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Abstract

Introduction

Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved

in the regulation of one-carbon metabolism. Previously we have reported effects on plasma

concentrations of metabolites along these pathways as well as markers of B-vitamin status

in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect

on these metabolites after specific activation of the PPARα and PPARγ subtypes.

Methods

For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treat-

ment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or

placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concen-

tration of metabolites were determined. Group differences were assessed by one-way

ANOVA, and planned comparisons were performed for both active treatment groups

towards the control group.

Results

Treatment with a PPARα agonist was associated with increased plasma concentrations of

most biomarkers, with the most pronounced differences observed for betaine, dimethylgly-

cine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower

levels were observed for flavin mononucleotide. Fewer associations were observed after

treatment with a PPARγ agonist, and the most notable was increased plasma serine.
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Conclusion

Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabo-

lites and markers of B-vitamin status. This confirms previous findings, suggesting specific

involvement of PPARα in the regulation of these metabolic pathways as well as the status of

closely related B-vitamins.

Introduction

The choline oxidation pathway consists of the metabolic reactions converting choline, origi-

nating from endogenous synthesis or from the diet, to glycine via the intermediate metabolites

betaine, dimethylglycine (DMG) and sarcosine. Glycine may also be reversibly synthesized

from serine via serine-hydroxymethyltransferase. The choline oxidation pathway is closely

related to the homocysteine-methionine cycle, through the enzyme betaine-homocysteine

methyl transferase (BHMT) [1]. In this reaction a methyl group is transferred from betaine to

homocysteine, producing methionine and DMG. The other homocysteine remethylation path-

way is catalyzed by methionine synthase (MS), where the methyl group is transferred from 5’-

methyltetrahydrofolate (mTHF) via the MS bound cofactor methylcobalamin (vitamin B12)

forming methionine. Alternatively to remethylation, homocysteine may be irreversibly catabo-

lized through the transsulfuration pathway, by the enzymes cystathionine-β-synthase and

cystathionine-γ-lyase (Fig 1) [2]. Plasma and urinary concentration of metabolites in this path-

way, including choline [3–5], betaine [5–7], DMG [8–10], sarcosine [11, 12], glycine and ser-

ine [13–15], have been linked to risk of major lifestyle diseases such as diabetes, cancer and

cardiovascular disease.

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors

involved in the regulation of a variety of metabolic functions, including different aspects of

energy metabolism [16, 17]. Recent studies in animals have implicated PPARs, in particular

the PPARα subtype, in the regulation of one-carbon metabolism pathways. Down regulation

of the genes encoding DMG dehydrogenase (DMGDH), sarcosine dehydrogenase (SARDH)

and glycine-N-methyltransferase (GNMT) of the choline oxidation pathway [18], as well as

both enzymes of the transsulfuration pathway [18, 19], have been observed after PPARα acti-

vation in rats. Down regulation on the protein level of BHMT, DMGDH, SARDH and GNMT

have also been observed in rats and mice [20, 21].

Treatment of humans with fibrates, which are PPARα agonists, have consistently been asso-

ciated with increased plasma total homocysteine (tHcy) [22, 23], and also decreased plasma

betaine concentrations [24, 25] and increased urinary output of choline, betaine and DMG

[24–27]. In animals, PPARα activation has been associated with increased plasma DMG [28]

as well as increased glycine and serine [18, 28–31]. PPARα activation in animals have also

been linked to altered status of several B-vitamins, such as increased plasma concentrations of

riboflavin [31], nicotinamide (NAM) and N1-methylnicotinamide (mNAM) [28, 31], the vita-

min B6 indices pyridoxal (PL) and pyridoxal-5’-phosphate (PLP) [28] and the functional

marker of cobalamin deficiency, methylmalonic acid (MMA) [28], and reduced plasma folate

[28]. Reduced folate has also been reported in humans by some [32], but not all [33]. Increased

urinary output of NAM and mNAM have been consistently reported in rodents [18, 28, 31, 34,

35].

In a previous study of male Wistar rats [28], we demonstrated that long-term treatment

with the pan-PPAR agonist tetradecylthioacetic acid (TTA) was associated with alteration in
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the plasma concentration of several metabolites along the choline oxidation pathway as well as

markers of B-vitamin status. However, as TTA is a pan-PPAR agonist we could not conclude

whether this was a result of PPARα-activation, activation of other PPAR subtypes or PPAR-

independent effects of the TTA treatment.

In the current study, we aim to extend on our previous findings and clarify the role of

PPAR-activation on plasma concentration of one-carbon metabolites, as well as the status of

related B-vitamins. We measured these metabolites in plasma from animals treated with spe-

cific PPARα and PPARγ agonists.

Materials and methods

Animals and study design

The current study is a substudy of an experiment aiming to explore the role of short-term acti-

vation of PPARs on lipid and fatty acid composition in liver and heart, and the experimental

setup has been described in detail elsewhere [36].

Briefly, a total of 20 male Wistar rats (Taconic Europe A/S, Ry, Denmark), aged 8 weeks

and with a body weight of 200-225g, were randomized into three groups: 1) Control (n = 8), 2)

PPARα agonist (PPARα, n = 6); and 3) PPARγ agonist (PPARγ, n = 6). During 12 days of

intervention, the animals received standard low-fat chow diet, and the daily treatments were

given as 300 μl of muffin dough as vehicle, containing the active agent or placebo. The control

group received pure vehicle, the PPARα group received 20 mg/kg/day of WY-14.643 (Tocris

Bioscience, Bristol, UK) and the PPARγ group received 10 mg/kg/day Rosiglitazone (Sigma-

Aldrich, St. Louis, MO). The muffin dough vehicle contained eggs, sugar, gluten free flour,

vanilla sugar, milk and butter.

The animals were housed 2–3 per cage, and had free access to chow diet and tap water dur-

ing the full study period. Prior to the study, the animals were habituated to the cage conditions

Fig 1. Overview of metabolic pathways discussed. The numbers indicate enzymes, and the black boxes indicate enzymes of

which gene expression have been previously shown to be down regulated by PPARα activation. The figure indicates where the

enzymatic reactions occur (within/outside mitocondria). DMG indicates dimethylglycine; Hcy, homocysteine; Met,

methionine; mTHF, 5’-methyltetrahydrofolate and THF, tetrahydrofolate.

https://doi.org/10.1371/journal.pone.0226069.g001
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and experimental handling, and introduced to the muffin dough vehicle. Animals in the same

cage belonged to the same experimental group, but were taken out of the cages to receive treat-

ment to ensure equal dosing. Cage placement, sequence of animal handling and termination

were block randomized. After 12 days, the animals were sacrificed under fasting conditions, by

cardiac puncture and exsanguination after receiving anesthesia with 2% isoflurane (Schering-

Plough, Kent, UK).

Feed intake was estimated by weighing the food provided to the cages, as well as residual

feed. During the intervention, feed intake and total weight gain was somewhat higher in ani-

mals treated with PPARγ-agoinst, but liver weight was increased in rats treated with PPARα-

agonist. In the PPARα-group, hepatic expression of PPARα was 61% higher, and the expres-

sion of known PPARα target genes such as Acox1 (9-fold increase), Cd36 (9-fold increase),

LPL (6-fold increase) and Hmgcs2 (2-fold increase) were affected by treatment with PPARα-

agonist, demonstrating activation of PPARα in the liver [36]. Further, adipose tissue expres-

sion of known PPARγ target genes, such as Fatp1 (3-fold increase) and Fabp4 (0.5-fold

increase) were affected by treatment with PPARγ agonist, demonstrating activation of PPARγ
[36].

Ethics statement

The animal experiments complied with the Guidelines for the Care and Use of Experimental

Animal use and the study protocols were approved by the national animal research authority

(FOTS, ID number 2014/6187).

Biochemical analyses

Quantification of plasma metabolites were performed at Bevital A/S (Bevital, Bergen, Norway,

www.bevital.no), using gas- or liquid chromatography coupled with tandem mass spectrome-

try for all metabolites except cobalamin which was analyzed by microbiological assay [37–40].

For the purpose of this targeted metabolomics approach, the metabolites of interest included

the metabolites of the methionine-homocysteine cycle and the transsulfuration pathway

(methionine, tHcy, cystathionine and cysteine), the choline oxidation pathway (choline, beta-

ine, DMG, glycine and serine), as well as markers of related B-vitamins (Flavin mononucleo-

tide [FMN], NAM, mNAM, Nicotinic acid [NA], PL, PLP, 4-pyridoxic acid (PA), the PAr-

index (Par, calculated as the ratio of 4-pyridoxic acid divided by the sum of pyridoxal 5’-phos-

phate plus pyridoxal), mTHF, cobalamin and MMA).

Statistical analyses and presentation of data

The animals were housed 2–3 per cage, but as the rats were taken out of the cages to receive

the intervention, the individual rat was regarded as the experimental unit of analysis. Plasma

metabolite concentrations were log-transformed, and the data are presented as geometric

means (geometric standard deviation, gSD). The groups were compared by one-way ANOVA,

and the proportion of variance explained by the experimental groups were assessed by calcu-

lating the η2. The assumption of equal variances was assessed with Levene’s test and visually by

plotting the residuals. Within-group normality was visualized by Q-Q plots of the residuals.

Planned comparisons towards the control group were performed for the two intervention

groups. Standardized mean difference (SMD; 95% confidence interval) were calculated and

plotted to illustrate the differences from the control group. For effect sizes, Cohen’s cutoff of η2

> 35% was considered a large proportion of explained variance [41], and SMD > 1 were con-

sidered a large effect size. All individual data points are presented in S1 Fig. To evaluate
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potential cage effects, data was also plotted treating the cages as the experimental unit (n = 2–3

per group, S2 Fig).

As no new experiments were performed for this investigation, no formal power calculation

was conducted. However, the current sample size was considered sufficient for replication of

the most pronounces differences previously reported (SMD > 3) [28]. At a conventional cutoff

for statistical significance at p< 0.05 the current sample sizes would yield 71% power to detect

a large variance explained (η2 > 35%), and 80% power of detecting between-group differences

of SMD > 1.65.

Statistical analyses were performed using R software version 3.5.1 [42], and the packages

within the tidyverse (dplyr, broom, purrr, magrittr, rlang) and forestplot.

Results

The plasma concentration of metabolites and the SMD (95% CI) for the intervention groups

versus the control group are given in Fig 2. Overall, more and larger differences were observed

after treatment with PPARα agonist compared to PPARγ agonist.

Methionine (η2 = 52%, p = 0.009), homocysteine (η2 = 48%, p = 0.016) and cystathionine

(η2 = 39%, p = 0.048) were different between the groups. Planned comparisons showed that

methionine (SMD = -1.5), homocysteine (SMD = -1.4) and cystathionine (SMD = -0.88) were

lower after treatment with PPARγ agonist, while all metabolites were higher after treatment

with PPARα agonist(SMD = 1.0, 1.0 and 0.9, respectively).

In the choline oxidation pathway, group differences were observed for betaine (η2 = 68%,

p< 0.001), DMG (η2 = 68%, p< 0.001), glycine (η2 = 81%, p< 0.001), and serine (η2 = 60%,

p< 0.001). The planned comparisons demonstrated higher concentrations of betaine

(SMD = 2.7), DMG (SMD = 3.4), glycine (SMD = 4.4) and serine (SMD = 2.4) in the PPARα
group. Lower plasma choline (SMD = -1.5), and higher serine (d = 1.9) was observed in the

PPARγ group.

FMN, but not riboflavin, was different between the groups (η2 = 65%, p< 0.001), and the

planned comparisons revealed this to be due to lower concentrations in the PPARα group

(SMD = -2.4). NAM and mNAM were different between groups (both η2 > 90%, p< 0.001),

and this was entirely explained by higher levels after treatment with PPARα agonist

(SMD = 6.6 and 5.9, respectively). The same pattern was seen for the two vitamin B6 forms PL

and PLP (η2 = 74% and 48%, both p< 0.001), where higher concentrations in the PPARα ago-

nist group explained the difference (SMD = 3.9 and 2.0, respectively). A between-group differ-

ence was observed for cobalamin (η2 = 43%, p = 0.03) and its functional marker MMA (η2 =

73%, p< 0.001). PPARα agonistic treatment was associated with lower plasma cobalamin

(SMD = -1.8) and higher MMA (SMD = 3.0).

Discussion

This short-term study of one-carbon metabolites and B-vitamins in male Wistar rats treated

with PPAR agonists demonstrated pronounced effects of PPARα agonist on the plasma con-

centration of metabolites of the choline oxidation pathway and markers of B-vitamin status.

The largest differences were seen for plasma betaine, DMG, glycine, NAM, mNAM, PL and

MMA, which were all higher, and FMN which was lower in the PPARα group. The current

findings confirm our previous observations on effects of the pan-PPAR agonist TTA [28], and

suggest that these biomarker alterations are due to PPARα activation.

In the PPARα group, higher plasma concentrations were observed for several metabolites

of the choline oxidation pathway, including betaine, DMG, glycine and serine, with a majority

of the observed variation in these variables (η2 = 60–81%) being explained by the model. The
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increased concentrations of these metabolites may indicate increased flux through the choline

oxidation pathway. Although plasma mTHF did not differ between groups, the lower cobala-

min and higher MMA levels observed in the PPARα group may indicate lower cobalamin

availability. This could reduce the activity of the MS-mediated homocysteine remethylation

pathway, causing a compensatory increase in BHMT flux. PPARα-induced down regulation of

DMGDH and SARDH may cause accumulation of their upstream metabolites, DMG and sar-

cosine. Unfortunately, we were not able to determine plasma concentrations of sarcosine, due

to analytical interference from the EDTA in the tubes used for blood sampling. Both DMGDH

and SARDH are flavoproteins and lower concentrations of FMN may indicate lower cofactor

availability, potentially contributing to reduced enzyme activities.

Compared to control, plasma glycine and serine concentrations were much higher in the

PPARα group, which have been consistently found in other animal studies [18, 28–31, 43].

Fig 2. Biomarker concentrations, given as geometric mean (geometric standard deviations). The groups were compared

with one-way ANOVA, and the η2 indicates the proportion of variation explained by the model. The black lines with squares

correspond to the standardized mean difference (95% CI) between the PPARα group and control, and the grey lines with

circles represents PPARγ vs control. DMG indicates dimethylglycine; FMN, Flavin mononucleotide; MMA, methylmalonic

acid; mNAM, N1-methylnicotinamide; mTHF, 5’-methyltetrahydrofolate; NA, nicotinic acid; NAM, nicotinamide; PA,

4-pyridoxic acid; PAr, PA/(PLP+PL); PL, pyridoxal; PLP, pyridoxal 5’-phosphate.

https://doi.org/10.1371/journal.pone.0226069.g002
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Ericsson et al demonstrated that the increased plasma glycine levels were primarily due to

increased entry into plasma, possibly reflecting increased de novo synthesis [29]. In addition

to the choline oxidation pathway, glycine may originate from carnitine synthesis, threonine

catabolism or from glycolysis via serine [44, 45]. Increased carnitine synthesis has been dem-

onstrated after PPARα activation [46], in line with the known increases in β-oxidation and

lowering of triglycerides. Hence, increased carnitine synthesis following PPARα activation is a

likely contributor to increased plasma glycine. However, circulating concentration of carni-

tines were lower after PPARα agonistic treatment in the current experiment [36]. PPARα is

known to increase lipid oxidation and sparing glucose [47], hence, glucose metabolism is not a

likely contributor to the observed increases in plasma glycine and serine in the PPARα group.

Higher plasma serine may be related to interconversion of excess glycine through serine-

hydroxymethyltransferase. Upstream accumulation of glycine and serine following PPARα-

induced down-regulation of GNMT is another potentially contributing factor [18]. Higher

plasma serine observed after treatment with PPARγ agonist may be related to increased glycol-

ysis, as PPARγ activation is known to increase insulin sensitivity, facilitating increased glucose

utilization, as well as directly influence hepatic glucose uptake [48].

As in our previous report we observe lower plasma levels of the vitamin B2 metabolite

FMN after treatment with PPARα agonist [28]. This could reflect reduced formation of FMN

from riboflavin through riboflavin kinase or increased metabolism of FMN to flavin adenine

dinucleotide (FAD) by FAD synthase. Notably, FAD acts as a product inhibitor of its own syn-

thesis [49]. Hence, increased FAD utilization may increase FAD synthesis, and thus reduce

FMN and riboflavin levels. FAD acts as an electron acceptor in the first step of β-oxidation,

and although speculative, this may suggest that PPARα induced increases in hepatic fatty acid

oxidation may drive the conversion from FMN to FAD, by product removal. Lower plasma

riboflavin and FMN may thus reflect the altered cofactor requirements following PPARα
induced changes in energy metabolism.

The largest response to intervention in the current study were the higher concentrations of

plasma NAM and mNAM in the PPARα group, with an excess of 90% of the observed varia-

tion being explained by the model. We [28] and others [18, 28, 31, 34, 35, 50, 51] have previ-

ously observed a marked increase in B3 vitamers in plasma, urine and liver of rodents treated

with PPARα agonists. Thus, these observations fits well with the existing literature. In addition

to dietary consumption, NAM may be endogenously formed from the amino acid tryptophan

through the kynurenine pathway [52]. Amino-carboxymuconate semialdehyde (ACMS), a

downstream metabolite of this pathway, is either catabolized by the enzyme ACMS dehydroge-

nase or converted to quinolinic acid and metabolized further to NAM through quinolinic acid

phosphoribosyltransferase (QAPRT). PPARα activation has been shown to down regulate

ACMS dehydrogenase and up regulate QAPRT [53, 54], shifting the flux towards increased

niacin synthesis from tryptophan. We believe this offers a mechanistic explanation of our

observations, suggesting NAM and/or mNAM as potential biomarkers of PPARα activity.

This has to be examined in future studies.

Similar to our previous findings [28], we observe higher concentrations of both circulating

B6 vitamers PL and PLP in the PPARα group. Vitamin B6 status is inversely associated with

inflammation [55], and PLP has been suggested as a scavenger of reactive oxidative species

[56]. Hence, the increased plasma concentrations of PL and PLP may be related to the anti-

inflammatory and anti-oxidative properties of PPARα activation [17]. Of interest, we observe

larger increases in PL compared to PLP. One possible explanation may be increased conver-

sion from PLP to PL, a reaction catalyzed by alkaline phosphatase [56]. Increased alkaline

phosphatase mRNA has been demonstrated after PPARα activation in cell culture studies [57].

Additionally, the final step in the synthesis of PLP from its precursors pyridoxine-5’-phosphate

PPARα activation influences one-carbon metabolism and B-vitamin status in rats
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and pyridoxamine-5’-phospate is catalyzed by pyridoxamine 5’-phosphate oxidase which is a

FMN-dependent protein [56, 58], and lower FMN availability may contribute to reduced PLP

synthesis via this route. This is also in line with observations that fibrate treatment does not

change plasma PLP concentrations in humans [33].

We observed a large increase in plasma MMA after treatment with PPARα agonist, in

accordance with what we previously reported after treatment with pan-PPAR agonist [28].

Although MMA is considered a functional biomarker of vitamin B12 deficiency, much of the

variation in plasma MMA is not accounted for by vitamin B12 status, suggesting that B12 inde-

pendent mechanisms might also be at play [59]. Of interest, Molloy et al identified a novel

genetic variant in the metabolism of branched-chain amino acids (BCAA), explaining 9.9% of

the variance of circulating MMA, independent of vitamin B12 status [60].

There are several possible ways PPARα activation may contribute to increased MMA; by

increasing the availability of precursors, by interfering with intracellular vitamin B12 process-

ing or by directly interfering with the methylmalonyl-CoA mutase reaction. The precursor of

methylmalonyl-CoA is propionyl-CoA, resulting from catabolism of BCAA and odd-chained

fatty acids. PPARα activation is well known to stimulate hepatic fatty acid oxidation [61] and

has also been demonstrated to increase the catabolism of BCAA [62], suggesting an effect of

PPARα activation on availability of MMA precursors.

A key step in the intracellular processing of cobalamin is the liberation of free cobalamin

within the cell cytosol, a reaction involving by the MMACHC protein, and partitioning to the

two cobalamin dependent proteins, facilitated by the MMADHC protein. MMACHC is a fla-

voprotein dependent on glutathione (GSH) for its function [63], and the availability of both

GSH and FAD may be limited under conditions of increased PPARα activity. GSH production

is directly related to the level of oxidative stress, and as much as half of the cysteine utilized for

GSH production is derived from homocysteine through the transsulfuration pathway [64].

Anti-oxidative properties of PPARα agonists [17], combined with down regulation of both

enzymes of the transsulfuration pathway [18, 19], may reduce GSH availability following

PPARα activation. Further, mmachc and mmadhc are predicted PPAR target genes [65].

Hence, PPARα induced interference with intracellular processing of vitamin B12 and its avail-

ability as co-factor of methylmalonyl-CoA mutase, may contribute to increased MMA.

Strengths and limitations

The main strength of this study is the use of specific PPARα and PPARγ agonists, allowing for

evaluation of the specific effects of PPAR subtypes. As animals residing in the same cage

belonged to the same experimental group, the possibility of cage effects could not be

completely excluded, although the animals were individually treated outside the cages. How-

ever, by plotting cage mean values instead of individual measurements, the same patterns

emerged and within-group cage means were similar (S2 Fig) to the results obtained by using

the individual animals. Hence, bias due to cage effects is not likely to have influenced our main

conclusions. It has to be noted that the effect of PPAR agonists on one-carbon and B-vitamin

metabolome was a secondary aim of this experiment. However, maximizing the information

gained from the animals contributes to reducing the number of animals sacrificed, which is in

line with the 3 R’s of animal research [66]. We did not measure PPARα and PPARγ activity or

protein expression in this study, which may be considered a limitation. Measuring protein

expression of PPARs would not necessarily add any information regarding their activity, since

this involves several factors. However, activation of the PPARs with the agonists administered

in this study has been thoroughly demonstrated in the literature, and increased expression of

known PPARα and PPARγ target genes were observed in the current experiment [36].
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Further, the discussion on potential mechanisms would benefit from information regarding

the expression of genes along the pathways discussed. Unfortunately, as this information could

not be obtained from the current experiment, the mechanistic discussion relies on effects pre-

viously reported in the literature. However, as previous publications have not provided com-

plete information regarding effects on the metabolite level, the current data should be

interpreted as complimentary to the existing literature.

Conclusion

In this study, short-term treatment with a specific PPARα, but not PPARγ, agonist influenced

plasma concentrations of several one-carbon metabolites and markers of B-vitamin status,

with the most pronounced findings being higher DMG, glycine, serine, NAM, mNAM, PL and

MMA, and lower FMN. This targeted metabolomics approach adds to the current literature

suggesting the involvement of PPARα in the regulation of these metabolic pathways, as well as

the status of closely related B-vitamins.
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