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Abstract

An important part of fisheries acoustics is the classification of fish species. Sound
waves are transmitted through water to detect fish species, and the echoes return-
ing from the fish are categorized to be used for fish abundance estimates. These
estimates are import for fishery management. Recently, it has been shown that a
deep learning model performs well on the task of classifying acoustic data. However,
these models are often criticized for being “black boxes” and hard to interpret. We
have created a pipeline to test a neural network model, in order to shed light on
what features of the data impact the predictions of the model. In this pipeline,
simulated data is utilized, created by a model that emulates the performance of a
multi-frequency echo sounder. The simulated data enables the possibility of adjust-
ing one feature of the data at a time. We have concentrated on two features: the
relative frequency response, an energetic characteristic of the data, and the shape of
the fish schools. A neural network is trained to recognize two types of fish schools,
dissimilar only in shape and relative frequency response. The network is then tested
on data where either shape or relative frequency is changed, to evaluate the im-
portance of each feature. From these tests we conclude that the relative frequency
response affects the model’s performance more than shape.
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Chapter 1

Introduction

1.1 Introduction

Acoustic trawl surveys locate and estimate fish biomass for stock assessment and
ecosystem studies (Simmonds and MacLennan, 2005). Measurements are performed
using echo sounders, a special case of sonar where the acoustic beam is directed
vertically in the water column. Echo sounders transmit pulses of sound at either
a single or multiple frequencies to remotely detect objects in water. These sound
waves propagate through the water until they reflect of a target or the seabed.
The reflected sound, also referred to as backscattered sound, is detected by the
echo sounder. The echo sounder displays the backscattered sound as echograms,
two-dimensional arrays that show the position and morphology of the targets, and
give information about the amplitude of the backscattered sound. To estimate the
abundance of a species, the different marks of the echogram have to be categorized.
In order for the estimate to be precise, the classification has to be done correctly.
Classification can not be done based only on the echogram, since the echo amplitude
of a target is dependent on several features such as the transmitting frequency of the
echo sounder, target morphology, the tilt of the target (whether the fish is swimming
up or down), and the presence or absence of a swimbladder. Typically, this is done
manually using knowledge of the local fish populations, and aided by trawl samples
(Simmonds and MacLennan, 2005).

Manual target classification is time consuming and prone to human bias, and a
range of classification methods have been proposed to automate the process and
reduce subjectivity. Weill et al. (1993) used principal component analysis and linear
discriminant analysis for classification of fish, while Haralabous and Georgakarakos
(1996) trained an artificial neural network. Both of these studies used features gath-
ered from the fish aggregations, such as energetic and morphological characteristics.
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Another important feature used in categorization of species is the frequency depen-
dence of targets, called the relative frequency response, defined as the ratio of the
backscattered energy at frequency f to an reference frequency f0, usually 38 kHz;
r(f) ≡ sv(f)/sv(38kHz). This has been used for classification of deep-water orange
roughy (Kloser et al., 2002), and classification of herring, mackerel, and capelin
(Korneliussen and Ona, 2002; Korneliussen and Ona, 2003; Fernandes et al., 2006;
Korneliussen et al., 2009). Other methods, such as random forest and k-means clus-
tering, have also been used for categorization (Fallon et al., 2016; Gastauer et al.,
2017).

Another possible solution for target classification is the use of deep convolutional
networks. These network are composed of multiple processing layers that learns
representations of data, i.e., they do not use engineered features as the methods
mentioned above, but rather learn the features needed for classification from the raw
data (Lecun et al., 2015). Brautaset et al. (2020) showed that the U-Net model can
be used for categorizing acoustic multi-frequency echo sounder observations. The U-
Net model was first proposed for the purpose of segmenting blood cells (Ronneberger
et al., 2015). This fully convolutional network consists of an encoder and a decoder.
The encoder maps the input to a low-resultion representation, and the decoder is
a mapping from the low-resolution representation to a pixel-wise representation.
However, as is with all neural networks, the model is hard to interpret and does not
provide information about feature importance. It is therefore less transparent than
more conventional methods, such as random forest, where hand-crafted features are
used (Brautaset et al., 2020).

The objective of this thesis is to expand on the works of Brautaset et al. (2020),
by trying to identify the significance of two features of the fish schools from the
echo sounder observations; relative frequency response and shape. The goal is to
determine if one is of more significance than the other, or if the features are equally
important when the network classifies fish schools. To achieve this, we need data
where we can adjust one feature at a time. Therefore, a simulation model that
emulates acoustic data from a multi frequency echo sounder is used to create a data
set. The data will include two types of fish schools that differ only in shape and
relative frequency response. We will train a neural network to classify the acoustic
data. Lastly, we will observe the model’s performance on data where the fish schools
have been changed in either shape or relative frequency response.
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1.2 Chapter overview

Chapter 1 – Introduction This chapter.

Chapter 2 – Background This chapter gives the reader basic knowledge of the
concepts used in this thesis. A short introduction to fisheries acoustic is given in
Section 2.1, then some key concepts within neural networks are explained in Section
2.2.

Chapter 3 – Materials and methods The simulation model used to create a
data set is explained in Section 3.1. In Section 3.2 the data set used to train and
test the neural network model is explained, along with the training scheme and
architecture of the model. How the model performance is tested is explained in
Section 3.3.

Chapter 4 – Results The performance of the model is described. First, the
performance of the model on data similar to data it has been trained on is discussed
in Section 4.1. Then, the performance of the model on perturbed data is described
in Section 4.2.

Chapter 5 – Discussion The results and their implications are discussed.
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Chapter 2

Background

This chapter is meant as a short introduction to terms within fisheries acoustics and
machine learning. Section 2.1 introduce concepts within fisheries acoustics. Section
2.2 introduces terms within machine learning, specifically those connected to the
field of neural networks.

2.1 Fisheries acoustics

2.1.1 Echo sounders

Acoustic surveys are done using echo sounders to detect or observe remote objects
in the sea. Sonar is the general term for all devices capable of remote detection in
water, while an echo sounder is a special implementation of sonar where the acoustic
beam is directed vertically downwards.

Figure 2.1 shows the different parts of the echo sounder. The transmitter creates a
burst of energy for a specified frequency. The transducer converts the energy into
a sound wave that propagates through the water column. Targets, such as fish,
plankton or the seabed, reflect and scatter the pulse of sound. This backscattered
sound is received by the transducer again, which converts it to electrical energy. The
signal is then amplified and displayed on an echogram. The depth of the target is
calculated from the travel time of the pulse from the transducer to the target and
back again.

2.1.2 Echograms

The echogram consists of vertical lines corresponding to each transmission. If the
transducer is fixed, then the echogram will be a time-series of a specific volume. To
detect fish, the transducer is moving at constant speed in one direction, and the
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Figure 2.1: An illustration of how an echo sounder works. A sound wave is propa-
gated through the water, and reflected off of targets such as fish. The reflected sound
is then used to create an echogram, a vertical cross-section of the water column.

echogram is a cross-section of the water column. Each of these vertical lines show
how the acoustic reflectivity varies for each transmission. If a target is detected, it
will show up as a mark on the echogram. With support from trawl samples and
knowledge of species composition, the mark can be linked to a specific species or
group of species (Simmonds and MacLennan, 2005).

2.1.3 Acoustic propagation

Beam spreading

Sound waves spread as they propagate through water. This means that the intensity,
i.e., power transmitted through a unit area, is reduced as the wave gets further away
from the transducer.

In a lossless medium and with sound waves coming from a point source, the power
of the wave P will radiate in all directions. As there is no power lost in the medium,
the power P is constant,

P =

∫∫
A

I · dA, (2.1)
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where I is the intensity as a function of distance, and dA is the differential element
of a closed surface A that contains the sound source. For the point source mentioned
above, this area will be the surface of a sphere. If the intensity is uniform, Equation
(2.1) will become

P = Ir · 4πr2,
where Ir is the intensity at distance r, the radius of the sphere. As this must hold
true for any distance r, we can show that intensity follows the inverse-square law.
If I0 is the intensity at a distance of 1 meter from the point source, and Ir is the
intensity at distance r, and P is constant at any range r, then

I0 · 4π12 = Ir · 4πr2,

which leads to
Ir = I0/r

2,

i.e., intensity is proportional to the range squared.

If the acoustic waves are spreading within a given angle Ω, the intensity of the waves
will follow the same law, given that we are still in the same medium. Due to the fact
that the surface area of the section of the sphere within Ω increases proportional to
the radius squared in the same way as before.

Absorption

As a sound wave makes its way through the water, some of its acoustic energy is
lost due to absorption; conversion from acoustic energy to heat
(Simmonds and MacLennan, 2005).

The loss can be written as
dI

I
= −2δdx, (2.2)

where dI/I is the fractional infinitesimal change in intensity, δ is called the pressure
attenuation coefficient, and dx is the infinitesimal distance traveled (Kinsler et al.,
2000). If we integrate Equation (2.2) from distance xo to x, we will get the expression

ln I(x)− ln I0 = −2δ(x− x0),

where I0 = I(0). Exponentiating both sides results in

I(x) = I0e
−2δ(x−x0). (2.3)

A more common way to write Equation (2.3) is obtained by first taking the logarithm
of base 10 of both sides of the equation,

log10 I = log10 I0 − 2δ(x− x0) log10(e)

≈ log10 I0 − 0.869δ(x− x0) (2.4)
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where in Equation (2.4) we have used that 2 log10(e) ≈ 0.869. We then raise to the
power of 10 to get the final equation

I(x) = I010−α(x−x0)/10, (2.5)

where α = 8.69δ is the (intensity) absorption coefficient, expressed as energy loss in
dB per unit distance. Often, x0 is negligible compared to x and Equation (2.5) is
typically written as

I(x) = I010−αx/10.

Absorption is primarily dependent on frequency, with higher absorption for higher
frequency, but water salinity and temperature are also contributing factors (Sim-
monds and MacLennan, 2005).

2.1.4 Acoustic scattering

As mentioned in Section 2.1.1, targets scatter or reflect the sound wave transmitted
from the transducer of an echo sounder. The part of a scattered sound wave that
is reflected back to the echo sounder is referred to as backscattered sound. This
provides the sonar echo in the case where the transducer is used for both transmission
and reception. There are different types of scattering that can occur when a sound
wave encounters a target.

Whenever a target is small compared to the wavelength λ of the incident sound
wave, the whole target will be subject to the same sound pressure. The pressure
oscillations of the incident wave will make the target contract and expand in response,
turning the target into a point source of the scattered waves. These waves will then
spread spherically in all directions. With small targets, it is mostly the volume of
the target that determines the scattering. If L is the size of the target, then the
scattered energy is proportional to (L/λ)4 whenever L � λ. This is called the
Rayleigh scattering law.

If instead the target is much larger than the wavelength, L � λ, the surface of
the target will reflect the incident wave rather than the volume. With a smooth,
plane surface, the incident wave will simply be reflected, following the rule of equal
angles for incidence and reflection. The scattering is then referred to as specular
scattering. More likely, the target is spherical, and the scattered energy of target
will approximately increase as the square of the radius of the sphere. Whenever this
happens, we call the scattering geometric.

In the case when target size and wavelength are similar, L ≈ λ, the scattering
depends on both the geometric structure and the material properties of the target.
The strength of the scattering can change rapidly with frequency due to resonances
that can occur.
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In short, the scattering from small targets increase with frequency, while for large
targets the scattering is less dependent on the frequency. If size and wavelength are
similar, then resonances will occur, which makes it difficult to predict the scattering
from the target.

2.1.5 Acoustic properties of fish

The strength of backscattered sound from a target is described as backscattering
cross section or target strength (TS).

Backscattering cross section

Backscattering cross section at a distance r from the sound source (σbs in units m2)
is defined as

σbs = r2
Ib
Ii
,

where Ib is the sound intensity reflected or backscattered from the target, and Ii is
the intensity of the incident pulse measured at an arbitrary distance, usually 1 m
(Simmonds and MacLennan, 2005).

Target strength

Target strength is another way to express echo backscattered from the target, defined
as the logarithmic transformation of the backscattering cross section,

TS = 10log10 (σbs) .

Measuring TS in decibels keeps its range relatively short. It is usually between -60
dB and -20 dB, even though the size of targets can differ greatly, from plankton to
whales (Simmonds and MacLennan, 2005).

From target strength experiments, a relationship between target strength and length
of the target has been found to be reasonable and convenient (Simmonds and
MacLennan, 2005). The relationship can be expressed as

TS = m log10 L+ b,

where L is the target length from the front of the head to the tip of the tail, and m
and b are constants for a given species. Both m and b can be estimated by linear
regression of target strength on log10 L, given data from different groups of fish with
a range of mean lengths (Simmonds and MacLennan, 2005). The coefficient m tends
to be between 18 and 30, and is often close to 20. This has resulted in a standard
formula of the form

TS = 20 log10 L+ b20, (2.6)

where b20 is called the reduced target strength. This can be estimated as the mean
of (TS-20 log10 L) (Simmonds and MacLennan, 2005).
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Volume backscattering coefficient

When individual targets are small and clustered, their echoes combine to form a
received signal that is continuous with varying amplitude. One cannot resolve in-
dividual targets anymore, but the echo intensity is still a measure of the biomass
in the water column. The basic acoustic measurement is the volume backscattering
coefficient, sv, formally defined as

sv =
∑

σbs / V0,

where the sum is taken over all the discrete targets contributing to echoes from V0,
the sampled volume (Simmonds and MacLennan, 2005).

Relative frequency response

The relative frequency response is an acoustic feature used to group acoustic backscat-
ter into acoustic categories. It has been successfully applied to multi-frequency data
to distinguish broad acoustic categories (Korneliussen and Ona, 2003). The rela-
tive frequency response for a frequency f is defined as r(f) = sv(f)/sv(f0), where
f0 = 38kHz. In the case of a single target, r(f) will simplify to r(f) = σbs,f/σbs,f0 .
Figure 2.2 shows the expected relative frequency response for a few target categories.
The solid line is the backscatter from fluid-like objects, objects that don’t differ much
from seawater when it comes to sound speed and density. As shown in the figure,
backscatter from these objects fluctuate in the region between low-frequency scatter-
ing regions (Rayleigh scattering region) and the high-frequency regions (geometric
scattering region). Rayleigh scattering and geometric scattering are explained in
Section 2.1.4. Targets that are gas-filled, e.g., fish with swim bladders, produce
a resonant scattering at a frequency which is dependent on the size and depth of
the gas inclusion. The line with long dashes, the backscatter from elastic-shelled
zooplankton, has a smooth transition from the Rayleigh scattering region to the
geometric scattering region. Scattering classes for the frequency range from 18 kHz
to 200 kHz are marked on the figure in the region where they are expected. Some
simplifications have been done, i.e., the three curves will not follow each in the low-
frequency region as shown, due to difference in slope. Furthermore, there will be
differences within each target class, i.e., the rate of increase, height and width of the
resonance peak for gas-filled targets (Korneliussen and Ona, 2003).
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Figure 2.2: Expected relative frequency response, r(f), for a few target cate-
gories. Reprinted with permission from R. J. Korneliussen and E. Ona, ”Synthetic
echograms generated from the relative frequency response”, ICES Journal of Marine
Science 60.3, 2003, by permission of Oxford University Press.

2.2 Neural networks

Neural networks are models that, given an input vector x and an output vector y,
try to approximate some function y = f ∗(x). The network is a mapping ŷ = f(x;θ),
where the set of parameters θ give the best function approximation. If the flow of
information goes from x to ŷ, and no information from the output ŷ is fed back to the
network it is said to be feedforward. The word network comes from the fact that these
models are a combination of several functions, f(x) = fn(fn−1(...(f 1(x)))). The
functions are termed layers. Here, f 1(x) is the first layer of the network, f 2(f 1(x))
the second, and so on. The vector x is called the input layer, fn is called the output
layer, while the other layers are termed hidden layers as their output is generally
not seen (Goodfellow et al., 2016).

2.2.1 A fully connected network

We will describe a small network consisting of an input vector x, a hidden layer h
and an output layer ŷ, such as the network seen in Figure 2.3. Every component
of the hidden layer has two parts; a weighted summation of the input and an acti-
vation function g. If the activation function is the identity function g(x) = x, the
model will become a linear model. To avoid this, the activation function is used



Chapter 2. Background 12

Figure 2.3: A fully connected neural network consisting of an input layer, a hidden
layer, and an output layer. A fully connected layer is dependent on all the elements
of their previous layer.
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to introduce non-linearity to the model in order to achieve greater computational
flexibility (MacKay, 2003).

If k spans the dimension of the input vector x and j denotes the unit of the hidden
layer, the equations of the hidden layer can be expressed as

a
(1)
j =

∑
k

w
(1)
kj xk + b

(1)
j ; hj = g(1)(a

(1)
j ), (2.7)

where the superscript denotes the layer of the network and bj is the bias of the unit j.
In the same way, the equations of the output layer of the network can be expressed
as

a
(2)
i =

∑
j

w
(2)
ji hj + b

(2)
i ; ŷi = g(2)(a

(2)
i ), (2.8)

where i spans the number of output units. The weights w and biases b are often
expressed as the parameter vector θ. Finding the θ that makes the model fit the
input data well is called learning and the input data is called training data. For
our small network, Equations (2.7) and (2.8) describe a forward pass ; the mapping
from x to ŷ. The layers described in Equations (2.7) and (2.8) are also called
fully connected, as they are dependent on all the elements of their previous layer,
illustrated in Figure 2.3.

Learning

Training a network means adjusting its weights in such a way that the error between
the desired output and the actual output from the model is reduced (Hinton, 1992).
This error is often referred to as the cost function. To achieve this, it is necessary
to know how the error changes when each weight is perturbed. In other words, the
neural network must calculate the error derivative of the weights (Hinton, 1992).
The most popular method for this is the backpropagation method.

Let the error function be the square sum error,

E =
1

2

∑
i

(ŷi − yi)2,

where ŷi is the ith unit of the output layer described in Equation (2.8), and yi is the
desired or true value of the unit. As discussed above, letting the bias b correspond
to the weight of an input x0 = 1, we can express the bias and weights as a vector
θ. Using Equations (2.7) and (2.8), we can calculate the error derivative of the
weights for the different layers using the chain rule of calculus. We start by finding
the expression for ∂E

∂θ
(2)
ji

,

∂E

∂θ
(2)
ji

=
∂E

∂ŷi

∂ŷi

∂a
(2)
i

∂a
(2)
i

∂θ
(2)
ji

. (2.9)
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Typically, gradient descent is used to minimize the error E. In its simplest form,
gradient descent changes the weights by an amount proportional to the accumulated
∂E/∂θ

(2)
ji ,

θ
(2)
ji ← θ

(2)
ji − ε∂E/∂θ

(2)
ji ,

where ε is called learning rate.

To update the weights of the first layer, the chain rule is applied again. Instead
of taking the derivative of a

(2)
i with respect to the weights in Equation (2.9), the

derivative of a
(2)
i with respect to hj is calculated. That way the chain rule can be

applied to find ∂E/∂θ
(1)
kj . In addition, all the connections from the output layer to

the hidden unit hj is summed, as they all contribute to the derivative ∂E/∂θ
(1)
kj ,

∂E

∂θ
(1)
kj

=
∑
i

∂E

∂ŷi

∂ŷi

∂a
(2)
i

∂a
(2)
i

∂hj

∂hj

∂a
(1)
j

∂a
(1)
j

∂θ
(1)
kj

.

Continuing to apply the chain rule in this manner, gradient descent can be used to
minimize the cost function in all neural networks, even though they are much deeper
than our example here.

2.2.2 Convolutional neural networks

When working with image data, or other 2-dimensional arrays, the number of pa-
rameters needed in a fully connected network will quickly become very large. Every
element of the array, or every pixel, would have a weight associated to it. For
these data sets, convolution neural networks have been shown to have good results
(Krizhevsky et al., 2012). In these networks, the neurons of a layer does not depend
on every element of the previous layer, but a subset of these, called the receptive
field. This reduces the number of weights that needs to be learned during training.

Convolutions is a type of spatial filtering; it replaces each pixel with a function
of the value of the pixel and its neighbors (Gonzalez and Woods, 2018). These
filters can be handcrafted to detect certain features, such as lines or corners. In
a neural network, the goal is to use backpropagation in order to find the features
that represent the data the best. In other words, letting the network learn the
features of the data, instead of handcrafting them. By stacking convolutional layers,
increasingly abstract features of the data can be recognized.

The equations of a convolutional layer

Keeping the notation from before, let hx,y be the image feature value from a previous
layer. The linear spatial filtering of the point (x, y) in the input, by a kernel w of
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size m× n, can be expressed as

w ? hx,y =
m∑
l=0

n∑
k=0

wl,khx+l,y+k, (2.10)

also referred to as the spatial correlation of the image. Spatial convolution consist
of the same computation, but with the kernel rotated 180 degrees (Gonzalez and
Woods, 2018). In many neural network libraries, the spatial correlation expressed in
Equation (2.10) is implemented, but referred to as a convolution (Goodfellow et al.,
2016). We will follow this convention here. Let the kernel w be 3 × 3, then for a
specific element of a 2-dimensional array at position (x, y), Equation (2.10) performs
the sum of product of the form

w ? hx,y = w0,0hx,y + · · ·+ w3,3hx+3,y+3

= w1h1 + w2h2 + · · ·+ w9h9

=
9∑
i=1

wihi. (2.11)

Adding a bias term to Equation (2.11), we see that we can express the equations of
the convolutional layer in the same way as we did for the layer of a fully connected
layer in Equation (2.7),

a(l)x,y =
9∑
i=1

w
(l)
i h

(l−1)
i + b(l)

= w(l) ? h(l−1)x,y + b(l); h(l)x,y = g(l)(a(l)x,y),

where l = 1, 2, ..., Lc, where Lc is the number of convolutional layers. If l = 1, h
(0)
x,y

is not the values of a hidden layer, but the values of the input image(s).

Padding

If parts of the kernel lies outside of the input array, the summation is undefined. This
problem is solved by padding ; adding either zeros or a value around the borders of
the array. Typically, an image is either not padded (referred to as valid convolution),
or padded such that the dimensions of the image is kept intact (referred to as same
convolution).

Sliding window

Recall that the first computation in a neuron from a fully connected network is a
weighted sum of the inputs. In a convolutional layer, the first computation in a
neuron is a convolution. Combining all the neurons of a convolutional layer, the
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hy + iz

Figure 2.4: A 2-dimensional convolution of a 3 × 3 input by a 2 × 2 kernel. The
output is a 2× 2 feature map.

kernel looks like a window that slides over the image. As every kernel can be said
to search for one specific feature of the image, the sliding window effect of the
convolutional layer ensures that the same feature can be detected independently of
location. Figure 2.4 is an illustration of a 2-dimensional convolution in a neural
network, where the values of the output elements are described by Equation (2.10).
Here, the kernel is restricted to be inside the image, a valid convolution.

Stride

The stride of a convolution is the number of increments by which the receptive field
is moved during the convolution. In Equation (2.10), the stride is one. Using a
stride larger than one is one way to reduce the amount of data. With a stride of
two, the image resolution is reduced by one-half in each dimension, corresponding to
the data amount in the image being reduced by three-fourths (Gonzalez and Woods,
2018). A stride larger than one can also be an alternative to subsampling, or pooling,
which is discussed below.

ReLU

The rectifier activation function, defined as

g(x) = max{0, x}, (2.12)

is the recommended activation function for deep neural networks, i.e., neural net-
works where the number of hidden layers exceeds three (Glorot et al., 2011). A
neuron with this activation function is referred to as a rectifier linear unit (ReLU).
A motivation for using the rectifier activation function, is the behavior of the deriva-
tive. As long as the neuron is active (does not output zero), its derivative will stay
constant, enforcing learning. Other activation functions have struggled with vanish-
ing and exploding gradients, gradients that either become small and keep decreasing,
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Figure 2.5: The rectifier function

or become too large and keep increasing. Using the rectifier function avoids this is-
sue. In addition, the rectifier activation function allows for sparse representations
in the network, as some of the neurons will output zero (Glorot et al., 2011).

Pooling

Pooling keeps the model less sensitive to small changes in the input. It replaces
the output from the convolution with a statistical summary of the nearby outputs.
For example, the max pooling operation gives the maximum of the rectangular
neighborhood as output. This works as a noise suppressant, as small changes in
the data will likely not impact the output of the maximum much. Typically, the
neighborhood used in pooling is a 2 × 2 region, and these regions do not overlap.
In the same way as for the convolutions, we can change the stride of the pooling to
a constant C > 1, reducing the dimension of the output even more as well as the
computational cost. See Figure 2.6 for an example of a 2 × 2 max pooling with a
stride of C = 2.

2.2.3 Transposed convolutions

Transposed convolutions are a backwards pass of convolutions, and have been used
for semantic segmentation, and for visualizing and understanding convolutional neu-
ral networks (Long et al., 2015; Zeiler and Fergus, 2014). A convolution without
padding will produce an output with a smaller dimension than its input, while trans-
posed convolutions increase the dimensions of the feature map. In a convolution,
the output is a sum of the weighted inputs from the receptive field of the kernel.
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1 2 8 9

6 7 3 4

9 4 3 2

6 2 1 0

Max pooling
2x2 filter
Stride of 2

7 9

9 3

Figure 2.6: A 2 × 2 max pooling with a stride of 2. For each 2 × 2 region, the
maximum value is stored in a new 2-dimensional array.

Input gives
weight for
filter

Input: 2x2

Sum where
output overlaps

Output: 4x4

Figure 2.7: A transposed convolution. The input values gives a weight for the filter,
also called the kernel, and it is then placed in its designated place in the output.
Where values in the output overlap, they are summed.
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Input: 2x2
padded by a 2x2 border
of zeros Output: 4x4

Figure 2.8: An alternative way to calculate the transposed convolution in Figure
2.7, by doing a convolution on a padded input. The input is padded such that the
output is the desired dimension.

In the transposed convolution, the kernel is instead multiplied by each value of the
input in turn, and then placed at the designated place in the output. If there is an
overlap from values from before, these are summed, see Figure 2.7. The transposed
convolution illustrated in Figure 2.7, can also be calculated by doing a convolution
as described in Section 2.2.2, with a padding of 2, see Figure 2.8. Note that the size
and stride of the kernel are the same.

Transposed convolutions with stride C > 1

The example above had a stride of 1. The transposed of a convolution with stride
larger than 1 is done by adding dilation to the input. Dilation is done to widen
the input even more, by inserting zeros between the input values. A transposed
convolution with stride larger than 1 is therefore equal to doing a convolution on a
dilated input with padding, see Figure 2.9.

2.2.4 Optimizing learning

Stochastic gradient descent

In the field of deep learning, the most common form of gradient descent is the stochas-
tic gradient descent (SDG). SGD is an extension of the simple gradient descent that
is mentioned in Section 2.2.2.
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Input: 2x2
dilated and padded

Output: 5x5

Figure 2.9: For transposed convolutions with step size > 1, zeros are inserted in
between the input values. Here, the transposed of a convolution of a 5× 5 input by
a 3 × 3 kernel with step size 2, is calculated by a dilated 2 × 2 input with a 2 × 2
border of zeros convoluted by a 3× 3 kernel with step size 1.

In machine learning, a larger training set is often better, but at the cost of com-
putational expense (Goodfellow et al., 2016). The cost functions that are used are
usually a sum over the training examples. If the training set is very large, calculating
its derivative in order to take a gradient step can become a slow process.

Since the gradient is an expectation, we can estimate it using a small set of samples
(Goodfellow et al., 2016). This small set of the training data, B = {x1, . . . , xm′},
is called a minibatch, and x1, . . . , xm′ are drawn uniformly from the training set.
The size of the minibatch, m′ is typically small relative to the number of examples,
m, in the training set. Keeping m′ constant ensures that even though the training
set grows, the computation time per gradient update is constant. Now, instead of
calculating the cost function for the entire training set, we can calculate the cost
function for each minibatch. Consequently, a gradient step can also be taken after
each minibatch. The estimated gradient is

g← 1

m′
∇w

m′∑
i=1

E(ŷi, yi), (2.13)

where ∇w is the gradient with respect to w. The SGD update rule can be expressed
as

w← w − εg
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Momentum

Learning with SDG can be slow, and the method of momentum (Polyak, 1964) can
be used to speed up the learning. To compute a gradient step, the momentum
algorithm makes use of not just the value of the gradient for this minibatch, but
also the gradients from previous minibatches. Let v be the exponentially decaying
average of the previous gradients, and let γ be the hyperparameter that decides how
quickly the past gradients contribution should exponentially decay. The update rule
can now be written as

v← γv − εg,

w← w + v,

where g is defined in Equation (2.13) (Goodfellow et al., 2016). Now, the size of the
gradient step depends on how aligned and how large the previous gradients are. The
greatest step size is achieved if they all point in the exact same direction (Goodfellow
et al., 2016).

2.2.5 Batch normalization

Another method motivated by the difficulty of training deep neural networks, is
the method called batch normalization (Ioffe and Szegedy, 2015). As discussed in
Sections 2.2.1 and 2.2.4, an update of a parameter in a layer is found by calculating
the gradient, assuming that all the other layers do not change. In practice, the layers
are all updated simultaneously. This can lead to unexpected results, as the layers are
composed together (Goodfellow et al., 2016). A change of the input distribution of a
layer, due to the change in the network parameters, is termed a Internal Covariate
Shift (Ioffe and Szegedy, 2015). Batch normalization is a method constructed in
order to avoid internal covariate shifts, by normalizing the inputs of the hidden
layers in a neural network.

Let B be the minibatch of activations x, B = {x1, ..., xm′}. These will be the input
of the next layer in the network. Batch normalization is done by calculating the
mean, µB, and variance, σ2

B, of the minibatch,

µB ←
1

m′

m′∑
i=1

xi,

σ2
B ←

1

m′

m′∑
i=1

(xi − µB)2.
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Each xi is then standardized,

x̂i ←
xi − µB√
σ2
B + ζ

,

where the ζ is a small positive value, added to avoid the undefined gradient when the
standard deviation is zero (Goodfellow et al., 2016). This normalization has been
shown to speed up convergence, even if the features are not decorrelated (LeCun
et al., 1998). To make sure that the transformation does not change what the layer
can represent, two parameters are introduced for each activation; γ and β. These
scale and shift the normalized activation,

yi ← γx̂i + β,

and ensure that the network still has its representation power. γ and β are learned
along with the rest of the weights of the network during training.

2.2.6 Cost function

A neural network for classification defines a distribution p(y|x; θ), and to optimize
the model, the principle of maximum likelihood is used. The cost function will
then be the negative log-likelihood, which can be described as the cross-entropy
between the training data and the predicted data (Goodfellow et al., 2016). To
understand cross-entropy, we first introduce the concepts entropy and Kullback-
Leibner divergence.

Entropy

Let x be a random variable with distribution p. The entropy of x, which will be
denoted by H(p) here, is a measure of the uncertainty of x. This is defined as

H(p) = −
K∑
k=1

p(x = k) log2 p(x = k),

when x is a discrete variable with K states. When the log base 2 is used the units of
entropy are bits. Given a K-ary random variable, the maximum entropy is obtained
when p(x = k) = 1/K. The minimum entropy (an entropy of zero) is obtained if
the function puts all its mass in one state (Murphy, 1993). Zero entropy means that
the distribution has no uncertainty.

Kullback-Leibner divergence and cross-entropy

When training a neural network model, the aim is to make it predict the best
approximation to the actual probability distribution of y. To use entropy to achieve
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this, we need some way of measuring how well the model predicts the distribution.
The Kullback-Leibner (KL) divergence is a way to measure dissimilarity of two
probability distributions. Let the two distributions be denoted by p and q, then the
KL divergence is expressed as

KL(p||q) =
K∑
k=1

pk log(pk/qk).

This can be rewritten as

KL(p||q) =
K∑
k=1

pk log qk −
K∑
k=1

pk log pk = −H(p) + H(p, q),

where the last term, H(p, q) is referred to as the cross-entropy. As H(p) is the entropy
of x with distribution p, the KL divergence is number of bits you need in addition
when encoding the data using the distribution q instead of p. The cross-entropy is

H(p, q) = −
K∑
k=1

pk log qk, (2.14)

and is the average number of bits needed to encode data coming from the distribution
p, when q is used to encode the data (Murphy, 1993).

Minimizing cross-entropy with respect to q will be the same as minimizing the KL
divergence with respect to q, as q is not present in the first term of the KL divergence.
In other words, minimizing the cross-entropy will minimize the dissimilarity of the
two distributions. When cross-entropy is used as a cost function, the distribution p
will be the output vector y, while the distribution q is the models predicted output,
ŷ, for a single input x. As y is an one-hot vector, looking at Equation (2.14), we
see that only the positive class contributes to the loss.

2.2.7 Output unit and the softmax function

The choice of cost function is connected to the choice of output unit. How the output
is represented determines the form of the cost function.

We will here describe the softmax unit, as the model used in this thesis will be a
multi-class classifier. This is the common choice whenever we want to predict a
probability distribution over a discrete variable with n possible values. The output
of the unit is the vector ŷ, where ŷi = P (y = i|x). Every ŷi is between 0 and 1, and
the vector sums to 1. As usual for a unit in the network, the weighted input of the
unit is summed,

a = wTx + b,
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where b is the bias of the unit. To obtain the desired ŷ, the softmax function
exponentiates and normalizes the components of the output layer,

ŷi = softmax(a)i = exp(ai)/
n∑
j=1

exp(aj).

The exponential of the softmax can be undone by the log-likelihood,

log ŷi = log softmax(a)i = ai– log
n∑
j=1

exp(aj). (2.15)

From Equation (2.15), it is clear that the input ai will directly contribute to the cost
function. When the log-likelihood is maximized, the first term of the equation above
will be increased, while the second term will be decreased. Further, from the second
term we see that the most incorrect prediction will be the one that is penalized
the most. If the correct prediction has the highest value, then log softmax(a)i will
roughly cancel. The training cost will then be small for that classification.

Usually, the negative log likelihood is minimized, instead of maximizing the log
likelihood. Changing the sign of Equation (2.15) results in the loss function L,

L = − log ŷi = −ai + log
n∑
j=1

exp(aj), (2.16)

which is equivalent to taking the cross-entropy of H(y, ŷ), where y is the one-hot
vector with yi = 1.

2.2.8 Performance Metrics

The confusion matrix and singular assessment metrics

The confusion matrix is used as a performance measure for classification models.
Given a data set X, a classification model maps every element xi of X to a class.
To keep it simple, we will describe a model whose output is limited to two classes,
a positive class and a negative class. Let p and n denote the true positive and
negative class xi, and let p′ and n′ denote the predicted positive and negative class
of xi. Then if the true class of xi is positive and the model correctly classifies it as
such, it is called a true positive (TP). If the model instead classifies it as negative,
it is called a false negative (FN). In the same way, if the true class of xi is negative,
and the model correctly classifies it as negative, it is called a true negative (TN).
While if it is classified as positive, it is called a false positive (FN). This can be
described by a two-by-two matrix, called a confusion matrix, or a contingency table.
See Table 2.1 for an example.
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Table 2.1: The 2-by-2 confusion matrix

True class
p n

Predicted class
p’ TP FP
n’ FN TN

Total P N

There are several metrics we can compute from the confusion matrix. Firstly, the
diagonal of the confusion matrix gives the count of correctly classified elements,
while the off-diagonal counts the misclassified elements. A frequently used metric
calculated from the confusion matrix is the accuracy. Defined as

accuracy =
TP + TN

P + N
, (2.17)

where P = |p| and N = |n|, it tells us how close our model is to a perfect classifica-
tion. However, accuracy can be misleading. If 95% of the elements of X are positive,
leaving the remaining 5% negative, the model would achieve a 95% accuracy simply
by classifying all elements of X as positive. An accuracy of 95% looks good, but if
we are interested in finding the negative elements, the model is useless.

Due to this weakness of the accuracy metric, other performance measures are used by
researches to assess classification models. Precision, recall and F1-score are defined
as

Precision =
TP

TP + FP
, (2.18)

Recall =
TP

TP + FN
, (2.19)

F1-score =
2 · Precision · Recall

Precision + Recall
.

We can interpret precision as a measure of exactness, how many of the elements
predicted as positive are correct (He and Garcia, 2009). While recall can be seen as
a measure of completeness, how many of the positive elements did the model classify
correctly. By inspecting the equations for precision and recall, we see that precision
is distribution dependent, but recall is not. However, measuring performance based
on recall alone is unsatisfactory, as it tells us nothing about how many examples are
incorrectly labeled as positive (He and Garcia, 2009). Similarly, precision does not
provide information about how many of the positive labels are incorrectly labeled
as negative, but it does capture the change in false positives. Together, they can
provide a good measurement of performance, especially for imbalanced data sets.
One way of combining the two is the F1-score, the harmonic mean of precision and
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recall. The F1-score ranges from 0 to 1, with 1 representing the best score, and 0
the worst. This measure is still sensitive to data distributions, but provides more
insight to the model functionality than the accuracy metric (He and Garcia, 2009).

Precision-recall (PR) curves

Using the definition of precision (2.18) and recall (2.19), the PR curve is defined
by plotting the precision rate over the recall rate. Models such as neural networks
usually output scores, by setting a threshold that determines what qualifies as a
high enough score, this output can be transformed to a discrete value representing
a class. This threshold can also be thought of as how confident the model is in its
prediction. Applying a range of thresholds will create a line of points, a curve, in
the PR space. A good model of the data will have a curve close to the upper right
corner in PR space. This indicates a high value for both precision and recall, which
will give a high F1-score.
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Chapter 3

Materials and Methods

Two types of fish schools are simulated, and then the neural network’s ability to
distinguish the two is evaluated. The two types of schools are distinguishable by
two features; relative frequency response and their shape. By interchanging these
two features, and observing the model’s performance, we will determine if the fea-
tures impact performance differently. In order to achieve this, we perform three
simulations (see Table 3.1).

Table 3.1: The different combinations of relative frequency response and shape that
make up the simulated training set and tests.

Class Relative frequency response Shape of schools
Training and
baseline test

1 r1(f) Spheroid
2 r2(f) Ellipsoid

Shape test
1 r1(f) Ellipsoid
2 r2(f) Spheroid

r(f) test
1 r2(f) Spheroid
2 r1(f) Ellipsoid

The first simulation is a data set for training. This data set consists of echograms,
and segmentation masks, where there are two types of fish schools present. A single
fish school has either relative frequency response r1(f) or r2(f) (see Section 3.1.3).
If it has relative frequency response r1(f), then it is shaped as a spheroid in the
simulation model, and its class label in the segmentation mask is 1. If it instead has
relative frequency response r2(f), it has the shape of an ellipsoid in the simulation
model, and its class label is 2.

The features are then interchanged in the next two data sets, in order to test the
model. The combination of relative frequency response and shape are now inter-
changed, see Table 3.1. First, the shape is switched in what we will call the shape
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Class 1 Class 2

Training and
baseline test

Shape test 

r(f) (relative
frequency response)
test

r1(f)

r1(f)

r1(f)

r2(f)

r2(f)

r2(f)

Figure 3.1: The simulation setup. The training set and the first test have the
same combination of features, where class 1 are schools shaped as spheroids with
relative frequency response r1(f), and class 2 are schools shaped as ellipsoids with
relative frequency response r2(f). For the echograms of the shape test the shape
of the classes are interchanged from the baseline test. In the r(f) test, the relative
frequency response is interchanged. Note that in the figure the schools are drawn in
the xy-plane of the simulation.
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test, then the relative frequency response is switched in the second test set, which
we will call the r(f) test.

There are four different scenarios that will tell us the most about the model. If
the model performance does not significantly drop on the shape test compared to
the performance on the training data set, then our model ignores the shape of the
schools when it classifies the schools. This would indicate that the classification
is based on the relative frequency response of the fish species, as the rest of the
characteristics are the same for both species. This should then be confirmed by
checking the models performance on the echograms in the r(f) test. If the model’s
performance on these echograms is significantly worse than for the training set, it
confirms the importance of the relative frequency response.

A second scenario would be that the models performance drops significantly on
the shape test, indicating that the shape of the schools are highly weighted for
classification. If the predictions of the model is based solely on the shape of the
schools, then this will be coupled with the model performing well on the r(f) test,
where relative frequency response is changed.

There is also the possibility that the model performance does not drop on either of
the tests, or drops on both. The first case would indicate that the model weighs
something other than relative frequency response and shape as most important,
when classifying the echograms. If the model performance drops on both tests,
both relative frequency response and the shape of the schools play a role in the
classification.

The following chapter explains first how the simulation of the data sets is done, then
the architecture of the neural network is described, along with its training scheme.

3.1 Simulating data

A data set is created using a model that simulates synthetic echograms from a multi-
frequency echosounder. The echosounder is assumed to have collocated transmitter
and receiver, also known as a monostatic echosounder, such as the Simrad EK60.
The following descriptions and notations are based on Holmin et al. (2012).

3.1.1 Coordinate systems

The global coordinate system has its origin at the reference position of the research
vessel, positive x is to the west, positive y is in the direction north, and positive z
is vertically upwards.

Targets and transducer beams have their separate right hand Cartesian coordinate
systems. The coordinate system of the single target has its origin at the center
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Figure 3.2: The coordinate systems of a single target, here represented by a fish,
and the transducer beam. Reprinted with permission from A. J. Holmin et al.,
”Simulations of multi-beam sonar echos from schooling individual fish in a quiet
environment”, The Journal of the Acoustic Society of America 132.6. Copyright
2012, Acoustic Society of America.

of mass of the target, with z along the heading of the target, x axis is parallel to
the sea surface, and the positive y axis is vertically downwards. For the transducer
beams, the origin is at the transducer face, positive z is along the direction of the
beam, the x axis is parallel to the sea surface, and positive y is in the negative vessel
direction. A school of fish follows the global coordinate system. When discussing
the simulation, we will use spherical coordinate systems.

The position of a target, (r, θ, φ), is defined by the range r, the azimuth angle θ, and
the elevation angle φ, in the spherical coordinate system of a transducer beam. In
the same way, the position of the transducer in the spherical coordinate system of
the target is (r′, θ′, φ′). In our case, we will work with circularly symmetrical beams,
making the azimuth angle redundant, leaving us with the target position (r, φ) and
transducer position (r′, φ′). Additionally, the movement of the transducer between
transmission and reception of the sound waves is assumed to be negligible, meaning
that r′ ≈ r. The transformation between the coordinate systems is explained in
detail in Holmin et al. (2012).
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3.1.2 Model of fish target strength

As mentioned in Section 2.1.5, the backscattering cross section at a distance r from
the sound source is the measure of backscattered intensity at 1 m relative to incident
intensity. Let σ0 be the maximum backscattering cross-sectional area, obtained if
the fish is perpendicular to the direction of the sound wave. The parameter σ0 is
dependent on the frequency of the sound wave f measured in kHz, and target size L
measured in centimeters. To calculate σ0 we will use the estimated target strength
of herring at f0 = 38 kHz,

TS = 10 log10 σ0,f0(L) = 20 log10 L− 71.2,

recommended by ICES (ICES, 2008). Solving for σ0,f0(L) we get the expression

σ0,f0(L) = L210−7.12.

To find the expression for the maximum backscattering coefficient of any frequency
f , Holmin used results from five herring surveys done near Norway to fit a model
to the ratio σ0,f (L)/σ0,f0(L). We recognize this ratio as the expression for relative
frequency response, discussed in Section 2.1.5. The model (f/f0)

γ = σ0,f (L)/σ0,f0(L)
was fitted using the least-squares method, and estimated γ = −0.4. Using this model,
the expression for σ0,f (L) becomes

σ0,f (L) = (f/f0)
−0.4L210−7.12. (3.1)

If the target is not perpendicular to the direction of the sound wave, the backscat-
tering cross section at an angle φ′ is expressed in the simulation model as

σbs,f (φ
′, L) = σ0,f (L)ηφ′Bl(φ

′),

where ηφ′ ∈ [0, 1] is the orientation factor of the target at the angle φ′, and Bl is the
beam pattern of a target simulated by the sinc function of the product klφ/2,

Bl = sinc(klφ/2) =
sin(klφ/2)

klφ/2
,

where l is the measure corresponding to swimbladder length, and k = 2πf/c, where
f is the frequency of the wave and c is the speed. The orientation factor ηφ′ is
frequency independent, and calculated assuming a cylinder rounded at both ends
by hemispheres as a model of the target.
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Figure 3.3: The approximated relative frequency response of herring r1(f), as calcu-
lated by Holmin et al. (2012), and the relative frequency response of mackerel r2(f),
as reported by Fernandes et al. (2006)

3.1.3 The modeled relative frequency response

In the simulation model, two relative frequency responses are used. These are based
upon the relative frequency response of herring, as calculated by Holmin et al. (2012),
and the relative frequency response of mackerel, as reported by Fernandes et al.
(2006), see Figure 3.3. It is important to note that the goal is not to simulate
herring schools, or mackerel schools, but rather to use realistic values for the relative
frequency response.

In order for the two types of fish schools to have different relative frequency responses,
we let the maximum backscattering cross-sectional area σ0,f (L) differ for the two
types. Recall the expression for σ0,f (L) from Section 3.1.2,

σ0,f (L) = (f/f0)
−0.4L210−7.12.

Recall that (f/f0)
−0.4 was fitted from the ratio σ0,f/σ0,f0 , which is the relative

frequency response for a single target, discussed in Section 2.1.5. Therefore, we



33 3.1. Simulating data

Table 3.2: Relative frequency response for Atlantic mackerel

Frequency (kHz) r2(f)
18 1.3
38 1.0
70 1.0
120 1.5
200 3.9
333 3.8

let r1(f) be defined as
r1(f) = (f/f0)

−0.4.

Rewriting the expression for σ0,f (L) we have

σ0,f (L) = r1(f)L210−7.12.

The second relative frequency response we will use is based on the values for the
relative frequency response of Atlantic mackerel, found in the SIMFAMI report (Fer-
nandes et al., 2006, p. 50). Note that the report lists the relative frequency response
for 364 kHz, and not 333 kHz, however we use the reported relative frequency re-
sponse of 364 kHz as an approximation for 333 kHz. The reported relative frequency
responses are listed in Table 3.2. Using this table, we can express the maximum
backscattering coefficient for this case as

σ0,f (L) = r2(f)L210−7.12.

The two types of relative frequency response can be seen in Figure 3.3.

3.1.4 Intensity received from a single target

The received sound intensity, Irec, from a single target at distance r is described as

Irec = I0
10αr/5

r4
[BT (φ)]2σbs(φ

′),

where I0 is the initial intensity of the sound wave as it is transmitted by the trans-
ducer, 10αr/5r−4 is the two way loss of intensity as the sound wave propagates
through the water, discussed in Section 2.1.3, σbs(φ

′) is the backscattering coeffi-
cient of a target at an angle φ′ described in Section 3.1.2, and BT is the beam
pattern for emission and reception, modeled by the same circular piston

BT (φ; k, a) =

(
2J1[ka sin(φ)]

ka sinφ

)2

, (3.2)
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Figure 3.4: An illustration of how the intensity received from a single target is
modeled in the simulation model. The received intensity is calculated by multiplying
the initial intensity by the loss of intensity due to beam spreading and absorption,
the backscattering coefficient of the target at an angle φ′, and the beam pattern for
emission and reception.

where a is the radius of the circular piston and k is the wave number defined in
Section 3.1.2, J1 is the Bessel function of the first kind. A detailed discussion of
Equation (3.2) can be found in (Kinsler et al., 2000).

3.1.5 Multiple targets and echograms

The domain of the simulation is a box that spans 200 meters out from the vessel
in both negative and positive x-direction, and the depth of the box is 200 meters
in the negative z-direction. The vessel moves in the positive y-direction determined
by the number of pings set by the operator. Schools, aggregations of fish that swim
in the same direction, are simulated by ellipsoidal clusters of uniformly distributed
targets. These are randomly placed inside the domain of the transect. The schools
are not tilted, however the average tilt of the individual targets inside is 20 degrees.
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The heading of the school, rotation around the z axis, is sampled from an uniform
distribution between (-π, π). Each target’s individual heading is also perturbed,
done in such a way that the average difference between the heading of the school
and the heading of each individual target is 20 degrees.

The echograms produced by the simulation model are 2-dimensional arrays of pixels,
where each column of pixels correspond to a transmission from the transducer. Each
of these pixels contains the sum of the intensities received from each target, l, within
the sampling volume, called voxel, at the depth of the pixel. If j denotes the sampling
volume, then the sum is given as Irec,j =

∑
l Irec,j,l, where Irec,j,l is the intensity of

target l in sampling volume j. As the simulation is done in a 3-dimensional domain,
the voxel is a curved disc with constant thickness and increasing radius along the
beam direction.

The randomness due to constructive or destructive interference is accounted for by
considering Irec,i to be the mean of an exponentially distributed variable. Rayleigh
showed that the amplitude of the sum of many sine waves that have the same
frequency and random phases, are Rayleigh distributed. The probability density
function (PDF) of the amplitude can therefore be expressed as

fA(x) =
x

σ2
exp(−x2/2σ2),

where σ2 =
∑

l a
2
l /2, where al is the amplitude of the lth sine wave. Holmin et al.

(2012) states that this implies that the intensity I is exponentially distributed with
mean equal to the sum of the individual intensities. See Holmin et al. (2012) for
further details.

3.1.6 The shape of the schools

The schools in the simulation are either shaped as ellipsoids or shaped as spheroids.
These shapes were chosen in order to create a clear distinction between the schools.

Schools in the simulation are clusters of targets, where the size of the targets, L, is
drawn from a Normal distribution with mean 32 centimeters and standard deviation
2 centimeters. All schools have a volume V = 105 = 4

3
πabc, where a is the width, b is

the length and c is the height of the school. As the schools are not tilted upwards or
downwards, the heading of the school is parallel with the sea surface. Equivalently,
a and b are parallel to the sea surface, while c is perpendicular to the sea surface.
If a school has the shape of a sphere, then a, b, and c are approximately the same.
Schools shaped as ellipsoids have instead the same width and length, but with a
height that is 1/5 of these.
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3.1.7 The segmentation mask

In order to train a neural network on the simulated data, a segmentation mask is
created for each echogram containing the ground truth for each pixel. The following
section describes the method for creating the segmentation masks.

For each voxel, a search for nearby schools is done within a given radius. A school is
an ellipsoid with length a, width b and height z. At depth d of the voxel, a horizontal
cross section of the ellipsoid has length a′, width b′, and center cs = (xs, ys). Let D
be the vector from cs to the center of the voxel, cv = (xv, yv),

D = cv − cs.

D is then used to find the distance, de, from cs to the voxel edge,

de = ||D||2 − r,

where r is the radius of the voxel. Let e be the closest point of the coxel edge to cs,
found by adding de to cs,

e = (xe, ye) = cs + de · (sin(θ), cos(θ)),

where θ is the angle between the long axis of the cross section and D. Then if e is
inside the school ellipsoid the inequality

x2e
a′2

+
y2e
b′2
≤ 1

will hold. The corresponding position in the segmentation mask is then marked as
a constant C > 0 if there is a fish species present. If the inequality does not hold,
meaning there are no fish species present, then the position in the segmentation mask
is marked with a zero. Figure 3.5 shows parts of an echogram with a corresponding
segmentation mask.
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Figure 3.5: An example of an echogram of frequency 200 kHz and corresponding
segmentation mask. The echogram belongs to the training set, therefore label 1 of
the segmentation mask corresponds to fish schools shaped as spheroids and with
relative frequency response r1(f). Note that these create more backscatter, as they
have more targets perpendicular to the sea surface of the simulation. Label 2 cor-
responds to fish schools shaped as ellipsoids and with relative frequency response
r2(f). Label 0 is background, or seawater. The segmentation labels are also referred
to as class 0, 1 and 2 later.
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Table 3.3: Sampling strategy for the training crops

Class Probability Description
0: Background 1/11 Crop from area without fish schools
1: Fish school 5/11 Crop with fish school of class 1 present
2: Fish school 5/11 Crop with fish school of class 2 present

3.2 Training a model

The model used for training and evaluation is based on the U-Net model, a neural
network model first proposed for the purpose of segmenting blood cells (Ronneberger
et al., 2015). Brautaset et al. (2020) showed that a slightly modified version of the
U-Net can successfully classify echograms. The following sections describes how a
similar model is trained to classify echograms.

3.2.1 The training set

In the simulation of the training data, we have simulated continuous echograms for
the frequencies 18, 38, 70, 120, 200 and 333 kHz, see Figure 3.6. In training, these
are cropped into patches of dimension 6 × 256 × 256, where 6 is the number of
frequencies, and 256 is the height and width of the patch, see Figure 3.7. A decibel
transform is also applied to every value of the echogram, and a threshold is set at
-75 dB and 0 dB, such that every value below or above the thresholds is set to -75
dB and 0 dB respectively.

The data set has a heavy class imbalance, as a natural consequence of the ratio
between water and fish. Therefore, we need to ensure that the model is not overly
exposed to ”background” pixels. The crops are done in such a way that they include
at least one fish school, or none at all. This way, we can sample the crops that
includes a fish school more frequently than those without, seeing as there will also
be ”background” pixels in the ones with fish schools. The sampling strategy is listed
in Table 3.3, the ratio between probabilities is similar to Brautaset et al. (2020).

The training data is divided into a training set, a validation set and a test set. The
test set is unseen by the model until evaluation, which will be discussed in the next
chapter.

3.2.2 Model architecture

The model used in this thesis will be the same as presented by Brautaset et al.
(2020), with some minor adjustments. This is referred to as a fully convolutional
network, meaning there are no fully connected layers, see Section 2.2.1. The model
has two parts, a contracting part and an expansive part, as seen in Figure 3.8.
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Figure 3.6: An echogram created by the simulation model. Each echogram is simu-
lated for six frequencies: 18, 38, 70, 120, 200 and 333 kHz. The segmentation map
is a 2-dimension array which contains the label of each pixel. Each pixel is either
background, which has label 0, or a fish school, which is labeled 1 or 2 depending
on its characteristics. Background pixels are colored in dark blue, while fish schools
belonging to class 1 are colored cyan, and fish schools belonging to class 2 are colored
orange.
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(a) A crop with only class 0

(b) A crop with class 1 present

(c) A crop with class 2 present

(d) A crop with class 1 and 2 present

Figure 3.7: Examples of training crops with corresponding true segmentation masks.
Every crop has dimensions 6 × 256 × 256, where 6 is the number of frequencies
simulated. Only one frequency is shown here.
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Figure 3.8: U-Net architecture

The input of the model has dimension 6 × 256 × 256 as described in Section 3.2.1.
Then the contracting part follows, with blocks of 3x3 same convolutions, each fol-
lowed by a rectified linear unit (ReLU), see Section 2.2.2. The convolution layers
are the ones that detect features of the data set, while ReLU is a neural network
unit where the activation function is defined as g(x) = max{0, x}. Brautaset et al.
(2020) added a batch normalization layer between each convolutional layer and its
subsequent activation function, and we follow this strategy. The batch normaliza-
tion layer normalize the input of the hidden layers in the neural networks, and its
benefit is discussed in Section 2.2.5. Each block is followed by a 2× 2 max pooling
operation with stride 2. As discussed under Section 2.2.2, this keeps the model less
sensitive to small changes in the input, as well as reducing the data amount.

In the expansive part each block consists of layers with 3×3 convolutions as well, now
followed by an transposed convolution to increase the patch resolution, described
in Section 2.2.3. The input of each block is also concatenated with the feature
map learned from the corresponding layer in the contracting path in order for the
successive convolution layer to assemble a more precise output (Ronneberger et
al., 2015). The last convolutional layer is a 1 × 1 convolution which reduces the
number of channels, followed by a softmax layer that is used to create the predicted
segmentation map, see Section 2.2.7. The softmax layer has three channels, one for
each class, with the softmax value for each pixel of the input patch.
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3.2.3 The training scheme

We follow the training scheme of Brautaset et al. (2020), training the model over
5,000 iterations with batches of size 16. The weights of the model are initialized
from a random uniform distribution, and are optimized using stochastic gradient
descent, with an initial learning rate of 0.01 and momentum set to 0.95, see Section
2.2.4. The high momentum was also recommended by Ronneberger et al. (2015), to
ensure that a high number of the previously seen training samples contribute to the
update of the current optimization step. Every 1,000 iteration, the learning rate is
reduced by a factor of 0.5.

Brautaset et al. (2020) also use a weighted cross entropy loss, to further adjust for
the class imbalance. The cross-entropy is done for each of the channels of the output
layer. We will here describe how it is calculated for one channel. Rewriting Equation
(2.16) from Section 2.2.7 to the 2-dimension case, we have

Li,j = − log ŷi,j = −ai,j + log
∑
m

∑
n

exp(am,n),

where m and n span the dimensions of the layers of a. This is the negative log likeli-
hood of the element at position (i, j) of the softmax layer, equivalent to calculating
the cross-entropy between y and ŷ. To account for the class imbalance, each class
of the echogram is given a weight, and the weighted cross-entropy loss is expressed
as

Lw(yi,j) = w(yi,j)

(
− log(softmax(a)i,j) = −ai,j + log

∑
m

∑
n

exp(am,n)

)
,

where

w(yi,j) =

{
1, if yi,j = 0

30, otherwise,

where yi,j is the element at position (i, j) of the true segmentation mask. The choice
of w(yi,j) is based on Brautaset et al. (2020).

The patches are also randomly flipped about the vertical axis, as well as added
random multiplicative noise to 5% of their pixels (chosen randomly) to increase the
robustness of the model.
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3.3 Testing the model

Three test sets are simulated, as described in Table 3.1. All three test sets have ten
echograms each. Each of these echograms have dimensions 6× 1056× 2500, where
6 is the number of frequencies, 1056 is the height of the echogram and 2500 is the
length of the echogram. Figure 3.6 shows an example of a simulated echogram.

First, the model is tested on echograms similar to the ones it has been trained
on. This gives a baseline performance of the model, which the performance on the
echograms of the other tests will be compared to. The pixel accuracy is calculated,
measuring how close the model is to perfect classification, as described in Section
2.2.8. The accuracy is reported for each of the fish school classes. The model’s
performance on classifying the background pixels is expected to be high due to
the high number of pixels of this category, and will not be reported as it is not
important for the objective of this thesis. The precision-recall curve is also calculated.
Precision, recall and F1-score give a better indication of performance for imbalanced
data sets, as described in Section 2.2.8. Generally in echograms, there is a high
amount of background compared to fish, and this is also true for the simulated data.
From the precision-recall curve, the best F1-score is found.

The pixel accuracy of the model on the echograms of the two other tests is calculated.
To see if there is a difference in model performance between the tests when it comes
to accuracy, the accuracy of the model on each class is compared between tests. This
is done by testing if the mean accuracy is equal, i.e. if the mean accuracy of the
model on class 1 from the shape test is equal to the mean accuracy of the model on
class 1 from the baseline test. If there is no significant difference in mean, then the
performance of the model on class 1 does not change when the shape of the school
is changed. We will use the Wilcoxon rank-sum test, a non-parametric alternative
to the two-sample t-test, to test for equal means.

The Wilcoxon rank-sum test is done by first creating a pooled sample, C, that
consists of the two samples that will be tested. Let A be a sample of size n with
mean µ1, and B be a sample of size m with mean µ2. Then, order C from the lowest
value to the highest value, and rank from 1 to N , where N = n+m, such that the
lowest value gets rank 1 and the highest value gets rank N . Now, the test statistic
W is the sum of the ranks associated with observations from sample A (Devore and
Berk, 2011). If these are associated to either the most of the smallest ranks, or the
largest ranks, we would doubt that the means of the samples, µ1 and µ2, are the
same.

Lastly, the precision-recall curves for the shape test and the r(f) test are compared
to the precision-recall curve obtained for the baseline test. Recall that an indication
that the model is a good fit to the data, is a precision-recall curve close to the upper
right corner of the PR space, see Section 2.2.8. The best F1-score is calculated for
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the tests, and compared to the score the model obtained on the baseline test. A
good F1-score will be close to 1.
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Chapter 4

Results

4.1 Baseline performance

The model is trained and validated on the training set, before it is tested on the
echograms of the baseline test. In this test, the schools have the same combination
of relative frequency response and shape as in the training set, i.e. class 1 are schools
with relative frequency response r1(f) and are shaped as spheroids in the simulation,
while schools belonging to class 2 are shaped as ellipsoids in the simulation and have
relative frequency response r2(f). The performance of the model on this test is the
baseline performance of the model, which the performance of the model on the other
tests is compared to. Figure 4.1 shows an example of a classification based on the
predictions from the model on a 6-channel echogram from the baseline test.

The pixel accuracy on this test is high, with a mean accuracy of 0.985 and 0.988 for
class 1 and 2, respectively. The accuracy for each class is calculated using Equation
(2.17), and the mean accuracy for each class of each test is listed in Table 4.1. We
omit the accuracy of the background pixels, as this is not important for the objective.

Table 4.1: Accuracy of the model on each of the tests.

Class 1 Class 2

Baseline test
Mean accuracy 0.985 0.988

Standard deviation 0.009 0.007

Shape test
Mean accuracy 0.830 0.947

Standard deviation 0.021 0.016

r(f) test
Mean accuracy 0.055 0.160

Standard deviation 0.026 0.052
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Figure 4.1: An example echogram from the baseline test, showing the 200 kHz chan-
nel, with corresponding true segmentation mask, and the segmentation mask from
the model’s prediction. Class 1, which includes schools with relative frequency re-
sponse r1(f) and shaped as spheroids in the simulation, is colored cyan. Schools that
belong to class 2, having relative frequency response r2(f) and shaped as ellipsoids
in the simulation, are colored orange.



47 4.1. Baseline performance

Table 4.2: Precision, recall and F1-score for the three tests.

Class 1 Class 2
Baseline Shape r(f) Baseline Shape r(f)

test test test test test test
Precision 0.922 0.749 0.095 0.907 0.835 0.150

Recall 0.937 0.804 0.294 0.930 0.811 0.773
F1-score 0.930 0.775 0.143 0.918 0.823 0.251

Threshold 0.950 0.588 0.005 0.940 0.960 0.005

The precision-recall curve is calculated for the baseline test, and the best F1-score
is listed in Table 4.2, with its corresponding precision and recall. The best F1-score
obtained is 0.930 for class 1, at threshold 0.95, where the precision of the model is
0.922 and the recall of the model is 0.937. The high precision and recall indicates
that the predictions from the model have both a low number of false positives and
a low number of false negatives, see Section 2.2.8. For class 2, the best F1-score
is 0.918, found at threshold 0.940, obtained by a precision of 0.907, and a recall of
0.930.
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Figure 4.2: PR-curves obtained from the three tests, where red, blue and green
curves are the baseline, shape test and r(f) test, respectively. The model obtains
the best result for the baseline test, i.e., the data set with the same combinations
of shape and relative frequency response as the training set. The performance of
the model on the shape test, where the shape of the schools are interchanged, has
dropped from the baseline test, with a slightly worse performance on class 1 than
class 2. The worst performance is on the echograms from the r(f) test, where the
relative frequency response is interchanged between the two fish classes.
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4.2 Testing the performance of the model

The first metric we will use to compare the performance of the model is the pixel
accuracy. The mean pixel accuracy of the model on each of the tests is listed in
Table 4.1. The performance of the model on the shape test and the r(f) test is
compared to the baseline test, by testing for equal distributions, as described in
Section 3.3. Then, the precision-recall curve is investigated.

4.2.1 The shape test

The model is first tested on echograms where the classes have interchanged shape
from what the model has been trained on. Figure 4.3 shows classification based on
the model’s predictions of an echogram from this test. The performance of the model
on this test will be compared to the performance of the model on the baseline test.
If the performance of the model drops significantly, then the shape of the schools
affects the predictions of the model.

The results from the shape test indicate that changing the shape of the schools
does affect the performance of the model. The pixel accuracy drops compared to
the pixel accuracy on the baseline test, see Table 4.1. The drop in accuracy is
more prominent for class 1, from 0.985 to 0.830, where the shape is changed from
spheroids to ellipsoids, while for class 2 mean accuracy drops from 0.988 to 0.947.

The accuracy of the model on this test, and the accuracy of the baseline test, are
tested for equal distributions, by the Wilcoxon rank-sum test, as described in Section
3.3. The accuracy of each test is divided into each class, such that there is done
two tests. The results of the Wilcoxon rank-sum are significant for both classes
(W = 100, P < .001), and we reject the hypothesis that the samples are from the
same distribution.

The precision-recall curves for class 1, and class 2, of the shape test also indicates
that changing the shape of the schools affect the performance of the model, see
Figure 4.2. Both curves show that the model has a poorer performance than what
it had on the baseline test. As with the pixel accuracy, the drop is most prominent
for class 1. This is also shown in the F1-scores, where it is 0.775, and 0.823, for class
1, and 2, respectively. The threshold for achieving the F1-score is much lower for
class 1, where it is 0.588, while for class 2 the threshold is 0.960, indicating that the
model is still confident predicting class 2.

4.2.2 The r(f) (relative frequency response) test

For the second test, which we will call the r(f) test, the classes have interchanged
relative frequency response compared to the baseline test. A classification based on
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Figure 4.3: An echogram from the shape test, represented here by its 200 kHz
channel, with its true segmentation mask and the segmentation map based on the
model prediction. The shape of the classes are interchanged from the baseline test,
i.e., class 1 is now shaped as an ellipsoid, and class 2 is shaped as a spheroid. In
the segmentation map, pixels belonging to class 1 are colored cyan, while pixels
belonging to class 2 are orange.
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Figure 4.4: An echogram at frequency 200 kHz from the r(f) test, with its true seg-
mentation map and the segmentation map originating from the predictions of the
model. The r(f) test differs from the training set by having interchanged relative
frequency response between the two fish school classes. The pixels of the segmen-
tation map are colored dark blue for background, cyan for class 1, and orange for
class 2.
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the predictions from the model on an echogram from the r(f) test can be seen in
Figure 4.4. From Figure 4.4 we observe that the model’s predictions are opposite
of the true segmentation mask for several schools. By interchanging the model’s
predictions between the classes, the predicted segmentation mask would be closer
to the true segmentation mask. Interchanging the classes in this way, returns the
problem to the combination of shape and relative frequency response that can be
found in the shape test. This gives reason to believe that the model bases its
predictions on the relative frequency response more than the shape of the schools.

To test if interchanging the relative frequency response between classes affects the
performance of the model, the accuracy on this test is compared to the accuracy of
the model on the baseline test. If there is a significant difference in accuracy, then
interchanging the relative frequency response does affect the model’s performance.
The results from the r(f) test show that the relative frequency response affect the
predictions from the model. The pixel accuracy drops for both classes, as seen in
Table 4.1. The drop in accuracy is slightly higher for class 1, than for class 2. The
accuracy of the model is listed for each class in Table 4.1. For each class, the accuracy
on this test and the accuracy on the baseline test are tested for equal distributions
by the Wilcoxon rank-sum test. Both for class 1 and class 2, the tests are significant,
(W = 100, P < .001), and the hypothesis of equal distributions is rejected.

The precision-recall curves for class 1 and 2 of the r(f) test show that the model has
the poorest performance on this test. The F1-scores are 0.143 and 0.251, for class 1
and 2, respectively. The moderately better F1-score of class 2 align with the results
from the pixel accuracy.
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Chapter 5

Discussion

A model has been trained and tested on simulated data in order to investigate
the effect of two features, relative frequency response and shape, on the model’s
predictions. The model was fitted to echogram data with two types of fish schools
present, and its output is a segmentation map where the model predicts (for each
pixel) where the fish schools are present. The schools are simulated such that they
differ only in the two features investigated: the relative frequency response and shape.
The baseline test has similar data to the training set, and the model performance
is high. In the two other tests created, the shape and relative frequency response
are interchanged on at a time between the two types of fish schools, in order to
investigate their influence on the model’s predictions.

Interchanging the shape or the relative frequency response affect the model per-
formance. The drop in model performance is most prominent when the relative
frequency response is interchanged, c.f. the r(f) test. This indicates that the rela-
tive frequency response is highly weighted during the model’s predictions. A possible
explanation for why the relative frequency response affect the model’s predictions
more than shape could be that the relative frequency response affect more pixels
in the echogram than what shape does. For the model to detect the shape of the
school, it must detect the edge of the schools, i.e., the model only needs the pixels
around the circumference of the schools. The relative frequency response of the
schools affect the value of all pixels within each school.

The results from the shape test, where the shape of the schools has been altered, show
that the model struggles more with predicting schools that were originally spheroids
in the simulation and are now ellipsoids, than with schools were the opposite change
was made. The schools that were originally spheroids in the simulation was labeled
as class 1 in the segmentation maps, while schools that were shaped as ellipsoid was
labeled as class 2. In the echograms the spheroidal schools have more backscatter in
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the depth direction. This means that in the crops the model is trained on, schools
belonging to class 1 have a larger circumference than class 2. Following our reasoning
above, the shape will then have a larger impact on the model’s performance on class
1, as the ratio between circumference and area of the schools is lower, making the
shape a more important feature.

The same relationship between the classes can be seen in the r(f) test as well, where
the relative frequency responses of the classes are interchanged. The model has a
slightly worse performance when predicting class 1, where the relative frequency
response has been changed from r1(f) to r2(f), than when predicting class 2, where
the relative frequency response has been changed from r2(f) to r1(f). However,
in the calculations of the F1-score, the threshold used is so low that the F1-score
does not give any real insight to the model. In the case of the accuracy metric, as
mentioned in Section 2.2.8, it should not be used alone in the case of imbalanced data.
The accuracy of the model on this test could mean that the model is slightly better
at predicting class 2, but it is also possible that the model is better at predicting
where class 2 is not (the true negatives). Therefore, we can not conclude that the
model is better at predicting class 2, than class 1, for this test.

From the baseline performance of the model it is clear that a model can be suc-
cessfully fitted to simulated data. Simulated data is both cheaper and less time-
consuming to acquire, compared to real data. In addition, by using simulated data,
the two classes of schools could be created such that they only differ in shape and
relative frequency response. This makes it possible to test the model’s predictions by
changing just one variable at a time. With real data, two fish schools from different
fish species will differ in numerous ways. For example, the target strength for all
targets in the simulation is based on the estimated target strength for herring. In
real data, the target strength will differ between fish species. In addition to the dif-
ference in fish characteristics, the data gathered from several trawl surveys may also
differ due to extraneous variables, variables that are not intended to be researched.
This might be animal sounds or movement, or wind and breaking waves (Simmonds
and MacLennan, 2005). The choice of training set and test set is important to create
a generalized classification model, and due to extraneous variables, this is a harder
choice when data from trawl surveys are used. With simulated data, no variables
that are not accounted for will influence the data, making the choice simpler.

Another advantage of the simulated data is the consistency of how the annotations
are made. With real data, the process of classifying acoustic backscatter is done by
an operator. Brautaset et al. (2020) found both missing annotations and incomplete
annotations in the data used to train and test their neural network. The annotations
used in this thesis are based on an algorithm that checks the same assumption for
all pixels, avoiding inconsistent annotations.

Networks trained on simulated data, can not be directly used on data obtained from
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surveys, nonetheless they can be useful. Transfer learning is the method of applying
a pre-trained neural network on new data (usually from a related domain). The pre-
trained network on simulated data can be fine-tuned to survey data, by retraining
the higher layers of the network where the features are more case-specific. The
lower layers of the network are often useful as they are, because they often detect
less abstract features (Azizpour et al., 2015). A network which is pre-trained on
simulated data can therefore be a good starting point when training a network on
real data.

The relative frequency responses used in this thesis are obtained from calculations
done by Holmin et al. (2012), and the report by Fernandes et al. (2006). The
function r1(f) is therefore based on calculations from herring surveys, and r2(f) is
based on data from Atlantic mackerel surveys. These have an increasing difference
for higher frequencies. It is possible that the model would be more dependent on the
shape of the schools if the relative frequency response was harder to separate. With
the pipeline created for this thesis, this is possible to investigate by replacing the
relative frequency response functions before training and testing the network again.

Deep neural networks have been shown to perform well on a range of classification
problems, but they are often criticized for being difficult to interpret. This thesis
sheds some light upon how the model suggested by Brautaset et al. (2020) works,
when it is classifying echograms. Other techniques could also be investigated to
understand more of the network, e.g. Class Activation Maps (Zhou et al., 2016).
These maps highlight the regions which cause the maximum activation of a layer in
the network. These will indicate what region in the image, or in this case echogram,
which is causing the model to predict the class it is predicting. However, we have
instead focused on why the model predicts as it does, and the tests done answer this
question for the specific case where the model has to choose between two features;
shape and relative frequency response.

In this thesis we have created a pipeline for empirical testing of neural networks
on acoustic data. A convolutional neural network has been successfully fitted to
simulated acoustic data, and the network achieves a high performance when classi-
fying the acoustic backscatter. The model is tested on several data sets to investigate
whether it uses an energetic characteristic (the relative frequency response), or a mor-
phological characteristic (the shape), of the fish schools to segment the echograms.
Based on these simulations we conclude that the relative frequency response has a
greater impact on the model’s predictions than the shape of the fish schools.
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