larger impact in the low velocity liver flow than in the high velocity 

DV flow, because low velocity gives higher viscous resistance.  Fluid dynamics thus 

attribute to increased DV shunting at low pressures and when hematocrit is high, like 

in situations of fetal hypoxia.  And contrary, with a higher umbilico-caval pressure 

gradient, relatively more UV blood perfuses the liver (47).  Respiratory movements 

influence the central venous pressures and thus the umbilico-caval pressure gradient.  

Fetal respiratory movements thereby partly regulate fetal hemodynamics (48), and 

flow measurements should therefore be performed during fetal quiescence. 

The existence of an anatomical DV sphincter has been controversial, but some degree 

of functional responsiveness and sensitivity to hormones is recognized (49); 

vasoconstriction occurs in response to α-adrenergic substances, and β-adrenergic 

stimulation induces vasodilation (50-52).  The DV dilates during hypoxia in fetal 

sheep (53), but in human growth restricted fetuses the effect of DV dilatation may be 

moderate (54-56).  Since also the hepatic vasculature is sensitive to neural and 



 21 

hormonal signals, this is important in the regulation of venous flow (57, 58).  

Tchirikov et al. showed that the response to neurohormonal signals is more 

pronounced in the liver vasculature than in the DV (50).  Given the large cross 

sectional area of the liver vasculature, small changes in liver resistance may 

contribute substantially to changes in venous flow, including the DV shunting (23).  

 

Figure 4 Diagrammatic representation of the fetal circulation, showing flow of nutrient 

rich and highly oxygenated blood (red) from the placenta through the umbilical vein (UV). 

Ductus venosus (DV) bypasses the liver to supply the heart and brain with UV blood. The 

left liver lobe receives UV blood (red). The right liver lobe is mainly perfused with UV 

blood through the left portal vein (LPV) mixed with portal venous (PV) blood lower in 

oxygen-and nutrients (blue) (see also Fig. 3).  

Fetal liver, venous flow and growth 
The fetal liver has vital functions, such as hematopoiesis, nutrient metabolism, 

detoxification of venous blood, protein synthesis, fat storage and glucose 

homeostasis.  The development of the fetal liver parenchyma is influenced by the 
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distribution of UV blood; the left- and right liver lobes have different architectures 

and functionality (59).  It has been postulated that the pattern of UV blood 

distribution, to the brain and the liver, may have long-term consequences to the 

metabolism and body composition (60).   

The distribution of UV blood to the fetal liver is an important mechanism in the 

regulation of fetal growth (61, 62).  Experimentally increasing the UV blood flow to 

the liver, leads to increased cell proliferation, in the liver, heart, skeletal muscle and 

kidneys (63).  If the flow of UV blood to the liver is high, the liver nutrient supply is 

excessive.  A strong relation has been demonstrated between umbilical venous liver 

flow and infant fat mass at birth and at 4 years age (60, 64). 

In non-diabetic pregnancies with macrosomia, UV flow is increased, including when 

normalized for fetal weight (65).  Also, the total venous blood flow is augmented in 

macrosomia and a relatively higher proportion of UV blood perfuse the left liver lobe, 

while the PV fraction is decreased (62). 

1.2.2 Fetal hypoxemia and venous flow 
The fetal hemodynamic changes observed in pregnancies with placental compromise 

illustrate the physiological responsiveness in the fetal circulation.  Experiments on 

fetal sheep have shown that there is a considerable increase in DV shunting when the 

fetus is exposed to hypoxia (53, 66), prioritizing highly oxygenated blood to the heart 

and brain.  This has been confirmed in ultrasound studies of human pregnancies with 

severe growth restriction (54, 55).  Compromised UV flow has a graded effect on the 

DV shunting (35 - 57%) (54), and in extreme cases the LPV flow can be reversed 

(55).  When DV shunting is increased, the PV fraction is augmented.  In cases of 

critical placental compromise, the right liver lobe can be perfused by deoxygenated 

PV blood only (67).  Assessment of the fetal hemodynamics through Doppler 

velocimetry of the fetal circulation (umbilical artery, middle cerebral artery and DV) 

is commonly utilized in the diagnosis and surveillance of pregnancies with placental 

insufficiency (or/and anemia) (68-70).   
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1.2.3 Pregestational diabetes mellitus 

Early fetal development 
Through a series of experiments, Freinkel and Metzger developed the concept of 

“fuel mediated teratogenesis”. They postulated that increased levels of nutrients, most 

importantly glucose, can affect fetal development, with short- and possibly long term 

consequences (71).  Hyperglycemia during early embryogenesis may induce 

oxidative stress and through mechanisms partly unknown, cause congenital anomalies 

(72-74).  Pre-pregnancy care has therefore long been a part of routine in diabetes 

counselling, but several studies show no improvements in the risk of anomalies 

during the last two to three decades (15, 18, 75, 76).  The risk of congenital anomalies 

in a Norwegian PGDM population was 5.7% (OR 2.1) (1999 – 2004) (18), and a 

Danish study showed that 74% of congenital heart defects were attributable to PGDM 

(75).  

Fetal growth and macrosomia 
According to the Pedersen hypothesis, high maternal blood glucose results in fetal 

hyperglycemia, pancreatic cell overstimulation  and hyperinsulinemia, and this is a 

causal pathway to fetal overgrowth in diabetic pregnancies (77).  Macrosomia is an 

adverse outcome by itself, and is associated with events like stillbirth, fetal distress, 

operative delivery, shoulder dystocia and neonatal hypoglycemia (76, 78).  In Sweden 

the risk of macrosomia (at term birthweight >4500g) or large for gestational age 

(LGA) (birthweight >90
th

 gestational age specific percentile) was twelvefold in type 1 

DM pregnancies compared with a background population (16).  Of infants from 

women with type 1 diabetes, 32 – 57% were LGA (16, 20, 79), and Persson et al. 

reported that this incidence was increasing (16).  In type 1 DM populations with 

adequate HbA1C, nearly half of the infants were born LGA (79), with 3
rd

 trimester 

HbA1C and birthweight showing linear relations (80, 81).   

Gestation induces maternal peripheral insulin resistance and larger insulin 

fluctuations (82).  In pregnant women with PGDM, normally able to cope with their 

chronic disease, these metabolic changes make optimal glucose control difficult to 

accomplish (83, 84).  Although the use of continuous glucose monitors has shown 
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promising results in PGDM pregnancies, the prevalence of macrosomia and LGA in 

groups using such monitors was 31% and 53% respectively in two recent studies (84, 

85).   

The fetal liver 

The fetal liver development is affected by the levels of hormones and growth factors, 

such as insulin and insulin like growth factors (86, 87).  In diabetic rats, uncontrolled 

severe diabetes led to reduced fetal liver size and growth restriction (88).  Insulin 

treatment in diabetic pregnancies was associated with reduction of fetal liver insulin 

receptors, hyperinsulinemia and macrosomia (89).  Also in rats, studies have found 

decreased insulin sensitivity in peripheral tissues and livers of adult PGDM offspring, 

suggesting some long term consequences of PGDM for later health (90).  In pigs, 

diabetes induced fetal liver hyperplasia and increased glycogen reserves (91). 

Boito et al. assessed fetal liver volume by ultrasound in human pregnancies with 

PGDM, finding a strong correlation between liver size and maternal HbA1C, as well 

as a positive association between liver volume and fetal weight (92).  In human 

stillborn neonates of PGDM pregnancies, hepatic steatosis is prevalent and more 

severe than in stillborn of non-diabetic pregnancies (93). 

Maternal – and fetal circulation, and the placenta 
In pregnancies with diabetes, studies report contradictory results, and fetal circulatory 

adaptations typical to PGDM have not been identified (94, 95).  Maternal 

pregestational vasculopathy is related to abnormal uterine artery pulsatile index (PI) 

and adverse neonatal outcomes (96).  There is evidence that the risks of stillbirth and 

fetal distress are related to a state of chronic fetal acidemia and hypoxemia in diabetic 

pregnancies (97-101).  This could be due to reduced materno-placental oxygen supply 

and/or increased fetal oxygen demand.  Maternal vascular complications in mothers 

with diabetes can cause reduced arterial oxygen saturation (102), and in diabetic 

pregnancies reduced utero-placental blood flow has been reported (103). Doppler of 

the uterine arteries has prognostic value in pregnancies with hypertensive 
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complications, but no additional predictive value has been shown for in pregnancies 

with diabetes (104-106).   

No correlations were found between resistance in the umbilical- and middle cerebral 

arteries and maternal glucose levels in PGDM pregnancies (107, 108).  Whether 

maternal diabetes affects the umbilical artery velocity waveforms is unclear (92, 95, 

109).  Maruotti et al. showed that in pregnancies with type I diabetes, lower 

pulsatility index in the umbilical artery was associated with macrosomia (110).  The 

authors related this to typical changes found in PGDM placentas (111). 

Distinct structural and functional changes of the placenta are associated with diabetes 

in pregnancy.  The placenta is commonly heavier, the placental-/fetal weight ratio is 

increased (112-114) and typical histological findings are villous immaturity and 

enhanced angiogenesis (111).  Nutrient transport across the placenta is regulated by a 

range of hormonal and metabolic stimuli and may contribute to fetal nutritional 

oversupply in the presence of PGDM (115).  

Few studies report on fetal venous flow in diabetic pregnancies.  Olofsson et al. 

examined the blood flow distribution in PGDM pregnancies and found; larger UV 

flow early in the third trimester, increased flow to the lower extremities and reduced 

flow to the viscera (116).  Boito et al. found no difference in UV volumes in 

pregnancies with insulin dependent diabetes, but UV flow adjusted for fetal weight 

was reduced compared to a low risk group (92).  Stuart et al. showed that the DV 

pulsatility index was commonly higher in diabetic pregnancies than in low-risk 

populations and this positively correlated with HbA1C (117).  Still, the sensitivity of 

DV velocimetry to predict adverse perinatal outcomes in PGDM pregnancies remains 

unclear, with positive- and negative predictive values of 32% and 88% respectively 

(118, 119).   

Excess glucose metabolism caused by hyperglycemia and hyperinsulinemia 

accelerates the fetal oxygen consumption in diabetic pregnancies (120, 121).  In 

addition, larger body mass in LGA fetuses increases the oxygen demand.  Reduced 

materno-placental oxygen supply and increased fetal oxygen consumption results in 
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upregulation of placental growth factors and leptin, possibly affecting the fetal body 

composition (122-124).  In diabetic pregnancies the risks related to hypoxemia are 

increased, but the placentae or fetuses do not exhibit the ultrasound and Doppler signs 

typically present in pregnancies with placental insufficiency and intrauterine growth 

restriction.  Thus our clinical tools to identify fetuses at risk come in short in 

pregnancies with PGDM.   

Continuous focus on pre-conception counselling, compliance and glucose control can 

possibly reduce the burden of complications in pregnancies with PGDM (15).  Still, 

almost 50 years after the Pedersen hypothesis was published, the mechanisms causing 

increased risks in pregnancies with PGDM are partly unknown.  

Maternal glycemic control and fetal glucose 
Glycated haemoglobin, HbA1C, is used as an indicator of long-term glycemic control 

during the preceding two to three months (125).  Although HbA1C does not give a 

complete picture of maternal hypo- or hyperglycemia, it is recommended as a 

secondary clinical measure of glycemic control in pregnancy, in addition to self- or 

continuously monitored glucose (126).  HbA1C is lower in healthy pregnant than in 

non-pregnant women; the upper normal limit in late pregnancy is 5.8% (40 

mmol/mol) (127).  The Norwegian clinical guidelines for PGDM pregnancies 

recommends measuring HbA1C every four weeks; pre-pregnancy HbA1C should be 

<7.0% (53mmol/mol), and second and third trimester HbA1C <6.0% (42 mmol/mol) 

(128).  Lowering the HbA1C further may cause more frequent episodes of 

hypoglycemia and thus the targets for women with PGDM are not set to the normal 

levels of HbA1C.in pregnancy (126). 

Glucose is the main energy substrate for the fetus, and since the fetus probably has no 

significant gluconeogenesis it depends on glucose transfer over the placenta (129, 

130).  To ensure fetal glucose availability, the maternal physiology adapts during 

normal pregnancy, by peripheral insulin resistance and increased hepatic glucose 

production (82, 131).  The fetal glucose concentration is dependent on several factors; 

the maternal-fetal glucose gradient, placental morphology and transport, the placental 
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and fetal blood flows, the placental glucose metabolism and the fetal hormones and 

metabolism (77, 132-134).  Through “the fetal glucose steal phenomenon”, early 

establishment of fetal hyperinsulinemia and consequently lower fetal glycemic levels, 

in addition to maternal hyperglycemia, creates a higher glucose flux gradient across 

the placenta (135, 136).  Exaggerated “fetal glucose steal” in diabetic pregnancies 

may partly explain why the risk of large for gestational age offspring remains high in 

pregnancies with seemingly good glycemic control. 

1.2.4 Maternal weight and weight gain in pregnancy 

Maternal gestational weight gain varies considerably among women and is 

attributable to the uterus and its contents, larger breasts and the increased blood- and 

extracellular volumes.  In sum, the placenta, fetus and amniotic fluid comprise 

approximately 35% of the total gestational weight gain (137).  In addition, the 

deposition of new fat and protein make up the maternal reserves.   

IOM guidelines 
The Institute of Medicine (IOM) has provided a guideline for gestational weight gain 

(GWG) that is widely accepted (138, 139), also by the Norwegian health authorities 

(140).  The IOM guideline supplies GWG recommendations for each category of pre-

pregnancy body mass index (BMI); underweight, normal-weight, overweight and 

obese, and discusses in detail the challenges in pregnancy care created by “the obesity 

epidemic” (Table 1) (138).  The guideline does not specify any GWG 

recommendations in pregnancies with diabetes, and the committee encourages further 

research on this topic.  
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Table 1 Body mass index categories and gestational weight gain 

recommendations 

Pre-pregnancy body mass index 
(kg/m2) 

Total gestational 
weight gain (kg) 

Weekly gestational 
weight gain 
(kg/week) 

Underweight (<18.5) 12.5 – 18.0 0.44 – 0.58 

Normal weight (18.5 – 24.9) 11.5 – 16.0 0.35 – 0.50 

Overweight (25 – 29.9) 7.0 – 11.5 0.23 – 0.33 

Obese (>30) 5.0 – 9.0 0.17 – 0.27 

Institute of Medicine (IOM) recommendations for total weight gain during pregnancy and 

weekly gestational weight gain (2
nd

 and 3
rd

 trimester), by pre-pregnancy Body Mass Index 

(BMI) (138). 

Numerous studies report that pregnant populations are becoming increasingly 

overweight and obese, and that these are factors associated with adverse pregnancy 

outcomes.  In a Norwegian population-based study (1999 – 2009) 22.3 % of women 

were overweight and 9.1% were obese in pregnancy (141).  The maternal BMI and 

weight gain in pregnancy were positively associated with birthweight and BMI of the 

child at 3 years of age (142).  The Medical Birth Registry reported pre-pregnancy 

BMI in 74% of all births in Norway in 2017; 4.3% of women were underweight, 

62.4% normal weight, 21.7% overweight and 11.6% obese (143).  

BMI, weight gain and the fetal liver  
Increased birthweights suggest that the trans-placental transport of fuels, such as 

glucose and fatty acids, is increased in pregnancies with obesity and excess GWG.  In 

early pregnancy fetal subcutaneous fat is not yet developed and it has been proposed 

that the fetus therefore must utilize the liver for the storage of excess energy (144).  

Neonates of obese mothers with GDM have 68% higher hepatocellular lipid levels, 

and in GDM pregnancies there is a positive association between pre-pregnancy BMI 

and neonatal hepatic fat in both normal-weight and obese women (145).  
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In a population of uncomplicated pregnancies, Haugen et al. found that in mothers 

with low skinfold thickness, the fetal umbilical liver flow was increased, and 

introduced the concept of “fetal liver-sparing”.  This strategic adaptive response 

increase the offspring fat stores in preparation for postnatal conditions with restricted 

nutrient supply (146), and such liver-sparing is thought to have consequences for later 

health risks (60).  Low pre-pregnancy BMI was not associated with umbilical venous 

flow distribution in the longitudinal study constituting our low-risk reference group 

(45).  However, GWG had an impact on the venous flow distribution in the fetal liver, 

with relatively high flow of UV blood to the right liver lobe in women with high 

GWG.  

BMI and weight gain in PGDM pregnancies 
Maternal BMI is generally higher in type 1 DM pregnancies (16).  In an unselected 

Danish population, 43% of the pregnant women with type 1 DM were overweight or 

obese, and 54% had excessive GWG defined by the IOM criteria (147).  In PGDM 

pregnancies, high BMI is associated with increased risk of cesarean section, 

congenital heart malformations, preterm birth, LGA and admission to neonatal 

intensive care (148), and excessive GWG is an independent risk factor for LGA 

(147).  

1.3 Ultrasound 

1.3.1 History 
The Doppler principle has been exploited in technology since its discovery by 

Christian A. Doppler in 1843.  Ian Donald and co-workers were able to produce static 

ultrasonographic images and published in 1958 on the use of ultrasound in obstetrics. 

The group of FitzGerald and Drumm is recognized as the first to publish on the 

clinical use of fetal Doppler in1977(149).  Surely, grey scale imaging and Doppler 

ultrasound have led to important advances in fetal medicine since (150). 
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1.3.2 Gray scale ultrasound 
Sound waves with frequency above 20 kHz are called ultrasound and are above the 

range of human hearing.  The images displayed on the screen are recorded reflections 

of the ultrasonic waves directed from a probe towards tissues.  The strength of the 

reflections from different tissues is displayed as graded brightness in the images 

created. 

Penetration and resolution affects the quality of the displayed ultrasound images.  

Impedance is the loss of ultrasonic wave energy due to tissue resistance and is 

dependent on tissue density.  The penetration is affected by both the tissue impedance 

and frequency of the ultrasound.  High penetration can be obtained by reducing the 

frequency.  Thus, in obstetric ultrasound imaging, low frequencies (2.5 -3.5MHZ) are 

commonly used to visualize the fetus, deep in the abdomen.  However, low frequency 

reduces the resolution of ultrasound images and the sonographer should be aware of 

this accommodation. 

Image quality also depends on the surface of the tissues in contrast to the surrounding 

organs.  The fetal vessel walls are smooth structures yielding a strong reflection.  

Small vessels, like the DV, can be clearly defined when insonation of the ultrasonic 

beam is kept close to perpendicular to the vessel walls (Fig: 6A, 7A and 7C). 

1.3.3 Doppler  
The Doppler effect is the change in wave frequency when the transmitter and 

reflector move relative to each other.  If the reflector, i.e. blood cells in a vessel, 

moves toward the ultrasound source, the ultrasound waves will be compressed, and 

the frequency increased.  This phenomenon is exploited in Doppler ultrasound, to 

measure blood flow direction and velocity.  

For optimal measurements of velocity, the angle of insonation should be aligned with 

the vessel (angle of 0°).  To illustrate, if the angle is perpendicular to the flow 

direction (90°), the flow velocity will be estimated to zero.  The effect of the 

insonation angle diverting from 0° is expressed by a cosinus function, thus a 30° 

angle imposes only 6% error.  An angle of insonation within the range of 0 – 30 ° is 
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therefore commonly accepted in velocity measurements for clinical and scientific 

purposes (151). 

Continuous wave (CW) Doppler is extensively used for external fetal heart rate 

detection, but does not provide information on blood flow velocities.  In pulsed-wave 

(PW) Doppler, short bursts of ultrasound waves are utilized to determine distance and 

this allows targeting a small area, or sample volume, with high resolution.  

Information from the Doppler analysis can be presented in color imposed upon the 

grey scale image.  Color Doppler gives a rough visualization of speed and flow 

direction.   

Aliasing, or the Nyquist effect, occurs if the maximum shift in wave frequency 

registered by the Doppler exceeds half the pulse repetition frequency of the PW and 

color Doppler system.  The distorted color image that occurs can be useful for 

identification of the DV, and by adjustments of the baseline and pulse repetition 

frequency, the PW Doppler yields a blood flow analysis.   

1.3.4 Blood flow calculations 
In this thesis, blood flow refers to volumes (mL/min).  In the calculation of blood 

flow (Q), the distribution of blood velocity is assumed to have a parabolic profile 

(Fig. 5) in the vessel lumen, and flow is calculated by the formula: 

Q=π�(D/2)²�h�TAMXV 

D is vessel diameter, h is the velocity profile factor and TAMXV is the time average 

maximum flow velocity.  The velocity profile factor is an expression of the parabolic 

shape of the blood velocity across the vascular lumen.  The blood velocity profile is 

partly blunted in the DV and h is therefore higher than in the low velocity veins (152-

154); h=0.5 for UV and PV, and h=0.7 for DV (23).  
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Figure 5  Blood flow in the vessel lumen (red arrows). The velocity profile (blue) is 
partially blunted in the ductus venosus corresponding to a ratio of 0.7, in the umbilical vein 

and portal vein the flow is parabolic with a ratio of 0.5.  

The inner vessel diameter (D) is measured and squared in the equation, thus the 

diameter has a larger impact on the flow calculated, than the velocity.  In order to 

minimize measurement error repeated diameter measurement is recommended.  

When D measurements in the UV, PV and DV are repeated (≥3 times), it has been 

shown that flow calculations in fetal vessels during the second half of pregnancy, are 

reproducible and valid (46, 155-157). 

1.3.5 Safety 
Gray scale ultrasound in the low intensity range used for fetal assessment is generally 

considered safe (158).  However, the number of ultrasound scans per pregnancy is 

probably increasing, and methods other than grey scale imaging have become more 

available.  Thus, the safety of fetal ultrasound should be under constant evaluation 

(159, 160).   

Systematic reviews report no harmful effects of fetal ultrasound in humans (161, 

162).  However, in some epidemiological studies on biological effects of prenatal 

ultrasound, the scanners had lower acoustic outputs compared with modern 

apparatuses.  Animal studies have shown effects on neuronal migration and reversible 

liver apoptosis at output energies used in obstetrics (163, 164).  It has been argued 

that the probe-to-organ distance, organ size and the length of gestation make the 
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relative ultrasound power difficult to compare between these experimental animal 

studies and human pregnancies (159).  In one randomized controlled trial of low-risk 

pregnancies, a group exposed to continuous Doppler of fetal vessels (five sessions), 

was compared to a control group examined by grey scale ultrasound in gestational 

week 18 only (165).  No beneficial effects of assessing blood velocities were 

demonstrated, but a significantly higher risk of growth restriction was found in the 

intervention group.  Another randomized fetal Doppler study did not demonstrate a 

similar increased risk of fetal growth restriction (166).  Although fetal diagnostic 

ultrasound has been used extensively during the last 3 decades, the only consistent 

outcome is a weak association between ultrasound screening and left-handedness in 

boys (167). 

The ALARA principle states that exposure time and acoustic output should be kept as 

low as reasonably achievable consistent with obtaining diagnostic information.  To 

assess the risks during an examination, the thermal index (TI) and mechanical index 

(MI) are recommended indicators (160).   

The MI is an expression of the non-thermal bio-effects of ultrasound, most 

importantly the expansion and collapse of bubbles, a phenomenon called cavitation. 

This has not been demonstrated in humans, nevertheless, in all diagnostic ultrasound 

the MI should be kept below 1.0 (158). 

The energy of ultrasound waves can convert to heat depending on the tissue 

properties and the ultrasound exposure.  TI is defined as the ratio of the power used 

and the power needed to increase tissue temperature by 1°C.  TI does not take into 

account the exposure time or maternal body temperature.  Mineralized bones have the 

highest energy absorption, and beyond the 10
th

 gestational week TI for bone is the 

recommended index that the user should be aware of (168).  Exposure that produces 

no more than a 1.5°C temperature rise (given normal body temperature at 37°C) is 

considered safe (169).  Users should remain aware of the MI and TI indices during 

scanning and make sure guidelines are followed. 
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According to the Norwegian guidelines for PGDM pregnancies, first trimester 

ultrasound to measure CRL, a routine scan at 18 weeks and ultrasound for fetal 

biometry in week 24, 28, 32, 36 and 38 is usually performed, comprising a minimum 

of 7 sessions (170). 
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2. Aims of the study 

The overall aim of the thesis was to compare the longitudinal development of the 

venous liver blood flow in PGDM pregnancies with reference values from a low-risk 

population.  

More specifically, the aims were to describe the development in PGDM pregnancies 

of: 

Paper I 

� Umbilical venous  flow 

� Ductus venosus flow 

� Ductus venosus shunt fraction 

� Relation between DV flow and maternal glycemic control (HbA1C) 

Paper II 

� Left portal vein velocity 

� Portal venous flow 

� Portal venous fraction of total venous liver flow 

� Total venous liver flow 

� Umbilical venous liver flow 

� Associations between venous liver flow and maternal glycemic control 

(HbA1C) 

Paper III 

� Effect of venous liver flow on birthweight  

� Influence of BMI on venous liver flow  

� Influence of weekly GWG on venous liver flow  

� Association between BMI, GWG and birthweight 
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3. Material and methods  

The study design was a prospective longitudinal observational study and the protocol 

was approved by the Regional Committee for Medical and Health Research Ethics 

(REK Vest 2011/2030).  

3.1 Study population 

In our region with 454,000 inhabitants, Haukeland University Hospital had 5169 

(mean) deliveries yearly during the study period (171).  All pregnant women with 

PGDM were referred our clinic for multidisciplinary follow-up, as soon as pregnancy 

was confirmed.  Between August 2013 and May 2016, all referred patients with 

PGDM (82 women) received written invitation to participate.  Of these, 12 had early 

fetal demise and in two pregnancies twins were detected at the first ultrasound 

examination.  This left 68 women invited, three women were unable to consent 

because of a language barrier, and 13 declined the invitation.  There was no protocol 

to register the individual reasons for those who declined the invitation.  However, 

several women reported this unencouraged; four lived geographically remote, four 

did not have time, three had concerns about ultrasound safety, one had a psychiatric 

disorder and one did not mention any cause for declining participation.  Three 

patients with type 2 DM withdrew after inclusion, leaving 49 PGDM in pregnancies 

in this study; 44 had type 1 DM and five women had type 2 DM.  Three women with 

type 1 DM participated in two consecutive pregnancies (Table 2).  
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Table 2  All women with pregestational diabetes mellitus (PGDM) referred to our 

institution during the study period were identified, all women that met the inclusion 

criteria were invited, 52 women (76% of the invited) agreed to participate, 49 pregnancies 

were followed longitudinally in the study;  DM, diabetes mellitus. 

 

3.2  Measurements 

At the first visit around week 9 (median GA 9.4, range 6.7 – 20.1), background and 

health information was collected systematically, describing ethnicity, education, 

employment, duration of diabetes, diabetic complications, co-morbidity, medication, 

82  

reffered pregnant 

women with PGDM 

68  

invited 

52  

included 

49 pregnancies: 

44 type 1 DM 
5 type 2 DM 

12 early fetal demises 

 2 twin pregnancies 

13 declined invitation 

3 language barrier 

3 withdrew after week 9 
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menstrual cycle and obstetric history.  Gestational age (GA) was determined by 

measuring the crown rump length (172) with a vaginal probe (Vivid 7, GE Healthcare 

Vingmed Ultrasound, E8C, 8 MHz).  

Blood samples were collected at each visit and in the present study we used the 

results from the HbA1c analyses at inclusion.  The first HbA1C in pregnancy was 

collected at median GA 8.6 weeks (range 2.0 – 12.6).  For HbA1C values in the 2
nd

 

and 3
rd

 trimester, the means for each trimester were used in multilevel regression 

analyses (Paper I; Fig. 4 and Discussion). 

Information on the sex of the neonate, birthweight, mode of delivery, Apgar score, 

cord-blood gases and transfer to the neonatal ward was collected from clinical 

records.  Neonatal blood was collected from the heel 1 hour after delivery and the 

hematocrit (EVF) from this analysis is reported (Paper I and II; Table 1).  

3.2.1 Maternal weight and weight gain  

Maternal weight was measured at inclusion and in each trimester using a Tanita Body 

Composition Analyzer (BC-418).  The measured weights are discussed only briefly in 

this thesis.  Since equivalent data on measured weight in the first trimester were not 

available from the reference population, self-reported pre-pregnancy weight and 

height were used in the analyses.  The body mass index (BMI) was calculated by the 

formula BMI = weight (kg)/height (m)
2
. 

Weekly GWG was calculated by subtracting pre-pregnancy weight from the weight 

last measured before delivery, divided by gestational age at the last weighing.  

Weekly GWG was categorized according to pre-pregnancy BMI and the IOM 

guideline as;  insufficient;  appropriate;  excessive (139) (Paper III).   

3.2.2 Ultrasound and Doppler 
The ultrasound examinations were performed at gestational weeks 9, 20, 24, 28, 32, 

and 36 using an ultrasound system (Vivid 7, GE Healthcare Vingmed Ultrasound, 

Horten, Norway) with an abdominal transducer (M4S, 2.0–4.3 MHz).  All ultrasound 

measurements were performed by three observers; 193 sessions by A.L, 20 by J.K. 



 39 

and 11 by C.E.  During the first 6 months of the study, all Doppler and diameter 

measurements performed by A.L. were supervised by J.K. and during the whole study 

period J.K. or C.E. were consulted if assessments were difficult to obtain.  Measuring 

the UV, DV and LPV was prioritized if all examinations could not be performed 

within the time limit.  Each session lasted no more than 1 hour and the TI was kept 

below 1.0. 

Figure 6 A. The inner diameter of the umbilical vein was measured minimum three times, 
intra abdominally and before any branching. B. Perpendicular to this umbilical vein velocity 

was measured. C. The anatomy of the umbilical vein, ductus venosus and left portal vein. D. 

Left portal vein velocity 

 

The time-averaged maximum blood velocity (TAMXV) was measured in the 

umbilical vein, ductus venosus, left portal vein and portal vein (Fig. 6 and 7).  The 

angle of insonation was kept as small as possible, not exceeding 30° (in all vessels 

median angle correction was 0, range 0 - 30°).  At the same site perpendicular to the 

vessel wall, the inner vessel diameter (D) was measured at least three times (median 
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3, range 3 – 5 times) in the umbilical vein, ductus venosus and portal vein, with the 

mean of these measurements used for the analyses.  D was measured in magnified 

images, with color Doppler turned off, after identification of the vessel.  When 

analyzing the data, all outliers (defined as ± 2 SD or identified visually in scatter 

plots) were reexamined by A.L. and J.K. in ultrasound images, to make sure the right 

vessel was identified and that the correct velocities and D were used for analyses.   

 

Figure 7  A and C. The inner vessel diameters in ductus venosus and portal vein 
respectively, measured at least three times, in magnified images with the color Doppler 

turned off. B. Sagittal view angled from the neck towards the flow direction of ductus 

venosus. D. Portal vein velocity with a typical pulsatile flow pattern 

Blood flow (�, mL�min
–1

) was calculated by the formula�� � � � ��	
�� �  �

�����.  The velocity profile parameter was  � �����for the umbilical vein (UV) 

and the portal vein (PV) (46),  � ����for the ductus venosus (DV) (152, 153).  

Umbilical venous liver flow (UVliver) was calculated as������iver � ��UV�� ��DV, total 
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venous liver flow as �liver �� ��UV�� ��DV� � �PV�and PV fraction (FPV) of the total 

venous supply to the liver was��PV� � ����� � �PV	�liver.  

3.2.3 Estimated fetal weight 
Flow was normalized based on estimated fetal weight (EFW) as �	�� �(mL·min

–

1�kg
–1

).  Birthweight z-score was used to calculate the intrauterine estimated fetal 

weights at the time of examination, by extrapolation according to the longitudinal 

reference curve for estimated fetal weight (45, 173).   

3.2.4 Reference values 
Reference curves for the fetal flow variables had been created in a separate project 

describing the normal venous blood supply development of the fetal liver (36, 45, 46, 

174, 175).  In this longitudinal study, 160 women with low-risk pregnancies were 

included during the period August 2004 – July 2005.  Reasons for exclusion were 

twins, fetal malformations, chronic maternal disease (including diabetes) or 

complicated obstetric history.  No women were excluded during or after pregnancy 

and thus no selection occurred after inclusion. . 

The methods for calculation of estimated fetal weight, pre-pregnancy BMI and 

weekly GWG were identical in the present study population and the reference 

population. In the previously published reference curves, the association to GWG was 

not categorized by the IOM guideline (45), in contrast to Paper III of this thesis. 

3.3 Statistics 

3.3.1 Power 
Since the effects of PGDM on the outcome variables were not known, no power 

calculations were performed to calculate sample size for the present study.  Instead 

the sample size was based on previous studies of pregnancies with fetal growth 

restriction and fetal macrosomia (62, 67), demonstrating significant associations 

between fetal growth patterns and variation in the venous liver circulation in 

populations of 29 and 25 pregnancies, respectively.  We allowed for a lower success 
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rate and possibly smaller effects in the present study protocol, and increased the 

number of participants to 50 women. 

3.3.2 Statistical methods 

The mean curves were modeled according to gestational age using multilevel 

regression analysis (176).  In addition, z-scores for outcome variables in the PGDM 

and reference groups were compared using the independent-samples t-test with a 

significance cutoff of p≤0.05.  The relations between maternal first-trimester HbA1c 

and z –scores for DV flow velocity, DV flow volume and DV shunt fraction (Paper I; 

Fig 4), and of LPV velocity and PV fraction (Paper II; Fig 6), were assessed by 

multilevel regression analysis.  To test differences between independent subgroups 

within each population by BMI, GWG and flow tertiles, ANOVA was used (Paper 

III).  Also, log-likelihood was performed to assess whether adding BMI or GWG 

categories improved the model for fetal flow by gestational age.  The statistical 

analyses were done in the Statistical Package for the Social Sciences (version 24, 

SPSS, Chicago, IL) and the MLWin program (version 2.35, Centre of Multilevel 

Modeling, University of Bristol, UK).   
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4.  Results 

4.1 Maternal characteristics 

The characteristics of the study population are described in Table 3.  

There were no smokers in the study group.  Participants defined their ethnic identity 

by their own terms; in the type 1 DM group 39 were Norwegian, four from other 

European countries and one Norwegian with parents from Chile.  In the type 2 DM 

group one was Japanese-American, one Chilean-Norwegian, one from the Philippines 

and two Norwegian.  The level of education was categorized as ≤12 years, 13 – 16 

years or ≥17 years; three, 22 and 20 women reported this respectively.  This 

information was missing in four pregnancies.   

Maternal BMI and GWG categories in the reference and PGDM populations are 

presented in Paper III; Supplementary Table 1.  The categories were not similarly 

distributed in the two populations (Fig 8).  

No adverse effects caused by participation in the study were registered, although 

some experienced pelvic- or back pain or a transitory fall in blood pressure, during 

the ultrasound examination.  
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Table 3 Maternal characteristics in 49 pregnancies with pregestational diabetes 

mellitus 

 Number Percent 

Para 0 

Para1+ 

Retinopathy 

Nephropathy 

Hypothyroidism 

Chronic hypertension 

20 

29 

9 

1 

9 

7 

40.8 

59.2 

18.4 

2.0 

18.4 

14.3 

Preeclampsia  

Continuous glucose monitoring 

Pregnancy planned pre conception 

3 

14 

20 

6.1 

28.6 

40.8 

 Median Range 

Maternal age at inclusion (years) 

Gestational week at inclusion 

Duration of diabetes (years) 

  Type 1 DM 

  Type 2 DM 

31 

9.4 

 

17 

5.5 

23 - 42 

6.7 – 20.1 

 

1 – 37 

4 - 15 

Pre-pregnancy weight (kg) 70 57 –  113 

Pre-pregnancy BMI 

Maternal weight gain 

24.86 

15.8 

19.82 -  44.14 

–5.0 -  33.1 

HbA1c at inclusion (%) 6.70 4.90 –  12.00 

Mean HbA1C 2
nd

 trimester (%) 

Mean HbA1C 3
rd

 trimester (%) 

5.87 

6.08 

4.33 – 7.57 

4.90 – 8.46 

DM, diabetes mellitus; BMI, body mass index 
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Figure 8  Percent of participants in the body mass index (BMI) and gestational weight gain 

(GWG) categories in the low-risk reference population (blue) and pregestational diabetes 

(PGDM) population (green);  The number of participants in each category is summarized in 

Paper III, Supplementary Table 1. 

4.2 Pregnancy outcomes and neonatal characteristics 

The pregnancy outcomes and neonatal characteristics of the PGDM population are 

presented in Paper I-III, Tables 2. The mean birthweight z-score was -0.06 in the 

reference population and 1.05 in the PGDM population (mean difference 1.11, 

p<0.001).  

The mean gestational age at delivery was 40.3 weeks in the reference population and 

37.8 weeks in the PGDM population (p<0.001 tested by independent sample T-test).  

In the reference group 9.4% were delivered by Cesarean section compared to 44.9% 

in the PGDM population (175).  
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Figure 9  Birthweight z-scores boxplot in the low-risk reference population (blue) and the 

pregestational diabetes PGDM population (green) 

4.3 Main results 

4.3.1 Umbilical vein 
The UV flow was higher in PGDM pregnancies, and this was due to larger UV 

diameters in the PGDM compared with the reference group (Paper I; Tables 3 and 

S1).  Normalized UV flow was smaller, with a blunted development curve near term 

(Paper I; Fig. 1b).  

4.3.2 Ductus venosus 
The DV flow, normalized DV flow and DV shunt fraction were reduced in PGDM 

pregnancies (Paper I; Table 3, Fig 2 and 3).  The DV velocity reference curve has 

been published earlier (174), while the mean DV diameter for the reference 

population was calculated for the present study (Paper I; Appendix) (1).  The DV 

diameters were larger and the DV velocities lower in the PGDM group, compared 

with the reference.  However, at 36 weeks of gestation, the mean DV diameter z-

scores were similar between the populations.  Thus, the reduced DV flow in the 

PGDM population near term was mainly due to lower DV flow velocities (Fig. 10). 
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 Figure 10  Longitudinal observations of the ductus venosus diameter (mm; millimeter) 
and time averaged maximum velocity (TAMXV) in 49 pregnancies with pregestational 

diabetes (red circles) plotted on top of the reference curve; low-risk (black lines; mean (thick 

line), confidence interval (thin lines) and 5-95 percentiles (dotted lines)) 

4.3.3 Venous liver flow 

The umbilical venous flow to the liver (QUVliver), total venous liver flow (Qliver) and 

left portal vein (LPV) blood velocity (TAMXV) were higher in the PGDM group.  

Normalized PV flow and normalized total venous liver flow were lower in PGDM 

pregnancies after 30 gestational weeks compared with the reference values (Paper II; 

Table 3).  

4.3.4 BMI, gestational weight gain and fetal liver flow 
In PGDM pregnancies, the overweight BMI category had higher umbilical venous 

liver flow flows than in the normal- and obese weight categories.  BMI had a smaller 

impact on fetal flows in the reference population (Fig. 11a and Paper III; Table 2).  

Weekly gestational weight gain category was associated with altered fetal flow 

developments in the PGDM population only.  There was a graded positive response 

to GWG, and those with excessive GWG had the highest umbilical venous liver flow 

(Fig. 11b and Paper III; Table 3). 
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Figure 11  Longitudinal observations of the umbilical venous liver flow, umbilical venous 
liver flow (mL/min), during the second half of pregnancy in a low-risk population (black) 

and a population with pregestational diabetes (red), analyzed by log-likelihood test for a) 
BMI categories; normal weight, overweight and obese and b) Gestational weight gain 

(GWG) categories; insufficient, appropriate and excessive 

4.3.5 Fetal flow and birthweight 
Umbilical venous flow distribution was associated with birthweight in both the 

reference and PGDM populations, but the effect was more pronounced in pregnancies 

with PGDM.  There was a graded positive relation between LPV velocity, UV flow, 

total venous liver flow, umbilical venous liver flow and birthweight (Paper III; Table 

1). 

4.3.6 Glycated hemoglobin, HbA1C 

In PGDM pregnancies, first trimester HbA1C was positively related to LPV velocity 

and negatively related to DV velocity, DV flow, DV shunt fraction and PV fraction of 

the total venous liver flow (Fig 12).  
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Figure 12  Fetal blood flow and relation to HbA1C. Relations between z-scores of the 
ductus venosus (DV) shunt fraction, time-averaged maximum left portal vein (LPV) flow 

velocity (TAMXV) and portal vein (PV) fraction, and first-trimester HbA1c in the study 

population. 

 

4.4 Measurement success rate  

In addition to the 49 examinations at inclusion (at mean gestational week 9.4), a total 

of 224 sessions were performed in gestational weeks 20, 24, 28, 32 and 36; median 5 

sessions per participant, range 2 – 6.  Due to preterm deliveries, 9 women were not 

examined in week 36. 

Missing values for the ultrasound variables are summarized in Table 4.  There were 

no extra missing values for the normalized flows since birthweight and gestational 

age at examination was registered in all pregnancies.  The reasons for missing values 

were not collected systematically, but common causes were the time limitation 
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(maximum one hour of fetal ultrasound), discomfort or hypoglycemia during 

examination, fetal movements and difficult examination conditions. 

Table 4 Missing values for each ultrasound variable from a total of 224 sessions 

 Diameter 

(millimeter) 

Velocity  

(TAMXV) 

Flow 

(mL/min) 

Fraction 

(%) 

 n % 

missing 

n % 

missing 

n % 

missing 

n % 

missing 

UV 15 6.7 22 9.8 32 14.3   

DV 66 29.5 33 14.7 86 38.4 101 45.1 

LPV   22 9.8     

PV 124 55.4 94 42 130 58 148 66.1 

Qliver     148 66.1   

QUVliver     101 45.1   

UV, Umbilical vein; DV, ductus venous; LPV, left portal vein; PV, portal vein; Qliver, total 

venous liver flow; QUVliver, umbilical venous liver flow; n, number of missing values; 

TAMXV, time average maximum flow velocity 

When the study population was divided into two groups (by missing and non-missing 

values) and compared by independent sample t-test, maternal BMI at inclusion in the 

missing data group was significantly higher than in the non-missing group (Tab. 5). 

HbA1C at inclusion was not different in the missing vs. non-missing groups for any of 

the flow variables. 
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Table 5 BMI and HbA1C in the missing vs. non-missing data groups 

  n   

      

Mean 

BMI 

Mean  

BMI 

difference* 

p 

BMI 

difference 

Mean  

HbA1C 

difference 

p  

HbA1C 

difference* 

UV 

flow 

Missing 32 29.5  

2.07 

 

 

0.044 

 

0.03 

 

0.817 Non-

missing 

 

192 

 

27.5 

DV 

flow 

Missing 86 28.7  

1.63 

 

0.028 

 

0.14 

 

0.176 Non-

missing 

 

138 

 

27.1 

LPV 

velocity 

Missing 22 29.0  

1.44 

 

0.236 

 

-0.11 

 

0.512 Non-

missing 

 

202 

 

27.6 

PV flow Missing 130 28.6  

1.98 

 

0.007 

 

-0.04 

 

0.715 Non-

missing 

 

94 

 

26.6 

*Difference of the means tested by independent sample t-test. Umbilical vein, UV; ductus 

venous, DV; left portal vein, LPV; portal vein, PV; total venous liver flow  
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4.5 Type 1 and type 2 diabetes mellitus 

Since type 1DM and type 2DM are different diseases, we repeated the analyses with 

the results from pregnancies with type 2 DM excluded, to test if this would 

significantly change our findings.  The main outcomes were explored (independent 

sample t-test between type 1 DM pregnancies and the low-risk group) and the mean 

DV flow z-score was no longer significantly different between these groups (Table 6) 

(week 24 – 36).  When DV flow after gestational week 34 was analyzed, the mean z-

score was significantly lower in the type 1 DM group (mean z-score difference -0.64, 

p=0.009) compared with the reference group. 

Table 6 Umbilical venous and fetal liver blood flow in pregnancies with type 1 
DM compared with reference values from a low-risk population.  

 
 
 

 

Population 

 

n 

Mean 

z-score 

(95% CI) 

 
 
p 

 

 

Umbilical venous 

flow (mL/min) 

Reference 

 

574 -0.003 

(-0.09 – 0.08) 

 

0.001 

PGDM 174 0.44 

(0.18 – 0.65) 
 

Ductus venosus 

flow (mL/min) 

Reference 

 

543 -0.003 

(-0.08 – 0.10) 

 

0.081 

PGDM 

 

123 -0.21 

(-0.53 – 0.11) 

 

Left portal vein 

velocity  

(cm/sek) 

Reference 

 

553 0.005 

(-0.08 – 0.09) 

 

<0.001 

PGDM 

 

179 0.583 

(0.29 – 0.87) 

 

Umbilical venous 

liver flow (mL/min) 

 

Reference 

 

555 -0.027 

(-0.12 – 0.06) 

 

<0.001 

PGDM 111 0.38 

(0.10 – 0.77) 

 

Total venous  

liver  flow  
(mL/min) 

 

Reference 

 

525 -0.002 

(-0.09 – 0.08) 

 

<0.001 

PGDM 69 0.595 

(0.14 – 0.92) 

n, number of observations; Mean z-score, mean of all flow measurements week 24 – 36; CI, 

confidence interval 
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5.  Discussion 

5.1 Principal findings 

The development of the UV, DV and venous liver flow were different in pregnancies 

with PGDM compared with low-risk pregnancies; the DV shunting was reduced near 

term and UV flow to the liver was increased.  Although the UV and total venous liver 

flows were increased before 30 gestational weeks, the total venous liver flow did not 

match third trimester fetal growth in pregnancies with PGDM.  First trimester HbA1C 

was positively related to the umbilical venous liver flow, and negatively to the DV 

shunting.  Maternal BMI and GWG had a greater impact on fetal venous liver flow, 

and umbilical venous liver flow had a larger effect birthweight, in PGDM- compared 

with low-risk pregnancies.  

5.2 Methodological considerations 

5.2.1 Ethical aspects 
Participation was voluntary and withdrawal possible at any time. Examinations were 

time consuming and some women commented this.  No adverse effects were 

registered, and in case of time limits or discomfort, the ultrasound examination was 

halted.  Although three women withdrew after the examination in week nine, all other 

participants remained in the project until birth.  The low withdrawal rate probably 

indicates that participation was acceptable to the women. 

Information about objectives, procedures and safety of the study was accessible 

online (177).  Participants could leave feedback by email any time during the study 

period.  These measures were taken to ensure that the consent was informed, and that 

patient involvement was possible.   

The protocol was up to date with publications and guidelines on safety (158, 160, 

162).  Current knowledge supports that this study was safe.  However, possible long-

term effects of fetal ultrasound have not been studied prospectively.  Thus the 
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ALARA principles for fetal ultrasound were followed strictly.  The duration of the 

examinations never exceeded one hour.     

5.2.2 The study and reference populations - selection, representativeness 
and generalizability 
The terms reference population and reference values are used in the present study 

although the collection of the reference data was done as a separate project and 

during a different time period (2004-2005) (36, 45, 46).  It may represent a limitation 

that the reference study was performed approximately 11 years before the present 

PGDM study.  However, the reference study was conducted in the same hospital and 

by the same research group.  Also, the examination techniques were identical, which 

are strengths that reduce the risk of variability due to differences in technique. 

The reference study aimed for recruitment of low-risk pregnancies.  No women were 

excluded after inclusion to avoid selection by pregnancy outcomes.  The distribution 

of pre-pregnancy BMI in the reference group was in concordance with reports form 

the Medical Birth Registry of Norway at the time of our PGDM study (2013 – 

2016)(178), and the distribution of birthweight in the reference group was also 

similar to the background population (179).  Pre-pregnancy BMI, weekly GWG and 

birthweights, as well as the flow variables, were normally distributed in the reference 

population.  Thus, the reference values were considered representative for low-risk 

pregnancies in Norway at the time of our study and suitable for comparison with the 

PGDM study group. 

The study population was an unselected group of PGDM pregnancies from our 

department.  Data from the women who declined the invitation were unavailable.  

Thus some degree of selection bias cannot entirely be ruled out.  However, 75 % of 

the invited women participated and we did not identify any systematical reasons for 

declining participation.  We therefore conclude that t study group is representative of 

PGDM pregnancies in Norway. 

The study population received clinical follow up according to Norwegian and 

internationally accepted guidelines (170).  This substantiates that the results are 
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generalizable in similar clinical settings.  In our clinic the overall rate of cesarean 

deliveries is generally low (12.7% during the study period) (180).  However, the 

cesarean frequency in our PGDM study group was 44.9% and similar to 46% in a 

large Swedish population (16).  Thus, the management of labor in the PGDM study 

group was probably not different from clinics that are relevant for comparison.  

There were more missing data in the study- compared with the reference population 

(Table 4)(175).  Within the study group there was a selection by BMI, with higher 

BMI in the missing-data group (Table 5).  This was discussed in Paper I-III and 

interpreted as a possible selection bias towards data from a leaner PGDM population.  

Such a selection would likely lead to less significant differences between the 

populations.  Nevertheless, this selection may represent a weakness because the study 

population is then less representative of all PGDM pregnancies.  

HbA1C did not influence the examination success rate and thus a selection by HbA1C 

was unlikely (Table 5). 

Women with type 1 and type 2 DM were invited.  Only 5 women with type 2 DM 

participated in the study while the rest of the participants had type 1 DM (Table 3).  

Glycemic profiles of women with type 1 DM and type 2 DM are different, and when 

studied with continuous glucose monitoring, women with type 2 DM spent less time 

hyper- and hypoglycemic during pregnancy compared with type 1 DM (181).  Still, 

epidemiological studies have shown that the risk of adverse outcomes are similar in 

pregnancies with type 1 DM and type 2 DM (182).  One may argue that the optimal 

design would be to study pregnancies with type 1 DM and type 2 DM as separate 

groups.  However, we chose not to exclude women with type 2 DM, and the main 

results did not change when measurements from the type 2 DM subgroup were 

excluded from the analysis (Table 6).  

5.2.3 Validity and reliability of fetal flow 
Validity refers to whether a study measures what it aims to measure.  Reliability is a 

measurement of error, and reflects the difference between the observed value and the 

“true” value.  The reliability is high when measurement errors are small and different 
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observed values are optimally a reflection of genuine differences between 

measurements, not due to random or systematic errors (183).  

Measurements should be repeatable and reproducible.  This can be evaluated by 

estimating the intra – and inter-observer variation.  This was done in the studies that 

established the measurement techniques and constructed the reference values; For the 

ductus venosus and LPV velocities, the intra and inter-observer variations were low 

(36, 174).  For the portal vein, intra-observer variation was low for both velocity and 

diameter (46). 

The calculation of blood flow is based on flow velocities and vessel diameter.  Since 

experimental invasive procedures in human fetuses are not ethically acceptable, 

models have been used for validation of the Doppler ultrasound technique to calculate 

fetal flow (184, 185).  In sheep they found no differences between triplex mode 

ultrasound and steady-state diffusion measurement of umbilical venous flows.  In 

addition, Babera et al studied the intra- and inter-observer variability for these 

measurements in human pregnancies and concluded that valid and reliable 

measurements of umbilical vein blood flow can be produced by this technique. 

Doppler ultrasound is widely used for fetal blood velocity measurements in research 

as well as clinical settings.   

The fetal vessel diameters are not commonly measured in clinical settings, and since 

the diameter is squared in the blood flow equation, the accuracy of this value is 

crucial.  To reduce measurement error, each vessel diameter was measured at least 

three times, and the mean of the measurements was used (155, 186).  Supervision by 

J.K. during the first 6 months, consulting ultrasound experts from the research group 

in case of difficult examinations, and the reassessment of all outlier values, were 

measures taken to secure the validity of data.  

The number of missing values reflects that optimal measurements could be difficult 

to obtain in our study group.  But the fact that calculated flow in the study population, 

examined mostly by one examiner (A.L), did not deviate more from the reference 
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curves, indicates that the data are reliable.  The confidence intervals were larger in the 

study group than in the reference group, and this is probably partly due to the smaller 

study population.  It is also possible that measurement errors were larger in the study 

group, due to participant characteristics that made measurements technically more 

challenging (Table 4). 

The techniques applied are described in publications as methods to measure fetal flow 

(23, 45, 46, 157, 175).  It should be emphasized that the present study was performed 

in a scientific setting and that we do not suggest the methods for clinical use.  This is 

of importance since we have not studied the diagnostic value of calculating fetal 

venous flow in PGDM pregnancies (183).  

5.2.4 Glycated hemoglobin as a measure of glycemic control 

We used HbA1c as an expression of maternal glycemic control, and analyzed the 

relation between HbA1C and the distribution of umbilical venous flow.  The umbilical 

venous liver flow (expressed by LPV velocity) related positively to HbA1C (Figure 

12).  The effect of augmented umbilical venous liver flow was higher birthweights 

(Paper III).  We did not find that HbA1C differed between the BMI and GWG 

categories, although birthweights did (Paper III, Supplementary Table 2).   

This complies with studies showing increased risk of macrosomia in PGDM 

pregnancies, despite HbA1C within the recommended levels (79, 147).  Although 

HbA1C is a measure of glycemic control in women with PGDM, it does not fully 

reflect the glucose variability in women with PGDM (126, 135, 181). 

5.2.5 Body mass index and gestational weight gain in pregnancies with 
diabetes mellitus  
The IOM guidelines use pre-pregnancy BMI categories to advice maternal weight 

gain in pregnancy.  These criteria are widely adopted and have been used in 

publications on diabetes in pregnancy (138, 147, 148, 187).  There are some 

weaknesses however, as BMI does not reflect the fat percentage, fat distribution, the 

muscle mass or oedema.  Rasmussen et al emphasize that the evidence for the IOM 

recommendations regarding weight gain in pregnancies is not strong (138). 
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5.2.6 Comparison with other studies 
Fetal venous flow in pregnancies with PGDM has been studied by Olofsson et al. and 

by Boito et al (92, 116).  The former showed that in women with diabetes in 

pregnancy, UV flow was higher in gestational weeks 26-34, but not different than 

their reference population from week 35.  This is in concordance with our present 

study as discussed in Paper I.  Furthermore, Olfosson et al. found that flow to the 

lower extremities increased from 35 gestational weeks in the diabetic group.  We did 

not examine flow to the extremities, but the reduced PV flow found in our study 

showed that flow to the viscera was low after 30 weeks of gestation, and this was 

even more pronounced when PV flow was normalized for fetal weight (Paper II, 

Figure 1).  Prioritized flow to the lower extremities, at the expense of the visceral 

flow, corroborates with these findings.  

Boito conducted a cross-sectional PGDM study (gestational week 18 – 36), and 

reported no difference in the UV flow.  In contrast, we found larger mean UV flow in 

PGDM compared with low-risk pregnancies, with non-overlapping CI in weeks 28 – 

34.  The differences in design of Boitos study and the present can explain the 

different results.  However, both studies describe significantly reduced UV flow 

when normalized for fetal weight (Paper I) (92).   

The larger liver volume found by Boito et al could relate to higher venous liver flows 

as described in our Paper II.  

5.3 Psychological aspects 

With permission, one participant with type 1 DM is quoted: Worries for the child’s 

well-being and development, for my own health through pregnancy and for the 

possible complications from birth – complications that my efforts might not prevent - 

increased the stress and this could contribute to less optimal regulation.    

The study was not designed to describe the emotional stress that women with diabetes 

might experience during pregnancy.  Nevertheless, 410 hours were spent during the 

study period consulting the women (mean 8.5 hours per pregnancy).  The impression 
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from these consultations was that PGDM is challenging to cope with.  Diabetes is 

associated with lower psychological well-being during pregnancy, and women with 

diabetes in pregnancy carry a higher risk of post-partum depression symptoms (188).  

However, in a Danish study of PGDM, women with lower GWG and HbA1C had a 

slight improvement in mental quality of life during pregnancy (189) .   

The risk of increasing stress should be considered when counselling women with 

PGDM.  How to communicate knowledge about lifestyle, weight gain, glucose 

control, pregnancy outcomes and the possible Developmental Origins of Health and 

Disease (DOHaD) effects, without causing anxiety, should be discussed and studied 

further.  
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6. Conclusion and future aspects  

This longitudinal study adds new knowledge by describing the development of fetal 

venous liver flow during the last half of PGDM pregnancies, 

In pregnancies with PGDM, the reduced DV shunting near term may pose an 

augmented risk during hypoxic challenges in late pregnancy and during labor. We 

thus suggest that further studies explore the usefulness of DV Doppler measurements 

to identify fetuses at risk in PGDM pregnancies.  

The finding of increased umbilical venous liver flow might partly explain the 

increased risk of macrosomia, even in well-regulated patients (79).  However, unlike 

non-diabetic fetuses, venous liver flow did not match fetal growth in PGDM 

pregnancies.  The possible consequences of altered venous liver flow for neonatal 

body composition and postnatal growth, is a relevant subject to study further. 

We observed that blood flow changes accelerated during the third trimester.  The last 

measurements in the study were performed around gestational week 36.  Future 

research should investigate the blood flow development close to delivery. 

Our study identifies the umbilical venous liver flow as an important mechanism by 

which maternal BMI and gestational weight gain influence birthweight in PGDM 

pregnancies.  Measures to decrease the risk of macrosomia in PGDM pregnancies are 

called for.  Future research could further explore the effects of restricted weight and 

weight gain on the fetal hemodynamic development in pregnancies with PGDM. 

The present study is part of a larger research project, established and organized by 

our research group.  Maternal anthropometrics, nutritional intake, salivary cortisol 

and blood samples were collected at each visit.  Blood was also drawn for bio-bank 

preservation in every trimester, and fetal ECG Holter monitoring was performed 

twice.  Placental and umbilical cord tissue, and umbilical venous blood for our bio-

bank, was collected shortly after birth.  The placentas were examined by perinatal 

pathologists, and histology was described.  A neonatal echocardiography was 
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performed within 4 days after delivery.  Approximately 6 months after birth, blood 

samples were drawn from the mother and child for bio-banking and an Alberts Infant 

Motor Scale (AIMS) test assessed the child’s motor development.  This large amount 

of systematically collected data, combined with a detailed characterization of the fetal 

and pregnancy developments, permits for future projects to further explore the 

relation between maternal health, fetal development and later health in PGDM 

pregnancies. 
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Abstract

Introduction. Despite adequate glycemic control, the risks of fetal macrosomia

and perinatal complications are increased in diabetic pregnancies. Adjustments of

the umbilical venous distribution, including increased ductus venosus shunting,

can be important fetal compensatory mechanisms, but the impact of

pregestational diabetes on umbilical venous and ductus venosus flow is not

known. Material and methods. In this prospective study, 49 women with

pregestational diabetes mellitus underwent monthly ultrasound examinations

from gestational week 20 to 36. The blood velocity and the mean diameters of the

umbilical vein and ductus venosus were used for calculating blood flow volumes.

The development of the umbilical venous flow, ductus venosus flow and ductus

venosus shunt fraction (% of umbilical venous blood shunted through the ductus

venosus) was compared with a reference population, and the effect of HbA1c on

the ductus venosus flow was assessed. Results. The umbilical venous flow was

larger in pregnancies with pregestational diabetes mellitus than in low-risk

pregnancies (p < 0.001) but smaller when normalized for fetal weight

(p = 0.036). The distributional pattern of the ductus venosus flow developed

differently in diabetic pregnancies, particularly during the third trimester, being

smaller (p = 0.007), also when normalized for fetal weight (p < 0.001).

Correspondingly, the ductus venosus shunt fraction was reduced (p < 0.0001), most

prominently at 36 weeks. Therewere negative relations between thematernalHbA1c

and the ductus venosus flow velocity, flow volume and shunt fraction.

Conclusions. In pregnancies with pregestational diabetes mellitus, prioritized

umbilical venous distribution to the fetal liver and lower ductus venosus shunt

capacity reduce the compensatory capability of the fetus and may represent an

augmentedriskduringhypoxic challengesduring latepregnancyandbirth.

Abbreviations: DM, diabetes mellitus; DV, ductus venosus; EFW, estimated

fetal weight; PGDM, pregestational diabetes mellitus; TAMXV, time-averaged

maximum flow velocity; UV, umbilical vein.

Introduction

Pregnancies complicated by pregestational diabetes melli-

tus (PGDM) are associated with increased risks of perina-

tal mortality, congenital anomalies, macrosomia, preterm

birth, and fetal distress (1,2). According to the Pedersen

Key Message

In pregnancies with pregestational diabetes the umbil-

ical venous flow to the liver is increased at the

expense of ductus venosus shunting, possibly increas-

ing fetal vulnerability near term.
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hypothesis, fetal hyperglycemia and hyperinsulinemia

cause higher rates of macrosomia (3). Although strict gly-

cemic control can reduce mortality and morbidity (4),

the risk of adverse outcomes is higher than in non-dia-

betic pregnancies (5).

Identifying at-risk fetuses in diabetic pregnancies

remains challenging due to the inadequacy of diagnostic

tools (6). Umbilical artery Doppler ultrasound is widely

used in pregnancies with placental insufficiency, and eval-

uation of the ductus venosus (DV) flow velocity wave-

form has become an integral part of surveillance (7,8).

The DV pulsatility index is commonly higher in diabetic

pregnancies than in low-risk populations (9), but its use-

fulness in monitoring diabetic fetuses remains unclear.

Typical circulatory adaptations in PGDM pregnancies

have not been identified (10,11), with the exception of

one study finding that the umbilical vein (UV) flow was

larger early in the third trimester and decreased toward

term (12).

The distribution of the blood flow through the UV and

DV develop differently in fetuses with normal growth,

growth restriction, and macrosomia without maternal

diabetes (7,13). This suggests that the umbilical supply to

the liver plays a role in regulating fetal growth (13,14)

and fat deposition (15), with possible lifelong conse-

quences (16). The DV shunts oxygenated UV blood to

the fetal heart and brain, bypassing the liver (17), and

increased shunting serves as a protective mechanism

(18,19). In fetal lamb and humans with gestational dia-

betes, hyperglycemia leads to accelerated metabolism and

oxygen consumption, causing chronic fetal hypoxemia

(20,21). However, the UV blood distribution and DV

flow pattern in pregestational diabetic pregnancies have

not been reported previously.

We hypothesized that the fetal distribution of the UV

and DV flow is altered in PGDM pregnancies compared

with a reference population and that this is influenced by

the degree of maternal glycemic control. Thus, the aim of

this study was to describe the development of the UV

flow and its distribution to the fetal liver and DV in dia-

betic pregnancies, and to examine whether the distribu-

tion of UV blood through the DV correlates to the

maternal glycemic control.

Material and methods

Subjects

All pregnant women with PGDM [type 1 or type 2 dia-

betes mellitus (DM)] in our region are referred to Hauke-

land University Hospital, a tertiary center for

multidisciplinary follow up. All women with PGDM and

singleton pregnancies who presented at our hospital

between August 2013 and October 2016 were invited to

participate in this prospective longitudinal observational

study. The study protocol was approved by the Regional

Committee for Medical and Health Research Ethics (REK

vest 2011/2030), and 52 women (74% of those invited)

gave written consent: 43 participants had type 1 DM,

eight participants had type 2 DM, all of these received

gestational insulin treatment. Three participants with

type 2 DM withdrew after the first visit leaving a total of

49 PGDM pregnancies for statistical analyses. Gestational

age was determined by the crown–rump length measure-

ments using a vaginal transducer (E8C, 8 MHz) at the

first visit at approximately nine gestational weeks (22).

Second-trimester routine scans did not reveal any fetal

malformation in the study population. Information on

maternal HbA1c, neonatal sex, birthweight, mode of

delivery, Apgar score, cord-blood gases, and transfer to a

neonatal ward was collected from clinical records. The

study group was compared with reference ranges estab-

lished in a longitudinal study on 160 low-risk pregnan-

cies (564 observations for the UV and 536 observations

for the DV) during the second half of pregnancy (23,24).

Ultrasound examinations

The ultrasound examinations were performed at gesta-

tional weeks 20, 24, 28, 32, and 36 (at 20 weeks only the

UV was measured). Each session lasted no more than one

hour, and the thermal index was kept below 1.0. All

ultrasound measurements were performed by three obser-

vers (A.L., J.K. or C.E.) using an ultrasound system

(Vivid 7, GE Healthcare Vingmed Ultrasound, Horten,

Norway) with an abdominal transducer (M4S, 2.0–
4.3 MHz).

The time-averaged maximum flow velocity (TAMXV)

was measured in the intraabdominal part of the UV

and in the DV during fetal quiescence, with the angle

of insonation kept as small as possible, not exceeding

30° (median angle correction was 0, range 0–30°). The
inner vessel diameter (D) was measured at least three

times at the same site perpendicular to the vessel wall,

with the mean of these measurements used for the

analyses. D was measured in magnified images, with

color Doppler turned off, after UV and DV identifica-

tion. Blood flow volume (Q, mL�min�1) was calculated

by the formula Q = p�(D/2)²�h�TAMXV. Velocity profile

parameter h was 0.7 for DV and 0.5 for the UV. The

DV shunt fraction (%) was calculated as 100�QDV/QUV.

Flow volume was normalized based on the estimated

fetal weight (EFW) as Q/EFW (mL�min�1�kg�1) (25).

The techniques applied are identical with those used to

establish the reference ranges, and are described in

detail elsewhere (23,26).
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Statistical analyses

The sample size was based on previous studies (13,27)

demonstrating significant associations between fetal

growth patterns and variation in the venous liver circula-

tion. We allowed for a lower success rate and possibly

smaller effects when planning the present study, and

increased the number of participants from 30 to 50.

The mean and standard deviation values for the out-

come variables in the diabetic group were modeled

according to gestational age using multilevel regression

analysis. The absence of overlap in the 95% confidence

intervals of the mean indicates a statistically significant

difference between the study and reference (24) popula-

tions. In addition, z-scores for outcome variables in the

PGDM and reference groups were compared using the

independent-samples t-test with a significance cutoff of

p ≤ 0.05. The relations between maternal first trimester

HbA1c and DV flow velocity, DV flow volume, and DV

shunt fraction z-scores were assessed by multilevel regres-

sion analysis. The statistical analyses were performed with

the Statistical Package for the Social Sciences (version 24;

SPSS, Chicago, IL, USA) and the MLWin program (ver-

sion 2.35; Centre of Multilevel Modeling, University of

Bristol, Bristol, UK).

Results

The characteristics of the study population are described

in Tables 1 and 2. The median gestational age at birth

was lower and birthweights were higher in the study

group than in the reference population (24) (Tables 1

and 2). In the study group, 39% of the neonates were

macrosomic (birthweight >90th percentile for gestational

age) (25). The UV and DV flow velocities and diameters

were successfully measured in 85.8% and 77.2% of 225

examination sessions, respectively. The DV shunt fraction

could be calculated for 69.5% of the sessions.

The UV flow velocities in the study group did not dif-

fer significantly from those in the reference group

(Appendix S1). However, the mean UV diameter was lar-

ger in the PGDM group (mean z-score = 0.48,

p < 0.005), resulting in a larger UV flow volume in the

study group (Table 3), primarily during gestational weeks

25–31 (Figure 1a). When normalized for EFW, the UV

flow was smaller compared with that in the reference

population (Table 3), and in PGDM pregnancies the nor-

malized UV flow exhibited a significant blunting at the

end of the third trimester (Figure 1b).

The DV diameter was larger (mean z-score = 0.35,

p = 0.034) while the DV TAMXV was smaller (mean z-

score = �1.20, p < 0.005) in the study group than in the

reference (Appendix S2). However, at week 36 there was

no difference in the DV diameters (mean z-score = 0.31,

p = 0.40) but the DV TAMXV remained smaller in the

study group (mean z-score = �1.87, p < 0.005). In the

reference population, the DV flow volume increased stea-

dily from mid-gestation until term, whereas it was smaller

in the diabetic group (Table 3) and became progressively

blunted beyond 30 weeks of gestation (Figure 2a). The

normalized DV flow volume was significantly smaller in

the study group after gestational week 32 (Table 3,

Figure 2b).

In PGDM pregnancies, the degree of DV shunting was

significantly smaller during the second half of pregnancy

(Table 3). In the reference population this reached a min-

imum of 20% at 30 weeks of gestation (23), whereas it

was smaller in diabetic pregnancies both before and after

30 weeks, which constituted a strikingly different pattern

of development (Figure 3a).

There was a borderline significant negative linear rela-

tion between the DV shunt fraction at 36 weeks of gesta-

tion and the lactate concentration in the umbilical artery

at birth (B = �0.19, p = 0.051; Figure 3b).

Table 1. Maternal characteristics and outcomes in 49 pregnancies

with pregestational diabetes mellitus.

n %

Type 1 DM 44 89.8

Type 2 DM 5 10.2

Maternal diabetic complications or disease

Retinopathy 9 18.4

Nephropathy 1 2.0

Hypothyroidism 9 18.4

Chronic hypertension 7 14.3

Preeclampsia 3 6.1

Preterm birth 15 30.6

Induction of labor 30 61.2

Normal delivery 20 40.8

Operative vaginal delivery 7 14.3

Cesarean section 22 44.9

Elective 9 18.4

Acutea 13 26.5

Median Range

Maternal age at inclusion, years 31 23–42

Prepregnancy weight, kg 70 57–113

Maternal weight gain 15.8 –5.0 to 33.1

Prepregnancy BMI 24.86 19.82–44.14

HbA1c at inclusion 6.70 4.90–12.00

Individual mean HbA1c
b 6.12 4.86–8.24

Preterm birth, gestational age <37 weeks.

DM, diabetes mellitus.
aAcute cesarean section during labor.
bMean of all HbA1c measurements throughout each pregnancy.
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The DV TAMXV, DV flow volume, and DV shunt

fraction were negatively related to the first trimester

HbA1c (Figure 4). The multilevel regression analyses were

also performed for second and third trimester HbA1C,

with similar results for DV flow and shunting (data not

shown).

Excluding T2DM participants from the PGDM popula-

tion did not significantly change the results for the z-

score mean flow variables UV flow, normalized UV flow,

normalized DV flow or DV shunt fraction (univariate

analysis of variance), but the mean DV flow z-score was

no longer significantly different for the T1DM population

alone compared with the reference; �0.212 [95% confi-

dence interval (CI) �0.424 to 0.000, p-value = 0.071].

Discussion

This study found that the distribution of UV blood was

significantly altered in PGDM pregnancies, with a smaller

fraction of the UV blood directed through the DV and

relatively more to the fetal liver. This distorted develop-

ment of the UV distribution in PGDM pregnancies was

evident from mid-gestation but was particularly promi-

nent during the last weeks of pregnancy (Figures 1–3).
Our findings are partly in contrast with those of Boito

et al. (28) showing unaffected UV flow volumes in

PGDM pregnancies, but smaller normalized UV flow vol-

ume, in line with our present study. Olofsson et al. found

larger normalized UV flow in the early third trimester of

diabetic pregnancies, but like in our study group the nor-

malized UV flow decreased during the last weeks of preg-

nancy (12). The discrepancies between the studies might

be due to differences in methods and study populations.

The portocaval pressure gradient between the UV and

the vena cava inferior drives the perfusion of the fetal

liver and flow through the DV, and the DV blood veloc-

ity directly reflects this pressure (29). A reduced resis-

tance to flow in the portal system relative to the DV

would contribute to preferential UV distribution to the

liver (30,31). Greater UV distribution to the liver in

PGDM pregnancies could be related to increased liver size

Table 2. Neonatal characteristics and outcomes in pregnancies with

pregestational diabetes mellitus.

Median Range

Gestational age at delivery (weeks+days) 38+4 27+6 to 40+5

Birthweight (g) 3695 990–5990

Birthweight z-score 0.93 �2.15 to 5.82

Umbilical cord acid-base data

Umbilical artery

pH 7.24 6.92–7.34

pCO2 (kPa) 7.88 5.80–12.40

pO2 (kPa) 2.19 1.16–3.47

Base deficit (mmol�L�1) �2.11 �13.36 to 1.00

Lactate (mmol�L�1) 4.70 2.00–14.40

Umbilical vein

pH 7.30 6.89–7.44

pCO2 (kPa) 6.10 4.20–15.30

pO2 (kPa) 3.29 0.25–5.68

Base deficit (mmol�L�1) �2.36 �10.98 to �0.15

Lactate (mmol�L�1) 3.50 1.80–12.80

Erythrocyte volume fraction 0.63 0.52–0.76

n %

Male sex 25 51

Operative delivery for intrapartum fetal distress 13 26.5

Metabolic acidosis at birtha 1 2

5-min Apgar score <7 1 2

Transfer to neonatal intensive care ward 20 40.8

Perinatal deathb 1 2

Malformationc 2 4

aMetabolic acidosis defined as an umbilical arterial pH of <7.0 and a

base deficit of >12.
bIntrauterine fetal death at gestational week 36. Autopsy showed UV

thrombosis and signs of acute asphyxia.
cOne neonate with sagittal craniosynostosis and one with congenital

heart defect (anomalous left coronary artery from the pulmonary

artery).

Table 3. Umbilical venous (UV) and ductus venosus (DV) blood flow z-scores in pregnancies complicated by pregestational diabetes mellitus

(PGDM) compared with reference values from a low-risk population.

Parameter Population Mean z-score 95% CI No. of observations p

UV flow (mL�min�1) Reference 0.000 �0.097 0.097 562 <0.001

PGDM 0.356 0.191 0.521 192

Normalized UV flow (mL�min�1�kg�1) Reference 0.005 �0.096 0.106 562 0.036

PGDM �0.230 �0.414 �0.046 191

DV flow (mL�min�1) Reference 0.005 �0.101 0.110 532 0.007

PGDM �0.332 �0.539 �0.125 138

Normalized DV flow (mL�min�1�kg�1) Reference 0.005 �0.104 0.114 532 <0.001

PGDM �0.614 �0.818 �0.410 137

DV shunt fraction (%) Reference 0.000 �0.0821 0.0904 524 <0.0001

PGDM �0.510 �0.8119 �0.2006 125

CI, confidence interval; DV shunt fraction (%), (DV flow volume/UV flow volume)�100; reference values from low-risk population (23).
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(28) and a larger vascular cross-section of the portal sys-

tem. A larger viscous resistance in the liver vasculature

due to polycythemia (Table 2) was expected (32), and

this would shift blood flow from the liver to the DV, but

the opposite situation was found in the present diabetic

pregnancies (Figures 2 and 3). This suggests that the

impact of fetal hyperglycemia on the circulatory regula-

tion of the fetal liver overpowers the physiological mecha-

nisms that would otherwise operate.

In fetal lamb, occluding the DV and forcing all UV

blood to perfuse the fetal liver, leads to increased liver

weight, cell proliferation, and differential fetal organ

growth (14). Up-regulation of the UV blood distribution

to the liver is believed to be an important mechanism

underlying the development of macrosomia and increased

fat accretion (15), and the present study has demon-

strated this flow pattern in PGDM pregnancies. However,

in macrosomia without DM, the UV flow volume

(a) (b)

Figure 1. Umbilical venous flow. Longitudinal observations of umbilical vein (UV) flow volume (a) and normalized UV flow volume (b) in 49

pregnancies with pregestational diabetes mellitus (red circles and lines) compared with a reference population (black lines). Mean (thick lines) and

95% confidence interval (thin lines) values are shown. [Color figure can be viewed at wileyonlinelibrary.com].

(a) (b)

Figure 2. Ductus venosus (DV) flow. Longitudinal observations of DV flow volume (a) and normalized DV flow volume (b) in 49 pregnancies with

pregestational diabetes mellitus (red circles and lines) compared with a reference population (black lines). Mean (thick lines) and 95% confidence

interval (thin lines) values are shown. [Color figure can be viewed at wileyonlinelibrary.com].
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accelerates during the third trimester, supporting the

increased growth velocity, whereas the DV flow volume

remains unchanged (13). This is at variance with the dis-

torted UV distribution in our PGDM group, in which

UV return from the placenta decreased (Figure 1a) and

DV shunting was reduced near term (Figure 3a). The UV

flow volume normalized for EFW was strikingly low dur-

ing late gestation, possibly signifying a relative discrep-

ancy between fetal demand and substrate availability

(Figure 1b) in our study group (13).

Fetuses of mothers without diabetes, consuming a diet

defined as imprudent, exhibits “liver-sparing” UV blood

distribution, with a larger UV flow to the liver and smal-

ler DV shunting at week 36 (33). Larger fetal abdominal

circumference was found to be associated with increased

UV flow after oral glucose loading in a low-risk popula-

tion (34). The negative relation between HbA1c levels and

the DV shunt fraction (Figure 4) in our study supports

the assumption that maternal metabolic factors and glu-

cose promote UV flow distribution to the fetal liver. Even

within the range of clinically acceptable glycemic control

(maternal first trimester HbA1c <7%), the DV shunt frac-

tion decreased significantly with increasing HbA1c (Fig-

ure 4). Although the use of HbA1c in pregnancy may

have limitations, the association between HbA1c and

plasma glucose is linear in most individuals (35). First tri-

mester HbA1c measurement gives information about

(a) (b)

Figure 3. Ductus venosus (DV) shunt fraction. (a) Longitudinal observations of DV shunt fraction in 49 pregnancies with pregestational diabetes

mellitus (red circles and lines) compared with a reference population (black lines). Mean (thick lines) and 95% confidence interval (thin lines)

values are shown. (b) Relation between umbilical arterial lactate at birth and DV shunt fraction z-score at gestational week 36 (n = 15). Missing

data for week 36 were due to premature delivery (n = 18), unsuccessful cord-blood lactate measurements (n = 13), and/or missing

measurements for calculating the DV shunt fraction (n = 20). [Color figure can be viewed at wileyonlinelibrary.com].

Figure 4. Ductus venosus (DV) shunt fraction and HbA1c. Relations

between the time-averaged maximum DV flow velocity (TAMXV), DV

flow volume, and DV shunt fraction and first trimester HbA1c. DV

flow velocity mean z-score = �0.6867 to 0.0010 (95% CI

�0.00194836 to �0.00001008) HbA1c
3 ln(HbA1c), DV flow volume

mean z-score = 0.5760–0.0017 (95% CI 0.00008183–0.00328055)

HbA1c
3 ln(HbA1c), and DV shunt fraction mean z-score = 0.4529–

0.0017 (95% CI �0.00300435 to �0.00047375) HbA1c
3 ln(HbA1C).

[Color figure can be viewed at wileyonlinelibrary.com].
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maternal glycemic control at conception and in early

pregnancy and the relation between HbA1c and DV flow

underlines the effect of the periconceptional environment

on later fetal and neonatal health. This is in line with

other studies where less optimal glycemic control in the

first trimester (HbA1c >6.5 mmol�L�1) was associated

with accelerated fetal growth (36), and the levels of

biomarkers for placentation and placental growth factor

in the first trimester of PGDM pregnancies had an impact

on birthweight (37).

Growth-restricted fetuses shunt a larger fraction of the

UV blood through the DV (18,19), graded according to

the severity of placental compromise, ranging from 25 to

57% (18). The PGDM fetuses in the present study had a

mean DV shunting of only 18% (Figure 3), mainly

caused by the reduction in DV flow velocity, and in spite

of a distended DV diameter (Appendix S2). It appears

that this blood distribution to the liver is driven by meta-

bolic factors, mainly as reduction of the liver vascular

resistance. This corroborates the finding that the liver vas-

culature is more sensitive to endocrine regulation com-

pared with the DV (31).

The diabetic intrauterine environment can induce

chronic fetal hypoxemia (21,38), but the mechanisms that

protect the fetus during hypoxemia (18) seem less devel-

oped in PGDM fetuses near term. This is supported by

the finding of reduced DV shunt fraction in our study,

and a tendency toward lactacidemia at delivery in those

with low capacity for DV shunting (Figure 3b). Further-

more, this pattern is augmented according to the degree

of glycemic control in the first trimester (Figure 4). The

level of HbA1C influenced the fetal venous circulation,

supporting the clinical focus on tight periconceptional

glucose and dietary control in women with DM.

The strengths of this study are the prospective longitu-

dinal design involving an unselected group of PGDM

pregnancies and identical methods applied to the study

and reference populations. Low intra- and interobserver

variation has been demonstrated earlier for DV flow

velocities (23) and almost identical results for UV flow

were achieved by different investigators using the same

technique for ultrasound measurement and blood flow

calculation (26,39). Measurement success rate was lower

in the PGDM group than in the reference study, probably

explained by the higher BMI in the study population

(24), causing challenging examination conditions

(Table 1). Since the intergroup BMI was higher in the

missing compared with the non-missing PGDM data

group (data not shown), this may have introduced a

selection towards a leaner study population, more similar

to the reference. However, such a selection is expected to

reduce rather than augment the differences between the

study group and the reference population. Technical

challenges related to the angle and depth of insonation

could also introduce systematic errors by underestimating

flow velocities, but in the lower gestational ages the mea-

sured velocities did not differ from the reference popula-

tion. The increasing difference in flow velocity with

gestational age is thus physiologically plausible and sup-

ports the validity of the results.

The objective of the present study was to assess the

fetal circulatory physiology in PGDM pregnancies and the

study was not powered for subgroup analysis related to

the mother (for example diabetic vasculopathy) or the

fetus (intrapartum hypoxia). Nonetheless, the results war-

rant further research in this section of the circulation to

develop clinical tools for identifying PGDM fetuses at

risk.

Epidemiological studies indicate that the increased risk

of adverse outcomes in PGDM, including stillbirth, is

limited to the last weeks of pregnancy (2). Our findings

in these PGDM pregnancies suggest that prioritizing UV

flow to the liver at the expense of DV shunting could

increase fetal vulnerability in late pregnancy and during

labor.
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Appendix S1 

Reference population (1), gestational age (GA) in weeks. 

 

Umbilical vein (UV) diameter, mean and variance 

Mean diameter was transformed to the 0.382 power. 

Transformed mean =  

0.48101595044136+0.0000758466339902953·GA3-0.0000190573191503063·GA3·ln(GA) 

Variance =  

0.00109042716212571-2.56153676048144 E-08·GA3 + 7.80816600612355E-13·GA6 

 

Umbilical vein velocities, mean and variance 

Mean velocity was transformed to the -0.166 power. 

Transformed mean =  

0.64591223+263.12112427·GA-2-90.02454376·ln(GA)·GA-2 

Variance =  

0.00033238372998312 

 

Ductus venosus (DV) diameter, mean and variance 

Mean diameter was transformed to the -0.266 power. 

Transformed mean = µ 

= 2.0811376572-0.0000838075·(GA)3+0.0000209877·ln(GA)·GA3 

Variance =  

 = 0.003764423-1.48793E-08·GA3+1.90734E-12·GA6 

 

 

  



Appendix S2 

Study population, pregnancies with pregestational diabetes, gestational age (GA) in weeks 

 

UV flow volume 

Mean UV flow volume was transformed to the 0.282 power. 

Transformed mean =  

1.162891865+0.00090542360GA3-0.00023297807GA3·ln(GA) 

Variance =  

 0.208563655614853  

 

Normalized UV flow volume, mean and variance 

Mean normalized UV flow volume was transformed to the -0.119 power. 

Transformed mean =  

 0.5998132229-0.000014567·GA3+0.0000041554GA3·ln(GA) 

Variance =  

0.0004220234-0.00000000752759·GA3+0.0000000000001261475·GA6 

 

DV flow volume  

Mean flow volume was transformed to the -0.025 power. 

Transformed mean=  

0.6633474231 + 1.2373400927·GA-0.5 + 0.0000011074·GA3 

Variance =  

 0.000199967034859583 

 

Normalized DV flow volume, mean and variance 

Mean Normalized DV flow volume was transformed to the 0.383 power. 

Transformed mean= 

2.32871628+0.12603378·GA - 0.00349011·GA2 

Variance = σ2 



= 0.45418781 

 

DV shunt fraction  

Mean DV shunt fraction was transformed to the 0.302 power. 

Transformed mean = 

2.1142778+0.000216869GA3-0.000059556598GA3·ln(GA) 

Variance =  

0.191669091582298 

 

Reference 

1. Kessler J, Rasmussen S, Hanson M, Kiserud T. Longitudinal reference ranges for ductus 
venosus flow velocities and waveform indices. Ultrasound in obstetrics & gynecology : the official 
journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2006;28(7):890-8. 
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Abstract

Background
Pregestational diabetes is associated with fetal macrosomia, and umbilical perfusion of the

fetal liver has a role in regulating fetal growth. We therefore hypothesized that pregestational

diabetes alters fetal liver blood flow depending on degree of glycemic control.

Methods
In a prospective study, 49 women with pregestational diabetes underwent monthly ultra-

sound examinations during 24–36 gestational weeks. Blood flow was determined in the

umbilical vein, ductus venosus and portal vein, and blood velocity was measured in the left

portal vein, the latter reflecting the watershed between splanchnic and umbilical flow. The

measurements were compared with reference values by z-score statistics, and the effect of

HbA1c assessed.

Results
The umbilical venous flow to the liver (z-score 0.36, p = 0.002), total venous liver flow (z-

score 0.51, p 0.001) and left portal vein blood velocity (z-score 0.64, p 0.001), were higher

in the study group. Normalized portal venous flow was lower (z-score -0.42, p = 0.002), and

normalized total venous liver flow tended to be lower after 30 gestational weeks (z-score

-0.54, p = 0.047) in the diabetic pregnancies compared with reference values from a low-risk

population. The left portal vein blood velocity was positively, and the portal fraction of total

venous liver flow negatively correlated with first trimester HbA1C.

Conclusions
In spite of increased umbilical blood distribution to the fetal liver, graded according to glyce-

mic control, the total venous liver flow did not match third trimester fetal growth in pregnan-

cies with pregestational diabetes, thus contributing towards increased perinatal risks and

possibly altered liver function with long-term metabolic consequences.
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Introduction
Pregnancies complicated by pregestational diabetes mellitus (PGDM) are associated with

increased perinatal morbidity and mortality [1], and fetal macrosomia is related to these

adverse neonatal outcomes [2]. Fetal hyperglycemia and hyperinsulinemia can cause acceler-

ated fetal growth [3] even with HbA1C levels within the recommended range [4], and this

makes clinical surveillance in diabetic pregnancies challenging [5].

The liver has been called “the metabolic brain” of the fetus [6], controlling the distribution

and utilization of nutrients from the placenta. Nutrient access and fetal liver blood flow act

both independently and together to influence fetal growth and body composition [7, 8]. The

fetal liver has two sources of venous supply; well-oxygenated blood from the placenta through

the umbilical vein being the main source, and low-oxygenated blood from visceral organs

through the portal vein. The distribution of the nutrient rich umbilical venous blood to the

liver has been suggested to be a mechanism for regulation of fetal growth [9]. This is based on

experimental studies showing that increasing liver flow from the umbilical vein leads to higher

cell proliferation in the liver, heart, skeletal muscle and kidneys in fetal lamb [9]. In addition,

studies of human low-risk pregnancies have shown that larger fetal size is associated with

higher umbilical venous liver flow as a response to maternal glucose intake [10]. Also, higher

umbilical venous flow to the liver is associated with newborn adiposity [11].

In studies of macrosomic fetuses in non-diabetic pregnancies, umbilical- and total venous

liver flow was higher during the 2nd and 3rd trimester, including when normalized for esti-

mated fetal weight [7, 12]. This indicates that increased umbilical venous flow led to aug-

mented fetal growth in pregnancies without diabetes. In low-risk pregnancies, the portal

venous contribution to the liver increases throughout gestation, and the same pattern is

observed in macrosomic non-diabetic fetuses [7]. However, although the fetal liver is larger

[13] and macrosomic growth is frequent in diabetic pregnancies [4], umbilical venous flow

normalized for fetal weight, is lower [13, 14].

Fetal liver gene expression in baboons is different in the left and right liver lobes [15], and

this is ascribed to the specific venous perfusion pattern during fetal life. Thus, fetal hemody-

namic development might influence liver function and be part of a pathway regulating intra-

uterine growth, with possible long-term consequences [7, 12].

In diabetic pregnancies, fetal liver size measured by ultrasound is greater than in low-risk

pregnancies and liver volume positively correlates with maternal HbA1C [13]. Experimental

studies in pigs showed that diabetes induces fetal liver hyperplasia [16], the fetal liver protein

synthesis and glycogen reserves increase [16], and total body fat percentage is higher than in

non-diabetic controls [17]. In human stillborn neonates of diabetic mothers, hepatic steatosis

is prevalent and more severe than in stillborn of non-diabetic pregnancies [18].

Fetuses of women with PGDM have greater risk of later diabetes independently of genetic

factors [19], possibly mediated through epigenetic mechanisms. It has been suggested that the

human fetal strategy to prioritize fat deposition for neonatal survival evolved under conditions

where high glycemic diets were not available; but with their currently widespread consump-

tion, these mechanisms enhance fetal fat deposition [20]. As both diabetes [21] and chronic

liver disease [22] are becoming increasingly prevalent, and there is currently much interest in

the developmental origins of these conditions, studies of factors such as maternal diabetes on

fetal liver development are called for as a basis for informing preventive strategies [23]. We

therefore aimed to determine the fetal liver blood flow in PGDM pregnancies in a prospective

longitudinal study and present the longitudinal development of venous liver blood flow during

the second half of PGDM pregnancies.
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Materials andmethods
The present prospective longitudinal observational study is part of a larger project investigat-

ing fetal hemodynamics in pregnancies with PGDM. The study protocol was approved by the

Regional Committee for Medical and Health Research Ethics (REK vest 2011/2030). We have

reported the development of the umbilical venous and ductus venosus flows in this population

[14]. Here we present data on the development of the venous supply to the fetal liver in PGDM

pregnancies. We have used the left portal vein blood velocity as a marker of the watershed

between the portal and umbilical venous contributions (Fig 1).

Subjects

All women in our region, with PGDM in pregnancy, are referred to our tertiary center at Hau-

keland University Hospital for multidisciplinary follow-up. All women with singleton preg-

nancies and PGDM who presented at our clinic between August 2013 and May 2016 were

invited to participate. Fifty-two women (74% of those invited) gave written consent: 44 partici-

pants had type 1 diabetes mellitus (DM) and 8 had type 2 DM of which all received gestational

insulin treatment. Three participants with type 2 DM withdrew, leaving a total of 49 PGDM

pregnancies for statistical analyzes. Gestational age (GA) was determined using a vaginal

probe (Vivid 7, GE Healthcare Vingmed Ultrasound, E8C, 8 MHz) at the first visit (around

week 9), by measuring the crown rump length [24]. No fetal malformations were revealed by

Fig 1. Venous supply to the fetal liver. Cross section of the fetal abdomen with black arrows indicating physiological
blood flow directions in the fetal liver (grey). Typically, well-oxygenated umbilical blood (red) blends in with
deoxygenated portal blood (blue) to feed the right liver lobe; UV, umbilical vein; DV, ductus venosus; LPV, Left portal
vein; PV, portal vein; S, spine; V, stomach.

https://doi.org/10.1371/journal.pone.0211788.g001
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second-trimester routine scans in the study population. Information on first trimester mater-

nal HbA1C, neonatal sex, birthweight, mode of delivery, Apgar score, cord-blood gases, and

transfer to the neonatal ward was collected from clinical records. The results from the study

group were compared with reference ranges established in the same research unit using identi-

cal methods, in a longitudinal study of 160 low-risk pregnancies [25, 26].

Measurements

The ultrasound examinations were performed in each pregnancy at gestational weeks 24, 28,

32, and 36. All ultrasound measurements were performed by three observers (A.L., J.K. and C.

E.) using an abdominal transducer (M4S, 2.0–4.3 MHz) ultrasound system (Vivid 7, GE

Healthcare Vingmed Ultrasound, Horten, Norway). The sessions lasted maximum one hour

and the thermal index was kept below 1.0.

The time-averaged maximum blood velocity (TAMXV) was measured in the umbilical

vein, ductus venosus, left portal vein and portal vein (Fig 1). The angle of insonation was kept

small, not exceeding 30˚ (median angle correction was 0, range 0–30˚). At the same site per-

pendicular to the vessel wall, the inner vessel diameter (D) was measured at least three times in

the umbilical vein, ductus venosus and portal vein. The mean D was used for the analyses (Fig

1). After identification of the vessel, the color Doppler was turned off and D was measured in

magnified images. The techniques applied are described in detail elsewhere [25, 26].

Blood flow (Q, mL�min–1) was calculated by the formula Q = π � (D/2)2 � h � TAMXV. The

velocity profile parameter was h = 0.5 for the umbilical vein (UV) and the portal vein (PV)

[26], h = 0.7 for the ductus venosus (DV) [27, 28]. Flow was normalized based on the estimated

fetal weight (EFW) as Q/EFW (mL�min–1�kg–1) [29]. Umbilical venous liver flow (UVliver) was

calculated asQUV liver =QUV −QDV, total liver flow asQliver = (QUV −QDV) +QPV and PV frac-

tion (FPV) of the total venous supply to the liver was FPV = 100% � QPV/Qliver.

Statistics

The sample size was based on our previous studies in non-diabetic pregnancies, demonstrating

significant associations between fetal growth patterns and variation in the venous liver circula-

tion [7, 30]. We allowed for lower measurement success rates and possibly smaller effects in

the PGDM group by increasing the number of participants from 30 to 50. It was not possible

to perform a formal sample size calculation since there were no earlier reports on the effects of

PGDM on fetal liver flow.

Multilevel regression analysis was used to model the mean and standard deviation values

for the outcome variables according to gestational age. The absence of overlap of the 95% con-

fidence intervals of the mean indicated a statistically significant difference between the PGDM

group and the reference values [25, 26, 31]. In addition, z-scores for means of outcome vari-

ables in the study population were compared with the reference group using the independent-

samples t-test, with a significance cutoff of p�0.05. The populations were also stratified for ges-

tational age (GA</� 30 weeks), and independent sample t-tests comparing mean z-scores
were performed to test differences between PGDM and low-risk pregnancies before and after

30 weeks of gestation. The relations between maternal first-trimester HbA1c and left portal

vein flow velocity, portal venous flow, and portal venous shunt fraction z-scores after 30 gesta-
tional weeks were assessed using multilevel regression analysis. The statistical analyses were

performed with the Statistical Package for the Social Sciences (version 24, SPSS, Chicago, IL)

and the MLWin program (version 2.35, Centre of Multilevel Modeling, University of Bristol,

UK).
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Results
The characteristics of the study population are described in Tables 1 and 2. The median gesta-

tional age at birth was lower and birthweights were higher in the study group than in the refer-

ence population [31]. In the study group, 19 (39%) of the neonates were macrosomic

(birthweight>90th percentile) and 3 (6%) were small for gestational age (<10th percentile)

[29] (Tables 1 and 2).

The left portal vein and portal vein blood velocity, and the portal vein diameters, were suc-

cessfully measured in 94.4%, 70.9% and 55.9% of 179 examination sessions, respectively. Fur-

ther, portal venous flow was calculated in 52.5%, total venous liver flow (Qliver) in 42.5%, and

the portal venous fraction of the total venous liver flow in 42.5% of the sessions. The success

rate for the umbilical vein and ductus venosus measurements have been published earlier [14].

The mean left portal vein flow velocity in the PGDM group was significantly higher than

the reference values, both before and after 30 weeks (Table 3, Fig 2A).

The mean portal venous flow in the PGDM pregnancies was not significantly different

from the reference values over the study period as a whole, but was significantly higher for the

period before 30 weeks of gestation, and the development after 30 weeks was blunted com-

pared with the reference values (Fig 3A). When normalized for EFW, the overall mean portal

venous flow was significantly smaller in PGDM, mainly due to reduced flow after 30 weeks of

gestation (Table 3 and Fig 3B).

Table 1. Maternal characteristics and outcomes in 49 pregnancies with pregestational diabetes mellitus.

Number Percent

Type 1 DM 44 89.8

Type 2 DM 5 10.2

Maternal diabetic complications or condition

- Retinopathy 9 18.4

- Nephropathy 1 2.0

- Hypothyroidism 9 18.4

- Chronic hypertension 7 14.3

Preeclampsia 3 6.1

Preterm birth 15 30.6

Induction of labor 30 61.2

Normal delivery 20 40.8

Operative vaginal delivery 7 14.3

Cesarean section 22 44.9

- Elective 9 18.4

- Acute 13 26.5

Median Range

Maternal age (years) 31 23 to 42

Pre-pregnancy weight (kg) 70 57 to 113

Maternal weight gain 15.8 -5.0 to 33.1

Pre-pregnancy BMI 24.9 19.8 to 44.1

HbA1c at inclusion (%) 6.7 4.9 to 12.0

Individual mean HbA1c† (%) 6.12 4.9 to 8.2

DM, diabetes mellitus; Preterm birth, gestational age<37 weeks
�acute cesarean section during labor

†mean of all HbA1c measurements throughout each pregnancy

https://doi.org/10.1371/journal.pone.0211788.t001
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The total venous supply to the fetal liver (Qliver) was larger in PGDM pregnancies (Table 3),

mainly due to high volumes in the second trimester (Fig 4A). When normalized for EFW, the

overall mean total venous liver flow in the PGDM group did not differ from that of the refer-

ence values but was significantly smaller after 30 weeks and with a different trajectory of the

mean curve (Table 3 and Fig 4B).

In the study group, the mean portal venous fraction for all observations through pregnancy

did not differ from the low-risk group (Table 3). However, the curve describing mean portal

venous fraction had an inverted U-shape in PGDM fetuses, the opposite of that in the refer-

ence group, where the portal venous fraction increased after week 33 (Fig 2B).

The overall mean umbilical venous liver flow (Q UV liver) was higher in PGDM pregnancies

compared with the reference, mainly due to the high flows before 30 weeks of gestation (Fig

5A). However, when normalized for EFW, the overall mean umbilical venous liver flow was

not different from low-risk pregnancies (Table 3), but the trajectory of the flow development

tended to be different in PGDM pregnancies with borderline significantly lower flow after 30

weeks (Table 3, Fig 5B).

The z-scores for left portal vein blood velocity were positively related to first trimester

HbA1C and correspondingly, the z-scores for portal venous fraction were negatively related to

Table 2. Neonatal characteristics and outcomes in pregnancies with pregestational diabetes mellitus.

Median Range

Gestational age at delivery (weeks+days) 38+4 27+6 to 40+5

Birthweight (g) 3695 990 to 5990

Birthweight z-score 0.93 –2.15 to 5.82

Umbilical artery

- pH 7.24 6.92 to 7.34

- pCO2 (kPa) 7.88 5.80 to 12.40

- pO2 (kPa) 2.19 1.16 to 3.47

- Base deficit (mmol�L–1) –2.11 –13.36 to 1.00

- Lactate (mmol�L–1) 4.70 2.00 to 14.40

Umbilical vein

- pH 7.30 6.89 to 7.44

- pCO2 (kPa) 6.10 4.20 to 15.30

- pO2 (kPa) 3.29 0.25 to 5.68

- Base deficit (mmol�L–1) –2.36 –10.98 to –0.15

- Lactate (mmol�L–1) 3.50 1.80 to 12.80

Erythrocyte volume fraction 0.63 0.52 to 0.76

Number Percent

Male sex 25 51%

Operative delivery for intrapartum fetal distress 13 26.5%

Metabolic acidosis at birth� 1 2%

5-min Apgar score<7 1 2%

Neonatal intensive care 20 40.8%

Perinatal death† 1 2%

Malformation‡ 2 4%

� Metabolic acidosis defined as an umbilical arterial pH of<7.0 and a base deficit of>12.

† Intrauterine fetal death at gestational week 36. Autopsy showed UV thrombosis and signs of acute asphyxia.

‡ One neonate with sagittal craniosynostosis and one with congenital heart defect (anomalous left coronary artery

from the pulmonary artery)

https://doi.org/10.1371/journal.pone.0211788.t002
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first trimester HbA1C (Fig 6). There was no relation between HbA1C and portal venous or total

venous liver flow.

Since 39% of the neonates in our PGDM group were macrosomic, we compared the devel-

opment of the total venous liver, umbilical and portal flows in low-risk, non-diabetic macroso-

mic and PGDM pregnancies, to illustrate the different flow patterns (Fig 7).

We compared the mean z-scores in the T1DM group with the reference values for LPV

velocity, PV flow, normalized PV flow, total venous liver flow, normalized venous liver flow

and UV liver flow (S1 Table). Excluding T2DM participants from the PGDM population did

not significantly change the results, except for PV flow which then became borderline signifi-

cantly higher compared with the reference values (p = 0.046).

Table 3. Fetal venous liver blood flow in pregnancies complicated by pregestational diabetes mellitus compared with reference values from a low risk population.

Parameter Popu-lation n Mean z-score p GA <30 Mean z-score GA<30p GA�30 Mean z-score GA�30p
(95% CI) (95% CI) (95% CI)

LPV velocity (cm/s) Ref. 537 0.003 <0.001 0.011 <0.001 -0.005 <0.001

(-0.09–0.09) (-0.11–0.13) (-0.12–0.12)

PGDM 201 0.639 0.675 0.575

(0.49–0.79) (0.46–0.89) (0.29–0.86)

PV flow (mL�min–1) Ref. 547 0.011 0.052 0.016 0.005 0.006 0.131

(-0.09–0.11) (-0.10–0.13) (-0.12–0.13)

PGDM 93 0.272 0.796 -0.466

(0.03–0.52) (0.26–1.32) (-1.07–0.14)

Normalized PV flow (mL�min-1�kg-1) Ref. 547 0.007 0.002 0.022) 0.821 0.009 0.002

(-0.10–0.11) (-0.09–0.13 (-0.14–0.12)

PGDM 93 -0.418 0.089 -1.132

(-0.67 - -0.17) (-0.49–0.67) (-1.80 - -0.46)

Total venous liver flow, Qliver (mL�min–1) Ref. 514 -0.005 <0.001 -0.008) 0.001 -0.001 0.881

(-0.10–0.09) (-0.13–0.11 (-0.13–0.13)

PGDM 75 0.507 0.847 -0.045

(0.26–0.75) (0.39–1.30) (-0.63–0.54)

Normalizedvenous liver flow (mL�min–1�kg–1) Ref. 473 0.010 0.479 0.007 0.342 0.033 0.047

(-0.09–0.11) (-0.13–0.11) (-0.11–0.17)

PGDM 75 -0.085 0.195 -0.538

(-0.33–0.16) (-0.21–0.60) (-1.08–0.01)

PV fraction of total venous liver flow (%) Ref. 511 0.004 0.645 -0.002 0.909 0.012 0.550

(-0.09–0.10) (-0.12–0.11) (-0.12–0.14)

PGDM 75 -0.098 0.028 0.217

(-0.35–0.16) (-0.49–0.54) (-0.46–0.89)

UV liver flow, QUV liver (mL�min–1) Ref. 558 0.00 0.002 -0.02 <0.001 0.01) 0.952

(-0.09–0.10) (-0.13–0.09) (-0.11–0.14

PGDM 122 0.364 0.65 0.00

(0.16–0.57) (0.23–1.06) (-0.37–0.38)

Normalized UV liver flow (mL�min–1�kg–1) Ref. 558 0.004 0.229 -0.05 0.630 0.03) 0.049

(-0.09 –-0.10) (-0.17–0.07) (-0.09–0.15

PGDM 122 -0.131 0.03 -0.33

(-0.33–0.06) (-0.35–0.41) (-0.67–0.00)

PGDM, pregestational diabetes mellitus; Ref., low-risk reference group [25, 26]; n, number of observations; CI, confidence interval for the mean z-score; p, probability
value; GA, gestational age (weeks)—before and after 30 weeks; LPV, Left portal vein; PV, portal vein; Qliver, total venous liver flow; PV fraction (%) = (PV flow/Total

liver flow)�100; Q UV liver, umbilical venous flow to the liver

https://doi.org/10.1371/journal.pone.0211788.t003
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Fig 2. Longitudinal observations of left portal vein blood velocity and portal venous fraction in PGDM and low-risk pregnancies. Left portal vein blood velocity
(TAMXV) as marker of the watershed between portal and umbilical contribution to fetal venous liver flow (a), and the portal fraction (%) of total venous volume (b) in
49 pregnancies with pregestational diabetes (PGDM; red circles and lines) compared with reference values from a low-risk population (black lines) presented with mean
(thick lines) and 95% confidence interval (thin lines).

https://doi.org/10.1371/journal.pone.0211788.g002

Fig 3. Longitudinal observations of portal venous flow in PGDM and low-risk pregnancies. Portal venous flow (a) and normalized portal venous flow (b) in 49
pregnancies with pregestational diabetes (PGDM; red circles and lines) compared with reference values from a low-risk population (black lines), with mean (thick lines)
and 95% confidence-interval (thin lines).

https://doi.org/10.1371/journal.pone.0211788.g003
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Discussion
In pregnancies complicated with PGDM, the fetal liver perfusion with nutritious umbilical

blood from the placenta was prioritized (Table 3, Figs 1 and 2A). This effect was graded

according to the maternal HbA1c level (Fig 6) and was associated with correspondingly accel-

erated fetal growth during the 2nd trimester. However, the blunted umbilical flow development

Fig 4. Longitudinal observations of total venous supply to the fetal liver in PGDM and low-risk pregnancies. Total venous liver flow (a) and the
correspondingly normalized flow values (b) in 49 pregnancies with pregestational diabetes mellitus (PGDM; red circles and lines) compared with reference
values from a low-risk population (black lines) presented with mean (thick lines) and 95% confidence interval (thin lines).

https://doi.org/10.1371/journal.pone.0211788.g004

Fig 5. Longitudinal observations of the umbilical venous supply to the fetal liver in PGDM and low-risk pregnancies.Umbilical venous liver flow (a) and
the correspondingly normalized flow values (b) in 49 pregnancies with pregestational diabetes mellitus (PGDM; red circles and lines) compared with reference
values from a low-risk population (black lines) presented with mean (thick lines) and 95% confidence interval (thin lines).

https://doi.org/10.1371/journal.pone.0211788.g005
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during the 3rd trimester seemed to cause an increasing mismatch between growth and blood

supply (Table 3, Figs 2–5).

The venous supply to the liver is radically different in fetal and postnatal life, with contribu-

tions from both the umbilical (�80%) and the portal vein (�20%) (Figs 1 and 7) [26]. Thus,

the umbilical vein is the principal source of fetal liver blood supply [31], and this umbilical

venous flow to the liver is augmented in diabetic pregnancies (Table 3, Fig 5A). Such increased

delivery of oxygen and nutrient rich umbilical venous blood to the liver, is thought to be

instrumental in the development of macrosomia [8].

The left portal vein connects the umbilical vein with the portal circulation and directs

umbilical venous blood to the right lobe of the liver (Fig 1). Blood flow in the left portal vein is

regulated by catecholamines [32] and maternal glucose levels [10]. Measurement of the left

portal vein velocity alone provides a simple method for gauging the umbilical/portal watershed

and for assessment of intrahepatic venous redistribution in compromised fetuses [25]. In the

present study, the mean left portal vein velocity was higher in PGDM pregnancies than the ref-

erence values, throughout the second half of pregnancy (Fig 2A). This signifies increased prior-

itization of umbilical blood flow to the right liver lobe and is known to induce liver growth,

increased production of IGF-1 and -2 and in turn, differential organ growth [8, 9].

The portal contribution to the venous liver perfusion was higher in PGDM than the refer-

ence group before 30 weeks (Table 3), but the portal venous flow did not keep up with fetal

Fig 6. Fetal liver blood flow and relation to HbA1C. Relations between z-scores of the time-averaged maximum left portal vein (LPV)
flow velocity (TAMXV) and portal vein (PV) fraction, and first-trimester HbA1c.

https://doi.org/10.1371/journal.pone.0211788.g006
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growth later in pregnancy (Fig 3B). This corroborates a study of Olofsson et al., showing that
blood flow to the lower extremities was prioritized at the expense of visceral blood flow during

the third trimester, in pregnancies with type 1 DM [33]. In addition, lower portal venous

return could be a result of reduced fetal swallowing or intestinal activity in diabetic pregnan-

cies [34]. We hypothesize that the increased umbilical venous flow to the right liver lobe

observed in our study, may induce accelerated fetal growth that is less supported by umbilical

venous supply at the end of pregnancy, and without any increase of portal blood flow to the

liver. Higher umbilical venous flow to the right liver lobe, as found in our study, could also

influence liver gene expression [15], fetal body composition [11] and possibly later health [20].

In the present study, 39% of the newborns had a birthweight> 90th percentile for gesta-

tional age (Table 2). Fetal macrosomia in PGDM is different from that in non-diabetic preg-

nancies, with disproportionate fetal growth expressed as a higher ponderal index [35]. In a

study of macrosomic fetuses withoutmaternal diabetes, the umbilical venous perfusion [12],

left portal venous flow, portal and total venous liver flow, were all increased during the second

half of pregnancy [7], even when corrected for fetal weight. Similarly, in the present study,

high umbilical venous flow [14], correspondingly low placental impedance [36] and increased

portal blood flow permit an up-regulation of liver flow before 30 gestational weeks (Table 3,

Figs 2–5). In contrast, after 30 weeks gestation, fetuses of diabetic mothers had reduced portal

and total venous liver flow when normalized for fetal weight, while in non-diabetic macroso-

mic fetuses no restriction in venous blood flow to the liver was observed (Table 3, Fig 7).

It is known that during placental compromise associated with fetal growth restriction,

shunting through the ductus venosus is prioritized at the expense of the umbilical venous liver

flow [37, 38]. This leads to reduced liver size that increasingly depends on the low-oxygenated

portal flow. In PGDM pregnancies however, the increased risk of chronic hypoxemia, acidosis,

and perinatal death in the last weeks of gestation [39–41] follows relatively greater umbilical

supply during the 2nd trimester (Table 3). The liver received umbilical blood at the expense of

flow through the ductus venosus [14]. Towards the end of pregnancy, PGDM fetuses outgrew

their supply of umbilical venous blood and did not maintain portal flow corresponding to

Fig 7. Fetal venous liver flow development in pregnancies with low risk, macrosomia and PGDM. The fetal venous liver
flow in three different populations: a low-risk population (physiological venous liver flow during the last weeks of pregnancy;
dotted lines), fetal macrosomic growth withoutmaternal diabetes, and pregnancies with pregestational diabetes mellitus
(PGDM, the present study population).

https://doi.org/10.1371/journal.pone.0211788.g007
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their weight (Figs 2 and 3). Although being at risk of relative hypoxia, the re-distribution

mechanisms well-known in fetal growth restriction did not seem to operate.

The strengths of this study are its prospective longitudinal design, involving an unselected

group of PGDM pregnancies, and identical and validated ultrasound and Doppler methods

applied to the reference population [42]. Low intra- and inter-observer variation has been

demonstrated for measurements of ductus venosus flow velocities [43], and almost identical

results for umbilical venous flow were achieved by different investigators using the same tech-

nique for ultrasound measurement and blood flow calculation [26, 44, 45]. The success rate for

measurements varied from 93.4% for left portal vein blood velocity to 52.5% for portal venous

flow, the latter being lower than in the reference population [26]. This was mainly due to diffi-

cult examination conditions caused by high BMI in our study group. Although there was no

inter-group difference in liver flow between PGDM participants with BMI< or�30, a selec-

tion bias cannot entirely be ruled out. Because the BMI was borderline significantly higher in

the missing compared with the complete data group (tested by independent sample t-test,
mean BMI z-score in the QUV liver missing data vs. non-missing data groups were 1.47 and

1.13 respectively, p = 0.07) this could introduce selection of a leaner PGDM population for the

estimation of umbilical venous liver flow. However, such a selection is expected to reduce

rather than augment the differences between the study- and the reference populations. Also,

wider confidence intervals in the study group compared with the reference group warrant a

cautious interpretation of the findings.

Including women with type 1 and type 2 DM in one study group may represent a limita-

tion, since these conditions differ in many respects. Our goal was however, to study fetal flow

and growth in pregnancies with PGDM. Our population was not large enough to answer the

question of whether fetal venous liver circulation is different in pregnancies with type 1 or type

2 DM. Nevertheless, when women with type 2 DM were excluded the findings remained sig-

nificant in the type 1 DM group (S1 Table).

Conclusion
Maternal diabetes is associated with adverse consequences in the offspring [46], including

macrosomia and metabolic syndrome [47], but the underlying mechanisms are not estab-

lished. Fetal liver blood flow is linked to fetal growth, and we showed that flow is related to

maternal blood glucose in the first trimester in PGDM pregnancies. However, the relatively

greater liver perfusion in PGDM pregnancies before 30 weeks was not maintained in late ges-

tation, possibly leading to mismatch between fetal growth and nutrient supply, and later effects

on health.

Supporting information
S1 Table. Fetal venous liver blood flow in pregnancies complicated by type 1 diabetes mel-

litus compared with a low risk reference population. Ref., low-risk reference group; n, num-

ber of observations; CI, confidence interval for the mean z-score; p, probability value; LPV,
Left portal vein; PV, portal vein; Qliver, total venous liver flow; UV liver flow, umbilical venous

flow to the liver.
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Supporting information 

S1 Table 

Fetal venous liver blood flow in pregnancies complicated by type 1 diabetes mellitus 
compared with a low risk reference population 

 
Parameter 

 
Population 

 
n 

 
Mean 

z-score 
(CI of mean) 

 
p 

 

LPV velocity  

(cm/s) 

 

 

Ref. 

 

553 0.004 

(-0.86 – 0.09) 

 

<0.001 
 Type 1DM 179 0.691 

(0.29 – 0.87) 

PV flow  

(mL·min
–1

)
 

Ref. 

 

558 0.017 

(-0.87 – 0.09) 

 

0.046 

 Type 1DM 

 

86 0.297 

(-0.05 – 0.99) 

Normalized  

PV flow 

(mL�min
-1

·kg
-1

) 

Ref. 

 

558 0.011 

(-0.09 – 0.08) 

 

0.002 
 Type 1DM 

 

86 -0.450 

(-0.88 – 0.26) 

Total venous  

liver  flow, 

Qliver  (mL·min
–1

)
 

Ref. 

 

525 -0.002 

(-0.10 – 0.08) 

 

<0.001 
 Type 1DM 69 0.570 

(0.14 – 0.92) 

Normalized 

venous  

liver flow 

(mL·min
–1

·kg
–1

) 

Ref. 

 

528 -0.012 

(-0.09 – 0.09) 

 

0.598 

 Type 1DM 

 

69 -0.087 

(-0.48 – 0.21) 

UV liver flow,  

Q UV liver  

(mL·min
–1

) 

 

Ref. 

 

555 -0.006 

(-0.12 – 0.06) 

 

<0.001 
Type 1DM 111 0.435 

(-0.09 – 0.76) 

 

Ref., low-risk reference group ; n, number of observations; CI, confidence interval for the 

mean z-score; p, probability value; LPV, Left portal vein; PV, portal vein; Qliver, total venous 

liver flow; UV liver flow, umbilical venous flow to the liver 
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