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TBS Tris-buffered saline 
TNF Tumor necrosis factor  
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4. ENGLISH SUMMARY    
Oral lichen planus (OLP) is a chronic mucocutaneous disease characterized by basal cell 

destruction and a subepithelial band-like mononuclear inflammatory cell infiltrate 

predominated by T cells. Molecular biological changes in the basal cell compartment and 

keratinocyte cell death have been a matter of particular interest in later OLP research. The 

majority of OLP lesions run a benign course. However, OLP have been associated with an 

increased risk of malignant transformation.  

The aims of this study were to investigate apoptotic cell death and putative regulatory proteins 

in keratinocytes (Papers I-III), as well as potential risk markers for malignant transformation 

in OLP (Paper III).  

Biopsies from clinically and histologically verified OLP were investigated (Papers I-II), as 

well as a biopsy material from OLP patients where a certain amount of them had developed 

epithelial dysplasia and oral squamous cell carcinoma (OSCC) (Paper III).  

Tissues were evaluated by histomorphometry, imunnohistochemistry (Papers I-III), TUNEL 

method (Paper I), mRNA in situ hybridization (Paper II) and image cytometry for 

measurement of DNA content (Paper III). 

Our data show that apoptosis is increased within the epithelium of OLP compared with 

normal oral mucosa (OM), and that both Fas receptor (FasR) and Fas-ligand (FasL) apoptosis 

regulatory proteins are expressed within the epithelium and subepithelial cell infiltrate of OLP 

(Paper I). In actively diseased OLP lesions, basal keratinocytes are CD40 negative and 

epithelial (E)-cadherin negative in focal areas (Papers II-III). Cyclooxygenase-2 (Cox-2) is 

up-regulated within the epithelium of OLP lesions, compared with normal OM (Paper III). 

According to DNA content measurements, all biopsies were classified as diploid including 

OLP, epithelial dysplasia and OSCC, except for one biopsy from an OLP lesion with 

epithelial dysplasia which was tetraploid (Paper III).  

Based on these findings we conclude that basal keratinocytes in OLP die by apoptosis and 

regulation of apoptosis appears to involve following mechanisms; (1) dysfunction in 

FasR/FasL system; (2) by down-regulating CD40 in diseased areas, basal keratinocytes may 

escape CD40-CD40L mediated apoptosis; (3) an up-regulation of Cox-2 , which may inhibit 

apoptosis; (4) loss of E-cadherin in basal keratinocytes may promote apoptosis and contribute 

to reduced basal cell structural integrity in OLP, allowing T cells to enter the epithelial 

compartment. Our biopsy material indicates that neither DNA content, nor expression of Cox-
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2 and E-cadherin are reliable as prognostic markers to select the OLP patients at risk for 

development of OSCC. 

    

Key words: oral lichen planus, apoptosis, FasR, FasL, CD40, CD40L, E-cadherin, Cox-2, 

DNA content, epithelial dysplasia, oral squamous cell carcinoma.  
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5. NORSK SAMMENDRAG (Norwegian summary)  
Oral lichen planus (OLP) er en kronisk slimhinnelidelse karakterisert av destruksjon av 

basalcellelaget og båndformet betennelsesinfiltrat under epitelet med hovedsakelig  

T-lymfocytter. Molekylærbiologiske forandringer i basalcelleområdet og celledød er spesielt 

aktuelle felt innen nyere forskning på OLP. De aller fleste OLP tilfellene forblir godartete, 

men i sjeldne tilfeller kan munnhulekreft utvikles.  

Hovedmålene for studien var å undersøke celledød i form av apoptose og proteiner som kan 

regulere den, samt mulige markører for utvikling av kreft i lesjonene.  

Vevsprøver fra klinisk og histologisk verifiserte OLP lesjoner ble undersøkt (Artikkel I-II), og 

i tillegg et arkivmateriale med vevsprøver fra OLP pasienter hvor noen av pasientene utviklet 

celleforandringer og kreft over tid (Artikkel III).  

Vevet ble undersøkt ved mikroskopi, immunhistokjemi (Artikkel I-III), TUNEL-metoden 

(Artikkel I), mRNA in situ hybridisering (Artikkel II) og bilde cytometri for måling av DNA 

innhold.  

Studien viste øket forekomst av apoptose i epitelet ved OLP sammenlignet med normal 

munnslimhinne, og at proteinene Fas receptor (FasR) og Fas ligand (FasL) som kan starte 

apoptose, var tilstede i epitelet og betennelsesinfiltratet (Artikkel I). De basale epitelcellene 

var negative for CD40 i aktive sykdomsområder og tapte også epitelialt (E)-cadherin noen 

steder (Artikkel II). Cyclooxygenase-2 (Cox-2) var øket i OLP manifestasjoner sammenlignet 

med normal munnslimhinne (Artikkel III). Normalt DNA innhold (diploid) ble funnet i alle 

vevsprøvene fra OLP og munnhulekreft, men en av vevsprøvene fra OLP med celleforandring 

viste øket og balansert DNA innhold (tetraploid) (Artikkel III). 

Basert på disse funn konkluderes at de basale epitelcellene dør ved apoptose i OLP og synes å 

involvere mange mekanismer: (1) dysfunksjon i Fas/FasL systemet, (2) ved å regulere ned 

CD40 kan de basale epitelcellene unngå CD40 mediert apoptose, (3) øket Cox-2 kan hemme 

apoptose, (4) tap av E-cadherin i de basale epitelcellene kan gi dårligere integritet, øke 

apoptose, og dermed bidra til at T-lymfocytter vandrer inn i epitelet. Vevsprøvematerialet 

(Artikkel III) antyder at verken DNA innhold, påvisning av Cox-2 eller tap av E-cadherin er 

gode nok markører for å velge ut OLP pasienter med øket risiko for munnhulekreft.              
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6. INTRODUCTION  

6.1.  Oral lichen planus 

Lichen planus (LP) is a chronic inflammatory mucocutaneous disorder. Lichen comes from 

the Greek word leichen, meaning flat, and possibly the striking clinical colour of the pimples 

on skin led to the designation leichen ruber (latin; red). Planus refers to the clinical 

appearance of the skin papulae; flattened, smooth and depressed on the summit, as first 

described by Wilson in 1869 (Wilson, 1869). Although first described almost 150 years ago, 

and more than 5200 papers were present in the database PubMed in January 2007, many 

aspects of the pathogenesis of LP are yet not fully understood.  

The prevalence of oral LP (OLP) varies from 0.02-2.2% in adults according to studies of 

different ethnic populations (Pindborg et al., 1972), (Bouquot and Gorlin, 1986), (Axell and 

Rundquist, 1987), (Ikeda et al., 1995), (Reichart, 2000). Clinically, six types of OLP have 

been described: reticular, papular, plaque, atrophic, erosive or ulcerative and bullous, but the 

lesions are most often seen as white, erythematous and/or ulcers. The white reticular 

appearance is most common, and more than one type of oral lesion may occur at the same 

time (Fig. 1) (Andreasen, 1968).  
 

 

 

 

 

 

 

 

 

 

Figure1. Oral lichen planus lesion with reticular and 
erythematous manifestations.   
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The two most important histological features of OLP are the subepithelial band-like 

inflammatory cell infiltrate predominated by lymphocytes, and destruction of the epithelial 

basal cell layer (Fig. 2 A-C). 

 
Figure 2. Oral lichen planus with subepithelial chronic inflammatory cell infiltrate (A), destruction of the basal 
cell layer (B) and cell death of basal keratinocytes (C). Hematoxylin & Eosin. Orig. magn: x100 (A), x200 (B), 
x400 (C).  
 

Lichenoid phenotypes – oral lichenoid lesions 

Oral lichenoid lesions may resemble idiopathic OLP both clinically and histopathologically. 

The oral lichenoid lesions may however have a defined or suspected cause in the patient 

history or clinical relation. The list of drugs that may cause drug-related lichenoid reactions in 

oral mucosa and skin is long (Thompson and Skaehill, 1994), (McCartan and McCreary, 

1997), (Edwards and Kelsch, 2002). Lichenoid contact hypersensitivity lesions describe local 

lesions developed in the oral mucosal membrane with direct clinical contact with a dental 

restoration (Lind et al., 1984), (Thornhill et al., 2003). Also, Hepatitis C and graft-versus-host 

reactions may present with oral lichenoid reactions (Lodi et al., 2005b), (Vargas-Diez et al., 

2005).      
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Etiology and pathogenesis  

OLP is a T cell mediated inflammatory disease (Regezi et al., 1978), (Gilhar et al., 1989), 

(Porter et al., 1997), (Sugerman et al., 2002). The antigen or antigens triggering OLP have not 

yet been identified, and there is no generally accepted pathogenesis theory.  

 

Terminal differentiation and cell loss at the epithelial surface in oral mucosa (OM) requires to 

be balanced by basal cell proliferation (reviewed in Squier and Kremer, 2001). This 

homeostatic balance is disturbed in OLP, resulting in regions of epithelial acanthosis 

(increased thickness), atrophy (reduced thickness) or complete loss of epithelium (ulceration).   

Langerhans cells (CD1+) play an important role in processing and presentation of antigens, 

and increased number of Langerhans cells have been described in OLP compared to oral 

leukoplakia and normal OM (Ragaz and Ackerman, 1981), (Rich and Reade, 1989), 

(Villarroel Dorrego et al., 2002). T cells (CD3+, Fig. 3A) including T helper cells (CD4+, Fig. 

3B) and suppressor/cytotoxic T cells (CD8+, Fig. 3C) are present intraepithelially in OLP 

(Matthews et al., 1984), (Kilpi, 1987), (Zhou et al., 2002). 

 

Basal keratinocytes appear to be the primary site of immunological injury in OLP, and 

molecular biological changes in the basal cell compartment have been a matter of particular 

interest in later research in OLP (reviewed in Sugerman et al., 2002). Of current interest is the 

presence of cytotoxic T cells in OLP with the potential of targeting basal keratinocytes (Khan 

et al., 2003), (Santoro et al., 2004), based on that T cell lines cultured from LP skin lesions 

have proven to lyse autologous lesional keratinocytes in vitro (Sugerman et al., 2000).  

 

The basement membrane, delineating the border between the epithelium and connective tissue 

is a highly specialised structure that forms a dense meshwork built up by collagen type IV, 

laminin, heparin sulphate, entactin and fibronectin (Merker, 1994). The basal keratinocytes 

are responsible for constant renewal of several basement membrane components including 

laminin and collagen IV. In OLP, a variation in the intensity and thickness of collagen IV and 

laminin-5 expression is described, with breaks in some regions (Jungell, 1990), (Ramirez-

Amador et al., 1996), (Zhou et al., 2001).  

 

The subepithelial cell infiltrate consists mainly of T cells (CD3+, Fig. 3A) including T helper 

cells (CD4+, Fig. 3B) and suppressor/cytotoxic T cells (CD8+, Fig. 3C). The CD4:CD8 ratio 

in the subepitelial infiltrate varies between 2:1 and 3:1 (Matthews et al., 1984), (Ishii, 1987), 
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(Jungell et al., 1989), (Sugerman et al., 1993). During disease progression there may be a 

gradually increase of CD8+ cells demonstrating an antigen-stimulated T cell population (De 

Panfilis et al., 1983), (Scully and el-Kom, 1985).  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3. CD3+ (A), CD4+ (B) and CD8+ cells 
(C) in the epithelium and subepithelial cell 
infiltrate of oral lichen planus. 
Immunohistochemistry. Orig. magn: x100 (A), 
x250 (B, C). (B, C are also presented in Paper I: 
Fig. 1A, B). 
 

 

Recruitment and retention of lymphocytes in OLP are mediated by release of cytokines from 

activated keratinocytes, T cells and endothelial cells (Fig. 4) (Yamamoto and Osaki, 1995), 

(Simark-Mattsson et al., 1999), (Khan et al., 2003).  
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Figure 4. Pathogenetic aspects of oral lichen planus 
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6.2.  Apoptosis  

Apoptosis, from the Greek meaning falling (as in the falling of leaves from trees) was first 

described in 1971 (Kerr, 1971). Kerr and co-workers further described the morphology of 

apoptosis and its biological implications in tissue kinetics (Kerr et al., 1972). Apoptosis is 

often described scientifically as programmed cell death, which refers to a series of 

morphological changes during cell death that are different from necrosis (Wyllie et al., 1980). 

In contrast to necrosis, apoptosis is an active process of cellular self-destruction where single 

cells are usually affected within living tissues and with no provocation of inflammation 

(Cohen, 1993).  

The apoptotic process and its regulation    

The process of apoptosis may be summarised into four phases (Vaux and Strasser, 1996); (1) 

the initiation stimulus that may be internal or external, (2) the detection and signal 

transduction phase, (3) the effector phase that includes the caspases, and (4) the degradation 

of DNA phase. The initiation phase may be induced by a variety of signals including DNA 

damage, radiation, toxins, hypoxia, lack of nutrients and activation of death receptors. A 

central component of the apoptotic machinery is the caspase family of proteases, responsible 

for proteolytic cleavages (effectors) and upstream regulation (initiators) (Thornberry and 

Lazebnik, 1998). Several factors are involved in the regulation of apoptosis including the 

tumour necrosis factor (TNF) receptor family, tumor suppressor genes, oncogenes, 

mitochondrial factors and a number of enzymes (Dragovich et al., 1998).  

 

Fas and CD40 in regulation of apoptosis 

Fas receptor (FasR, CD95, Apo-1) is a member of the tumor necrosis factor (TNF) family of 

proteins, expressed on the cell surface of rapidly proliferating cells including activated T and 

B cells (Nagata, 1994). Its ligand, FasL (CD95L, Apo-1L) is a cell surface molecule 

expressed predominantly by activated T cells (Nagata, 1999). FasL binds to FasR leading to a 

transduction signal that finally induces apoptosis via a caspase dependent pathway (Nagata, 

1997), (Peter and Krammer, 1998), (Nagata, 1999). FasR and FasL are expressed in normal 

OM, where FasR has been reported to be restricted to the basal cell compartment (Leithauser 

et al., 1993), (Loro et al., 1999). In OLP, two immunohistochemical studies on FasR and 

FasL have shown different results, from no subjective difference to altered staining pattern 
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with more intense expression in epithelial spinous and surface layers, compared to normal 

OM (Dekker et al., 1997), (Muraki et al., 1997).  

 

CD40 is another TNF family member that is constitutively expressed on cells with high 

proliferative potential such as keratinocytes and antigen presenting cells including T cells, 

Langerhans cells and macrophages (reviewed in Schönbeck and Libby, 2001, and Xu and 

Song, 2004). Its ligand, CD40L (CD154/ gp39) is transiently expressed on many cell types 

including mature CD4+ and CD8+ cells (Roy et al., 1993), (reviewed in Xu and Song, 2004). 

CD40 and CD40L have shown to be involved in several biological processes such as 

regulation of normal squamous epithelial cell growth, cell survival, differentiation and 

inflammatory cell responses (Denfeld et al., 1996), (Peguet-Navarro et al., 1997), (Young et 

al., 1998), (Schönbeck and Libby, 2001). CD40-CD40L interactions may either induce (via 

Fas and/or tumour necrosis factor receptor -1: TNFR-1) or inhibit apoptosis (via nuclear 

factor κappa B: NF-κB) in different cancer cell lines (Grell et al., 1999), (Eliopoulos et al., 

2000), (Xu and Song, 2004). CD40 lacks intrinsic catalytic activity itself, so adapter proteins 

of the TNF-associated factor (TRAF) family mediate activation of the CD40 signalling 

cascades, converting the CD40-initiated signal into different functional outcomes (Chung et 

al., 2002), (Harnett, 2004), (Xu and Song, 2004). Normal basal keratinocytes in OM express 

CD40, as well as CD40L in the basement membrane region (Peguet-Navarro et al., 1997), 

(Loro et al., 2001), (Villarroel Dorrego et al., 2006). However, yet its specific biological 

role(s) have not been elucidated.    

Cell death of basal keratinocytes in OLP 

Many years ago, an apoptotic mechanism for keratinocyte cell death in OLP was proposed 

(Hashimoto, 1976), (Sumegi, 1979), (Weedon, 1980). Based on electron microscopic studies, 

the colloid or Civatte bodies were described to be typical of apoptotic cells (Kerr et al., 1972), 

(Weedon, 1974).  

 

In OLP, cytotoxic CD8+ T cells are suspected to be involved in keratinocyte cell death. 

However the mechanisms by which the cytotoxic T cells interact with keratinocytes have not 

yet been clarified. T cells may induce apoptosis in keratinocytes via several different 

mechanisms including; (1) FasL on T cell surface binding FasR on keratinocyte cell 

membrane, (2) T cell secreted TNF-α binding TNFR-1 on keratinocyte cell surface, (3) T cell 

surface CD40L binding CD40 on keratinocytes (followed by apotosis via Fas and/or TNFR-
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1), (4) T cell secreted granzyme-B entering the keratinocyte through membrane perforin 

induced pores (Fig. 5).   
 

 

 
 

 

 

 
Figure 5. Possible mechanisms of keratinocyte 
apoptosis in oral lichen planus mediated by T 
cells 
 

 

 

In OLP, apoptosis of keratinocytes may also be induced by other mechanisms than those 

initiated by T cells, as for instance loss of cell-to-cell or cell-to-matrix contacts (Fig. 6). This 

type of apoptosis, termed anoikis (loss of home) may be induced in the absence of focal cell 

contact (reviewed in Grossmann, 2002).   

Epithelial (E)-cadherin, belonging to the cadherin family (classical type I) of proteins, is one 

type of cell-to-cell adhesion protein expressed in normal stratified squamous epithelium 

including normal OM (Downer and Speight, 1993), (Jensen et al., 1997), (Thomas and 

Speight, 2001), (reviewed in Gooding et al., 2004). Maintained cell contacts by E-cadherin 

have been shown to prevent apoptotic cell death in mouse keratinocyte cell lines by inhibiting 

caspase-3 (a major effector of apoptosis) (Galaz et al., 2005).  

CD44 is a transmembrane adhesion molecule belonging to a family with multiple isoforms 

that take part in different biological functions like cell-to-cell and cell-to-matrix interactions 

in stratified squamous epithelium (Thomas and Speight, 2001). The role of CD44 in apoptosis 

is not clear-cut. On the one hand, CD44 has been shown to inhibit apoptosis in human colonic 

cancer cell lines (Lakshman et al., 2004) and normal mouse colonic epithelium (Lakshman et 

al., 2005). On the other hand, it promotes apoptosis in human synovial cell lines from patients 

with rheumatoid arthritis (Fujii et al., 2001). Normal OM keratinocytes express CD44 

(Oliveira and Odell, 1997), and two immunohistochemical studies indicate that also 

keratinocytes in skin LP lesions express CD44 (Harris et al., 1997), (Orteu et al., 1997).  
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Figure 6. Loss of cell contacts may induce 
apoptosis in oral lichen planus. 
 

 

 

 

To our knowledge, no reports regarding the expression of CD40, CD40L, E-cadherin or CD44 

in OLP have been published in English literature.   

 

Hypothesis 

Basal keratinocytes die by an apoptotic mechanism, and a dysregulation of apoptosis and 

regulatory molecules is involved in basal cell destruction in OLP. 
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6.3.  Malignant potential of OLP lesions and potential risk markers 

Although OLP is defined as a precancerous condition by the World Health Organization 

(Pindborg et al., 1997), the malignant potential of OLP lesions itself is still controversial and 

debated among researchers (Krutchkoff and Eisenberg, 1985), (Eisenberg, 2000), (Lozada-

Nur, 2000), (Lodi et al., 2005a). The potential risk for cancer development in these patients is 

estimated between 0.4-6.25% (van der Meij et al., 1999), (Gandolfo et al., 2004), (Lodi et al., 

2005a). In all lesions considered to be premalignant there is a great need for objective markers 

to select patients at risk, but so far no such definite markers are available. Candidate 

prognostic markers for risk of cancer development may include genetic and molecular 

biological changes arising during carcinogenesis.  

Nuclear DNA content – DNA ploidy 

Aneuplody is defined as an unbalanced representation of chromosomes or “loss or duplication 

of chromosomes or chromosomal segments” (Lewin, 1997). The normal situations of 

euploidy denote the situations with whole integer multiples of chromosomes in the nucleus 

like haploid (one), diploid (two), triploid (three), or tetraploid (four). Aneuploidy is claimed to 

be the primary cause of multilateral genomic instability of neoplastic and preneoplastic cells 

(Duesberg et al., 2004), and is a frequent change observed in epithelial cancers and pre-

cancers (Rasnick and Duesberg, 1999). However, it is not yet clarified whether aneuploidy 

alone is a suitable prognostic factor in oral epithelial premalignant lesions and oral squamous 

cell carcinoma (OSCC) (Franzen et al., 1987), (Baretton et al., 1995), (Reibel, 2003), 

(Diwakar et al., 2005). Previous reports of measurements of DNA content in OLP biopsies 

and cytologic samples have presented highly variable results from none to 41% of the lesions 

classified as being aneuploid (Biesterfeld et al., 1991), (Mattila et al., 2004), (Femiano and 

Scully, 2005), (Maraki et al., 2006), (Rode et al., 2006).   

P53- a tumour suppressor 

The p53 protein is involved in the regulation of the cell cycle, and coded for by the TP53 

tumour suppressor gene. Activation of p53 protein may either; (1) induce cell cycle arrest to 

allow repair of damaged DNA, or (2) induce apoptosis via several pathways including Fas 

and/or inhibition of Cyclooxygenase-2 (Cox-2) (reviewed in Bertram, 2000). Mutations in 

TP53 are a frequent genetic change in OSCC as well as in other human cancers (reviewed in 

Nylander et al., 2000). Mutant p53 protein has a prolonged half-life, and may be detectable 
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due to accumulation in cells, in contrast to the normal protein. Previous immunohistochemical 

reports of p53 expression in OLP have been inconclusive, from not detectable to expression of 

p53 detected in 91% of the lesions (Crosthwaite et al., 1996), (Taniguchi et al., 2002), (Lee et 

al., 2005), (Acay et al., 2006).  

Cyclooxygenase-2  

Cyclooxygenase-2 (Cox-2), which is an inducible enzyme in most cell types including 

keratinocytes, fibroblasts and T cells, catalyzes the synthesis of prostaglandins (reviewed in 

Smith et al., 2000), (Kainulainen et al., 2002). Several processes in cancer development may 

be influenced by Cox-2, such as cell proliferation, apoptosis, and angiogensis (reviewed in 

Prescott and Fitzpatrick, 2000). Cox-2 may inhibit apoptosis via different pathways, like 

down-regulation of arachidonic acid, up-regulation of the protooncogene Bcl-2 and down-

regulation of Bax, thus contributing to increased cell survival (Tsujii and DuBois, 1995), 

(Prescott and Fitzpatrick, 2000), (Lin et al., 2002). In normal OM, Cox-2 is generally not 

expressed, but a variable expression has been reported in oral epithelial dysplasias and OSCC 

(Shibata et al., 2005). To our knowledge, there have not been any reports in English literature 

on Cox-2 expression in OLP.       

E-cadherin 

E-cadherin has been proposed as one prognostic factor in development of OSCC, based on the 

fact that loss of E-cadherin mediated cell contact is associated with invasion and metastasis in 

OSCC (Yamada et al., 1997), (Diniz-Freitas et al., 2006).  

  

Hypothesis 

Aneuploidy, p53, Cox-2 and E-cadherin expression are either alone or together, prognostic 

markers for the risk of cancer development in OLP. In addition, p53, E-cadherin and Cox-2 

are involved in the regulation of keratinocyte apoptosis in OLP. 
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7. AIMS 
The general aims of this study were to investigate for apoptosis and apoptosis regulatory 

proteins in OLP, and to identify potential predictive risk markers for cancer development in 

OLP.  

 

Specific aims: 

• To quantify the rate of apoptosis in the epithelium and subepithelial cell infiltrate, and 

localize apoptotic cells within the epithelium in OLP (Paper I). 

• To characterize the expression of two well known apoptotic regulatory systems; FasR 

and FasL (Paper I), CD40 and CD40L (Paper II).  

• To characterize the expression of E-cadherin, important in secured structural integrity 

of basal keratinocytes and epithelium of OLP (Papers II, III). 

• To characterize the expression of Cox-2 in OLP, since this enzyme may be involved in 

regulation of apoptosis (Paper III). 

• To search for potential predictive risk markers for cancer development in OLP; thus 

DNA-content, expression of Cox-2, and E-cadherin was investigated in OLP lesions, 

epithelial dysplasias and OSCC developed in OLP patients (Paper III). 
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8. MATERIALS - Tissue specimens 

8.1.  Tissues in OLP series 

Biopsies from 27 admitted patients (8 men and 19 women), clinically and histologically 

diagnosed with OLP, mean age 59 yrs (range 30-79), were included (Papers I, II).  Clinically, 

all OLP patients had the reticular type of lesions, of whom 14 also had erythematous lesions. 

Another 2 patients had ulcerous lesions. All patients presented with bilateral buccal lesions, 

11 had gingival lesions, 6 had tongue lesions and 5 had lip lesions in addition. Cutaneous LP 

was reported in the history of 13 patients. Biopsies were taken from reticular lesions of the 

buccal mucosa, not associated with dental restorations. None of the patients had been treated 

with topic or systemic steroids. Six patients used systemic medications including four patients 

on platelet aggregation inhibitors (acetyl-salisylic-acid: Albyl-E), and two patients on a serum 

cholesterol reducer (Lovastatin: Mevacor). 

 

The biopsy specimens were cut into two halves: one was snap frozen in isopentane, precooled 

in liquid nitrogen and stored at –700C, the other one was fixed in 4% buffered formalin (pH 

7.2) and embedded in paraffin. Normal OM samples from healthy voluntary individuals 

(n=8), human tonsils (n=8) and OSCC (n=5) served as control specimens. 

 

The regional committee for medical ethics in research approved the project (code: 146/96-

45.96), and all patients included in this study gave their informed consent.  

8.2.  Biopsies from OLP, epithelial dysplasias and OSCC developed in 

OLP patients 

Archival biopsies (n=78) from 45 patients with clinically and histologically verified OLP 

were included (Paper III). The patients’ biopsies were divided into two groups. Group 1: 

biopsies from 26 patients (18 females and 8 males, mean age 55 yrs, and range: 31-71) who 

had been followed up for 6-225 (mean: 91) months and had more than one biopsy taken from 

their lesions. Six of these patients (6/26, 23 %) developed epithelial dysplasias in their lesions, 

of which five (5/26, 19 %) progressed to OSCC. Group 2: biopsies from 19 patients from 

primary lesions taken for diagnostic purpose, and selected due to typical histologic picture of 

OLP (11 females and 8 males, mean age 64 yrs, and range: 36-83). The biopsies were taken 

(1978-2003) at the Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, 
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University of Bergen, and the Department of Maxillofacial Surgery, Haukeland University 

Hospital, Bergen, Norway. 

Normal buccal OM (n=7) from voluntary healthy individuals were included as controls.     
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9. METHODS AND METHODOLOGICAL 

CONSIDERATIONS 

9.1.  Immunohistochemical methods 

Immunohistochemistry was performed to characterize the expression of different proteins in 

OLP (Table 1). Both cryostat and formalin fixed, paraffin embedded tissue sections were used 

in the series. Two different immunohistochemical methods were performed; (1) the DAKO 

avidin-biotin-peroxidase (ABC) complex technique (Hsu et al., 1981) (Papers I-II) and (2) the 

EnVision+ System (EnVision+ System kit, according to the manufacturers protocols, DAKO) 

(Papers II-III). The main difference between these methods is that the EnVision+ System 

utilizes labelled polymers (either peroxidase or alkaline phosphatase) for detection of the 

epitopes instead of avidin and biotin (Jordan et al., 2002). The EnVision+ System may be 

more sensitive compared with the ABC method due to the labelled polymer that includes 

several secondary Ab (Jordan et al., 2002). Another advantage of the EnVision+ System is 

that it is a less time consuming procedure with fewer steps compared to the DAKO ABC 

method. In addition, a higher dilution of primary Ab can often be used with the EnVision+ 

System due to utilization of the labelled polymer. However, since the EnVision+ kit is 

expensive, the cost-benefit may vary according to different Ab. We experienced that the 

monoclonal Ab (mAb) CD40 (Calbiochem) was titrated to a dilution of 1:80 with the 

traditional DAKO ABC method, and 1:1000 with the EnVision+ System. Avoiding biotin with 

the EnVision+ System may also be an advantage due to problems with background staining 

from endogenous biotin.  

The DAKO autostainer – Universal Staining System (DAKO-USA, Caripteria, California 

USA) was used for the immunohistochemical procedures after antigen retrieval in the later 

series (Papers II-III). The autostainer gave similar immunohistochemical results compared to 

running the procedures manually, with the main advantage of a more standardized and less 

time consuming procedure. A disadvantage with the autostainer is that more reagents 

including Ab is required compared to running the procedures manually, thus the cost-benefit 

may be lesser with expensive Ab.   
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Immunohistochemical double labelling  

Immunohistochemical double labelling was performed with CD40 and CD3 (T cell marker), 

in order to further characterize the CD40 expressing cells detected in OLP (Paper II). 

Titrations of both Ab were performed separately, and together (one Ab followed by the other) 

in two steps. In order to avoid cross reaction, one mAb and one polyclonal Ab (pAb) were 

chosen (DAKO, double staining kit protocol). Best results were obtained using a two steps 

procedure with the mAb CD40 1:1000 (Calbiochem) initially, followed by the pAb CD3 1:50 

(Novocastra). In general, it is recommended to start with the mAb against the epitope that is 

most abundantly expressed in the tissue, followed by the pAb against the second epitope (S. 

Nielsen, DAKO Corp). Retrieval of the polymer by blocking solution (EnVision+ Doublestain 

kit, DAKO) is recommended between the two Ab, especially if both Ab are monoclonals. We 

obtained best results with 4% formalin fixation for 2 min, followed by boiling in TRIS/ETDA 

(pH: 9) for 1 min.   

As positive controls, parallel cut sections were incubated with the two Ab separately in all 

series.  
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Table 1. Primary antibodies used in the immunohistochemical series. 

 

Target 
 

Immune expression Antibody, Clone Dilution Source Paper 

CD3 T cells mAb: NA, Rabbit 
pAb 

1/20, 1/50 Vector, Novocastra I, II 

CD4 Mainly helper T cells, 
MHC class II 

mAb: NA 1/20 Vector I 

CD8 Mainly cytotoxic T cells, 
MHC class I 

mAb: NA 1/20 Vector I 

FasR Activated T and B cells, 
rapid proliferating cells 

UB2 1/100 Medical & Biological 
Laboratories 

I 

FasL Mainly activated T cells DX2 1/5 Calbiochem I 

CD40 A vide variety of cells; 
as basal keratinocytes, T 
cells, Langerhans cells  

EA-5, HB-14, 
rabbit pAb 

1/80, 1/100, 
1/1000 

Calbiochem, Santa Crruz II 

CD40L Activated T cells, 
basement membrane 
region in oral mucosa 

24-31, rabbit 
polyclonal 

1/100 Calbiochem, Santa Cruz II 

Laminin-5 Basement membrane D4B5 1/100 CEMICON II 

Collagen IV Basement membrane CIV-22 1/5 DAKO II 

E-cadherin Keratinocytes, 
macrophages, salivary 
duct cells 

HECD-1 1/25, 1/1500 R&D  II, III  

CD44 A vide variety of cells as 
keratinocytes, 
fibroblasts, mature T 
cells 

DF1485 1/1500 DAKO II 

Ki-67 Epithelial cells, marker 
of cells in interphase - 
nuclear antigen  

MIB-1, rabbit mAb 
SP6 

1/25, 1/100  DAKO, NeoMarkers NP 

Cox-2 In most tissues and cell 
types (inducible 
enzyme); T cells, 
macrophages, 
keratinocytes  

COX 229, SP21 1/1500  Zymed, Neo Markers III 

P53 Different cell types; as 
keratinocytes, T cells, 
indicating a mutant p53 
protein.  

DO-7 1/100 DAKO NP 

mAb: monoclonal antibody 
pAb: polyclonal antibody 
NA: not avaliable information of clone 
NP: not presented in the papers included in this thesis 
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Evaluation of the OLP tissue sections – immunohistochemistry (Papers I-III) 

Tissue sections were evaluated morphologically under a light microscope (Leica DMLM, 

GmbH, Munster, Germany). Special attention was given to evaluate the epithelium, basal 

keratinocytes and subepithelial inflammation in diseased areas compared to non-diseased 

areas of OLP. Sections were compared with normal OM controls. Cell counts were performed 

manually in the epithelial basal cells and subepithelial cell infiltrate in OLP for FasR, FasL, 

CD3, CD4, CD8 (Paper I), CD40 and CD40L (Paper II) under a light microscope (Leica 

GMBH) with a fitted ocular grid.  Up to 1000 cells were counted for each slide at x 400 

magnification. Results are presented in percent positive cells of total (number of positive 

cells/ total cells).  

For Ki-67 a semi-quantitative registration was performed, dividing the lesions into three 

groups according to expression; (+): few occasional cells (<10%) in the basal cell region, 

(++): 10-50% positive cells in the basal cell region, and (+++): >50% positive cells in the 

basal cell region. Positive cells in parabasal cell layers were also noted.   

Semi-quantitative registration of Cox-2 expression in the epithelium of OLP was performed 

(Paper III), and the lesions were divided into three groups according to expression; (1) in the 

basal cells only with a perinuclear localization, (2) in both basal and parabasal cell layers with 

perinuclear and cytoplasmic localization, or (3) in focal areas with both perinuclear and 

cytoplasmic localization of expression also including more superficial cell layers. In addition, 

cell counts were performed for Cox-2 in the subepithelial cell infiltrate for each slide at x 400 

magnification and presented as percent positive cells of total.  

For p53 the lesions were evaluated as positive or negative, and if less than 5% of the cells 

expressed p53, the lesion was considered as negative.  
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9.2.  TUNEL method 

For visualization of DNA fragmentation, the Tdt-mediated dUTP-biotin nick end labeling 

(TUNEL) method was performed (Paper I) (Gavrieli et al., 1992), (Loro et al., 2000). 

DNA fragmentation occurs during other processes than apoptosis such as autolysis and 

necrosis, as well as during pre-treatment of tissue sections and processing (Stadelmann and 

Lassmann, 2000). The level of DNA fragmentation detected in the specimens is highly 

dependent on the technical procedures, such as retrieval techniques, treatment by enzymes, 

duration of exposure, and timing of colour reaction (Saraste, 1999), (Loro et al., 2003). 

Standardization of the experiments and controls should therefore be conducted in order to 

evaluate apoptotic cell death by TUNEL (Potten, 2001), (Loro et al., 2003).       

 

Both cryostat and formalin fixed, paraffin embedded tissue sections were used in the TUNEL 

series. Pretreatment of freshly cut cryostat sections included fixation in 1% paraformaldehyde 

or 1% formalin for 30 min, without any obvious difference. For formalin fixed and paraffin 

embedded tissue sections, best results were obtained with a combination of microwave 

treatment (850 W for 5 min, followed by 500W for 5 min) in citrate buffer (10mM, pH: 3.0), 

and proteinase K (25 µg/ml in PBS) for 15 min at room temperature.  

 

Biotin-labelled dUTP was utilized for detection of DNA fragmentation, since it may give 

more reproducible results, is a less time consuming detection process, and is less expensive 

compared to digoxigenin-labelled nucleotides (Loro, 2001). Endogenous peroxidase block 

was performed after the TdT reaction (Loro, 2001), since hydrogen peroxide is known to 

induce DNA breaks and reduces TdT activity (Migheli et al., 1995). The signals were 

detected with Neutravidin-HRP, due to less non-specific staining compared to Streptavidin 

horse radish peroxidase (Loro, 2001), and developed with 3-amino-9-etylcarbazole (AEC). 

 

For positive controls, specimens were treated with DNAse 0.5 mg/ml (Roche Diagnostics 

GmH. Mannheim, Germany) in Tris-buffered saline (TBS) buffer for 15 min at 370 C, prior to 

incubation with bovine serum albumin. The specificity of the TUNEL reaction was tested 

using unbiotinylated dUTP (Roche) in the TUNEL labelling mixture instead of biotinylated 

dUTP (negative control).  
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Evaluation TUNEL sections from OLP lesions (Paper I) 

Cell counts of positive cells per mm epithelial length (apoptotic index) were performed in 

tissue sections of OLP under a light microscope (Leicha GMBH) with a fitted ocular grid at 

x250 original magnification (Paper I). At least two parallelly cut sections from each lesion 

were included, and cell counts of corresponding regions were performed. 
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9.3.  In situ mRNA hybridization 

In situ hybridization (ISH) is a molecular technique used to study DNA and RNA in tissue 

sections. This method was performed in order to further investigate the expression of CD40 

and CD40L at the mRNA level on OLP tissue sections (Paper II). 

Cryostat sections were used in the ISH series, and fixation of freshly cut sections was 

performed in 4% formalin (Heikinheimo and Happonen, 1991).  

 

The set of the probes (Paper II: Table 1) were laboratory designed using National Biosciences 

oligo primer analysis software programme version 5.0 for Windows (Molecular Biology 

Insights, Cascade, Co, USA), and produced by Eurogentec (S.A. Prac Industr. Des Hauts-

Sarts, Herstal, Belgium). Single stranded RNA probes were selected, since these are reported 

to be significantly more effective than DNA probes (Heikinheimo and Happonen, 1991). 

Small probes containing 21-27 bases were chosen (Paper II, Table 1) in order to facilitate 

penetration, so prehybridization with proteinase K could be avoided (Heikinheimo and 

Happonen, 1991). All probes were biotinylated at the 5’-end. One of the CD40 antisense 

probes selected (Paper II: Table 1; 1) has been previously described (Tone et al., 2001). Best 

results were obtained with a cocktail of probes compared with incubation with individual 

probes alone. All probes were incubated over night. Incubations with probes at 50-52o C gave 

best results. Probes that required higher incubation temperatures (<55 o C) gave problems with 

drying of the sections.  

 

The signal amplification system using biotinylated tyramide is based on the peroxidase 

catalyzed deposition of biotinyl tyramide. Signal amplification cycles were performed one to 

three times using the catalyzed amplification system for ISH (Genpoint kit, DAKO), and best 

results were obtained with three amplifications (Table 2). Incubations with primary 

streptavidin horseradish peroxidase at different concentrations: 1:100, 1:200, 1:500, 1:1000 

were performed from 15-30 min. Best results were obtained with primary streptavidin at a 

concentration of 1:500 for 15 min in each amplification cycle. Background staining was 

reduced by washing in 0.1% Triton-X-100 in TBS 3 min twice with stirring, distilled H2O, 

and TBS for 3 min between each step in the amplification cycle. 

 

Incubation with biotinylated sense probes complementary to the antisense probes, were 

performed to test the specificity of the hybridization reaction (negative control). Total mRNA 
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was detected using an 18-mer “poly-T” probe (positive control). Sections from normal OM 

and tonsillar tissue served as positive tissue controls for CD40 and CD40L mRNAs.  

 
Table 2. Trouble-shooting guidelines for in situ mRNA hybridization. 

NO Pitfall Trouble-shooting  

1 Contamination • Use gloves, especially during the prehybridization steps 
• Autoclave all glasses and instruments used for the prehybridization 
procedure  

• Use DEPC water for all prehybridization solutions 
• Immediately fix freshly cut cryostat sections in 1% formalin or  
paraformaldehyde  

2 Too weak signal • Use a cocktail of different probes  
• Preheat probes at 95oC for 5 min and immediately immerse in ice, 
before placing on samples 

• Increase amplification cycles to 2 or 3 
• Use higher concentrations of  primary streptavidin 
• Increase the time of primary streptavdin in each cycle 
• Wash thoroughly in dH2O and/or TBS after Triton-X-100  to remove 
remnants of Triton-X-100 which can dilute or interfere with the 
reagents applied in the next step of the procedure 

3 Background staining 
 
 

• Wash thoroughly with 0.1% Triton-X-100 between the different steps 
especially after the biotinyl tyramide step 

• Wash thoroughly in dH2O and/or TBS after Triton-X-100  to remove 
remnants of Triton-X-100 which cause the sections to easily dry  

• Use lower concentrations of  primary streptavidin 
• Decrease amplification cycles to 1 or 2 
• Increase the temperature of the stringent wash (between 5-20 oC < 
melting point of the probe) 

4 Detachment of tissue from 
the glass slides 

• Use silane-coated slides 
• Let cryostat sections dry on the bench at room temperature for 5-7 
min before starting the procedure  

5 Drying of tissue sections • Choose probes that do not require too high incubation temperature 
(<55-60oC) 

• Use coverslips during incubation 
• Use a humidified chamber with a good seal  

DEPC water: 0.1% dietylpyrocarbonate treated H2O 
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9.4.  DNA image cytometry - measurement of DNA content 

We utilized a DNA image cytometry method to measure the DNA content in biopsies from 

OLP lesions, epithelial dysplasias and OSCC developed in OLP patients (Paper III). This 

method is based on quantitative DNA staining, and measurement of nuclear Integrated Optical 

Density as the cytometric equivalent of the DNA content. The DNA content is expressed in a 

“c” scale with 2c as the mean nuclear content of normal cells in G0/G1 cell cycle phase 

(diploid population) (Haroske et al., 1998).  

    

Formalin fixed, paraffin embedded tissue sections were enzymatically digested in 0.05% 

protease solution in PBS (5mg/ml, for 60 min) for the preparation of the isolated nuclei/ 

monolayers according to previous protocols (Hedley, 1994), (Pradhan et al., 2006). The DNA 

content of Feulgen–Schiff stained nuclei was measured and analysed using the Fairfield DNA 

Ploidity System according to an established protocol (Haroske et al., 1998), (Pradhan et al., 

2006). At least 500 cell nuclei were measured and stored in galleries for each case. The nuclei 

were picked manually based on morphologic appearance of epithelial cell nuclei, being aware 

of the high amount of lymphocytes in the samples. Lymphocytes were included as internal 

controls (calibration). Some samples were measured automatically for internal control as well 

(2000 cell nuclei).  One advantage of this image cytometry method is that small pieces of 

tissue samples are required for the analysis, compared to methods based on flow cytometry. 

Other advantages are that cell nuclei may be carefully evaluated morphologically and can be 

compared with the parallel histological tissue sections when picked manually. Storing the 

galleries for each case allows later reevaluation of the samples also by others.  

 

DNA Ploidy – classification 

A lesion was classified as diploid if only one G0/G1 (2c) peak was present, if the number of 

nuclei in the G2 (4c) peak did not exceed 10% of the total, or if the number of nuclei with 

DNA content >5c did not exceed 1% of the total number of nuclei (Paper III: Fig. 2A).  

A lesion was classified as tetraploid when one G0/G1 (2c) peak was present in the diploid 

position together with a G2 (8c) peak, or when the number of nuclei in 4c peak exceeded 10% 

of the total number of nuclei. (Paper III: Fig. 2B).  

A lesion was defined as aneuploid if the peaks appeared outside the area of 2c, 4c or 8c, or if 

the number of nuclei with DNA content above 5c or 9c exceeded 1%.  
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A lesion was classified as polyploid when the number of nuclei at 8c exceeded 10% of the 

total, or if the number of nuclei at 9c exceeded 1%.  
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10. RESULTS  

10.1.  Apoptosis, Fas and FasL expression in OLP (Paper I) 

Significantly increased apoptosis (mean: 1.4/0.25 mm epithelial length) was found within the 

epithelium of OLP (Fig. 7A-C), compared to normal OM (mean: 0.2/ 0.25 mm epithelial 

length). Most often apoptosis was confined to the basal cell region and areas of basal cell 

destruction. More apoptotic cells were observed in areas of atrophic epithelium. A low rate of 

apoptosis (mean: 1.11%) was observed in the subepithelial cell infiltrate in OLP (Fig. 7B, C), 

without significant difference in percentage compared to normal OM (0.93%). 

 
Figure 7. Apoptotic cells in the epithelium and subepithelial chronic inflammatory cell infiltrate in OLP. 
TUNEL. Orig. magn: x150 (B), x250 (C), x400 (A). Improved quality compared with Fig. 1E, F (Paper I) 
achieved by Adobe photoshop.  
 

In the epithelium of OLP, FasR and FasL expression (Fig. 8) was more abundant in the basal 

cell area compared with suprabasal cell layers, and with no obvious difference in staining 

pattern compared to normal OM (Table 3). A high porportion of the mononuclear cells in the 

subepithelial cell infiltrate expressed FasR (mean: 65.0 %) and FasL (59.7 %).  

 
Figure 8. Immunohistochemical expression of FasR (A) and FasL (B) in oral lichen planus. Orig. magn: x150. 
Improved quality compared with Fig.1C, D (Paper I) achieved by Adobe photoshop.  
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10.2.  Ki-67 expression in OLP 

All OLP lesions (n=15) and normal OM (n=5) expressed Ki-67. A variable expression was 

observed between the OLP specimens. An increased expression of Ki-67 (+++) was observed 

mainly in basal and parabasal cell layers (Fig. 9, Table 3) in 7/15 (47%) of the OLP 

specimens compared to normal OM. More Ki-67 expressing cells were observed especially in 

parabasal cell layers in regions of atrophic epithelium, compared with regions with acathosis 

(Fig. 9). Moderate expression of Ki-67 (++) was observed in 4/15 (27 %) and less expression 

(+) in 4/15 (20%) of the OLP specimens. Ki-67 was also expressed in mononuclear cells (8-

10%) of the subepithelial cell infiltrate of OLP specimens (Fig. 9). All normal OM 

investigated was in the (+) category. 

These results are not presented in the papers included in this thesis. 

 
Figure 9. Ki-67 expression in epithelium and subepithelial mononuclear cell infiltrate in OLP (A, B) and normal 
OM (C, D). Immunohistochemistry. Scale bar: 100mμ.  
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10.3. CD40 and CD40L expression in OLP (Paper II) 

Loss of CD40 and CD40L expression in OLP 

Basal keratinocytes in non-diseased areas of OLP expressed CD40 (93-95%, Fig. 10A). At the 

borders between non-diseased and diseased epithelium of OLP, partial expression of CD40 

(some cells expressed CD40 and some were negative) was observed in some regions with 

minor areas of focal inflammation (Fig. 10B). In areas exhibiting subepithelial inflammation 

and/or basal cell destruction few keratinocytes (10-15%) expressed CD40 (Table 3, Paper II: 

Fig.1A, B). CD40 expressing cells with the morphology of Langerhans cells were 

occasionally seen within the epithelium (Fig. 11A, B, Paper II: Fig. 1C, D). In the 

subepithelial cell infiltrate, CD40 was detected in more than half (55-60%) of the 

mononuclear cells (Paper II: Fig. 1A, B). 

 
Figure 10. Immunohistochemical expression of CD40 in basal keratinocytes in non-diseased epithelium (A) and 
partial CD40 expression in areas with less inflammation at the borders between non-diseased and diseased 
epithelium of oral lichen planus (B). Orig. magn: x100 (A), x400 (B, C)  
 

CD40L was lost in areas of OLP exhibiting basal cell destruction (Table 3), or the expression 

was weak and diffuse in areas where the basement membrane zone was not well defined 

(Paper II: Fig. 1E, F). Occasional CD40L expressing cells were observed in the epithelium. In 

the subepithelial cell infiltrate, <5% of the cells expressed CD40L.  
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Presence of CD40+ T cells within the epithelium of OLP  

Scattered intraepithelial T cells (CD3+) expressing CD40 were detected in OLP specimens 

(Fig. 11A-C, Paper II: Fig.1C, D). Some of the T cells were seen in close proximity CD40 

expressing keratinocytes (Fig. 11A, B). Also, in the subepithelial cell infiltrate, some T cells 

(CD3+) expressed CD40, while others did not (Fig. 11A, C, Paper II: Fig. 1C, D).  

 

 

 

Expression of CD40 and CD40L mRNA in OLP 

CD40 mRNA was detected in only a few keratinocytes (6-7%) of the basal cell layer in OLP 

(Paper II: Fig. 2B), compared with normal OM (85-90%) (Paper II: Fig. 2A). CD40 mRNA 

was widely detected in the subepithelial cell infiltrate (45-50%) (Paper II: Fig. 2B). Only a 

few (<5%) scattered cells demonstrated CD40L mRNA expression in the epithelium and in 

the mononuclear subepithelial inflammatory cell infiltrate in OLP (Paper II: Fig. 2D), 

compared with normal OM (Paper II: Fig. 2C). Total mRNA was demonstrated in sections 

from OLP lesions (Fig.12A), normal OM and tonsillar tissue (positive controls). Tonsillar 

tissue served as positive controls for expression of CD40 and CD40L mRNAs (Fig. 12C, D). 

Incubations with the sense probes were negative (Fig. 12B). 

 
 
 
Figure 11. CD40+ (brown), CD3+ 
(red) and cells expressing both 
CD40 and CD3 in oral lichen 
planus (A-C). Double labeling 
immunohistochemistry. Orig. 
magn: x400 (A), x630 (B, C) 
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Figure 12. Total mRNA/ Poly-T (A), and negative sense probe control in oral lichen planus (B). Expression of 
CD40 mRNA (C) and CD40L mRNA (D) in tonsils. In situ mRNA hybridization. Orig. magn: x400 (A, B), x100 
(C), x200 (D). 
 

 

10.4.  Loss of E-cadherin (Papers II-III) and maintained CD44 

(Paper II) expression in OLP  

In diseased areas of OLP, there was a focal reduction of E-cadherin expression in basal 

keratinocytes especially in areas with intense subepithelial cell infiltrate (Paper II: Fig. 3A, B, 

Paper III: Fig. 2C-D).  

CD44 was detected in the epithelial basal cell region with a lower intensity in the spinous and 

superficial cell layers, with no difference in the expression observed in OLP compared to 

normal OM (Paper II: Fig. 3E, F). In the subepithelial infiltrates of OLP samples, CD44 was 

observed in approximately one third of the mononuclear cells. 
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10.5.  Laminin-5 and collagen IV expression in OLP (Paper II) 

Laminin-5 and collagen IV were detected along the basement membrane zone in all OLP and 

OM investigated (Fig. 13A-D). However, a variation in the intensity and thickness was 

observed between the OLP samples. Laminin-5 expression was observed to be more intense 

and labelled a thicker band along the basement membrane region in OLP (Fig. 13B) compared 

to OM (Fig. 13A). Regions with thickening (Fig. 13D) and minor breaks of polarized collagen 

IV expression were seen in focal areas of basal cell destruction in OLP compared with normal 

OM (Fig. 13C).   

 
Figure 13. Laminin-5 expression in normal oral mucosa (A) and oral lichen planus (B), collagen IV expression 
in normal oral mucosa (C) and oral lichen planus (D). Immunohistochemistry. Scale bar: 100mμ. 
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10.6.  Cox-2 and E-cadherin expression in OLP, epithelial dysplasia 

and OSCC developed in OLP patients (Paper III) 

Cox-2 is expressed in the epithelium of OLP, epithelial dysplasia and OSCC 

Cox-2 was expressed in all OLP specimens investigated (n=63). In the epithelium of OLP, 

Cox-2 was expressed in various regions; (1) in the basal cells only with a perinuclear 

localization (16 %), (2) in both basal and parabasal cell layers with perinuclear and 

cytoplasmic localization (44 %), or (3) in focal areas with both perinuclear and cytoplasmic 

localization of expression (40 %), also including more superficial cell layers (Paper III: Fig. 

3A, B). In the subepithelial cell infiltrate of OLP, a varying degree of Cox-2 expression was 

observed, from between not detectable in some regions to expression of Cox-2 in  50 % of the 

mononuclear cells in other regions. In epithelial dysplasias (n=4), Cox-2 expression was 

observed in focal areas of the epithelium with both perinuclear and cytoplasmic localization in 

basal, parabasal and/or spinous cell layers. In OSCC (n=5) a focal Cox-2 expression was 

observed with both perinuclear and cytoplasmic localization in the tumour islands of 

infiltrating epithelial cells and in some infiltrating mononuclear inflammatory cells. The 

expression had no obvious relation to the tumour front.  

Focal loss of E-cadherin expression in OLP, epithelial dysplasia and OSCC 

E-cadherin was detected in all OLP specimens investigated (n=56), epithelial dysplasias 

(n=5), OSCC (n=7) and normal OM (n=7) investigated. In the epithelium of OLP, a focal 

reduction of E-cadherin expression was observed in the basal cells (Paper III: Fig. 3C, D) in 

areas with subepithelial mononuclear cell infiltrate, in 88 % of the biopsies. No obvious 

difference in E-cadherin expression was observed in 12 % of the OLP specimens, compared 

to normal OM. In the OLP lesions with epithelial dysplasia, E-cadherin was mostly 

maintained in the spinous cell layers and with a focal loss of expression in the basal cell 

region. In OSCC, E-cadherin expression was lost in some regions of the epithelial invasive 

tumour islands, but maintained in other regions.  
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10.7.  P53 expression in OLP 

P53 expression was detected focally in the basal cells (Fig. 14) in eight of the 15 OLP 

specimens investigated (53%). Neither of these patients developed epithelial dysplasia nor 

OSCC in their OLP lesions during the follow-up period. There was no obvious correlation 

between the areas of focal p53 expression and the thickness of the epithelium (atrophy or 

acanthosis). Few scattered p53 expressing cells were also observed in the subepithelial 

mononuclear cell infiltrate of OLP lesions. All normal OM (n=5) were negative. These results 

are not presented in the papers included in this thesis.  

 
Figure 14. P53 expression in oral lichen planus. Immunohistochemistry. Scale bar: 100mμ.  
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10.8.  Summary of immunohistochemical findings in OLP compared 

with normal OM  

Table 3. Results of immune expression of different antibodies investigated in our series of oral lichen planus 
lesions compared with normal oral mucosa (Papers I-III).  
 

Normal oral mucosa Oral lichen planus  Expression 
 Epithelium Connective tissue Epithelium Connective tissue 
CD3 - Scattered cells Scattered T cells Majority (66%) of the 

subepithelial cell infiltrate 
CD4 - Scattered cells Scattered cells 

 
Majority (60%) of the 
mononuclear cells, 

CD8 - Scattered  Scattered cells Moderate (30%) of the 
mononuclear cells 

FasR Predominantly in 
basal cells  

Scattered cells Predominantly in basal 
cells 

Majority (65%) of the 
cells in the mononuclear 
cell infiltrate 

FasL Predominantly in 
basal cells 

Scattered cells Predominantly in basal 
cells 

Majority of the cells in the 
mononuclear cell infiltrate

CD40 Basal 
keratinocytes (95-
97%)  

Scattered cells Loss in basal 
keratinocytes (85-90%) 
in areas with 
subepithelial 
inflammation. Scattered 
cells in the epithelium, 
some with the 
morphology of 
Langerhans cells  

More than half of the 
mononuclear cells (55-
60%) 

CD40L Expressed as a 
polarized zone in 
the basement 
membrane region 

Few scattered cells 
in the underlying 
connective tissue 

Scattered cells in the 
epithelium   
Polarized zone  
Lost in areas of basal 
cell destruction 

<5% of the cells in the 
mononuclear cell infiltrate

E-cadherin Marked expression 
in basal 
keratinocytes, and 
reduced intensity 
in superficial cell 
layers  

Salivary glands 
deeper in the 
connective tissue 

Focal loss in basal 
keratinocytes, but 
retained in other 
superficial cell layers 
with reduced intensity 
towards the surface  

Scattered cells of the 
mononuclear cell infiltrate 
with a morphology 
suggestive of 
macrophages  

CD44 Marked expression 
in basal 
keratinocytes, and 
reduced expression 
in superficial cell 
layers 

Fibroblasts  No obvious difference 
compared to NOM 

About one third of the 
mononuclear cells. 
Fibroblasts  

Ki-67 Basal and 
parabasal cells 

- Increased in basal and 
parabasal cell layers, 
with a variation between 
the specimens. More 
expressing cells in 
atrophic regions  

Expressed in 
mononuclear cells of the 
subepithelial cell infiltrate 
(8-10%) 

- : not detected 
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Normal oral mucosa Oral lichen planus  Expression 

 Epithelium Connective tissue Epithelium Connective tissue 
Laminin-5 Along the 

basement 
membrane zone 

- Variation in thickness of 
the band along the 
basement membrane 
zone, thicker in some 
regions 

- 

Collagen IV Along the 
basement 
membrane zone 

Basement 
membrane of 
vessels 

Variation in expression 
along the basement 
membrane zone, minor 
breaks in areas of basal 
cell degeneration  

Basement membrane of 
vessels 

Cox-2 -  Muscle cells 
deeper down in the 
tissue 

Expressed in focal 
regions of the 
epithelium, especially 
on the nuclear 
membrane of 
keratinocytes and in the 
cytoplasm   

Varying expression from 
none in some regions to 
about half of the  
mononuclear cells in 
other regions  
Muscle cells deeper down 
in the tissue 

P53 - - Increased expression in 
basal cells in some 
specimens 

A few scattered cells in 
the subepithelial cell 
infiltrate  

- : not detected 
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10.9.  DNA-content in OLP, epithelial dysplasia and OSCC 

developed in OLP patients (Paper III) 

In all biopsies of OLP investigated (n=58) the keratinocyte nuclei were classified as diploid 

(Paper III: Fig. 2A). One patient with epithelial dysplasia within the OLP lesion in the first 

biopsy was also classified as diploid, and later biopsies from this patient presented with OLP 

without signs of epithelial dysplasia (Paper III: Fig. 1, patient no: 6) Of the six epithelial 

dysplastic lesions which had developed in areas of OLP over time, one lesion was classified 

as tetraploid (Paper III: Fig. 2B), and this patient presented with OSCC 2 years after. All 

OSCC were classified as diploid (n=7). The OSCCs developed in patients with previous 

diploid lesions of epithelial dysplasia, except for one patient with tetraploid epithelial 

dysplasia. None of the biopsies investigated were classified as aneuploid.  
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11. DISCUSSION 

11.1. Increased apoptosis in the epithelium of OLP  

The keratinocytes in OLP lesions are under a constant cross fire from antigens, cytotoxic T 

cells and inflammatory mediators, the end result of which is basal cell destruction. The 

present study provides further evidence that basal keratinocytes die by apoptosis (Paper I). 

Later studies have confirmed this finding, using different techniques for detection of 

apoptosis, such as electron microscopy, anti-single-stranded DNA and cleaved-caspase-3 

(Santoro et al., 2004), (Tobon-Arroyave et al., 2004), (Bascones et al., 2005). Increased 

keratinocyte apoptosis in atrophic epithelium of OLP, has also been confirmed by one later 

immunohistochemical study using anti-single-stranded DNA (Santoro et al., 2004). Not only 

keratinocytes, but also intraepithelial CD4+ T cells may undergo apoptotic cell death in OLP, 

as shown by a combination of TUNEL and immunohistochemistry (Karatsaidis et al., 2004). 

In order to investigate mechanisms involved in the balance between cell renewal 

(proliferation) and apoptotic keratinocyte cell loss, sections from OLP specimens were 

immunolabelled with an Ab against Ki-67 (a nuclear proliferation marker). We observed 

elevated Ki-67 expression within the epithelium of OLP, corresponding to what has been 

demonstrated in previous studies (Taniguchi et al., 2002), (Hirota et al., 2002), (Mattila et al., 

2007). Increased expression of other proliferation cell markers (proliferating cell nuclear 

antigen, topoisomerase IIα) has also been demonstrated in OLP, especially in atrophic lesions 

(Lee et al., 2005), (Mattila et al., 2007).  Our findings and those of others indicate an 

imbalance between cell proliferation and cell death in OLP.   

11.2. Regulation of keratinocyte apoptosis in OLP 

The present study provides further information about biological changes in expression of 

apoptosis regulatory proteins in OLP (Papers I-III). There may be different complex pathways 

involved in apoptosis of basal keratinocytes, and these pathways may also have multiple 

interactions. Figure 15 illustrates some potential interactions in the apoptosis cascade between 

proteins investigated in the present study. These molecules take part in an array of complex 

biological processes. Accordingly, it is difficult to draw conclusions on each of the molecules’ 

respective role in apoptosis regulation, based on its expression in keratinocytes or other 

intraepithelial cells. Nevertheless, alterations in protein expression of regulators of apoptosis 

presented in this study may play specific roles in the pathogenesis of apoptotic cell death in 

OLP.  
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Figure 15. Summary of some potential interactions of mediators of apoptosis investigated in the present study of 
oral lichen planus. 
 

FasR and FasL were highly expressed in OLP, both in the epithelium and in the subepithelial 

cell infiltrate (Paper I), as also found in a previous immunohistochemical study (Dekker et al., 

1997). Since the FasR-FasL system mediates apoptosis, it is surprising that the rate of 

apoptosis is rather low. This finding may indicate a functional defect in the FasR/FasL 

molecules or in the Fas mediated apoptotic pathway. Corresponding findings have been 

demonstrated in the chronic lymphocytic infiltrate of salivary glands of Sjögren’s syndrome 

patients, suggesting that the lymphocytes are resistant to Fas induced apoptosis (Ohlsson et 

al., 2001). In addition, genetic defects in the Fas gene have been associated with defective 

apoptosis in autoimmune disorders including systemic lupus erythematosus (Suda and Nagata, 

1997), (Vaishnaw et al., 1999), (Kühtreiber et al., 2003).  

 

The CD40-CD40L system may play several roles in the pathogenesis of OLP, since (1) CD40 

and CD40L are expressed in different cell types of OLP (Paper II), and (2) multiple potential 

interactions of CD40/CD40L may occur with other molecules expressed in OLP (Fig. 15). 

The fact that CD40-CD40L ligation may induce or inhibit apoptosis dependent on the cell 
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type and context (Grell et al., 1999), (Eliopoulos et al., 2000), (Xu and Song, 2004), 

(Georgopoulos et al., 2006), further complicates the picture of the putative role of the CD40-

CD40 system in the pathogenesis of OLP.  

The basal keratinocytes of diseased areas in OLP may escape CD40-CD40L mediated 

apoptosis via down-regulation of CD40 (Paper II). On the other hand, the CD40 down-

regulation may together with the CD40L loss observed in the basement membrane zone, be a 

signal to promote keratinocyte renewal in areas of basal cell destruction of OLP. This 

suggestion is based on the fact that CD40 ligation inhibits proliferation of epidermal 

keratinocytes in monolayers by modulation of the cell cycle (Peguet-Navarro et al., 1997), 

(Grousson et al., 2000). In addition, an inverse relationship between CD40 and Ki-67, with 

decreased CD40 expression and increased Ki-67 expression, has been demonstrated in 

epidermal monolayers and normal skin biopsies (Concha et al., 2003). Accordingly, elevated 

Ki-67 expression (Hirota et al., 2002), (Taniguchi et al., 2002) and other proliferation markers 

(Lee et al., 2005), (Mattila et al., 2007), may support the suggestion that CD40 down-

regulation is a signal to promote proliferation in basal keratinocytes of OLP.  

Down-regulation of CD40 may also affect other apoptosis regulatory proteins including Fas 

and Cox-2, by interaction mechanisms (Fig. 15). This suggestion is based on the fact that 

CD40 can up-regulate Fas in cancer cell lines (Eliopoulos et al., 2000), as well as Cox-2 on 

human fibroblasts and endothelial cells in vitro (Zhang et al., 1998), (Garlichs et al., 2002), 

(Dongari-Bagtzoglou et al., 2003). Cox-2 has the ability to inhibit apoptosis via several 

pathways (Fig. 15), as reducing both cytocrome-c and caspase activation (Sun et al., 2002), 

and up-regulation of the protooncogene Bcl-2 (Tsujii and DuBois, 1995). Consequently, the 

reported up-regulation of Cox-2 expression in OLP (Paper III) may lead to inhibition of 

apoptosis and thus contribute to increased cell survival. Such an anti-apoptotic effect of Cox-2 

may however be disturbed by p53, due to interaction with Cox-2 as well as the ability of p53 

to induce apoptosis by its own (Fig. 15) (Bertram, 2000), (Tang et al., 2006).  

 

Loss of adhesive cell contacts such as E-cadherin (Papers II, III) may play specific roles in 

basal cell destruction of OLP. This suggestion is based on the fact that E-cadherin loss may; 

(1) promote apoptosis of basal keratinocytes in OLP, since reports have demonstrated that 

apoptosis may be prevented by E-cadherin mediated cell contact in immortalized cell lines 

(Peluso et al., 2001), (Galaz et al., 2005), (2) promote T cell migration into the epithelium, 

where they may easier target the keratinocytes and induce apoptosis (Paper II).   
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CD44 is most probably not directly involved in apoptosis of keratinocytes, since it is 

maintained in OLP (Paper II). However, CD44 may play an indirect role in regulation of 

keratinocyte apoptosis in OLP by modulating other apoptosis related molecules including Fas 

(Fujii et al., 2001), (Hauptschein et al., 2005) and Cox-2 (Murphy et al., 2005).  

Taken together, apoptosis regulation is complex in OLP involving several interrelated 

molecules including FasR/FasL, CD40/CD40L, Cox-2, p53, CD44 and E-cadherin. We have 

investigated some potential regulators that may be involved in apoptosis of basal 

keratinocytes. However, several other proteins expressed in OLP lesions that may play roles 

in apoptosis of keratinocytes needs further investigation, such as Topoisomerase IIα 

(Akimitsu et al., 2003), (Mattila et al., 2007), perforin-granzyme (Santoro et al., 2004) and 

TNF-α-TNF-R1 systems (Khan et al., 2003).  

11.3.  Candidate prognostic markers for malignant transformation of 

OLP 

An ideal marker to predict the risk of cancer development in a premalignant lesion is an 

objective marker that indicates malignant transformation when present and exclude such 

transformation when absent. Numerous attempts have been performed to identify such a 

marker in different tissues, but so far no significant objective marker has fulfilled the 

premises. Accordingly, it is more likely that the combination of genetic and molecular 

biological markers together may strengthen the potential of prediction of malignant 

transformation. For this reason, several potential predictive markers were investigated on a 

unique biopsy material of patients with OLP where epithelial dysplasias and OSCC developed 

over time (Paper III).    

 

Aneuploidy may be a good candidate as a predictive marker for malignant transformation in 

OLP, based on measurement of significant genetic changes at an early stage of cancer 

development. This is however a gross measurement of DNA aberrations.  

In OSCC, several reports of ploidy status, mostly based on flow cytometry, have reported a 

wide variation in diploid cancers from 24-70% (reviewed in Diwakar et al., 2005). A recent 

study indicates that this may be due to heterogeneity within the tumour itself, so several 

analysis from different parts of the tumour may be needed to confirm the ploidy status 

(Diwakar et al., 2005). This may address concerns about the sensitivity and cost-benefit of 

ploidy as a routine method to select lesions at risk. Heterogeneity within OLP lesions may 

partly explain the wide variation in previous reports of ploidy status in OLP (Biesterfeld et al., 
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1991), (Mattila et al., 2004), (Femiano and Scully, 2005), (Maraki et al., 2006), (Rode et al., 

2006). Other explanations may be sample variation and/or lack of calibration between 

laboratories. Accordingly, careful consideration must accomplish clinical interpretation of 

DNA ploidy status. The present study adds further evidence that aneuploidy is not sensitive 

enough alone as a screening test to select the OLP patients at risk for development of OSCC. 

On the other hand, our results indicate that OLP lesions with epithelial dysplasia may be 

selected due to polyploidy DNA pattern. However the patient material is limited with respect 

to further development of epithelial dysplasia and OSCC, so additional studies on larger 

patient materials is necessary to further evaluate the clinical value of this marker.       

 

In order to investigate other potential biological objective predictive markers, the 

immunohistochemical expression of p53, Cox-2 and E-cadherin was investigated on biopsies 

from the same patient material (Paper III).  

Immunohistochemical detection of p53 is controversial (Reibel, 2003). Previous 

investigations of p53 expression in OLP have been inconclusive, from reporting no expression 

to labelling in up to 91% of the lesions (Crosthwaite et al., 1996), (Taniguchi et al., 2002), 

(Lee et al., 2005), (Acay et al., 2006). Therefore we screened 15 of the OLP biopsies for p53 

expression. About half of the OLP specimens (8/15) expressed p53, which is in agreement 

with one of the above mentioned studies (Taniguchi et al., 2002). Since the patients that 

expressed p53 did not develop epithelial dysplasia or OSCC, our results confirm the view that 

detection of the protein alone is not reliable as a risk marker of cancer development 

(Warnakulasuriya, 2000). Therefore we abandoned a further investigation of the full panel of 

OLP biopsies.  

 

As a suggested link between chronic inflammation and development of OSCC (Wang, 2005), 

Cox-2 may be one potential predictive factor for the risk of cancer development in OLP. 

However, the wide expression of Cox-2 in OLP lesions makes it unsuitable as a prognostic 

marker as such. Studies have confirmed elevated Cox-2 expression in squamous cell 

carcinomas of the head and neck (Chan et al., 1999), (Boldrup et al., 2005) as well as in 

cancers of other organs (reviewed in Herschman et al., 2003). The effect of Cox inhibitors 

(most of these drugs affect both Cox-1 and Cox-2) in treatment of cancer and precancerous 

conditions seems promising. Several studies on cancers in stomach, colon, and rectum have 

shown that aspirin and other non steroid anti-inflammatory drugs (NSAIDs) result in lower 

death rates (reviewed in Herschman et al., 2003). Three ongoing clinical studies have the aim 
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to assess the safety and efficacy of a Cox-2 inhibitor (celecoxib) in the treatment of patients 

with premalignant lesions in esophagus (Barret’s esophagus) (Thun, 2003). Recently 

however, a clinical study on patients with oral leukoplakias and epithelial dysplasias also 

involving the Cox-2 inhibitor celecoxib has been stopped (Rikshospitalet – Radiumhospitalet 

Medical Center, Norway).  This was due to an unreliable co-ordinator of the project (J. 

Sudbø), and withdrawal of his publications on up-regulated Cox-2 expression in oral 

leukoplakias and epithelial dysplasias, of which the project was partly based on. Although 

Cox-2 is up-regulated in OLP, and is suspected to play a role in a process of cancer 

development, it is not yet advisable to prescribe Cox-2 inhibitors (neither traditional NSAIDs 

nor more selective ones) as prophylaxis for these patients. These types of drugs may give 

serious side effects like gastrointestinal bleeding and heart complications, and the risk for 

malignant transformation in OLP is very low. Other complications may also arise in OLP 

patients, since NSAIDs may cause exacerbation of existing OLP lesions and/or contribute to 

drug-related lichenoid reactions in OM (Potts et al., 1987), (Thompson and Skaehill, 1994), 

(Bagan et al., 2004).       

 

E-cadherin, an additional potential prognostic marker, was not either suitable to select OLP 

patients at risk in the present patient biopsy material, since the focal E-cadherin loss was 

observed in most OLP specimens (Paper III).  

 

Also markers of proliferation including Ki-67 have been suggested to be potential markers of 

cancer development. Ki-67 expression is, however, often elevated in OLP compared to 

normal OM (Hirota et al., 2002), (Taniguchi et al., 2002), (Mattila et al., 2007), indicating 

that its not a suitable marker to select patients at risk.  

 

Accordingly, measurements of DNA content and/or the biological changes in expression of 

p53, Cox-2, E-cadherin and Ki-67 in the present study on OLP are not suitable as objective 

predictive prognostic markers to select the OLP patients at risk.  

Loss of heterozygosity (LOH) may be a more sensitive marker for risk of cancer development 

in OLP, compared with DNA aneuploidy. Studies have reported a low frequency (6%) of 

allelic loss of chromosomal regions that contain putative tumour suppressor genes (3p, 9p, 

17p) in OLP compared to epithelial hyperplastic lesions (14%) and lesions with mild 

epithelial dysplasia (40-54%) (Zhang et al., 1997), (Zhang et al., 2000). The usefulness of 

LOH as a marker in OLP could, however not be evaluated from these two above studies, since 
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it is not known if those patients with LOH loss underwent malignant transformation. Thus, the 

clinical value of this marker must be evaluated in additional studies.    

 
Figure 16. Summary of the pathogenesis of oral lichen planus including results and papers of the present study.  
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12. CONCLUSIONS 
The following conclusions are drawn in accordance with the aims of this study: 

 

Apoptotic cell death of epithelial keratinocytes is complex, and a number of biological 

changes that may induce or inhibit apoptosis are found in the basal cell compartment of OLP 

compared to normal OM.    

  

• Basal keratinocytes die by apoptosis in OLP. Apoptosis is increased in areas with 

basal cell destruction and regions with atrophic epithelium in OLP. Apoptosis may be 

dysregulated in the subepithelial mononuclear cell infiltrate, contributing to 

maintenance of the massive inflammatory cell infiltrates in OLP.      

• There may be a dysfunction in the FasR-FasL mediated apoptosis in keratinocytes and 

T cells of OLP.  

• Basal keratinocytes may escape a CD40-CD40L mediated apoptotic mechanism in 

OLP by down-regulation of CD40 in diseased areas. 

• Cox-2 is widely expressed and up-regulated in OLP, and may inhibit apoptosis of 

keratinocytes. 

• E-cadherin loss in basal keratinocytes may promote apoptosis and contribute to basal 

cell destruction, allowing T cell migration into the epithelial compartment in OLP. 

• DNA-content, Cox-2 and E-cadherin expression were not suitable as prognostic 

markers for risk of OSCC development in OLP in our patient material. 
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13. FUTURE PERSPECTIVES 
 

Based on the findings of the present study, further studies may contribute to a better 

understanding of epithelial basal cell destruction and pathogenesis of OLP:   

 

The trigger mechanisms and pathways of apoptosis need to be better clarified to understand 

the process of epithelial basal cell destruction in OLP, including targeting mechanisms by 

cytotoxic T cells and molecular biological changes that may promote apotosis in 

keratinocytes. 

 

The present study indicates that expressions of several proteins in epithelial keratinocytes of 

OLP are changed, however further functional studies of these proteins, including FasR/FasL, 

CD40/CD40L, E-cadherin and Cox-2, are necessary. 

 

Studies on larger patient materials are necessary to further evaluate the clinical value of 

aneuploidy as a predictive objective prognostic marker to select OLP patients at risk for 

development of OSCC.   
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