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ABSTRACT 

PURPOSE: To clinically and genetically characterise a second family with dominant ARL3-

related retinitis pigmentosa due to a specific ARL3 missense variant, p.(Tyr90Cys).   

METHODS: Clinical examination included optical coherence tomography, 

electroretinography, and ultra-wide field retinal imaging with autofluorescence. 

Retrospective data were collected from the registry of inherited retinal diseases at Oslo 

university hospital. DNA was analysed by whole-exome sequencing and Sanger sequencing. 

The ARL3 missense variant was visualized in a 3D-protein structure.  

RESULTS: The phenotype was non-syndromic retinitis pigmentosa with cataract associated 

with early onset of decreased central vision and central retinal thinning. Sanger sequencing 

confirmed the presence of a de novo ARL3 missense variant p.(Tyr90Cys) in the index patient 

and his affected son. We did not find any other cases with rare ARL3 variants in a cohort of 

431 patients with retinitis pigmentosa-like disease. By visualizing Tyr90 in the 3D protein 

structure, it seems to play an important role in packing of the α/β structure of ADP-

ribosylation factor-like 3 (ARL3). When changing Tyr90 to cysteine, we observe a loss of 

interactions in the core of the α/β structure that is likely to affect folding and stability of 

ARL3. 

CONCLUSION: Our study confirms that the ARL3 missense variant p.(Tyr90Cys) causes 

retinitis pigmentosa. In 2016, Strom et al. reported the exact same variant in a mother and 

two children with RP, labelled ?RP83 in the OMIM database. Now the questionmark can be 

removed, and ARL3 should be added to the list of genes that may cause non-syndromic 

dominant retinitis pigmentosa.  
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INTRODUCTION 

Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease with progressive 

degeneration of the light-sensitive photoreceptors. The disease primarily affects the rods, 

but through apoptosis-like mechanism the cones can be secondarily affected, termed rod-

cone dystrophy. The photoreceptor degeneration causes nyctalopia, narrowing of the visual 

field and in some cases loss of central vision. RP can be part of a syndrome, e.g. ciliopathies 

affecting multiple organ systems, but the most common is non-syndromic RP (1). Non-

syndromic RP can have recessive, dominant and X-linked inheritance, and 71 causative genes 

are so far known (www.retnet.org). Most of these genes code for proteins involved in the 

visual cycle and photoreceptor function. The great clinical variability of RP is a consequence 

of this genetic heterogeneity and variable expressivity of different pathogenic genetic 

variants (mutations). This is reflected by differences in age of symptom debut, progression 

rate and pattern of retinal degeneration. Sometimes the same gene can cause dominant and 

recessive forms of rod-cone dystrophy, where the dominant form is usually milder (2). One 

example is PRPH2 related disease [MIM:179605], where dominant mutations are associated 

with late onset RP with limited central vision loss, while the recessive form usually causes 

severe rod-cone dystrophy, with early onset of symptoms and loss of vision in the first 

decade of life (3, 4). 

 

There are many patients with RP of unknown genetic cause (5). Several new candidate genes 

have recently been found. One of these is ADP-ribosylation factor-like 3; ARL3 [MIM: 

604695], encoding a ras-like GTP-binding protein belonging to the ARF family. Its  activity is 

regulated by ARL13b (a GTP-exchange factor; a GEF) and RP2 (a GTPase activating protein; a 

GAP). GTP-bound ARL3 facilitates transport of cargo complexes through the interconnecting 

http://www.retnet.org/
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cilium of the photoreceptors, and these contain e.g. outer segment proteins (rhodopsin 

kinase, transducin) and lipid-binding proteins (UNC1119, PDEδ). Upon RP2-stimulated GTP 

hydrolysis, cargo is released in the outer segment (6-9). 

 

The missense ARL3 variant (NM_004311.3) c.269A>G, p.(Tyr90Cys), has previously been 

reported as a possible cause of non-syndromic autosomal dominant RP in a mother and her 

two children (10).  In addition, homozygocity for two different ARL3 Arg149 missense 

variants were recently reported to cause Joubert syndrome (11). Possibly, alterations in 

ARL3 may cause a spectrum of phenotypes, depending on the biochemical consequence of 

the mutation and inheritance pattern.  The aim of this study was therefore to clinically and 

genetically characterise a family with RP harboring a missense variant in ARL3 (c.269A>G, 

p.Tyr90Cys), including a retrospective four-year follow-up of the index patient.  

 

MATERIALS AND METHODS 

Patient Samples 

All four individuals in the study (father, son and both parents of the father) provided signed 

informed consent that their clinical and genetic data could be used for research purposes. 

Retrospective data was collected from the registry of inherited retinal diseases, Oslo 

University hospital and from medical records. Biological material was collected from the 

biobank of inherited retinal diseases, Oslo University Hospital. The study was conducted 

after approval from the Regional Ethics Committee, South East Norway, REK #2015/2166.  
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Phenotype description      

The phenotype description included electroretinography (ERG), Goldman perimetry (father 

only), ultra-wide field retinal images (UWF) with red-green and fundus autofluorescence 

(532nm) images (Optos 200tx and Optos California), and optical coherence tomography 

(OCT). ERG was performed using standard ISCEV procedure (12).  

 

Genetic testing 

Rare variants were identified using next-generation sequencing of 268 genes associated with 

inherited retinal disease. Genomic DNA was isolated from blood, and DNA samples were 

further prepared using the SeqCap EZ MedExome Kit (Roche, Bazel, Switzerland), followed 

by paired-end 150 nt sequencing on the Illumina NextSeq500. Alignment and variant calling 

was performed as previously described (13). Average median coverage of the target region 

was 46X with 100% of ARL3 covered with at least 20 reads. Data annotation and 

interpretation were performed using the Cartagenia Bench Lab, NGS module (Cartagenia, 

Leuven, Belgium). The ARL3 (NM_004311.3) c.269A>G p.(Tyr90Cys) missense variant found 

by this approach was later Sanger sequenced for confirmation and family follow-up. The 

variant was not present in the GnomAD population database and the involved amino acid is 

well conserved between species. The variant was predicted pathogenic/deleterious by four 

different in silico softwares (Align GVGD, SIFT, MutationTaster and PolyPhen-2).   
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RESULTS 

Patients’ phenotypes 

Retinitis pigmentosa was diagnosed in a father and his son. The former was 57-years old 

otherwise healthy man born by non-consanguineous Norwegian parents without any family 

history of eye disease. He was operated for strabismus (alternating esotropia) at age 6, with 

persistent stereopsis failure. At age 6 the fundus was described to have a poorly defined 

optic disc, attenuated retinal arteries and pigment changes in the inferior part of the retina. 

The patient retrospectively reported nyctalopia from age 6, narrowing of the visual field 

from early adulthood, and reduced central vision from his thirties. The diagnosis of RP was 

verified by ERG at age 39 and ERG was repeated at age 53. Both ERGs showed extinguished 

scotopic and photopic response. Visual acuity at age 38 was 0.25 (20/80) in both eyes. 

Fourteen years later, the visual acuity was around 0.16 to 0.1 (20/125 to 20/200) and 

remained stable from age 52 to 57. Intraocular pressures (IOP) was normal.  Cataract surgery 

for bilateral sub-capsular cataract was performed at ages 46 and 55.   

Examination at age 57 revealed mild asteroid hyalosis on the right eye and bilateral severe 

degeneration of the peripheral and posterior poles of the retina (Figure 1). There was 

concentric narrowing of the visual field with 10 degrees of central vision remaining. OCT 

revealed central atrophy with no cystic macula changes and central retinal thickness of 120-

130 µm in both eyes. UWF with autofluorescence were obtained at age 53 and age 57 

(Figure 1). 

 

The son of the index patient was 17-years old. His mother was from Asia and had normal 

vision and no family history of eye disease. The patient was diagnosed with Tourette’s 

syndrome as a child, treated with aripripaxol 5mg daily. At age 16, an optician discovered 
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pigment changes in the retina. When questioned he described some difficulty navigating in 

the dark but denied changes in peripheral vision. Visual acuity on the right eye was 0.63 

(20/32) and on the left eye 0.4 to 0.63 (20/50 to 20/32). IOP was normal in both eyes. ERG 

showed extinguished scotopic response with reduced photopic amplitudes and increased 

implicit time. OCT demonstrated a central atrophy with no edema and a central retinal 

thickness of 150 µm. The patient declined having a perimetric examination performed. 

Examination at age 17 revealed a clear lens, no degeneration of the vitreous and moderate 

degeneration of the fundus with bone-spicule pigmentation (Figure 2). 

 

Genetic testing  

Exome sequencing-based gene panel analysis of 268 genes associated with inherited retinal 

diseases revealed a heterozygote ARL3 missense p.(Tyr90Cys) variant in both father and son. 

The variant findings were confirmed by Sanger sequencing, and the missense change was 

proven to be de novo in the father after parental testing. For gene panel content, see 

genetikkportalen.no and the panel “NGS-retinasykdom” which contains ARL3. We did not 

find rare ARL3 variants in 431 other patients with eye disease (mostly RP) tested with the 

same gene panel, suggesting that ARL3 pathogenic variants is a rare cause of RP.  

 

Molecular modelling 

The structure of ARL3 in the GTP-bound form has previously been solved in complex with 

RP2 by x-ray crystallography (14). We retrieved 3D coordinates of this complex from the 

protein data bank (accession code 3BH6) and visualized ARL3 in complex with the GTP 

analog from the crystal structure (see Figure 4A). We observed that Tyr90 sits in a β-sheet of 

ARL3 and makes interactions with the neighboring sheets, as well as tight interactions with 
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the central α-helix of ARL3, involving Leu107 and Thr103 (Figure 4B). Thus, Tyr90 seems to 

have a central role in packing of the α/β structure of ARL3. The tight packing of residues in 

this domain has been shown to be essential for correct folding of G proteins (15, 16). In 

particular, the folding pathway of the B1 domain of the single domain IgG-binding protein G 

(GB1) has been extensively studied, and residues in the core of the α/β structure have been 

pinpointed as essential for the folding mechanism of GB1 (16). Upon mutating Tyr90 to 

cysteine, we observe a loss of interactions in the core of the α/β structure in ARL3 (Figure 

4C) and we speculate that the loss of these interactions might impair correct folding as well 

as the stability of ARL3. 

DISCUSSION 

Our patients have dominant non-syndromic type of RP with debut of nyctalopia in the first 

decade of life, decreased central vision in the second decade of life, and possibly slowing of 

retinal degeneration in the third decade of life. The retinal dystrophy is associated with 

cataract, found in our index patient but so far not in his son. Retinal findings were thinning 

of the central retina with degeneration of the mid-peripheral fundus (Figures 1 and 2). 

Remarkably, the de novo ARL3 variant p.(Tyr90Cys) found in this study in both patients was 

exactly the same as the variant previously described de novo in a mother with RP and 

inherited by her two affected children (10). They also found a classic pattern of RP and 

associated cataract, but the two youngest patients both had macula edema, which was not 

present in our patients.   

 

Well-regulated transport of proteins from the endoplasmatic reticulum through the 

connecting cilium to the outer segment of the photoreceptors is crucial for visual function. 
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Unsurprisingly, pathogenic variants in genes facilitating transport through this cilium are 

associated with various types of retinal dystrophy like Joubert syndrome-associated, X-linked 

RP and dominant cone-rod dystrophy (9, 17, 18). ARL3-GTP functions as a cargo 

displacement factor and plays an important role in the delivery of proteins to the outer 

segments. The rod-ARL3 -/- knockout mouse model demonstrates an accumulation of 

lipidated proteins in the inner segments, correlated to dysregulation of ciliogenesis and 

intraflagellar transport (9) and rapid degeneration of the photoreceptors. The p.(Tyr90Cys) 

variant is localized in the GTP binding domain and predicted to compromise GTP binding or 

exchange. From 3D-protein modelling it appears likely that the exchange of tyrosine to 

cysteine in a β-sheet of ARL3 disrupts interaction with the highly conserved residues Tyr103 

and Leu107 in the central α-helix of ARL3, and thus affect the packing of the α/β-structure - 

a structure that has been shown to be essential for correct folding of  G-proteins (16). A loss-

of-function mechanism is thus most likely, but if this is combined with a dominant-negative 

effect due to lack of G-protein exchange from bound cargo, remains unknown. 

Homozygocity for two different missense variants to the same position in ARL3 (Arg149) has 

recently been reported to cause Joubert syndrome (11). In this article it was discussed 

whether the patients described by Strom et al. may harbor a second recessive variant in the 

ARL3 gene. Given this second report of the same ARL3 de novo p.(Tyr90Cys) missense 

variant segregating with dominant and classic non-syndromic RP correlated with cataract, a 

recessive model of inheritance is highly unlikely. Rather, ARL3 is another example of a gene 

with both recessive and dominant modes of inheritance of missense mutations, the former 

causing severe syndromic disease while the latter causing milder dominant RP.  
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However, ARL3 is not a common cause of dominant RP.  After whole gene sequencing by 

gene panel testing, we only found ARL3 pathogenic variants in 2 of 431 patients with 

inherited retinal disease.  
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FIGURE LEGENDS 

 

Figure 1 

Father, age 57 (right eye) (Optomap California).  A: Composite red-green digital image shows 

retinal pigment epithelial atrophy and bone-spicule pigmentation mainly present in the mid-

periphery, an atrophic optic disc and attenuated vessels. B: 532 nm wavelength 

autofluorescence reveals a widespread hypofluorescent scattered areas in the far-peripheral 

and mid-peripheral fundus. In the posterior pole, a hyperfluorescence area is present that 

corresponds to the remaining visual field. In the fovea, hypofluorescence is detected 

corresponding to the central atrophy on OCT and the patient’s reduced central vision. C: age 

53 (left eye) (Optos 200tx) and D: age 57 (left eye) (Optos California): A double 

hyperfluorescent ring is surrounding the fovea, including central hypofluorescent changes. 

Four-year follow-up show a minimal change of autofluorescence in the macula. 

 

Figure 2 

Son, age 17 (Optos California). A (right eye): Composite red-green digital image shows 

attenuation of the retinal vessels, bone-spicule pigmentation mainly in the superior and 

inferior retina and ring formed discoloration in the mid periphery. Optic disc is normal.  

B (right eye): Autofluorescent image obtained with 532 nm wavelength reveals 

hypofluorescent changes in the midperiphery with normal autofluorescence in the nasal 

section and surrounding macula. C (left eye): Detailed autofluorescence of the posterior pole 

shows an oval hyperfluorescent demarcation around fovea with discrete small 

hypofluorescent spots.     
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Figure 3 

Family pedigree. De novo occurrence of heterozygote ARL3 p.(Tyr90Cys) variant in index 

patient with dominant transmission to son.  

 

Figure 4 

Structure of ARL3, showing Tyr90 situated in the core of the α/β-structure, close to the GTP 

binding site (A). The side chain of Tyr90 makes interactions with a central α-helix of ARL3, 

ensuring its tight packing with the β-sheet (B). When Tyr90 is mutated to a cysteine, these 

interactions are no longer maintained (C). 
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Figure 1A 
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Figure 1B 
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Figure 1C 
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Figure 1D 
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Figure 2A 
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Figure 2C 

 

Figure 3 
 

 

 

 

  

 

 

 

 

 

-/- Tyr90Cys -/- Tyr90Cys 
Tyr90Cys 

 

+/- Tyr90Cys 

Index patient 

+/- Tyr90Cys 



23 
 

 

Figure 4 

 

Figure Captions 
 

Figure 1: Father, age 57 (right eye) (Optomap California)(A,B).  A: Composite red-green 

digital image shows pigment epithelial atrophy and bone-spicule pigmentation mainly 

present in the mid-periphery, an atrophic optic disc and attenuated vessels. B: 532 nm 

wavelength autofluorescence reveals widespread hypofluorescent scattered areas in the far-

peripheral and mid-peripheral fundus. In the posterior pole, a hyperfluorescencent area is 

present that corresponds to the remaining visual field. In the fovea, hypofluorescence is 

detected corresponding to the central atrophy on OCT and the patient’s reduced central 

vision. C: age 53 (left eye) (Optos 200tx) and D: age 57 (left eye) (Optos California): A double 

hyperfluorescent ring surrounding the fovea, including central hypofluorescent changes. 

Four-year follow-up shows a minimal change of autofluorescence in the macula. 

 

 Figure 2: Son, age 17 (Optos California). A (right eye): Composite red-green digital image 

shows attenuation of the retinal vessels, bone-spicule pigmentation mainly in the superior 

and inferior retina and ring formed discoloration in the mid periphery. Optic disc is normal.  

B (right eye): Autofluorescent image obtained with 532 nm wavelength reveals 

hypofluorescent changes in the midperiphery with normal autofluorescence in the nasal 
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section and surrounding macula. C (left eye): Detailed autofluorescence of the posterior pole 

shows an oval hyperfluorescent demarcation around fovea with discrete small 

hypofluorescent spots.     

 

Figure 3: Family pedigree. De novo occurrence of heterozygote ARL3 p.(Tyr90Cys) variant in 

index patient with dominant transmission to son.  

 

Figure 4: Structure of ARL3, showing Tyr90 situated in the core of the α/β-structure, close to 

the GTP binding site (A). The side chain of Tyr90 makes interactions with a central α -helix of 

ARL3, ensuring its tight packing with the β-sheet (B). When Tyr90 is mutated to a cysteine, 

these interactions are no longer maintained (C). 

 

 


