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Abstract
Objectives To investigate the reliability of simultaneous positron emission tomography and magnetic resonance imaging 
(PET/MRI)-derived biomarkers using semi-automated Gaussian mixture model (GMM) segmentation on PET images, against 
conventional manual tumor segmentation on dynamic contrast-enhanced (DCE) images.
Materials and methods Twenty-four breast cancer patients underwent PET/MRI (following 18F-fluorodeoxyglucose (18F-
FDG) injection) at baseline and during neoadjuvant treatment, yielding 53 data sets (24 untreated, 29 treated). Two-dimen-
sional tumor segmentation was performed manually on DCE–MRI images (manual DCE) and using GMM with correspond-
ing PET images (GMM–PET). Tumor area and mean apparent diffusion coefficient (ADC) derived from both segmentation 
methods were compared, and spatial overlap between the segmentations was assessed with Dice similarity coefficient and 
center-of-gravity displacement.
Results No significant differences were observed between mean ADC and tumor area derived from manual DCE segmen-
tation and GMM–PET. There were strong positive correlations for tumor area and ADC derived from manual DCE and 
GMM–PET for untreated and treated lesions. The mean Dice score for GMM–PET was 0.770 and 0.649 for untreated and 
treated lesions, respectively.
Discussion Using PET/MRI, tumor area and mean ADC value estimated with a GMM–PET can replicate manual DCE tumor 
definition from MRI for monitoring neoadjuvant treatment response in breast cancer.
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Introduction

Breast cancer is the most frequent type of cancer in women 
worldwide [1], with a mean 5-year survival of 90.4% in Nor-
way [2]. Patients diagnosed with locally advanced breast 

cancer (LABC, stage 3), have a worse survival outcome 
(78.3%) [2]. They receive neoadjuvant chemotherapy treat-
ment before surgery with the goal of complete pathologi-
cal tumor regression, which correlates with improved sur-
vival and a reduced chance of breast cancer recurrence [3]. 
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Objective response evaluation during neoadjuvant therapy is 
important assess treatment efficacy and to avoid unnecessary 
toxic side effects [4]. Radiologically, response evaluation 
has traditionally focused on measurements of tumor size [5], 
but several recent studies [6–10] have established functional 
imaging modalities as useful indicators of early response 
during neoadjuvant chemotherapy.

Diffusion-weighted magnetic resonance imaging (DWI) 
is a functional imaging modality with contrast arising from 
water molecule motion, and is, therefore, sensitized to tis-
sue microstructure characteristics. DWI is most commonly 
utilized to assess tissue cellularity, where highly cellular tis-
sues such as malignant tumors exhibit decreased diffusivity 
[11], quantified by calculation of an apparent diffusion coef-
ficient (ADC). A robust empirical biomarker that is reduced 
in malignant tumors [12], ADC has shown higher specificity 
than conventional anatomical MRI for discriminating malig-
nant and benign breast tumors [13].

Tumor ADC is commonly measured by the mean value 
of manually placed regions-of-interests (ROIs). There is no 
standard protocol for this tumor segmentation, and different 
approaches can significantly influence resulting ADC values 
[14]. Given that direct tumor segmentation of DWI may be 
confounded by noise and lack of conspicuity, tumor ROIs are 
commonly delineated on dynamic contrast-enhanced (DCE) 
images before being transferred to DWI. The definition of 
tumor on DCE images is thus governed by leakage of gado-
linium contrast through pathological vessels and, therefore, 
linked to vascularity, whereas diffusion changes, reflecting 
cellularity, do not necessarily coincide [15].

Simultaneous positron emission tomography and mag-
netic resonance imaging (PET/MRI) is a recent technology 
with a significant potential in many aspects of breast cancer 
practice, including diagnostics, staging, and neoadjuvant 
response evaluation [16]. PET/MRI examinations allow 
simultaneous collection of structural, functional, and meta-
bolic imaging properties in the same spatial and temporal 
domain. 18F-fluorodeoxyglucose (FDG)–PET visualizes 
upregulated glucose metabolism, while MRI reflects other 
hallmarks of cancer [17] including invasion and metastatic 
propensity (by ADC) and increased angiogenesis (DCE). 
Several studies report correlations between standardized 
uptake values (SUV) from FDG–PET and ADC in malignant 
tissue [18–20], indicating that intrinsically-registered 18F-
FDG uptake may provide an alternative approach to manu-
ally drawn DCE–ROI delineation for use in DWI analysis 
[19]. FDG–PET is also known to outperform MRI tumor 
volume measurements in some cancers [21]. In this study, 
a simple, semi-automated Gaussian mixture model (GMM) 
segmentation algorithm was selected, to allow for hetero-
geneous FDG uptake across tumors and expected decline 
through treatment [22, 23].

The aim of the current study is to investigate the reli-
ability of deriving lesion diffusion imaging characteristics 
from 18F-FDG uptake in invasive breast cancers > 4 cm 
or LABC (i.e., cT2-4N0-3) during neoadjuvant treatment. 
Specifically, we tested the reliability of deriving functional 
tumor area and ADC values in diffusion-weighted images 
from intrinsically-registered 18F-FDG–PET uptake using a 
semi-automated GMM segmentation algorithm in compari-
son with metrics derived from manually drawn DCE–ROIs.

Materials

Participants

This prospective study was approved by the Regional Com-
mittee for Medical and Health Research Ethics (REC) in 
western Norway (identifier 2015/1493). Informed consent 
was obtained from all individual participants included in 
the study. A total of 24 patients (median age 53 years, range 
37-74) with biopsy-proven, invasive breast cancers > 4 cm or 
LABC (i.e., cT2-4N0-3). This minimum size was an inclu-
sion criterion for recruitment to the phase II PETREMAC 
trial (Clinicaltrials.gov #NCT02624973), where lesions 
of this size are targets for neoadjuvant chemotherapy. The 
patients underwent individualized neoadjuvant therapy, 
based on tumor characteristics: estrogen (ER)/progesterone 
receptor (PgR), human epidermal growth factor-2 (HER2), 
and TP53 mutation status. The therapy used was primarily 
endocrine treatment (full details given in Table 1).

Patients were examined with 18F-FDG–PET/MRI scans, 
at baseline and up to four scanning sessions during neoad-
juvant treatment (depending on trial progression and indi-
vidual response). Two patients received neoadjuvant therapy 
2 days prior to the baseline scan. The cohort scans are sum-
marized in Fig. 1. All except three patients have undergone 
breast surgery (one patient dropped out, two scheduled after 
time of analysis). Tumor categorization was done by his-
topathologic analysis of core needle and open incisional 
biopsies.

Lesions with no remaining enhancement on DCE were 
excluded (8 data sets), resulting in 53 data sets overall: 24 
untreated lesions, and 29 of treated lesions. Median number 
of scans was 2 (range 1–5), with mean intervals from base-
line of 6, 12, 16, and 24 weeks. The mean time from study 
entry to surgery was 23 weeks. The two patients receiving 
neoadjuvant therapy 2 days prior to the baseline scan were 
considered untreated, as the lesions at this timepoint had 
undergone minimal treatment effect. This study did not 
explicitly consider clinical outcome or treatment effects, and 
therefore, this classification is predominantly to distinguish 
between lesions that have had the opportunity to undergo 
significant response.
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Methods

PET/MRI acquisition

All patients underwent simultaneous PET/MRI on a 3 T Bio-
graph mMR scanner (Siemens Healthcare, Erlangen, Ger-
many), 75 min after 18F-FDG injection (4 MBq/kg dose 
following 6 h fasting). The 18F-FDG was produced by the 
Norwegian Medical Cyclotron Center (Oslo, Norway). MRI 
acquisition utilized a designated 4-channel breast coil and 
included Dixon, T2-weighted, DWI, and DCE. DCE param-
eters included: 3D FLASH sequence, transverse orienta-
tion, TR/TE 5.88/2.21 ms, resolution 0.7 × 0.7 × 2.5 mm, 72 
slices, flip angle 15°, 1 baseline, and 7 contrast sequences, 
time resolution 1 min. Multiple b value DWI parameters 
were: axial bilateral single-shot echo planar imaging, TR/TE 
9000/77 ms, fat suppressed, b values = 0, 50, 120, 200, 400, 
700 mm2 s−1, resolution 2 × 2 × 2.5 mm, 60 slices, and FoV 
380 × 190 mm, with additional phase-reversed b = 0 mm2 s−1 
(hereafter ‘b0’) image. Concurrent PET data were acquired 
at a bed position giving full breast region coverage, and 
reconstructed using a manufacturer-supplied algorithm 
(OSEM-PSF, 21 subsets, 3 iterations, and a 4 mm full-
width-half-maximum Gaussian filter; Siemens, Erlangen). 
PET data concurrent with DCE acquisition were available 
for n = 31 data sets (16 untreated and 15 treated lesions).

Image preparation and manual segmentation 
(Manual DCE)

The lesion segmentation process is summarized in Fig. 2. 
DW images were distortion-corrected using phase-reversed 
b0 images [24]; dixon-based PET attenuation correction was 
performed on the scanner [25], and standardized uptake val-
ues (SUV) were normalized against body weight and dose. 
DCE and PET images were resampled using Elastix [26] 
to exactly match the resolution of the DWI images, and 
thus give direct voxel-to-voxel correspondence. Perfusion-
insensitive ADC maps were calculated from DWI data 
(b ≥ 200 mm2 s−1) using a mono-exponential model:

Manual DCE: manual segmentation of a single tumor 
region was performed by researcher (M.M.S.A.) on a single 
central slice of the enhancing solid tumor on DCE, ignor-
ing satellite regions, with resulting ROIs supervised and 
approved by an expert radiologist (A.Ø.).

S
b
= S

b=0
⋅ e

−b⋅ADC

Table 1  Clinical characteristics of patient cohort

Pathological characteristics are determined based on histopathologic 
analysis of pre-treatment core needle biopsy; for n = 3 patients, histo-
logical grade was determined from surgical specimen
Others (ICD and ILC (n = 1), poorly differentiated carcinoma (n = 1), 
carcinoma with medullary features (n = 2)
IDC invasive ductal carcinoma, ILC invasive lobular carcinoma

Characteristic All patients (n = 24)

Age (median, range), years 53 (37–74)
Height (median, range), m 1.65 (1.54–1.79)
Weight (median, range), kg 67 (50–100)
Tumor volume (median, range),  cm3 9.91 (2.88–60.56)
Histological type
 IDC 18
 ILC 2
 Other 4

Histological grade
 1 0
 2 9
 3 13
 Unknown 2

Estrogen receptor (ER) status (%)
 Negative 8
 ≥ 1–10 1
 ≥ 10–50 0
 > 50 15

Progesteron receptor (PgR) status (%)
 Negative 9
 ≥ 10–50 1
 ≥ 50 4

HER2 status
 Negative 15
 Positive 7
 Not applicable 1

Ki67 (%)
 < 30% 9
 ≥ 30% 15

Treatment
 Endocrine 11
 Docetaxel and cyclophospamid 1
 Pertuzumab, trastuzumab and docetaxel/

cyclophosphamid
3

 Pertuzumab, trastuzumab and docetaxel 5
 Olaparib and carboplatin 4

Pathological response
 Complete response 8
 Non-response 13
 Not operated 3
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Lesion cropping and Gaussian mixture modelling 
(GMM–PET)

A rectangular region containing the visible lesion was manu-
ally cropped from the SUV map (corresponding to the sin-
gle central slice of enhancing tumor on DCE) for Gaussian 
mixture modelling (GMM–PET). An algorithm using default 
k-means++ [27] initialization (MATLAB; Mathworks, Natick, 
MA, USA) and an assumption of three Gaussian distribution 
classes were used, returning an assignment for each voxel 
based on highest probability [28] of belonging to each class: 
tumor (highest intensity), ‘non-tumor’ background (lowest 
intensity) and unknown (intermediate intensity). To com-
promise between accuracy and avoiding overestimation from 
partial volume effects, voxels classed as ‘unknown’ were 
considered non-tumor, defining the tumor class threshold 
as the intersection of tumor and unknown class distributions 
(Fig. 7 in Appendix). User input is thus limited to initial region 
cropping.

Two common simple thresholding-based PET segmenta-
tion methods, a fixed threshold of 2.5  (SUV2.5) and 42% of 
the maximum SUV  (SUV42%) [22], were also performed to 
provide comparison with GMM–PET (Fig. 7 in Appendix).

Derivation of DWI metrics from manual DCE 
and GMM–PET

ROIs, for the whole lesion within the chosen slice, derived 
from both manual DCE and from GMM–PET were trans-
ferred to ADC maps and used to calculate the tumor ROI 
area and the mean ADC value for the whole ROI.

Statistical analysis

Performance of the three PET segmentation techniques 
in reference to manual DCE–ROIs was measured using 
the Dice similarity coefficient, varying between 0 and 1 

Fig. 1  Breast cancer patients 
(n = 24) received one pretreat-
ment baseline scan, and addi-
tional scans during neoadjuvant 
treatment prior to surgery. On 
average, scans during treatment 
were 6, 12, 16, and 24 weeks 
after baseline, and surgery was 
23 weeks after baseline scan. 
Total data set included 53 scans: 
24 from untreated, and 29 from 
treated lesions

Fig. 2  All images were resampled to diffusion-weighted imaging 
(DWI) resolution. PET images were attenuation-corrected and SUV 
normalized. Apparent diffusion coefficient (ADC) maps were calcu-
lated from distortion-corrected diffusion images. Tumor segmenta-

tion was performed by semi-automated Gaussian mixture modelling 
(GMM) segmentation on cropped PET images, and manually on DCE 
images. Resulting regions-of-interest (ROIs) were transferred to the 
ADC maps for derivation of tumor area and mean ADC
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indicating degree of spatial overlap [29], and center-of-
gravity displacement (CoG). CoG was normalized based 
on corresponding area DCE. Tumor area and ADC values 
from the different segmentation methods were compared 
using a paired t test, and Pearson’s test for correlation; 
relationship of these segmentation metrics with  SUV2.5 
and  SUV42% was also assessed. A two-sample t test was 
used to assess the difference between the untreated (n = 24) 
and treated cohort (n = 29) for all metrics. All p values 
were corrected for multiple testing with the Benjamini and 
Hochberg [30] approach, with values < 0.05 considered 
statistically significant.

Results

Derived diffusion parameters (area, ADC) in GMM–
PET versus manual DCE

DWI metrics for untreated, treated, and all lesions are given 
in Table 2, and show no significant differences. There were 
strong positive correlations between GMM–PET and manual 

DCE for area and ADC for untreated and treated lesions, as 
shown for longitudinal scans of two patients receiving neo-
adjuvant therapy in Fig. 3. GMM–PET successfully tracks 
the same changes in ADC and tumor area observed using the 
manual DCE, even when performance parameters to manual 
DCE are poor.

Spatial agreement of GMM–PET with manual DCE

Dice score [29] for GMM–PET was significantly higher, 
indicating better performance, than  SUV42% for untreated 
lesions (p = 0.012) and higher than  SUV2.5 for both untreated 
(p = 0.024) and treated lesions (p < 0.001) (Fig. 4a). CoG 
measurements were significantly lower for GMM–PET 
compared to  SUV2.5 for treated lesions (p = 0.002) (Fig. 4b). 
GMM–PET is able to successfully identify tumor tissue in 
untreated lesions where uptake is heterogeneous across the 
cohort, where  SUV42% and  SUV2.5 over- and underestimate 
tumor areas, respectively, compared to the DCE definition. 
In 16 cases (3 untreated, 13 treated lesions),  SUV2.5 could 
not define any tumor area, meaning that CoG measurements 

Table 2  Values given as mean 
(range) and p values

No significant difference between resulting parameters from manual DCE and GMM–PET

ADC mean (× 10−3  mm2 s−1) Tumor area  (cm2)

Manual DCE GMM–PET p value Manual DCE GMM–PET p value

Untreated (n = 24) 0.957 (0.3796) 0.964 (0411) 0.930 6.189 (4.277) 5.923 (3.944) 0.899
Treated (n = 29) 1.167 (0.392) 1.1701 (0.445) 0.930 4.076 (2.857) 4.147 (2.745) 0.930
All (n = 53) 1.073 (0.397) 1.079 (0.439) 0.930 5.015 (3.677) 4.936 (3.416) 0.930

Fig. 3  Patient in a demonstrated 
good spatial overlay and excel-
lent agreement of response 
parameters over time. The 
patient in b shows a patient with 
excellent spatial agreement for 
the untreated lesion, but for the 
treated lesion, the segmentation 
is offset, with corresponding 
poor performance parameters 
(low Dice score and high CoG). 
However, GMM–PET was still 
able to accurately assess param-
eter changes over time
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were not applicable for these cases. GMM–PET and  SUV2.5 
performed significantly better in the treated lesions group 
compared to untreated lesions for both Dice score (p = 0.005 
and p = 0.002) and CoG (p = 0.025 and p = 0.005), while 
 SUV42% only had significantly higher CoG (p = 0.002).

Discussion

The main finding of the current breast cancer study is that 
functional tumor area and corresponding mean ADC values 
from GMM–PET ROIs matched those derived from manual 
DCE. As a superficial interpretation, these findings indicate 
that GMM–PET is a reliable technique to efficiently derive 
functional diffusion parameters for monitoring neoadjuvant 
treatment response in breast cancer. The segmentation is 
data driven, requiring minimal user input, and obviates the 
requirement for gadolinium contrast administration and, 
therefore, could have significant potential as an alternative 
objective evaluation method among the increasing number of 
breast cancer patients undergoing neoadjuvant treatment. At 
a deeper level, the results illuminate the concordance—and 
discordance—between ROIs derived from different imaging 
modalities, and as such allow interrogation of the spatial 
relationship existing between functional information aris-
ing from PET, diffusion, and DCE imaging, and ultimately 
the tissue characteristics these modalities are sensitized to.

Our study demonstrates a strong correlation between 
tumor ADC values derived from GMM–PET and manual 
DCE segmentation, in line with a previous study by Byun 
et al. [19] using a similar approach in breast carcinomas; our 
study utilizes the intrinsic voxel correspondence of simul-
taneous PET/MRI, thus avoiding the additional registration 

required by sequential FDG–PET/CT and DWI and confer-
ring greater confidence in the results. Notably, the calculated 
mean ADC from GMM–PET was not significantly different 
from mean ADC from manual DCE, despite ADC metrics 
having been shown to be significantly influenced by segmen-
tation method [14, 31]. This suggests that GMM–PET may 
have value even while accurate assessment of ADC metrics 
is considered increasingly important in a neoadjuvant treat-
ment response setting [6–8].

Conventional manual DCE segmentation means that dif-
fusion measurements, reflecting cellularity [13, 32, 33], are 
drawn from areas defined by gadolinium contrast enhance-
ment, which is not necessarily optimal and may introduce 
bias to functional biomarker measurements [15]. It can thus 
be argued that tumor definition for diffusion studies is bet-
ter performed on another MR modality more closely related 
to cellularity. Several studies have described an underlying 
link between metabolism and cellularity, such as correlation 
between FDG uptake to cellularity [34, 35]. Consequently, a 
negative correlation should be expected between SUV and 
ADC, and it could be argued that GMM–PET would coin-
cide better with changes in cellularity. However, the previous 
reports are contradictory with either negative [18–20] or no 
[36, 37] correlations between SUV and ADC, indicating that 
imaging metrics from DCE, DWI, and PET do not capture 
all relevant physiological properties, even when GMM–PET 
is able to localize tumors equivalent to DCE.

GMM–PET segmentation gives good spatial concord-
ance with manual DCE for untreated breast cancer lesions, 
while the segmentation performance was significantly 
poorer for treated lesions, with lower Dice score and higher 
CoG. It is well known that therapy affects tumor vascular-
ity [38], which may have influenced both manual DCE and 

Fig. 4  a Dice similarity coef-
ficient and b center-of-gravity 
displacement, normalized to 
manual DCE tumor area, from 
GMM,  SUV42%, and  SUV2.5. 
Median and mean values 
indicated by lines and asterisks; 
boxes show interquartile range, 
and whiskers show data range
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GMM–PET segmentation, as both modalities are dependent 
on sufficient blood flow for contrast and tracer uptake. How-
ever, DCE and PET reflect different physiological proper-
ties, and therefore, it would be of interest to observe if these 
have been altered differently during treatment. In addition, it 
should be noted that several treated lesions with poor overlap 
are cases where manual DCE segmentation was difficult due 
to low enhancement on DCE.

In this study, GMM–PET segmentation performed signif-
icantly better than the commonly used  SUV42% threshold in 
untreated lesions, and  SUV2.5 for both treated and untreated 
lesions in recapitulating manual DCE. Using GMM–PET, 
the tumor area is not underestimated in the cases of heter-
ogenous uptake (Fig. 5) or for tumors with high-intensity 
relative to their immediate surroundings, which is a well-
known issue [39, 40]. However, as FDG uptake in the tumor 
decreases during treatment [23], GMM–PET did not perform 
better than  SUV42%, which is known to give larger estimates 
of tumor size as  SUVmax approaches background levels 
(Fig. 5), which is a limit of adaptive and data-driven algo-
rithms that are sensitive to the FDG-uptake range [41, 42]. 
Other algorithm-based approaches such as gradient methods 
[40, 43] have also been recommended [22], although these 
require increased user input and were not investigated in this 
study (Fig. 6). 

While the current findings suggest that GMM–PET 
segmentation can work as a proxy for manual DCE, we 
do not suggest that PET might replace manual DCE in 
today’s clinical context. Manual DCE is currently the 
most sensitive test for both breast cancer detection [44] 

and monitoring treatment response in a neoadjuvant set-
ting [45], although concerns regarding contrast allergy 
and potential brain deposition [46] of gadolinium create 
a setting for exploration of complementary techniques. 
The use of PET tracer comes with its own challenges, in 
handling and cost, and is neither available nor suitable 
in all contexts. Our study indicates that the use of PET 
data for tumor segmentation is more reliable in pre-treat-
ment lesions; in cases where FDG uptake is substantially 
reduced by treatment the GMM–PET method becomes less 
effective, where the tumor may become more diffuse. In 
these cases, automated segmentation procedures will be 
more prone to variation. It is worth noting that this is not 
unique to the technique in this study; the reduction of DCE 
contrast in successfully treated tumors also makes tumor 
definition more challenging for the conventional approach. 
Thus, in a simple sense, PET data are able to act as a proxy 
for tumor definition using DCE, but are also more likely to 
become useful as an adjunct to DCE for deeper investiga-
tions of tumor characteristics in multimodality examina-
tions. It would also be possible to examine other modal-
ity combinations, such as taking a PET ROI definition to 
derive quantitative DCE markers from a suitable protocol.

Benefits of a data-driven, semi-automated GMM–PET 
approach include reduced radiologist workload, faster seg-
mentation processes, and reduced interobserver variability 
[47]. The major advantage of PET/MRI systems, exploited 
here, is intrinsic registration of simultaneously acquired PET 
and MR data, giving voxel-level correspondence, without 
additional registration processes that generally involve user 

Fig. 5  Change in GMM–PET,  SUV42%, and  SUV2.5 for an untreated 
(top row) and treated (bottom row) lesion from an illustrative patient, 
with corresponding histogram displays of SUV signal intensity and 
Dice similarity coefficient. GMM–PET is able to properly identify 
the whole tumor tissue of the heterogeneous untreated lesion, while 

 SUV2.5 and  SUV42% give lower estimates. As SUV is reduced through 
treatment,  SUV2.5 cannot classify any tumor tissue,  SUV42% overesti-
mates tumor area relative to DCE, while GMM–PET remains stable. 
Using DCE as a tumor definition standard becomes problematic when 
contrast leakage is reduced through treatment
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input or additional processing [48]. Further optimization 
of GMM–PET might include automated data-driven ini-
tialization and number of classes, with the goal of entirely 
eliminating manual input [49]. We illustrate the influence 
of lesion-region initialization, for which automation could 
be developed, in Appendix (Fig. 8). The number of voxels 
within the lesion is also a factor that will affect the perfor-
mance of the GMM method, and is thus intrinsically tied to 
image resolution, and will ultimately limit use in smaller 
lesions.

One limitation to this methodology is that increased 
tracer uptake is less specific to disease than manual DCE 
[50], potentially introducing errors in the GMM–PET clas-
sification if not accounted for by appropriate selection of 
tumor-containing region. In addition, while the analysis in 
this study explicitly did not consider patient response from 
the clinical viewpoint, as well as other clinically relevant 
data such as hormone status, the variety of treatments and 
responses provided a suitably large range of situations in 
which to test the GMM–PET methodology, including cases 
where response included an almost total loss of detectable 
disease.

Conclusion

The potential implications of improved imaging technology 
in breast cancer are large, and PET/MRI is a unique tool 
to investigate links between increased metabolism (PET), 
perfusion (DCE), and decreased diffusion (DWI), without 
additional scan time or registration errors. The current find-
ings show that PET/MRI, using a semi-automated GMM 
segmentation strategy, yields tumor area and mean ADC 
value estimates that can replicate today’s gold standard of 
tumor definition of manual DCE from MRI. Furthermore, 
the GMM–PET method also captures tumor changes asso-
ciated with response to neoadjuvant chemotherapy, which 
supplements today´s gold standard which is manual DCE 
in the neoadjuvant setting. The potential benefits include a 
broader assessment of morphological and metabolic changes 
to guide clinical decisions regarding tumor operability, and 
thus to ensure a high probability of complete tumor regres-
sion, and subsequent cancer cure.
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Appendix

See Figs. 7 and 8.

Fig. 7  Schematic illustration of the semi-automated Gaussian mix-
ture model (GMM) segmentation performance, and the thresholding 
segmentation methods  SUV42% and  SUV2.5. a Histogram display of 
the three Gaussian distributions, together with  SUV42% and  SUV2.5 
thresholds. b Cropped original PET image (upper), and resulting 
areas from GMM segmentation algorithm (lower) with three classes: 

tumor (red), unknown (yellow), and background tissue (black) class. c 
GMM segmentation (red),  SUV42% (blue), and  SUV2.5 (green) ROIs 
overlaid on original PET image. For this example,  SUV42% is similar 
to GMM, but  SUV2.5 provides a much lower estimate of tumor vol-
ume
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