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The postsynaptic density (PSD) is a protein-rich assembly

below the postsynaptic membrane, formed of large scaffolding

proteins. These proteins carry a combination of protein

interaction domains, which may interact with several alternative

partners; the structure of the protein assembly can be regulated

in an activity-dependent manner. A major scaffolding molecule

in the PSD is Shank, a family of three main isoforms with highly

similar domain structure. Proteins of the Shank family are

targets of mutations in neurological disorders, such as autism

and schizophrenia. All the predicted folded domains of Shank

have now been crystallized. However, for an understanding of

the structure and function of full-length Shank and its

complexes in the supramolecular PSD assembly, novel

complementary approaches and hybrid techniques must be

employed.
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Thepostsynaptic density (PSD) is an electron-dense supra-

molecular structure made of specific proteins linking the

postsynaptic membrane to the neuronal cytoskeleton. The

PSD contains ‘scaffolding’ proteins, which have multiple

folded domains as well as regions predicted to be highly

flexible. PSD scaffold proteins belong to several protein

families, and they each carry distinct sets of protein inter-

action domains, which can be used not only to form multi-

valent contacts in the tight protein network of the PSD, but

also for regulating the PSD molecular assembly in an

activity-dependent manner. The latter is important for

the participation of the PSD in long-term potentiation
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and depression. The structure of the PSD varies between

excitatory and inhibitory synapses [1��].

Different scaffold molecules are concentrated at different

depths of the PSD from the postsynaptic membrane [2,3].

The distribution of individual proteins can be regulated

by synaptic activity [4–7], which in turn may result in

changes in post-translational modifications as well as

interaction partners. While many interactions have been

well-characterized at the domain level, information is

lacking at the level of full-length scaffold proteins, con-

centrated into a dense phase at the PSD. Here, the

structures of the folded domains of the Shank scaffolding

proteins are reviewed, and aspects of full-length Shank

structure are considered.

Shank as a PSD scaffold protein
PSD scaffolding proteins belong to different families,

which differ in their modular domain composition.

Through these scaffolds, the postsynaptic membrane

and the receptors residing in it are linked to the cytoskel-

eton. The main PSD scaffolds include membrane-

associated guanylate kinases (such as PSD-95), Shanks,

calmodulin-dependent protein kinase II, Homer, synap-

tic Ras GTPase-activating protein 1, and guanylate

kinase-associated protein (GKAP) (Figure 1a). For many

of the individual domains in the scaffold proteins, struc-

tural data exist (see Table 1 for examples), but it is to a

large extent still unclear, how interactions and higher-

order assemblies form at the molecular level, and whether

and how different domains within the same large scaffold

protein might interact.

A central PSD scaffold is made up of proteins belonging

to the Shank family (Figure 1b). The three major isoforms

of Shank, produced from different genes, are highly

similar, and a molecular basis of their possible functional

differences is currently lacking. Mutations related

to neuropsychiatric or neurodevelopmental disorders,

including autism spectrum disorders and schizophrenia,

have been linked to the Shank proteins [8–13], but the

molecular effects of the mutations remain in general

unknown. Considering the nature of Shank as a large

molecule with several interaction partners, it is likely the

mutations will affect one or more of its molecular inter-

actions in a way that will disturb normal formation and

regulation of the PSD. Although the structural domain

components of Shank are rather simple in isolation, it is

the combination of them within the same polypeptide

chain that allows for multivalent interactions with other
www.sciencedirect.com
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Figure 1
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A Shank-centric view of the PSD assembly. (a) Simplified view of the

organization of the PSD. (b) The domain structure of full-length Shank

proteins.
proteins in the PSD network and enables protein phase

separation to form the PSD assembly.

At the supramolecular level, Shank is known to both self-

assemble into large scaffolds as well as to form networks

with other PSD proteins [14,15]. Shank interaction part-

ners, including GKAP, are able to bind several protein

ligands, and regulatory proteins, such as Arc, may form

transient interactions in an activity-dependent manner

with different PSD proteins [16–18]. Different popula-

tions of Shank have been detected at different depths in

the PSD [3].
Table 1

Structures of selected PSD scaffold protein domains. Note that for 

individual structures are referred to below

Scaffold protein Domains 

GKAP GH1 domain 

PSD-95 PDZ1-2 

PDZ3 

SH3+GK 

GK bound to GKAP peptide 

Full-length model from EM and SAXS 

Homer EVH1 domain 

Tetramerization domain 

Shank SPN-ANK 

PDZ 

SH3 

SAM 
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The domains of Shank
While the Shank isoforms present themselves through

different splice isoforms [19], conserved domains are

readily identified. A conserved SPN (Shank/ProSAP N-

terminal) domain at the Shank N terminus has been

recognized, but only recent studies highlighted its func-

tional and structural details [20��]. The SPN domain is

followed by ankyrin repeats. The central part of Shank

contains one copy each of the SH3 and PDZ domain —

classical protein interaction domains recognizing short

linear peptide motifs. The C terminus of Shank harbors

a SAM domain, shown to form a supramolecular lattice at

the PSD in a Zn-dependent manner [14].

While the SAM and PDZ domains have been structurally

characterized some years ago, data on the N-terminal

segment as well as the SH3 domain have now provided

crucial new information on the Shank family at the

molecular level (Figure 2). Recent research has high-

lighted a role for Shanks in integrin inactivation through

small GTP-binding proteins [20��]. The N-terminal

domain of Shank is directly involved in these processes

through protein–protein interactions with Rap1 and R-

Ras. The SPN domain is structurally homologous to the

Rap1-binding domain in talin, which is a major regulator

of integrin activity. The ASD-linked mutations in the

SPN domain were shown to impair interactions with Rap1

[20��], indicating possible disease mechanisms related to

protein interactions.

The Shank SH3 domain folds like a canonical SH3

domain (Figure 2b); however, the binding site for pro-

line-rich peptides, comprised of highly conserved aro-

matic residues in SH3 domains, has been lost in Shank

[21,22�]. Accordingly, a large-scale screen for binding

motifs of human SH3 domains failed to find ligands for

any of the Shank SH3 domains [23�]. Whether the SH3

domain could have specific ligands that do not conform to

the PxxP motif, has remained unclear until very recently.

Proline-rich partners for the Shank SH3 domain have
some domains, a number of structures are available, and not all

PDB entry Reference

4r0y [51]

3zrt [52]

3i4w [53]

1kjw, 5ypr [54,55]

5ypo [55]

2xkx [56]

1ddw [57]

3cve [15]

5g4x [20��]
1q3p, 5izu, 3o5n, 3l4f, 3qjm, 5ova, 5ovc [32,35,58–60]

5o99, 6cpi, 6cpj, 6cpk [21,22�]
2f3n, 2f44 [14]
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Figure 2
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Crystal structures of all known folded domains of Shank. The sequence numbering for all domains corresponds to the rat Shank3 (UniProt

Q9JLU4), as nearly all structural data are from this protein. N and C termini are indicated by blue letters. (a) The SPN-ankyrin unit [20��]. The SPN

domain folds back onto the ankyrin repeats. (b) The Shank3 SH3 domain [22�]. Left: the high-resolution crystal structure [22�], with the residues

mainly implicated in CaV1.3 peptide binding [21] in red. Right: Surface electrostatics indicate a highly polarized structure, with the CaV1.3 binding

site having a strong negative charge. The canonical loops and the peptide binding groove of SH3 domains are indicated. (c) The PDZ domain.

Left: The unliganded PDZ domain monomer [32]. Middle: Dimeric form of the PDZ domain [35]. Right: Another dimeric form induced by an

elongated GKAP peptide (magenta, arrow) [34]. (d) The Zn-bound SAM domain [14].
been suggested [24,25], and an interaction between the

Shank ankyrin domain and the SH3 domain has been

reported, possibly linked to multimerization [26]. The

structures of the Shank SH3 domains were solved

by NMR, and a non-canonical direct interaction partner

was identified as the cytoplasmic domain of the

CaV1.3 channel [21]. This interaction is of electrostatic

nature (Figure 2b), and could play a role in linking

CaV1.3 channels to the PSD scaffold. CaV1.3 channels

are known to be important for neuronal function, and they

possibly play a role in PSD structure through interactions

with PDZ domains of the scaffold proteins [27]. It is

possible that the SH3 and PDZ domains both bind to the

cytoplasmic part of CaV1.3 [21]. In general, it is likely that

simultaneous interactions with two neighboring protein

interaction domains will increase the affinity of binding,

and the SH3-PDZ unit of Shank could be a functional

interaction module, providing a large interaction surface-

coupled to flexibility. Similarly, intramolecular interac-

tions between PDZ and SH3 domains were reported for

GKAP [28]. The finding of an unconventional SH3

domain that binds non-canonical ligands paves the way

for the identification of additional non-PxxP ligands for

SH3 domains, in which the aromatic binding site is not

conserved, including the SH3 domain of Caskin [29].

Caskins are members of a presynaptic protein scaffold,
Current Opinion in Structural Biology 2019, 54:122–128 
and similarly to Shank, in addition to a non-canonical SH3

domain, they contain SAM domains [30], which can

polymerize. The Caskin1 SH3 domain was shown to bind

lipids, such as lysophosphatidic acid, instead of proteins

[31]; such hypotheses are testable also in the case of

Shank.

The PDZ domain in Shanks binds to typical class I

ligands with high affinity [32]. In addition, recent screens

have identified internal binding motifs, which broaden

the ligand selection for the PDZ domain [33]. For known

Shank PDZ domain class I ligands, side-chain interac-

tions fine-tune the peptide affinity; the highest affinity

thus far has been detected toward the GKAP C terminus

[32]. In addition, an extended GKAP peptide ligand was

shown to interact with another binding site in the linker

between the SH3 and PDZ domains, resulting in an

order of magnitude higher affinity [34] — hence, for full

protein–protein complexes, affinities estimated through

binding assays involving a single domain and a short linear

peptide may provide misleading results in the biological

context.

Shank PDZ domain dimerization has been observed in

crystal structures both with and without bound ligand

peptides [34,35]. The two observed dimerization modes
www.sciencedirect.com
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both involve residues from the SH3-PDZ linker region

(Figure 2c). Whether physiological binding partners cause

changes in full-length Shank oligomeric state and/or

conformation, such as seen in the crystal structures of

the extended PDZ domains, remains to be determined —

if this would be the case, it would provide truly novel

insights into the regulation of the PSD molecular

assembly.

The surface properties of the SH3 and PDZ domains may

give further clues to ligand interactions. Both domains are

electrostatically highly polarized [22�,32], which may

promote their interactions with each other, as well as

with binding partners in the PSD. In addition, the SH3-

PDZ unit may have specific properties resulting from the

interplay of these domains connected by a linker, which is

less flexible than predicted and participates in ligand

protein binding [32,34]. It is likely that ligands binding

to a Shank PDZ domain through their C terminus in

addition have interactions with the SH3 domain and the

SH3-PDZ linker.

The C-terminal Shank SAM domain (Figure 2d) binds

zinc and is able to form homo-oligomeric structures [14].

Only the SAM domains of Shank2 and Shank3 bind

Zn, while Shank1 does not [36]. The SAM domain is

expected to form filaments/polymers, and the form used

for high-resolution structure determination was, indeed,

mutated to prevent this phenomenon [14]. Current

advances in cryo-EM data collection and processing

would be tempting approaches to solve a high-resolution

structure of this core assembly of the PSD.

From individual domains to full-length Shank
Considering full-length Shank, we must take into account

long regions predicted to be disordered. Between the

ankyrin repeats and the SH3 domain, a >100-residue

linker is present, which in a random coil conformation

would have an average length of �10 nm. The 40-residue

linker between the SH3 and PDZ domains was shown to
Figure 3
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[14,20��,32], while those of the linkers have been calculated based on rando
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be compact, and the SH3 and PDZ domains are close

together in solution [32]. The longest disordered region is

found between the PDZ and SAM domains, and its

length of �1000 residues would correspond to a random

chain of �30 nm in diameter. This proline-rich segment,

although not likely to be folded, is an important protein

interaction domain in Shank proteins. Taking into

account known structures, and the linkers between them,

one can estimate an average length of 60 nm for a single

Shank molecule (Figure 3). Multimerization of Shanks

via the SAM domain would, hence, generate huge assem-

blies of Shank, spanning large distances relative to the

size of the PSD. Until we obtain more structural data on

the linker regions and full-length Shank, we cannot be

sure of the conformation(s) Shank will sample in solution

and, more importantly, in the PSD. The median distance

of Shank, labelled with antibodies recognizing N-

terminal regions, from the postsynaptic membrane was

�50 nm, with large variations, changes upon K+ or Ca2+

stimulation, and the presence of GKAP between Shank

and the membrane [3]. Considering the possible dimen-

sions of full-length Shank (Figure 3), it is possible that at

least some activity-dependent changes [4,6] could reflect

differences in Shank conformation and binding partners,

rather than complete relocalization of Shank, especially if,

for example, antibodies against one end of Shank are used

for localization studies.

Phase separation in the PSD is a recent suggestion for

the mechanism of formation of the PSD molecular

network [37]. Phase separation, or the formation of so-

called membraneless organelles, is an emerging theme in

many biological processes, and can be induced by prop-

erties of individual macromolecules and/or complexes

under specific conditions. The structural details of form-

ing a separated phase centered on Shank and other PSD

scaffolds still remain to be elucidated, although recent

work using various truncated PSD proteins has shed light

on the domains and interactions required for this phe-

nomenon [38��].
SAM

m

~30 nm 3 nm
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Overall, more information will be required to obtain an

accurate view on the structure and dynamics of full-

length Shank. Whether the various domains interact,

and if different segments of Shank – and its protein

complexes – form ‘supramodules’, such as those detected

in PSD-95 [39], are some of the questions that will require

the use of multidisciplinary and hybrid techniques. Cur-

rent technological advances in structural biology, micros-

copy, and biophysics may make solving the structure of

the PSD reality, and several practical aspects of this

process have been discussed [40].

Shank in disease
Scaffolding proteins of the PSD are putative targets for

mutations in neurological disorders [41]. In Shanks,

mutations have been linked to neurodevelop-

mental and neuropsychiatric disorders, such as ASD

[9,13,42,43]. Functional effects on protein interactions

were described for the mutations in the SPN domain

[20��]. A number of mouse mutant models have been

used to decipher the in vivo roles of the Shank proteins in

the PSD. Common features include changes in the

molecular composition of the PSD and behavioral and

learning defects [44�].

Can we use current structural data to understand the

possible molecular mechanisms of disease? Is it possible

to affect protein interactions in the PSD to treat such

disorders? The Shank family and its interactions with

other PSD proteins are considered to be promising targets

for pharmacological intervention, with the aim of affect-

ing neuropsychiatric disorders, such as ASD and schizo-

phrenia [43,44�,45]. One important aspect hindering

these approaches is the lack of adequate high-resolution

structural information on both full-length Shank proteins

as well as the protein–protein complexes they form at the

PSD.

Conclusions
PSD is a highly complex molecular assembly, prone to

regulation by synaptic activity. In addition to the large,

multidomain scaffold proteins, the PSD contains regula-

tory elements, such as Arc, which interact with several

PSD scaffold proteins and may be linked to activity-

dependent changes of the synapse [16–18]. Methodolog-

ical developments in many fields will allow visualizing

PSD networks and events at the molecular level; such

approaches include, but are not limited to, high-through-

put proteomics, hybrid structural biology methods includ-

ing cryo-EM and tomography [46,47], super-resolution

microscopy coupled to specific nanobodies [48,49], as well

as biophysical techniques for following protein interac-

tions in vivo. The coming years will certainly bring about a

much improved view on the structure and function of

Shank and other PSD scaffold proteins.
Current Opinion in Structural Biology 2019, 54:122–128 
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