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ABSTRACT 

The aim of this research is to implement hydrodynamic forces into the Moving Frame Method 

(MFM) to enable time-dependent analysis of multi-body wave energy converters in irregular sea-

states. 

The MFM leverages Lie Group Theory, Cartan’s concept of moving frames, and Frankel’s compact 

notation from the discipline of geometrical physics. Furthermore, it makes use of a coherent data 

structure founded in the Special Euclidean Group SE(3). Together these implementations maintain 

a notation which is consistent from 2D to 3D single bodies to multi-bodies, allowing for analysis 

which can be readily scaled up to include multiple links, bodies, and farms of devices, without 

increasing notational complexity and without loss of generality. 

This work models the three-float M4 WEC subject to irregular wave spectra using the MFM and 

linearization by Cummins’ equation. The impulse response function is pre-computed, and the 

hydrodynamic coefficients are taken from a WAMIT diffraction model. The power-take-off (PTO) 

is modelled as a linear damper. The system of second-order ordinary differential equations is 

advanced in time using the fourth order Runge-Kutta numerical method. 

Model-scale results are compared to earlier experimental work and show close agreement, with 

root-mean square errors of the time-series heave and surge responses less than 4 × 10−3 m. Power 

capture and θrms show close agreement across all peak periods with only a slight underprediction 

(<7%) of power at peak periods shorter than 1 s. Some discrepancies between the model-scale 

results and earlier experimental work are found and this is attributed to moments from the WAMIT 

diffraction model being generated about the centre of flotation and not the centre of mass, which is 

required in an MFM model. Full-scale results of annual energy yield for a wave site in Ireland show 

only a minor underprediction (<3%) compared to an earlier vectorial mechanics model. 

The results validate that hydrodynamic forces have been successfully implemented into the MFM 

model, opening for analysis of more complex wave energy converters with higher degrees of 

freedom, including other multi-body marine devices. 
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SAMMENDRAG 

Målet med denne masteroppgaven er å implementere hydrodynamiske krefter til Moving Frame 

metoden (MFM) for å muliggjøre tidsavhengige analyser av komplekse bølgeenergi-kraftverk i 

irregulære sjøtilstander. 

MFM er en ny metode innenfor dynamikk som utnytter Lie Group Theory, Cartans konsept med 

bevegelige rammer og Frankels kompakte notasjon fra geometrisk fysikk. Metoden benytter seg 

også av en kompakt datastruktur fra Special Euclidean Group SE(3). Dette opprettholder en 

notasjon som er konsistent fra 2D- og 3D-enkeltlegemer til flerlegemer, noe som muliggjør en 

analyse som lett kan skaleres opp til å inkludere flere koblinger, legemer og grupper av enheter 

uten å øke notasjonskompleksiteten. 

Dette masterprosjektet modellerer et M4 bølgekraftverk i irregulære sjøtilstander ved å benytte 

MFM og linearisering ved hjelp av Cummins ligning. Impulsresponsfunksjonen forhåndsberegnes 

og hydrodynamiske koeffisienter hentes ut fra en WAMIT diffraksjonsmodell. Kraftuttaket (PTO) 

modelleres som en lineær demper. Systemet av andre ordens differensialligninger løses ved bruk 

av fjerdeordens Runge-Kutta-metode. 

Modell-skala resultat sammenlignes med tidligere eksperimenter på samme oppsett og viser god 

overensstemmelse med root-mean square error av responsen for hiv og jag på mindre enn 4 × 10−3 

m. Kraftgenerering og θrms viser god overensstemmelse over hele spekteret av perioder med bare 

en liten underestimering (<7%) av kraft for perioder kortere enn 1 s. Det er noen små avvik mellom 

modell-skala resultatene og tidligere eksperimenter på grunn av WAMIT-diffraksjonsmodellen som 

genereres om flotasjonssenter og ikke massesenter, som kreves i en MFM-modell. Full-skala 

resultat av årlig kraftgenerering for en lokasjon i Irland viser en mindre underestimering (<3%) 

sammenlignet med en gammel vektormekanikk modell. 

Resultatene validerer at hydrodynamiske krefter er riktig implementert i MFM-modellen noe som 

muliggjør analyse av mer komplekse bølgeenergi-kraftverk og andre marine enheter i alle seks 

frihetsgrader. 
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1  INTRODUCTION 

This project analyses a new type of wave energy generator for clean energy, in compliance with 

the European Union’s target of becoming climate-neutral by 2050; an objective at the heart of 

the European Green Deal and in line with the global Paris Agreement [4]. The EU is committed 

towards implementing the United Nation's Agenda for Sustainable Development [4]. This agenda 

is based upon the UN’s 17 Sustainable Development Goals (SDGs) [5]. The SDGs are a 

transformative roadmap for national and international efforts aimed at eradicating extreme poverty 

while protecting planetary boundaries and promoting prosperity, peace, and justice. This master 

project addresses several of these, focusing mostly on goal 7: affordable and clean energy. 

The ocean contains vast amounts of wave energy and devices for harnessing this energy have been 

investigated since the late 1970’s [6] with many technologies being proposed [7]. Many devices 

did not survive the harsh ocean environment, whilst others have shown low power capture for real 

broadband sea spectra, for example [8-13]. One device which has shown promise for overcoming 

these issues, and the focus of this study, is the Multi-Mode Moored Multibody device, known as 

M4 [3] (see Figure 1). The multiple floats give a broadband frequency response, allowing power 

capture in a wider range of sea-states than devices based on single bodies. Several such devices 

can be assembled to create a “farm” with the intention of increasing power output. Aside from large 

grid-based generation, other possible uses are energy for aquaculture (e.g. fish farming), offshore 

weather stations, subsea equipment and supplemental power for oil and gas platforms. [8], [9], 

[10], [11], [12], [13].  

 

Figure 1. Photography of the M4 wave energy converter [14]. 

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://ec.europa.eu/clima/policies/international/negotiations/paris_en
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Analysing the hydrodynamics of wave energy converters (WECs) is a non-trivial task due to the 

complexity of the interacting forces that take place. In order to model energy capture from such 

devices, linear hydrodynamic theory is often used [15]. This can be conducted in the frequency 

domain, but it is of interest to study devices in the time-domain due to phase-dependent effects. 

Existing methods in dynamics, while reliable, are not readily extensible due to problematic aspects 

in modelling, e.g. with respect to spatial rotations. The power of the Moving Frame Method (MFM) 

is to extract equations of motion from multi-body spatial systems, while maintaining a notation that 

is consistent from 2D and 3D single-bodies to multi-bodies. The MFM replaces an inordinate 

reliance on vector algebra with the framework of Lie algebra reduced to the simplicity of rotation 

matrices. This allows the equations of motion to be delivered in a way suitable for rapid software 

deployment and for use in power control systems. This enables efficient optimisation of the M4 

device arrangements and float sizes relative to the site-specific resource.  

The specific objectives of this master project are to: 

1) Implement hydrodynamic forces into the MFM in order to solve the equations of motion of 

multi-body WECs in irregular sea-states for the first time with this method. 

2) Validate the MFM model by modelling a three-float M4 WEC in irregular sea-states and 

compare the results to an experimentally-validated vectorial mechanics model from [3]. 

Section 2 prepares for analysis in irregular sea states and reviews several methods of harnessing 

energy from waves. Following, section 3 introduces and summarises the MFM. Sections 4 and 5 

present the dynamics and kinetics of the M4 device, respectively. Next, section 6 introduces the 

hydrodynamics and presents the code structure. Section 7 presents the results in comparison with 

prior research of [3]. Finally, section 8 and 9 conclude the thesis with suggestions of future work. 
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2  WAVE ENERGY CONVERTERS 

There have been many different attempts in extracting energy successfully from waves, e.g. as 

presented in [8-13]. Wave energy technology has not yet found a standardised solution in harvesting 

the wave power. There are two main reasons why so many attempts have resulted in failure; 

1) survivability, and 

2) economically effective energy extraction from a broadband frequency spectrum. 

Designs vary from one wave energy converter (WEC) to another, mainly due to differences in water 

depth, location and working principle. Several methods have been proposed to classify wave energy 

systems. Figure 2 shows one such classification from [16], classifying WECs based mostly on 

working principles; oscillating water-, overtopping- and oscillating body converters. 

 

Figure 2. Wave energy converters based on working principle [16] 

To describe WECs, a commonly used term is rated power, i.e. the theoretical maximum power 

capacity at which the equipment has been designed to operate.  

The capacity of a WEC is usually sized for mean wave conditions where power is typically 

generated. Consequently, a big challenge with wave energy is how to protect WECs from extreme 

waves that they are not designed to handle. A device generally spends much of the time generating 

less than rated power, it might also be able to handle generating a little more power, but it should 

handle any amount up to the rated power and perform as expected. The absorbed energy is 

transformed into useable electricity through a power take-off (PTO) mechanism of the WEC. The 

following subchapters briefly introduces some attempts in extracting energy from waves. 

2.1  Oscillating Water Column Converters 

An oscillating water column converter (to the left in Figure 2) works on the principle of wave 

induced air pressurisation. The device consists of a closed air chamber above the water, and the 

oscillating column of water increases and decreases the air pressure within the chamber as the level 
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rises and falls. This causes air to flow through a turbine that drives an electrical generator. Rated 

power of such a converter is usually in the range 60–500 kW [7]. An example of an oscillating 

water column converter is the Norwegian Kvaerner Multiresonant OWC. A 500-kW demonstration 

plant based on this concept was built outside Bergen, Norway [8]. Another example of an 

oscillating water column converter is Mighty Whale (rated power of 110 kW), as shown in the 

photography in Figure 3 [9]. 

 

Figure 3. Photography of the Mighty Whale [17] 

2.2  Overtopping Converters 

Overtopping converters (the middle illustration in Figure 2) capture the water that over spills into 

a reservoir. The potential energy of the stored water is converted into useful energy through a 

hydraulic turbine which runs an electric generator. An example of an overtopping converter is the 

Norwegian Tapchan. A prototype (rated power of 350 kW) of the Norwegian Tapchan was built in 

1985 outside Bergen, Norway [8]. Another example of an overtopping converter is the Wave 

Dragon (rated power of 4-10 MW), as shown in the photography in Figure 4. A 57 m-wide 

prototype of the Wave Dragon was developed and deployed in Denmark and connected to the grid 

in 2003 as the world's first offshore grid-connected wave energy device [10]. Concession to build 

a 7 MW demonstration project of the Wave Dragon in Wales is currently being sought [18]. 

 

Figure 4. Photography of Wave Dragon [10] 
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2.3  Oscillating Body Systems 

The basic principle of wave energy exploitation for oscillating bodies (to the right in Figure 2) is 

that destructive interference must be created between the incident wave and the motion of the WEC. 

An oscillating WEC is characterised by specific natural periods and when the incident wave period 

matches the WEC’s natural period, resonance occurs and the maximum possible energy is 

absorbed. Oscillating body systems usually exploit the more powerful wave regimes available in 

deep water. Complexity, together with additional problems associated with mooring, access for 

maintenance and the need of long underwater electrical cables, has hindered their development [7]. 

Below are some examples of oscillating body systems, split into heaving and pitching devices. 

Heaving devices 

The simplest oscillating body system is the heaving buoy reacting against a fixed frame of 

reference. The relative wave-induced heave motion between the float and the fixed frame of 

reference activates a PTO system and drives a linear electric generator [7]. A 10 kW rated power 

prototype L-10 was deployed and tested in USA, September 2008 [19]. Several other examples of 

single-body and two-body heaving buoys are listed in [7], for example G-1T, the Norwegian power 

buoy (shown in Figure 5), AquaBuoy, IPS Buoy, FO3, Wavebob (shown in Figure 6) and 

PowerBuoy. 

 

Figure 5. Photography of Norwegian power buoy [20] 

 

Figure 6. Photography of Wavebob [21] 

Pitching devices 

An oscillating body system can exploit rotational motion for power extraction; it is the pitching 

motion of the device that activates the PTO system. An example of a pitching device is Pelamis, as 
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shown in the photography in Figure 7. Pelamis (rated power of 750 kW) is a snake-like structure 

composed of four cylindrical sections linked by hinged joints. The wave induced bending motion 

of these joints is resisted by hydraulic rams, which pump high-pressure oil through hydraulic 

motors driving three electrical generators [12]. In 2008, a set of three Pelamis devices was deployed 

off the Portuguese northern coast, but the waves eventually caused leaks in the buoyancy tanks. 

Several technical problems followed, and Pelamis lost its financial backing [22]. 

Salter’s Duck, as illustrated in Figure 8, is another oscillating body system that exploits wave 

induced pitching motion (rated power of 10 kW) [13]. Salter’s Duck consists of gyroscopes and 

exploits the gyroscopic effect for power extraction. One more example of a gyroscopic WEC is the 

Wello Penguin [23] which was grid-connected at the European Wave Energy Centre, EMEC in 

Orkney, Scotland. A similar example is a dual gyroscopic wave energy converter that uses spinning 

gyroscopes and pitching motion of a buoy to generate electricity. The dual gyroscopic wave energy 

converter is analysed using the MFM (in regular sea-conditions) by the author in [2] but only 

considering buoyancy forces. 

 

Figure 7. Photography of Pelamis [12] 

 

Figure 8. Salter’s Duck [24] 

Multi-Mode Moored Multibody device 

One method which shows promise for surviving in harsh weather and capturing power across a 

broadband frequency spectrum is the Multi-Mode Moored Multibody (M4) device [3], which is 

the focus of this study. The device exploits several modes of motion from the predominant wave-

induced motions in heave, surge, and pitch. This study uses the MFM to conduct an analysis of a 

111-configuration of the M4. The 111-terminology that prefaces the M4 indicates that there is one 

stern float, one mid float and one bow float, as shown in Figure 9. There are several other possible 

configurations of the device, for example 123, 133, 134 configurations and more [3]. The increased 
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numbers of float configurations give impetus for having a method which is readily scaled up to 

several floats. 

 

Figure 9. Schematic of the model-scale M4 WEC showing overall dimensions. 

The floats are circular in cross section with rounded bases to minimise drag losses. Size decreases 

from stern to bow; this provides a range of natural periods in heave and pitch. In other words, a 

range of natural periods in heave and pitch results in a broadband response, meaning that there is a 

significant variation of response for several different sea conditions. Furthermore, these motions 

are all coupled so that they help to excite one another. The distance between floats is about half a 

typical wavelength so that forces and adjacent float motions are predominantly in anti-phase [3]. 

From the stern float (largest, on the left in Figure 9) a rigid structure (dark grey elements) connects 

to a hinge point above the mid float. This allows for the rotation that, in turn, activates the power 

take-off mechanism. In this way, mechanical energy is transformed into useable electricity by 

extension and compression of the actuator – such as a linear generator or a hydraulic-accumulator 

system. 

The M4 could be a significant contributor to renewable energy generation from waves if: 

1. it proves to have high survivability in harsh weather (this has been demonstrated to some 

extent by experimental testing in [3]) 

2. it is proven to have effective energy extraction for a broadband frequency spectrum.  

It is imperative to find optimal device arrangements and float sizes relative to the site-specific 

resource. Such optimisation requires rapid calculation of many device layouts. The extensibility of 

the MFM may enable such studies. 
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2.4  Analysis in irregular sea states 

The development of a WEC from an original idea to a marketable product involves a series of test 

stages including; concept validation, design validation, system validation, and prototype 

demonstration [25]. In the first stages of the process, a small-scale model of the device is used. 

Performance of WECs are normally scaled up from the model-scale to full-scale by applying 

Froude’s similitude law [25]. Froude similitude requires dynamic similarity where the inertial, 𝐹𝑖, 

and gravitational forces, 𝐹𝑔, which gives the Froude number, 𝐹𝑟 (eqn. (1)), is constant between 

model and full scale. 

2




= = =i

r

g

V
F VLF
F g gL

 
(1) 

V is the velocity of the device, 𝜌 is density and L is length in eqn. (1). 

To achieve similitude, the model-scale device and the full-scale device also require geometric and 

kinematic similarities. Froude scaling is typically used for experiments of fluids with a free surface, 

where gravitational forces are important. An alternative force relationship is that between the 

inertial force and viscous force, i.e. Reynold’s number. This is important where viscous effects and 

turbulence are significant, but Reynold’s scaling is generally difficult to achieve in practice. Using 

scaling by Froude’s number, units such as metres, kilograms, Newtons and seconds are scaled by 

using a geometric scaling factor,  , i.e. the ratio of full to model scale dimensions. Of relevance 

in this work is to find the power capture for the full-scale device, 𝑃𝑠, from the model-scale device, 

𝑃𝑚: 

3.5 s
s m

m

P P





=  (2) 

where 𝜌𝑆 and 𝜌𝑀 are the density in sea- and fresh water, respectively. The significant wave height 

(mean of the highest one-third of all waves), 𝐻𝑆, and peak wave period, 𝑇𝑃, are also scaled using 

 , where the subscript m is related to the model-scale and s is related to the full-scale model. 
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Ss SmH H =  (3) 

Ps PmT T =  (4) 

This work analyses WECs in irregular sea states for unidirectional waves. Short term stationary 

irregular sea states may be described by a wave spectrum, i.e. the power spectral density function 

of the vertical sea surface displacement [26]. The spectral density function explains how the energy 

is distributed over a range of frequencies. The JOint North Sea WAve Project (JONSWAP) 

spectrum and the Pierson-Moskowitz spectrum are frequently applied. The Pierson-Moskowitz 

spectrum is generally applied for open, deep waters and fully developed seas, while the JONSWAP 

spectrum is normally used for fetch-limited, developing seas and without swell [26]. The input 

wave spectrum is defined by its significant wave height and angular spectral peak frequency, 𝜔𝑝 

[26]: 

𝑆(𝜔) = 𝛼𝑔2(2𝜋)−4𝜔−5 exp [−
5

4
(

𝜔

𝜔𝑝
)

−4

+ 𝑒
−

1
2
(
𝜔−𝜔𝑝

𝜎𝜔𝑝
)

2

ln(𝛾)] (5) 

where 

𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝜔 = 2𝜋𝑓, 

𝑓 = 𝑤𝑎𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓 = 1/𝑇, 

𝑇 = 𝑤𝑎𝑣𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 

𝜔𝑝 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑝𝑒𝑎𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝜔𝑝 = 2𝜋𝑓𝑝, 

𝑔 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 , 

𝜎 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, (0.07 𝑖𝑓 𝜔 ≤ 𝜔𝑝) & (0.09 𝑖𝑓 𝜔 > 𝜔𝑝), 

𝛾 = 𝑝𝑒𝑎𝑘𝑒𝑑𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, (Pierson-Moskowitz = 1) & ( JONSWAP = 3.3), 

𝛼 =
5

16

𝐻𝑠
2𝜔𝑝

4

𝑔2
(1 − 0.287 ln(𝛾)), 

The wave spectrum for three different peak periods is plotted in Figure 10 for a typical peakedness 

parameter 𝛾 = 3.3 [26]. 
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Figure 10. JONSWAP wave spectra for 𝐻𝑠 = 0.04 𝑚, 𝛾 = 3.3 

The amplitude of the wave spectra is: 

𝜉𝐴(𝜔) = √2𝑆(𝑓)𝑑𝑓 (6) 

where df is the frequency step size (defined in this work as a set of 200 frequency intervals evenly 

spaced between 0 and 4 Hz). 

In order to establish a suitable rated power for a device, energy capture for various sites is first 

computed by using a probability of occurrence scatter diagram. The scatter diagram, here from 

Belmullet in Ireland [27] as shown in Table 1, shows how frequently combinations of 𝐻𝑠 and the 

average zero-crossing wave period, 𝑇𝑧, occur throughout a year. The peak period is related to the 

average zero-crossing wave period [26]: 

𝑇𝑧 = 𝑇𝑝 (
5 + 𝛾

11 + 𝛾
)

1/2 

 (7) 
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Table 1. Wave occurrence scatter diagram from Belmullet in Ireland [27]. 

 Period (𝑻𝒛)              

  1 2 3 4 5 6 7 8 9 10 11 12 13 

Heights (𝑯𝒔) Ireland              

 0.5    17 39 13 0 0 0 4 0 0 0 

 1    148 312 93 32 13 0 1 0 0 0 

 1.5    75 560 372 187 64 11 2 0 0 0 

 2    6 427 623 321 172 47 8 0 0 0 

 2.5     99 508 363 182 67 10 0 0 0 

 3     10 248 394 193 83 18 2 0 0 

 3.5      86 436 244 74 15 7 1 1 

 4      14 213 246 97 23 7 8 0 

 3.5       83 218 124 22 4 3 2 

 4       17 175 118 26 3 5 3 

 4.5        88 122 36 2 1 0 

 6        30 86 37 3 3 0 

 6.5         45 32 4 4 1 

 7         24 48 15 4 0 

 7.5         9 30 10 2 0 

 8         2 20 16 4 0 

 8.5          10 9 7 0 

 9          5 18 1 2 

 9.5          2 8 2 0 

 10          1 4 0 1 

 10.5           1 0 0 

 

Figure 11 shows the occurrences of peak energy periods for the site in Table 1, where peak energy 

period is defined as 𝑇𝑒 = 0.84𝑇𝑃 for 𝛾 = 3.3 (note 𝑇𝑒 = 0.78𝑇𝑃 for 𝛾 = 1). 
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Figure 11. Occurrence of energy period 𝑇𝑒 for Belmullet in Ireland 

The annual energy yield, 𝐸𝑆, for each sea state is computed as: 

𝐸𝑆 = 𝑃𝑎𝑣(𝑆)𝑝(𝑆)8760 (8) 

where 𝑃𝑎𝑣(𝑆) is time-averaged power output from the device for sea-state S, 𝑝(𝑆) is the probability 

of occurrence for the sea-state, and 8760 is the number of hours in a typical year. The total annual 

energy yield is the sum of the annual energy yield for each sea-state, 𝐸 = ∑𝐸𝑆, and the average 

power from the site is 𝑃𝑎𝑣 =
𝐸

8760
. Finally, the rated power in this work is assumed to be three times 

the average power, i.e. 𝑃𝑟𝑎𝑡𝑒𝑑 = 3𝑃𝑎𝑣, in accordance with [3].  

Capture width (CW) is a parameter that characterises the performance of a WEC. It is the width of 

the wave front (assuming unidirectional waves) that contains the same amount of power as that 

absorbed by the WEC [28]. CW is defined as the ratio of the absorbed power, 𝑃𝑎𝑣(𝑆), to the power 

in a unit width wave front, 𝑃𝑤. In order to describe the efficiency of a WEC in practical situations 

capture width ratio (CWR) is usually introduced. CWR is sometimes normalised by body width 

but this does not generalise performance and hence does not enable device comparison [3]. In this 

work CWR is normalised by the wavelength 𝐿𝑒 =
𝑔𝑇𝑒

2

2𝜋
 associated with peak energy period: 

𝐶𝑊𝑅 =
(
𝑃𝑎𝑣(𝑆)

𝑃𝑤
)

𝐿𝑒
  (9) 

The power in a unit width wave front is calculated based on linear theory where: 

𝑃𝑤 = Power in a unit width wave front , 𝑃𝑤 =
1

2
𝜌𝑔𝜉𝐴

2𝑐𝑔, 
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𝑐𝑔 = 𝑔𝑟𝑜𝑢𝑝 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑐𝑔 =
𝑐𝑤

2
(1 +

2𝑘ℎ

sinh(2𝑘ℎ)
), 

𝑐𝑤 = 𝑤𝑎𝑣𝑒 𝑐𝑒𝑙𝑒𝑟𝑖𝑡𝑦, 𝑐𝑤 =
𝜔

𝑘
, 

𝑘 = 𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑘 =
𝜔2

𝑔∙tanh(𝑘ℎ)
. 

In [3], the root-mean-square error (RMSE) of the angle between the floats, θrms is presented, which 

gives a measure of relative pitching between the floats in each sea-state. It is also calculated in this 

work between the bow and stern floats using eqn. (10) in order to validate the MFM for several sea 

states observed over time T. 

𝜃𝑟𝑚𝑠 = √
∑ (𝜔(1)(𝑡) − 𝜔(3)(𝑡))𝑇

𝑡

𝑇
 (10) 

The same method is used to find the RMSE of time-series results from the MFM model compared 

to the vectorial mechanics model from [3] to give a quantitative measure of the discrepancy. Eqn. 

(11) measures the average difference between two time series 𝑋1(𝑡) and 𝑋2(𝑡): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋1(𝑡) − 𝑋2(𝑡))𝑇

𝑡

𝑇
 (11) 

The following sections introduce and summarise the MFM before commencing an analysis of the 

three-float M4 WEC in irregular sea-states. 
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3  THE MOVING FRAME METHOD 

The MFM is based upon modern mathematical tools developed during the last century. 

Élie Cartan (1869-1951) [29] assigned a reference frame to each point of an object under study (a 

curve, a surface, the Euclidean space itself). Using an orthonormal expansion, he expressed the rate 

of change of the frame in terms of the frame. The MFM adopts this concept by placing a reference 

frame on every moving link. Following, a method is needed to express the relationships between 

frames. For this, the focus is shifted to the work of Sophus Lie. 

Marius Sophus Lie (1842-1899) [30] developed the theory of continuous groups and their 

associated algebras. The MFM adopts the mathematics of rotation groups and their algebras yet 

distils them to simple matrix multiplications. However, a simplifying notation is needed. For this, 

the focus is shifted to Frankel. 

Theodore Frankel (1929-2017) [31] developed a compact notation in geometrical physics. The 

MFM adopts this notation to enable a methodology that is identical for both 2D and 3D analyses. 

The notation is identical for single and multi-body linked systems.  

The MFM replaces an inordinate reliance on vector algebra with the framework of Lie algebra 

reduced to the simplicity of rotation matrices. It abandons the inertial frame in favour of the moving 

frame as a formative element. An introduction to the Moving Frame Method (for single rigid 

bodies) along with a pedagogical assessment is available in The moving frame method in dynamics: 

Reforming a curriculum and assessment by Impelluso [32]. The following sections summarise the 

MFM. 
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3.1  Single Body Kinematics Using SO(3) 

At the center of mass of each moving body () a time-dependent (moving) frame is attached: 

( )( ) ( ) ( )

1 2 3

( ) ( ) ( ) ( ) ( )=e e e et t t t  
 (12) 

In eqn. (12), each ( ) ( )ei t  is a unit vector, where the subscript denotes the direction.  

An inertial frame is defined at t = 0 and deposited from any specified moving frame: 

( ) ( )( ) ( ) ( )

1 2 3 1 2 3(0) (0) (0)==e e e e e e e
I I I I   

 (13) 

The point-wise principle assures that if such a frame is deposited anywhere, and is inertial, it can 

be considered as a reference inertial frame. Figure 12 visualises a fixed inertial frame deposited at 

𝑡 =  0 and a moving frame that has translated relative to the inertial frame.  

 

Figure 12. Inertial frame, 𝒆𝐼, and translated moving frame, 𝒆(𝛼) 

The absolute position vector r(α)(t) of this moving frame is defined as a translation from the inertial 

frame eI: 

( ) ( ) ( ) ( )I txt =r e  (14) 

Above, x(α)(t) represents the absolute coordinates of the distance from the inertial frame to the 

center of mass of a body, expressed in the inertial frame. However, using bold s for the vector and 

non-bold s for the components, the relative position vector of a moving frame (α + 1) from another 

moving frame (α) is asserted as:  
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( 1/ ) ( ) ( 1/ )( ) ( ) ( )st t t    + += es   (15) 

Next, the absolute position vector of the -frame, r(α)(t), and the relative position vector s(α+1/α)(t) 

are combined to obtain the absolute position vector of the (α + 1) frame: 

( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( )t t t s t    + += +r r e  (16) 

This is visualised for frames (1) ( )te and (2) ( )te in Figure 13 below: 

 

Figure 13. Relationships between relative, r, and absolute, s, position vectors 

The attention is turned to frame orientations. A rotation matrix, ( ) ( )R t , a member of the Special 

Orthogonal Group (SO(3)), relates the orientation of a moving frame from an inertial frame: 

( ) ( )( ) ( )=e e  I Rt t   (17) 

Figure 14 visualises a fixed inertial frame deposited at t = 0 and a moving frame that has rotated 

relative to the inertial frame: 

 

Figure 14. Inertial frame, 𝒆𝐼, and rotated moving frame, 𝒆(𝛼) 

The relative rotation of a frame (α + 1) from another frame (α) is designated as: 
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( 1) ( ) ( 1/ )( ) ( ) ( )  + +=e et tRt     (18) 

The orientation of body (α + 1) from the inertial frame is found by inserting eqn. (17) into (18) and 

exploiting the closure property of the SO(3) Group: 

( 1) ( ) ( 1/ ) ( 1)( ) ( ) ( ) ( ) + + += =e e e
I IR R Rt t t t      (19) 

One defining property of SO(3) is that the inverse of a rotation matrix is the transpose of the rotation 

matrix: 

( ) ( )
1

( ) ( )( ) ( )
−

=
T

R t R t   (20) 

Keeping in mind that the inertial frame remains constant, the time rate of frame rotation is found 

as: 

( ) ( )( ) ( )=e e  I Rt t   (21) 

Noting that ( ) ( )
1

( ) ( )( ) ( )R t R t 
−

 is equal to an identity matrix, eqn. (20) is used in eqn. (17) to 

formulate the inertial frame in terms of the moving frame: 

( )( ) ( )( ) ( ) 
TI t R t =e e  (22) 

This is substituted back into eqn. (21) to obtain the time rate of frame rotation expressed in its own 

frame: 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )=e e 
T

t t t tR R     (23) 

The associated algebra, so(3), of the SO(3) group, affirms that the matrix product in eqn. (23) is 

skew-symmetric (all dominant diagonal terms are zero). The skew-symmetric angular velocity, 

( ) ( )t , is defined in eqn. (24): 
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( )

( ) ( )

3 2

( ) ( ) ( ) ( ) ( )

3 1

( ) ( )

2 1

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) (

0

0

) 0

 −
 

= = − 
 − 

 
T

t t

t t t t t

t t

R R

 

    

 

 

  

 

 (24) 

Eqn. (23) is rewritten as: 

( ) ( ) ( )( ) ( ) ( )=e et t t    (25) 

The components of the skew-symmetric angular velocity are isomorphic to the components of an 

angular velocity vector, ( ) ( )t , when associated with the same frame as was used in its 

construction. This column is associated with the same frame in which the relationships were 

derived. 

( )

1

( ) ( ) ( )

2

( )

3

( )

( ) ( ) ( )

( )

 
 

=  
 
 

e

t

t t t

t



 









α  (26) 

3.2  Structured Kinematics Using SE(3) 

This analysis can be completed using free body diagrams and elements of the Special Orthogonal 

Group. However, this section introduces the Special Euclidean Group (SE(3)) to accelerate the 

analysis of the kinetics of multi-body systems in 3D. 

The aim of SE(3) is to combine the rotational and translational data of a frame α into one structure. 

To accomplish this, the 4×4 absolute frame connection matrix (a member of the Special Euclidean 

Group), E , is defined. It is essential to note that E ∈ SE(3), while R ∈ SO(3). 

( ) ( )

( )

3

 
(

0

) ( )
( )

1T

R x
E

t t
t

 


 
=  
 

 (27) 

Next, a moving frame and its location from an inertial frame are combined in one data structure. 

This is defined as a moving frame connection:  
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 2 3( ) ( ) ( ) ( ) ( ) ( )t t t t t t     =e r e e e r  (28) 

Similarly, if the frame is inertial, the data structure consists of an inertial frame and the location to 

the inertial frame, which is always zero. This is defined as the inertial frame connection: 

( ) ( )1 2 3=e e e e0 0
I II I

 (29) 

The inertial frame connection (eqn. (29)) and the moving frame connection (eqn. (28)) are related 

by utilising the absolute frame connection matrix (eqn. (27)): 

( )( ) ( ) ( )( ) ( ) ( ) ( )It t E t  =e r e 0  (30) 

The compact form of the absolute frame connection matrix is written as: 

( )(

(

)

) ( )

3

( ) ( ) ( )
( ) ( ) (

1
)

0T

I t t
t t

R x 
 

 
 =
 

e r e 0  (31) 

Multiplying out gives the same relations as for SO(3) as seen in eqns. (14) and (17): 

( ) ( ) (( ) ( ) )( ) ( ) ( ( ) ( ))I IR xt t t t  =e r e e  (32) 

Likewise, the relative frame connection matrix consists of the relative rotation matrix and the 

relative position vector and is defined as: 

( )1/ ( 1/ )

( 1/ )

3

( )

1

( )

0
( )

T

R t ts
E t

   
 

+ +

+  
=  
 

 (33) 

Eqn. (33) is used to express the relationship between two moving frames, (+1) and :  

( ) ( )( 1) ( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( ) ( )t t t t E t     + + +=e r e r  (34) 

Again, eqn. (34), with its defining element (eqn. (33)), recapitulates eqns. (16) and (18).  
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Next, the absolute frame connection matrix of body (α+1) is found. This is the product of the 

absolute frame connection matrix of body () and the relative frame connection matrix of (α+1) 

from (α): 

( 1) ( ) ( 1/ )( ) ( ) ( )+ +=E tE Et t     (35) 

The inverse of the frame connection matrix is known analytically (due to E ∈ SE(3)) and expressed 

as: 

( ) ( ) ( )( )

3

( )
1

( )

( )
( ) ( ) ( )

(
0

)
1

T T

T

R R x
E

t t t
t

 




− −
=
 
 
  

 (36) 

Eqn. (36) is used in eqn. (30) to formulate the inertial frame connection in terms of the moving 

frame connection: 

( ) ( )( )(
1

)( ) ( )( ) )( ) (I tt t E  
−

=e 0 e r  (37) 

This result along with the time rate of eqn. (30) is used to obtain the time rate of the frame 

connection in terms of the frame connection itself:  

( ) ( )( )
1

( ) (( ) ( ) ( ) )) (( ) ( ) ( ) ( ) ( ) ( )tE Et t t t t    
−

= ee r r  (38) 

The absolute time rate of frame connection matrix for the body, Ω
(α)

, is defined as the product of 

(E(α)(t))
-1

 and Ė
(α)

(t). Eqn. (38) is rewritten as:  

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )t t t t t    =e r e r  (39) 

Ω
(α)

 presented in matrix form is: 

( )( ( )

3

) ( )

( ) ( ) ( ) ( )

0 0

T

T

t t tR x  
  

 =
  

Ω  (40) 
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4  DYNAMICS OF THE M4 WAVE ENERGY CONVERTER 

Before continuing with the SE(3) aspects of the MFM, inertial parameters are presented. The bow 

float is defined as float 1, mid float as float 2 and stern float as float 3. The horizontal and vertical 

distance from float 1 centre of mass (yellow dot at float 1) to float 2 centre of mass (yellow dot at 

float 2) is defined as 𝑠1
(2/1)

 and 𝑠3
(2/1)

 respectively. The vertical distance from float 2 to the hinge 

is defined as 𝑠(ℎ/2) and the horizontal and vertical distance from the hinge to float 3 centre of mass 

(yellow dot at float 3) is defined as 𝑠1
(3/ℎ)

 and 𝑠3
(3/ℎ)

, respectively. These variables are used later 

when constructing the equations of motion with the moving frame method and are seen in Figure 

15: 

 

Figure 15. Schematic of M4 WEC relative distances between each floats’ center of mass (  ). 

Distances (as seen in Figure 9) and masses for the floats have been established in prior research [3] 

and are presented in Table 2. 

4.1  Moment of Inertia 

The moving frame method relies on finding the mass moment of inertia, which is a rotating body's 

resistance to angular acceleration, about the centre of mass of each body in a multi-link system. 

This thesis uses the established moment of inertias from previous work [3], however the moments 

of inertia from [3] is established about a distal hinge. Thus, it is incumbent to first transition the 

mass moment of inertia from that pre-established hinge, back to the centre of mass of the individual 

components, and finally reconstruct mass moment of inertia about each floats’ centre of mass. 
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The parallel axis theorem is used to find the 3D mass moment of inertia about the centre of mass 

of the floats. In eqn. (41), 𝑑 is the coordinates of the centre of mass from some arbitrary point O. 

𝐽𝐶  is the moment of inertia when the frame is at the centre of mass and 𝐽𝑂 is the moment of inertia 

when the frame is at some arbitrary point, O. 

𝐽𝑂 = 𝑚𝑑 𝑑 𝑇 + 𝐽𝐶 = 𝑚 [

0 −𝑑3 𝑑2

𝑑3 0 −𝑑1

−𝑑2 𝑑1 0
] [

0 𝑑3 −𝑑2

−𝑑3 0 𝑑1

𝑑2 −𝑑1 0
] + 𝐽𝐶  

 

(41) 

The moment of inertia about the centre of mass of each float, in addition to the distances and 

masses, are presented in Table 2: 

Table 2. Mass, moment of inertia and distances for each float 

Body Unit Symbol  

Float 1 (bow float) Mass [kg] 𝑚(1) 2.2 

 Inertia [kgm2] 𝐽2
(1)

 0.204 

 Distance [m] 𝑠(2/1) [
1.330

0
0.01

] 

Float 2 (mid float) Mass [kg] 𝑚(2) 4.887 

 Inertia [kgm2] 𝐽2
(2)

 0.075 

 Distance [m] 𝑠(ℎ/2) [
0
0

0.283
] 

 Float 3 (stern float) Mass [kg] 𝑚(3) 17.24 

 Inertia [kgm2] 𝐽2
(3)

 0.614 

 Distance [m] 𝑠(3/ℎ) [
0.8
0

0.333
] 
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4.2  First Frame – Float 1 

Figure 16 illustrates the wave energy converter with moving frames positioned at the centre of 

mass of their associated bodies, where the superscript indicates which float the frame is positioned 

at, and the subscript indicates direction. The direction vectors are aligned with the typical XYZ 

orientations of marine bodies such that later comparison with diffraction coefficients, obtained 

from a panel code, WaveAnalysisMIT (WAMIT), is maintained. 

 

 

At t = 0 an inertial frame is deposited from the first frame:  

(1) (0)I =e e  (42) 

Although the inertial frame is deposited from the first frame, it remains and serves as the inertial 

frame for the position data of the entire system. Next, a frame connection matrix is defined for the 

first frame: 

(1) (1)

(1)

3

( ) ( )
( )

0 1T

R x
E

t t
t

 
=  
 

 (43) 

(1) ( )R t  represents the rotation of the first float and has the general form: 

Figure 16. Diagram of the three-float M4 device with frames 
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(1) (1) (1)

11 12 13

(1) (1) (1) (1)

21 22 23

(1) (1) (1)

31 32 33

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

R t R t R t

R t R t R t R t

R t R t R t

 
 

  
 
 

 (44) 

(1) ( )x t  represents the possible translation of the first float. Eqns. (27-40) are used to find the 

absolute time rate of frame connection matrix for the first float: 

( )(1) ( (1)1)

(1)

30

( ) (

0

) ( )
T

T

t t tR x 
 =
  

Ω  (45) 

From eqn. (45), the time rate of the first frame is extracted:  

) (1)(1) (1( ) ( ) ( )t t t=e e  (46) 

The second equation is also extracted: 

( )((1) (1 )1 1( ) )( ) ( ) ( ) ( )
T

Rt t txt = er  (47) 

The translational velocity of the first frame is asserted as: 

(1) (1)( ) ( )I txt =r e  (48) 

4.3  Second Frame – Float 2 

At the centre of mass of float 2, a moving frame e(2)(t) is positioned. In keeping with the analysis 

of multi-body systems, the next task is to “locate” the second frame from the first frame. However, 

due to the rigid connection between float 1 and float 2, the two floats move together. One solution 

is to define float 1 and float 2 as one single body – but this complicates the equations when it comes 

to computing forces and moments induced by waves. A better solution is to place a moving frame 

at the centre of mass of float 2 and lock it with the same rotational orientation as float 1. Thus, in 

order to locate the second frame from the first frame, the first frame is simply parallel translated 

with no rotation. This fixed path is illustrated in Figure 17 below (dotted red line) and the distance, 
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𝑠(2/1), is presented in Table 2. Henceforth, float 1 orientation is determined by forces and moments 

induced by waves acting on both floats 1 and 2, and the orientation of float 2 is found from the 

orientation of float 1. 

 

Figure 17. Fixed path from float 1 to float 2 (compressed actuator) 

A common practise is to rotate frame 1 in order to obtain the orientation of frame 2. However, this 

work demonstrates that a moving frame that is unable to rotate is very useful for obtaining the 

accurate forces and their associated moments. The rotation matrix from frame 2 to frame 1 is 

therefore identical to the identity matrix. 

(2) (1) (2/1) (1)

1 0 0

( ) ( ) ( ) ( ) 0 1 0

0 0 1

t t R t t

 
 

= =
 
  

e e e  (49) 

This information is used to construct the relative frame connection matrix: 

𝐸(2/1)(𝑡) = [
𝐼3 𝑠(2/1)

03
𝑇 1

] (50) 

Using eqn. (35), the absolute frame connection matrix E(2)(t) is found: 

(1) (1) (2/1) (1)

3

(2) (

0

( ) ( ) )
(

1
)

T

R R s x
E

t t t
t

 +
=  
 

 (51) 

Finally, the time rate of the frame connection of the second frame is:  
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( ) ( )( ) ( )
1

(2) (2) (2) (2) ( (2) (2) (2) (2) 2)( )( ) ( ) ( ) ( ) )) ) () ( ((t t t t tt tE tE t 
−

= =e r e r e r  (52) 

In its full form, the absolute time rate of frame connection matrix is: 

( ) ( ) ( )(1) (1) (1) (1) (2/1) (1)

(2)

3

( ) ( ) ( ) (

0

) (
)

0

)
(

T T

T

t t t t tR R R R s x
t

 +
 =
  

 (53) 

From eqn. (53), the angular velocity vectors and linear velocity vectors of the second frame are 

extracted. Eqns. (17) and (18) are used to find the linear velocity vector of the second frame with 

respect to the inertial frame: 

( )(2) (2) (1)( ) ( ) ( )t t t= e  (54) 

 (2/1) 1(2) (1) ( ) (1)( ) ( ) ( )( )
T

I s xt R t t t= +er  (55) 

As expected, the angular velocity of the second frame is indistinguishable to the angular velocity 

of the first frame. Next, the same procedure is followed in order to find the angular- and linear 

velocity vector for the final moving frame. 

4.4  Third Frame – Float 3 

At the centre of mass of float 3, a moving frame e(3)(t) is positioned. The next task is to “locate” 

the third frame from the second frame. First, the second frame is parallel translated to the hinge 

(follow the red line in Figure 18); then the frame is rotated with respect to 𝐞2; finally, the frame is 

parallel translated to the third floats centre of mass (follow the green line in Figure 18). 
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Figure 18. Fixed path from float 2 to float 3 (extended actuator) 

The distance from float 2 to the hinge, 𝑠(ℎ/2), and the distance from the hinge to float 3, 𝑠(3/ℎ), are 

presented in Table 2. With specific regard to the hinge, the orientation of the third frame is obtained 

from the second frame by rotating  (3/2)(t) about the common 2-axis: 

(3/2) (3/2)

(3) (2) (3/2) (2)

(3/2) (3/2)

cos ( ) 0 sin ( )

( ) ( ) ( ) ( ) 0 1 0

sin ( ) 0 cos ( )

t t

t t R t t

t t

 

 

 
 

= =  
 − 

eee  (56) 

This information is used to construct the relative frame connection matrix: 

𝐸(3/2)(𝑡) = [
𝐼3 𝑠(ℎ/2)

03
𝑇 1

] [
𝑅(3/2)(𝑡) 03

03
𝑇 1

] [
𝐼3 𝑠(3/ℎ)

03
𝑇 1

] (57) 

The following expression for the relative frame connection matrix is obtained: 

𝐸(3/2)(𝑡) = [
𝑅(3/2)(𝑡) 𝑅(3/2)(𝑡)𝑠(3/ℎ) + 𝑠(ℎ/2)

03
𝑇 1

] (58) 

Using eqn. (35) the absolute frame connection matrix E(3)(t) is found: 

( )  (1) (3/2) (1) (3/2) (3/ ) ( /2) (1) (2/1) (1

3

)

( )

3

)( ) ( ) ( ) ( )

0

( )
( )

(

1

h h

T

R R R R s s R t s x
E

t t t t t
t

 + + +
=  
  

 (59) 

Finally, the time rate of the frame connection of the third float is: 
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( ) ( )( ) ( )
1

(3) (3) (3) (3) ( (3) (3) (3) (3) 3)( )( ) ( ) ( ) ( ) )) ) () ( ((t t t t tt tE tE t 
−

= =e r e r e r  (60) 

From eqn. (60) the angular velocity vectors and linear velocity vectors of the third frame are 

obtained: 

( )( )(3) (3) (3/2) (1) (3/2)( ) ( ) ( ) ( ) ( )
T

t t R t t t = +e  (61) 

(1) (3/2) (3/ ) (3) (1) ( /2) (1)(3) (2)( ) (( )) ( ) ( ) ( ) ( )I
T T

h hR t R t s t R t s tt x t  = + + 
 

er  (62) 

4.5  Simplifications and Generalised Coordinates 

Before continuing, all the required equations are summarised; linear- and angular velocity of float 

1 to 3, respectively. 

First, the linear and angular velocity of float 1: 

(1)

(1) (1)

2

(

1

1

3

)

( )

( ) ( )

( )

x

t

t

x

tx

t x

 
 

=  
 
 

 (63) 

(1)

(1) (1

)

1

2

3

)

(1

( )

( ) ( )

( )

t

t t

t



 



 
 

=  
 
 

 (64) 

Next, the linear and angular velocity of float 2: 

1 (2/1(2) ) ) (1) (1( )( ) ( ) ( )( )
T

x t R t txs t= +  (65) 

(2) (1)( ) ( )t t =  (66) 

Finally, the linear and angular velocity of float 3: 



38 

 

((1) (3 )/2) (3/ ) (1) ( )/ 1(3) 3 (22) ( )( ) ( ) ( )( ) ( ) ( ) ( )
T T

h hR t R t s R t sx t t x tt = + +  (67) 

( )(3) (3/2) (1) (3/2)( ) ( ) ( ) ( )
T

t R t t t  = +  (68) 

Some kinematic assumptions are made before proceeding with finding and solving the differential 

equations. One major advantage for including these assumptions in the analysis is that the results 

are comparable to an experimentally-validated vectorial mechanics model from [3]. The results 

will confirm if hydrodynamic forces in an irregular sea-state have been successfully implemented 

into the MFM. 

Rotational and angular velocity simplifications 

Prior research reveals that roll is eliminated by adding out-rigger buoys to the stern float [3]; so, 

roll motion is ignored. Another assumption is to ignore yawing since this does not affect the 

resultant power output significantly. With these assumptions, the full rotation matrix of the first 

float greatly simplifies: 

(1) (1) (1)

11 12 13

(1) (1) (1) (1)

21 22 23

(1) (1

(1

3

) (1)

) (1)

31 3

(1)

3

( )

2

1

cos ( ) 0 sin ( )

0 1 0

si o

( ) ( )

n ( ) 0 c s ( )

( )

( ) ( ) ( ) ( ) /

( ) ( ) ( )

R t R t R t

R

R

t

t

t R t R t R t No roll yaw

R t t R t

t

t

 

 

 
 
 
 

 −

 
 

= 










 (69) 

Furthermore, these assumptions also simplify the angular velocity of the first float: 

(

1

3

(1)

(1) 1) (1)

(1)

2

( ) 0

( ) ( ) ( )/

0( )

No l

t

t t t

t

ro l yaw



 



   
   

=    
  
  

 (70) 

Translational simplifications 

The M4 wave energy converter is assumed to only translate in surge and heave. Translation in sway 

is not of great importance when investigating the power output since the PTO cannot absorb power 

in this direction. This simplifies the linear velocity for the first float (and consequently also 

simplifies linear velocity for the second and third float): 
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(1) (1)

(1) (1)

(1) (1)

1 1

2

3 3

( ) ( )

( ) ( ) 0

( ) ( )

x x

x No sway

x x

t t

x t t

t t

   
   

=    
   
   

 (71) 

The next step is to define a minimal set of generalised coordinates. 

Generalised coordinates 

The full list of Cartesian velocities is denoted as{Ẋ(t)}. This column vector contains three linear- 

and angular velocity components for each float and is 18x1 in size. A minimal set of generalised 

velocities needed to model the configuration of the system is deployed and is denoted as {q̇(t)}. 

The generalised velocities consist of surge, heave and pitch velocity of the bow float, and the pitch 

velocity of the stern float relative to the mid float and is 4x1 in size. In other words, all 18 Cartesian 

velocities are computed from the minimal set of generalised velocities. Eqn. (72) shows the full list 

of Cartesian and generalised velocities: 

 

(1)

1

(1)
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3
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x t
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(1) (1)

1
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,

( ) ( )
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(72) 
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The Cartesian velocities are linearly related to the generalised velocities using the B-matrix as 

follows: 

   ( ) ( ) { ( )}X t B t q t=  (73) 

The number of rows of the B-matrix is equal to the number of Cartesian velocities, while the 

number of columns is equal to the number of generalised velocities. In this case, the size of the B-

matrix is 18×4: 

[𝐵(𝑡)] =

[
 
 
 
 
 
 
 
 
𝑒1 𝑒3 0

3𝑥1
0

3𝑥1

0
3𝑥1

0
3𝑥1

𝑒2 0
3𝑥1

𝑒1 𝑒3 𝑅(1)(𝑡)𝑠(2/1) ⃡         
𝑇
𝑒2 0

3𝑥1

0
3𝑥1

0
3𝑥1

𝑒2 0
3𝑥1

𝑒1 𝑒3 𝐵53 𝐵54

0
3𝑥1

0
3𝑥1

(𝑅(3/2)(𝑡))
𝑇
𝑒2 𝑒2 ]

 
 
 
 
 
 
 
 

 (74) 

Where 

𝐵53 = 𝑅(1)(𝑡) {(𝑠(ℎ/2) ⃡        
𝑇

+ 𝑠(2/1) ⃡        
𝑇

) + 𝑅(3/2)(𝑡)𝑠(3/ℎ) ⃡        
𝑇

(𝑅(3/2)(𝑡))
𝑇
} 𝑒2 

 

(75) 

𝐵54 = 𝑅(1)(𝑡)𝑅(3/2)(𝑡)𝑠(3/ℎ) ⃡        
𝑇

𝑒2 (76) 

and 0
3×1

, e1, e2 and e3 are defined as: 

1 2 3
3 1

0 1 0 0

0 0 , 0 , 1 , 0

0 0 0 1


       
       

= = = =       
       
       

e e e  (77) 

The derivation of the B-matrix concludes the kinematics of the system. A few points are made, in 

closure. A casual inspection of eqn. (74) reveals that the analysis can be greatly simplified by 

recognising the sparsity of this matrix. This could potentially reduce computational expenditure. 

However, the aim here is to solve this problem, while, at the same time, maintaining some form of 

generality to be used in future problems with more bodies and/or fewer restrictive assumptions on 
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the final motion (e.g. to account for yaw and roll). Thus, the form of the B matrix is maintained as 

is, without further simplifications. After the generalised coordinates are computed, the B matrix is 

used for computation of the Cartesian coordinates that enter into power and force calculations. 

Note that the rotation matrix for the first float is not readily derivable (as is the case here with a 

simple pitch rotation about one axis). It would remain full as in eqn. (44) and would have to be 

solved for these terms at each time step. The procedure entails the use of the Cayley-Hamilton 

theorem to secure an implementation of the Rodriguez formula [1]. 
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5  KINETICS OF THE M4 WAVE ENERGY CONVERTER 

As this section addresses the kinetics it is reasonable to return to 3D generality for edification’s 

sake. 

5.1  Application of Analytical Mechanics 

The Lagrangian, Ł , is a function that describes the state of a dynamic system in terms of 

generalised coordinates. A Lagrangian function is defined as the difference between the kinetic 

energy, K, and potential energy, U: 

( ) ( ) ( )( ) ( ) ( )( ), ( ), ( ), ( ), ( ),q t q t t K q t q t t q t tŁ U  = −  (78) 

Next, the Action, A, is an integral of a function of time and space that outputs a scalar. Here, the 

Action is defined as the definite integral of the Lagrangian function over time: 

( )
1

0

( ) ( ), ( ),

t

t

A tq t q tŁ t d=   (79) 

Hamilton’s Principle states that “the motion of a system occurs in such a way that the definite 

integral A becomes a minimum for arbitrary possible variations of the configuration of the system, 

provided the initial and final configurations of the system are prescribed” [33].  

Variation of The Action 

To obtain the equations of motion, the variation of the Action is set equal to zero: 

( )
1

0

( ) 0( ), ( ),

t

t

qŁ q t t t dt =  (80) 

Above, the variation symbol is considered as the derivative with respect to a variation parameter. 

This variation parameter commutes with the time derivative: 

q q
q q

t




 
=  =

 
 (81) 
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The variation parameter is a crucial part of being able to derive the equations of motion. The 

Gateaux derivative in functional space theory enables this variation. 

It is necessary to first deal with the non-conservative forces. To include the non-conservative 

forces, the extension of Hamilton’s Principle, known as the Principle of Virtual Work is exploited 

to accommodate non-conservative forces. Here, the Lagrangian is formulated as dependent only 

on the kinetic energy. All other forces (conservative or non-conservative) are accounted for as 

work, on the right side. The variation of The Action is rewritten as: 

( ) ( )
1 1

0 0

( ) ( )( ), ( ), ( ),  ( ),

t t

t t

dq tK q t t q tdt W q t tt  = −   (82) 

This is a crucial relationship and is the basis for the equations of motion. From this point onwards, 

the dependencies of position and velocity are omitted for ease of notation. In order to derive the 

equations of motion the variation of the kinetic energy, ( ) ( )K t , and the variation of the work, 

( ) ( )W t , must be found for insertion into eqn. (82). To find ( ) ( )K t  and ( ) ( )W t  in terms of 

generalised coordinates, another relationship for the B-matrix is revealed: The B-matrix that relates 

the Cartesian velocities {Ẋ(t)} to the generalised velocities {q̇(t)}, also relates the variation of the 

Cartesian displacements {δX̃(t)} to the variation of the generalised displacements {δq(t)}: 

    ( ) ( ) ( )=X t B t q t   (83) 

where the variation of the Cartesian displacements {δX̃(t)} is defined as:  
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 (84) 

and the subscript “un” means that the matrix is un-skewed into a column vector. Therefore, the 

generality of the form of the B-matrix is retained. The general form leads to a general differential 

equation for all cases, distinguished only by the B-matrix. 

Variation of Kinetic Energy 

To find the variation of the kinetic energy in terms of generalised coordinates, the variation of the 

kinetic energy in cartesian coordinates is first found, before it is converted to generalised 

coordinates by applying eqn. (83). 

The kinetic energy of each body in the system in cartesian coordinates is expressed by the angular 

momentum H.(α.)(t), and linear momentum L(α.)(t): 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )e et t H t t J t     = =H  (85) 

( ) ( ) ( ) ( )( ) ( ) ( )e eI It L t m x t   = =L  (86) 

Here, J.(α) represents the moment of inertia matrix for body α. The total kinetic energy of a body α 

with the frame placed at the centre of mass is defined as:  

 ( ) ( ) ( ) ( ) ( )1
( ) ( ) ( ) ( ) ( )

2
K t t t t t    =  + r L ω H  (87) 

For the whole system, the total kinetic energy in matrix form is expressed as:  
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1

( ) ( ) ( )
2

T
K t  = X t M X t , (88) 

where the mass matrix [M] contains the masses and moments of inertia for each body in the system: 

 

(1)

3
3 3 3 3 3 3 3 3 3 3

(1)

3 3 3 3 3 3 3 3 3 3

(2)

3
3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3

(3)

3
3 3 3 3 3 3 3 3 3 3

(3)

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

m I

J

m I
M    

J

m I

J

    

    

    

    

    

    

 
 
 
 
 
 
 
 
 
 
  

 (89) 

The variation of the kinetic energy in cartesian coordinates is expressed as:  

    ( ) ( ) ( )
T

K t  = X t M X t     (90) 

The components of the variation of the kinetic energy are still not defined. An appropriate 

expression for the variation of the Cartesian velocities {δ Ẋ(t)} is: 
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(1)

(2)

(2)

(3)

(3)

( )

( )

( )
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(

)

)

(

)

(

x

x
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t

t

t

t
t
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t














 
 
 
  

  
 
 
 
  

 (91) 

For linear velocities, the variation of the time derivative is equal to the time derivative of the 

variation:  

( ) ( )( ) ( )
d

 x t  = x t
dt

    (92) 

For angular velocities, however, there is a restriction first proven by Holms [34] but reproduced 

using moving frames by Murakami [35]. 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )

un un

( ) ( ) ( ) ( ) ( ) ( )
   
   
   

T Td
t  = R t R t + t R t R t

dt
          (93) 

Making use of the previous two equations, eqn. (91) is written in compact form as: 

     ( ) ( ) [ ( )] ( )= +
d

X t X t D t X t
dt

   , (94) 

where [D(t)] is a skew symmetric matrix that contains the angular velocity matrices for each frame:  

 

3 3 3 3 3 3 3 3 3 3 3 3

(1)

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

(3)

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0

0 ( ) 0 0 0 0

0 0 0 0 0 0

( )
0 0 0 ( ) 0 0

0 0 0 0 0 0

0 0 0 0 0 ( )

t

D t    
t

t







     

    

     

    

     

    

 
 
 
 
 
 


 
 
 
 
 
  

 (95) 

By applying the B-matrix relationships (eqns. (73) and (83)) the variation of the kinetic energy in 

terms of generalised coordinates becomes: 

        ( ) ( ) ( ) ( )[ ( ))] ( ( ) { ( )}

T

K t  = B t q t B
d

t q t M
d

D t
t

B t q t  
 

+ 
 

 (96) 

The variation of the kinetic energy is ready for insertion into eqn. (82). 

Variation of Work 

The focus is turned to the variation of the work, also known as Virtual Work. To find the Virtual 

Work in terms of generalised coordinates, it is first defined in cartesian coordinates before it is 

converted to generalised coordinates by applying eqn. (83). 

The Virtual Work done by the forces and moments in cartesian coordinates is expressed as: 
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   ( ) ( )=
T

W X t F t   (97) 

where the forces and moments acting on the three bodies of the M4 wave energy converter are 

defined as: 

 

(1) (1)(1)

(1) (1)(1)

(2) (2)(2)

(2) (2)(2)

(3)(3)

(3)

( ) ( )( )

( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

( )( )

( )

hydro external

hydro external

hydro external

hydro external

hydro ex

F t F tF t

M t M tM t

F t F tF t
F t   

M t M tM t

F t FF t

M t

+ 
 

+ 
  + 

 = 
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  +
 
  

(3)

(3) (3)

( )

( ) ( )

ternal

hydro external

t

M t M t

 
 
 
  
 
 
 
 

+  

 (98) 

Fhydro(t) and Mℎ𝑦𝑑𝑟𝑜(t) are the total hydrodynamic forces and moments induced by waves (due to 

excitation, added mass and radiation damping), respectively. The external forces and moments, 

Fexternal(t) and M𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(t), come from hydrostatic stiffness, mechanical force from the PTO and 

gravitational forces. Forces are covered more in depth in section 6 - Hydrodynamics.  

Eqn. (83) is applied to rewrite eqn. (97) in terms of generalised coordinates: 

   *( ) ( )=
T

W q t F t   (99) 

where the generalised force {F*(t)} is defined as:  

     *( ) ( ) ( )=
T

F t B t F t  (100) 

 

  



48 

 

5.2  Equations of Motion 

The expressions obtained for the variation of the kinetic energy and the variation of the work are 

inserted into eqn. (82) to obtain the basis for the equations of motion in terms of generalised 

coordinates: 

            

   

1

0 *

(
0 

)

( ) (

( ) (

)

) ( ) ( ) { ( )}t

Tt

T T T Td
q t B t q t B t D M  

dt

q t F t

dt
B t q t



 
 

− 
= 

 
 

 
− 

   (101) 

After performing integration by parts on eqn. (101), and accounting for zero virtual displacement 

at the endpoints, second order coupled differential equations are obtained:  

     * * *( ) ( ) ( ) ( ) ( )   + =   M t q t N t q t F t  (102) 

where the following terms are defined: 

    ( ) ( ) ( )   
T

M t B t M B t  (103) 

       ( )( ) ( ) ( ) ( ) ( )     +   
T

N t B t M B t D t M B t  (104) 

Eqn. (102) is solved with respect to the list of generalised accelerations {q̈(t)}, to yield the 

following: 

     ( )
1

* * *( ) ( ) ( ) ( ) ( )
−

   = −   q t M t F t N t q t  (105) 

This results in four coupled second order ordinary differential equations (ODEs), i.e. one for each 

generalised coordinate. 

The 𝐹∗-term in eqn. (105) is the expression of the generalised forces; a similar statement can be 

made about the 𝑀∗-expression. Compared to traditional mechanics models, the extra term, 

[𝑁∗(𝑡)]{�̇�(𝑡)} in eqn. (105) occurs due to differences in vectorial mechanics and analytical 

mechanics. As described in eqn. (78) analytical dynamics requires one to formulate the kinetic and 
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potential energies of a system. As a result, there is no need for free-body diagrams. The 𝑁∗-term 

derives from the intersection of variational methods with the MFM and the variation of the angular 

velocities. This 𝑁∗-term is a statement that moment and virtual rotation are a natural pair to use in 

the Principle of Virtual work. Table 3 below distinguishes the vectorial and analytical approaches: 

Table 3. Vectorial- versus analytical approaches 

 Vectorial mechanics Analytical mechanics 

Applications Simple applications Complex applications 

Founders Newton Lagrange and Hamilton 

Structure Vectors: momentum, force Scalars: kinetic energy, potential energy, work 

Basis Laws Principles 

In order to solve the second order ODEs using numerical integration methods, the equations of 

motion are expressed as sets of coupled first order ODEs. This is done by first defining two new 

variables: 

( )1z q t=  (106) 

( )2z q t=  (107) 

Next step is to differentiate 𝑧1 and 𝑧2: 

( )1 2z q t z= =  (108) 

( ) ( ) ( )  ( ) ( )  
1 1

* * * *

2 2z q t M t F t M t N t z
− −

     = = −       (109) 

This is simplified further by rewriting it as a single first order matrix differential equation: 

 
( ) ( ) ( ) ( ) 

1 1
1 1

* * * *
2 2

0 1 0

0

z z

z zM t N t M t F t
− −

     
  = +   

     −              

 (110) 
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This set of coupled first order ODEs is solved using a fourth order Runge-Kutta method. Lower 

order methods for solving the ODEs could also be applied since the equations are only of second 

order. Using lower order integration methods may allow for small improvements in computational 

efficiency whilst giving similarly accurate results. Examples of lower order numerical integration 

schemes that can be used are Beeman’s algorithm, Verlet integration, Midpoint method, Newmark-

beta method and others. Nevertheless, the Runge-Kutta numerical method is used because it is 

straight forward to implement and it has previously been used together with the MFM [2]. 

5.3  The Runge-Kutta numerical method  

For a first order differential equation, �̇� = 𝑓(𝑡, 𝑦), the fourth order Runge-Kutta numerical method 

(RK4) estimates the next value 𝑦𝑛+1 by using the previous value 𝑦𝑛 plus the weighted average of 

four increments, where h is the step size [36]. This integration scheme is implemented using 

MATLAB. 

( )1 , n nk f t y=  (111) 
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( )4 3, n nk f t h y hk= + +  (114) 

( )1 1 2 3 42 2
6

n n

h
y y k k k k+ = + + + +  (115) 
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6  HYDRODYNAMICS 

Analysing the hydrodynamics of WECs is a non-trivial task due to the complexity of the interacting 

forces that take place. The first theoretical developments performed such analyses in the frequency-

domain. Accordingly, frequency dependent hydrodynamic coefficients to describe the excitation, 

radiation and hydrostatic forces were defined, found with the aid of computer codes based on the 

boundary element method [7]. 

It is of interest to study devices in the time-domain due to phase-dependent effects – such as non-

linear hydrodynamic interactions in addition to evaluating non-linear control strategies of the 

power-take-off for smoothing power output [37]. These phase dependencies are also important for 

the proper assessment of device loads, such as for fatigue limit state design and for preliminary 

dimensioning of structures [38]. 

W. E. Cummins established a time-domain model that represents motion response of a marine 

structure subject to a linearly superposed sea-state of regular waves and separates the variables into 

individual units, such as by removing dependency of added mass on frequency [39]. The only 

assumption required (aside from convergence) is linearity, and experimental data indicate that the 

assumption is a good working approximation for small to moderate oscillations [39]. Furthermore, 

this assumption means that any excitation, periodic or non-periodic, continuous or discontinuous, 

is permissible, so long as it results in small displacements [39]. Following Cummins’ linearization, 

the equations of motion for a floating body with zero forward speed in the time-domain are [39]: 

(𝑚𝑖𝑗 + 𝐴𝑖𝑗
∞)�̈�𝑖(𝑡) + ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑐𝑖𝑗𝑥𝑖(𝑡) = 𝑓𝑑(𝑡) + 𝑓𝑒𝑥𝑡 (116) 

where  

- i and j denote mode with all combinations for surge, heave and pitch for the floats 

- 𝑥𝑖(𝑡), �̇�𝑖(𝑡), �̈�𝑖(𝑡) = position, velocity and acceleration of the floats 

- 𝑚𝑖𝑗 = mass and inertia of the floats 

- 𝑓𝑑(𝑡) = excitation force (section 6.1) 
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- ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏
𝑡

−∞
 = radiation force (section 6.2) 

- 𝐴𝑖𝑗
∞ = added mass at infinite frequency (section 6.3) 

- 𝑐𝑖𝑗 = hydrostatic stiffness matrix (section 6.4) 

- 𝑓𝑒𝑥𝑡 = external forces (e.g. viscous drag, mechanical force from the PTO system and 

gravitational force) (section 6.4) 

This time-domain model produces time-series results and is an appropriate tool for studies of 

converters in irregular waves [7]. 

6.1  Excitation Forces 

(𝑚𝑖𝑗 + 𝐴𝑖𝑗
∞)�̈�𝑖(𝑡) + ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑐𝑖𝑗𝑥𝑖(𝑡) = 𝑓𝑑(𝑡) + 𝑓𝑒𝑥𝑡 (117) 

The wave excitation force (red box in eqn. (117)) occurs due to incident waves, visualised in 

Figure 19: 

 

Figure 19. Hydrodynamic forces acting on the fixed body, when the device is unable to move, while waves travel 

towards the body. These forces are referred to as wave excitation forces. 

The wave excitation force is formed by the Froude-Krylov force, obtained by integration of the 

pressure field from undisturbed waves, and diffraction force from wave scattering due to the 

presence of the body. By assuming that the excitation force generated by an incident wave is a 

harmonic function that is directly proportional to the wave amplitude, the most straightforward 

procedure to model first-order wave forces in irregular waves is the simple linear superposition of 

N independent sinusoidal components [37]. Figure 20 visualises the principle of superposition 
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where independent sinusoidal components (dotted lines) are simply added together to achieve the 

combined wave (solid line). 

 

Figure 20. Wave superposition with sinusoidal components (dotted lines) and combined wave (solid line). 

The first order excitation force is given as: 

𝑓𝑑(𝑡) = ∑ 𝑓𝑒

𝑁

𝑖=1

(𝜔𝑖)𝐴𝑖 cos(𝜔𝑖𝑡 + 𝜙(𝜔𝑖) + 𝜑𝑖) (118) 

where the frequency dependent 𝑓𝑒(𝜔), which is an excitation force coefficient, and 𝜙(𝜔), which 

is a phase angle, are extracted directly from a diffraction model. The excitation force is directly 

proportional to the wave amplitude, 𝐴𝑖. The phase angle represents the difference in time between 

a peak in the incident wave profile at the centre of the device and a peak of the excitation force. 

The information on the phase angle is very important in systems with multiple degrees of freedom 

because of the difference in phases between the excitation forces acting on each degree of freedom. 

Assuming that individual wave components are statistically independent [40], the wave surface 

elevation phases, 𝜑𝑖, are randomly selected within [0;2π]. With this assumption, the randomness 

of the elevation process is properly reproduced and its statistical properties are correctly modelled 

[37]. 

6.2  Radiation Forces 

(𝑚𝑖𝑗 + 𝐴𝑖𝑗
∞)�̈�𝑖(𝑡) + ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑐𝑖𝑗𝑥𝑖(𝑡) = 𝑓𝑑(𝑡) + 𝑓𝑒𝑥𝑡 (119) 

The radiation force (red box in eqn. (119)) occurs due to body motion radiating waves away, 

visualised on still water (no incident waves) in Figure 21: 
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Figure 21. Radiation forces acting on the body when it is forced to oscillate on otherwise still water.  

The radiation force consists of a convolution integral that is associated with fluid memory effects 

and is depend on past time, 𝜏 [39]. 𝐵𝑖𝑗(𝜔) is the amplitude of the in-phase and out-of-phase 

components of the response to a unit amplitude forcing function of frequency, 𝜔 [39]. This is pre-

computed in a panel code (WAMIT – [3]). The radiation impulse response function, 𝐿𝑖𝑗(𝑡), is 

related to 𝐵𝑖𝑗(𝜔) by 

𝐿𝑖𝑗(𝑡) =
2

𝜋
∫ 𝐵𝑖𝑗(𝜔) cos(𝜔𝑡) 𝑑𝜔

∞

0

 (120) 

using Fourier inversion formulas [39]. The radiation forces are radiated away from the floats and 

are consequently opposite in sign compared to the excitation forces. 

6.3  Added Mass Forces 

(𝑚𝑖𝑗 + 𝐴𝑖𝑗
∞)�̈�𝑖(𝑡) + ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑐𝑖𝑗𝑥𝑖(𝑡) = 𝑓𝑑(𝑡) + 𝑓𝑒𝑥𝑡 (121) 

The forces from added mass (red box in eqn. (121)) occur because of the inertia of the water 

surrounding the body [7]. In order to simulate time-dependent motion of an irregular sea-state, the 

added mass at infinite frequency is used following Cummins [39] in order to decouple the 

dependency of added mass on frequency. This value is pre-computed in a panel code, WAMIT 

[37], as: 

𝐴𝑖𝑗
∞ = lim

𝜔→∞
𝐴𝑖𝑗(𝜔) (122) 
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6.4  Hydrostatic Restoring Forces and External Forces 

(𝑚𝑖𝑗 + 𝐴𝑖𝑗
∞)�̈�𝑖(𝑡) + ∫ 𝐿𝑖𝑗(𝑡 − 𝜏)�̇�𝑖(𝜏)𝑑𝜏

𝑡

−∞

+ 𝑐𝑖𝑗𝑥𝑖(𝑡) = 𝑓𝑑(𝑡) + 𝑓𝑒𝑥𝑡 (123) 

The term in the left-most red box in eqn. (123) is the hydrostatic restoring force. This is the force on 

a body due to the change in hydrostatic pressure on the wetted surface of the body as it moves from 

its equilibrium position [39]. Surge displacement provides no restoring forces; the restoring forces 

are only computed for heave and pitch displacements: 

𝑉𝑟𝑒𝑠𝑡 = −𝜌𝑔𝜋𝑟2𝑧 (124) 

𝑀𝑟𝑒𝑠𝑡 = −𝜌𝑔𝜋
𝑟4

4
𝜃  (125) 

where r is float radius and z is defined zero at the still water level and positive upwards. 

The external forces (right-most red box in eqn. (123)) occur due to viscous drag, mechanical force 

from the PTO system and gravitational forces. 

The viscous drag force acts in the opposite direction to the relative motion of an object with respect 

to the fluid. This force is computed by integration over the wetted surface area, S: 

𝑓𝑑𝑟𝑎𝑔(𝑡) = ∫ 𝑆𝑑𝐹 =
1

2
𝜌𝐴𝑤𝑒𝑡𝐶𝐷�̇�|�̇�| (126) 

Where 𝐴𝑤𝑒𝑡 is the projected area, 𝐶𝐷 is the drag coefficient and �̇� is the relative fluid velocity. 

However, prior research shows that rounded float bases give minimal drag losses and drag 

coefficients in heave are less than 0.3 ( [3], [41]). The drag force is therefore neglected in this study. 

Mechanical force in the actuator is converted to a moment about the hinge by multiplying the lever 

arm and is modelled as a linear damper [3]. The moment from the actuator is computed by 

multiplying a damping coefficient, 𝐵𝑃𝑇𝑂, with the relative angular velocity of the floats: 

𝑀𝑃𝑇𝑂(𝑡) = −𝐵𝑃𝑇𝑂(𝜔(1)(𝑡) − 𝜔(3)(𝑡)) (127) 
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From the actuator moment, 𝑀𝑃𝑇𝑂(𝑡), the power output is computed by multiplying the relative 

angular velocity of the floats: 

𝑃𝑡𝑜𝑡 = 𝑀𝑃𝑇𝑂(𝜔(1)(𝑡) − 𝜔(3)(𝑡)) (128) 

6.5  Total Force 

As visualised in Figure 22, eqn. (116) is directly inserted into F* of the equations of motion found 

using the MFM, eqn. (105), where 𝑀* and its corresponding rotation matrices move the forces to 

the mass centres of each float. 

 

Figure 22. Cummins’ equation and the MFM 

What remains before being able to solve the equations of motion, is the required hydrodynamic 

coefficients. 

6.6  Hydrodynamic Coefficients 

In order to eliminate a possible source of error, added mass, diffraction and radiation coefficients 

are taken from the same WAMIT diffraction model from [3]. The moments from WAMIT are 

generated about the centre of flotation ( [42]), whereas the MFM requires all forces and moments 

about the centre of mass. This small translation is neglected in this work; however, it is noted that 

this could cause some small discrepancies between the MFM and the earlier results of [3]. Figure 

23 illustrates how the coefficients are incorporated for computation of the forces – with the forces 

inserted into the right-hand side of the equation found with the MFM. 
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Figure 23. Implementation of hydrodynamic coefficients into the Moving frame method. 

6.7  Code Structure 

The MFM model is created in MATLAB due to its simplicity in matrix manipulation. First the 

equations of motion are found using the MFM, followed by preparing the input wave spectrum and 

importing all hydrodynamic coefficients from the WAMIT diffraction model from [3]. The coupled 

differential equations are solved by applying a fourth order Runge-Kutta numerical method. All 

forces are computed at every iteration in the Runge-Kutta loop. Figure 24 visualises the code 

structure: 
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Figure 24. Code flowchart 

The predictor corrector loop (yellow dotted box inside the Runge-Kutta function in Figure 24) is 

required because accelerations are dependent on forces and added mass forces are dependent on 

accelerations, therefore using values directly leads to instabilities in the code. A sensitivity analysis 

is conducted to determine the number of iterations required through the correct loop. Figure 25 

shows for the vertical force calculated on float 3 at time, t=100 s, that approximately 10 iterations 

are required for convergence. 



59 

 

 

Figure 25. Sensitivity analysis of corrector loop 
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7  RESULTS & DISCUSSION 

The results obtained from the analyses of a model-scale three-float M4 device are presented for 

irregular sea spectra, specified with significant wave height, 𝐻𝑠 = 0.04 m, peak wave period, 𝑇𝑝, 

in the range 0.7-1.8 s and peakedness parameter 𝛾 = 3.3 (JONSWAP) and 𝛾 = 1 (Pierson-

Moskowitz). The results are compared with an experimentally-validated vectorial mechanics 

model from [3]. From the excitation force in Figure 26, it is clear that the input wave trains are 

identical in both models; this is because the same random numbers are used for generating the wave 

elevation. In all the time-domain figures a 20 s sample of the full 120 s time-series is shown.  

 

Figure 26. Vertical excitation force for 𝑇𝑝 = 1.2 s, 𝛾 = 1 as calculated by the vectorial model (dashed) and MFM 

(solid) 

The following analyses are conducted in order to compare the MFM model to the vectorial 

mechanics model: 

Analysis 1 Compare time-domain results; added mass force, radiation force, heave and surge 

response on float 3 for one sea-state (𝐻𝑠 = 0.04 m, 𝑇𝑝 = 1.2 s, 𝛾 = 1). 

→ This indicates whether the hydrodynamic forces are successfully implemented 

into the MFM or not. 

Analysis 2 Compare frequency-domain results; power capture and θrms for a range of sea-

states (𝐻𝑠 = 0.04 m, 𝑇𝑝 = 0.7-1.8 s, 𝛾 = 3.3). 

→ This validates the MFM model for a range of sea states and enables analyses at 

various sites. 
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Analysis 3 Compute full-scale energy yield at a site using Froude scaling. 

→ This demonstrates the full-scale potential of the M4 device of interest to the 

reader. 

7.1  Analysis 1: Time-domain results 

For comparison with results from [3], analysis 1 uses a Pierson-Moskowitz spectrum as the input 

wave spectrum. The time-series of vertical added mass and radiation forces acting on float 3 are 

first compared to ensure correct implementation of these forces into the MFM (Figure 27 and 

Figure 28). Note that the dominant diagonal added mass terms are not included in Figure 27 and 

that restoring forces are not shown due to lack of available data from [3] to compare this with. 

For computation of the radiation force (Figure 28), the impulse response function is pre-computed 

with the convolution integral being directly integrated to four peak periods in advance of the current 

time-step [3]. The frequency-dependent radiation damping, 𝐵(𝜔), is pre-computed in WAMIT for 

a set of 200 frequency intervals evenly spaced between 0 and 4 Hz. 

Finally, the resulting heave and surge response of float 3 is computed and compared with the 

vectorial mechanics model (Figure 29). 

 

Figure 27. Vertical added mass force for 𝑇𝑝  =  1.2 s as calculated by the vectorial model (dashed) and MFM (solid) 
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Figure 28. Vertical radiation force for 𝑇𝑝  =  1.2 s as calculated by the vectorial model (dashed) and MFM (solid) 

 

Figure 29. Heave (black) and surge (grey) position for 𝑇𝑝  =  1.2 s as calculated by the vectorial model (dashed) and 

MFM (solid). 

The added mass and radiation forces from the MFM model show near-identical agreement to the 

experimental-validated vectorial mechanics model from [3] (Figure 27 and Figure 28). The root-

mean-square error, RMSE, is calculated as eqn. (11) to give a quantitative measure of the 

discrepancy. RMSE values between the two models are less than 8 × 10−2 N and 1.5 × 10−1 N 

for added mass and radiation, respectively. The resulting heave and surge response on float 3 also 

show close agreement (Figure 29) with RMSE values less than 3 × 10−3 m and 4 × 10−3 m, 

respectively.  

The small discrepancies arise due to the following: 

- This work uses a fourth order Runge-Kutta method for solving the differential equations, 

while the vectorial mechanics model from [3] uses Beeman’s method. 

- Hydrodynamic coefficients are defined about the centre of flotation and not centre of mass, 

which is required in the MFM model. Due to the small relative rotations of the floats at these 

periods, the model is likely to be more sensitive to translational errors.  
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These results indicate that the hydrodynamic forces in an example irregular sea-state are 

successfully implemented into the MFM. 

7.2  Analysis 2: Frequency-domain results 

It is of interest to validate the MFM model for a range of sea-states and enable analyses at various 

sites. For comparison with results from [3], analysis 2 uses a JONSWAP spectrum as the input 

wave spectrum. From eqns. (9), (10) and (128) the power capture, CWR and θrms for a range of 

sea-states are computed and compared to the vectorial mechanics model as seen in Figures 30-32. 

 

Figure 30. Average power generation for Hs=0.04 m as calculated by the vectorial model (dashed) and MFM (solid) 

 

Figure 31. Capture-width ratio for Hs=0.04 m (black) as calculated by the vectorial model (dashed) and MFM (solid) 

 

Figure 32. Variation of 𝜃𝑟𝑚𝑠 (degrees) for Hs=0.04 m as calculated by the vectorial model (dashed) and MFM (solid) 
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Power capture and θrms from the MFM model show close agreement to the experimental-validated 

vectorial mechanics model from [3] across the full range of spectra with only a slight 

underprediction (<7%) of power at periods shorter than 1 s (Figure 30 and Figure 32) due to the 

reasons listed in analysis 1. Figure 31 shows a high capture-width ratio (>0.3) for several peak 

periods, suggesting good power capture and also in agreement with [3]. This validates the MFM 

model for a range of sea states and enables analyses at various sites. 

7.3  Analysis 3: Full-scale results at a site in Ireland 

For scaling results from model-scale to full-scale an optimum scaling factor of 70 is used for the 

site at Belmullet in Ireland [3]. Applying eqns. (3-4), all peak periods and wave heights in Table 1 

are scaled from full-scale to model-scale in order to find average power capture for all sea-states. 

The full-scale average power is computed by applying eqn. (2). Next, the annual energy yield for 

each sea-state is found using eqn. (8) and the probability of occurrence from Table 1, presented in 

Figure 33. Finally, the total annual energy yield is computed. 

 

Figure 33. Energy yield at Belmullet [3] as a function of significant wave height 

This gives a total annual energy yield of 8282 MWh which is within 3% of the value calculated 

using the vectorial mechanics model [3]. The average power and capacity are consequently 945 

kW and 2.84 MW, respectively. The results are hence less sensitive than the underprediction of 

average power from analysis 1 because for this site there are several sea state occurrences at peak 

periods greater than 𝑇𝑃𝑚 = 1 s. Other sites may have different sensitivity depending on the 

probability distribution of 𝐻𝑠 and 𝑇𝑃. 

The same procedure has been done earlier in [3] for various sites and device configurations and is 

presented in Table 4 for the site at Belmullet for the three-float and eight-float configurations. 
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Table 4. Power and energy estimate for the site in Ireland with scatter diagram from [27] 

Configuration 
Average power 

[kW] 

Annual energy yield 

[MWh] 

Rated power 

[MW] 

3fl_111 (MFM) 945 8282 2.84 

3fl_111 (from [3]) 970 8505 2.91 

8fl_134 (from [3]) 2998 26264 8.99 

The results show an increase in capacity by a factor of three for an increase from three to eight 

floats. The vectorial mechanics model from [3] has also found that optimum device capacities for 

the eight-float configuration range between 3.7 MW and 17.8 MW depending on the site resource. 

Compared to offshore wind turbines where currently capable capacities are of the order of 10 MW, 

this suggests the M4 has a competitively high-power capability. Levelized cost of energy is 

computed in [3] based on relative changes in capital cost for several sites and device configurations 

and is shown to be less than 10 pence/kWh. Due to other sensitivities, such as operations and 

maintenance, cost is not addressed further in this work. 

Although several device configurations of the M4 have been analysed, it is probable that other 

configurations have better characteristics and that indeed the best configuration may be site 

dependent [3]. It is therefore useful to find optimal device arrangements and float sizes relative to 

the site-specific resource. However, cost benefits also exist for mass unit production of a standard 

solution that effectively extracts energy in all cases. Effective optimisation algorithms can 

accommodate a wide range of input parameters which would otherwise not be possible to evaluate 

effectively by intuition alone. Such optimisation nevertheless requires rapid calculation of many 

device layouts and parameters, which the extensibility of the MFM may enable. 

The MFM has successfully modelled a multi-body WEC in irregular sea-states and can therefore 

be taken further in more detailed analysis with larger float configurations and more complex wave 

energy converters. 



66 

 

7.4  Approach 

One way to model the 111-configuration of the M4 device using the MFM is to ‘merge’ the bow 

and mid float into one body because they move together in pitch – however, this research has shown 

the usefulness of an additional moving frame. Even though the moving frame at the mid float 

always has the same angular motion as the frame at the bow float, the analysis is greatly simplified 

because all the moment-arms from the hydrodynamic forces are mechanically accounted for 

through the rotation matrices in the equations of motion. The alternative, using two frames instead 

of three, gives the same result, but the moment-arms would in that case have to be computed 

manually. This is time consuming and, as was experienced through this work, allows for additional 

human- or coding errors. 

It is possible to conduct this work without recourse to SE(3). The beauty of the MFM is the 

consistent notation from 2D and 3D single-bodies and multi-bodies. Thus, in this simple 3-body 

case, it is straightforward to conduct this work using three single bodies, with a vectorial mechanics 

model. However, using SE(3) enables analyses which can be readily scaled up to larger 

configurations in all six degrees of freedom, without increasing notational complexity. Note that 

modelling farms of devices requires the hydrodynamics of the whole farm to be modelled, such as 

to include shadowing effects. 
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8  CONCLUSION 

In this project hydrodynamic forces have been, for the first time, implemented into the MFM and 

a multi-body WEC in irregular sea-states has been successfully modelled using this method. 

The equations of motion have been derived by utilising the Special Euclidean Group SE(3). This 

maintains a notation that is consistent from 2D and 3D single bodies to multi-bodies allowing for 

an analysis which can be readily scaled up to include multiple links, bodies, and farms of devices, 

without increasing notational complexity and without loss of generality. 

This work has modelled the three-float M4 WEC subject to irregular wave spectra using the MFM 

and linearization by Cummins’ equation. Preliminary model-scale results were compared to an 

experimentally-validated vectorial mechanics model of [3] showing excellent agreement, with a 

root-mean square error of the time-series in heave and surge response of less than 4 × 10−3 m. 

Power capture and θrms for the model-scale device showed close agreement across all peak periods 

with only a slight underprediction (<7%) of power at peak periods shorter than 1 s. Some 

discrepancies between the model-scale results and earlier experimental work were found and this 

is attributed to moments from the WAMIT diffraction model generated about centre of flotation 

and not centre of mass, which is required in an MFM model. Nevertheless, results for full-scale 

annual energy yield for a demonstrative site in Ireland [27] were within 3% of that calculated using 

the vectorial mechanics model of [3], highlighting that sensitivity to the underprediction in power 

is small when considering the spread of availability of power with wave period. The results validate 

the MFM model and show that hydrodynamic forces in irregular sea-states have been successfully 

implemented. 

Previous work from [3] has found that the M4 device capacity increases by a factor of three for an 

increase from three to eight floats and that the device can reach up to 17.8 MW for an eight-float 

configuration, which is indicative of the high performance of the M4 device. 

The presented work indicates that the MFM can effectively be used for analysis of more complex 

wave energy converters in all six degrees of freedom while also enabling further optimisation 

studies of the M4 device. 
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9  FUTURE WORK 

Future work will build upon this work and utilise the MFM for evaluating larger float 

configurations of M4. Hydrodynamic coefficients will be defined about the centre of mass in order 

to avoid discrepancies in power estimation. Furthermore, the method will be used within an 

optimisation strategy to optimise device arrangements and float sizes given a specific site resource. 

The MFM will also be applied to other complex wave energy converters in all six degrees of 

freedom. 

The computational efficiency of the MFM compared to vectorial mechanics should also be assessed 

to evaluate the potential for more efficient computations and the possibility to incorporate more 

complex, non-linear wave theories. Furthermore, the method plans to be coupled with a finite 

element model for evaluating structural loads and mooring line loads. 
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