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Summary 

Biochemical pathways are commonly used as a reference to conduct functional analysis on 

biomedical omics datasets, where experimental results are mapped to knowledgebases 

comprising known molecular interactions collected from the literature. Due to their central 

role, the content of the functional knowledgebases directly influences the outcome of 

pathway analyses. In this study, we investigate the structure of the current pathway 

knowledge, as exemplified by Reactome, discuss the consequences for biological 

interpretation, and outline possible improvements in the use of pathway knowledgebases. 

By providing a view of the underlying network structure, we aim to help pathway analysis 

users manage their expectations and better identify possible artefacts in the results. 
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Introduction 

In order to interpret the results of biomedical studies in a larger biological context, it is 

common to perform so-called pathway analysis. This can provide additional insight into the 

interactions between the detected compounds and possibly uncover underlying disease 

mechanisms (Garcia-Campos et al., 2015; Khatri et al., 2012). Pathways are defined as 

chains of biochemical reactions that together form high-level biological processes. The 

main participants of pathways are proteins, present in different states referred to as 

proteoforms (Smith and Kelleher, 2013; Regnier and Kim, 2017). 

Our current knowledge of pathways and the molecular processes comprising them is 

consolidated in various knowledgebases as reviewed by Rigden et al. (Rigden et al., 2016), 

e.g. WikiPathways (Slenter et al., 2017), Ingenuity Pathway Analysis (qiagen.com), KEGG 

(Kanehisa et al., 2017), and Reactome (Milacic et al., 2012; Fabregat et al. 2018). Biases and 

knowledge gaps in pathway databases directly influence the results (Wadi et al., 2016), and 

insight into where our knowledge is lacking can be used to guide future research.  

In this study, we systematically investigated existing pathway knowledge, with a focus on 

proteins and their interactions, using Reactome as a reference. The goal is to shed light on 

the structure and content of the data, and how this ought to influence the way pathway 

analysis is performed. For a comparison of the current pathway analysis approaches we 

refer the reader to (Garcia-Campos et al., 2015), as this is beyond the scope of this article. 

Reactome is manually curated and contains detailed information on proteins (but also 

small molecules, RNA, DNA, carbohydrates, and lipids) connected to each other by chemical 

reactions, organized in a graph database that can be queried programmatically (Fabregat et 
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al., 2017). Unless stated otherwise, our analysis should however be generic and it is 

anticipated that the findings also apply to other pathway databases. 

Our results provide novel insight into the state of pathway knowledge, how it is structured, 

and indicate biases that may influence biomedical analyses. Finally, potential 

improvements in how bioinformatics tools interact with pathway databases are identified. 

 

Materials and Methods 

Reactome was downloaded as graph database from reactome.org/download-data (version 

58). Connecting to Neo4j (driver version 3.0.7) was done in Java 8 using the Neo4j Java 

Driver (version 1.0.6), and in R (version 3.4.2, (R Core Team, 2017)) via RNeo4j (White, 

2016). Selections within the database were done by filtering 

EntityWithAccessionedSequence, Reaction, Pathway, and TopLevelPathway on 

speciesName: 'Homo sapiens', and ReferenceEntitiy on databaseName: 'UniProt'. The 

networks presented in this manuscript can be created using PathwayMatcher 

(github.com/LuisFranciscoHS/PathwayMatcher). The code used to produce the results of 

this study can be found at github.com/bramburger/PathwayStructure. 

Participation in reactions was selected by searching recursively for edges annotated with 

input, output, catalystActivity, regulator, regulatedBy, physicalEntity, hasMember, 

hasCandidate, and hasComponent. Direct participation of reactions in pathways was 

selected by searching for edges annotated with hasEvent and analogously, for indirect 

participation, although in that case the search was recursive. Gene Ontology terms were 



4 
 

taken from the human complement of UniProt (The UniProt Consortium, 2017), 

downloaded on July 13th, 2017. 

Radiality of each node was calculated by summing the reverse geodesic (i.e. one plus the 

diameter of the network minus the distance between the two nodes) for those nodes that 

can be reached, and subsequently dividing this sum by the diameter of the network times 

one minus the total number of nodes in the network. Integration was calculated in the same 

way but following the edges in reverse order (Valente and Foreman, 1998). 

 

Results 

Protein networks are becoming larger and denser 

Maps of interactions between proteins are generally displayed in the form of protein-

protein interaction (PPI) networks, where proteins are depicted as nodes and the 

interactions between them indicated by edges. Such graphs provide a model for biological 

knowledge at both local and global scales, i.e. they show the direct interactions between 

individual proteins as well as the overall network organization. A typical use case is to 

identify clusters of proteins specifically related to a given disease condition (Menche et al., 

2015). 

PPI networks can be constructed using experimental data, e.g. yeast two-hybrid (Y2H) 

screening or affinity purification coupled to mass spectrometry (AP-MS), or from 

interactions documented in the literature (Bork et al., 2004). The data contained in 

pathway databases fall in the latter category and are obtained either via manual curation or 
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through automated literature mining, in contrast to databases of experimental inferred 

interactions, such as Biogrid (Oughtred et al., 2016) or Intact (Orchard et al., 2014).  

By design, pathway networks differ from experimental PPI networks in three main aspects: 

(i) they have a higher granularity, i.e. they contain much more detailed information about 

the interactions, including, for example, information on the proteins’ post-translational 

state or sub-cellular localisation where the interaction occurs; (ii) they contain very 

different types of interaction, some of which are directed, including, for example, complex 

formation, catalysis, or inhibition; and (iii) given that the gathering of the data is dependent 

on manual curation, their growth is slower. 

In Figure 1, we illustrate the growth pace by taking the Reactome database and locating 

the earliest literature reference for each protein interaction. The first documented reaction 

is from 1934, describing the interaction between two Haemoglobin subunits (Ferguson and 

Roughton, 1934). The network for 1934 thus contains only two nodes and two edges and is 

easily interpretable (Figure 1A). From 1960 to 2000 our knowledge about the network 

grew from 15 proteins in four separate components to a much larger network of 5,620 

proteins across 70 components (Figure 1B to 1E). In general, each year a substantially 

higher number of interactions was discovered compared to the number of proteins added 

to the network. Most of the interactions and proteins included were first mentioned in the 

literature between 1985 and 1995 (Figure 2A). The current network (Figure 1F) consists 

of 10,365 proteins (7,548 if excluding proteins not interacting with any other proteins), 

and over a million interactions, thus covering more than half of the human protein coding 
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genes in UniProt. The network has one densely connected main component, with slightly 

less well-connected periphery, and 85 smaller components (Figure S1). 

The average number of interactions per protein has steadily increased from 1965 onwards. 

However, after a sharp drop between 1995 and 2000, the average number of interactions 

per protein seems to have stabilised around 100 (Figure 2B). There are also large 

differences in the number of annotated interactions per protein. e.g. the maximum number 

of interactions for a single protein is 1329, while 367 proteins have only one documented 

interaction. 

The increase in the number of annotated proteins and interactions has made inference 

concerning the affected processes in the biological system more challenging, i.e. the gain of 

additional data has come at the price of increased complexity.  

 

From protein interactions to pathways 

Reactome defines interactions as chemical reactions (e.g. binding reactions, transportation 

or modifications) which have an input and an output, and possibly a catalyst and/or 

regulator. In the following, we define two proteins as interacting when they appear 

together in a reaction and where one of the proteins is the output of the reaction. The other 

protein is either an input, a catalyst, or a regulator. In this model, all interactions are 

therefore directed. A binding reaction, where two (or more) proteins form a complex 

(Figure 3A), is defined as having the pair of proteins both as input and output, producing 

two edges between the proteins, one in each direction (Figure 3B). 
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Complexes are important in the interpretation of interactions, as all proteins in a complex 

need to be present in a given folding and modification state to form a functional complex, 

and subsequently, a complex can only perform its task(s) when all relevant proteins are 

bound together. A related concept is entity set, where one of a set of candidate proteins has 

to be present to perform a given task, i.e. proteins in entity sets are thus interchangeable 

(Alberts, 1984; Fabregat et al., 2017). 

A protein that only acts as the input of reactions will only have outgoing edges and can be 

thought of as a starting point for a biological process, while a protein that never acts as the 

input of a reaction will be an end point of a process. Chains of reactions do not necessarily 

follow one after the other. For example, when a protein-complex is the input of a process, 

the complex first has to be generated, which can be a separate process. 

Reactions having specific functions when chained together are grouped into pathways. A 

pathway is thus a description of a process, with the corresponding reactions making the 

process happen. This can be a very specific process, consisting of only a few reactions, or 

general pathways described as collections of more specific pathways, with potentially 

additional reactions connecting them. The pathways are then grouped together in even 

more general pathways, where pathways that do not belong to any other pathway are 

referred as top-level pathways (Figure 3C). 

In total, Reactome contains 2,051 pathways, with 1,400 of these not having any sub-

pathways, i.e. being the most specific pathways consisting only of reactions. 654 pathways 

contain at least one other pathway and most of these contain only a few other pathways 

(Figure S2). However, the top-level pathways, and some of their sub-pathways, have 
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numerous pathways nested inside them. The largest top-level pathway is Signal 

Transduction (2,444 proteins), while the smallest is the Circadian Clock (21 proteins) 

(Figure 4A). Thus, finding ten differentially quantified proteins in the Circadian Clock 

pathway is clearly not as likely as finding the same number of proteins in the Signal 

Transduction pathway. This is why the size of the pathways is a key parameter when 

analysing and comparing pathways. 

While it is intuitive that a pathway can have multiple sub-pathways (as biological processes 

often consist of multiple, more or less distinct, sub-processes), the opposite is also possible, 

i.e. sub-pathways being part of multiple parent pathways. This can be interpreted as 

processes being re-used by several distinct processes. However, this is not very common, 

with only seven pathways being sub-pathways of more than two other pathways, and 41 

having exactly two parent pathways. The pathways that descend from more than two other 

pathways are listed in Table S1. Identifying components of such ubiquitous pathways does 

not allow identifying the higher-level biological mechanism at play, leaving ambiguity in 

the pathway inference. 

The nested structure is important when interpreting pathway analysis output, as high-level 

pathways may have easily understandable descriptions but they are most often not very 

specific. On the other hand, for very specific pathways the other pathways it belongs to 

have to be taken into account when interpreting their place in the biological system of 

interest. When multiple pathways are found it becomes important to compare the different 

pathways to each other and see whether (and how) they are connected. 
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1,390 pathways directly contain at least one protein, with 271 of them also containing a 

sub-pathway, while 429 pathways only contain proteins indirectly via their sub-pathways, 

thus not containing any proteins directly. However, most pathways containing at least one 

protein only contain a few proteins (Figure S3A). While there are only eight pathways 

directly containing more than 200 proteins, the largest pathway directly contains close to 

500 proteins. 

It is also possible to include the number of proteins in nested pathways when counting how 

many proteins are part of a given pathway (Figure S3B). This way, a pathway may 

artificially appear of interest due to the contribution of different sub-pathways. For 

example, identifying two proteins that participate in the Immune System pathway, but 

occur in completely different parts of the network, is less meaningful than proteins 

clustering in a specific region of the immune system. 

Just as a pathway can be part of several other pathways, a protein can participate in 

multiple pathways. At the most general level, more than half of the proteins in Reactome 

participate in only one top-level pathway (Figure 4B) and can be of high interest due to 

their specificity. Note that none of the proteins participate in all 24 top-level pathways, 

i.e. there are no proteins which have a role in all general processes. However, four proteins 

(ubiquitins) participate in more than half of all top-level pathways. 

An indication of how many processes a protein is potentially involved in is obtained by 

counting all pathways a protein participates in (including sub-pathways of the given 

pathway). This way, most of the annotated proteins participate in less than a dozen 

pathways (Figure S3C), and few (618) participate in more than 25 pathways. The four 



10 
 

ubiquitin proteins participating in more than half of the top-level pathways are the only 

proteins to participate in more than 150 pathways. 

One can also count only the pathways a protein directly participates in. This indicates how 

many specific processes a protein is involved in, while each specific process can itself occur 

in multiple more general processes. This way, most proteins (8,680) participate in less than 

six pathways (Figure S3D), with the four ubiquitin proteins being again the only proteins 

participating in upwards of 100 pathways. While the proteins participating in few 

pathways may have more specific functions, it should be noted that the proteins 

participating in many pathways can also potentially affect separate pathways in different 

equally unique ways. 

When a protein participates in multiple pathways, it may interact with different sets of 

proteins depending on the function it is performing. The blocked diagonal of the adjacency 

matrices, shown in Figure 5A and B, indicates that there are both dense and less dense 

clusters of interacting proteins in the pathways, while the differences in blockiness of the 

pathways indicate that some pathways have denser clusters of interacting proteins than 

others. 

 

A global view on protein interactions 

Out of the 10,365 proteins in Reactome, 7,548 interact with other proteins. In addition, 

4,539 of those can form complexes with other proteins. Most do so with only a few other 

proteins. Looking at interactions in general, most proteins have many interactions with 

other proteins, e.g. there are numerous proteins (4,795) with over 50 interactions, and 
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quite a few (56) with more than a thousand interactions (Figure S4). Each of the four 

ubiquitin proteins mentioned above can have more than 2,000 interactions. In this jumble, 

it is therefore of great importance to filter out the interactions that are relevant for each 

specific study. 

By looking at the current network (Figure 1F) it is possible to distinguish different types of 

nodes with the naked eye, based on their connectivity to other nodes. To better define 

these types, the radiality and integration of each node was calculated, where radiality 

provides an indication on how easily a node can reach other nodes, and integration gives an 

indication as to how easily other nodes can reach it (Valente and Foreman, 1998). The 

range for both metrics are 0 to 1, with higher values for radiality indicating that a protein 

can reach more proteins through less reactions. 

Our results show that proteins can roughly be divided into four categories (Figure 6): (i) 

isolated proteins: both radiality and integration near zero (399 proteins); (ii) main 

component proteins: relatively high values for both radiality and integration (5,998 

proteins); (iii) start of chain proteins: low integration, non-low radiality (385 proteins); 

and (iv) end of chain proteins: low radiality, non-low integration (766 proteins). As 

expected from Figure 1 and illustrated in Figure 6, the radiality and integration of proteins 

has increased over time as the network was growing, and the prevalence of isolated 

proteins has diminished. 

Isolated proteins are part of small components not connected to the main component and 

thus can only reach a very small number of other proteins, or are in the periphery of the 

main component, but have few interactions (Figure 6C). The start and end chain proteins 
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are at the periphery of the main component and are either at the beginning or at end of 

chains of reactions, respectively. Proteins that form the start of chains are able to reach 

many other proteins, but due to the directionality of the interactions cannot in turn be 

reached by many other proteins. Similarly, proteins that are at the end of chains are able to 

be reached by many other proteins but cannot themselves reach many other proteins. 

The first important distinction is between the isolated proteins and the rest. When the 

proteins of interest are all isolated proteins, it will probably not make much sense to rely 

on network analyses to uncover biological context. Further interactions can then be 

obtained from experimental PPIs, and further investigation may be required to identify the 

functions and interactors of these proteins. Another potentially important distinction is 

between the start-of-chain, end-of-chain and main-component proteins. Deregulation or 

function impairment of the proteins might have different implications or likely causes 

depending on which type of protein they are. 

 

Discussion 

During the recent decades our understanding of proteins and their interactions has steadily 

increased, and there are continuous ongoing efforts to curate and annotate this knowledge 

into publicly available knowledgebases. It is therefore reasonable to assume that with 

increasing knowledge it has become easier to view study specific findings in a larger 

biological context. On the one hand this is true, there are more proteins that we can put in a 

biological context. But on the other hand, the network has grown so large and dense that it 

has become increasingly challenging to identify the relevant interactions and processes. 
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The network seems to evolve towards a denser network, potentially consisting of a single 

large and closely connected component. In such a network it becomes vital to look at the 

interactions at two levels: the local interactions and the global context. Local interactions 

are the direct connections between the proteins, constituting the basic steps of the 

biological processes, essential for our understanding of how these processes work. At the 

same time, it is important to take into account where in the network the interactions take 

place. For example, when a protein at the start of a chain of reactions is affected by a 

disease, there may be less possibilities for the biological system to compensate. Conversely, 

when a protein somewhere in the middle is affected, there may be more opportunities to 

find alternate ways of achieving the given biological function. Finding redundancies in the 

system around affected proteins or proteins with homologous functions can possibly allow 

uncovering biological mechanisms more specifically and identify druggable targets. 

Our findings also indicate large differences between pathways. This may be explained by 

some processes being more complex than others and thus requiring a greater number of 

proteins and steps to be executed and regulated. However, some processes have also 

received a greater amount of scientific attention, and the more research is carried out in a 

specific field the more detailed its annotation. The degree to which these two elements 

affect the differences in the annotation of pathways is uncertain, but it is clear that they 

ought to be taken into account when analysing and comparing pathways. 

Rolland et al. found that the dense zones in the protein map may be the result of biases in 

the curation process, and not due to biological properties (Rolland et al., 2014). The 

curation seems to focus mainly highly and widely expressed proteins, which tend to 
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already be well-connected in knowledgebases. Such biases can be managed through 

additional experiments and come as an important reminder that biological networks are 

tools for navigation and not a substitute for experimental validation. 

Interestingly, this strategy of extending the network is encouraged by the Reactome 

curator guidelines (wiki.reactome.org/index.php?title=New_Reactome_Curator_Guide), and 

such a bias has an impact on what can be learned using pathway analysis, meaning that 

well-studied proteins will most likely only be put in the most well-known contexts. 

Similarly, there will be a greater number of annotations for proteins playing (potential) 

roles in well-researched diseases, and there can thus potentially be a bias towards the 

mechanisms involved (Schaefer et al., 2015). However, our comparison of the gene 

ontology (The Gene Ontology Consortium, 2016) annotations of the proteins in Reactome 

against those in UniProt revealed no obvious biases (Figure S5A and B). 

One major simplification in the current pathway analyses is the use of a gene-centric 

model, where the proteoforms originating from the same gene, are modelled as a single 

node. Proteoforms can be due to, for example, amino acid variation, splice variants, 

sequence processing and folding, and post-translational modifications, potentially 

influencing a protein’s function and interaction partners. While the theoretical number of 

possible proteoforms is orders of magnitude larger than the number of experimentally 

observed proteoforms, the number of biologically relevant proteoforms is still unknown 

(Aebersold et al., 2018). Reducing all potential proteoforms to a single node in the protein 

network greatly simplifies biological knowledge, and is likely to reduce our ability to model 

highly specific protein-protein interactions. 

http://wiki.reactome.org/index.php?title=New_Reactome_Curator_Guide
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As an example, the “RAC-alpha serine/threonine-protein kinase” protein (UniProt identifier 

P31749) is annotated to participate in 29 pathways in Reactome. If one knows that the 

protein is not modified, it is only annotated to participate in 10 pathways. Furthermore, if 

the protein has a modified tyrosine at coordinate 315 or 326 there is only one annotated 

pathway to inspect. This simple example indicates that asking more specific questions can 

provide dramatically more specific results. However, this is not always the case, e.g. when 

the same protein has a modified threonine at coordinate 308 the number of possibly 

affected pathways is still as high as 26. 

When looking only at the interactions between pairs of proteins, important information is 

lost regarding participation in protein complexes and entity sets. Detecting only a single 

protein from a complex may indicate that the protein was not used in the specific reaction, 

although this conclusion is less likely to be correct when the other proteins in the complex 

are harder to detect. Given that many reactions depend on the interaction between protein 

complexes and/or entity sets, it is therefore essential to look beyond the interactions 

between pairs of proteins when doing pathway analysis. For example, when a protein 

interacts with a set of proteins, which in turn interacts with another protein, the dynamics 

are completely different when the set of proteins in the middle is a complex versus an 

entity set. 

One should also keep in mind that proteins not annotated in a pathway database cannot be 

analysed in the context of pathways. Currently Reactome contains 10,365 human proteins, 

only just above half the number of human coding genes annotated in Uniprot. Given this 

rather large gap, there seems to be a potential bias towards proteins that are ‘easier to 
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find’, i.e. proteins having more annotation and/or better evidence for their existence 

(Figure S5C and D). 

Finally, it is important to underline that even if a set of proteins is not annotated as 

interacting in a pathway database, their interaction may yet be known, but lacks proven 

involvement in one of the biological processes reflected in the collection of pathways – or 

this information was not curated yet. The process of choosing proteins and pathways for 

curation could be randomised to make it less biased, giving all molecules the same chance 

to get annotated in the pathways, but that would come at an increased cost for curation 

teams, as new expertise is needed for each new biological area to review. 

Being able to understand project specific findings in a larger biological context is a key goal 

in the biomedical sciences, and with the increasing amount of knowledge available in 

public pathway knowledgebases this objective is increasingly achievable. However, our 

results indicate that the growing complexity of the protein network and its structural 

biases present major challenges for this field of research. Through better understanding of 

the pathway network structure, correction for biases in analyses, and improvement of the 

models for complex biological systems, we are confident that the accuracy of pathway 

analyses will constantly improve, providing biomedical scientists with ever expanding 

understanding of complex biological systems. 
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Figure legends 

 

 

Figure 1: Protein network evolution. For each year, only proteins participating in a reaction 

published in or before that year according to Reactome are included. A) 1934: only one 

reaction is documented, B) 1960: four connected components containing 15 proteins in total, 

C) 1970: larger, very dense components start to appear, D) 1985: several very densely 

connected components, connected to each other in various degrees, E) and F) 2000 and 2017: 

a single very densely connected component, with slightly less well-connected periphery and a 

number of smaller components. See main text for further details. 

  



23 
 

 

 

Figure 2: Network size evolution. A) Number of proteins vs. number of interactions in 

Reactome. The number of interactions between two proteins and the number of proteins that 

interact with at least one other protein are plotted for each year, based on the earliest 

annotated publication. B) Average number of interactions per protein. The total number of 

interactions divided by the total number of proteins for each year, based on the earliest 

annotated publication. 
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Figure 3: Protein interactions in Reactome. A). Proteins can simultaneously be input and 

output of a reaction, e.g. a binding reaction producing a complex. B) In the resulting 

networks, proteins in a complex will have an edge between them in both directions. C) 

Pathway hierarchy generic structure: reactions compose pathways, pathways may also group 

together more specific pathways, and top-level pathways group related pathways to the more 

generic processes. 
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Figure 4: Pathway sizes. A) Sizes of top-level pathways and the number of shared pathways. 

The size of the circles is proportional (log scale) to the number of proteins in each top-level 

pathway. The largest and smallest pathways have the number of proteins annotated. Edges 

between pathways indicate the number of sub-level pathways they have in common. B) 

Distribution of the number of top-level pathways a protein participates in. The y-axis is in log-

scale. Proteins participating in more than half of the top-level pathways are annotated. 
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Figure 5: Adjacency matrix showing the edges between protein interactions and pathways. 

Each row/column is associated with a specific protein; a dot indicates an interaction between 

two proteins. Interactions are colored by the largest top-level pathway they participate in. A) 

the complete adjacency matrix. B) only proteins not participating in one of the six largest 
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pathways. Note that adjacency matrices may give a slightly biased view due to coloring by the 

largest pathway. Reactions/interactions can happen in multiple pathways. 
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Figure 6: Radiality and integration of the proteins in the network of 1985 (A) and 2017 (B, C). 

The PPI network for 1985 uses only interactions which earliest annotated literature reference is 

in or before 1985. Red diamonds: isolated proteins; green circles: proteins in the main cluster; 

blue upwards-pointing triangles: start of chain proteins; purple downwards-pointing triangles: 

end of chain proteins; grey diagonal: the line where radiality equals integration. (C) displays the 

entire network with nodes colored according to the categories identified in (B). 

 

 


