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YC-Induced miR-203b-3p and
iR-203a-3p Control Bcl-xL
xpression and Paclitaxel
ensitivity in Tumor Cells1
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Abstract
Taxanes are chemotherapeutic agents used in the treatment of solid tumors, particularly of breast, ovarian, and lungorigin.
However, patients showdivergent therapy responses, and themolecular determinantsof taxanesensitivity have remained
elusive. Especially the signaling pathways that promote death of the taxane-treated cells are poorly characterized. Herewe
describe a novel part of a signaling route inwhich c-Myc enhances paclitaxel sensitivity through upregulation ofmiR-203b-
3p and miR-203a-3p; two clustered antiapoptosis protein Bcl-xL controlling microRNAs. In vitro, the miR-203b-3p
decreases the expression of Bcl-xL by direct targeting of the gene's mRNA 3’UTR. Notably, overexpression of the miR-
203b-3p changed the fate of paclitaxel-treated breast and ovarian cancer cells frommitotic slippage to cell death. In breast
tumors, high expression of the miR-203b-3p andMYCwas associated with better therapy response and patient survival.
Interestingly, in the breast tumors,MYC expression correlated negativelywith BCL2L1 expression but positively withmiR-
203b-3p and miR-203a-3p. Finally, silencing ofMYC suppressed the transcription of both miRNAs in breast tumor cells.
Pending further validation, these results may assist in patient stratification for taxane therapy.
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axanes are chemotherapeutic agents that disturb microtubule
pendent processes, such as cell division, by altering microtubule
namics. These drugs are widely used in the treatment of ovarian,
east, and lung cancer [1–3]. Taxanes, such as paclitaxel, have
oved to be effective in the clinical setting, but like many other
emotherapy compounds, they are nonspecific cytotoxins that
fect all cells in the body. Also, the molecular determinants of
clitaxel sensitivity in tumor cells have remained elusive [4].
ogether, these characteristics result in adverse effects and variable
eatment outcomes for the patients. For example, up to 70% of
tients with high-grade ovarian tumors treated with a platinum-
xane combination relapse in a median of 15 months despite their
itial treatment response [3]. Thus, there is a need for biomarkers
at could help to predict the sensitivity of tumors to paclitaxel
erapy.
When high concentrations of paclitaxel are applied on cultured
ncer cells, the mitotic spindle assembly is disrupted, which activates
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e spindle assembly checkpoint causing a mitotic arrest [5,6]. The
lls either die at the mitotic block or return to interphase without cell
vision, an event referred to as “exit” or “slippage”. Cells that abnormally
it mitosis can undergo post-mitotic death (PMD), arrest in interphase
G0, or continue cycling [7,8]. A competition between the cyclin
–dependent mitotic exit network and the increasing proapoptosis
gnaling determines a cancer cell's response to paclitaxel treatment.
he mitotic exit network is a well-established cascade, but much less
known about the regulation of cell death during mitotic arrest and
ter slippage [8]. The PMD has potential clinical relevance since
tratumoral paclitaxel concentrations may not be high enough to
equately activate the spindle assembly checkpoint in tumor cells
t can instead allow slippage from mitosis accompanied with
romosome mis-segregation [9].
The intrinsic mitochondrial apoptosis pathway, consisting of
fector proteins as well as pro- and antiapoptotic regulator proteins
0], has been suggested to be the main mediator of paclitaxel-
duced death [11,12]. In addition to the master regulator of this cell
ath pathway, c-Myc (MYC) [12,13], the antiapoptotic Bcl-2 family
ember Bcl-xL (BCL2L1) is conceivably one of the key determinants
taxane sensitivity in cancer cell and xenograft models [14–16].
igh Bcl-xL expression has indeed been associated with paclitaxel
sistance in solid tumors [17,18]. However, not much is known
out the regulation of Bcl-xL expression and activity. Topham and
workers [12], Eischen et al. [19], and Maclean et al. [20] have
oven that c-Myc suppresses Bcl-xL expression, but the molecular
echanism remains unclear.
MicroRNAs (miRNA) belong to the family of small regulatory RNAs,
d they control the expression of most human genes at post‐
anscriptional level [21]. miRNAs may also possess diagnostic value as
mor biomarkers [22]. In this study, we aimed to identify novelBCL2L1
gulating miRNA(s) whose altered expression would modulate cancer
lls' survival after paclitaxel treatment in vitro and in vivo.We present the
st evidence that miR-203b-3p and miR-203a-3p are among the c-
yc–regulated elements that control the expression of Bcl-xL and
ereby influence tumor cells' sensitivity to paclitaxel therapy.
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ell Culture
293T, MDA-MB-231 SA (Theresa A. Guise, University of
irginia, Chalottesville, VA), OVCAR-8 (DCTD Tumor/Cell Line
epository, NCI), and CaOV-3 (ATCC) cells were cultured in
MEM/F12 (Sigma-Aldrich, St. Louis, MO) supplemented with
% inactivated fetal bovine serum (FBS), 1 mM L-glutamine, and
penicillin-streptomycin, as well as 0.1 mM nonessential amino

ids for MDA-MB-231 and sodium pyruvate (1 mM) for CaOV-3.
CF-7 (ICLC HTL95021) cells were grown in DMEM (1000 mg/l
ucose, Sigma-Aldrich) supplemented with FBS, 2 mM L-
utamine, and penicillin-streptomycin. The MDA-MB-231 SA
lls are bone metastatic and were spontaneously derived from the
rental cells during a long in vitro culture [23].

ransient Transfection of miRNAs and siRNAs
miRIDIAN miRNA mimics and the MYC siRNA were purchased
om GE Dharmacon (Lafayette, CO) and used at a 50-nM
ncentration. HiPerFect transfection reagent (Qiagen, Valencia,
A) was used to transiently transfect cells with miRNA mimics and
RNAs, and Lipofectamine 3000 (Invitrogen, Thermo Fisher
ientific, Waltham, MA) was used for co-transfecting oligonucleo-
es and plasmids.

ive-Cell Imaging
To study the effect of miRNAs on paclitaxel sensitivity, we
ansfected the cells with miRNA mimics, and 28 to 29 hours later,
ded 10 nM paclitaxel (Sigma-Aldrich) to the culture medium.
aging with Incucyte live-cell imaging device (Essen Instruments
d. Hertfordshire, UK) was started immediately after the drug was
pplemented, and the filming continued for 48 to 72 hours at a 30-
inute image capture interval. The cell fates profiles were determined
ith visual inspection of the phase-contrast image sequences
,12,24]. Briefly, death in mitosis (DiM) was determined as death
ring the drug-induced mitotic arrest based on morphological
anges; rounded mitotic cells started surface blebbing, shrank, and
saggregated. PMD was determined as death of a post-mitotic
terphase (flat) cell in G1, S, or G2 phase; cells that had exited
olonged mitotic arrest (changed from a round cell morphology to a
t morphology) started intense surface blebbing, shrank, and often
saggregaged into a number of membrane-bound particles.

ellTiter-Glo and Luciferase Reporter Assays
Cell viability was measured with the CellTiter-Glo Luminescent
ssay (Promega, Madison, WI) and EnSight Multimode Plate Reader
erkinElmer, Waltham, MA) according to the manufacturer's
structions. The luciferase reporter assays were performed in MDA-
B-231 SA or 293T cells according to the previously described
ocedure [25]. The MIR203A-pGL3 construct contained bp 13 to
83 upstream of MIR203A, as described before [26].

NA Isolation and miRNA qPCR
For quantitative miRNA PCR, samples were collected 72 hours
ter transfection and the paclitaxel-treated samples after an overnight
ug treatment. The relative expression of mature miRNAs was
easured as described previously [25].

munoblotting
Cells were lysed for immunoblotting either with APC buffer as
eviously described [27] or with RIPA buffer (50 mM Tris–HCl
7.5, 150 mM NaCl, 0.5% DOC, 0.1% SDS, 1% NP-40),

pplemented with phosphatase and protease inhibitors, and
nication. Membranes were blocked with 5% milk/TBS-T (0.1%
ween) before primary antibody incubations. The primary antibodies
cluded rabbit anti-Bcl-xL (1:1000; #2764 Cell Signaling Technol-
y, Danvers, MA), rabbit anti-c-Myc (Y69; 1:1000; ab32072
bcam, Cambridge, UK), mouse anti-cleaved PARP (Asp214;
1000; #9546 Cell Signaling Technology), rabbit anti-cleaved
spase 3 (Asp175; 1:1000; #9664 Cell Signaling Technology), and
ouse anti-GAPDH (1:30000, HyTest Ltd., Turku, Finland). HRP-
ked secondary antibodies were used at 1:5000 concentration, and
otein signals were detected with chemiluminescence.

linical Data Analysis
TCGA Cohorts. The TCGA repository was used to study patient
rvival and miRNA expression (level 3), obtained with Illumina
quencing [28], in 1172 breast cancer cases. The information
garding The Cancer Genome Atlas (TCGA) ovarian cancer cohort
ta has been previously described [29].
Bergen Cohort. The cohort has been described in detail
eviously [30,31]. For description of the sample collection,
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iRNA profiling, and data analysis, please refer to [29] with the
llowing refinements: demultiplexing was performed with the
lumina CASAVA software, sequence quality was analyzed with
astQC, and samples with less than 300,000 reads were excluded, as
ell as miRNAs with less than 20 sequencing reads in 25% or more of
e samples. In total, the miRNA profiling included 466 mature
uman miRNAs in 200 patients. miRNA read counts were
ansformed and normalized using the rlog function of the DeSeq2
package [32]. From the same tumor samples, the mRNA levels were
sayed using the Illumina HT-12 cDNA microarray platform. Raw
tensities were processed by quantile normalization based on a set of
gh-quality probes, and batch correction was performed to adjust for
fferences between runs [33,34]. Data from cDNA microarray and
iRNA sequencing were available from 190 patients (epirubicin;
= 85, paclitaxel; n = 105).

tatistical Analysis
Paired, two-tailed Student's t test was used to perform statistical
alyses for the in vitro assays. For comparing differences in gene and
iRNA expression between two or more groups in the cohort
tasets, t test and ANOVA were applied, respectively. For assessment
associations between survival times and single categorical variables,
g-rank tests were performed. Statistical significance was defined as
≤ .05 (*), P ≤ .01 (**), and P ≤ .001 (***). Values are presented
the average ± standard deviation (S.D.).
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iR-203b-3p-induced Modulation of Cell Fate upon Paclitax-
Treatment
To identify novel miRNAs that cause a change in the cell fate upon
clitaxel treatment, we searched for potential candidates among the
p 50 miRNAs that are predicted to target BCL2L1 (Table S1): a
mponent of the mitochondrial apoptosis pathway [10] and a key
gulator of taxane-induced cancer cell death [12,14–16,24]. Among
ese candidates, we found four miRNAs (miR-342-3p, miR-203b-
, miR-505-5p, miR-361-3p) that potentially regulate Bcl-xL and
clitaxel sensitivity in cancer cells. These miRNAs were noted to
gatively correlate with BCL2L1 levels and positively associate with
xane response in the NCI cell line database (Table S2). Moreover,
w expression of these four miRNAs correlated with reduced patient
rvival in at least one of the three studied breast and ovarian cancer
horts (Figure S1). The steps of the candidate miRNA filtering are
esented in more detail in Supplementary Figure 1.
Next, the four candidate miRNAs were applied in live-cell imaging
alysis where the fate of miRNA mimic transfected MDA-MB-231
breast cancer cells and OVCAR-8 and CaOV-3 ovarian cancer

lls was determined upon treatment with clinically relevant paclitaxel
se (10 nM) [9]. Out of the tested four miRNAs, only miR-203b-3p
nsiderably elevated the rate of cell DiM in all cell lines (Figure 1, A-B,
gure 1. Excess miR-203b-3p alters the fate of breast and ovarian cance
ow the percentage of cells undergoing DiM or PMD in the miR-contr
eated with 10 nM PTX for 48 hours. Each dot represents the averag
periments (n = 150 cells). (B) The bar graphs demonstrate the propor
representative experiments from A. (C) The timing of DiM and PMD i
e cell fate and duration of PTX-induced mitotic arrest for individual c
om representative experiments (DiM = red, PMD = green, slippage
gure S2): in average by 17.3% (+/−3.5%, P = .01), 14.0% (+/−6.9%),
d 15.3% (+/− 5.3%, P = .05) in MDA-MB-231 SA, OVCAR-8,
d CaOV-3, respectively. The miR-203b-3p was also confirmed to
evate DiM to a similar extent in the hormone receptor–positive breast
ncer cell line MCF-7, in average by 8.7% (+/− 4.2% P = .04;
igure 1, A-B). The intrinsic rate of DiM varied between the cell lines,
ith the highest frequency in OVCAR-8. However, this did not
rrelate with the cell death promoting potency of the miR-203b-3p.
eath after slippage (PMD) was significantly increased by excess miR-
3b-3p only in the breast cancer cell lines, in average by 14.0%
/−5.0%, P = .03) in MDA-MB-231 and by 12.0% in MCF-7
/−9.2%, P = .01) (Figure 1, A-B). The inherent PMD frequency
as lower in the breast cancer cell lines compared to the ovarian cancer cell
es, which may partially explain the observed difference in the miR-
3b-3p effect. In MDA-MB-231 SA cells, miR-203b-3p also advanced
e timing of DiM and PMD, in average by 3.3 hours (+/−0.7 hour) and
6 hours (+/−1.8 hours, P = .03), respectively (Figure 1, C-D). The
set of DiM was intrinsically slowest in the MDA-MB-231 SA cells,
t on the other hand, miR-203b-3p did not accelerate PMD in
aOV-3 cells, although the timing of PMDwas longest in these ovarian
ncer cells (Figure 1, C-D).
In conclusion, excess of miR-203b-3p alters the cell fate upon
clitaxel treatment; the breast and ovarian cancer cells die in M-
ase at a higher rate rather than slipping out from mitosis, and a
gher fraction of the slipped cells undergo PMD.

proved Cancer Cell Death and Patient Treatment Response
y High Levels of miR-203b-3p
In the further phenotypic studies, we focused on the representative
east and ovarian cancer cell lines MDA-MB-231 SA and CaOV-3,
the miR-203b-3p effect on paclitaxel-induced cell death, especially
iM, was most notable in these cells. First, to strengthen our findings
om live-cell imaging assays, we assessed cell viability and the
pression levels of cell death markers at cell population scale in miR-
3b-3p overexpressing MDA-MB-231 SA and CaOV-3 cell lines
ter 48-hour paclitaxel treatment. Indeed, the expression of cleaved
ARP and cleaved caspase 3 proteins was increased 1.3- to 3.3-fold in
e miR-203b-3p overexpressing cell populations compared to the
ntrols (Figure 2A), suggesting an increase of caspase-mediated cell
ath. Moreover, Cell-Titer Glo assay indicated significant decreases in
erage cell viability in MDA-MB-231 SA (34.4 +/−5.6%, P = .009)
d CaOV-3 cells (23.0 +/−6.5%, P = .03) after miR-203b-3p
ansfections compared to miR-control transfected cell populations
igure 2B). Furthermore, live-cell imaging demonstrated a decline in
e proliferation curvatures of paclitaxel treatedMDA-MB-231 SA and
aOV-3 cells with excess of miR-203b-3p in comparison to controls
igure S3, C-D). Importantly, no significant difference in growth or
ll viability was observed between miR-control and miR-203b-3p
erexpressing cell populations in unperturbed culture conditions over
e course of 3 days after miRNA transfection (Figure S3, A-B).
r cells cultured in the presence of paclitaxel (PTX). (A) The graphs
ol (black) and miR-203b-3p (gray) overexpressing cell populations
e of an experiment, and the line indicates the mean from three
tion of each cell fate (DiM = red, PMD = green, slippage = blue)
n cell populations presented in panel A. (D) Line graphs showing
ells in miR-control and miR-203b-3p transfected cell populations
= blue). Time “0” represents the mitotic entry.
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Since high expression of miR-203b-3p promotes DiM instead of
itotic slippage in vitro in breast and ovarian carcinoma cells treated with
inically relevant paclitaxel concentration [9], we speculated that the
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Figure 2. High levels of miR-203b-3p promote PTX-induced cell death and treatment response. (A) The levels of cleaved PARP and cleaved
caspase 3 proteins in the indicated cell lines overexpressing miR-203b-3p or miR-control, assessed 48 hours after addition of 10 nM PTX.
Images of representative immunoblots are shown below. (B)Measurement of cell viability with Cell-Titer Glo in the same experimental setup.
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ow a small but significant difference linking improved disease-specific
tient survival with high miR-203b-3p levels (P = .008, Figure 2C).
e did not find similar association between the miR-203b-3p
pression and patient survival in a smaller breast cancer cohort (Bergen,
gure 2D, for PTX and EPI arms Figure S4, A-B). However, in the
ergen cohort, where the patients were randomized to paclitaxel or
irubicin therapy, we did observe a slightly higher miR-203b-3p
pression in patient groups that had respondedwell to paclitaxel therapy
igure 2E and Figure S4C). In the epirubicin group, miR-203b-3p
pression did not show a similar pattern. On the contrary, the mean
iR-203b-3p level was highest in the patients with poorest response to
irubicin and, thus, progressive disease (P = .01, Figure 2F and S4D).

irect Suppression of the Antiapoptotic BCL2L1
To test if the miR-203b-3p binds to its predicted target gene
CL2L1, we utilized the luciferase reporter assay. Excess of miR-
3b-3p significantly suppressed the luciferase activity produced by a
CL2L1 3’UTR-luciferase construct when compared to miR-control
.78 +/−0.13, P = .04, Figure 3B). Importantly, the binding of
iR-203b-3p to BCL2L1 led to a slight but consistent decrease in
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Figure 3. miR-203b-3p binds directly to the BCL2L1 3’UTR and lowers the protein levels. (A) A schematic representation of the two
predicted miR-203b-3p binding sites in the BCL2L1 3’UTR and (B) quantification of relative luciferase activity in MDA-MB-231 SA cells 48
hours after transfection of BCL2L1 3’UTR-luciferase plasmid andmiR-control, miR-203b-3p, or luciferase siRNA (positive control). (C) A bar
graph with quantification of relative Bcl-xL protein levels in the indicated cells lines 48 hours after transfection with miR-control or miR-
203b-3p. Bcl-xL expression was normalized to GAPDH, and representative immunoblots are shown below. All data are from three to four
independent experiments. (D) A scatter plot with regression line and Pearson correlation (r) from the Bergen breast cancer cohort for
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cl-xL protein levels of MDA-MB-231 SA (14.4 +/−5.7%, P = .05)
d CaOV-3 (18.3 +/−11.3%) cells (Figure 3C). Supporting the results
om cultured cancer cells, miR-203b-3p and BCL2L1 exhibited a
odest but significant negative correlation in the breast tumors from
e Bergen cohort (−0.15, P = .04, Figure 3D). The data support our
tion that miR-203b-3p may enhance cell death upon paclitaxel
eatment by contributing to the suppression of the antiapoptotic Bcl-xL
a direct association with the BCL2L1 3’UTR region.

ssociation of MYC with Bcl-xL, miR-203b-3p, and miR-
03a-3p in Breast Tumors
Several groups have demonstrated a negative regulation of Bcl-xL
the oncogene c-Myc, both with in vitro and in vivo models

2,19,20]. Here, we retrospectively studied the association of these
o genes and miR-203b-3p in the Bergen breast cancer cohort. In
e with the previous studies, patients with highMYC expression had
gnificantly lower BCL2L1 levels (P = .02, Figure S5A); MYC and
CL2L1 also exhibited a direct negative correlation in the breast
mors (−0.26, P b .001, Table S3) that arose almost solely from the
clitaxel arm samples (−0.46, P b .001; Figure 4A).
Another interesting finding from the breast tumors was the positive
rrelation of MYC and miR-203b-3p (Table S3), especially in the
clitaxel therapy group (0.15, Figure 4B). c-Myc is known to control
e expression of several miRNAs [35], suggesting a possible
anscriptional induction of miR-203b-3p by c-Myc in the breast
mors. Moreover, we observed a similar positive correlation (0.17,
gure 4C) in the paclitaxel therapy group between MYC and miR-
3a-3p, which resides in a genomic cluster with the miR-203b. Also
e distinct intercorrelation ofmiR-203b-3p andmiR-203a-3p levels in
e breast tumors (0.69, P b .001, Figure 4D) strongly implies
at these clustered miRNAs share a transcriptional regulator(s). Since
iR-203a-3p has also been reported to suppress Bcl-xL expression [36],
t indirectly, these findings raise a possibility that both miR-203a and
iR-203b act as links in the c-Myc/Bcl-xL regulatory axis, the activity
which is associated with the efficacy of paclitaxel treatment.
egulation of Paclitaxel Sensitivity by c-Myc, Potentially via
iR-203s and Bcl-xL
To have molecular-level evidence for support of our findings in breast
mors, we explored the c-Myc/miR-203/Bcl-xL–axis in cultured cancer
ll models. First, the positive correlation ofMYCwithmiR-203a-3p and
iR-203b-3p in vivo prompted us to measure the expression of the
ature miRNAs in c-Myc depleted cells CaOV-3 cells (Figure S5B),
hich exhibit the highest endogenous levels of these miRNAs among the
ll lines used in this study. The results indicated remarkable decreases of
iR-203a-3p and miR-203b-3p levels upon MYC silencing and
lture in the presence of 10 nM paclitaxel (39.2% +/−29.7% and
.3% +/−20.2%, P = .03, respectively) (Figure 5A and Figure S5C).
his result is in line with the positive MYC-miRNA correlations
served in vivo. Supporting the hypothesis that c-Myc regulates
IR203 expression via transcription, c-Myc ChIP data from the
NCODEproject [37] demonstrated an enrichment of c-Myc instantly
stream of theMIR203 locus (Figure 5B). This genomic site was also
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Figure 4. c-Myc/miR-203/Bcl-xL–axis in breast cancer in vivo. (A-D)
Scatter plots with regression lines and Pearson correlations (r) from
the Bergen breast cancer cohort data for (A)MYC and BCL2L1 (PTX,
P b .001), (B) MYC and miR-203b-3p, (C) MYC and miR-203a-3p,
and (D) miR-203b-3p and miR-203a-3p (P b .001). In panels A-C,
separate plots from paclitaxel (PTX, n = 105) and epirubicin (EPI,
n = 85) therapy groups are presented; data in panel D are from the
whole cohort (n = 200).
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sitive for H3K4me histone modification: a marker for active
omoters. As an experimental proof that c-Myc regulates MIR203
anscription, the activity of the MIR203 promoter (Figure 5B) was
minished by 55.1% (+/− 2.9%, P = .001) in c-Myc silenced cells in
mparison to controls (Figure 5C).
Finally, we confirmed the finding of Topham et al. [12] that a high
YC expression is a favorable prognostic factor for the survival of breast
ncer patients, in a larger dataset (Figure S5D). Moreover, the patient
eatment annotations in the analyzed cohort revealed thatMYC levels
e associated with the patient survival only upon paclitaxel treatment
t not in the epirubicin-treated patients (Figure 5, D-E).
iscussion
he molecular determinants of tumor cells' response to taxanes have
mained poorly understood [4]. Here, we show for the first time that
cess miR-203b-3p promotes cell death instead of mitotic slippage in
east and ovarian cancer cells cultured in the presence of a low,
inically relevant paclitaxel dose.Moreover, high levels ofmiR-203b-3p
sociate with better survival of breast cancer patients. The sensitization
paclitaxel by miR-203b-3p is, at least partially, achieved through
rect suppression of the antiapoptotic Bcl-xL protein. Thus, these
vel findings reinforce the previous perceptions about the importance
Bcl-xL in the regulation of paclitaxel sensitivity [14–18] and
monstrate the potential of specific miRNAs as predictors of drug
sponse in cancer patients.
c-Myc is often deregulated in tumors and has a peculiar dual role in
ncer: it induces cell proliferation but on the other hand also
omotes apoptosis by controlling the mitochondrial apoptosis
thway [12,13,38]. According to its proapoptotic function, high
Myc levels have been shown to sensitize cultured cancer cells to
ti-mitotic cancer therapeutics and associate with better treatment
sponse in breast cancer patients [12]. We also observed a significant
rrelation between high MYC expression and superior survival of
clitaxel-treated breast cancer patients. The lack of this correlation in
e epirubicin therapy arm indirectly implies that c-Myc may serve as
prognostic factor specifically for anti-mitotic cancer therapeutics.
oreover, our findings propose a novel mechanism (Figure 6) for the
Myc–mediated sensitization to paclitaxel, which may, at least
rtially, depend on the transcriptional induction of two Bcl-xL
gulating miRNAs, miR-203b-3p and miR-203a-3p [36].
Specific miRNAs, such as miR-203b-3p and miR-203a-3p, can be
ntributing factors in the previously unidentified link between c-Myc
d Bcl-xL, as is supported by the following notions. First, the reported
ppression of both mRNA and protein levels of Bcl-xL by c-Myc
ggests regulation at the transcriptional level, while the requirement for
tive protein synthesis proposes that themechanism is indirect [19,20].
deed, miRNAs can regulate the expression of their target genes by
th degrading the target gene mRNA and/or inhibiting its translation
to protein [21]. Here, we demonstrate for the first time that miR-
3b-3p suppresses Bcl-xL protein expression via direct binding to the
ne's mRNA 3’UTR and correlates negatively with BCL2L1 mRNA
pression in breast tumors. Secondly, several miRNAs are transcrip-
onally regulated by c-Myc [35]. In the breast cancer cohort, the levels
two adjacent miRNAs, the miR-203b-3p and miR-203a-3p, which
s been reported to indirectly repress Bcl-xL protein levels [36],
rrelated positively with MYC expression. Moreover, the significant
clines in the activity of theMIR203A/B promoter and in the levels of
th miRNAs in c-Myc depleted cells, along with the ENCODEChIP
ta showing c-Myc enrichment at the MIR203A/B promoter,
pport the concept of c-Myc-induced transcription of these
iRNAs. The induction of several Bcl-xL suppressingmiRNAs, including
iR-203b-3p andmiR-203a-3p, provides one feasible solution for the yet
identified mechanism of c-Myc-mediated Bcl-xL suppression.
Interestingly, the let-7 miRNA family was recently reported to be
regulated in a c-Myc–driven manner in breast, lung, and
matopoietic cancers upon treatment with histone deacetylase
hibitors (HDACi) [39,40]. This led to the suppression of Bcl-xL, a
t-7 target gene, which was essential for the drug-induced cell death
this context [39,40]. How widespread the mechanism of c-Myc–
ediated suppression of Bcl-xL by specific miRNAs is and which
ug treatments trigger the signaling event merit further studies. Our
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sults from in vivo and in vitro studies suggest that paclitaxel
eatment may modulate the activity of the c-Myc/miR203/Bcl-xL
is. Paclitaxel and HDACi-induced changes in the chromatin
ndensation can be a contributing factor in the drug-induced switch
c-Myc transcriptional activity. Intriguingly, at therapeutic

ncentrations, both drugs can induce a similar mitotic phenotype:
transient mitotic arrest followed by slippage [9,41,42], which as an
ent may cause changes in the c-Myc transcription factor function.
This study sheds new light on the molecular mechanism of c-Myc–
ediated sensitization to taxane therapy by providing preliminary
idence for existence of a c-Myc/miR-203/Bcl-xL pathway that
ntributes to the modulation of cancer cells' response to paclitaxel
eatment in vitro and in vivo. Moreover, our results imply that
pecially MYC but potentially also the specific Bcl-xL regulating
iRNAs, such as miR-203b-3p, may be harnessed as predictors of
mor cells' drug sensitivity in future. Finally, the data presented here
so support the promising concept of combining inhibitors of the
cl-2 family proteins with taxanes to improve the treatment response,
hich has already yielded promising results in preclinical models
4,18,43,44].
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