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Abstract 

Noncovalent forces are important driving forces in nature particularly in biology, and 

they dictate many biological processes including the binding of peripheral protein to 

the cell membrane. The widely acknowledged models describe this process as 

electrostatics driven membrane adsorption followed by short-range protein-lipid 

interactions i.e. hydrogen bonds, hydrophobic interactions. Some of the key elements 

in such models are: clusters of basic residues are essential for electrostatic adsorption, 

and basic residues contribute equally to the membrane binding. Nevertheless, none of 

these models account for the role of cation-  interactions in membrane binding. With 

selected protein candidates, we further explore these models and work towards a 

generalized description of protein peripheral binding to membranes in terms of 

noncovalent forces.  

Our investigation highlights the limitations of these existing descriptions. We 

demonstrate that the requirement of having a cluster of basic residues is not essential. 

Further, we show that the contributions of basic residues are distance dependent. In 

other words, their localization in the membrane-water interface determines their 

strength and hence is not equal. We also establish the role of tyrosine-choline cation-

 interactions in membrane binding of peripheral proteins.  

We explore in detail the nature of tyrosine-choline mediated cation-  interactions 

using high-level quantum mechanical calculations. Later, this information is used to 

improve the description of cation-  interactions in molecular simulation models. 

These improvements of force field parameters are further tested using molecular 

dynamics simulations.  

Finally, we used this information to build an interaction diagram that can be used to 

better describe the binding of peripheral proteins to the cell membrane. Future testing 

and the generalization of this diagram will further establish this as a common model.   
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1. Noncovalent interactions 

Noncovalent interactions are ubiquitous in nature. Although they are not as strong as 

covalent forces, which originate from electron sharing and pairing; they play a very 

important role in physical processes such as molecular recognition[1]. A textbook 

definition and classification of noncovalent interactions can be found in the Physical 

Chemistry book by Atkins and Paula[1]. Lodish et al. categorized “noncovalent 

bonds” as four distinct types: hydrogen bonds, ionic interactions (attractions between 

oppositely charged ions), van der Waals interactions (caused by transient dipoles), 

and hydrophobic bonds (between nonpolar molecules)[2]. At a quick glance, this 

listing looks complete. However, electrostatic repulsion and exchange-repulsion are 

overlooked, while hydrophobic bonds are a special case of van der Waals 

interactions. Leckband and Israelachvili tried to probe many possible interactions 

arising in vivo and in laboratory experiments between molecules, surfaces and 

biomaterials[3]. The authors attempted to provide a detailed generalization of 

noncovalent forces in biology[3]. Nevertheless, the cation-  interaction is overlooked 

in all of them and emerged in 1990’s as an important noncovalent force in biology[4] 

and particularly relevant for protein-lipid interactions[5-7]. 

Interestingly, these interactions can all be decomposed into some fundamental 

components. It is relatively easy to dissect them in physically meaningful components 

when we talk about a complex made of dimers in gas phase. When a complex is made 

of many-bodies (multimers), it is safe to say that it is almost impossible to dissect 

these components and evaluate these contributions. In solvent or in condensed phase, 

these interactions are not essentially the same as they are in the gas phase. The 

medium, be it a solvent or a solid phase, has some unique features (e.g. relative 

permittivity), which will in turn affect these components differently. 

Many biological processes take place in a cellular environment. The cellular 

environment is highly anisotropic, dissolved in water (if not all, most of it) and 

contains significant amounts of biomolecules (proteins, carbohydrates, lipids, and 

nucleic acids) along with ions. Hence, the properties in different cell compartments 
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are different. These factors make the generalization/grouping of these noncovalent 

interactions for different biological processes rather difficult. In the following 

sections, we will first present the fundamental components of noncovalent 

interactions followed by how they are affected by the environments. 

1.1 Fundamental components of noncovalent interactions 

Noncovalent interactions are composed of four fundamental components. They are 

namely electrostatics, exchange, induction, and dispersion. All the noncovalent 

interactions can be dissected in these four physically meaningful components. For a 

detailed overview on this topic, the pioneering works by others are highly 

recommended[8-17]. Let us start with the simple case of two monomers in the gas 

phase. 

1.1.1 Electrostatics 

Electrostatics is the interaction between the charge distributions of the molecules. In 

other words, it is the interaction between the permanent multipole moments of the 

molecules[18]. The permanent multipole moments are monopole, dipole, quadrupole, 

octupole, and so on (Figure 1.1). The energy of these interactions between charge 

distributions is distance-dependent ( 1/r). The electrostatic interaction between a set 

of charges (+e,-e or +e,+e/-e,-e) is long-range in gas phase, and electrostatics can be 

both attractive of repulsive (Figure 1.2). This can range up to 1000 Å or more[19].  
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Figure 1.1: Electronic multipole moments in molecules (adapted from [1]). 

 

Figure 1.2: Variation of electrostatic interactions between a set of charges. 

Electrostatic interactions decay very slowly as a function of the distance between 

particles in gas phase and can be active at very long distances with a contribution of 

around 1 kcal/mol at 500 Å in the case depicted here for charges of similar signs 

(+e,+e/-e,-e) and opposite charges (+e,-e). 
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Here, the term electrostatics is used also to refer to charge-charge, charge-dipole, 

dipole-dipole interactions [18] (Figure 1.3). Hydrogen bonds and salt bridges/ionic 

bonds also fall in this category as they are dominated by electrostatics. One can turn 

the argument around and say, they are special cases of electrostatics. 

 

 

Figure 1.3: Electrostatic interactions between two charges (top), or a charge and a 

dipole (bottom). 

1.1.2 Exchange 

Exchange is also known as exchange-repulsion and is not to be confused with 

electrostatic repulsion. This force is always present between the two interacting 

monomers when they are close to each other. There is no classical analogue to 

describe such interaction. It originates mainly from the overlap of molecular orbitals 

when two monomers are very close, the electrons in the molecular orbitals rearrange 

themselves following Pauli’s exclusion principle. Exchange has an exponential 

distance-dependence ( 1/er).  

1.1.3 Induction 

Induction is also known as polarization. Induction is the attractive force between the 

permanent multipole moments of one monomer and the induced multipole moments 

of other monomer (Figure 1.4). Induction is related to the polarizability of the 

molecule and the induced moment M can be expressed as[20]: 
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M = F                                       (1.1) 

where  is the polarizability tensor, and F is the external electric field. In case of a 

dimer, F is the permanent multipole moments of one monomer that generates the 

external electric field. Often, charge transfer is also attributed to polarization[8]. 

 

Figure 1.4: Example of induction. Generation of induced dipole moments in a 

molecule due to the permanent multipole moments of the approaching molecule. 

1.1.4 Dispersion 

Dispersion is the attractive force between two molecules due to the instantaneous 

charge fluctuations. In other words, it is the attractive force between the instantaneous 

multipole moments generated between the monomers. Dispersion is a short-range 

phenomenon (compared to electrostatics), and is always present although the 

energetic contribution is weak compared to the other forces. Dispersion is important 

for particularly the nonpolar molecules (i.e. noble gases, hydrocarbons). The leading 

contribution to dispersion comes from the generated instantaneous dipole moment 

and has a distance dependence 1/r6 (Figure 1.5). The higher order poles can 

contribute and have dependence as 1/r8, 1/r10, and so on[21]. 

 
Figure 1.5: Example of dispersion: generation of induced dipole moments in two 

nonpolar molecules. 
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1.2 Modeling noncovalent interactions in molecular simulations 

Electrostatics is modeled using Coulomb’s Law in Class I additive force fields (e.g. 

additive CHARMM-ff [22]). In the Class I additive force field, point charge (also 

known as partial atomic charge) description is used to describe electrostatics[22]. The 

point charge description of electrostatics has a number of limitations [8], but is 

computationally inexpensive and works remarkably well for many cases. Although 

exchange has an exponential distance dependence, due to the ease of computation it is 

often modeled with a ( 1/r12) term (e.g. CHARMM-ff [23]). This is actually the 

repulsive part of the Lennard-Jones (LJ) potential. Also, it is not uncommon to use 

the Buckingham potential that has an exponential term. Dispersion is modeled with 

the attractive part of the LJ potential[22]. A detailed list of functional forms used to 

model noncovalent interactions in different additive force fields can be found in the 

book by Jensen[19]. Induction is often not treated in classical molecular simulations. 

However, recent advances of polarizable force fields make this possible. There are 

several ways to model induction. Some of those are: fluctuating charge model[24], 

multipole moment methods (AMOEBA)[25], and Drude polarizable model (using 

drude particles- as implemented in CHARMM-ff)[26-30]. Recently, Baker published 

an excellent review article summarizing the current status of polarizable force fields 

for biomolecules[31].  

1.3 Many-body interactions 

As the relationships for a dimer have been established, a many-body (more than two 

molecules) problem can be explored based on these relationships. A and B are 

charged, C and D are nonpolar molecules (Figure 1.6). One might wonder why there 

exists electrostatics interaction between the nonpolar molecules in the figure below. 

This is due to the interaction between electrons and the nuclei of the participating 

molecules[16]. Even for dispersion dominated complex such as noble gases (Ar 

dimer), hydrocarbons: electrostatics exist. However, the contribution is substantially 

lower than that from dispersion[16].  
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Figure 1.6: Case of a many-body interaction problem and resulting noncovalent 

components. E, Ex, D, and I stands for electrostatics, exchange, dispersion, and 

induction, respectively. 

The net resulting force will determine the fate of the complex. However, even in gas 

phase separating these individual contributions due to the presence of another 

monomer is cumbersome. One knows the contribution of A on B; but due to the 

presence of C and D, it is difficult to assess in principle how much this contribution 

will be affected. This is due to the many-body non-additive effects[9]. To accurately 

treat such problem, one need to add the many-body (three-body, four-body) 

corrections[9]. 

1.4 Cooperativity measures 

When multiple noncovalent interactions exist simultaneously in a system, if they 

strengthen each other; they are said to be cooperative. If they weaken each other, they 

are said to be anti-cooperative. In a biological system, multiple noncovalent 

interactions act simultaneously. 



 18 

Cooperative energy for a ternary system ( Ecoop(T)) can be calculated as the 

difference between the energy of the ternary complex and the energies of the binary 

complexes[32]. It can be written as follows, 

 

Ecoop(T ) = EABC (T ) EAB (T ) EBC (T ) ECA (T )  

        +EA (T )+EB (T )+EC (T )                                      (1.2) 

For a quaternary complex, we can write similarly, 

Ecoop(Q) = EABCD (Q) EAB (Q) EBC (Q) ECD (Q)  

          EDA (Q) ECA (Q) EBD (Q)+ 2EA (Q)  

          +2EB (Q)+ 2EC (Q)+ 2ED (Q)                                (1.3) 

However, in a biological system of hundreds of thousands of molecules, to use 

cooperativity measure will surely be difficult if not impossible.  

1.5 Biologically relevant cases: moving to the condensed phase 

As stated earlier, the cellular environment is often approximated to a liquid phase. 

The solute-solvent and solvent-solvent interactions play a critical role. When the 

many monomers are replaced in the many-body problem by water and system is in 

the liquid phase, the problem becomes more complicated where solvent properties 

come into play. First, the peculiar property of water will be discussed and how that 

gives rise to two interesting phenomena: hydrophobic and hydrophilic interactions. 

Then the special property of membranes will be discussed in the cell membrane 

section. 

Water is a polar solvent with a high dielectric constant ( =78.5~80) that greatly 

affects electrostatic interactions by e.g. screening charges. This affects the 

electrostatic energies greatly (Figure 1.7), and decreases the effective regulatory 
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distance. In other words, in vacuum where a positive charge (+e) can interact with a 

negative charge (-e) being 500 Å apart, in water the charge effectively interacts 

within a shorter distance. Further effect of ionic solvent on charge screening will be 

discussed in the continuum electrostatics section. 
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Figure 1.7: Variation of electrostatics with the dielectric constant of the medium. (A) 

Gas phase vs water, (B) zoomed version in water, traces remain around 0.2 kcal/mol 

even at a distance of 25 Å. 

1.6 Hydrophobic and Hydrophilic interactions 

Due to the polarity of water, nonpolar molecules will not solubilize well in water; on 

the other hand, polar molecules easily dissolve in water. Hence, this leads to the 

origination of hydrophobic (water fearing) and hydrophilic (water loving) 

interactions. Hydrophobic molecules tend to form aggregates in water. Such as if one 

puts droplets of oil in water. This phenomenon is often entropy driven. It is difficult 

to quantify the contributions from hydrophobic and hydrophilic interactions either 

experimentally or computationally.  

Molecules containing a hydrophobic and a hydrophilic part are called amphipathic 

and phospholipids are examples of such molecules[33].  
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2. Membranes, proteins, and their interactions 

2.1 Cell membrane: its constituents and environment 

2.1.1 Phospholipids 

Membranes are mainly made of phospholipids[33]. Phospholipids are amphipathic 

molecules as stated in the previous chapter. They consist of hydrophobic acyl chains 

and a hydrophilic part made up of glycerol, phosphate, and the headgroup. The acyl 

chain length can vary from 14 to 24 carbon atoms and can be saturated or 

unsaturated[33]. The headgroups can be zwitterionic e.g. phosphatidylcholine (PC), 

phosphatidylethanolamine(PE); or negative e.g. phosphatidylserine (PS), 

phosphatidylglycerol (PG) (Figure 2.1).  

Due to its amphipathic nature, lipids assemble spontaneously in polar solvent like 

water by exposing the polar portion outwards and the hydrophobic portions inwards. 

The assembly can take the form of a micelle or a bilayer depending on the shape of 

the lipids[33].  

2.1.2 Bilayers and their properties 

The properties along the bilayer dimensions are not uniform. The lateral dimensions 

are coupled and they act as a two dimensional fluid[33]. The lateral pressure profile is 

not uniform across the bilayer normal[34].  Also, the properties in the normal 

direction are anisotropic within that 35~40 Å special arrangement. The dielectric 

constant of this anisotropic part of the cell is essentially distinct  (Figure 2.2). The 

dielectric constant of the membrane-water interface is lower than that of water and 

higher than that of the membrane core and has a value between 30 and 40[35, 36].   

2.1.3 Membranes and membrane organization models 

Membranes are the partitions of the cell and its compartments, typically made up of 

phospholipid bilayers. They separate the inside of the cell compartments from the 

outside environments. While the plasma membrane surrounds the whole cell, other 
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membranes delimit cellular organelles such as the Golgi apparatus, the mitochondria, 

the endoplasmic reticulum etc.  

The phospholipid composition of cell membranes varies from organism to organism 

[33] and between cellular compartments. A comprehensive overview on such 

variation for eukaryotic cell membranes[37] and mammalian cell membranes[38] are 

provided by van Meer and co-workers.  

 

Figure 2.1: Four examples of phospholipids. They are: 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine 

(DMPE), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), and 1,2-

dimyristoyl-sn-glycero-3-phosphoserine (DMPS). 
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One essential component of eukaryote cell membranes is PC lipids, which can be 

found abundantly in any cell compartment. The extra-cellular side of the plasma 

membrane is rich in PC lipid whereas the intra-cellular/cytosolic side is rich in PC 

along with PE, PS lipids[39]. Note, that the membrane always has an overall negative 

charge as they are made of negative and zwitterionic phospholipids.  

 

Figure 2.2: Dielectric constant profile across the bilayer normal. 

Over the last 100 years, researchers have tried to understand membrane shape and 

organization. The earlier view dates back to 1925 by Gorter and Grendel[40], where 

they describe the membrane as composed of two molecules thick layer of fatty 

substances. The most popular and widely used model of cell membrane is formulated 

by Singer and Nicolson in 1972[41], also known as “the fluid mosaic model”. In this 

model, the lipids behave like a fluid at physiological temperature, enabling them to 

move continuously. The proteins and other biomolecules are embedded in the plasma 

membrane. This embedding gives the nature of mosaic. The fluid-mosaic mixture can 

move like a two-dimensional fluid in the lateral dimensions.  

Later, in 2005, Engelman provided an updated version where the author describes the 

membrane as “more mosaic than fluid”[42]. The model tries to emphasize the fact 

that the membranes are crowded with proteins and that gives rise to the more mosaic 

nature. In a recent review article[43], Goñi also highlighted the importance of binding 
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of proteins to the membrane on temporary basis (which is a central topic in this 

thesis). 

Recently, Kusumi et al. proposed a hierarchical “three-tiered” organization of the 

plasma membranes[44]. The authors highlighted two features to be important: 

thermal fluctuations/ movements of molecules, and weak cooperativity. 

Summarizing all these models, we can essentially focus on some key features in 

addition to the bilayer form of membranes. These features are: 

1. Membranes are crowded[42], 

2. Molecules are in motion; let it be lipids, proteins, or other biomolecules. A static 

representation limits our understanding of membrane as a dynamic entity, 

3. There exist proteins that bind to the membrane occasionally[43]. Unlike the soluble 

or transmembrane proteins, these types of proteins need to bind membrane transiently 

to perform their function, 

4. Membranes are curved, heterogeneous, and often out of equilibrium[43].  

2.2 Proteins 

2.2.1 Membrane proteins 

Membrane proteins are classified in different groups in literature. Interestingly, the 

categories vary to great extent from one classification to another. Lodish et al. 

classified membrane proteins in three categories: integral membrane proteins, lipid-

anchored membrane proteins, and peripheral membrane proteins[2]. The authors 

classified peripheral membrane proteins as those that do not interact with the 

hydrophobic core of the membrane. These proteins bind to membrane either via 

indirect interaction with the transmembrane proteins or via direct interaction with the 

lipid headgroups[2]. Alberts et al. described membrane proteins association to 

membrane in eight different ways[33]. If they can be released from the membrane 

surface with “gentle extraction procedure” such as the variation of salt concentration 
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or pH and without disrupting the membrane, they are called as peripheral proteins 

[33]. Others are categorized as integral membrane proteins. In this description, 

peripheral proteins interact with other membrane proteins by noncovalent 

interactions. Petsko and Ringe catagorized membrane proteins in two types: integral 

membrane proteins and membrane-anchored proteins (peripheral proteins)[45]. 

Peripheral proteins are defined by the authors as the proteins that are attached to one 

side of the membrane while the remaining parts of the proteins are soluble in water 

on the same side of the membrane[45]. Perhaps, this is the most realistic definition of 

peripheral proteins. Among the membrane proteins, amphitropic proteins are those 

that bind to the cell membrane reversibly and transiently[46]. In this category, 

proteins binding to transmembrane proteins (often receptors) embedded in the 

membrane are not included (Figure 2.3). Such interactions may be categorized as 

protein-protein interactions. 

We will use the term “peripheral protein”/ “amphitropic protein” synonymously. 

Henceforth the terms will be used only to refer to the proteins that bind to the 

membrane directly. 

 

Figure 2.3: Some examples of membrane proteins. (Redrawn, modified and adapted 

from the source https://en.wikibooks.org/wiki/File:Membrane_protein.png) 
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2.2.2 Amphitropic proteins and how they bind to the cell membrane 

The term amphitropic was first introduced by Burn in 1988[47]. The author pointed 

out that several proteins which used to be described as soluble cytoplasmic proteins 

can also localize on the membrane. Later, Johnson and Cornell proposed three 

distinct strategies for reversible membrane localization of these proteins in 1999[46]. 

The key features described by Johnson and Cornell are: 

1. Equilibrium between soluble (inactive) and the membrane bound (active) forms. 

2. Binding is a two-step process where the first step is served by electrostatics for the 

localization. Second step is the hydrophobic interaction and is “accompanied by 

intercalation”. The binding reaction is fast and there is no delay between the 

adsorption and intercalation. 

3. The off rate or dissociation constant (koff) determines the affinity (Kd). As the on 

rate is very fast. On rate is determined by association constant (kon). 

4. The hydrophobic contributions are dominant.  

5. The three strategies for membrane attachment are: a) lipid clamps, b) covalent lipid 

anchors, and c) amphipathic helices (Figure 2.4). 

The model given by Johnson and Cornell is a pioneering model, which opened up a 

new way of looking at a whole new class of proteins and the importance of their 

membrane recruitment. 

More recently, in 2009, Cho and Stahelin summarized the kinetics and energetics of 

association of peripheral proteins to the membrane[48]. The authors discussed the 

cases of membrane targeting domains such as: C1, C2, PH, FYVE, etc. and their host 

proteins. However, the authors greatly rely on the model proposed by Johnson and 

Cornell to describe the membrane localization and the bound state. The highlights of 

the binding mechanism for peripheral proteins are represented below (Figure 2.5): 
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Figure 2.4: Reversible membrane binding strategies for amphitropic proteins 

described by Johnson and Cornell[46] (redrawn). (A) Lipid clamps, (B) Covalent 

lipid anchors, and (C) Amphipathic helices. 

1. Step A is done “autonomously” or triggered by a “Ca2+-induced electrostatic 

switch”. 

2. After localization/adsorption, the protein undergoes any of the steps B, C, or D. 

B) Membrane penetration, 

C) Binding to a specific lipid, or 

D) For many cases, step C is followed by step B. 
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Figure 2.5: Model proposed by Cho and Stahelin[48] (redrawn). 

Several attempts have been made to understand these steps, the role of different 

amino acids and determining the energetic contributions. Inspired by the idea that 

many cytoplasmic proteins contain clusters of basic amino acids and transiently 

interact with the membrane, Kim et al. performed experiments including equilibrium 

binding measurements with Lysn and Argn peptides (n=1-5)[49]. The authors found 

that the energetic contribution of each lysine residue is ~1.4 kcal/mol irrespective of 

the negative lipid type and similar contribution is observed for arginine residue[49]. 

For the hydrophobic interactions with the bilayer, energetic contribution of ~0.8 

kcal/mol per acyl chain-protein interaction has been suggested[50]. 

As stated in earlier sections, plasma membranes are always negatively charged due to 

the constituent phospholipids. How this negatively charged cell wall attracts proteins 

towards it is of great interest to the scientific community. Mulgrew-Nesbitt et al. 

provided a comprehensive review on the role of electrostatics in such attraction[51]. 

The authors highlighted that the presence of clusters of basic amino acids create a 

large positive electrostatic potential/patch around the protein interfacial binding site 

(IBS). The overall charge of the protein is less important as long as it contains a 

cluster of basic residues. However, when a protein does not contain basic clusters and 

has a net negative charge, the role of electrostatics is not known.  
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Murray et al. provided a theoretical insight into the electrostatic partitioning of Src 

proteins with phospholipid membranes[52]. Based on this work, it has been suggested 

that if a protein domain is bound to the membrane solely via electrostatic interactions, 

then it will localize ~3 Å away from the bilayer surface and would not penetrate the 

bilayer surface[46].  

The binding of amphitropic proteins to cell membrane is essential to perform their 

function. The membrane acts as a meeting point for proteins and lipids[53]. 

Amphitropic proteins play an important role in cell signaling, metabolism, membrane 

trafficking[46, 48, 54]. The localization to the membrane serves either of two 

purposes: 1) to activate the proteins for performing their functions[55], or 2) to bind 

to the substrates located at the interface[56].  

2.2.3 Limitations of existing binding models 

Several attempts have been made to understand the binding mechanism of peripheral 

membrane proteins. Significant effort has been made to understand the role of 

electrostatics[51, 52, 57-60]. For more details on the overall binding mechanism, I 

refer the reader to two comprehensive review articles [46, 48]. These reviews do not 

account for all the peripheral membrane proteins, as stated by the authors[46]. Further 

enhancements of the models are needed to describe other peripheral membrane 

binders. 

We identify the following limitations in the current peripheral protein-membrane 

binding models: 

- Association of peripheral proteins is mediated by long-range electrostatics, which 

are interactions of basic clusters with negatively charged lipids. The role of clusters 

of basic residues is considered as granted[49, 51]. First of all, there might be many 

proteins that do not contain clusters of basic residues. How they bind to membrane is 

not known. Secondly, the range for electrostatics to modulate protein binding to 

membrane periphery is not clearly defined[46]. The estimated contribution of around 

1.4 kcal/mol for each basic amino acid[49] seem somewhat arbitrary if one considers 
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the various types of lipids and the localization of the basic amino acids with respect 

to the membrane (whether they are localized at the interface or away from the 

membrane surface).  

- There is no distinction between hydrophobic amino acids in these models[46, 48, 

51, 59]. In particular aromatic side chains have properties distinct from aliphatic 

groups, and the three aromatic amino acids themselves have distinct hydrophobicity 

and polarity. For these reasons, the localization of aromatic amino acids may vary 

substantially compared to the other hydrophobic amino acids. Hence, these aromatic 

amino acids may engage in cation-  interaction with some lipids (PC, PE) if they are 

localized in close proximity of these lipid headgroups. 

- Many of these models largely neglect the role of the water-membrane interface, 

specifically the energetics aspect and also the localization of amino acids at the 

interface. As it has been discussed earlier, water-membrane interfacial properties are 

different than bilayer core/bulk water. Hence, interaction of amino acids with the 

water-membrane interface may play a distinct and important energetic role in the 

formation of protein-membrane complex. 

2.3 Selected protein candidates 

We choose several proteins for our investigations. They are serine proteases and 

bacterial phospholipases. Those that we picked are reported to bind model 

membranes peripherally. Further details on these candidates are provided in the 

following sections.  

2.3.1 Serine protease homologues: PR3 and HNE 

We first choose two homologous serine proteases: Proteinase 3 (PR3) and Human 

Neutrophil Elastase (HNE) (Figure 2.6). These are enzymes associated with 

neutrophils (white blood cells). Serine proteases are important as they work as killing 

agents during infection. However, if not regulated properly they become the cause of 
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the disease itself by playing a direct role in autoimmune and inflammatory diseases. 

Such is the case for Rheumatoid arthritis and Wegner’s granulomatosis[61, 62].  

 

Figure 2.6: Structures of two homologous neutrophil serine proteases- PR3 (gray) 

and HNE (cyan). Secondary structure is shown in cartoon representation. 

Both in vitro and in silico studies have shown, that PR3 can bind to the model 

membranes directly without the aid of any partner protein[63-65]. Human PR3 (221 

a.a.) and HNE (218 a.a.) are homologous and have 56% sequence identity and 70% 

sequence similarity[66]. Most interestingly, PR3 has a net positive charge of +2 and 

HNE has +11. Also, PR3 has been reported to bind lipid bilayers using cation-  

interaction[65].  

2.3.2 BtPI-PLC: a bacterial phospholipase 

Bacillus thuringiensis phosphatidylinositol specific-phospholipase C (BtPI-PLC) is a 

34.8 kDa bacterial virulence factor and contains 296 amino acids (Figure 2.7). The 

protein is part of the TIM barrel fold super-family[67]. Unlike other proteins that 

have the TIM barrel fold; this protein is “incomplete” because it contains eight -

strands and only six -helices[68].  
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Figure 2.7: Structure of BtPI-PLC. The relevant secondary structure elements are 

colored as: helix B ( B, brown), helix D ( D, magenta), helix F ( F, cyan), helix G 

( G, yellow). A labeled version of BtPI-PLC structure is provided in the Figure 3 of 

Paper 3. 

This protein cleaves GPI-anchored proteins from the outer part of the eukaryotic 

plasma membranes[69, 70]. BtPI-PLC follows a two step catalytic mechanism[56] 

and specifically cleaves the sn-3 phosphodiester bond in phosphatidylinositol (PI) 

[70]. Such activity of BtPI-PLC is observed upon binding to PC or PE interfaces[71]. 

Wehbi et al. performed binding experiments with non-substrate vesicles[56], and 

found using Langmuir adsorption isotherm that the BtPI-PLC binds anionic SUV’s 

with higher affinity than the neutral phosphatidylcholine (PC). Such behavior is 

explained by the significant hydrophobic contribution towards the neutral vesicle and 

major electrostatics contribution for anionic vesicles[56]. Later, Pu et al. performed 

Fluorescence Correlation Spectroscopic (FCS) measurements of BtPI-PLC binding 

and activity with pure and mixed anionic vesicles[70, 72]. Highest activity of BtPI-

PLC is observed at XPC 0.5 (PC content in the vesicle) and the tightest binding at 

around XPC 0.9 where the other partner lipid was phosphatidylglycerol (PG). Vesicles 

containing phosphatidylmethanol (PMe), phosphatic acid (PA) or phosphatidylserine 

(PS) did not lead to such tight binding[72].  

For the binding of BtPI-PLC, several structural parts and residues were 

experimentally identified as important: helix B[56, 73], rim loop and tryptophan 
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residues (W47, W242) [56, 73, 74], a tyrosine residue (Y88)[70] and a lysine residue 

(K44)[70, 73]. Recently, BtPI-PLC is reported to use cation-  interactions as 

membrane targeting mechanism to bind lipid bilayers which has been demonstrated 

by in silico and in vitro experiments[6]. Three membrane binding regions were 

identified: helix B, and two other rim loops[6]. However, little is known about the 

role of electrostatics in BtPI-PLC membrane-binding except a lysine (K44) can play 

an important role. Mutation of K44 to alanine has been shown to decrease the affinity 

more than 50 times for slightly anionic vesicles[70]. BtPI-PLC is an overall 

negatively charged protein (-7). Also, no basic cluster is reported to be associated 

with BtPI-PLC. Hence, the role of electrostatics in BtPI-PLC membrane binding is 

still not clear.  
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3. Methods 

This chapter is divided in four sections: Quantum mechanics, molecular mechanics, 

continuum electrostatics, system setup and analysis. 

3.1 Quantum mechanics 

3.1.1 Many electron wavefunction and Schrödinger equation 

The non-relativistic time-independent Schrödinger equation has the form: 

Ĥ = E                                    (3.1) 

where  is a many electron wavefunction, and Ĥ is the Hamiltonian operator. In 

atomic units Ĥ  can be given by[75], 

 

Ĥ =
1

2 i
2

i

1

2

1

MAA

A
2 ZA

rAiA,i

+
1

riji> j

+
ZAZB

RABA>B

                               (3.2) 

whereZA is the nuclear charge, MA  is the ratio of mass of nucleus A  to the mass of an 

electron, RAB  the distance between nuclei A  and B , rij  is the distance between 

electrons i  and j , and rAi is the distance between nucleus A  and electron i . 

The many electron Schrödinger equation cannot be solved exactly. Hence, 

approximations are introduced. 

3.1.2 Born-Oppenheimer Approximation 

Nuclei are heavier than electrons (almost 2000 times). Hence they move slower than 

electrons. So, the seperation of nuclear and electronic motion is possible. This is 

called the “Born-Oppenheimer Approximation”[76]. Due to the slow nuclei 

movement compared to electrons, we can come to the so-called “electronic” 

Schrödinger equation[75], 
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Ĥ el el = Eel el          (3.3) 

where, 

Ĥ el =
1

2 i
2

i

ZA

rAiA,i

+
1

riji> j

       (3.4) 

Nuclear kinetic energy is not included in the electronic Schrödinger equation. The 

nuclei-nuclei repulsion term should be added to the electronic energy Eel to obtain the 

total energy E  for the system. Hence, 

E = Eel +
ZAZB

RABA>B

         (3.5) 

This is the energy value one obtains by performing typical electronic structure 

calculations. 

3.1.3 Hartree products and Slater determinants 

A wavefunction for N-electrons is a function of 4N coordinates. For each electron, 

one can describe them by three Cartesian coordinates (x,y,z) and spin function (up or 

down). Here, the Cartesian coordinate for electron i is collectively referred as ri and 

the combination of Cartesian coordinates with the spin coordinates (function) as i. 

To describe the N-electron wavefunction, one can write it in terms of the product of 

one-electron functions, as orbitals are one electron wavefunctions: 

( i, j,…, N ) = i ( i ) j ( j )… N ( N )                   (3.6) 

This is known as a Hartree product (Equation (3.6)). These notations i ( i )  are 

dependent on both spatial and spin functions (as written with i ), so they are called 

the spin orbitals. These spin orbitals can be written as the product of the spatial 

orbitals and the spin functions (  or ). For example, 

i ( i ) = i (ri )          (3.7) 
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However, the problem with the Hartree products is that it does not satisfy the anti-

symmetry principle.  

Considering the case of two electrons, the anti-symmetric wavefunction can be 

written as, 

( 1, 2 ) =
1

2
1( 1) 2 ( 2 ) 1( 2 ) 2 ( 1)[ ]      (3.8) 

In a determinant form, 

( 1, 2 ) =
1

2
1( 1) 2 ( 1)

1( 2 ) 2 ( 2 )
       (3.9) 

With this notation, one satisfies the anti-symmetry principle. The anti-symmetry 

principle results in the Pauli exclusion principle (the principle quantum numbers 

cannot be the same for two electrons). If one tries to put two electrons in the same 

orbital together then 1 = 2 , so the resulting wavefunction is zero ( ( 1, 2 ) = 0 ). 

Now, if one writes the wavefunction for N-electrons following the same notation 

which satisfies the anti-symmetry principle then it leads to 

=
1

N!

i ( i ) j ( i ) N ( i )

i ( j ) j ( j ) N ( j )

i ( N ) j ( N ) N ( N )

      (3.10) 

This is known as “slater determinants” that are made up from spin orbitals. A single 

slater determinant is a single population pattern of molecular orbitals (or a 

configuration). By expanding this determinant, one obtains N! Hartree products. The 

N-electrons are arranged in all N! possible ways in the N spin orbitals. This also 

ensures the indistinguishability of electrons. This part is largely adapted from the 

lecture notes of David Sherrill[77]. 
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To construct a determinant, one needs the list of  occupied orbitals. The occupied 

orbitals can be obtained using the Hartree-Fock (HF) method, which is also known as 

Self-consistent field (SCF) method. 

3.1.4 HF method 

Using the HF procedure, one can obtain the molecular orbitals lowest in energy (i.e. 

ground state orbitals) and hence the minimized electronic energy. This is done using 

the variational principle, which states that the expectation value of the Hamiltonian is  

an upper bound to the exact ground state energy[78]. 

These molecular orbitals ( ) are written as a linear combination of the atomic orbitals 

( ) as in Eqn. (3.11). This expansion is known as Linear Combination of Atomic 

Orbitals (LCAO). The atomic orbitals are also known as basis functions. 

= ci i

i

                (3.11) 

The HF method is an approximation to solve the many-electron Schrödinger 

equation. In this method, a single Slater determinant is used as the wavefunction. The 

single determinant is the function of molecular orbitals. Such formulation leads to an 

integro-differential equation, which can be written as an eigenvalue problem: 

F =            (3.12) 

where F is the Fock operator which is a one-electron operator,  is the molecular 

orbital, and  is the orbital energy. The Fock operator contains terms for the kinetic 

energy of the electron, potential energy of electron with respect to the nuclei, and the 

electron-electron repulsion that is treated in an average fashion.  

3.1.5 Electron correlation 

The Hartree-Fock approximation is very useful as a good starting point for solving 

the many-electron Schrödinger equation. What lacks in the HF method is electron 

correlation as they are treated in a mean field approach. The variational principle 

states that the solution will always be an upper bound of the exact solution. The 
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difference between the exact solution to the nonrelativistic energy (E) of the system 

and HF-limit energy (E0) is known as the correlation energy (Ecorr): 

Ecorr = E E0           (3.13) 

There are several post-HF methods to include the electron correlation effect. They 

are: Configuration interaction (CI), Many-body perturbation theory (MBPT), and 

Coupled cluster theory.  

3.1.6.1 Møller-Plesset perturbation theory 
Many-body perturbation theory (MBPT) can be used to estimate the correlation 

energy. Møller-Plesset perturbation theory in different orders is a popular electron 

correlation methods[75, 78, 79]. The most computationally viable one is the MP2 

method, which takes into account correlation effects up to the second order. 

In the perturbation approach, it is assumed that the Hartree-Fock wavefunction and 

the energy are very close to the exact wavefunction and the energy[75]. Then one can 

write the exact Hamiltonian composing of the zeroth-order Hamiltonian  and a 

perturbation  that is modulated by a parameter . So, 

     and       . 

Hence one can write the Schrödinger equation as, 

                                                 (3.14) 

where,  and . 

Eqn. (3.14) can be expanded in a Taylor series and the Schrödinger eqn. for different 

orders can be obtained. From there one can calculate the energy corrections for 

different orders[78]. In this formulation, the sum of the zeroth and the first order 

gives the HF energy[75]. The correction to the HF energy to recover correlation 

energy starts at the second order.    

Ĥ (0)

V̂

Ĥ = Ĥ (0) + V̂ V̂ << Ĥ (0)

Ĥ n = Ĥ (0) + V̂( ) n = En n

n = n ( ) En = En ( )
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3.1.6.2 Coupled cluster method 
In the framework of coupled cluster theory, the exact many electron wavefunction 

can be generated by using an exponential excitation operator to the reference 

wavefunction/determinant. In single reference CC method, it is usually the HF 

determinant. The exact many electron wavefunction ( ) can be expressed with the 

exponential excitation operator ( eT̂ ), and single determinant ( 0 ), 

= eT̂ 0           (3.15) 

The excitation operator can be written as the combination of single, double, ….. , 

upto N fold excitations for an N electron system [80], 

T̂ = T̂1 + T̂2 + T̂3 +.............+ T̂N       (3.16) 

Unlike the perturbation methods where one adds all types of corrections (S,D,T,Q 

etc.) to the reference wavefunction up to a given order (2,3,4, etc.); in CC framework 

one adds all the corrections of given types (S,D,T,Q etc.) up to infinite order[19].  

3.1.6 Density functional theory 

In the framework of Density functional theory (DFT), one can determine the ground 

state electronic energy from the electron density ( )[81]. Later, Kohn and Sham 

introduced the Kohn-Sham orbitals in the density functional theory[82]. The authors 

provided the relation between Kohn-Sham orbitals and the densities. In this 

formulation, the exchange and the correlation terms are treated with an additional 

effective potential. This gave birth to the self-consistent Kohn-Sham equation, which 

can be solved like the HF equation[82]. The limitations of DFT lie in the exact 

description of this exchange-correlation part, which is not known. Nevertheless, DFT 

is one of the most widely used and popular computational methods in different 

branches of science and engineering disciplines. 

Three types of exchange-correlation functionals are commonly used: 1) Functionals 

based on local density approximations (LDA), 2) Functionals based on general 
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gradient approximations (GGA), and 3) Hybrid functionals that use Hartree-Fock 

exchange[75].  

3.1.7 Interaction energy using SAPT and energy decomposition 

In Symmetry-Adapted Perturbation Theory (SAPT), the dimer Hamiltonian has the 

following form:  

H = FA +FB +V +WA +WB                              (3.17) 

The dimer Hamiltonian (H ) is partitioned into contributions from the monomer Fock 

operators (F ), the interaction between the monomers (V ), and the fluctuation 

potential of each monomer (W ). A  and B  refer to the monomers respectively.   

The interaction energy can be written as a perturbation series, 

Eint = (Epol
(nkl ) +Eexch

(nkl ) )
l=0k=0n=1

                      (3.18) 

Here, n  denotes the order in V, k  and l  denotes the order in WA  and WB , 

respectively. The Epol  terms are due to the polarization expansion and Eexch  are due to 

the repulsive terms which result from the anti-symmetry of the wavefunction with 

respect to the exchange of electrons between the monomers. These formulations are 

adapted from the article by Hohenstein and Sherrill[17], and from the PSI4[83] 

manual.  For a detailed overview of the SAPT methods, refer to the article by 

Jeziorski et al.[15]; and for the original formulations of the methods refer to the 

article by Rybak et al.[14]. There are different variants of SAPT method available for 

both wavefunction based and DFT based calculations. Wavefunction based SAPT 

variants are discussed in the article by Hohenstein and Sherrill[17]. Using SAPT, one 

can decompose the interaction energy into physically meaningful components: 

electrostatics, exchange, induction, and dispersion.  
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3.2 Molecular mechanics 

3.2.1 Molecular Dynamics simulations 

As stated earlier, nuclei of atoms experience an average field/force generated by the 

electronic configuration or arrangement around the nuclei. The average field/force is 

referred here synonymously. This average field creates so-called “Potential energy 

surface” over which nuclei of atoms move. In MD simulations, Newton’s second law 

of motion describes the dynamics of a given system. In its simplest form one can 

write the relation between the potential energy and motion of the system as: 

V (r) = Fi (r) =mi

d 2ri
dt2

                         (3.19) 

where, the gradient of the energy gives the force acting on a particle (atom). With 

double integration we can obtain the position of the atoms after certain time. This 

collection of positions is often called a “trajectory”. The motions of atoms are not 

independent from each other meaning they are coupled. Hence, they need to be 

solved numerically. Usually, the integration is carried out using finite difference 

methods.  

3.2.2 Monte Carlo Simulations 

Simulation technique such as Monte Carlo Simulations also uses the potential energy; 

however they do not use time as a variable. Hence, often direct time dependent 

properties cannot be calculated using MC simulations. Instead of time dependent 

evolvement of the system, in MC it uses random numbers to generate the system 

configuration and use different criteria to accept or reject the configuration, i.e. based 

on energy criteria using Metropolis algorithm[84].  

3.2.3 Ensembles 

Ensemble is a collection of microscopic states[85]. In other words, using ensembles 

one can calculate macroscopic properties from the microscopic properties using 

statistical mechanics[86]. Using computer simulations one can generate microscopic 
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observables such as coordinates, velocities etc. and using these microscopic variables 

one can measure the macroscopic properties e.g. pressure, temperature etc.  

The common statistical ensembles are microcanonical (NVE), canonical (NVT), 

isothermal-isoberic (NPT), grand canonical ( VT) etc. For each ensemble, some 

thermodynamic variables are constant and other thermodynamic variables can be 

measured by ensemble averaging or time averaging. A computer simulation can be 

characterized by different thermodynamic variables such as V, P, E, T etc. These 

variables are connected. For example, for a constant number of particles (N), either 

the volume (V) or pressure (P) can be fixed. Both volume and pressure cannot be 

fixed together[19].  

3.2.4 Ergodic hypothesis 

The ergodic hypothesis assumes that the time average of a set of particles is equal to 

its ensemble average[84]. In other words, independent of the starting configuration of 

the system we can sample other points of the phase space. This hypothesis enables us 

to use MD simulations to extract the thermodynamic and structural properties of a 

system. Monte Carlo simulations calculate ensemble average whereas Molecular 

Dynamics simulations calculate time averaged properties. 

3.2.5 Force field 

Irrespective of the simulation technique, one needs to get the potential energy of the 

system. The potential energy consists of bonded and nonbonded terms (at least this is 

true for biomolecules). Often this set of energy functions is coined as “force fields”. 

The potential energy form of a typical biomolecular force field[87] (e.g. CHARMM 

which is class I additive force field[88]) looks like following: 

V (r) = kbond,i (d d0 )
2

i=1

Nbonds

+ kangle,i ( 0 )
2

i=1

Nangles

 

          + ktorsion,i[1+ cos(n 0 )]
i=1

Ntorsions

        (3.20) 
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where, V is the potential energy, d is the distance between two bonded atoms,  is the 

angle between three bonded atoms,  is the torsion/dihedral angle between two 

bonds,  is the well depth for LJ potential,  is the equilibrium distance for LJ 

potentail, q is the charge of an atom, r is the distance between two atoms or between 

two charges. 

The bonded terms are usually obtained from spectroscopic measurements. They can 

also be obtained from quantum mechanical calculations. The nonbonded terms are 

usually fitted to quantum mechanical calculations. Sometimes, the torsional 

parameters are also fitted to QM calculations[22, 88, 89]. Such is the case for 

CHARMM force field used in this thesis work.  

3.2.6  Some essential practical considerations for MD simulations 

3.2.6.1 Integrators and timestep 
As stated earlier, the integration of equation of motion (EOM) in MD simulations are 

done numerically. The idea behind is to break down the integration in small parts. 

These small parts are separated by a fixed time t[90]. This fixed time is commonly 

known as the “timestep”. The choice of timestep is important for obtaining a realistic 

dynamics. In terms of numerical methods, a very small timestep is better. However, 

that will lead to very slow sampling of the phase space. On the other hand, a long 

timestep will lead to numerical instabilities. Appropriate timestep will lead to a better 

and smooth sampling of the phase space. For typical all atom MD simulations 

without any bond constrains, the choice of time step is 1 fs. This is because the 

timestep should be such so that one can capture the fastest motions of the system 

which are the bond vibrations. However, this is not true for the “Coarse-grained” MD 

simulations. 
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To integrate the EOM, many popular choices are available such as Verlet, velocity 

verlet, leap-frog, gear’s predictor-corrector (with higher order variants) algorithm[84-

86]. These equation of motion algorithms all have their advantages and limitations.  

3.2.6.2 Boundary conditions 
Boundary conditions are needed to remove the surface effects and sometimes to 

mimic the bulk properties. Both of the effects can be mimicked depending on the 

boundary conditions. If the surface effects are not removed then the atoms or 

molecules will evaporate from the simulation system. Boundary condition can be 

non-periodic, i.e. spherical boundary conditions. This boundary condition is also 

known as “liquid drop”. A harmonic restraint force is applied at the border of the 

liquid sphere to prevent evaporation of the liquid. However, this boundary condition 

cannot mimic an infinite system because the sphere cannot be replicated infinitely. To 

mimic an infinite large system (bulk), periodic boundary conditions are used. 

Usually, cubic, rectangular, or octahedron prism/box (i.e. the unit cell to replicate) is 

used depending on the types of molecules one wish to simulate. In periodic boundary 

conditions, if a particle leaves the unit cell it enters through the opposite face of the 

cell. Hence, the number of particles in the simulation system is conserved and there 

are no evaporations of particles. 

3.2.6.3 Cut-off 
In a MD simulation, to evaluate all the nonbonded forces it would require ½ N (N-1) 

calculation for a system of N particles at every step. This is time consuming and some 

nonbonded interactions have strong distance dependence. Hence, one can introduce 

the scheme where the nonbonded calculations will be done only up to a certain 

distance from a particle. Typically, such distance is 12 Å. This dramatically reduces 

the computational cost.  

3.2.6.4 Switching and shifting 
Sometimes there might be discontinuity in the potential function due to the cut-off. 

This will lead to inconsistency in the energy calculations. To overcome this problem, 
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there are several approaches. Two of them are switching and shifting the 

potential[90].  

In the switching approach, the potential is smoothly truncated from the switch 

distance up to the cut-off distance. Using the switching function, the potential 

becomes zero at the cut-off and there is no discontinuity.  

In the shifting approach, the whole potential is shifted to make the potential zero at 

the cut-off distance. 

3.2.6.5 Long-range electrostatics 
The electrostatic interactions decay very slowly with the distance. Hence, use of cut-

off does not allow capturing all the electrostatics interactions. To overcome this, one 

needs to treat the long-range electrostatic interactions or in other words what is left 

behind beyond the cut-off distance. 

To treat the long-range electrostatics effects, some popular approaches exist such as- 

reaction field electrostatics[86, 90], Ewald summations[84, 90], Fast multipole 

moment method[84], Multilevel summation method[91]. In the reaction field 

approach, a uniform dielectric constant is assigned to the simulation zone beyond the 

cut-off value, which is treated as a dielectric continuum[86]. Within the cut-off zone, 

all the coulombic interactions are calculated explicitly. In the Ewald summation 

technique, the calculation is split in two parts. The direct evaluation is carried out 

within the cut-off distance. The calculation of the long-range part is carried out in the 

reciprocal space using Fourier transform method. This long range part can also be 

calculated in real space. However, the calculation becomes computationally costly. 

An important feature in the Ewald sum methods is the efficient evaluation of fourier 

transform. Such efficiency will reduce the computational cost. Different variants of 

Ewald summation exists such as Particle mesh Ewald (PME), or Particle-particle-

mesh Ewald method. One of the most widely used variants is the PME method. 

Two drawbacks of PME methods (usually any FFT-based electrostatics method) are: 
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1. Calculation needs to be performed in 3D-periodic system. 

2. FFT calculation is the performance bottleneck for parallel scalability. 

To overcome these drawbacks, multilevel summation method (MSM) has been 

developed recently[91]. In this method, the short-range part is calculated similar to 

the PME method. The long-range part is interpolated from the grids. The long-range 

part is done in real space, hence no FFT calculations needed. This method can be 

used also for semi-periodic and nonperiodic systems.   

3.2.6.6 Temperature and pressure coupling 
In MD simulations, solving the equation of motion alone leads to the use of NVE 

ensemble. The system is isolated from the surroundings. However, seldom such 

conservation of energy mimics a real system. Often, there is exchange of heat with 

the surroundings in a real system. To mimic such behavior, one needs to use NVT or 

NPT ensemble during MD simulations. NVT or NPT ensembles can be achieved by 

coupling the system to the surroundings. For the temperature coupling, the system is 

connected to an “external heat-bath” with which the system exchanges heat and keeps 

the temperature constant. There exist several “Thermostatting Algorithms” to achieve 

such effect e.g. Anderson thermostat [92], Nose-Hoover thermostat [93, 94], 

Berendsen thermostat[95]. 

Similarly, pressure coupling with the surrounding can be achieved by using “Barostat 

Algorithm” such as Berendsen barostat, Parinello-Rahman barostat, Nose-Hoover 

Langevin piston barostat etc. For example, simulation of lipid bilayers is usually 

carried out in NPT ensemble (pressure coupling). Such choice of ensemble allows the 

simulation box to expand (change of volume) and relieve the excess pressure to 

mimic the real life cell membrane behavior. 

3.2.6.7 Multiple timesteps 
To capture the realistic dynamics of a system, one needs to choose the timestep in a 

way so the fastest motion of the system can be captured. However, the time scale for 

bond vibrations are fast comparing to vdW interactions (slow). Using a small 
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timestep to calculate all the interactions will limit the phase-space smapling as the 

calculations are more time consuming. Multiple timesteps algorithm can be used to 

overcome this problem[85]. 

In multiple timesteps algorithm, the forces acting on the system are classified into 

different groups according to their variation with time. Different timesteps are used to 

update and calculate these forces. The fast varying forces (bonded) are calculated 

more often than the slow varying forces (electrostatics). 

3.3 Continuum electrostatics 

Poisson-Boltzmann (PB) method is one of the continuum electrostatics methods. 

There also exist other approaches such as Generalized Born method (GB). In 

continuum electrostatics methods, the averaged electrostatics contribution of solvent 

and ions are treated. In an explicit solvent with ions, one can see the electrostatics 

contribution of solvents and ions on the biomolecules. However, it is difficult to 

isolate the contribution, as it is often the problem of many-body interactions. 

Nowadays, with the advent of free energy techniques, it is possible to estimate the 

solvent contribution. However, often it is not computationally cheap and 

straightforward. On that essence, continuum electrostatics is relatively cheap.  

3.3.1 Poisson-Boltzmann Theory 

PB method will be discussed here as this technique is applied in this thesis to evaluate 

protein-lipid interactions. 

We will start with a molecule/system that is isotropic, meaning the dielectric constant 

of the system is fixed (dielectric constant, ) and with no charges. Using the Laplace 

equation one can obtain the electrostatic potential, (r): 

2 (r) = 0                              (3.21) 

where  is the differential operator and can be expressed by, 
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=
x
+

y
+

z
  in a three dimensional space. 

Now, if the molecule is charged then the Laplacian equation becomes the Poisson 

equation which is one of the fundamental equation of classical electrostatics and can 

be expressed by: 

2 (r) =
4 (r)          (3.22) 

where, (r) is the  fixed charge density of the molecule/system. 

For an anisotropic or inhomogeneous system (i.e. solvent effect), the dielectric 

polarization at the interface will be different and to take that into account one can 

rearrange the above equation as follows: 

(r) (r)[ ] = 4 (r)         (3.23) 

Here, one can achieve that using a distance dependent dielectric constant, (r). 

In a system where all the charges are present (explicit representation), the Poisson 

equation reduces to the Coulomb equation, 

=
1 qi

di
          (3.24) 

Note, that the dielectric constant =1. Such a choice is reasonable as the explicit 

representation will generate the dielectric screening. 

This is the relation between classical Coulomb’s equation and the Poisson’s equation. 

They are actually synonymous in explicit representation of all the charges. To 

account for ionic solvents, the Poisson-Boltzmann equation needs to be solved. 

In a real solution, often there are ions present. As stated above, in an explicit model 

(when one uses Coulomb’s equation) it is not needed to treat anything else to take the 

ion effects into account. To treat the ionic effect into Poisson’s equation, the 

Boltzmann’s ionic distribution is added and the equation becomes: 
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(r) (r)[ ] = 4 (r) ionic contribution           (3.25)  

or, 

(r) (r)[ ] = 4 f (r) 4 ci ziqe
ziq (r )
kT (r)

i

     (3.26) 

where, 

f (r)= molecular fixed charges, 

ci = the concentration of ion i at an infinite distance from the molecule, 

zi = valency of the ion, 

q= proton charge, 

k = Boltzmann constant, 

T = Temperature, 

(r)= accessibility of ions at point r.   

This is the so-called “Non-linear Poisson-Boltzmann equation”. This equation can be 

linearized under the assumption that the electrostatic potential (r)  is small compared 

to kT. And thus  one obtain the “linearized Poisson-Boltzmann equation”: 

 

(r) (r)[ ] = 4 f (r)+ 4
ci

i

zi
2q2 (r)

kT
(r)      (3.27) 

This equation contains an important parameter commonly known as Debye screening 

parameter (KD ) and is expressed by, 
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KD
2 = 8

ci
i

zi
2q2

2 kT
         (3.28) 

which is inversely related to the “Debye length” by:  

KD
2 =

1

lD
2

          (3.29) 

where lD  is the Debye length. 

The Debye screening parameter provides an interesting physical insight. It refers that 

the electrostatic potential of a molecule in an ionic solvent reduces exponentially. As 

showed earlier in chapter 1, the dependence of electrostatic energy is 1/r without the 

presence of any ion using the Coulomb’s law. With the use of continuum 

electrostatics one can estimate the range of electrostatic forces in ionic solution. 

Using this theory, one can deduce the range of electrostatics. The range reduces to 

10-20 Å[96]. This is actually the reality for biomolecules in a cellular environment. 

This section is largely adapted from a review article by Fogolari et al. [96]. There are 

some excellent review articles and pioneering work by the group of Barry Honig on 

the use of Poisson-Boltzmann equation as a continuum electrostatics tool[59, 97, 98]. 

Readers are referred to those articles for further details of this method. 

 Once the electrostatic potential (r)  is obtained, it is easy to estimate classical 

electrostatic free energy. The formulation is as follows: 

Gel =
1

2
f (r) (r)dV

V

        (3.30) 

Gel =
1

2
f (r) (r)         (3.31)  

One can simply rewrite this as, 

Gel =
1

2
(qi i )          (3.32) 
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where i represents the atomic position, and qi , i  is the fixed charge and the potential 

at that position respectively. 

3.4 System setup and analysis 

3.4.1 Continuum electrostatics calculations 

3.4.1.1 System setup for continuum electrostatics calculations 
We extracted the structures of the equilibrated bilayers after MD simulations to 

perform the continuum electrostatics calculations by solving the Poisson-Boltzmann 

equation. The protein-membrane complex is prepared by placing the protein  with its 

membrane binding orientation above the bilayer upper leaflet. Further details are 

provided in the attached paper (Paper 3). 

3.4.1.2 Calculating electrostatic potentials and electrostatic free energy 
The parameters for protein and ions are adapted from the CHARMM all atom force 

field (c22[23] including CMAP correction)[99] and for the lipids from the force field 

update for lipids (Charmm36)[100]. Poisson-Boltzmann calculations are carried out 

using APBS (version 1.3) [101]. The non-linear Poisson-Boltzmann equation is 

solved using the focusing technique[97].  

The electrostatic free energy for the protein Gel(P), membrane Gel(M) and the protein 

membrane complex Gel(P.M) is calculated. The electrostatic free energy contribution 

to the free energy of binding due to protein membrane interactions can then be 

evaluated as follows: 

          (3.33) 

3.4.2 MD simulations of protein-bilayer complex 

3.4.2.1 System setup for protein-bilayer complex 
The proteins are manually docked to the pre-equilibrated bilayers for the MD 

simulations of protein-bilayer complex. The starting orientations are taken from 

implicit membrane simulations (IMM1-GC). Simulations are performed using 

Gel =Gel (P.M ) [Gel (P)+Gel (M )]
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NAMD (v2.9, v2.10)[102]. The CHARMM all-atom force field[23] (c22 including 

CMAP correction)[99] and the force field update for lipids (CHARMM36)[100] were 

used for protein-membrane simulations.  

3.4.2.2 Trajectory analysis 
Analysis were performed on the simulation trajectories using CHARMM (v33b1, 

v38b2) [103] and VMD (v1.9.1)[104]. Detailed descriptions for analysis of hydrogen 

bonds, hydrophobic contacts, cation-  interactions, electron denisty profiles (EDP) 

are provided in the attached papers (Paper 2 and 3).  

3.4.3 Quantum mechanical calculations 

Quantum mechanical calculations are carried out to improve the force field 

description of cation-  interactions between tyrosine and choline. Phenol and 

tetramethylammonium (TMA) are used, as they are analogues of tyrosine and 

choline, respectively. We built a potential energy surface (PES). The details are 

provided in the accompanying paper (Paper 4). The calculations are performed using 

NWCHEM (v6.3) [105] and PSI4 (v 4.0b5)[83]. 
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4. Aims of the thesis 

Our main goal is to address the limitations of existing canonical binding models for 

amphitropic proteins and work towards the construction of a generalized model for 

peripheral membrane binding in terms of noncovalent interactions. 

Using a selection of proteins we intend to bring new insights to the commonly 

acknowledged view and improve the current models. The selected proteins are: 

  - two neutrophil serine proteases: Proteinase 3 (PR3) and human neutrophil elastase 

(HNE); 

- a bacterial phospholipase: Bacillus thuringiensis phosphatidylinositol-specific 

phospholipase C (BtPI-PLC). 

Each of these proteins has a pathophysiological relevance; PR3 and HNE are drug 

targets in autoimmune and chronic inflammatory diseases, BtPI-PLC is a virulence 

factor.  

Besides their function, the main differences between these proteins are their 

interfacial binding site (IBS) and their overall net charge: 

- PR3 and HNE are both positively charged. PR3 binds to lipid vesicles much more 

strongly than HNE does although they are homologous. The IBS of PR3 contains 

three phenylalanines whereas the IBS of HNE has fewer hydrophobic amino acids 

and more positively charged residues.  

- BtPI-PLC is negatively charged and its IBS is rich in tyrosines. Nevertheless, BtPI-

PLC does not display any obvious cluster of basic amino acids at its IBS as other 

peripheral proteins described in the literature (including PR3).  

Our main goal will be achieved in three steps: 

1. We will first examine how electrostatics and hydrophobic interactions contribute to 

the binding affinity of PR3 to lipid vesicles. Comparison between PR3 and its close 
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homologue HNE allows exploring the effect of substituting hydrophobic amino acids 

at the IBS and in particular the role of phenylalanine in membrane binding. 

Furthermore we will investigate the role of electrostatics and the role of the balance 

between hydrophobicity and electrostatics.  

2. With BtPI-PLC, negatively charged and with virtually no basic cluster, we will 

investigate the role of weak electrostatics. We will also characterize choline-tyrosine 

cation-  interactions and their role for specific PC binding.    

3. We wish to benchmark and if necessary improve the description of cation-  

interactions in simulations using molecular mechanics force fields. To achieve this, 

we investigate the nature of interactions between phenol and tetramethylammonium 

through the calculation of potential energy surfaces (PES) using high-level electronic 

structure calculations. Results from these calculations will be confronted to PES 

calculated with molecular mechanics force fields. 
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5. Results and discussions 

5.1 On the association of peripheral proteins: Case study of PR3, 
HNE, and BtPIPLC 

5.1.1 Electrostatics and hydrophobic interactions contribute differently to 
the membrane binding of two homologous proteins   

Electrostatic potential is a useful property to obtain an idea about electrostatic 

partitioning of a protein with respect to the membrane [51]. The electrostatic 

potentials of PR3 and HNE both have positive groove/surface on their IBS (Figure 

5.1.1). However, HNE has more positively charged surface around its IBS compared 

to PR3. This is an indication that HNE will respond more to increasing anionic lipid 

fraction compared to PR3.  

 

(A) 
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(B) 

Figure 5.1.1: Electrostatic potential of (A) PR3, and (B) HNE. The isocontours at +1 

kBT/e (blue) and -1 kBT/e (red) are shown. Membrane plane is represented only to 

highlight the protein IBS and not the binding itself. Hence, a distance is maintained 

between the proteins and the membrane. 

To elucidate both the electrostatic (desolvation penalty of polar residue + protein-

membrane coulombic interaction) and the nonpolar contributions (aliphatic + 

aromatic) to the binding of PR3 and HNE for different membrane composition, we 

choose a cost-effective implicit membrane model (IMM1-GC)[106]. The negative 

lipid fraction of the membrane is varied from 0 to 100%.   

 

Figure 5.1.2: Variation of binding energy of PR3 and HNE with increasing fraction 

of anionic lipid (anfr). When anfr= 0.0 the model bilayer is neutral and it is fully 

anionic when anfr= 1.0. HNE is represented with black lines and PR3 with red lines. 

For PR3, the change of anionic lipid fraction has a less profound effect compared to 

HNE (Figure 5.1.2). For HNE, the binding energy increases dramatically by the 
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change of membrane from neutral to a 50% negative membrane. However, further 

increase in the total negative charge density does not increase the binding energy 

proportionally. The favorable energetic contribution of HNE with an anionic 

membrane compared to a neutral membrane is interesting. This indicates that HNE 

binds to a membrane with electrostatics and the nonpolar contribution is not 

significant. On the other hand, PR3 binds to neutral membrane favorably thus 

indicating PR3 has nonpolar binding contribution. We have demonstrated this using 

energy decomposition analysis [107]. For HNE, the desolvation penalty is so high 

that it has slightly unfavorable total interaction energy. Finally, we would like to 

highlight that anionic lipid fraction (surface charge density) is sensed by these 

proteins at almost 20~25 Å. This is in fact the electrostatic contribution. HNE 

responds more to anionic lipid fraction than PR3. This is due to HNE containing 

more positively charged amino acids at the IBS. On the other hand, PR3 start sensing 

a neutral lipid when it is very close to the membrane surface (~5 Å). Similarly, 

unfavorable contributions of HNE start increasing when it is very close to the surface 

of a neutral membrane.  

The binding energetics of PR3 and HNE analyzed here also correlate well with the 

experimental binding data obtained using Surface Plasmon Resonance (SPR) 

measurements[107]. Schillinger et al. showed by varying the salt concentration with a 

neutral bilayer (POPC liposome) that PR3 binding is less altered by increasing salt 

concentration[107]. However, HNE binding is significantly affected by the increasing 

salt concentration[107].  

5.1.2 A cluster of basic amino acids is not essential for membrane binding  

Not all amphitropic proteins contain well-defined basic clusters. Such an example is 

BtPI-PLC. The BtPI-PLC has five lysines (K38, K44, K122, K201, K279) and one 

arginine (R71) at or nearby the IBS. Surprisingly, they do not form a basic cluster as 

they are not close to each other. The simplest way to confirm such observation is to 

look at the electrostatic potential (Figure 5.1.3). The electrostatic potential does not 

show any large blue patch/surface on its IBS. However, BtPI-PLC has been shown to 
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bind vesicles with an affinity of ca. 3.5 ± 0.7 M where the vesicles were prepared 

using different phospholipids (DMPC: DMPG 80: 20 mixture) [6, 7]. This raises the 

question of how BtPI-PLC reaches the membrane as the requirement of having 

clusters of basic residues for cytoplasmic proteins are highlighted in a series of 

previous works[49, 51, 52, 57-59, 108]. Moreover, BtPI-PLC attaches to the 

extracellular side of the cell, which makes it an even more interesting case as the 

extracellular side of a cell has less anionic lipid fraction due to the higher PC content 

compared to the cytoplasmic side[37-39]. 

 

 

Figure 5.1.3: Electrostatic potential of BtPI-PLC. The isocontours at +1 kBT/e (blue) 

and -1 kBT/e (red) are shown.  

To explore the role of electrostatics on a protein like BtPI-PLC, we used a continuum 

electrostatics approach. The calculated electrostatic free energy ( Gel) profile shows 

that BtPI-PLC has a very low electrostatic partitioning towards a slightly negative 

membrane (negative charge fraction equivalent to 20%). The electrostatic 

contribution at the minima is -0.25 kcal/mol (Figure 5.1.4) which is almost 12 to 20 

times lower than what has been reported for other peripheral proteins (from -3 to -5 

kcal/mol) using the same computational approach [51]. Compared to other reported 

peripheral binders BtPI-PLC stands out. Thus we believe that the role of electrostatics 

is not only to drag the proteins towards the membrane, but also to maintain the 
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adequate equilibrium between the soluble and the membrane-bound states. Low 

electrostatic partitioning means that the protein-membrane coulombic interaction is 

only slightly higher than the desolvation penalty for the polar and the charged 

residues[51]. Hence, the protein can easily go back to the soluble state from the 

membrane-bound state due to environmental changes or external stimuli.     

 

 

Figure 5.1.4: Electrostatic free energy ( Gel) profile of wild-type and mutant BtPI-

PLC. 

5.1.3 Contributions of positively charged residues are not equal and in 
fact are distance dependent 

To understand the positively charged residues contribution to membrane binding, we 

mutated all the charged residues at the IBS to alanine (Figure 5.1.4). The calculated 

electrostatic free energy shows that BtPI-PLC membrane electrostatic partitioning is 

largely governed by K44. Mutating it to an alanine completely abolishes the 

favorable electrostatic free energy. Mutation of other charged residues has a less 
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dominant effect. The effect seems to be correlated to the distance between the amino 

acids and the phosphate plane of the membrane (Table 5.1). Hence, if a basic residue 

is closer to membrane its contribution is substantially higher than other basic residues 

localized further away from the membrane.  

5.1.4 Non-monotonic effect of membrane anionic charge density on the 
electrostatic free energy 

To examine the effect of surface charge density on membrane binding of BtPI-PLC, 

we used continuum electrostatics. We prepared four different bilayer compositions 

where we vary the DMPC lipid compositions (XPC 1.0, 0.8, 0.5, and 0). The other 

lipid partner is DMPG. The minimum protein-membrane distance (d) is 3 Å, which 

was found to be the minima in the energy profile. The electrostatic free energy is 

slightly unfavorable for a neutral membrane with a value of 0.1 kcal/mol (Figure 8 

(A) of Paper 3). The profile decreases monotonically up to a charge density of 50% 

( Gel = -0.68 kcal/mol). Increasing negative charge does not make the Gel more 

favorable; in fact it makes Gel slightly less favorable ( Gel = -0.42 kcal/mol). 

To explore the effect of salt concentration on Gel, we perform calculations with a 

slightly anionic membrane (XPC 0.8), placing the protein at d= 3 Å and varying the 

salt concentration from 0.025 to 0.7 M. We found a quasi-parabolic Gel profile for 

BtPI-PLC (Figure 8 (B) of Paper 3). The minimum is located at salt concentration of 

0.1M ( Gel = -0.25 kcal/mol), which is also approximately the physiological ionic 

strength on the extracellular side of eukaryotic cell. 

5.1.5 Final note on the role of electrostatics in membrane association 

The protein candidates described in the literature and explored here in this thesis give 

a basis to further extend the role of electrostatics. We see two types of protein 

candidates. One type contains large positive patch/groove at their IBS due to clusters 

of basic amino acids. Some of these proteins are negatively charged[51, 57], and the 

charge distribution determines the Gel. This category responds monotonically to the 

increasing surface charge density[59]. Also, increasing salt concentrations 

monotonically increase Gel and make it less favorable [59].  
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On the other hand, proteins that do not contain basic clusters at the IBS and have a 

net negative charge have large negative surface. Hence, it is very subtle how they 

interact with an anionic membrane. One of them (BtPI-PLC) is explored here. We 

found that the electrostatic free energy is 12~20 times lower than the first category. 

However, this small contribution is essential for membrane binding. Such proteins 

neither respond monotonically to the increasing surface anionic charge density, nor to 

the salt concentration. This phenomenon is due to the unfavorable interactions 

between the large negative surface electrostatic potentials and the negatively charged 

membrane. It is indeed fascinating to observe how electrostatics partitioning towards 

membrane is tuned for such type of proteins (considering other proteins with similar 

characteristics exist). This is an interesting example of nature’s negative design 

principle[109].   

We hypothesize the consequences of having such low electrostatic partitioning for a 

protein by trying to relate it with the function of the protein. BtPI-PLC cleaves GPI-

anchored proteins off from the extracellular side of the eukaryotic plasma membrane. 

To find the substrate on the cell surface, BtPI-PLC uses 3-D (hopping) and 2-D 

(scooting) search strategies[7]. During this substrate searching process, BtPI-PLC 

needs to frequently dissociate to overcome the obstacles on the cell surface. For this 

reason, we believe low electrostatic partitioning helps in the hopping process. It 

would indeed be interesting to explore if other amphitropic proteins/enzymes use 

similar substrate searching mechanism. Last but not the least, it would also be 

interesting to check whether all or some of them have low electrostatic partitioning 

like BtPI-PLC.   
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5.2 Membrane bound state of BtPI-PLC and involved 
interactions 

To investigate the membrane bound state of BtPI-PLC, the protein is manually 

docked to pre-equilibrated bilayers in its membrane binding orientation. The 

membrane binding orientation was obtained from the implicit membrane simulations 

(IMM1-GC). 

5.2.1 Cation-  interactions play an important role 

Grauffel et al. reported the existence of tyrosine-choline cation-  interactions in the 

membrane bound state of BtPI-PLC[6]. The authors also suggested that the cation-  

interactions aid in recognition of PC head groups of DMPC lipids. Here, by varying 

the PC content of the bilayer we further investigate the findings and show that cation-

 interactions between tyrosine and PC headgroups indeed play a role in lipid 

specificity. The tyrosine residues of BtPI-PLC that engage in cation-  interactions 

with high occupancies with a pure DMPC lipids also engage in cation-  interactions 

in mixed bilayers. The cation-  interactions between these tyrosine residues and the 

bilayer vary as a function of XPC (Figure 5 (B) of Paper 3). Interestingly, none of the 

tyrosine residues that mediate cation-  interaction, partition below the phosphate 

plane of the bilayer (Table 5.1 and Figure S10 (B-D) of Paper 2). Also, the 

occupancies obtained from the MD simulations varying the PC content of the bilayer 

correlate quite well with the experimentally determined effect of mutating these 

tyrosine residues (mutated to alanine) on the BtPI-PLC affinities towards SUVs and 

hence on the evaluated G (Figure S2 of Paper 3). The Kd values are taken from 

Grauffel et al. [6]. 

There is evidence that multiple aromatic amino acids can form a cation-  cage to bind 

PC lipid mimics [110]. However, it has not been described whether multiple PC 

lipids can engage in cation-  interaction with the same aromatic residue at the same 

time. Our analysis reveals that the cation-  interaction can occur simultaneously 

between two PC lipids with one tyrosine residue. For example, one of the tyrosine 

residues mediates cation-  interactions with more than one PC lipid simultaneously 
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(Table S6 of Paper 3). This identification of cation-  complexes is based on 

molecular mechanics force fields. Further studies are required to investigate the 

stability of such adducts using more accurate methods such as QM. However, recent 

work on model compounds using QM calculations also suggest that the cation-  

interactions do not need to be 1:1, and they can indeed form sandwich complexes of 

cation- -cation [111].   

Table 5.1: Anchoring depth of BtPI-PLC residues in the bilayer core averaged 

over simulation time. Positive values indicate that the centers of mass of the amino 

acids are on average buried below the phosphate group of the lipids during the 

simulation. The average phosphate plane is used as the reference plane. Replicates are 

denoted as r1 and r2. 

SSE aa 
XPC = 1.0 XPC = 0.8 XPC = 0.5 XPC = 0 

r1a r2b r1 r2 r1 r2 r1 

1- B K38 -6.8±2.2 -7.6±2.3 -8.1±2.0 -6.7±2.5 -6.8±3.1 -9.3±3.1 -8.4±3.0 

B Q40 0.6±2.3 -0.2±2.4 -1.1±2.1 -0.4±2.5 0.5±3.3 -2.8±3.1 -2.0±3.1 

N41 3.3±1.8 2.8±2.0 2.3±1.7 3.4±2.3 3.1±2.4 0.7±2.4 1.3±2.6 

P42 4.2±1.9 3.7±1.9 3.0±1.8 4.0±2.2 3.8±2.5 1.5±2.3 1.7±2.7 

I43 4.3±1.7 3.9±1.8 3.7±1.6 4.3±2.1 4.2±1.9 2.5±1.8 2.3±2.4 

K44 0.4±1.7 -0.2±1.8 -0.3±1.6 0.5±2.2 0.4±1.9 -1.1±1.8 -1.3±2.3 

Q45 -0.6±1.9 -1.0±1.9 -1.8±1.8 -0.8±2.1 -1.0±2.4 -3.3±2.0 -3.1±2.7 

V46 0.4±1.9 0.3±1.8 -0.3±1.7 0.3±2.0 0.3±1.9 -2.1±1.9 -1.8±2.7 

  W47 -0.8±1.9 -0.7±2.2 -0.7±1.9 -0.8±2.1 0.1±1.7 -2.3±1.8 -2.6±2.6 

2 R71 -10.1±2.0 -10.9±2.4 -10.0±2.3 -9.1±3.1 -9.6±1.8 -10.2±2.3 -10.3±2.5 

2- D P84 -3.2±1.9 -4.5±2.3 -2.5±2.0 -2.2±2.7 -1.3±1.6 -3.8±1.7 -4.0±2.4 

L85 -3.6±1.6 -4.2±2.0 -3.7±1.7 -2.9±2.4 -2.9±1.7 -4.8±1.7 -4.7±2.3 

Y86 -5.5±1.9 -7.0±2.2 -6.1±1.9 -5.0±2.8 -2.0±2.1 -6.8±2.5 -6.7±2.4 

  Y88 -4.9±2.0 -5.8±2.3 -5.9±2.0 -4.4±2.6 -6.3±2.4 -6.4±3.0 -6.2±2.7 

3- E Y118 -8.7±2.1 -8.1±2.6 -8.2±2.3 -7.4±3.1 -8.3±1.8 -7.0±2.2 -7.9±2.7 
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  K122 -6.1±2.9 -5.3±3.3 -5.2±3.3 -5.1±4.2 -5.0±2.5 -5.3±3.0 -5.8±3.2 

6- F Y200 -10.9±2.2 -10.8±2.5 -10.4±1.8 -10.7±2.5 -10.5±2.2 -11.8±3.3 -12.2±4.2 

  K201 -7.6±2.6 -7.5±2.8 -7.2±2.1 -7.4±2.8 -7.0±2.6 -8.7±4.0 -9.7±4.4 

F Y204 -7.3±2.6 -7.5±2.5 -8.3±2.7 -8.6±2.5 -8.7±2.8 -11.6±4.1 -12.6±4.0 

7- G S236 -6.6±2.0 -6.5±2.2 -6.1±1.8 -6.5±2.2 -6.4±2.0 -7.8±3.1 -8.9±3.6 

S237 -3.0±1.9 -3.0±2.1 -2.8±1.8 -2.9±2.1 -2.7±1.9 -5.5±3.9 -5.6±3.8 

G238 0.1±2.0 0.2±2.2 0.4±1.8 0.0±2.3 0.4±2.1 -2.5±3.6 -3.8±4.2 

G239 2.2±1.9 2.1±2.0 2.2±1.7 2.2±2.1 2.4±2.0 0.3±3.1 -1.4±4.2 

T240 3.3±2.0 3.3±2.0 2.9±1.9 3.0±2.0 3.1±2.2 1.2±3.1 -0.8±3.5 

A241 2.6±2.2 2.5±1.9 1.7±2.1 2.0±2.1 2.0±2.5 0.4±2.6 0.1±3.3 

W242 3.9±2.4 4.1±2.1 3.3±2.2 3.3±2.2 3.3±2.4 1.3±3.3 3.1±3.2 

N243 -0.3±2.3  0.0±2.1 -0.4±2.0 -0.6±2.2 -0.5±2.3 -2.5±3.4 -2.0±3.4 

  S244 -2.3±2.1 -2.3±1.9 -2.9±1.9 -2.7±2.0 -2.7±2.2 -4.4±2.6 -4.4±3.2 

G Y246 -4.5±2.4 -4.3±2.1 -6.0±2.2 -5.2±2.2 -5.4±2.5 -8.2±2.4 -8.8±3.1 

Y247 -2.3±2.5 -2.0±2.2 -3.4±2.4 -3.2±2.2 -3.2±2.5 -5.5±2.9 -6.1±3.6 

S250 -7.2±2.7 -6.9±2.4 -8.7±2.5 -8.1±2.4 -8.3±2.7 -11.3±2.9 -11.7±3.4 

 Y251 -6.7±3.2 -5.8±2.5 -7.6±2.7 -7.4±2.6 -7.2±2.9 -10.3±3.7 -10.9±4.0 

8- H K279 -8.1±3.1 -8.1±3.0 -10.1±2.9 -9.3±3.1 -9.5±3.6 -12.6±2.9 -12.7±3.5 

a values taken from Grauffel et al. [6], b kindly provided by Cédric Grauffel for comparison 

 

5.2.2 Hydrophobic contacts and hydrogen bonds do not explain 
membrane-binding affinity 

Hydrophobic contacts mediated by the aliphatic groups of the amino acids and the 

lipid tails strengthen the binding. We also see the formation of hydrogen bonds 

between the side chain and the backbone of amino acids with the phosphates, head 

groups, and the glycerols of the lipids. However, for BtPI-PLC most of the hydrogen 

bonds form between the amino acid side chains and the phosphate groups of the 

lipids. The analysis of hydrogen bonds does not show any clear trend in explaining 

binding affinities for BtPI-PLC towards SUVs (Table S3 of Paper 3). Likewise, 
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hydrophobic contacts mediated by the enzyme are similar and do not vary 

significantly with the change of bilayer compositions (Figure 5 (A) of Paper 3). Three 

structural elements of BtPI-PLC penetrate the phosphate plane and mediate 

hydrophobic contacts with the acyl chains of the bilayers (Figure 3 of Paper 3). Also 

the position of BtPI-PLC does not vary significantly with the change of bilayer PC 

content (Figure 4 of Paper 3). This explains the almost equal hydrophobic contacts 

irrespective of membrane composition.  

5.2.3 Nature of the interactions and role of lipid dynamics 

Interactions between amino acids and the lipids are transient in nature (Figure 4 (A) 

and S8 of Paper 2). These interactions (hydrogen bonds, hydrophobic contacts, and 

cation- ) form and break within 500 ns time scale. The membrane residence time of 

BtPI-PLC is 303±30 ms[7] and 500 ns simulation time is a fraction of that residence 

time. Within this simulation time of 500 ns, many of the interactions have 

occupancies between 30-60%. In addition, there is significant amount of lipid 

exchange as well (Figure S9 of Paper 2). Lipid exchange takes place at a time scale of 

100-200 ns. The analysis also suggests that these 500 ns simulations manage to reach 

equilibrium, as there is lipid exchange and the interactions patterns are conserved 

between simulation replicas (Figure 4 (A) and S8 of Paper 2). Constant lipid 

exchange within such a time scale for cation-  interactions highlights the dynamic 

nature of these interactions in protein-membrane binding.  

5.2.4 Effect of K44A mutation results in more than electrostatics effect 

To understand the effect of mutation of charged residues on the membrane bound 

BtPI-PLC, we choose the K44A mutant of the same protein. As demonstrated in the 

previous section, K44A mutation has the most dramatic effect on the membrane 

association among all the charged residue mutation close to the IBS. Mutated BtPI-

PLC (K44A) was manually docked to a mixed bilayer (XPC=0.8). The mutant BtPI-

PLC remains membrane bound without any significant altering of secondary structure 

with an average RMSD of the backbone equal to 1.5±0.2 Å. The RMSD is calculated 

along the simulation time (500 ns) with the minimized BtPI-PLC mutant (K44A) 
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structure. The average depth of anchoring is similar to the wild type simulations 

(Table S7 of Paper 3). The cation-  interactions are also comparable. The difference 

arises from the loss of hydrogen bond network between the helix B and the lipid 

phosphate groups of the bilayer. Particularly, the hydrogen bond between backbones 

of two polar residues (Q40 and N41) with the bilayer is lost. And the long-lasting 

hydrogen bond of K44 side chain with the lipid phosphate groups is not present in the 

mutant simulation. This is an interesting example of a cooperative effect; how 

mutation can affect the cooperativity and as a consequence perturb the membrane 

binding affinity severely.  

5.2.5 Lessons learned 

Some of the interesting observations from BtPI-PLC membrane bound simulations 

are listed below.  

Aromatic residues mediate cation-  interactions when they are localized above or 

close to the phosphate plane (Table 5.1), only localization just at the phosphate plane 

(W47) or above the phosphate plane (Y246, Y88, Y251, and Y204) ensures cation-  

interactions. However, localization at the interface is not the only determining factor 

for cation-  interactions. Localization of tryptophan at the interface for mediating 

cation-  interaction is consistent with previous observation for interfacial tryptophan 

mediated cation-  interaction for transmembrane protein[5]. The localization of the 

residues below the phosphate plane indicates hydrophobic contact, which is observed 

for one of the tryptophan residues (W242). 

We do not observe any recruitment (tight binding) of PC lipids with the aromatic 

residues. If that were the case, the occupancy would most probably not be linear with 

XPC. This implies that the cation-  interaction is opportunistic and occurs 

stochastically in the presence of PC lipids.  

Phenylalanine can in principle engage in cation-  interaction with PC lipids. The IBS 

of BtPI-PLC contains only one phenylalanine (F37) at close sequential proximity. 

However, this residue is localized above the phosphate plane (more than 10 Å above) 
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in all the simulations we performed irrespective of the bilayer composition, and 

interacts with the solvent. Protein IBS containing phenylalanine have been reported to 

insert below the phosphate plane and mediate hydrophobic contact[107, 112]. For 

PR3, it has been observed by our group that phenylalanine engaged in cation-  

interaction with pure DMPC or DMPC:DMPG 50:50 mixture[65]. The occupancies 

for phenylalanine-choline cation-  interactions were at most 20% with pure DMPC 

bilayer (simulation time 200 ns, analysis on last 100 ns) and at most 10% with 

DMPC:DMPG 50:50 mixture (simulation time 300 ns, analysis on last 100 ns) [65].  

Later work on PR3 binding with POPC lipids (again by our group) has shown that the 

occupancies (ca. 5%, simulation time 500 ns and analysis on last 300 ns) are very low 

and hence considered not significant[107]. Further work is needed to investigate the 

role of phenylalanine residue on cation-  interactions. However, based on our work 

and literature, we do not find the phenylalanines to engage in long lasting cation-  

interactions that would indeed strengthen the binding. Rather they partition in the 

hydrophobic core and strengthen the binding by means of hydrophobic 

contact/interaction[107, 112]. 

Hydrophobic contacts are mediated not only by hydrophobic (and aromatic) residues, 

but also by other residues i.e. polar and charged residues. We find that the charged 

residues can mediate hydrophobic contacts with the bilayer core if they are localized 

at the interface (K44). This observation is also consistent with the previous work on 

PR3 [65, 107]. Such behavior of charged residues can be attributed to “snorkeling” 

[113-115] where the charged part of the residues localizes at the interfacial region of 

the membrane and the aliphatic part interacts with the hydrocarbon core of the 

membrane. 

One of the most interesting observations is the large effect of K44A mutation on 

BtPI-PLC binding. First, this indicates that the contributions from basic amino acids 

are not equal. Other charged residue mutations (those localized far from the 

membrane interface- K38, R71, K279) to alanine have almost the same effect among 

themselves on the measured binding affinity (Kd) using FCS experiments (by our 

collaborators- Table S8 of Paper 3) and hence on the calculated G. What makes 
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K44 different is the localization with respect to the membrane, in other words it 

localizes at the interface. Because of that, it also participates in hydrophobic contact 

with the lipid bilayer core. Also, the dielectric of the interfacial region should play a 

role. So, the effect of mutating this K44 has a striking effect on the binding affinity. 

One can also try to correlate such behavior with the transfer free energy of lysine 

residues to bilayer interface[116, 117]. The transfer free energy of lysine side chain 

from water to the interface of DOPC bilayer is -4.4 kcal/mol, and for alanine side 

chain is -1.6 kcal/mol [117]. Thus, the energetic cost associated with the mutation of 

a lysine to an alanine at the interface is approximately 2.8 kcal/mol, which is the 

difference between the two above-mentioned values. The calculated G value is 2.4 

kcal/mol for mutating lysine to alanine (K44A mutant) compared to wild type BtPI-

PLC binding with mixed anionic vesicle (XPC=0.8). With these comparisons, we 

confirm that the basic residues contribution are position-dependent and are not equal. 
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5.3 Towards an accurate modeling of cation-  interactions 
between tyrosine and choline 

To understand the nature of cation-  interaction between tyrosine and choline, we use 

a model system consisting of phenol and tetramethylammonium (TMA).  Phenol and 

TMA are analogues of tyrosine and choline, respectively. We build a potential energy 

surface (PES) (Figure 1 of Paper 4). First, we benchmark different wavefunction and 

density-function based methods varying the basis sets against large basis set Coupled 

Cluster (CCSD(T)) calculations. Further, we perform energy decomposition analysis 

using Symmetry Adapted Perturbation Theory (SAPT) on the whole PES. We also 

examine the solvent effect using highly polar solvent (i.e. water). To check the 

reliability of force fields, we compare the gas phase QM PES with the PES generated 

using the CHARMM additive force field and the Drude polarizable force field. We 

propose a modified set of parameters for CHARMM additive force field. A choline 

bound S. aureus PI-PLC structure[110], and a membrane bound phospholipase[6] are 

used to test these different force fields using molecular dynamics (MD) simulations. 

5.3.1 Benchmarking QM level of theory 

5.3.1.1 BSSE corrections are important 
 

 

Figure 5.3.1: BSSE error for MP2 methods using different basis sets. 
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(A) 

 

(B) 

Figure 5.3.2: BSSE error for different wavefunction and density function based 

methods, (A) for cc-pVTZ basis sets, and (B) for cc-pVQZ basis sets. 

We benchmark different QM methods before generating the PES. We show the 

importance of BSSE error for wavefunction based methods such as MP2 (Figure 

5.3.1). Interaction energy evaluated without BSSE correction and a small basis set 

(cc-pVDZ) will lead to an overestimation of interaction energy of almost 2.5 kcal 

mol-1 near the minima (Figure 5.3.1). The smaller the basis set is, the larger the BSSE 

error, as expected. Caldwell and Kollman calculated the interaction energy of 

benzene-TMA complex using MP2/6-31G* level of theory, compared to 

experimental enthalpy of complex formation and found that the interaction energy is 

overestimated 6 kcal mol-1 [118]. The authors did not use BSSE corrections. 
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Comparison with literature reveals that the interaction energy calculated by Caldwell 

and Kollman was overestimated by around 6 kcal mol-1, i.e. see the works by Rapp et 

al.[119], Kim et al.[120], or Pullman et al.[121]. By systematically varying the basis 

sets, we demonstrate the importance of BSSE correction for wavefunction based 

methods. Our comparison of different density function based methods using different 

basis sets shows that DFT methods are less affected by BSSE error when used with 

dispersion corrections (Figure 5.3.2). For cc-pVTZ basis set, BSSE error at the 

energy minima for wavefunction based method is ~1.02 kcal mol-1, and for DFT 

based method is ~0.32 kcal mol-1 (Figure 5.3.2. (A)). For cc-pVQZ basis set, BSSE 

errors are 0.51 kcal mol-1 and 0.23 kcal mol-1 respectively for wavefunction and 

density function based methods (Figure 5.3.2 (B)). Based on these comparisons, we 

recommend to use a large basis set for both wavefunction or DFT based methods- at 

least cc-pVQZ basis set or equivalent for wavefunction based methods and at least 

cc-pVTZ basis set or equivalent for DFT based methods including dispersion 

correction.  

5.3.1.2 SAPT2+/aug-cc-pVDZ level of theory performs well 
We systematically compare interaction energy converged to complete basis limit 

obtained from different methods and benchmark against large basis set CCSD(T) 

results. Here we also compare variants of wavefunction based symmetry adapted 

perturbation theory (SAPT). We show that MP2 and BLYP-D3 (B3LYP-D3 results 

are equivalent to BLYP-D3) methods overestimate the interaction energy at the 

minima by around 1-1.5 kcal mol-1. SAPT2+/aug-cc-pVDZ performs best compared 

to CCSD(T) (Figure 5.3.3). The interaction energy at the minima obtained by 

CCSD(T)/cc-pV5Z level (extrapolated) is -9.39 kcal mol-1 and SAPT2+/aug-cc-

pVDZ level is -9.23 kcal mol-1.    

Calculations using SCF methods (HF) largely underestimate the interaction energy (> 

6 kcal mol-1, data not shown). Due to lack of electron correlation and hence 

dispersion, HF calculations are not reliable on such system. MP2 or dispersion 

corrected DFT is recommended for a qualitative overview on such systems if large 

basis CCSD(T) calculations are not possible to perform. 
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5.3.2 Dispersion contributes significantly 

Using SAPT2+/aug-cc-pVDZ, we generate the potential energy curves for different 

approach angles. We perform energy decompositions and also identify the location of 

the minima. Dispersion contributes more than 35% for any approach angle (Table 1 

of Paper 4). The ranking of energetic components at the minima for different 

approach angles are provided in Figure 5.3.4. By performing this energy 

decomposition analysis, we demonstrate that the dispersion can indeed contribute 

most predominantly in cation-  complex of phenol-TMA. We also quantify the 

dispersion contributions for different approach angles.  

Previously, role of induction has been highlighted and quantified by Soteras et 

al.[122] and Marshall et al.[123] for other cation-  complexes. Role of dispersion in 

benzene-TMA [120, 121] and phenol-TMA [121] complex has been reported by 

taking the energy difference between SCF and MP2 energy values. However, no 

systematic energy decompositions are available for phenol-TMA complex. We have 

performed a systematic decomposition for phenol-TMA complex, which can be used 

to improve the force field parameters.  
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Figure 5.3.3: Interaction energies obtained using wavefunction based SAPT methods 

are compared to different levels of theory, both DFT and wavefunction based 

methods. SAPT2+/aug-cc-pVDZ nicely reproduce the large basis set CCSD(T) 

interaction energies. 

 

Figure 5.3.4: Contribution of different energetic components at the minima for 

different approach angles. 

5.3.3 Phenol-TMA cation-  complex is stronger than Phenol-ammonium 
in a polar solvent 

To understand the effect of solvation on cation-  complex of phenol-TMA, we used 

the COSMO solvation model and water as the solvent. We check the solvation effect 

on the minima for different approach angles and find that the diagonal approach 

( =45°) is favorable in solution phase. For the perpendicular (also the most favorable 

approach angle) approaching, the strength of interaction in water is -3.33 kcal mol-1 

(Table 2 of Paper 4). The interaction energy profiles for both gas phase and in water 

indicate that the interaction energy will attenuate close to 10 Å (Figure 5.3.5). 
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Rapp et al. showed that the gradual methylation of ammonium in ammonium-benzene 

complex reduces the interaction strength by more than half from -19 kcal mol-1 to -8.8 

kcal mol-1 in gas phase [119]. So, the benzne-TMA (-8.8 kcal mol-1) and phenol-

TMA (-9.23 kcal mol-1) interaction energies at gas phase are comparable. Based on 

these results and comparing them to other literature[123], we show that the solution 

phase cation-  interaction of TMA is stronger than ammonium as interaction of 

ammonium-benzene complex in solution phase (water) is reported to be -0.4 kcal 

mol-1. So, we expect that cation-  interaction between aromatic amino acids with PC 

lipids will be stronger than PE lipids in water. Cheng et al. also reported such 

behavior performing binding experiments of protein to SUVs [110]. 

 

 
Figure 5.3.5: Interaction energy profile both in gas phase and in water. Energy 

profile in gas phase is calculated at SAPT2+/aug-cc-pVDZ level, and in water is 

calculated at BLYP/cc-pVTZ level using COSMO solvation model.  

5.3.4 Additive CHARMM force field underestimates the interaction 
energy and Drude polarizable force field mostly overestimates the 
geometry 

Based on the comparison of the PES generated using QM calculations and with MM 

force fields, we show that additive CHARMM force field underestimates the 

interaction energy between phenol and TMA (Figure 4-6 & Table 3 of Paper 4). 
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identified by QM calculations. Drude polarizable force field performs better than the 

CHARMM force field in terms of interaction energy. However, the locations of the 

minima are not preserved and are shifted towards the phenol in most cases (Figure 4-

6 & Table 3 of Paper 4).  

5.3.5 Improvement of force field parameters for cation-  interactions in 
CHARMM additive force field and testing 

To improve the force field parameters for CHARMM additive force field, we use 

altered Lennard-Jones potential and specifically deepen the potential well depth for 

specific atoms (Table 4 & Figure S8 of Paper 4). With this approach we make sure 

that the minima location is preserved and other interactions are not affected. The 

resulting force field is termed as “CHARMM-ff-mod”. Then we generate the PES 

with CHARMM-ff-mod force field and find that the interaction energy profile is 

improved for most of the approach angles (Figure 7-9 and Table 5 of Paper 4). 

Previous works to improve the force field parameters for cation-  interactions always 

attempted to reproduce only the perpendicular approach of cation on aromatic rings 

[118, 124-126]. With the combination of high-level QM calculations and solvation 

effects on energy minima we show that the other approach angles are still favorable 

and worth consideration during parameterizations or improvements of force fields. 

Later, we perform MD simulations with these new parameters and compare them 

with additive CHARMM force field and Drude polarizable force field.  

We choose choline bound structure of engineered S. aureus PI-PLC, where there are 

two cholines bound to the engineered tyrosine cage (Figure 5.3.6). The simulation 

results show that the CHARMM-ff-mod outperforms the additive CHARMM and 

Drude polarizable force field (Figure 11 of Paper 4). The observed ligand residence 

time from the MD simulations suggests that the binding site 2 has higher affinity for 

choline than the binding site 1. This observation is also in agreement with the 

experimental observations that the site 2 has higher affinity than the site 1[110].  

Also, we perform test on a membrane bound phospholipase using CHARMM-ff and 

CHARMM-ff-mod parameters. We compared the cation-  occupancies from these 
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simulations with the experimental observable. The experimental observable was 

evaluated G calculated from apparent Kd values measured by FCS for BtPI-PLC 

WT and single tyrosine mutants to alanines[6]. The comparison between these data 

sets is qualitative with the CHARMM-ff whereas it is near quantitative with the 

CHARMM-ff-mod parameter sets (Figure 12 of Paper 4).  

 
 

 
Figure 5.3.6: Choline bound structure of S. aureus PI-PLC (engineered) used for 

testing force fields. For clarity, waters and ions are not shown. Both the binding sites 

and the ligands are represented with the numbers 1 and 2. 

 

5.3.6 Summary of the findings 

From the generated PES, we find that dispersion contributes significantly for any 

approach angle of TMA with respect to the phenol ring. Due to this dispersion 

contribution, cation-  interaction between tyrosine-PC lipids will be stronger than 

tyrosine-PE lipids in solution phase. The interaction between tyrosine-choline 

attenuates to zero at around a distance of 10 Å. 

Our comparison of variants of CHARMM force fields (additive and polarizable) with 

QM results reveal that additive CHARMM force field underestimates the interaction 

energies and Drude polarizable force field overestimates the complex geometries in 
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gas phase. Based on our analysis, we propose a modified set of parameters for the 

additive CHARMM force field to model cation-  interactions. These parameters 

perform well in the MD simulations of test cases. It would be indeed interesting to 

further test these parameters on a wide range of cation-  complex. 
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6. Conclusions and future perspectives 

6.1 Conclusions 

In this thesis, we have examined different proteins, which brings new insights in 

protein peripheral membrane binding. The investigations revealed limitations of the 

existing peripheral protein-membrane binding models to describe these peripheral 

binders. For this reason, we incorporate additional information from our work to the 

existing description of protein peripheral membrane binding. The outcome is an 

energy/interaction diagram based on noncovalent interactions. The works described 

in the previous chapters aid in constructing this diagram (Figure 6.1).  

 

 

Figure 6.1: Energy diagram in terms of protein-lipid interactions. 
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1. Cation-  interactions are established as a membrane-binding mechanism. The 
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these works, a modified set of parameters is proposed to accuratly model tyrosine-

choline cation-  interactions using CHARMM force field. 

2. Hydrophobic interactions are not limited to hydrophobic/aromatic amino acids. In 

the previous works[46, 48, 51, 59], hydrophobic interactions between the protein and 

the membrane are described to take place by only hydrophobic/aromatic amino acids. 

Here, we demonstrate that other type of amino acids can mediate hydrophobic 

contacts using aliphatic groups of the side chains with the bilayer core if they are 

localized at the interface. Such observation is consistent with the “snorkeling” of 

charged residues[113-115]. Snorkeling behavior is mostly demonstrated for 

transmembrane helices or proteins. Our investigations highlight that it is not unlikely 

for peripheral proteins. 

3. Membrane-water interface is an important region of interest in terms of peripheral 

proteins membrane binding. In previous works, the role of the membrane-water 

interface was largely neglected or under represented. However, we find the 

importance of the interface to be quite substantial in terms of residue localizations. In 

fact, this is the place where lipid targeting and head groups recognition takes place 

which has been highlighted by both Cho and Stahelin[48], and Johnson and 

Cornell[46] for different membrane targeting domains. However, localization of 

different types of residues and their energetic contributions are not highlighted. We 

find that the charged residues localize at the interface and contribute significantly in 

binding energetics, which we describe as more than electrostatic effects in previous 

chapter. Also, the aromatic residues (Trp, Tyr) localize at the interface or slightly 

above the interface and can mediate cation-  interactions with particular lipid 

headgroups. 

4. Electrostatics play a key role in peripheral protein membrane binding, which has 

been shown by several pioneering works by others[49, 51, 52, 57-59, 127]. Earlier 

models of peripheral protein membrane binding describe electrostatics as a long-

range interaction[46, 48]. In principle, this is true in gas phase. Here, we show that in 

an ionic solution similar to cellular environment, electrostatic interactions attenuate 
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faster. In earlier works, as described, proteins reach the membrane surface using 

diffusion and long-range electrostatic forces[46, 48]. The range is not clearly defined. 

The electrostatic forces were described between negatively charged phospholipids 

and the positively charged amino acids (Arg, Lys)[51, 59] and their contributions are 

suggested to be equal (~1.4 kcal/mol)[49]. Again, in these models, electrostatics 

regulates close to the interface (separation of ~3 Å)[46, 52] or at best up to the 

interface[48]. 

We show that electrostatics attenuate within ~ 20 Å of the membrane surface, and our 

observation is consistent with the range of electrostatic forces for biomolecules by 

Fogolari et al.[96] using continuum electrostatics (10~20 Å). Moreover, the 

electrostatics contributions are not equal. It greatly depends on the position of the 

charged amino acids with respect to the membrane. If a charged residue is localized 

at the interface, it will have a higher interaction strength than the one localized in the 

water. Previous works were mostly focused on proteins containing basic amino acids 

cluster. As a consequence, it was unlikely to observe the position dependent behavior 

of basic residues in those works. 

Table 6.1: Role of amino acid residues in protein peripheral membrane binding. 

Interactions Previous works Our investigations 

Electrostatics Arg, Lys Arg, Lys 

Hydrophobic Hydrophobic/Aromatic 

residues 

Hydrophobic, Aromatic 

(Phe, Trp), Polar (Gln, 

Asn, Thr), Charged (Lys), 

Other (Pro) residues  

Cation-  Trp* Tyr, Trp 

* work by others, for transmembrane protein[5] 
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5. Finally, we summarize the role of amino acid residues and compare them to the 

previous works in Table 6.1. We incorporate the information from our investigations. 

This need to be further characterized and extended. 

6.2 Future perspectives 

Here we outline possible future works: 

1. Generalizations: The proposed interaction diagram needs to be generalized. The 

generalization will establish this diagram as a model. In that respect, it would be 

indeed interesting to test other amphitropic proteins (those with a net negative charge 

and low electrostatic partitioning) whether they follow the proposed description. Also 

it would be interesting to check if their function correlates well with the low 

electrostatic partitioning. In other words, if these proteins need to have low 

electrostatic partitioning to frequently dissociate from the membrane to perform their 

functions. 

2. Nature of interaction between cation-  complexes greatly depends on the cation 

and the aromatic ring involved. For example, cation-  interactions between benzene 

and Na+ or benzene and TMA complexes are not the same. The first one is dominated 

by electrostatics, and the second one is a mixed influence complex. Because of this 

reason, systematic checking of other cation-  interactions e.g. tryptophan-choline, PS 

mediated cation-  with other aromatic amino acids is necessary. Again, ability of 

coarse-grained (CG) models to capture cation-  interactions should be tested. Coarse-

grained (CG) MD simulations of BtPI-PLC with the Martini CG model and a 

modified Martini version do not lead to membrane binding with a PC:PG mixture of 

80:20 (results not shown). Preliminary attempt using the modified Martini version by 

changing the nonbonded interaction (LJ potential) between choline headgroup and the 

aromatic ring did not lead to complex formation. It would be interesting to 

systematically investigate further the Martini and other CG models. 
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Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic
serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been
shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3
has been detected at the outer leaflet of the plasmamembrane and its membrane expression is a risk factor in a
number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays
have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains
unclear.We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and
HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We
also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bi-
layer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the
SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd = 9.2 × 10−7 M) thanks
to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the
POPC lipids. HNE binds in a significantly weakermanner (Kd N 10−5 M)makingmostly electrostatic interactions
via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support
the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil
membrane.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Neutrophils are the most abundant type of leukocytes and are key
components of the innate immune system, able to mediate both anti-
infectious and pro-inflammatory effects [1,2]. Neutrophil serine prote-
ases (NSP) Proteinase 3 (PR3, EC 3.4.21.76) and human neutrophil elas-
tase (HNE) are homologous antibiotic serine proteases of the

polymorphonuclear neutrophils (PMNs)which can be considered as im-
portant cellular targets in a number of chronic inflammatory diseases [3].
PR3 andHNEaremainly localizedwithin the azurophilic granules of rest-
ing neutrophils and can be exposed at the cell surface when the neutro-
phils are activated. Despite sharing a 56% sequence identity (Fig. 1) and a
high structural similarity (Cf. Fig. 2A) [4] PR3 and HNE have been shown
to have different functions and localizations in the neutrophils. In partic-
ular, and in contrast to HNE, PR3 has been detected in secretory vesicles
and on the outer leaflet of the plasmamembrane [5,6]. Because of its pe-
culiar localization PR3 has been suggested to play a role in the patho-
physiology of various chronic inflammatory diseases involving
neutrophils and especially in granulomatosis with polyangeitis, a sys-
temic vasculitis associated with autoantibodies against PR3 [6–10].

Witko-Sarsat et al. first reported a specific association of PR3 to the
plasma membrane, which they described as stronger “than only an
ionic interaction” [11]. On the other hand Campbell et al. argued in
favor of a weak charge-dependent mechanism similar for both
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proteases [12]. In agreement with the work of Witko-Sarsat et al.,
Goldman et al. showed using spectrophotometry techniques that PR3
and HNE bind with different affinities to reconstituted lipid bilayers
[13]. Using bilayers with different ratios of zwitterionic (DMPC2) and
anionic (DMPG3) phospholipids, they showed that while PR3 binds to
DMPC vesicles with an estimated Kd of 85 μM. HNE wasn't observed to
bind to pure DMPC vesicles but binds to mixed DMPC:DMPG 1:1 lipo-
somes with a Kd of 14.5 μM. The authors also show that PR3 binds
best to DMPC:DMPG 1:1 vesicles with a Kd of 4.5 μM. Moreover results
from differential scanning calorimetry and hydrophobic photolabelling
indicate that PR3 inserts amino acids into the hydrophobic region of
the lipid vesicles, while HNE does it to a lesser extent. In 2004, Durant
et al. used PR3 and HNE cDNA transfected mast cell lines and showed
that PR3 was expressed at the cell surface after induced degranulation
while HNE was released into the extra-cellular medium. Using molecu-
lar dynamics simulations with at first a simple membrane model [14],
we have reported that PR3 inserts aromatic and aliphatic amino acids
into the hydrophobic core of the bilayer models, while HNE interacts
mostly via electrostatic interactions to the bilayer interface. We further
used relatively short MD simulations (50 ns) of PR3 with explicit DMPC
bilayers to describe the protein–lipid interactions at the atomic level of
detail [15]. We reported an interface-binding site (IBS) composed of a
few basic amino acids (R177, R186A,4 R186B, K187, R222) that ensure
proper orientation of PR3 towards themembrane to allow for the inser-
tion of a hydrophobic patch (V163, F165, F166, I217,W218, L223, F224)
(Fig. 2B). Mutations of four hydrophobic (F165, F166, L223, F224) or
four basic amino acids (R186A, R186B, K187, R222) significantly affects
the membrane expression of PR3 in a cell-based assay, thus validating
the role of the predicted IBS for PR3 membrane expression [16]. Taken
altogether these studies indicate that despite their high sequence simi-
larity, PR3 andHNE interact with lipid membranes using different types
of interactions. This is further supported by the amino acid substitutions
in the region of the PR3 IBS (Cf Fig. 2) where in particular two of the
three phenylalanines, as well as tryptophan W218, are substituted by
non-aromatic residues in HNE.

The available data to date has been obtained bydifferent teams using
a wide range of approaches and models, from cell-based assays to mo-
lecular modeling, but only one study using standard biophysics
methods in 1999 [13].

It is generally acknowledged that the association of peripheral pro-
teins with lipid bilayers is fast while the dissociation is slow meaning
that the dissociation rate constant is the main determinant of the bind-
ing strength. As a consequence, in simple systems, the affinity for the
membrane is mostly accounted for by interactions between the protein
interfacial binding site and lipids. Such interactions can be investigated
by molecular dynamics (MD) simulations using the protein of interest
docked on an all-atom lipid bilayer; this will provide a detailed map of
the lipid–protein interactions, and for example the respective contribu-
tions of hydrophobic and polar amino acids (see Refs. [17–19]). Surface
plasmon resonance has been successfully used to study interactions be-
tween lipid vesicles and proteins and can be used to obtain accurate
values of equilibrium dissociation constants (Kd) [20,21]. Both SPR and
MD methods are thus complementary as they provide information at
different levels of resolution.

We here report a combined in vitro and in silico study investigat-
ing the affinity of PR3 and HNE for POPC bilayers. We chose POPC
vesicles as the thickness of POPC bilayers is more relevant to model
the plasmamembrane than those of DMPC. The choice of zwitterion-
ic PC headgroups is relevant to the main lipid constituents of the
plasmamembrane and allows us to focus on short-range interactions
with the bilayers, and in particular on the energetic contribution of
the insertion of hydrophobic amino acids.We use SPR to characterize
the affinity of PR3 and HNE for large unilamellar vesicles (LUVs) and
500-nanosecond long molecular dynamics simulations of the two
enzymes at the surface of a pre-equilibrated POPC bilayer to map
the interactions between proteins and lipids at the atomic level of
detail. The use of SPR allows us to obtain insights, albeit limited,
into the kinetics of PR3 and HNE binding to POPC vesicles.

2. Material and methods

2.1. Molecular modeling

2.1.1. Molecular dynamics simulations
We performed MD simulations of both PR3 and HNE inserted in

POPC lipid bilayers using the following procedure: (1) equilibration of
the lipid bilayer, (2) insertion of the protein in the lipid bilayer and

Fig. 1. Sequence alignment of PR3 andHNE. The two sequences share 56% sequence identity.We use boxes to highlight amino acids of HNE aligningwith the predicted PR3 IBS (blue fonts
for basic residues and orange for hydrophobic amino acids). Amino acids forming the catalytic triad are labeled with green fonts.

2 DMPC:dimyristoylphosphatidylcholine.
3 DMPG:dimirystoylphosphatdylglycerol.
4 We use the chymotrypsin numbering for both PR3 andHNE. It presents the advantage

of providing a consistent numbering for all enzymes of the family but introduces letters in
addition to the numbering (e.g. the two consecutive arginines labeled as 186A and 186B).
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(3) simulation of the protein-bilayer complex and subsequent analysis
of the resulting trajectories (Table 4).

In this manuscript we consequently use the chymotrypsin number-
ing for both PR3 and HNE. It presents the advantage of providing a con-
sistent numbering for all enzymes of the family but introduces letters in
addition to the numbering (e.g. the two consecutive arginines labeled as
186A and 186B).

2.1.1.1. POPC bilayer. A lipid bilayer made of 256 POPC was built using
the CHARMM-GUI [22–24]. The lipid bilayer was subjected to energy
minimization using NAMD [25] and the CHARMM36 force field update
for lipids [26]. The system was then equilibrated without surface ten-
sion for 300 ps at 310 K using a time step of 2 fs and velocities reassign-
ment every 500 fs, and subsequently run into production for 80 ns. The
SHAKE algorithm was applied to constrain bonds between hydrogen
and heavy atoms [27]. Non-bonded interactions were truncated using
a cutoff of 12 Å, using a force-based switch function for van der Waals
and a shift function for electrostatics. For estimating long-range electro-
static forces, the particle-mesh-Ewald (PME) algorithm was used [28,
29]. The Langevin algorithm was used to control temperature (310 K,
damping coefficient: 1.0) and pressure (target pressure: 1 atm,

oscillation period: 75 fs, oscillation decay time: 25 fs) [30]. The area
per lipid and the order parameters were monitored along the simula-
tion to assess the properties of the bilayer. The order parameters SCD
were calculated with VMD [31] from the mean value of the angle be-
tween each C\H bond of the lipid tails and the normal to the mem-
brane. The profiles are consistent with those in Ref. [26]. The surface
area was calculated to be 65.5 ± 0.8 Å2 on average during the simula-
tion, close to that reported by Klauda et al. [26] (64.7 ± 0.2 Å2) for a
POPC bilayer simulated using the same CHARMM36 forcefield. Kučerka
et al. report an estimate of 68.3 ± 1.5 Å2 using hybrid electron density
models [32].

2.1.1.2. Insertion of Proteinase 3 andHNE at the interface of the lipid bilayer.
The cartesian coordinates of PR3 were taken from chain A of the X-ray
structure referenced 1FUJ [33] in the RSCB Protein Data Bank [34] and
those of HNE from the 1PPF structure [35]. PR3 and HNE were then ori-
ented with respect to, and inserted at, the interface of the equilibrated
POPC lipid bilayer as described previously for PR3 [15]. Briefly, each of
the enzymes was positioned at the surface of a POPC lipid bilayer in
the orientation predicted by implicit bilayer simulations for HNE [14]
and using earlier all-atom simulations with a DMPC bilayer for PR3

β11-β12
β8-β9

β9-β10

β5-β6

A B

C

Fig. 2. (A) Structural alignment of PR3 (gray) and HNE (green). The protein secondary structure elements are represented using cartoons while each amino acid forming the PR3 IBS, as
well as the amino acids of the HNE sequence aligning with the PR3 IBS (Cf. Fig. 1), are represented using balls (blue and orange for basic and hydrophobic amino acids, respectively, green
for others). The nature of these amino acids in PR3 and HNE is shown on panels (B) and (C), respectively.
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[15]. PR3was then translated 2 Å above its initial position to account for
the difference in width between POPC and DMPC bilayers. Six lipids
overlapping with the proteins were removed, in both the cases of PR3
and HNE and as reported earlier for phosphatidylinositol specific phos-
pholipase C [36]. The starting conformation for HNE is shown on Fig. 3A,
the starting conformation of PR3 is not represented but displays a depth
of anchorage similar to that of HNE.

2.1.1.3. Simulations PR3-POPC and HNE-POPC. The systems were then
minimized with CHARMM (v33b1) [37] using the following harmonic
restraints: 150 kcal/mol/Å2 on the protein backbone, water and ion
molecules, 100 kcal/mol/Å2 for membrane located further than 5 Å
and 75 kcal/mol/Å2 less than 5 Å from the protein and 10 kcal/mol/Å2

for protein side chains located at a distance of 5 Å or less from the

membrane. The minimization consisted of 20 cycles of 500 steps of
steepest descent and 100 steps of conjugate gradients algorithms with
restraints being scaled by 0.65 after each cycle. The systems were then
solvated in a cubic box of TIP3watermolecules [38] usingVMD (version
1.8.7) [31]. Two and eleven chloride ions were added by replacing ran-
domwatermolecules to neutralize the system for PR3 and HNE, respec-
tively. The systemwas subsequently equilibrated using NAMD [25] and
the CHARMM force field (c22 with CMAP corrections [39]) with two
short runs of 400 ps in NVT ensemble, with velocities reassigned every
50 fs and 500 fs, and then further equilibrated for 2 ns. The integration
of the equations of motion was done using a Multiple Time Step algo-
rithm [40]; bonded interactions and short-range nonbonded forces
were evaluated in every step and long range electrostatics every second
step. The systemwas then run into production for 500 ns in the NPT en-
semble. Pressure and temperature control, as well as the cutoff scheme
and treatment of long-range electrostatic interactions are the same as
for the equilibration of the bilayer.

2.1.1.4. Analysis. Based on the evolution of the root mean square devia-
tion (RMSD) between the trajectory conformations and the conforma-
tion of the enzymes before the MD simulations (Cf. supplementary
data, Fig. S1), we decided to use the trajectories between 200 and
500 ns as sampling windows. All analyses are thus performed on the
last 300 ns of the simulations.

The occupancies of hydrogen bonds were calculated with the
CHARMMprogram [37] using a 2.4 Å cutoff distance between hydrogen
and acceptor and a 130° donor–hydrogen–acceptor angle criterion. The
donor and acceptor definition are taken from the CHARMM force field
[38]. Hydrophobic contacts were defined using a 3 Å cutoff distance
between aliphatic groups of the lipids and of the enzymes (Charmm
atom types ca; cb; cg1; cg2; cg2; ha*; hb*; hg; hg2*; type cg except for
hsd, hse, asn, asp; type hg1 except for cys, thr, ser; type cd except for
arg, gln, glu; type cd1; type cd2 except for hsd, hse; type ce1, ce2, cz
and associated hydrogens of phe, tyr, type cd1, cd2, ce2, ce3, cz2, cz3
and associated hydrogen of trp, type cay and type hy*). Cation–π inter-
actions between aromatic rings (phenylalanine, tyrosine and trypto-
phan) are considered to exist when all distances between the heavy
atoms of the aromatic ring and choline nitrogen are below 7 Å and
when these distances do not differ by more than 1.5 Å [41,42].

We evaluated the depth of anchorage of the proteins as described in
Grauffel et al. [36]. Briefly we used the mean z coordinate of the phos-
phorus atoms as a reference plane. The center of mass of each residue
was calculated and its difference to the reference plane was calculated.
The corman module of the Charmm program was used for coordinate
statistics. Values reported are means of the distances of the last 300 ns
of simulations. Averaged electron density profiles (EDP) were calculat-
ed using the VMD Density Profile plugin [43], at 0.5 Å resolution using
a structure per nanosecond (on sampling window). Residue profiles
were normalized with respect to the peak of the phosphate profile.

Table 1
Anchorageof PR3 in a POPC lipid bilayer: inventory of interactions anddepth of anchorage.

Loop Amino acid Deptha (Å) Hydrophobic
contactsb

Hydrogen
bondsc (%)

Cation–πe (%)

β5–β6 K99 −11.2 2.8 20.1
β8–β9 V163 −3.0 ± 1.9 2.3

T164 −2.8 ± 2.0 45.6
F165 + 1.3 ± 1.8 1.5
F166 + 1.7 ± 1.7 2.5 28.1
R177 −4.8 ± 2.5 1.1 87.9

β9–β10 R186A + 0.0 ± 2.3 4.2 85.9
R186B −2.2 ± 2.7 1.5 58.7d/82.9
K187 −1.2 ± 2.4 1.6 90.4/74.5

β11–β12 F215 −10.0 ± 2.2 5.9
W218 + 0.8 ± 2.8 1.9 26.6 5.7
T221 −0.9 ± 2.4 1.6
R222 −0.2 ± 2.0 49.0d

L223 + 2.5 ± 2.2 5.8
F224 + 0.3 ± 1.8 1.2
P225 −2.0 ± 1.6 1.9

a Positive values indicate that the center ofmass of the amino acid is buried in the bilayer
beyond the plane defined by the phosphate groups.

b Average number of hydrophobic contacts per frame (listed if above 1).
c Occupancies of hydrogen bondswith POPC phosphate groups in % (if N20; bold numbers

are for hydrogen bonds involving the protein backbone).
d Hydrogen bond between Arg186B or Arg222 and POPC glycerols.
e Occupancy of cation–π adducts (if N5%).

Table 2
Anchorage of HNE in a POPC lipid bilayer: inventory of interactions and depth of
anchorage.

Loop Amino acid Deptha (Å) Hydrophobic
contactsb

Hydrogen
bondsc (%)

Cation-πe (%)

β5–β6 P96 −7.2 ± 5.8 1.0
V97 −3.8 ± 5.3 2.6

β7–β8 R146 −9.4 ± 2.5 69.0
β8–β9 T164 −5.7 ± 2.7 25.8

S165 −2.9 ± 2.5 36.0
L166 −0.6 ± 2.1 5.9 25.4
R177 −4.3 ± 3.1 1.1 64.8
R178 −4.3 ± 3.2 23.2/84.9

β9–β10 R186 −6.7 ± 3.8 62.2/20.2d

G186A −6.9 ± 3.5 41.7
F192 −11.6 ± 3.8 13.2

β11–β12 R217 −7.2 ± 4.4 49.0
S221 −3.2 ± 2.4 28.0
G222 −2.6 ± 2.1 28.4
L223 +0.4 ± 2.0 6.3
Y224 −1.3 ± 1.9 31.1d

a Mean values and standard deviations. Positive values indicate that the center of mass
of the amino acid is buried in the bilayer beyond the plane defined by the phosphate
groups.

b Average number of hydrophobic contacts per frame (listed if above 1).
c Occupancies of hydrogen bonds in % (occupancies less than 20% are omitted; bold

numbers for backbone hydrogen bonds).
d Hydrogen bond between R186 or Y224 and POPC glycerols.
e Occupancy of cation–π adducts (occupancies less than 5% are omitted).

Table 3
LUV immobilization levels and chip coverage accession byBSA binding (BSA
is used at 0.1 mg/ml and is injected 60 s at 10 μl ∙ min−1). Values reported
are the means and standard deviations of four experiments.

Immobilization level (RU) BSA binding level (RU)

8669 ± 95 43 ± 2.6

Table 4
Kd values for PR3 and HNE with POPC LUVs. Values reported are the
means and standard deviations of six experiments for PR3 and four
for HNE.

Kd (×10−7 M)

PR3 HNE
9.22 ± 0.4 N100
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2.1.2. Energetic contributions to membrane binding using IMM1
We used the IMM1 membrane model [44], as implemented in

Charmm [37] (v38) to evaluate the binding energy of PR3 and HNE to
a zwitterionic membrane as a function of their distance to the mem-
brane. IMM1 is based on the EEF1 model for water-soluble proteins,
which uses a linear distance-dependent dielectric constant, neutralizes
the ionic side chains, and adds a Gaussian solvent exclusion term to
the CHARMM19 energy function [45]. In IMM1 themembrane is repre-
sented as a hydrophobic slab. The solvation parameters change smooth-
ly from aqueous values outside the membrane to values corresponding
to a nonpolar solvent inside themembrane. Briefly, the effective energy
of the protein is given by:

WIMM1 ¼ Eintra þ ΔGsolv ð1Þ

where Eintra is the intramolecular energy of the protein given by the
CHARMM19 andΔGsolv its solvation free energy calculated as described
in Ref. [44].

We calculatedWIMM1 of the protein anchored at themembrane [14]
and then every angstrom along an axis parallel to the membrane nor-
mal, up to a distance of 15 Å above the membrane plane; the distance
is defined by the shortest distance between protein andmembrane sur-
face. The starting geometries are chosen as the bound structures from

earlier IMM1 simulations [14] and are kept rigid during the procedure.
The binding energy of PR3 (and HNE) to membranes could thus be cal-
culated as the difference between the effective energy with the mem-
brane model IMM1 and the effective energy in water (EEF1.1), which
was also calculated:

ΔWIMM1 ¼ ΔEintra þ ΔΔGsolv ð2Þ

The total binding energy ΔWIMM1 of each of the proteins can be
decomposed into terms that represent the contribution of each type of
atom to the change in solvation energy plus the electrostatic term:

ΔWIMM1 ¼ ΔEelec þ ΔWhydrophobic þ ΔWpolar ð3Þ

ΔEelec is the change in the intra-molecular coulombic term when
transferring the protein fromwater to themembrane. Since the same
structure is used to calculate WIMM1 (water) and WIMM1 (mem-
brane) the bonded terms and the van der Waals contribution cancel
out. The next two terms represent the contribution to ΔΔGsolv

(Eq. (3)); ΔWhydrophobic is the contribution from the aromatic
groups (atoms of type CR* in Charmm19) and the aliphatic groups
(CH* atom types in Charmm 19) and ΔWpolar is the contribution
from the polar groups.

R17R17R17R1R1771777777777 RR141414144666666R18R18R18R18R1818RR188R181 666666

L16L11LL 6666

S16S1616S161611 5555555555

Y22Y22Y2Y22Y22Y22444444
L22L22L22222 33333333

R17R17R17RR171778888
RR212121211R 7777

L22222L22L22L2222 3333
F222222224444

F1666F16FF1655
F16F161616666

R1711R177777

R18RR18R181186A6A6AA6 K18K18K188K11877777
R22R222R22R2222222222

R18R18R18RRR 6B66B6B666

A

C

B

Fig. 3.Molecular dynamics simulations of PR3 and HNE at the surface of a POPC bilayer. (A) Simulated system with HNE represented using green cartoons, the POPC bilayer using sticks
colored by atom types and the water molecules in light blue. Randomly picked snapshots of (B) PR3 and (C) HNE interface binding sites (at 286 and 343 ns, respectively). Amino acids
mediating either hydrogen bonds of at least 45% occupancy for hydrogen bonds or at least one hydrophobic contact on average, are highlighted with balls. Yellow dashed lines represent
hydrogen bonds.
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2.2. Sample preparation

2.2.1. Proteins
PR3 and HNE were purchased from Athens Research & Technology

and fatty acid free bovine serumalbumine (BSA) from Sigma. According
to the manufacturer, the purity of PR3 and HNE is higher than 95%. We
assessed it using SDS-page and also have assessed the enzyme activity
of the enzymes in kinetic assays.

2.2.2. Liposomes
The lipids (POPC) were purchased from Avanti Polar Lipids. Lipo-

somes were prepared as reported in [46]. Lipids solvated in chloroform
were added in glass tubes in the prerequisite amount. Lipids were han-
dled and kept out of light and reactive atmosphere as much as possible
by operation in hoods, flushing reagent bottles with dry N2, and using
glass containers wrapped in aluminum foil. The chloroform solutions
were dried under dry N2 pressure. Traces of chloroform were removed
by subjecting the samples to vacuum for at least 2 h. Lipid cakes were
rehydrated with HBS-N buffer (HBS-N: 0.100 mM HEPES, 150 mM
NaCl, pH 7.4) and vortexed vigorously until all films were suspended
as slurry. For liposome-preparation, solutions were subjected to seven
freeze–thaw cycles using liquid N2 and a water bath. The hydrated
multilamellar structures were then extruded at room temperature and
well above the lipid Tm using a Mini-Extruder (Avanti Polar Lipids)
assembled using two Millipore filters of 100 nm pore size. Samples
were forced through the filters 10 times using Hamilton syringes and
the resulting solutions were transferred to clean, foil wrapped glass
tubes and stored at 4 °C. Final liposome composition was 100% POPC
and the total lipid concentration was 2.5 mM.

2.3. Surface plasmon resonance

The SPR analyses were carried out on a BIAcore T200 (BIAcore, GE
Healthcare) and Biacore T200 Control Software. All experiments were
carried at 25 °C. Protein and lipid interactions were monitored using a
L1 sensor chip. A preparation procedure was performed before each
experiment. The surface of the L1 sensor chip was first cleaned with a
1 min injection of 40 mM octylglucoside at a flow rate of 10 μL/min.
Liposome solutions were diluted to 1 mM concentration with running
buffer and injected at a flow rate of 1 μL/min for 10 min until
maximum binding was reached. Liposome maximum deposition was
about 8500 response units (RU) for POPC. The surface of the L1 chip
was then washed with a solution of 10 mM NaOH for 1 min at a flow
rate of 10 μL/min. The completeness of the chip coverage was assessed
by injection of bovine serum albumin (BSA) at 0.1 mg/mL and at a
rate of 10 μL/min for 60 s. Generally this injection did not perturb the
lipid-covered chip by more than 43 RU, and it rapidly fell back to its
original value when injection of BSA stopped. Binding assays were
then performed on the validated chips. The two proteins (PR3 and
HNE) were diluted to sets of at least 5 different concentrations ranging
from 0.125 μM to 3 μM (0.125, 0.5, 1, 2, 3) for PR3 (two additional con-
centrations for HNE, 6 and 9 μM), and were injected over the
immobilized liposomes at a flow rate of 5 μL/min for 120 s and 180 s
(for HNE and PR3 respectively) until equilibrium was reached. The dis-
sociation phase wasmeasured for at least 420 s after the addition of the
sample. At the end of the binding assay, the surface of the sensor chip
was regenerated with a solution of octylglucoside 40 mM for 30 s at a
flow rate of 30 μL/min. No reference channel was used due to non-
specific binding of PR3 on the chip [47]. Insteadwe focused on achieving
maximal coverage of the chip with liposomes and in this way ensure
that the resulting SPR signal was completely dominated by the protein
interacting with the lipid membrane [48]. The SPR data were analyzed
with the Biacore T200 Evaluation Software. Binding affinities were cal-
culated using the steady state affinity model (Langmuir model) and
maximal resonance unit (RU) was plotted against concentration. Addi-
tional experiments were performed at increasing salt concentrations

to evaluate its effect on the binding of PR3 and HNE. We measured the
binding responses of PR3 and HNE (0.5 μM) with [NaCl] = 150 mM,
[NaCl] = 300 mM and [NaCl] = 700 mM.

3. Results

3.1. Molecular modeling

3.1.1. Molecular dynamics simulation with an explicit bilayer model
PR3 and HNE were positioned at the interfacial region of POPC lipid

bilayers as described in theMaterial andmethods section and illustrated
on Fig. 3A. Each systemwas simulated for 500 ns and analyzed in order
to characterize the interactions between the enzyme interfacial binding
sites and the lipids. We report in Tables 1 and 2 the occupancy of signif-
icant hydrogen bonds along the sampling window (occupancy above
20%), as well as the average number of hydrophobic contacts for the
amino acids that achieve on average more than one contact per frame
of the trajectory. On Fig. 3 we show a snapshot of the simulations of
PR3 (Fig. 3B) and HNE (Fig. 3C).

3.1.1.1. PR3. The simulation indicates that the structure of PR3 is not
affected by the presence of the membrane; the average RMSD between
the conformations in the trajectory is 1.54 ± 0.19 Å on the sampling
window (Cf Fig. S1, Supplementary Data). PR3 remains at a stable
depth of anchorage at the bilayer interface; we calculate a distance of
19.7 ± 1.6 Å between the center of mass of PR3 and the average plane
of the phosphorus atoms (Cf. Supplementary Data, Fig. S2). Interactions
between PR3 and the POPC bilayer are mediated almost exclusively by
amino acids located on three different loops: β8–β9 (amino acids 163
to 180), β9–β10 (184–197), β11–β12 (215–225). The positions of PR3
amino acids with respect to the average plane of the phosphorus
atoms gives an indication of their depth of anchorage in the lipid bilayer.
Two loops are anchored significantly beyond the phosphorus atoms;
loop β11–β12 appears to be the one that has the deepest anchorage.
The β8–β9 loop with F165 and F166 is also anchored beyond the
plane of the phosphorus atoms. Yet the average depths of anchorage
measured are not characteristic of deep anchoring, and suggest a posi-
tioning of the loops at the interface. The β9–β10 loop carries most of
the basic cluster identified in our early implicit membrane simulations
[14] and is positioned slightly above the two other ones.

Most of the hydrogen bonds we observe involve the phosphate
groups of POPC lipids. A low number of hydrogen bonds with occupan-
cies below 20% involve glycerol groups, only Arg186B5 (58.7%) and
Arg222 (49.0%) have occupancies of hydrogen bonds with glycerol
above 20% indicating that they are buried somewhat deeper in the inter-
face than the other basic amino acids. The strongest hydrogen bonds
involve basic amino acids (R177, R186A, R186B and K187) and have oc-
cupancies above 80%. Remarkably Lys187 is involved in hydrogen bonds
through its side chain (74.5%) and backbone (90.4%). We have earlier
predicted, using simulations with an implicit membrane model and
mutagenesis experiments [16], that R186A, R186B, K187 and R222
play a major role in PR3 interaction with cell membranes. In particular
mutating these four amino acids into four alanines would abrogate
PR3 membrane expression in Rat Basophil Leukemia (RBL) cells. Our
results confirm the importance of this cluster of basic amino acids con-
stituted of four arginines (R177, R186A, R186B, R222) and one lysine
(K187). Besides these, lysine 99 (K99) reported to be important for
ligand binding [49,50] mediates hydrogen bonds with the lipids. It is
also the case of F166 and W218 although they mediate interactions
via their backbone atoms while their side chains are heavily involved
in hydrophobic contacts with the lipid tails.

5 PR3 and HNE amino acids are numbered according to the chymotrypsin convention,
which is common for all serine proteases of the family. To account for insertions this con-
vention includes letters and numbers (Cf Materials and methods section).
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We calculated the average number of hydrophobic contacts per
frame along the sampling window (Cf. Table 1). Several amino acids of
the predicted interfacial binding site display hydrophobic contacts
with the POPC lipid bilayer. As expected these are aromatic (F165,
F166, W218, F224) and hydrophobic amino acids (V163, T221, L223
and P225). Among these, V163, F166, L223 have particularly high aver-
age number of contacts (2.3, 2.5 and 5.8, respectively). Yet their anchor-
age is not very deep within the hydrophobic tails but rather at the
lowest level of the interfacial region. Indeed the density profiles
(Fig. 4A) show expected values for F165, F166 and L223 at 15.7, 15.2
and 15.2 Å, respectively. These are between the expected values for
the phosphates (z = 18.2 Å) and the carbonyl groups (z = 13.7 Å).
The positioning of the phenylalanine is comparable to previously
reported anchorage of phenylalanines of Osh4 [18]. Simultaneousmuta-
tions of the four amino acids F165, F166, L223 and F224 did impair
membrane expression of PR3 on RBL cells [16]. Interestingly the basic
cluster involved in strong hydrogen bonding (R177, R186A, R186B,
K187) is also involved in hydrophobic contacts with the lipid tails. In
agreement with its involvement in hydrogen bonds with POPC glycerol
groups, R186A is the basic amino acidwith the higher number of hydro-
phobic contacts. The aromatic residues F165, F166, W218 and F224 are
actually embedded in the bilayer.

While we observed strong cation–pi interactions between W218
and DMPC lipids in our previouswork, the occupancy of this interaction
is of only 5.7% in the present simulation, which we do not consider as
being significant.

3.1.1.2. HNE.Using an implicit membranemodel, we previously predict-
ed that HNE would bind to cell membranes using the same interfacial
binding site as PR3 [14]. We therefore inserted HNE in the POPC bilayer

similarly to Proteinase 3; using the same orientation and the same
depth of anchoring. With the implicit membrane model, we also
observed a higher electrostatic contribution than in the case of PR3
and fewer contributions from hydrophobic amino acids.

The structure of HNE is unaffected by the POPC bilayer (RMSD
1.26 ± 0.17 Å) and as PR3, it remains stably anchored at the bilayer
interface (Cf. Supp Mat, Fig. S2) although a visual inspection of the tra-
jectories indicate that the orientation of HNE with respect to the mem-
brane plane varies more than that of PR3. Most of the interactions with
POPC lipids are achieved by amino acids carried by the same three loops
as in PR3 (β8–β9, β9–β10, β11–β12) (Cf Table 2) plus an additional
interaction through R146 (loop β7–β8). In fact basic residues located
on the loops β7–β8, β8–β9 and β9–β10 seem to alternate as anchors
with the protein tilting around an axis perpendicular to the bilayer
along the simulation. This is well illustrated by the variation along
time of the depth of anchoring of amino acids R146 (β7–β8), R177,
R178 (β8–β9) and R186 of loop β9–β10 (Cf Fig. S3 in Supplementary
data). The proline and valine numbered 96 and 97, respectively (P96,
V97, on loop β5–β6), are involved in interactions with the lipid tails as
illustrated by their number of hydrophobic contacts (1.0 and 2.6,
respectively. Cf Table 2). V97 is only two amino acids away from L99,
which interestingly is not observed to interact with the lipids. Its equiv-
alent in PR3 is a lysine (K99) and is observed to interact with the lipid
heads via hydrogen bonds.

Hydrogen bonds between HNE and the lipids are mediated by more
amino acids than in the case of PR3 (12 against 8) but only oneout of the
twelve, R178, has an occupancy above 80%. R177 and R178 are the argi-
nines that on average are the most deeply inserted into the interface
during the simulation (Cf Table 2 and Fig. S3 in supplementary data).
Of the basic amino acids involved in hydrogen bonds with lipids, only
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R177 is also involved in the PR3 IBS (Cf. Fig. 1 and Table 1). Yet HNE
achieves a high number of hydrogen bondswith lipidswhen positioned
on the bilayer surface, using other arginines not conserved in PR3
(R146, R178, R186, R217).

Only five amino acids mediate an average number of hydrophobic
contacts above or equal to 1.0 (V97, P96, L166, R177 and L223). This is
strikingly less than in PR3 for which 12 amino acids had a higher num-
ber of hydrophobic contacts than this threshold. The two leucinesmedi-
ate the highest number of contacts and L223 is the only residue
anchored beyond the phosphate plane (Cf Table 2). The electron density
profile of L223 shows an anchorage comparable to that observed for PR3
(CF. Fig. 4B), between the carbonyl and phosphate groups, with an ex-
pected anchorage value of z = 14.2 Å. Carbonyl and phosphate groups
have expected values of 13.2 Å and 17.7 Å, respectively. Amino acid
K99 of PR3 forms hydrogen bonds with POPC lipids (Cf previous para-
graph), while it is not the case of its equivalent in HNE (L99) which can-
not form hydrogen bonds; instead two other amino acids of the same
loop (β5–β6, P96 and V97) mediate hydrophobic contacts with the
lipids.

All together the simulation results indicate that HNE interacts with
the bilayer using mostly hydrogen bonds and very few hydrophobic
anchors, suggesting a looser binding to lipid membranes than PR3.

3.1.2. Energetic contribution of hydrophobic amino acids to membrane
binding

Using an implicit membranemodel, we could estimate the contribu-
tion of hydrophobic amino acids to the binding energy of PR3 and HNE.
These contributions, as well as the total binding energy are plotted on
Fig. 5 for distances between the membrane and the proteins ranging
from the protein being anchored to a distance of 15 Å between the pro-
tein and the membrane surface. Both PR3 (Fig. 5A) and HNE (Fig. 5B)
show comparable unfavorable contributions (ca. 5 kcal/mol) from the

sum of their polar amino acids and the intra-molecular electrostatics
term (CfMaterial andmethods section). The contribution from aliphatic
and aromatic residues, on the other hand, is significantly larger for PR3
(−9 kcal/mol) than for HNE (at most−4 kcal/mol) when the proteins
are anchored. This results in an overall favorable binding of PR3with an
optimum energy of ca. −4.5 kcal/mol and a slightly unfavorable bind-
ing energy for HNE. The resolution of the model we used and the fact
that we used a rigid protein do not allow us to obtain accurate evalua-
tion of the total binding energy and in particular of the short-range
interactions that are dependent on atomic level of description. The
HNE binding energy could still be slightly favorable albeit far from
being as favorable as the one from PR3. Overall these values indicate
that the affinity of PR3 for zwitterionicmembranes is strongly dominat-
ed by its hydrophobic amino acids.

3.2. Surface plasmon resonance

To experimentally verify the hypotheses resulting from theMD sim-
ulations, we conducted SPR assays to compare the affinity of PR3 and
HNE for large unilamellar vesicles (LUVs) constituted of POPC lipids
(Table 3).

3.2.1. Liposome immobilization
Liposomes were immobilized on the surface of the L1 sensor chip at

a low flow rate (1 μL · min−1) until the maximal amount of deposition
was reached. Liposome immobilization levels were monitored over
time and the mean immobilization level for POPC LUVs was 8669 ±
95 RU calculated on four different experiments (Cf. Table 1). To avoid
non-specific binding of proteins to the surface of the L1 chips, special
care was taken to cover the chip surface at the highest possible levels
of liposomes. The level of the coverage sensor chip was assessed with
BSA injections (0.1 mg · mL−1). Resulting signals from BSA of around
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100 RU or less indicate a sufficient coverage [51]. In our case, BSA bind-
ing amounts to 43 ± 2 RUs and allowed us to pursue experiments
further with POPC.

3.2.2. Binding of PR3 to POPC LUVs
We investigated the interaction of PR3with neutral liposomesmade

of POPC using SPR. Liposomeswere immobilized on the surface of the L1
sensor chip as described above. Binding assays were performed by
injecting protein samples at increasing concentrations and affinity
calculations were carried out by steady state analysis. We monitored
the association phase for 180 s and the dissociation phase for 420 s.
The sensorgrams (Fig. 6) show that the protein response is concentra-
tion dependent and is reaching equilibrium towards the end of each
injection. The calculated Kd between PR3 and POPC is 9.22 ×10−7 M.
During the dissociation phase, we also observed that the response signal
of PR3 does not return to zero and thus demonstrates a persistent bind-
ing of PR3 to the liposomes.

3.2.3. Binding of HNE to POPC LUVs
The binding of HNE towards POPC was monitored using the same

procedure as for PR3, but using a higher maximum concentration
(9 μM). The association of the protein to the LUVs was monitored for
120 s (shorter than for PR3) and the dissociation for 420 s. The
sensorgrams are presented on Fig. 6B and show that HNE can bind to
liposomes made of POPC in a concentration-dependent manner which
indicates a direct binding of theprotein to the liposomes. During thedis-
sociation phase, the signal drops immediately and returns to the base-
line value. This is in contrast to the behavior of PR3. The kinetics of the
protein–membrane interaction seems to be different for the two pro-
teins. For the Kd calculation, the data collected for HNE clearly show
that equilibrium was not reached even at an enzyme concentration of
9 μM. It was therefore not possible to calculate the affinity accurately
but we can evaluate a lower limit for the Kd value of 1 × 10−5 M.

3.2.4. Effect of salt on HNE and PR3 binding to POPC LUVs
Comparison of binding responses of PR3 and HNE at different salt

concentrations (Fig. 7) shows that, at 300 mM NaCl concentration in

the running buffer, the PR3 response is less altered than that of HNE
as it maintains a rather high binding response. HNE response, however,
is considerably lowered compared to the one at [NaCl] = 150 mM. In
addition, HNE seems to partially dissociate before the end of the 120 s
of injection, indicating a rather unstable binding and difficulties main-
tain the protein on the lipid vesicles. At 700 mM of NaCl, about a third
of the PR3 response is maintained, whereas the binding of HNE is prac-
tically abolished.

4. Discussion and conclusion

The SPR experiments yield a Kd in the low micromolar range
(9.22 ± 0.4 × 10−7 M) for PR3, while the binding of HNE is weaker
and its Kd is not within the range of concentrations tested; we estimate
it to be above 10−5 M. For comparison, Kd measured for hIIa-PLA2 with
the same method was 6.8 10−8 M [20] and for the lactadehrin C2
domain 3.2 10−7 M [21]. The difference we observe between PR3 and
HNE is consistent with the results of Goldman et al. although we mea-
sure a Kd for PR3 with POPC that is lower by two orders of magnitude
than the value they determined in 1999 (85 × 10−6 M) using spectro-
photometric measurements and DMPC vesicles. This indicates that
PR3 binds best to bilayers of unsaturated lipids suggesting that it is sen-
sitive to lipid packing. The study from Goldman et al. appears to have
been conducted using multilamellar vesicles, whereas ours were
extruded to produce monodisperse unilamellar vesicles.

Although the use of a low flow rate for the injection of protein on the
SPR chip prevents us from determining accurate rate constants, the SPR
sensorgrams show significantly different dissociation rates for PR3 and
HNE, indicating that both enzymes are bound differently to the lipid bi-
layer with PR3 binding being perpetuated after the flow is interrupted,
while HNE transfers back to the bulk almost immediately. Generally,
long-range non-specific interactions (typically electrostatics) accelerate
the association of peripheral membrane proteins and short range inter-
actions (typically van der Waals) slow the dissociation [52]. While our
SPR sensorgrams show no visible differences in the association phase,
they show a slower dissociation for PR3, which would therefore imply
that short-range interactions are fewer or weaker in HNE. The

0 200 400 600

0
50

0
10

00
15

00

Time (s)

R
es

po
ns

e 
(R

U
)

PR3 and POPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
50

0
10

00
15

00

Enzyme concentration (μM)

R
es

po
ns

e 
(R

U
)

KD = 0.90 μM

0 200 400 600

Time (s)

0
50

0
15

00
25

00

R
es

po
ns

e 
(R

U
)

0
50

0
15

00
25

00

R
es

po
ns

e 
(R

U
)

Enzyme concentration (μM)
0 2 4 6 8 10

HNE and POPC

A B

C D

Fig. 6. Binding assay of PR3 and HNE to LUVs from surface plasmon resonance. PR3 (A) and HNE (B) binding responses, and respective affinity data below (C. PR3 and D. HNE) over
immobilized POPC. All data are blank subtracted. No double referencing has been done due to high non-specific binding to the reference channel (L1 chip with no liposomes—data not
shown).

3199A.-S. Schillinger et al. / Biochimica et Biophysica Acta 1838 (2014) 3191–3202



difference between PR3 and HNE in terms of short-range van derWaals
interactions is clearly characterized by our MD simulations. The IBS for
HNE and PR3 are different (Tables 1 and 2, Fig. 3) leading to a higher av-
erage number of hydrophobic contacts per simulation frame between
the lipids and PR3 (27.1) than between the lipids and HNE (16.9).
On the other hand, and although both HNE and PR3 have about
the same number of basic amino acids at their IBS, HNE achieves a
higher number of hydrogenbondswith the lipid phosphates. Particular-
ly relevant to the difference in dissociation rates is the fact that PR3
inserts a higher number of aromatic amino acids (F165, F166, W218,
F224 in PR3 vs. F192 in HNE) below the plane of the phosphorus
atoms. This may also explain the higher shift in the membrane
transition temperature observed for PR3 vs HNE by differential scan-
ning calorimetry in the study from Goldman et al. According to the
Wimley–White interfacial hydrophobicity scale, based on the transfer
free energy of pentapeptides (AcWL–X–LL) fromwater to a POPC bilay-
er [53,54], aromatic residues have themost favorable partitioning ener-
gies, while charged amino acids have large unfavourable energies.
Other amino acids make relatively small contributions. The difference
in the number of aromatic residues inserted by both enzymes in the bi-
layer thus explains the difference in membrane affinity for PR3 and
HNE. Anchorage of hydrophobic aromatic residues for anchoring into
lipid bilayers has been reported for other amphitropic proteins or pep-
tides [18,55].

The SPR sensorgrams and the difference in the number of hydro-
phobic and aromatic amino acids anchored in the hydrophobic re-
gion of the bilayer between both enzymes is thus consistent with a
specific association of PR3 to the plasma membrane, “stronger than
only an ionic interaction” [11] with insertion of hydrophobic amino
acids [14] while HNE has a more shallow interaction based on hydro-
gen bonds and short-range electrostatic interactions with LUVs. A
qualitative interpretation of SPR measurements using different con-
centrations of salt (NaCl) shows key differences in the way the bind-
ing responses of PR3 and HNE are affected. Whereas PR3 displays a
slowly decreasing binding at increasing concentrations of salt, HNE

is rapidly and dramatically affected to become nearly abrogated at
high salt concentration.

As PR3 is known to bind to the exoplasmic side of the neutrophils
plasma membrane, the choice of POPC for the lipid vesicles was moti-
vated by their thickness, closer to plasmamembranes than DMPC lipids.
Moreover the PC headgroups are relevant with lipid components of the
plasmamembrane [56–58]. Conveniently the use of vesicles constituted
of zwitterionic lipids only allows us to distinguish between the effect of
long-range electrostatics and short-range amino acid–lipid interactions.
Our results show that PR3 is able to bind to pure PC vesicles, indicating
that it could bind to PC domains at the plasma membrane. We expect
that adding a fraction of anionic lipids in the bilayer would improve
the electrostatic interaction between the lipids and the enzyme in a
roughly comparable manner, with a slight advantage for HNE. Yet, and
because of its ability to insert 5 hydrophobic amino acids into the lipid
bilayer against one for HNE, we would expect PR3 to still be a stronger
membrane binder than HNE on membranes containing a fraction of
anionic lipids. Studies using vesicles with some anionic lipid content
will need to be used to investigate this aspect.

A number of proteins have been shown to be co-localized or co-
immunoprecipitate withmembrane-expressed PR3 and have been pro-
posed as partners of PR3 at the neutrophil membrane (reviewed in refs
[9,59]): CD177 (NB1) [59,60], Fcgamma receptor FcγRIIIb and p22phox

subunit of cytochrome b558 [61], β2 integrin adhesion molecule
CD11b/CD18 [62], Protease Activated Receptor 2 (PAR2) [63,64],
CD177 [65], Phospholipid Scramblase 1 [66] and calreticulin [67]. Yet,
to our knowledge, there exist little evidence of a physical interaction
between membrane-bound PR3 and the identified partners, except for
calreticulin for which a nanomolar affinity has has been reported
using SPR experiments. Direct interaction of PR3 with the membrane
phospholipids and interaction with protein partners are not mutually
exclusive ifwe consider the formation of a protein complex. Interactions
of membrane-bound PR3 with proteins, possibly transmembrane re-
ceptors, are indeed necessary for the function of PR3 andwould stabilize
its interactions with the membrane.

Fig. 7. Binding assay of PR3 (A) and HNE (B) to LUVs from surface plasmon resonance at salt concentrations ranging from 150 mM to 700 mM.

3200 A.-S. Schillinger et al. / Biochimica et Biophysica Acta 1838 (2014) 3191–3202



To summarize, using longmolecular dynamics simulations of PR3 at
the surface of POPC bilayers and SPR experiments following the binding
of PR3 to POPC LUVS, we have demonstrated that PR3 can bind directly
to POPC lipid bilayers by inserting one aliphatic and four aromatic
amino acids into the hydrophobic core of the bilayer. Our results thus
indicate that PR3 is able to mediate direct interactions with the
exoplasmic leaflet of the neutrophil membrane, which is mostly consti-
tuted of PC lipids. HNE interactswith the same LUVs in a shallowerman-
ner dominated by short-range electrostatic interactions. The difference
in affinity between the two proteins can be explained by the difference
in the nature of their IBS, namely the number of hydrophobic aromatic
amino acids present.
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SUPPORTING INFORMATION 
 

 
Figure S1 
RMSD along the MD trajectory calculated for PR3 (grey) and HNE (green), with 
respect to the enzyme structure used as starting point for the simulation (enzyme 
structure solvated and minimized). 
 

 
Figure S2 
Distance of the center of mass of PR3 (grey) and HNE (green) to the average plane of 
the phosphorus atoms. Negative values indicate that the center of mass lies in the 
water slab above the phosphorus atoms. 
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Figure S3 
Depth of anchorage along simulation time calculated for amino acids Arg 146 (loop 

7- 8), Arg177 (loop 8- 9), Arg178 (loop 8- 9) and Arg186 (loop 9- 10). The 
depth is calculated as described in the Methods section, positive values indicate that 
the center of mass of the amino acid is buried in the bilayer beyond the plane defined 
by the phosphate groups. 
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ABSTRACT 

Bacillus thuringiensis phosphatidylinositol specific phospholipase C (BtPI-PLC) is a 
secreted virulence factor that binds specifically to negatively charged lipid bilayers 
containing phosphatidylcholine (PC). BtPI-PLC carries a negative net charge and its 
interfacial binding site (IBS) has no obvious cluster of basic amino acids. Continuum 
electrostatics calculations show that, as expected, nonspecific electrostatic interactions 
between the protein and membranes vary as a function of the fraction of anionic lipids 
present in the bilayers. Yet they are strikingly weak with a calculated Gel below 1 
kcal/mol, largely due to a single lysine residue (K44). When K44 is mutated to alanine 
the BtPI-PLC equilibrium dissociation constant for small unilamellar vesicles increases 
more than fifty times (ca. 2.4 kcal/mol) suggesting that interactions between Lys44 and 
lipids are not merely electrostatic. Comparison between trajectories obtained with 
different lipid compositions reveal that neither hydrogen bonds nor hydrophobic contacts 
between the BtPI-PLC IBS and bilayers are affected by the bilayer composition. The 
occupancies of cation-  interactions between choline groups of PC lipids and protein 
tyrosines, however, vary as a function of the PC content. Interestingly there is no 
recruitment of choline to PC-high-affinity binding sites. Basic amino acids can contribute 
to both nonspecific electrostatic and short-range protein-lipid interactions. Their overall 
contribution to binding affinity is context-dependent and cannot be approximated by a 
rule-of-thumb value. Further, statistics on the distribution of basic amino acids in a 
dataset of membrane-binding domains reveal that weak electrostatics might be a more 
common mechanism for peripheral membrane binding than generally thought. 

 

Keywords 

amphitropic membrane proteins, molecular dynamics simulations, electrostatics, 
fluorescence correlation spectroscopy, phosphatidylinositol-specific phospholipase C (PI-
PLC) 

 

 

 

 

 

 

 

 

 



INTRODUCTION 1 

The association of peripheral membrane proteins with biological membranes is 2 
classically described as an electrostatically-driven approach followed by the intercalation 3 
of hydrophobic side groups into the lipid bilayer. Long-range nonspecific electrostatic 4 
forces between the negatively charged membrane and clusters of basic amino acids bring 5 
the protein into a binding-competent orientation relative to the lipid bilayer and play a 6 
major role for numerous prototypical peripheral membrane proteins(1-4). Experimental 7 
and computational pioneering studies have evaluated nonspecific electrostatics to 8 
contribute a few kilocalories per mole to the overall affinity and estimated that each basic 9 
amino acid contributes up to 1 kcal/mol to the binding free energy(2, 5). 10 

Bacillus thuringiensis phosphatidylinositol specific phospholipase C (BtPI-PLC) is a 34.8 11 
kDa secreted virulence factor that carries a negative net charge (-7 e) and binds 12 
specifically to phosphatidylcholine-containing negatively charged lipid bilayers. Its 13 
interfacial binding site (IBS) consists of a small -helix, helix B(6), and two neighboring 14 
loops rich in tyrosines that we have shown engage in cation-  interactions with the 15 
choline groups of DMPC lipids in neutral bilayers(7). These cation-  interactions provide 16 
a likely molecular mechanism for BtPI-PLC phosphatidylcholine (PC) specificity(7, 8) 17 
but do not account for its preference for bilayers containing a small fraction of anionic 18 
lipids.  19 

The affinity of BtPI-PLC has been measured to be tightest for vesicles containing 20% 20 
anionic lipids. In these conditions the affinity is ca. 4 times more favorable than for 21 
neutral vesicles(9) while higher anionic lipid content decreases the affinity considerably. 22 
Surprisingly, for the tightest binding conditions, mutating a single lysine (K44) decreases 23 
the affinity to 1/55th of that of the wild type (WT) protein corresponding to ca. 2.4 24 
kcal/mol. This effect is ca. 14 times greater than the fourfold effect obtained when adding 25 
20% anionic lipids to PC vesicles. If mutating K44 affected only the nonspecific 26 
electrostatic forces involved in the adsorption of protein onto the phospholipid bilayer the 27 
effect of removing the anionic lipids should be comparable to that of mutating K44(6, 28 
10). Furthermore the effect of the K44A mutation on the affinity of BtPI-PLC towards 29 
negatively charged vesicles is strikingly high compared to values found in the 30 
literature(2, 5).  31 

Here we investigate the forces driving BtPI-PLC specificity for negatively charged PC-32 
containing vesicles by separately addressing the two steps governing membrane affinity: 33 
association (kon) and dissociation (koff). While the former is fast, the dissociation that 34 
follows is comparatively slow and constitutes the rate-limiting step. As a consequence, in 35 
systems where the protein binds to the membrane without undergoing significant 36 
conformational changes or interacting with another protein, the affinity for the membrane 37 
is mostly accounted for by interactions between the protein interfacial binding site (IBS) 38 
and lipids. As these are difficult to assess experimentally molecular dynamics (MD) 39 
simulations are widely used for that purpose (11-14). 40 

Using multiple 500 nanosecond-long MD simulations of BtPI-PLC at the surface of pure 41 
dimyristoylphosphatidylcholine (DMPC), pure dimyristoylphosphatidylglycerol 42 
(DMPG), and mixed DMPC:DMPG bilayers we map the specific protein-lipid 43 



 4 

interactions and investigate how these are influenced by the anionic lipid content. We 44 
also evaluate the nonspecific electrostatic contributions of key basic amino acids to the 45 
association step using continuum electrostatics calculations and experimental 46 
determinations of the effect of their mutation to alanine. The latter is achieved by using 47 
fluorescent correlation spectroscopy (FCS) to measure the affinity of BtPI-PLC variants 48 
for small unilamellar vesicles. Combining the computational and experimental data 49 
allows us to formulate a complete model of BtPI-PLC membrane binding. A novel 50 
characteristic of this model is the unusually weak nonspecific electrostatics contribution 51 
due to the curious number and distribution of lysines and arginines on the BtPI-PLC 52 
surface. In an attempt to evaluate how (un)common such a distribution is, we finally 53 
analyze the number and distribution of basic amino acids in a database of peripheral 54 
membrane binding proteins and find that a significant number of peripheral membrane 55 
proteins are highly likely to also display weak nonspecific electrostatics. We propose that 56 
such weak interactions could be beneficial for the function of peripheral membrane 57 
proteins, particularly those that must exhibit a quick response to environmental changes. 58 

MATERIALS AND METHODS 59 

Molecular dynamics simulations 60 

As there is no X-ray structure available for wild type BtPI-PLC, we built a model as 61 
described by Grauffel et al.(7), using the X-ray structure of the B. thuringiensis 62 
Y247S/Y251S(15) mutant (PDB ID: 3EA1) and W47A/W242A(16) mutant (PDB ID: 63 
2OR2). The starting orientation of bilayer-bound BtPI-PLC was obtained from the same 64 
study, and based on implicit membrane simulations(7).  65 

The protein was manually docked on the pre-equilibrated mixed bilayers. The protocol 66 
used for preparation of the bilayers is described in Supporting Information. The 67 
membrane orientation was obtained from BtPI-PLC implicit simulations(7). Lipids were 68 
removed to avoid coordinate overlapping and steric clashes. Then the system was 69 
minimized as described by Grauffel et al.(7) and solvated with TIP3P water molecules 70 
using VMD(17). After solvation, additional sodium ions were added by randomly 71 
replacing water molecules to achieve an overall charge neutral system where necessary.  72 

MD Simulations of bilayer bound BtPI-PLC The combined protein-lipid system was 73 
then subjected to two short 400 ps equilibrations in the NVT ensemble with constraints 74 
on the protein backbone. Subsequently, the system was equilibrated for 2 ns in the NPT 75 
ensemble without any constraint before finally performing the 500 ns NPT simulation. 76 
The temperature was set to 310 K during the simulation with a 2 fs integration time step 77 
in NAMD (v2.9)(18). The temperature was controlled as described above for the mixed 78 
bilayer. The pressure was set to 1 atm with an oscillation period of 200 fs and a damping 79 
time scale of 50 fs. The CHARMM all-atom force field(19) (c22 including CMAP 80 
correction)(20) and the force field update for lipids (CHARMM36)(21) were used. 81 
Trajectory conformations were saved every 10 ps. Two simulations were performed, and 82 
in the second replicate, the protein was rotated by 180 degree around the bilayer normal 83 
(z-axis) to allow for different initial protein-lipid contacts. This is done to avoid bias in 84 
protein-lipid interactions due to the initial distribution of lipids under or around the 85 
protein, and also to improve the sampling. Analyses of the trajectories were performed 86 
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using CHARMM (v33b1)(22) and VMD (v1.9.1)(17) on the last 450 ns of each 87 
simulation in a similar fashion as in Grauffel et al.(7). Hydrophobic contacts, hydrogen 88 
bonds and cation-  interactions are averaged over the two replicas. Hydrophobic 89 
interactions and hydrogen bonds were assigned as described in Supporting Information. 90 
Cation-  interactions between the aromatic amino acids (Tyr, Phe and Trp) and the 91 
choline group of the DMPC lipids were assigned as described earlier(7, 23).  92 

Continuum electrostatics calculations  93 

We extracted the structures of the bilayers after simulations to perform the continuum 94 
electrostatics calculations by solving the Poisson-Boltzmann equation. These equilibrated 95 
bilayers provide better description of the membrane than ideal bilayers. The protein-96 
membrane complex is prepared by placing the protein with its membrane binding 97 
orientation above the bilayer upper leaflet. We define the minimum protein-membrane 98 
distance (d) as the z-distance between the HD1 atom of Ile43 and the maximum z-99 
coordinate of the bilayer. HD1 is a hydrogen atom on the C  atom of the Ile43 chosen 100 
because it is the most deeply anchored atom in the membrane binding conformation. The 101 
initial position of the protein is set to d=12 Å. The protein is then gradually translated 102 
towards the membrane. Both the protein and the membrane are kept rigid. Poisson-103 
Boltzmann calculations are carried out using APBS (version 1.3) (24). Once the 104 
electrostatic potential is calculated, the electrostatic free energy can be calculated from 105 
the electrostatic potential(25, 26). A similar scheme has been used for other proteins 106 
before(27-29). The non-polar contribution to the binding free energy is not evaluated, as 107 
that is not the goal here. 108 

Database Statistics 109 

The statistics for net charges and the distributions of basic amino acids in peripheral 110 
membrane proteins was obtained from a dataset based on the OPM-database(30). This 111 
database contains membrane associated proteins, and predictions of their orientation in a 112 
DOPC bilayer model. We selected all protein families of the OPM-classification 113 
classified as type Monotopic/Peripheral, for a total of 337 families. For the selected 114 
families, we obtained average net charges, , for each family. We defined solvent 115 
exposed residues to be residues that have at least 20% of their surface contributing to the 116 
surface of the protein its maximal exposure. Using MMTK(31), we calculated surface 117 
contributions from each atom using a radius around the atom equal to the sum of its van 118 
der Waals radius and a fixed 1.4 Å term to mimic water accessibility. Maximal exposure 119 
for each residue type is obtained from a random coil model(32). We defined the insertion 120 
coordinate i, of a point to be the distance from that point to the end of the hydrocarbon 121 
region of the membrane in the membrane model employed in the OPM database(33). 122 
This distance was made negative for points on a hydrated side of the membrane. We use 123 

 to denote the number of solvent exposed basic amino acids in protein p, that 124 
have alpha carbons with insertion coordinates z i and i<x. The number of basic amino 125 
acids at the IBS is then taken to be , and we report the family average, 126 

. We also calculated the average surface density of basic amino acids at varying 127 
distances from the membrane ( ), which we report as  (More 128 
details are provided as Supporting information). 129 
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 130 

Expression and purification of BtPI-PLC and its variants 131 

All BtPI-PLC mutants were constructed from the plasmid containing the mutant N168C 132 
BtPI-PLC gene using a QuikChange site-directed mutagenesis kit from Agilent 133 
Technologies. Where the Cys at 168 is used to fluorescently label the proteins for FCS 134 
experiments. Mutated genes were sequenced to ensure incorporation of the correct 135 
mutations and that no other mutation had arisen. All BtPI-PLC variants expressed at high 136 
levels in E. coli and were purified with two chromatographic steps (elution on a Q-137 
Sepharose fast flow column followed by a phenyl-Sepharose column as described for the 138 
recombinant BtPI-PLC(10)). More than 90% purity was achieved as monitored by SDS-139 
PAGE. Protein solutions were concentrated and the protein concentration was calculated 140 
from the absorption at 280 nm using extinction coefficients estimated by ProtParam(34). 141 
The composition of secondary structure elements, estimated from far UV circular 142 
dichroism (CD) data, were essentially the same for all the variants indicating no 143 
significant secondary structure changes (see supporting information Table S9). BtPI-PLC 144 
thermal stability was assessed using far UV CD and monitoring the ellipticity at 222 nm 145 
while increasing the sample temperature 0.5 degree per minute (6, 35). Specific activities 146 
for all variants (see supporting information) were determined towards SUVs prepared by 147 
sonication and composed of 2 mM phosphatidylinositol (PI) plus various concentrations 148 
of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) in 50 mM HEPES (containing 1 149 
mg/ml bovine serum albumin (BSA)), pH 7.5. For pure PI and PI/PC (4:1) SUVs, the 150 
total phospholipid concentration is below or comparable to the Kd, hence mutant specific 151 
activities are lower than WT enzyme. For PI/PC SUVs with XPC = 0.5 and 0.8, the total 152 
phospholipid concentration is above the apparent Kd for all the Lys/Arg to Ala mutants 153 
except K44A. Specific activities were measured with 31P NMR spectroscopy as described 154 
previously (9, 36). All phospholipids were obtained from Avanti Polar Lipids.  155 

FCS measurements of BtPI-PLC binding to SUVs 156 

The FCS based SUV binding experiments take advantage of the fact that protein binding 157 
to vesicles slows translational diffusion. FCS experiments were performed using BtPI-158 
PLC variants labeled at N168C with Alexa Fluor 488 maleimide and a home-built 159 
confocal setup based on an IX-70 inverted microscope (Olympus) as previously 160 
described (37) (Cf. Supporting Information). 161 

RESULTS 162 

Influence of PC content on short-range specific protein-lipid interactions  163 

In order to determine the roles of short-range protein-lipid interactions in BtPI-PLC 164 
membrane affinity and identify those responsible for its lipid specifity, we performed 165 
multiple 500 ns-long MD simulations for BtPI-PLC docked to pre-equilibrated 166 
DMPC:DMPG bilayers with four different mole fractions of DMPC, XPC = 0, 0.5, 0.8 or 167 
1.0 (See Methods section and Table S1). The simulation results for XPC=1.0 are taken 168 
from earlier reported simulations(7). Although the residence time of BtPI-PLC on small 169 
unilamellar vesicles (SUVs) has been measured to be a few 100s of milliseconds(8), the 170 
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use of shorter MD simulations to map relevant protein-lipid interactions has proven 171
reliable(7, 8, 38). In order to avoid bias due to the initial distribution of lipids around the 172
protein all simulations were repeated using different initial positions of the protein in the 173
membrane plane. We also performed a simulation using the K44A BtPI-PLC mutant 174
bound to an anionic membrane (XPC=0.8). 175

Interactions with a pure DMPG bilayer (XPC=0) Both simulations of WT BtPI-PLC 176
docked to pure DMPG bilayers indicate loose binding of the protein to pure DMPG 177
bilayers compared to DMPC-containing bilayers. In one of the simulations, the protein 178
completely detaches from the bilayer within 200 ns (Fig. 1). In the other simulation, the 179
protein remains bound but the structure of the 7- G loop (also called the rim loop) 180
becomes distorted (Fig. 2). The average backbone RMSD of 7- G along the simulation 181
time is 1.8±0.4 Å compared to 0.4±0.1 Å in simulations with PC-containing bilayers (see 182
Fig. S1 in Supporting Information). Compared to these simulations we also observe a loss 183
of long-lived backbone hydrogen bonds (N243-G238, N243-T240 and Y248-S244) in the 184
loop. A similar distortion of the 7- G loop was observed in simulations of the free 185
Y248A variant that shows impaired lipid binding with a Kd ca. 150 times higher than WT 186
BtPI-PLC towards vesicles with XPC = 1(7).  187

188

A                                  B 189

         190

FIGURE 1 Snapshots from one of the MD simulations of WT BtPI-PLC on a DMPG 191
bilayer (XPC=0, replica 2). (A) System at the beginning of the production run, (B) system 192
after 200 ns. BtPI-PLC is represented by cartoons and the lipids with sticks. The 193
secondary structure elements relevant for this study are colored as follows: helix B ( B, 194
brown), helix D ( D, magenta), helix F ( F, cyan), helix G( G, yellow). For the sake of 195
clarity, water molecules and ions are not shown.  196
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197

FIGURE 2 Comparison of the BtPI-PLC membrane bound secondary structure after a 198
500 ns simulation for XPC=0 (red, pure DMPG) and XPC=0.5 (blue). The backbone 199
structures were aligned using Pymol(39). For the sake of clarity, lipids, water molecules 200
and ions are not shown. The essential intramolecular interactions within the rim loop ( 7-201

G) are lost at XPC=0 causing a distorted loop structure (arrow).  202

Interactions with DMPC:DMPG bilayers (XPC=[0.5, 0.8, 1]) All of the simulations with 203
bilayers containing PC lipids yielded stable BtPI-PLC anchorage with no significant 204
structural changes compared to the X-ray crystal structure. The backbone RMSD is at 205
most 1.61 Å (average values for each simulation are provided as Supporting Information 206
in Table S2). The protein anchors helix B and the rim loop in the bilayer interface (Fig. 3) 207
at similar depth (Fig. 4) independent of the PC lipid content. 208

For each of the three bilayer compositions we inventoried the interactions between 209
bilayer lipids and protein residues located at the interface. We report in Table 1 the 210
numbers of hydrogen bonds, hydrophobic contacts and cation-  interactions per frame, 211
averaged over each of the bilayer compositions and replicas. The corresponding values 212
per amino acid are provided as Supporting Information (Supp. Inf. Table S3). Briefly, 213
three main BtPI-PLC regions mediate most of the interactions with lipids, namely helix 214
B, the 2- D loop and the 7- G loop. Helix B anchors deepest with most of its amino 215
acids below the phosphate plane (Fig. 3 and 4). Residues 238-242 of the 7- G loop are 216
also inserted below the average phosphate plane (see Table S4 in Supporting 217
Information). All three anchored regions mediate hydrophobic interactions with multiple 218
lipid tails; for example, helix B mediates 25 to 26 hydrophobic contacts irrespective of 219
the PC content in the bilayer (Fig. 5A). The hydrophobic contacts mediated by BtPI-PLC 220
with the lipids do not vary significantly with XPC. The same applies to hydrogen bonds. 221
We do observe long-lived hydrogen bonds between lipid phosphate groups and side-222
chains of charged (K44, R71, K122, K201), polar (S236, S244), and aromatic residues 223
(Y88, Y246, Y247, Y251) as well as backbones of polar residues (Q40, N41). Yet there 224
is no correlation between the number and stability of these hydrogen bonds and the mole 225
ratio of PC lipids in the bilayers. 226

227
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 228

FIGURE 3 BtPI-PLC secondary structure elements and their calculated insertion at the 229
interface of a mixed DMPC:DMPG bilayer (XPC=0.5). BtPI-PLC is represented by 230
cartoons. The relevant secondary structure elements are labeled and colored as in Fig. 1. 231
Helix B (brown) is inserted beyond the phosphate plane (brown slab) of the mixed 232
bilayer, constructed from MD simulation data.  233

234

235

FIGURE 4 Electron Density Profiles (EDP) from MD simulations for three different 236
bilayers. (A), (C), (E) protein, (gray, r1=replica 1 and blue r2=replica 2), and lipids (r1, 237
black; r2, red), for XPC=1, 0.8 and 0.5. (B), (D), (F) deepest helix B (gray and blue) and 238
phosphate groups of the upper lipid leaflet (red and black).  239

240
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TABLE 1 Inventory of interactions with pure DMPC and mixed bilayers: average 241
number of hydrogen bonds, hydrophobic contacts and cation-  per frame are given for 242
each replica (r1/r2) 243

XPC 0.5 0.8 1.0 
Hydrogen bonds 7.9/4.4 7.0/7.6 7.8/6.9 
Hydrophobic 
contacts 

49.2/41.1 41.7/40.2 45.0/42.3 

Cation-  2.5/2.2 2.8/2.9 3.6/3.0 
244

The trend is different for cation-  interactions between choline headgroups of PC lipids 245
and tyrosines. The overall number of cation-  interactions clearly increases with PC 246
enrichment. We reported earlier (7) that Y88, Y204, Y246 or Y251 engage in high-247
occupancy cation-  interactions in simulations of BtPI-PLC with pure DMPC bilayers. 248
Adding DMPG to the bilayers we observe that the occupancy of cation-  interactions 249
varies with XPC (Fig. 5B). The occupancies of cation-  interactions mediated by Y246, 250
Y251 and Y204 increase from XPC=0.5 to 0.8 but not significantly between XPC=0.8 and 251
1.0. Although we ensure that the simulations are not biased by the initial lipid 252
distribution, we cannot rule out the possibility that this apparent saturation is an artifact 253
of the relatively short time scale of our simulations. Y88 and Y246 are located close to 254
the IBS and mediate the cation-  interactions with the highest occupancy. They are also 255
the Tyr residues whose mutation to alanine has the largest effect on protein affinity for 256
SUVs(7) (also see Fig. S2 in Supp. Inf.). Overall the occupancy of these interactions for 257
tyrosines 86, 88, 204, 246, 247, 251 correlates qualitatively well with the effects of their 258
mutation to alanine on BtPI-PLC affinity for SUVs (Cf. Ref. (7) and Fig. S2 in Supp. 259
Inf.). Y251 is the only tyrosine that we observe mediating two cation-  interactions 260
simultaneously with an occupancy of up to 11% at XPC = 0.8 (r1), which might be due to 261
the accessibility of its sidechain to PC lipids (see Tables S5 and S6 in Supp. Inf.). 262

A                                   B 263

   264

FIGURE 5 Influence of bilayer composition on short-range protein-lipid interactions. (A) 265
Average number of hydrophobic contacts per frame between helix B amino acids and the 266
bilayer lipids as a function of XPC. The membrane composition has no significant effect 267
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on hydrophobic insertion. (B) Cation-  interactions between Tyr amino acids and choline 268 
headgroups of DMPC lipids. The occupancies along the simulation are plotted with 269 
respect to membrane PC content. 270 

Interactions between BtPI-PLC K44A with a mixed bilayer (XPC=0.8) Experimental 271 
data indicate that mutating K44 to alanine drastically affects the affinity of BtPI-PLC for 272 
SUVs. We here investigate the effect of this mutation on specific protein-lipid 273 
interactions by docking K44A BtPI-PLC on a mixed bilayer (XPC=0.8). Unlike 274 
simulations with pure DMPG bilayer, or the Y248A mutant in water(7), K44A remains 275 
bound to the membrane surface with an unaltered structure. The average RMSD of the 276 
protein backbone along simulation time relative to the energy minimized K44A structure 277 
is 1.5±0.2 Å. Analysis of the depth of anchorage of different amino acids shows 278 
negligible variation along the simulation but major interactions are lost (Cf. Supporting 279 
Information Table S7). In particular, an important protein-lipid hydrogen bond network, 280 
involving Q40 and N41 backbone atoms, the K44 side chain and DMPC phosphates, is 281 
lost around helix B (7). As a consequence the number of hydrogen bonds mediated by 282 
helix B is low compared to WT. Moreover helix B mediates slightly fewer hydrophobic 283 
contacts per frame (24.7 instead of 25.7). As might be expected, the occupancies of 284 
cation-  interactions are generally comparable to those observed for WT BtPI-PLC. 285 

Non-specific electrostatics interactions upon membrane association 286 

The BtPI-PLC IBS includes five lysines (K38, K44, K122, K201, K279) and one 287 
arginine. While K44 is located on Helix B, the four other lysines and one arginine (R71) 288 
are carried by other structural elements and do not form the obvious cluster(s) often 289 
described for membrane binding domains. This raises the question of the magnitude of 290 
the nonspecific electrostatic interactions between proteins and negatively charged 291 
membranes. 292 

          A                                B 293 

                        294 

FIGURE 6 Calculated electrostatic potentials of (A) WT BtPI-PLC and (B) K44A. The 295 
isocontours at +1 kBT/e (blue) and -1 kBT/e (red) are shown. Note the change of the 296 
isosurface around the K44A mutation site in helix B (black circle). The images were 297 
prepared using VMD (17). 298 
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Electrostatic free energy profile We calculate the electrostatic component of the binding 299 
free energy using continuum electrostatics and solving the Poisson-Boltzmann (PB) 300 
equation (Cf. Methods section and Supp. Inf. Fig. S3). This approach has been 301 
successfully used to describe the electrostatic properties of proteins, nucleic acids and 302 
membranes (24, 40, 41). Note that the chosen approach only allows us to reasonably 303 
estimate the electrostatic contribution when the protein is above the modeled membrane 304 
and not in its most favorable depth of anchorage. The latter is measured by the MD 305 
simulations presented above to be about 8 to 10 Å below the membrane surface, as 306 
measured by the position of the center of mass of isoleucine 43, the deepest anchored 307 
residue. 308 

 309 

FIGURE 7 Electrostatic free energy profile of WT and mutants with an anionic 310 
membrane (XPC=0.8) using a 0.1M salt concentration. A hydrogen atom in Ile43 311 
(Charmm nomenclature HD1) is the closest BtPI-PLC atom to the membrane in the 312 
membrane binding orientation where the approach is along the z-axis perpendicular to the 313 
membrane. The position of this atom relative to the membrane is decreased in order to 314 
drag the protein towards the membrane while keeping both the protein and the membrane 315 
rigid. 316 

 317 

Isocontours at ±1kBT/e of the electrostatic potential of BtPI-PLC (Fig. 6A) show large 318 
negative regions while the positive regions are more restricted in size with one around 319 
helix B. The profile of the electrostatic free energy for WT approaching a negatively 320 
charged bilayer (DMPC:DMPG, XPC=0.8) shows a minimum at a minimum protein-321 
membrane distance d of 3 to 4 Å (Fig. 7). The electrostatic free energy is at most -0.25 322 
kcal/mol, much lower than that reported for other membrane binding domains using the 323 
same computational approach (from -3 to -5 kcal/mol)(27). The electrostatic free energy 324 
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becomes less favorable as the protein moves towards the membrane from its minimum 325 
eventually becoming unfavorable when the protein is in contact with the membrane 326 
surface (+0.4 kcal/mol) and crosses the upper limit of the membrane (+1.1 kcal/mol) 327 
(Fig. 7). The favorable contribution is largely due to K44 and the K44A mutation almost 328 
completely abolishes the favorable Gel (Fig. 6B and 7). Mutations at other positively 329 
charged residues (K38, R71, K122, K201 and K279) affect Gel to a lesser extent with a 330 
value of ca. -0.1 kcal/mol at the most favorable distance.  331 

Effect of membrane composition and salt concentration We evaluate the dependence of 332 
the protein electrostatic free energy on lipid composition by calculating the electrostatic 333 
free energy at d=3 Å for decreasing ratios of DMPC lipids (XPC=1.0, 0.8, 0.5 and 0) (Fig. 334 
8A). The electrostatic free energy is slightly unfavorable for a neutral membrane (0.1 335 
kcal/mol) and decreases monotonically with the PC content until XPC=0.5 ( Gel = -0.68 336 
kcal/mol). It then increases to -0.42 kcal/mol with XPC decreasing to 0, in agreement with 337 
experimental data (42).     338 

We further calculated Gel for d=3 Å and XPC= 0.8 at salt concentrations ranging from 339 
0.025 to 0.7 M (Fig. 8B). BtPI-PLC shows a quasi-parabolic dependence of the 340 
electrostatic free energy on salt concentration. At the lowest ionic strength tested 341 
(0.025M), the electrostatic free energy of interaction between the protein and the 342 
membrane is slightly unfavorable (0.08 kcal/mol). It then quickly becomes more 343 
favorable until a salt concentration of 0.1 M (-0.25 kcal/mol) which is also approximately 344 
the physiological ionic strength surrounding the target eukaryotic cell. It then gradually 345 
becomes less favorable with increasing salt concentrations. This behavior can be 346 
explained by the fact that the unfavorable interactions between the protein and the bilayer 347 
are not significantly screened at low salt concentrations (see large negative isocontours of 348 
the electrostatic potential on Fig. 6A). However it is important to note that the 349 
electrostatic partitioning of BtPI-PLC is low.  350 

      A                                                                      B 351 

      352 

FIGURE 8 Influence of bilayer composition and salt concentration on the calculated 353 
electrostatic free energy. (A) The electrostatic free energy becomes more favorable as 354 
XPC decreases from 1 to 0.5, and increases from XPC=0.5 to XPC=0. Calculations are done 355 
at 0.1 M KCl and with a protein-membrane distance of 3 Å (minimum Gel in Fig. 7). 356 
(B) Electrostatic free energy as a function of salt concentration where the salt 357 
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concentration is varied from 0.025 to 0.7 M KCl. The protein is in the same position with 358 
respect to the bilayer as in (A). 359 

The affinity of BtPI-PLC variants for SUVs 360 

We determined, using FCS, SUV binding affinities for a selection of BtPI-PLC mutants 361 
(Fig. 9 and Supp. Inf. Table S8). K38, R71 and K279 are basic amino acids located in or 362 
close to the IBS of BtPI-PLC. Their mutation to alanine does not significantly affect the 363 
protein structure (Cf. Table S9 in Supp. Inf.) and they all show comparable enzymatic 364 
activity relative to WT at XPC = 0.5 (see Supporting Information Fig. S4). Lower specific 365 
activity towards XPC = 0 and 0.2 SUVs correlates with the loss of binding affinity 366 
provided by removal of a given Lys or Arg (Cf. Supp Info Fig. S4B). 367 

 368 

 369 

FIGURE 9 Binding of BtPI-PLC WT and cationic amino acids mutants to SUVs. The 370 
apparent Kd is plotted as a function of XPC. Kd values are provided as Supporting 371 
Information (Table S8). 372 

Experiments measuring affinity of the mutants for PC/PG SUVs show that R71A and 373 
K279A have apparent dissociation constants, Kds, that are 2 to 4 times higher than that 374 
for WT towards SUVs containing XPC = 0 to 0.5, and these mutants recover binding 375 
affinity at higher XPC presumably due to the increased importance of specific tyrosine 376 
mediated cation-  interactions with PC relative to electrostatics. The K38A mutation is 377 
more perturbing with an approximately 10 times lower Kd relative to WT for 0.3 to 0.5 378 
XPC SUVs and little to no recovery of affinity at higher XPC suggesting that this mutation 379 
may perturb both electrostatic and PC-specific interactions. However, none of these 380 
variants show the two orders of magnitude or greater decreases in Kd observed for K44A 381 
interactions with SUVs containing 0.1 to 0.9 XPC. Surprisingly, the K44A Kd stayed 382 
relatively stable up to XPC=0.8, a region in which the affinity of WT for SUVs increases 383 
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substantially. Then at XPC=0.5 the Kd was approximately 50 times higher than that of 384 
WT. This is similar to the results for K38A where perturbations near helix B affect both 385 
anionic binding and specific PC recognition.  386 

Distribution of basic amino acids in a database of peripheral membrane proteins 387 

A 388 

 389 

B    C 390 

       391 

FIGURE 10 Peripheral membrane proteins often lack large basic patches. (A) 392 
Distribution of mean net charges ( ) for protein families in OPM. (B) The mean surface 393 
density of basic amino acids ( ), as a function of position along the membrane 394 
normal in predicted membrane-binding orientations from OPM. Positive values along the 395 
insertion axis correspond to the hydrocarbon region of the membrane. (C) Distribution of 396 
the mean number of basic amino acids close to the membrane ( ). 397 

The low electrostatic partitioning combined with the major role of one particular basic 398 
residue is unexpected for a peripheral membrane protein. Our MD simulations and 399 
continuum electrostatics calculations indicate that this is due to the small number of basic 400 
amino acids at the BtPI-PLC IBS and their spatial distribution. In order to find out 401 
whether this feature of BtPI-PLCs is shared by other peripheral membrane proteins we 402 
performed a statistical analysis on the predicted membrane orientations of proteins 403 
classified as Peripheral/Monotopic in the OPM database(30). Distribution of overall 404 
charges (Fig. 10A) reveals that the balance of acidic and basic amino acids in these 405 
proteins does not show any over-representation of net positive charge. The mean density 406 
of basic amino acids on the protein surface seems to be slightly higher close to membrane 407 
head groups (Fig. 10B, where the phosphate density is expected to peak at insertion 408 
coordinates around -4 Å(33)). Observing the distribution of the mean number of basic 409 
amino acids within 10 Å of the end of hydrocarbon region (Fig. 10C), reveals that it is 410 
not uncommon for protein families in the data set to have 3 or fewer basic residues in this 411 
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region. These results suggest that BtPI-PLC is not unique and many peripheral membrane 412 
proteins may lack large surface clusters of basic amino acids. 413 

DISCUSSION 414 

Using continuum electrostatics calculations, molecular dynamics simulations and FCS 415 
affinity measurements we can formulate a complete model of BtPI-PLC specific binding 416 
to anionic PC-containing vesicles. Weak nonspecific electrostatics are dominated by 417 
lysine 44 which, upon mutation yields a loss of affinity resulting not only from the loss of 418 
nonspecific electrostatic interactions but also of short-range interactions with bilayer 419 
lipids. Neither the count of hydrogen bonds nor that of hydrophobic contacts between the 420 
protein and lipids are affected by lipid composition. Instead the balance between weak 421 
nonspecific electrostatics and opportunistic cation-  interactions ensures that the protein 422 
interacts preferentially with anionic vesicles containing large amounts of PC lipids. 423 

 424 

Opportunistic choline-tyrosine cation-  interactions  425 

Simulations of the enzyme at the interface of pure DMPG bilayers show a loose complex 426 
with a clear loss of short-range protein-lipid interactions, and in one of the MD replicas 427 
the protein dissociates from the bilayer after 200 ns. This is particularly meaningful for a 428 
simulation started with the protein anchored at the bilayer interface. On the other hand 429 
the 500 nanosecond-long MD simulations of BtPI-PLC at the surface of mixed PC/PG 430 
bilayers result in a stably anchored protein. In agreement with previous experimental and 431 
computational studies, both helix B and the rim loop intercalate hydrophobic amino acids 432 
in the bilayers(6, 7, 10). However, neither hydrophobic contacts nor hydrogen bonds 433 
between the protein and lipids are dependent on the bilayer composition (Cf. Table 1 and 434 
Fig. 5A). The simulations show that the occupancy of the cation-  interactions between 435 
choline headgroups of DMPC and the tyrosines contributing the most to the affinity 436 
(Y88, Y204, Y246, Y251) vary as a function of DMPC content. Furthermore the 437 
occupancies of these interactions during the simulations correlate qualitatively well with 438 
the effect their mutation has on the binding affinities of WT (Cf. Supporting Information 439 
Fig. S2); the higher the measured effect on Kd the larger the occupancy of these 440 
interactions during the WT simulations. It is important to note that, unlike cation-  441 
interactions observed in ligand-receptor binding (e.g. acetylcholine esterase (43) or 442 
histone tails (44)), BtPI-PLC does not recruit choline groups to one or several PC-high-443 
affinity binding sites. Rather these interactions are opportunistic and stochastically occur 444 
in the presence of PC lipids. This might also explain the apparent saturation of cation-  445 
interaction between Y246, Y251 and Y204 at high XPC. The opportunistic character of 446 
the choline-protein interactions serves the function of BtPI-PLC well, as it is a virulence 447 
factor that recognizes the extracellular leaflets of eukaryotic membranes which have a 448 
high PC content.  449 

While the ability of Charmm and other force fields to reproduce cation-  interactions 450 
between tryptophans and methylated lysines has been investigated (45), we are not aware 451 
of similar studies for interactions involving tyrosines. Even though our results cannot 452 
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replace a systematic benchmark they indicate that the force field provides a qualitatively 453 
satisfactory description of the tyrosine-choline interactions.  454 

Weak non-specific electrostatic interactions  455 

Seeing that the short-range interactions determining koff do not explain BtPI-PLC 456 
specificity for negatively charged vesicles, we turned to evaluating the interactions 457 
contributing to kon using continuum electrostatic methods, a qualitative approach that has 458 
proven reliable for that purpose. As expected the calculated electrostatic contributions to 459 
BtPI-PLC association with bilayers depends on the anionic lipid content and is most 460 
favorable at equal amounts of zwitterionic and anionic lipids. It is less favorable for 461 
increasing amounts of PG anionic lipids. This is in agreement with experimental data (42) 462 
and is due to the unfavorable interactions between the large negative regions of its 463 
surface potential and the anionic membrane. Despite an overall negative charge, BtPI-464 
PLC shows favorable electrostatic partitioning towards anionic membranes. In this 465 
respect, BtPI-PLC is not unique as other negatively charged amphitropic proteins are 466 
known to partition to anionic membranes (29). By contrast, a striking characteristic of 467 
BtPI-PLC is the small magnitude of the electrostatic free energy Gel (~-0.25 kcal/mol, 468 
Fig. 7) compared to what has been calculated for other peripheral membrane proteins 469 
using the same method (27, 29). While the calculation of Gel using continuum 470 
electrostatics calculations has obvious limitations due to the simplicity of the model, 471 
comparison of the results obtained for BtPI-PLC to those obtained with the same 472 
approach for other proteins remains valid and informative. Furthermore the affinity of 473 
BtPI-PLC for neutral pure PC vesicles (Kd=0.026 mM) is only approximately 4.1 times 474 
less favorable than that for vesicles with 20% anionic lipids (Kd=0.0064 mM) which is 475 
the PC:PG ratio yielding the tightest binding (9). This corresponds to an electrostatic 476 
contribution of less than one 1 kcal/mol. This, like the computational evaluation, is 477 
significantly lower than reported experimental values for amphitropic proteins (ca. 2 478 
kcal/mol) (2). A marginally favorable Gel means that the magnitude of the Coulombic 479 
contribution is only slightly higher than the magnitude of the desolvation penalty for the 480 
polar and charged residues (27). The low electrostatic interaction energy is explained by 481 
the absence of a well-defined cluster of basic amino acids at the BtPI-PLC IBS (46, 47).  482 

Unlike other basic amino acids K44 is an interfacial residue 483 

Another striking feature of BtPI-PLC is the large effect the mutation of one single lysine 484 
into an alanine has on Kd. For vesicles with XPC=0.8, the mutation of K44 to alanine 485 
decreases the affinity about 55 times compared to WT or a contribution of 2.4 kcal/mol, 486 
which is clearly higher than the calculated electrostatics contribution (<1 kcal/mol). It is 487 
also higher than early reports of the contribution of basic amino acids to membrane 488 
binding. For example Kim and co-workers reported that the binding affinity of short basic 489 
peptides for vesicles containing acidic lipids was increased tenfold by the introduction of 490 
each additional lysine, independently of the identity of the anionic lipid (5). This 491 
represents a contribution to the binding free energy of about 1.4 kcal/mol. Similarly, 492 
membrane targeting of the protein kinase pp60src (Src) and mutation of two of the six 493 
basic amino acids to neutral asparagines increased the Kd by 100 while mutation of five 494 
of the six increased Kd another order of magnitude. The latter is similar to the binding 495 
affinity of wild-type Src for neutral PC vesicles showing that in this case mutation of the 496 
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basic cluster mainly affects the electrostatic interaction between Src and negatively 497 
charged vesicles (47). In addition, White and Wimley reported a free energy of ca. 1 498 
kcal/mol for the transfer of lysines to the interfacial region of POPC large unilamellar 499 
vesicles (48).  500 

Yet the large effect of the K44A mutation is in agreement with what is expected from 501 
computed transfer free energies of lysine and alanine side chains to the interface of a 502 
DOPC bilayer (49); -4.4 and -1.6 kcal/mol, respectively. The difference represents the 503 
cost of replacing the lysine by an alanine and amounts to 2.8 kcal/mol. The high 504 
contribution of Lys44 to membrane binding is thus due to its position in the headgroup 505 
region where it participates in hydrophobic interactions with the lipid tails and long-506 
lasting hydrogen bonds with lipid phosphate groups. K44 is located close to the average 507 
plane of the phosphate groups in the different bilayers while other positively charged 508 
residues (i.e. K38, R71, K279) are further away from the IBS (Supp. Inf. Table S4). This 509 
also correlates with the moderate effects of the K38A, R71A and K279A mutations on 510 
BtPI-PLC affinity (Fig. 9). 511 

Looking at the computed free energy of transfer of a lysine side chain through POPC 512 
bilayers as a function of the distance from the center of the membrane is very 513 
informative. The slope is rather steep along the 5 to 10 Å that separate the bulk from the 514 
preferred position of the charged side chain with a difference between the two 515 
environments of about 2.5 kcal/mol (49-51). The contribution of basic amino acids at the 516 
IBS of peripheral membrane proteins will thus vary significantly depending on their 517 
position. The environment of these positive side chains and intramolecular interactions 518 
they might engage in are also expected to modulate their contributions. Furthermore our 519 
survey of the OPM database (30) shows that the distribution of surface basic amino acids 520 
in peripheral membrane proteins with respect to the membrane normal is rather broad 521 
(Fig. 10B) indicating a potentially broad range of contributions of those amino acids to 522 
the affinity of peripheral membrane proteins for biological membranes. Thus it is difficult 523 
to formulate a rule of thumb that would provide an average contribution per basic amino 524 
acid to peripheral membrane binding since the magnitude of such contributions is 525 
context-dependent. 526 

Other peripheral membrane proteins display comparable distributions of basic 527 
amino acids 528 

A survey of the peripheral proteins present in the OPM database allowed us to calculate 529 
and plot the net charges of membrane-binding proteins (Fig. 10A). The resulting 530 
distribution of charges is comparable to what has been observed for the entire proteome 531 
of Saccharomyces cerevisiae (52) and indicates that peripheral membrane binding 532 
proteins do not display a distribution of net charges skewed towards positive values. In 533 
fact, around one-third of the protein families classified as peripheral/monotopic in OPM 534 
have on average three or fewer basic amino acids within 10 Å of the membrane surface in 535 
their predicted membrane-bound state. It should be kept in mind that these charge 536 
estimates are based on simply counting basic and acidic residues, treating histidines as 537 
neutrally charged and considering neutral pH. Nonetheless, the results from analyzing the 538 
OPM database suggest that weak non-specific electrostatics is common among 539 
membrane-binding proteins. 540 
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CONCLUSION 541 

Tyrosine-choline cation-  interactions are opportunistic and occur as the result of the 542 
presence of PC lipids in the membrane. We propose that they constitute a mechanism for 543 
the recognition of PC-rich eukaryotic cell membranes. The highest affinity of BtPI-PLC 544 
towards slightly anionic SUV’s is the result of weak electrostatic contributions from basic 545 
residues, particularly from a key basic residue. Our investigation shows that the energetic 546 
contributions of basic amino acids to peripheral membrane binding are dependent on their 547 
position with respect to the interfacial binding site and how deep they might anchor in the 548 
lipid bilayer. As a result, and given the distribution of lysines and arginines in known 549 
amphitropic proteins we suggest that weak nonspecific electrostatics might be more 550 
common than generally thought and should be considered as a means for proteins to 551 
respond quickly to environmental changes.  552 

SUPPORTING MATERIAL  553 

Detailed computational protocols, detailed material and methods for FCS measurements, 554 
area per lipids (Tables S1), enzyme structural variation along MD simulations (Table S2), 555 
protein-lipid interactions and depths of anchorage for each relevant amino acid of the WT 556 
(Tables S3 and S4) and K44A mutant (Table S7), characteristics of Tyr-Cho interactions 557 
(Tables S5 and S6), binding affinities and enzymatic activity (Table S8 and Figure S4), 558 
secondary structure content and Tm (Table S9) of WT and mutants BtPI-PLC, flexibility 559 
of the 7- G loop (Figure S1), comparison between Tyr-Cho occupancy data from MD 560 
and FCS affinity data on tyrosine mutants (Figure S2), PB electrostatic surface potential 561 
of bilayer-bound BtPI-PLC (Figure S3).  562 
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Methods.  

Bilayer preparation for MD simulations  

Bilayers of DMPC, DMPG and DMPC:DMPG lipid mixtures were built using the 
CHARMM-GUI(1). We considered four bilayers: pure DMPC (XPC = 1.0), an 80:20 (XPC 
= 0.8) mixed bilayer, a 50:50 (XPC = 0.5) mixed bilayer, and pure DMPG (XPC = 0).  
Here XPC represents the mole fraction of PC lipids in the mixture.  All bilayers contain 
256 lipids (128 in each leaflet). TIP3P(2, 3) water molecules were added to hydrate the 
lipids and sodium was used as a counter-ion to achieve overall charge neutrality of the 
system when necessary. The CHARMM36 force field, with updates for lipids(4), and 
NAMD (v2.9)(5) were used for the simulations. The bilayers were first minimized using 
4000 steps of a conjugate gradient algorithm. The system was then equilibrated at 310 K, 
and 1 atm in the NPT ensemble for 400 ps with constant area in the x-y dimension and 2 
fs time steps. The temperature was controlled with Langevin dynamics with the 
temperature damping coefficient set to 1.0 and the velocities periodically reassigned 
every 1 ps. The pressure was controlled using the Langevin piston method(6) with an 
oscillation period of 75 fs and a damping time scale of 25 fs. We used anisotropic 
pressure coupling. The non-bonded interactions cut-off was set to 12 Å and long-range 
electrostatics corrections beyond the cut-off were modeled using the Particle Mesh 
Ewald(7) method. We used switching functions for both the electrostatics and van der 
Waals interactions with the switch distance set to 11 Å. We used the r-RESPA(8) 
multiple time step algorithm and short-range non-bonded forces were evaluated every 2 
fs while long-range electrostatics were evaluated every 4 fs. SHAKE(9) was used to 
constraint all bonds between hydrogen atoms and heavy atoms. The systems were then 
further equilibrated for 200 ps after removing the constant area constraint. The bilayers 
were further simulated for 100 ns in the NPT ensemble without velocity reassignment. 
The bilayer with a 50:50 PC:PG ratio (XPC = 0.5) was simulated for 200 ns to achieve 
proper lipid mixing. The pressure control parameters for the Langevin piston method 
were altered to 200 fs for the oscillation period and 50 fs for the damping time scale. All 
other simulation parameters remained unchanged. The values of the area per lipid for the 
bilayers are given in Table S1. 

Note that we did not use a correction for the Lennard Jones potential between Na+ and 
lipid oxygens(10)for several reasons; our simulations start with the protein inserted in the 
bilayer, we do not expect the ions to play a significant role in the protein-bilayer 
interaction as indicated by the low electrostatics partitioning (Cf. Results section, 
continuum electrostatics calculations), and to our knowledge the correction has not been 
benchmarked on systems containing surface-bound proteins or peptides. We did prepare a 
DMPG bilayer using the Lennard-Jones correction though, and then ran test simulations 
with BtPI-PLC using the correction. In these conditions the binding of BtPI-PLC to the 
bilayer was unstable as we also observe in the simulations without the NBFIX correction. 

MD trajectory analysis  

All analyses were performed using CHARMM (v33b1)(11) and VMD (v1.9.1)(12) on the 
last 450 ns of each simulation. Hydrophobic contacts, hydrogen bonds and cation-  
interactions are averaged over the two replicas. Hydrophobic interactions between the 
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protein and lipid bilayer were assigned if the protein and membrane candidate atoms 
were within 3 Å of each other for at least 10 ps. For the protein, candidate atoms for 
hydrophobic contacts are side chain atoms from aliphatic groups, while for the lipid 
bilayer; the candidate atoms are from the hydrophobic lipid tails. Hydrogen bonds were 
assigned using the donor and acceptor definitions from the CHARMM(3) force field with 
a distance cut-off of 2.4 Å and an angle cut-off of 130 degrees. The two cut-off criteria 
had to be met at least for 10 ps. Cation-  interactions between the aromatic amino acids 
(Tyr, Phe and Trp) and the choline group of the DMPC lipids were assigned if the 
nitrogen atom of the choline group was within 7 Å of the aromatic rings. Additionally 
these distances should not vary more than 1.5 Å (13, 14). Combining these two criteria, 
we can screen for the possible formation of cation-  adducts during the course of 
simulation. 

Occupancy of a particular interaction is reported as the number of conformations with the 
interaction present divided by the total number of conformations in the trajectory 
sampling window. 

Electron density profiles (EDP) were generated using the Density Profile Tool(15) VMD 
plugin. EDPs were calculated from the trajectory at 1 ns intervals. The projection axis is 
the z-axis, which is also the bilayer normal. The profile resolution is z = 1 Å for the 
protein, lipid bilayer and water. The profile resolution is z = 0.5 Å for amino acids, 
membrane binding components of protein, choline and phosphate planes of the 
membrane. 

Continuum electrostatics calculations 

Poisson-Boltzmann calculations are carried out using APBS (version 1.3) (16). The 
parameters for protein and ions are adapted from the CHARMM all atom force field (c22 
including CMAP correction)(17) and for the lipids from the force field update for lipids 
(Charmm36) (4). The non-linear Poisson-Boltzmann equation is solved using the 
focusing technique (18). Coarse grid dimensions are expanded by a factor of 2.5 as both 
BtPI-PLC and anionic membranes are highly charged. Fine grid dimensions are obtained 
by adding 50 Å to the molecular dimensions. We used fine grid spacing of 0.5 and 0.35 Å 
and the difference in the calculated electrostatic free energy was less than 0.003 kcal/mol; 
a fine mesh spacing of 0.35 Å was thus chosen for all the calculations. The solute 
dielectric is set to 2 and the solvent (water) dielectric is set to 80. KCl is used to 
investigate the effect salt concentration on the electrostatics. 

The electrostatic free energy for the protein Gel(P), membrane Gel(M) and the protein 
membrane complex Gel(P.M) is calculated. The electrostatic free energy contribution to 
the free energy of binding due to protein membrane interactions can then be evaluated as 
follows: 

Gel =Gel (P.M ) [Gel (P)+Gel (M )]       (S1) 
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Database statistics 
Analysis of net charges For the selected families, we obtained average net charges, , 
for each family, F, as: 

      (S2) 
 
where  is the number of proteins in the family F, and  is the net charge of a protein 
obtained as: 
 

     (S3) 
 
where , , , and  respectively denote the number of lysines, arginines, 
glutamates and aspartates in the protein.  
 
Analysis of basic residues For a family F, we calculated the mean number of basic 
amino acids at the IBS as: 
 

    (S4) 
 
where ‘basic’ denote amino acids of type Lys or Arg. Please note that the plot on Figure 
10 has been truncated to exclude one family with  > 40. 

We also calculated the mean surface density of basic amino acids at varying distances 
from the membrane. We define this statistic for windows of size l around different 
insertion coordinates. For a family F, the mean surface density of basic amino acids is: 
 

    (S5) 

 
where ‘any’ denote amino acids of any type. We report averages over the entire dataset: 
 

    (S6) 
 

where  denotes the number of families in the set. 

 

FCS measurements of BtPI-PLC binding to SUVs  

FCS experiments were carried out at 22 oC on 300 L samples in PBS, pH 7.4, plus 1 
mg/ml BSA to stabilize PI-PLC, in chambered coverglass wells (LabTek), coated with 10 
mg/ml BSA and rinsed with PBS prior to use to prevent protein adhesion to the sides of 
the wells. 10 nM labeled PI-PLC was titrated with SUVs, and the fraction of protein 
bound to vesicles was determined from two species fits to the autocorrelations (obtained 
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in crosscorrelation mode), G( ) = Apgp ( ) + Avgv( ), where p and v denote free protein 
and SUVs that are fluorescent due to PI-PLC binding, respectively, and Aj is the 
amplitude of species j (19-22). The correlation function for species j, gj( ), accounts for 
diffusion of the molecules through the observation volume which depends on the radius 
and extent of the observation volume, determined from fits to rhodamine 110 calibration 
data using D = 280 m2s-1 at 22 oC(23), and Dj, the diffusion coefficient for each 
species(22, 24). Dp for the free protein was experimentally determined in the absence of 
vesicles while Dv for the SUVs was determined from global fits to all of the titration 
experiments for a particular XPC using Origin (OriginLab). The apparent fraction of 
protein bound to the SUVs, f, can be determined from Ap and the time-averaged number 
of proteins in the observation volume in the absence of vesicles <No>, by f = 1-Ap<No> 
=1-Ap/Ap,o, where Ap,o=1/<No> is the autocorrelation amplitude for free PI-PLC prior to 
titration and corrected for volume changes. The apparent dissociation constant, Kd, 
representing PI-PLC partitioning onto the vesicle, and a cooperativity coefficient, n, were 
determined from fits to the equation f = fmax [PL]n/(Kd

n+[PL]n), where f, is determined for 
different total lipid concentrations, [PL], at fixed XPC, and fmax is the apparent maximum 
fraction bound. FCS experiments were repeated twice using different vesicle and protein 
preparations. Assuming that uncertainties are normally distributed and considering the 
range of standard deviation values from all of the FCS measurements, a 2-3 times 
increase in apparent Kd relative to N168C PI-PLC (WT*) is considered significant. 
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Table S1. Area per lipid for different bilayers obtained from MD simulations. 

 

XPC Area per lipid (Å2) 

1.0 60.9±0.9 

0.8 59.6±0.9 

0.5 58.5±1.0 

0.0 59.1±1.0 

 

 

Table S2.  Average RMSD of the BtPI-PLC backbone along the MD simulations 
relative to the starting protein structure (minimized X-ray structure, in the presence 
of the bilayer).  

 

XPC replicate RMSD (Å) 

1.0 
r1 1.44±0.11 
r2 1.34±0.12 

0.8 
r1 1.43±0.10 
r2 1.17±0.11 

0.5 
r1 1.43±0.13 
r2 1.61±0.09 
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Table S3. Inventory of interactions between BtPI-PLC and the bilayersa. 

SSEb aa Hydrophobic c Hbonds (%) d Cation-  (%) e 

 XPC XPC XPC 

 0.5 0.8 1 0.5 0.8 1 0.5 0.8 1 

B Q40 1.8 2.5 2.4 64.4 99.2 92.0 
 N41 1.1 1.5 1.4 62.5 96.8 90.5 
 P42 4.9 5.8 5.6 
 I43 8.6 7.8 7.8 
 K44 3.3 1.4 2.3 85.9 98.3 98.5 
 Q45 19.7 27.2 33.3 
 V46 3.6 4.5 4.2 
  W47 2.9 2.2 2.6       23.4 12.5 3.3 
 Y53             1.6 8.1 1.9 

2 R71       49.4 50.5 38.7       
2- D P84 4.9 2.6 2.7 

 L85 3.4 1.2 2.3 
 Y86 9.9 15.6 11.9 
  Y88       42.2 58.0 61.6 33.8 55.6 93.1 

3- E Y118 1.6 7.8 12.9 
  K122       67.8 56.2 56.9       

6- F Y200 49.8 12.1 43.0 
  K201       53.7 46.5 45.0       

F Y204             18.0 25.5 22.3 
7- G S236 38.5 33.4 32.8 

 G238 0.8 0.9 1.1 
 G239 0.9 1.9 2.3 
 T240 2.7 2.5 2.6 
 A241 3.2 3.1 3.2 
 W242 2.9 2.8 2.9 
  S244       43.0 82.0 68.4       

G Y246 20.1 12.9 34.6 50.1 84.5 80.9 
 Y247 29.2 36.0 43.7 11.1 11.9 12.7 
 Y251 35.6 34.0 38.8 31.7 47.4 47.0 

a DMPG simulations (XPC=0) are not included as (1) they do not show tight binding of the protein, and (2) we want 
to follow the dependence of the interactions on the PC:PG ratio (some interactions such as cation-  obviously disappear 
in the absence of PC). The results presented in the table above are averages over two replicas on the last 450ns.. b 
Secondary structure elements; : helix, : strand, i- X: loop between strand i and helix X. c Average number of 
hydrophobic contacts per frame. d Occupancies of hydrogen bonds in %. Only the hydrogen bonds observed in the two 
replicas at the same XPC are shown. Hydrogen bonds reported are mainly between the lipid phosphate groups and 
amino acid side chains but a few form with the protein backbone (bold numbers). Hydrogen bonds with headgroups or 
glycerol groups are not stable throughout the simulations. e Occupancies of cation-  adducts. 
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Table S4. Simulations averages of the anchoring depth of BtPI-PLC residues in the 
bilayer. Positive values indicate that the centers of mass of the amino acids are on 
average buried below the phosphate group of the lipids during the simulation. The 
average phosphate plane is used as the reference plane. 

 

SSE aa XPC = 1.0 XPC = 0.8 XPC = 0.5 XPC = 0 
r1 r2 r1 r2 r1 r2 r1 

1- B K38 -6.8±2.2 -7.6±2.3 -8.1±2.0 -6.7±2.5 -6.8±3.1 -9.3±3.1 -8.4±3.0 
B Q40 0.6±2.3 -0.2±2.4 -1.1±2.1 -0.4±2.5 0.5±3.3 -2.8±3.1 -2.0±3.1 

N41 3.3±1.8 2.8±2.0 2.3±1.7 3.4±2.3 3.1±2.4 0.7±2.4 1.3±2.6 
P42 4.2±1.9 3.7±1.9 3.0±1.8 4.0±2.2 3.8±2.5 1.5±2.3 1.7±2.7 
I43 4.3±1.7 3.9±1.8 3.7±1.6 4.3±2.1 4.2±1.9 2.5±1.8 2.3±2.4 
K44 0.4±1.7 -0.2±1.8 -0.3±1.6 0.5±2.2 0.4±1.9 -1.1±1.8 -1.3±2.3 
Q45 -0.6±1.9 -1.0±1.9 -1.8±1.8 -0.8±2.1 -1.0±2.4 -3.3±2.0 -3.1±2.7 
V46 0.4±1.9 0.3±1.8 -0.3±1.7 0.3±2.0 0.3±1.9 -2.1±1.9 -1.8±2.7 

  W47 -0.8±1.9 -0.7±2.2 -0.7±1.9 -0.8±2.1 0.1±1.7 -2.3±1.8 -2.6±2.6 
2 R71 -10.1±2.0 -10.9±2.4 -10.0±2.3 -9.1±3.1 -9.6±1.8 -10.2±2.3 -10.3±2.5 
2- D P84 -3.2±1.9 -4.5±2.3 -2.5±2.0 -2.2±2.7 -1.3±1.6 -3.8±1.7 -4.0±2.4 

L85 -3.6±1.6 -4.2±2.0 -3.7±1.7 -2.9±2.4 -2.9±1.7 -4.8±1.7 -4.7±2.3 
Y86 -5.5±1.9 -7.0±2.2 -6.1±1.9 -5.0±2.8 -2.0±2.1 -6.8±2.5 -6.7±2.4 

  Y88 -4.9±2.0 -5.8±2.3 -5.9±2.0 -4.4±2.6 -6.3±2.4 -6.4±3.0 -6.2±2.7 
3- E Y118 -8.7±2.1 -8.1±2.6 -8.2±2.3 -7.4±3.1 -8.3±1.8 -7.0±2.2 -7.9±2.7 

  K122 -6.1±2.9 -5.3±3.3 -5.2±3.3 -5.1±4.2 -5.0±2.5 -5.3±3.0 -5.8±3.2 
6- F Y200 -10.9±2.2 -10.8±2.5 -10.4±1.8 -10.7±2.5 -10.5±2.2 -11.8±3.3 -12.2±4.2 

  K201 -7.6±2.6 -7.5±2.8 -7.2±2.1 -7.4±2.8 -7.0±2.6 -8.7±4.0 -9.7±4.4 
F Y204 -7.3±2.6 -7.5±2.5 -8.3±2.7 -8.6±2.5 -8.7±2.8 -11.6±4.1 -12.6±4.0 
7- G S236 -6.6±2.0 -6.5±2.2 -6.1±1.8 -6.5±2.2 -6.4±2.0 -7.8±3.1 -8.9±3.6 

S237 -3.0±1.9 -3.0±2.1 -2.8±1.8 -2.9±2.1 -2.7±1.9 -5.5±3.9 -5.6±3.8 
G238 0.1±2.0 0.2±2.2 0.4±1.8 0.0±2.3 0.4±2.1 -2.5±3.6 -3.8±4.2 
G239 2.2±1.9 2.1±2.0 2.2±1.7 2.2±2.1 2.4±2.0 0.3±3.1 -1.4±4.2 
T240 3.3±2.0 3.3±2.0 2.9±1.9 3.0±2.0 3.1±2.2 1.2±3.1 -0.8±3.5 
A241 2.6±2.2 2.5±1.9 1.7±2.1 2.0±2.1 2.0±2.5 0.4±2.6 0.1±3.3 
W242 3.9±2.4 4.1±2.1 3.3±2.2 3.3±2.2 3.3±2.4 1.3±3.3 3.1±3.2 
N243 -0.3±2.3  0.0±2.1 -0.4±2.0 -0.6±2.2 -0.5±2.3 -2.5±3.4 -2.0±3.4 

  S244 -2.3±2.1 -2.3±1.9 -2.9±1.9 -2.7±2.0 -2.7±2.2 -4.4±2.6 -4.4±3.2 
G Y246 -4.5±2.4 -4.3±2.1 -6.0±2.2 -5.2±2.2 -5.4±2.5 -8.2±2.4 -8.8±3.1 

Y247 -2.3±2.5 -2.0±2.2 -3.4±2.4 -3.2±2.2 -3.2±2.5 -5.5±2.9 -6.1±3.6 
S250 -7.2±2.7 -6.9±2.4 -8.7±2.5 -8.1±2.4 -8.3±2.7 -11.3±2.9 -11.7±3.4 

 Y251 -6.7±3.2 -5.8±2.5 -7.6±2.7 -7.4±2.6 -7.2±2.9 -10.3±3.7 -10.9±4.0 
8- H K279 -8.1±3.1 -8.1±3.0 -10.1±2.9 -9.3±3.1 -9.5±3.6 -12.6±2.9 -12.7±3.5 
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Table S5. Number of DMPC lipids mediating one or more cation-  interactions with 
BtPI-PLC tyrosines (mixed bilayer, XPC = 0.5).  

 

Residue Replica 1 Replica 2 
Y251 4 5 
Y246 2 2 
Y88 1 2 

 

 

 

Table S6. Occupancies of Y251 cation-  interactions involving more than one PC 
lipid simultaneously. The occupancies (%) are reported for the three different PC 
bilayers simulated. Reported replicates are chosen based on the presence of cation-  
interactions between Y251 and more than one lipid. 

 

XPC & replica Occupancies (%) 
XPC = 1    r2 11.5 
XPC = 0.8 r1 11.1 
XPC = 0.5 r1 4.8 
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Table S7. Anchorage depth and inventory of interactions for BtPI-PLC K44A and a 
mixed bilayer (XPC-0.8).  

SSE aa depth (Å) Hydrophobic Hbonds (%)a Cation-  (%) 

B Q40 -1.4±1.9 0.9 7.2b/34.6 
N41 1.8±1.7 0.5 7.2/17.0/9.8c 
P42 2.9±1.6 5.2 
I43 3.4±1.6 8.2 
K44A -0.9±1.6 1.6 
Q45 -1.9±1.6 0.3 18.5 
V46 -0.3±1.6 3.9 
W47 -0.2±1.6 4.1 

2 R69 -12.3±1.7 80.6 
R71 -9.4±2.2 73.4 

2- D H82 -7.4±1.7 1.1 6.6 
P84 -2.2±2.0 6.3 
L85 -3.3±1.7 5.0 
Y86 -6.4±2.5 22.9/9.3 14.7 
Y88 -6.6±2.2 63.7 38.2 

3- E Y118 -7.4±2.3 35.1 36.0 
K122 -8.0±4.0 7.9/26.3 

6- F Y200 -9.8±2.1 93.1 
K201 -6.3±2.4 63.8 

F N203 -6.5±3.0 12.4 
Y204 -8.4±2.9 6.9 32.4 

7- G S236 -6.7±1.8 0.3 22.9 
S237 -3.1±1.8 
G238 0.1±1.9 1.4 
G239 1.9±1.8 0.5 
T240 2.6±2.0 2.5 
A241 1.2±2.1 3.2 
W242 2.8±2.3 2.7 12.6/11.2d 
N243 -0.8±2.2 16.3 
S244 -3.4±1.9 79.5 

G Y246 -6.3±2.1 8.1 85.7 
Y247 -3.8±2.4 43.5 13.3 
Y248 -6.5±2.2 
S250 -9.3±2.4 

  Y251 -8.1±2.8   34.2 50.3 
a Hbonds occur mainly between sidechains and phosphate groups; b Hbond between backbone and 
phosphate (bold numbers) c Hbond between sidechain and headgroup; d Hbond between sidechain and 
glycerol 
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Table S8. Binding affinities of BtPI-PLC variants for PC/PG SUVs. 

   Kd (mM)   
BtPI-PLC a XPC = 0 0.2 0.5 0.8 1.0 
WT 12±1 0.31±0.01 0.016±0.001 0.0064±0.0008 0.026±0.005 
K38A 32±1 2.2±0.2 0.30±0.05 0.037±0.002 0.024±0.06 
K44A 22±4 8.8 b 1.0±0.3 0.35 b 0.51±0.07 
R71A 43±5 1.8±0.2 0.13±0.05 0.030±0.008 0.042±0.009 
K279A 31±7 0.87±0.04 0.092±0.011 0.012±0.002 0.034±0.008 
 

a All of the variants of BtPI-PLC contain the N168C mutation for fluorescent labeling  
b Data for K44A binding at XPC=0.2 and 0.8 was interpolated from data between XPC = 
0.1 and 0.3 and XPC = 0.7 and 0.9, respectively.  
 

The actual K44A Kd values obtained were: 

XPC  Kd (mM) 
0  22.2±3.9 
0.1  14.7±2.5 
0.3  5.43±2.13 
0.5  1.03±0.28 
0.7  0.41±0.06 
0.9  0.33±0.03 
1.0  0.51±0.07 
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Table S9. Comparison of secondary structure content and Tm values for WT and 
mutant BtPI-PLCs from far UV circular dichroism data. 

 

Protein 
% Secondary Structure 

Tm (oC)a 

-Helix -Sheet -Turn Random 
Coil 

WT 20.6 32.2 17.2 30.0 57.1 

K38A 20.2 32.5 17.1 30.1 57.3 

K44A 21.6 30.9 17.4 30.1 60.3 

R71A 21.4 30.9 17.2 30.3 56.8 

K279A 20.8 31.8 17.2 30.1 56.0 
a Loss of secondary structure was assessed by monitoring the ellipticity at 222 nm as a 
function of temperature 
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Figure S1. The 7- G loop is more flexible in simulations without PC lipids. The 
RMSD of the loop relative to its initial conformation is plotted across the simulations 
for BtPI-PLC interacting with lipid bilayers with different lipid compositions. On a pure 
DMPG bilayer (XPC = 0) the loop looses intramolecular interactions resulting in more 
flexibility.  
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Figure S2. Comparison between occupancies of cation-  interactions observed 
during the MD simulations and evaluation of G calculated from apparent Kd 
values measured by FCS for BtPI-PLC WT and single tyrosine mutant at XPC=1.0 
(A), 0.8 (B) and 0.5 (C). Kd value are from Grauffel et al.(25). See same reference for an 
explanation of the role of Y248 and the effect of its mutation to an alanine. 
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Figure S3. Calculated electrostatic potential the of BtPI-PLC and membrane 
(XPC=0.8) complex when BtPI-PLC is 4 Å away from the membrane. Isocontours of -
/+ 1 (unit KT/e) are mapped on the molecular surface (negative: red; positive: blue). (A) 
Side view, in an equilibrated bilayer isosurfaces are not essentially flat. (This contrasts 
with other published views where isosurfaces for model membranes are represented as 
flat(26-28)) (B) Top view, local zones of blue and red alternate in the membrane. This 
pattern is also observed for a zwitterionic membrane (i.e. POPC/DMPC) (29).  

A B 
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Figure S4. Specific activity of BtPI-PLC variants towards PI/POPC SUVs with 2 
mM PI and varying XPC: WT (solid circle), K38A (open circle), K44A (solid square), 
R71A (inverted triangle), and K279A (triangle). Protein concentrations were adjusted 
to between 0.15-2 g/ml to ensure less than 20% cleavage of the PI. (A) All cationic 
residue mutants exhibit enzymatic activity similar to wildtype (WT) for XPC > 0.5 
implying that the active site is not significantly perturbed in these alanine mutants. (B) A 
zoomed in view of the activity for low XPC. i.e., more anionic SUVs showing the 
extremely low activity of K44A. 
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