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Abstract: The measurement of the production of prompt D0, D+, D∗+, and D+
s mesons

in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of
√
sNN =

5.02 TeV, with an integrated luminosity of 292 ± 11µb−1, are reported. Differential pro-

duction cross sections are measured at mid-rapidity (−0.96 < ycms < 0.04) as a function of

transverse momentum (pT) in the intervals 0 < pT < 36 GeV/c for D0, 1 < pT < 36 GeV/c

for D+ and D∗+, and 2 < pT < 24 GeV/c for D+
s mesons. For each species, the nuclear

modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref-

erence measured at the same collision energy. The results are compatible with unity in

the whole pT range. The average of the non-strange D mesons RpPb is compared with

theoretical model predictions that include initial-state effects and parton transport model

predictions. The pT dependence of the D0, D+, and D∗+ nuclear modification factors is also

reported in the interval 1 < pT < 36 GeV/c as a function of the collision centrality, and the

central-to-peripheral ratios are computed from the D-meson yields measured in different

centrality classes. The results are further compared with charged-particle measurements

and a similar trend is observed in all the centrality classes. The ratios of the pT-differential

cross sections of D0, D+, D∗+, and D+
s mesons are also reported. The D+

s and D+ yields

are compared as a function of the charged-particle multiplicity for several pT intervals. No

modification in the relative abundances of the four species is observed with respect to pp

collisions within the statistical and systematic uncertainties.
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1 Introduction

Measurements of heavy-flavour hadron production in proton–nucleus collisions allow for

an assessment of the various effects related to the presence of nuclei in the colliding sys-

tem, denoted as cold-nuclear-matter (CNM) effects. Heavy quarks (charm and beauty)

are primarily produced in hard-scattering processes with large momentum transfer (Q2)

due to their large masses. Their inclusive production cross sections can therefore be cal-

culated perturbatively in Quantum Chromodynamics (QCD) utilizing the factorisation

approach. In this scheme, the pT differential production cross sections of hadrons contain-

ing charm or beauty quarks are calculated as a convolution of three terms: (i) the parton

distribution functions (PDFs) of the incoming nucleons, (ii) the partonic scattering cross

section, calculated as a perturbative series in powers of the strong coupling constant αs,

and (iii) the fragmentation function, which parametrises the non-perturbative evolution of

a heavy quark into a given heavy-flavour hadron species. Theoretical predictions based on

perturbative QCD (pQCD) calculations at next-to-leading order accuracy with all-order

resummation of next-to-leading logarithms, such as FONLL [1, 2] and GM-VFNS [3–6],
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can describe within uncertainties the production cross sections of D and B mesons mea-

sured in pp and pp collisions in different kinematic regions at centre-of-mass energies from

0.2 to 13 TeV (see e.g. refs. [7, 8] and references therein). In proton–nucleus collisions,

various effects in the initial and final state could modify the D-meson production cross

sections per nucleon–nucleon collision as compared to pp interactions. In the initial state,

the production is affected by the modification of the PDFs in bound nucleons compared

to those of free nucleons, depending on the parton momentum fraction x, the momentum

transfer Q2 in the hard scattering process, and the nucleus mass number A [9, 10]. At

LHC energies and at mid-rapidity, the most relevant effect on the PDFs is shadowing: a

reduction of the parton densities at low x (below 10−2), which becomes stronger when

Q2 decreases and the nucleus mass number A increases. This effect can be described by

means of phenomenological parametrisations of the PDF modifications, denoted as nuclear

PDFs (nPDFs) [11–14]. As demonstrated in refs. [15, 16], measurements of heavy-flavour

and quarkonium production at the LHC can significantly reduce the uncertainties on the

gluon nPDFs at small x. If the parton phase-space reaches saturation, the appropriate the-

oretical description is the Colour Glass Condensate effective theory (CGC) [17–21]. The

modification of the small-x parton dynamics can significantly reduce the D-meson yield

at low pT. Furthermore, the multiple scattering of partons in the nucleus, before and/or

after the hard scattering, can modify the kinematic distribution of the produced hadrons.

Partons can lose energy in the initial stages of the collision via initial-state radiation [22],

or experience transverse momentum broadening due to multiple soft collisions before the

heavy-quark pair is produced [23–25]. These effects can also induce a significant mod-

ification of D-meson production at low pT. In addition, final-state effects may also be

responsible for a modification of heavy-flavour hadron yields and momentum distributions.

The presence of significant final-state effects in p–Pb collisions with large multiplicities of

produced particles is suggested by different observations, e.g. the presence of long-range

structures in two-particle angular correlations of charged hadrons [26–31], the studies of

azimuthal anisotropies in multi-particle correlations [32, 33], the evolution with multiplicity

of the identified-hadron transverse-momentum distributions [34, 35], and the suppression

of the ψ(2S) production with respect to that of J/ψ mesons [36–38]. In particular, the

angular correlations in high-multiplicity p–Pb collisions were found to have similar proper-

ties (e.g. particle mass and pT dependence [34, 35]) as those observed in Pb–Pb collisions,

where they are commonly interpreted as indications of a collective particle flow produced

during the hydrodynamic evolution of the Quark-Gluon Plasma (QGP) [39–42]. The in-

terpretation of the aforementioned results is highly debated, with the outstanding open

question being whether small droplets of a fluid-like QGP are created in small collision

systems (see e.g. [43] for a recent review). Hydrodynamic calculations, that assume the

formation of a medium with some degree of collectivity (see e.g. [44–46]), can describe

the angular correlations measured in p–Pb collisions, which suggests a common hydro-

dynamic origin of the experimental observations from small to large collision systems.

However, alternative explanations exist, based on gluon saturation (CGC) in the initial

state [47, 48], the anisotropic escape probability of partons from the collision zone [49], or

interactions between string-like colour fields in dense configurations of confined QCD flux
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tubes [50, 51]. If a collective expansion in the final state of the collision occurs, the medium

could also impart a flow to heavy-flavour quarks or hadrons, and modify the hadronisa-

tion dynamics of heavy quarks. Detailed calculations were performed in the framework

of transport models, assuming that in p–Pb collisions at LHC energies a QGP is formed,

which affects the propagation and hadronisation of heavy quarks [52, 53]. These models

predict a significant modification of the pT distributions of heavy-flavour hadrons in high-

multiplicity p–Pb collisions as compared to pp interactions, accompanied by the presence

of anisotropies in their azimuthal distributions. Recent measurements of angular correla-

tions in p–Pb collisions involving J/ψ mesons [54], D0 mesons [55], and heavy-flavour decay

electrons [56] provided a clear indication that long-range anisotropies are present also in

the heavy-flavour sector.

In the presence of a QGP, a modification of the hadronisation is predicted: hadrons

can be produced not only via the fragmentation mechanism, but also via (re)combination

of charm quarks with other quarks from the medium during the deconfined phase or at

the phase boundary [57–60]. Given the observed increase of strangeness production with

increasing particle multiplicity in p–Pb and pp collisions [34, 61, 62], the modified hadro-

nisation could result in an enhancement of the relative yield of D+
s mesons with respect to

non-strange charmed mesons in high-multiplicity p–Pb collisions.

In this paper, we report the measurements of the pT-differential production cross sec-

tions and nuclear modification factors of prompt D0, D+, D∗+, and D+
s mesons in p–Pb

collisions at
√
sNN = 5.02 TeV recorded with the ALICE detector in 2016. The sample used

for these analyses is larger by a factor of about six with respect to the sample collected

in 2013, which was used in previous publications of these observables [63–65]. Therefore,

it is possible to obtain lower statistical and systematic uncertainties by a factor 1.5–2 and

extend the pT reach of the measurements. The ratios of the production cross sections of

the different D-meson species are also reported and are compared with those measured in

pp collisions at the same centre-of-mass energy. The nuclear modification factor, RpPb,

is defined as the ratio of the cross section in p–Pb collisions to that in pp interactions

scaled by the mass number of the Pb nucleus. This ratio is sensitive to cold-nuclear-matter

and hot-medium effects on D-meson production in p–Pb collisions. In addition, the mea-

surement of the nuclear modification factor for non-strange D mesons is carried out in

intervals of collision centrality, called in the following as QpPb. The QpPb is calculated as

the ratio of the D-meson yield in p–Pb collisions to the cross section in pp interactions

scaled by the nuclear overlap function 〈TpPb〉, which accounts for the average number of

nucleon-nucleon interactions in the considered centrality class. The QpPb measurements are

performed in finer intervals of collision centrality, enabling in particular the measurements

of D-meson production in the 10% most central collisions, in which possible final-state ef-

fects are expected to be stronger. Further insight into the centrality dependence of prompt

D-meson pT distributions is provided by the measurements of the ratios of D-meson yields

in various centrality classes. Finally, the ratio of D+
s -meson yield to that of non-strange

D+ is presented as a function of the multiplicity of charged particles produced in p–Pb

collisions and is compared with results measured in pp and Pb–Pb collisions at the same

centre-of-mass energy.
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2 Experimental apparatus and data sample

The ALICE apparatus [66] is composed of a central barrel comprising various detectors

for particle reconstruction and identification at mid-rapidity (|η| < 0.9), a forward muon

spectrometer (−4 < η < −2.5), and a set of forward-backward detectors for triggering and

event characterisation. Typical detector performance in pp, p–Pb, and Pb–Pb collisions is

presented in [67]. The main detector components used in this analysis are the V0 detector,

the Inner Tracking System (ITS), the Time Projection Chamber (TPC), and the Time-

Of-Flight (TOF) detector, which are located inside a large solenoidal magnet providing a

maximum uniform magnetic field of 0.5 T parallel to the LHC beam direction (z-axis in the

ALICE reference system), and the Zero-Degree Calorimeter (ZDC), located at ±112.5 m

from the interaction point.

Proton–lead collisions at
√
sNN = 5.02 TeV were recorded with a minimum-bias (MB)

interaction trigger that required coincident signals in both scintillator arrays of the V0

detector, which cover the full azimuth in the pseudorapidity intervals −3.7 < η < −1.7 and

2.8 < η < 5.1. The V0 timing information was used together with that from the ZDCs for

offline rejection of beam–beam or beam–gas interactions happening outside of the nominal

colliding bunches.

The MB trigger was sensitive to about 96.4% of the p–Pb inelastic cross section [68].

Only collision events with a primary vertex reconstructed within ±10 cm from the centre

of the detector along the beam axis were considered. Events with several interactions per

bunch crossing, whose probability was below 0.5%, were rejected using an algorithm based

on track segments, defined within the Silicon Pixel Detector (SPD, the two innermost ITS

layers), to detect multiple interaction vertices.

The number of events passing these selection criteria was about 6 × 108. The corre-

sponding integrated luminosity, Lint = NMB/σMB, is equal to 292±11 µb−1, σMB = 2.09 b

being the MB-trigger (i.e. visible) cross section measured via a van der Meer scan, with

negligible statistical uncertainty and a systematic uncertainty of 3.7% [68]. During the

p–Pb data-taking period, the beam energies were 4 TeV for protons and 1.58 TeV per nu-

cleon for lead nuclei. With this beam configuration, the nucleon–nucleon centre-of-mass

system moves in rapidity by ∆ycms = 0.465 in the direction of the proton beam. The

D-meson analyses were performed in the laboratory-frame interval |ylab| < 0.5, which leads

to a shifted centre-of-mass rapidity coverage of −0.96 < ycms < 0.04. Additionally, the

p–Pb data sample was divided into centrality classes defined as percentiles of the visible

cross section. The events were classified according to the energy deposited in the ZDC

positioned in the Pb-going side by the neutrons produced in the interaction by nuclear

de-excitation processes, or knocked out by wounded nucleons. The multiplicity of these

neutrons is expected to grow monotonically with the number of nucleon–nucleon binary

collisions, Ncoll. It was demonstrated in ref. [69] that this is the least-biased centrality

estimator for p–Pb interactions. The description of the average nuclear overlap function,

as well as the values corresponding to the measured centrality classes, will be given in

section 5.3.
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The pp reference for the RpPb and QpPb calculation was taken from the measurements

performed on a data sample of about 990 million minimum-bias pp collisions (Lint =

(19.3 ± 0.4) nb−1) at
√
s = 5.02 TeV collected with ALICE in 2017, and published in

ref. [70].

3 Data analysis

The D-meson yields were extracted using two different analysis methods. The first method,

described in section 3.1, is based on the reconstruction of decay vertices displaced from

the primary vertex. The second method, described in section 3.2, is used only for the

D0 measurement and is based on the estimation and subtraction of the combinatorial

background, without any selection criteria on the displaced decay-vertex topology. The

first method allows the D-meson yield to be extracted in a pT-interval of 1–36 GeV/c

for D0, D+, and D∗+ and 2–24 GeV/c for D+
s . The second method allows the D0-meson

production to be measured down to pT = 0.

3.1 Analysis with D-meson decay vertex reconstruction

The D mesons and their charge conjugates were reconstructed in the decay channels D0 →
K−π+ (with a branching ratio, BR, of 3.89 ± 0.04%), D+ → K−π+π+ (BR of 8.98 ±
0.28%), D∗+ → D0π+ (BR of 67.7 ± 0.5%), and D+

s → φπ+ (with φ → K+K−) (BR

of 2.27 ± 0.08%) [71]. The analyses were based on the reconstruction of decay vertices

displaced from the interaction vertex, exploiting the separation of a few hundred microns

induced by the weak decays of the D0, D+, and D+
s mesons. The displacement of the

D0-meson candidate decay vertex was used to select the D∗+ meson which decays strongly

at the primary vertex. This is performed by combining the D0 candidates with a soft pion

in an invariant-mass analysis.

The D0, D+, and D+
s candidates were defined using pairs or triplets of tracks with

proper charge sign combinations with |η| < 0.8, pT > 0.3 GeV/c, at least 70 associated

space points in the TPC, and at least two space points in the ITS, with at least one in the

SPD. The D∗+ candidates were formed by combining D0 candidates with tracks satisfying

|η| < 0.8, pT > 0.1 GeV/c and at least two space points in the ITS, including at least

one in the SPD. The selection of tracks with |η| < 0.8 limits the D-meson acceptance

in rapidity, which, depending on pT, varies from |ylab| < 0.5 at low pT to |ylab| < 0.8 at

pT > 5 GeV/c [72]. A pT-dependent fiducial acceptance region was therefore defined as

yfid(pT) > |ylab|, with yfid(pT) increasing from 0.5 to 0.8 in the transverse momentum range

0 < pT < 5 GeV/c according to a second-order polynomial function, and yfid = 0.8 for

pT > 5 GeV/c. The selection strategy is the same as in previous analyses [65]. The main

variables used to select the D-meson candidates are the separation between primary and

secondary vertex, the displacement of the tracks from the primary vertex, and the pointing

of the reconstructed D-meson momentum to the primary vertex. For the D+, a selection on

the impact parameter of the candidate with respect to the primary vertex in the transverse

plane was also applied. For the D+
s -candidate selection, one of the two pairs of opposite-

sign tracks is required to have a reconstructed K+K− invariant mass compatible with the
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PDG world average of the φ meson mass [71]. Further background reduction is achieved

by applying particle identification to select charged pions and kaons using information of

the TPC and TOF detectors. The track particle identification (PID) is obtained using a

3σ window around the expected mean values of the specific ionisation energy loss (dE/dx)

in the TPC gas and of the time of flight from the interaction point to the TOF detector.

A 2σ window around the expected mean values of the dE/dx was applied, except for the

lowest pT interval, 1.5 < pT < 2 GeV/c, D∗+ meson, and for the D+
s meson in those cases

in which no time-of-flight information was available.

The D-meson raw yields were obtained by fitting the candidate invariant-mass distri-

butions for each D-meson species and the mass difference ∆M = MKππ −MKπ for D∗+.

Examples of these distributions are shown in figure 1 for D0, D+, D∗+, and D+
s mesons in

different pT intervals. The D0, D+, and D+
s candidate invariant-mass distributions were

fit with a function composed of a Gaussian for the signal shape and an exponential term

to describe the background shape. The ∆M distribution of the D∗+ candidates was fit

with a Gaussian function for the signal shape and a threshold function multiplied by an

exponential for the background: a
√

∆M −mπ · eb(∆M−mπ), where a and b are free pa-

rameters. To account for the contribution of signal candidates that are present in the

invariant-mass distribution of the D0 meson but were assigned the wrong decay-particle

mass (reflections) an additional term was included in the fit function. The contribution

of the reflections was modelled with a double Gaussian function parametrised on their

invariant-mass distributions from Monte Carlo simulations.

For the MKKπ distribution, an additional Gaussian was used to describe the D+ →
K+K−π+ signal peak present on the left side of the D+

s signal. The extracted signal

is denoted as S and the background level under the signal peak is denoted as B. The

statistical significance of the observed signals, here defined as (S/
√
S +B), varies from 3

to 62, depending on the meson species, the centrality and the pT interval.

The D-meson raw yields extracted in each pT interval were corrected to obtain the

prompt D-meson cross sections according to

d2σprompt D

dpTdy
=

1

∆pT
·
fprompt(pT) · 1

2 ·N
D+D,raw(pT)

c∆y(pT)
· 1

(Acc× ε)prompt(pT)
· 1

BR · Lint
. (3.1)

In the formula, ND+D,raw is the raw yield (sum of particles and antiparticles) in the lab-

oratory rapidity interval |ylab| < yfid(pT) in a pT interval of width ∆pT. The raw yield

includes contributions from prompt and non-prompt D mesons. Non-prompt D mesons

originating from beauty-hadron decays are labeled as ‘feed-down’ in the following. The

fprompt term is the fraction of prompt D mesons in the raw yield. The rapidity acceptance

correction factor c∆y was computed using the PYTHIA v6.4.21 event generator [73] with

the Perugia-2011 tune as the ratio between the generated D-meson yield in ∆y = 2 yfid, and

that in |ylab| < 0.5. The c∆y correction factor has a uniform D-meson rapidity distribution

in |ylab| < yfid in the range |ylab| < 0.8 as shown in [65]. The factor 1/2 accounts for the

fact that the measured yields include particles and antiparticles while the cross sections are

given for particles only. The (Acc×ε)prompt is the product of the acceptance of the detectors
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Figure 1. Examplary invariant-mass distributions for D0, D+, and D+
s candidates (plus charge

conjugates) and the mass difference ∆M = MKππ−MKπ for D∗+ candidates (and charge conjugates)

in minimum-bias p–Pb collisions at
√
sNN = 5.02 TeV. The dashed curves represent the fit applied

to the background, while the solid lines represent the total fit function. In the case of the D0

meson, the contribution of signal reflections in the invariant-mass distribution is shown using a

gray dot-dashed line. In the case of the D+
s invariant-mass distribution, an additional Gaussian is

used in the fit function in order to describe the D+ signal peak on the left side of the D+
s signal.

and the efficiency of prompt D mesons, where ε accounts for primary vertex reconstruc-

tion, D-meson decay track reconstruction and selection, as well as for D-meson candidate

selection efficiencies. Finally, BR is the branching ratio of the considered decay channel.

The acceptance and the efficiency were obtained by means of Monte Carlo simulations,

that include a detailed description of the apparatus geometry, the detector response, as well

as the LHC beam conditions. Proton–proton collisions requiring a cc or bb pair satisfying

|y| < 1 were generated using a PYTHIA v6.4.21 event generator [73] with the Perugia-2011

tune. An underlying p–Pb collision, generated with HIJING 1.36 [74], was superimposed
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Figure 2. The product of acceptance and efficiency for D0, D+, D∗+, and D+
s mesons as a function

of transverse momentum in p–Pb collisions at
√
sNN = 5.02 TeV. The values for prompt (solid line)

and feed-down (dashed line) D mesons are shown.

to each PYTHIA event in order to describe the charged-particle multiplicity and detector

occupancy observed in data. To reproduce the primary vertex resolution found in data

which improves with increasing multiplicity, generated events were weighted on the basis

of their charged particle multiplicity. The shape of the generated D-meson pT distribution

is consistent with that of FONLL pQCD calculations [1] at
√
s = 5.02 TeV. The results

from FONLL calculations are found to be consistent with pp data at
√
s = 5.02 TeV though

at upper edge of uncertainties as described in [70].

Figure 2 shows the product of acceptance and efficiency (Acc×ε) for prompt and feed-

down D mesons with rapidity |ylab| < yfid(pT). The D0, D∗+, and D+
s distributions are

overall higher for the feed-down contribution compared to that of the prompt D mesons,

while the opposite is true for the D+ efficiency because of the topological selection.

The correction factor fprompt was calculated per pT interval using a FONLL-based

method as described in [75]. The procedure uses the B-meson production cross section in pp

collisions at
√
s = 5.02 TeV estimated utilising FONLL calculations, the B→ D+X decay

kinematics from the EvtGen package [76], the efficiencies for D mesons from beauty-hadron

decays and a hypothesis on the nuclear modification factor Rfeed-down
pPb of D mesons from B
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decays. The RpPb of prompt and feed-down D mesons were assumed to be equal on the basis

of calculations including initial-state effects via the EPS09 nPDF parametrisations [11] or

the Colour Glass Condensate formalism [21], as well as the measurements of the B0-meson

production in p–Pb collisions at
√
sNN = 5.02 TeV published by the CMS Collaboration [77].

Further details are given in section 4. The resulting fprompt values vary between 0.8 to 0.96

in the |ylab| < yfid(pT) interval depending on the pT range and the D-meson species.

3.2 Analysis without D-meson decay-vertex reconstruction

In order to extend the cross section measurement down to pT = 0, a different analysis

method, which does not employ geometrical selections on the displaced decay-vertex topol-

ogy, was utilized for the two-body decay D0 → K−π+ (and its charge conjugate) [65]. This

analysis technique is based on particle identification and on the estimation and subtraction

of the combinatorial background of Kπ pairs. Tracks with |η| < 0.8 and pT > 0.4 GeV/c

were selected by applying the same track-quality cuts and pion and kaon identification

criteria described above for the analysis with decay-vertex reconstruction. The D0 and

D0 candidates were formed by combining kaon and pion tracks with opposite charge sign

(UnLike Sign, ULS). The resulting candidates were selected by applying the pT-dependent

fiducial acceptance selection, |ylab| < yfid(pT), adopted for the analyses with decay-vertex

reconstruction. No selections based on secondary-vertex displacement were applied be-

cause at very low pT the D-meson decay topology cannot be efficiently resolved due to the

insufficient resolution of the track impact parameter and the small Lorentz boost. The

combinatorial background was estimated with the track-rotation technique. For each D0

(and D0) candidate, up to 19 combinatorial-background-like candidates were created by

rotating the kaon track by different angles in the range between π
10 and 19π

10 radians in

azimuth. The invariant-mass distribution of ULS Kπ pairs in the transverse momentum

interval 0 < pT < 1 GeV/c is shown in the left panel of figure 3 together with the one

of the background estimated with the track-rotation technique, which was normalised to

match the yield of ULS pairs at one edge of the invariant-mass interval considered for the

extraction of the D0 signal.

The invariant-mass distribution of background candidates was subtracted from the

one of ULS Kπ pairs and the resulting distribution, which contains the D0 signal and the

remaining background, is shown in the right panel of figure 3. The D0-meson raw signal

(sum of particle and antiparticle contributions) was extracted via a fit to the background-

subtracted invariant-mass distribution. The fit function is composed of a Gaussian term

to describe the signal, a second-order polynomial function to model the remaining back-

ground, and a term describing the contribution of signal candidates passing the selection

criteria with swapped mass hypotheses of the final-state kaon and pion (reflections), whose

invariant-mass distribution was taken from simulation. The signal-to-background ratio in-

creases from 6 · 10−4 to 3 · 10−2 with increasing pT and the statistical significance is about

9 in 0 < pT < 1 GeV/c and is greater than 15 for pT > 2 GeV/c.

The acceptance and efficiency were determined from the same Monte Carlo simulations

used for the analysis with decay-vertex reconstruction. The resulting (Acc × ε) of prompt

D0 mesons is shown as a function of pT in figure 4. Compared to the analysis with decay-
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panel shows the invariant-mass distribution after subtracting the background estimated with the
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Figure 4. Product of acceptance and efficiency of D0 → K−π+ (and charge conjugates) in p–Pb col-

lisions for the analyses with and without reconstruction of decay vertex.

vertex reconstruction, the efficiency is higher by a factor of about 20 (3) at low (high)

pT and it demonstrates a less steep pT dependence. Note that for the analysis without

decay-vertex reconstruction the efficiency ε is almost independent of pT and the increase

of the (Acc × ε) with increasing pT is mainly determined by the geometrical acceptance

of the apparatus. Unlike in the analysis with decay-vertex reconstruction, the efficiency is

the same for prompt D0 mesons and D0 mesons from beauty-hadron decays.

The prompt contribution to the D0-meson raw yield, fprompt, was estimated with the

same FONLL-based method used for the analysis with decay-vertex reconstruction. The

resulting fprompt values decrease with increasing pT (from about 0.96 for pT < 3 GeV/c
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to about 0.9 in the interval 8 < pT < 12 GeV/c) and are larger than in the analysis

with decay-vertex reconstruction, since the feed-down component is not enhanced by the

selection criteria.

3.3 Measurement of the prompt D-meson fraction based on a data-driven

method

The prompt fractions of D0, D+, and D∗+ mesons, calculated via the FONLL-based

method, were cross-checked for the analysis with decay vertex reconstruction utilizing

a data-driven method that exploits the different shapes of the transverse-plane impact

parameter to the primary vertex (d0) of prompt and feed-down D mesons. The D-meson

candidates were selected using the same criteria described in section 3.1, with the exception

that for D+ the impact-parameter selection criteria were not applied. An additional selec-

tion was based on the candidate invariant-mass fits. The D0 and D+ mesons candidates

were selected to have an invariant mass |M −MD| < 1.5σ, while for D∗+-meson candidates

a |∆M −∆MD∗+ | < 2.5σ selection was applied, where σ is the standard deviation of the

Gaussian function describing the D-meson invariant-mass signal. The prompt fraction was

estimated via an unbinned likelihood fit of the d0 distribution of the D-meson candidates

using the fit function

F (d0) = S ·
[
(1− fprompt)F

feed-down(d0) + fpromptF
prompt(d0)

]
+B · F backgr(d0) . (3.2)

In this function, F prompt(d0), F feed-down(d0) and F backgr(d0) are functions describing the

impact-parameter distributions of prompt and feed-down D mesons and of background

candidates. The function F prompt consists of a detector resolution term modeled with a

Gaussian function and a symmetric exponential term, 1
2λ exp

(
− |d0|λ

)
(with λ as a free

parameter), with the latter describing the tails of the impact-parameter distribution of

prompt D mesons. The F feed-down is the convolution of the detector resolution term with

a symmetric double-exponential function (F feed-down
true ) that describes the intrinsic impact-

parameter distribution of D mesons from B-meson decays, which is determined by the decay

length and decay kinematics of B mesons. The parameters of the F prompt and F feed-down
true

functions were fixed to the values obtained by fitting the distributions from Monte Carlo

simulations, with the exception of the Gaussian width of the detector-resolution term,

which was kept free when applying the fit to the data in order to compensate for a possible

imperfect description of the impact-parameter resolution in the simulation. The function

F backgr was parametrised on the impact-parameter distribution of background candidates,

which were selected from side bands relative to the signal peak in the invariant-mass distri-

butions, and in the case of D∗+, the mass-difference distribution. The function consists of a

double Gaussian and a symmetric exponential term, which describes the tails, as reported

in ref. [65]. In the case of the D+, the function presents a double-peak structure with a

depletion around zero that is induced by the selections applied.

The left panels of figure 5 show examples of fits to the impact-parameter distributions

of D0, D+, and D∗+ mesons in the transverse-momentum intervals 2 < pT < 3 GeV/c, 3 <

pT < 4 GeV/c, and 5 < pT < 6 GeV/c, respectively. The prompt fraction estimated using
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Figure 5. Left: Exemplary fits to the impact-parameter distributions of D0, D+, and D∗+ can-

didates. The curves show the fit functions describing the prompt, feed-down, and background

contributions as well as their sum, as described in the text. Right: fraction of prompt D0, D+, and

D∗+ raw yield as a function of transverse momentum pT compared with the values obtained with

the FONLL-based approach. The results from the data-driven method are shown as square markers

with the error bars (boxes) representing the statistical (systematic) uncertainty. The central values

of fprompt from the FONLL-based approach are shown as the dashed lines and the uncertainty as

red boxes.
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the data-driven approach has systematic uncertainties due to (i) the impact-parameter

distribution assumed for prompt and feed-down D mesons and background candidates; (ii)

the uncertainty on the signal and background yields extracted from the invariant-mass

fits; and (iii) the consistency of the procedure, evaluated via a Monte Carlo closure test.

These uncertainties were estimated using the procedures described in ref. [65]. The total

systematic uncertainty on fprompt based on the data-driven approach for the three D-meson

species is about 2–3% in the interval 3 < pT < 16 GeV/c and about 5% in the interval

2 < pT < 3 GeV/c and above 16 GeV/c.

The prompt fraction of D0, D+, and D∗+ mesons measured utilizing the data-driven

method is compared with the one calculated with the FONLL-based approach in the right

panels of figure 5. For D0, D+, and D∗+ in 1 < pT < 2 GeV/c and for the D∗+ in 24 <

pT < 36 GeV/c, given the poor precision of the impact-parameter fit, it was not possible

to determine fprompt with the data-driven approach. The prompt fraction measured with

the impact-parameter fits is compatible with the FONLL-based estimation within 1σ for

almost all points.

4 Systematic uncertainties

Systematic uncertainties on the D-meson production cross sections were estimated consid-

ering the following sources:

(i) extraction of the raw yield from the invariant-mass distributions; (ii) track reconstruc-

tion efficiency; (iii) D-meson selection efficiency; (iv) PID efficiency; (v) the assumption on

the shape of the D-meson pT spectrum generated in the simulation; (vi) subtraction of the

feed-down from beauty-hadron decays.

In addition, the pT-differential cross sections have a systematic uncertainty on the overall

normalisation induced by the uncertainties on the integrated luminosity of 3.7% [68] and

on the branching ratios of the considered D-meson decays [71]. The estimated values of

the relative systematic uncertainties are summarised in table 1. The contributions of the

different sources were summed in quadrature to obtain the total systematic uncertainty.

The systematic uncertainties on the raw yield extraction were evaluated for each D-

meson species by repeating the invariant-mass distribution fits, for each pT and centrality

interval, varying the lower and upper limits of the fit range and the functional form of

the background fit function. In addition, the same approach was used with a bin-counting

method, in which the signal yield was obtained by integrating the invariant-mass distribu-

tion after subtracting the background estimated from a fit to the side bands. For D0 mesons,

an additional contribution due to the description of signal reflections in the invariant-mass

distribution was estimated by varying the ratio of the integral of the reflections over the

integral of the signal and the shape of the templates used in the invariant-mass fits. The

systematic uncertainty was defined as the root mean square of the distribution of the sig-

nal yields obtained from the described variations. The uncertainty ranges between 1% and

15% depending on the D-meson species, pT, event centrality and charged-particle multi-

plicity intervals of the measurement. An increase in the raw yield extraction uncertainties

was observed in the most central collisions due to the lower S/B ratio. For the D0-meson
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D0 D+ D∗+ D+
s

pT (GeV/c) 0–1 2–2.5 10–12 2–2.5 10–12 2–2.5 10–12 2–4 8–12

Signal yield � 5% 3% 3% 2% 3% 7% 2% 3% 2%

Tracking efficiency 2.5% 2.5% 2.5% 3.7% 4% 3.2% 4.5% 3.7% 4%

Selection efficiency negl. 3% 3% 7% 4% 2% 2% 6% 4%

PID efficiency negl. negl. negl. negl. negl. negl. negl. 1% 1%

pT shape in MC negl. negl. negl. negl. negl. negl. negl. negl. negl.

Feed-down � +1.3
−1.7% +4.2

−4.9% +4.1
−5.6% +1.8

−2.1% +2.3
−3.2% +3.0

−3.5% +1.9
−2.6% +3.6

−4.2% +4.4
−5.6%

Branching ratio 1.0% 3.1% 1.3% 3.5%

Normalisation 3.7%

Table 1. Summary of relative systematic uncertainties on D0, D+, D∗+, and D+
s production cross

sections. The event centrality-dependent uncertainties are marked by the symbol �.

analysis without decay-vertex reconstruction, different configurations of the rotation angle

were used to estimate the background with the track-rotation technique. Furthermore,

three alternative approaches were tested to estimate the background distribution: like-sign

(LS) pairs, event mixing, and side-band fit [65]. The raw yield values obtained subtracting

these alternative background distributions were found to be consistent with those from

the default configuration of the track-rotation method within the uncertainty estimated by

varying the fit conditions and therefore no additional systematic uncertainty was assigned.

The systematic uncertainty on the track reconstruction efficiency was estimated by varying

the track-quality selection criteria and by comparing the probability to match the tracks

from the TPC to the hits in the ITS, in the data and simulation. The comparison of

the matching efficiency in the data and simulation was made after weighting the relative

abundances of primary and secondary particles in the simulation to match those in the

data, which were estimated via fits to the track impact-parameter distributions [78]. The

estimated uncertainty depends on the D-meson pT and it ranges from 2.5% to 4% for the

two-body decay of D0 mesons and from 3.7% to 4.5% for the three-body decays of D+,

D∗+, and D+
s mesons.

The uncertainty on the selection efficiency originates from imperfections in the descrip-

tion of the D-meson kinematic and decay properties and of the detector resolution and

alignment in the simulation. For the analyses based on the decay-vertex reconstruction,

the uncertainty was estimated by comparing the corrected yields obtained by repeating

the analysis with different sets of selection criteria, resulting in a significant modification

of efficiencies, raw yield, and background estimates.

The assigned uncertainty for non-strange D mesons is 2–3% in most of the pT intervals

and it increases to 7% at low pT, where the efficiencies are low and steeply fall with

decreasing pT, because of the tighter geometrical selections. A larger uncertainty (ranging

from 7% at high pT to 14% at low pT) was estimated for the D+
s mesons, for which more

stringent selection criteria were used in the analysis, as compared to non-strange D mesons.

In the case of the D0-meson analysis without decay-vertex reconstruction, the stability of
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the corrected yield was tested against variations of the single-track pT selection and no

systematic effect was observed.

In addition, the efficiency values could also be sensitive to the generated shapes of the

D-meson transverse-momentum distributions and to the multiplicity of particles produced

in the collision. The systematic uncertainty due to the generated D-meson pT spectrum

shape was estimated by considering different input distributions (PYTHIA, FONLL) and

was found to be negligible. The effect of possible differences between the charged-particle

multiplicity distributions in data and multiplicity-weighted simulation, used to compute

the efficiencies in the different centrality classes, as explained in section 3.1, varied between

0 and 2% depending on the D-meson species, pT, event centrality, and charged-particle

multiplicity intervals.

To estimate the uncertainty on the PID-selection efficiency the analysis was repeated

without PID selection, or with less stringent criteria in the cases where the signal extraction

was not reliable without PID, as for example for the D+
s and the D0-meson analysis without

decay-vertex reconstruction. In addition, the pion and kaon PID selection efficiencies were

compared in the data and in simulation using high purity samples of pions from the decay

of K0
s and kaons identified with the TOF combined with the D-meson decay kinematics.

The PID uncertainty was found to vary between 0 and 1.5% depending on the PID selection

criteria used for each D-meson species.

The systematic uncertainty on the subtraction of feed-down from beauty-hadron de-

cays (i.e. the calculation of the fprompt fraction) was estimated by varying the FONLL

parameters (b-quark mass, factorisation and renormalisation scales) as described in [2] and

by varying the hypothesis on the nuclear modification factor of feed-down D mesons in

the range 0.9 < R(Q)feed-down
pPb /R(Q)prompt

pPb < 1.3 for the integrated centrality interval and

central collisions, and between 0.9 < Qfeed-down
pPb /Qprompt

pPb < 1.1 for the peripheral collisions,

where the possible differences of the D-meson production mechanisms in p–Pb with re-

spect to pp collisions are expected to be reduced as observed for both charmed mesons and

charged particles. The uncertainty ranges between 2% and 5% depending on the D-meson

species, pT, event centrality and charged-particle multiplicity intervals.

5 Results

5.1 pT-differential cross sections

The analysis without decay-vertex reconstruction allows for a direct measurement of the

inclusive D0-meson cross section because no selections that alter the fraction of prompt and

feed-down D mesons are applied. The inclusive D0-meson cross section in p–Pb collisions

is shown in the left panel of figure 6 and is compared with the measurement in pp collisions

at the same centre-of-mass energy, published in [70]. The cross section in pp collisions

was scaled by the Pb mass number A = 208 and corrected for the rapidity shift in p–Pb

collisions using FONLL calculations. The correction for the rapidity shift is a pT-dependent

factor of the order of 1–3%. The uncertainty assigned on this correction is evaluated varying

the quark mass and the perturbative scale parameters and including the PDFs uncertainty,

and is 1% at low pT and negligible at high pT.
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Figure 6. Left: inclusive D0-meson production cross sections from the analysis without decay-

vertex reconstruction in p–Pb collisions and pp collisions, both at
√
sNN = 5.02 TeV. The cross

section measured in pp collision [70] is scaled by the Pb mass number (A = 208) and corrected for

the rapidity shift in p–Pb collisions using FONLL calculations. Right: pT-differential production

cross section of prompt D0 mesons with −0.96 < ycms < 0.04 in p–Pb collisions at
√
sNN = 5.02 TeV,

measured with and without decay-vertex reconstruction. The vertical bars and the empty boxes

represent the statistical and systematic uncertainties. The inset shows the ratio of the measurements

in their common pT range.

The total cross section for inclusive D0-meson production in p–Pb collisions per unit

of rapidity in −0.96 < ycms < 0.04 was obtained by integrating the pT-differential cross

section shown in the left panel of figure 6. The systematic uncertainty was defined by

propagating the yield extraction uncertainty as uncorrelated among the pT intervals and

all the other uncertainties as correlated. The cross section was then extrapolated to the

whole pT range using FONLL calculations in order to take into account the fraction of

cross section not measured for pT > 12 GeV/c. An uncertainty was estimated for the

extrapolation varying the quark mass and the perturbative scale parameters and including

the PDFs uncertainty. The resulting cross section is

dσinclusive D0

p−Pb, 5.02 TeV/dy = 91.2±3.4 (stat.)±3.2 (syst.)±3.4 (lumi.)±0.9 (BR)+0.4
−0.2 (extrap.) mb.

(5.1)

The right panel of figure 6 shows the comparison of the pT-differential production

cross sections for prompt D0 mesons with −0.96 < ycms < 0.04 in p–Pb collisions at
√
sNN = 5.02 TeV obtained from the analysis with and without decay-vertex reconstruction.

The results are consistent within statistical uncertainties.

Considering the statistical and systematic uncertainties obtained in the two analyses,

the most precise measurement of the prompt D0 production cross section is obtained using

the results from the analysis without decay-vertex reconstruction in the interval 0 < pT <

1 GeV/c and the analysis with decay-vertex reconstruction for pT > 1 GeV/c. The resulting

cross section is shown in the top-left panel of figure 7.
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Figure 7. pT-differential production cross sections of prompt D0, D+, D∗+, and D+
s mesons

with −0.96 < ycms < 0.04 in p–Pb collisions at
√
sNN = 5.02 TeV compared with the respective

pp reference cross sections [70] scaled by the Pb mass number (A = 208) and corrected for the

rapidity shift. For the D0 meson, the results in the range 0 < pT < 1 GeV/c are obtained from

the analysis that was performed without decay-vertex reconstruction, while those in the range

1 < pT < 36 GeV/c are taken from the analysis with decay-vertex reconstruction. The vertical

bars and the empty boxes represent the statistical and systematic uncertainties.

The total cross section for prompt D0-meson production per unit of rapidity in −0.96 <

ycms < 0.04 was also calculated by integrating the pT-differential measurement reported in

the top-left panel of figure 7, obtained combining the methods with and without decay-

vertex reconstruction. The systematic uncertainties were propagated as described above

for the total cross section of inclusive D0 mesons. The resulting value is

dσprompt D0

p−Pb, 5.02 TeV/dy = 88.5± 2.7 (stat.)+5.3
−6.1 (syst.)± 3.3 (lumi.)± 0.9 (BR) mb. (5.2)
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In ref. [65], the cc production cross section in the rapidity interval −0.96 < ycms < 0.04

was reported. This calculation used the fraction of charm quarks hadronising into D0

mesons to be f(c → D0) = 0.542 ± 0.024 which was derived in ref. [79] by averaging

the measurements in e+e− collisions at LEP. Recent measurements of the Λc-baryon

production cross section in pp collisions at
√
s = 7 TeV and in p–Pb collisions at

√
sNN =

5.02 TeV [80, 81] suggest that the fragmentation fractions of charm quarks into charmed

baryons in pp collisions at LHC energies might differ significantly from the LEP results.

Therefore, more precise measurements of charmed-baryon production cross sections are

needed for an accurate calculation of the charm production cross section.

The average transverse momentum 〈pT〉 of prompt D0 mesons was obtained by fitting

the cross section reported in the top-left panel of figure 7 with a power-law function f(pT) =

C pT/(1 + (pT/p0)2)n, where C, p0 and n are the free parameters. The result is:

〈pT〉prompt D0

p−Pb, 5.02 TeV = 2.07± 0.02 (stat.) ± 0.04 (syst.) GeV/c , (5.3)

where the systematic uncertainties were estimated with the procedure described in ref. [65].

The result is compatible within statistical uncertainties with the one obtained in pp

collisions at the same centre-of-mass energy: 〈pT〉prompt D0

pp, 5.02 TeV = 2.06 ± 0.03 (stat.) ±
0.03 (syst.) GeV/c [70].

The pT-differential cross sections for the other three D-meson species (D+, D∗+, and

D+
s ) are shown in the other panels of figure 7. The cross sections measured in p–Pb collisions

are compatible with the measurements published using the 2013 p–Pb data sample [63, 64],

while having a factor 1.5–2 smaller statistical and systematic uncertainties and an extended

pT reach. The cross sections in p–Pb collisions are compared with the corresponding pp

reference cross sections at the same centre-of-mass energy [70] and rapidity interval.

5.2 The pT-differential nuclear modification factor

The nuclear modification factor is computed as:

RpPb =
1

A

d2σprompt D
p−Pb /dpTdy

d2σprompt D
pp /dpTdy

, (5.4)

where d2σprompt D
p−Pb /dpTdy is the D-meson pT-differential cross section in −0.96 < ycms <

0.04 in p–Pb collisions at
√
sNN = 5.02 TeV, A is the mass number of the Pb nucleus and

d2σprompt D
pp /dpTdy is the cross section in pp collisions at the same centre-of-mass energy

from [70] corrected for the rapidity shift in p–Pb collisions. The systematic uncertainties

of the p–Pb and pp measurements were considered to be independent and were propagated

quadratically, with the exception for the BR uncertainty, which cancels out in the ratio,

and the uncertainty on the feed-down correction, which was recalculated for the ratio of

cross sections by consistently varying the FONLL calculation parameters in the numerator

and the denominator.

Figure 8 shows the nuclear modification factors RpPb of prompt D0, D+, and D∗+

mesons in the left panel and their average, along with the RpPb of D+
s mesons, in the

right panel.
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Figure 8. Nuclear modification factors RpPb of prompt D mesons in p–Pb collisions at
√
sNN =

5.02 TeV. Left: RpPb of D0, D+, and D∗+ mesons. Right: average RpPb of non-strange D-

meson species in the interval 1 < pT < 36 GeV/c [63], shown together with the D0 RpPb in

0 < pT < 1 GeV/c and the RpPb of D+
s mesons in the interval 2 < pT < 24 GeV/c. The vertical

bars and the empty boxes represent the statistical and systematic uncertainties. The black-filled

box at RpPb = 1 represents the normalisation uncertainty.

With the current uncertainties it is not possible to disentangle a possible mass depen-

dent effect originating from a collective expansion of the system that would modify the

D∗+ spectrum differently with respect to the D0 and D+ spectra. Therefore, the average

of the nuclear modification factors of the three non-strange D-meson species is considered

and it was calculated using the inverse of the relative statistical uncertainties as weights.

The systematic uncertainty of the average was calculated by propagating the uncertainties

through the weighted average, while considering the contributions from tracking efficiency

and beauty feed-down correction as fully correlated among the three species. The D-meson

RpPb is compatible with unity over the entire measured pT interval within 2 standard de-

viations. The RpPb of strange and non-strange D mesons are compatible among each other

within statistical and systematic uncertainties.

The D-meson nuclear modification factor is also compared with theoretical calcula-

tions, shown in figure 9. In the left panel, four theoretical calculations that include only

CNM effects are displayed. A calculation based on the Colour Glass Condensate formal-

ism [21, 82] describes the data within a 2σ uncertainty in the entire pT range, although the

model underestimates systematically the measured points at low pT (pT < 6 GeV/c). A

FONLL calculation with CTEQ6M PDFs [83] and EPPS16 NLO nuclear modification [14]

is compatible with the data within the uncertainties. The measurement lies on the upper

limit of the EPPS16 nPDF uncertainty band, while this is not the case for the D-meson

RpPb at forward rapidity measured by LHCb [15, 84]. The data are also described within

the uncertainties by a LO pQCD calculation with intrinsic kT broadening, nuclear shad-

owing, and energy loss of the charm quarks in cold nuclear matter (Vitev et al.) [85]. The
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Figure 9. Nuclear modification factor RpPb of prompt non-strange D mesons in p–Pb collisions at√
sNN = 5.02 TeV. In the left panel, the data are compared with calculations of theoretical models

that include only CNM effects: CGC [82], FONLL [2] with EPPS16 nPDFs [14], a LO pQCD

calculation (Vitev et al.) [85], and a calculation based on incoherent multiple scatterings (Kang

et al.) [86]. In the right panel, the predictions of the Duke [52] and POWLANG [53] transport

models are compared with the measured D-meson RpPb. The vertical bars and the empty boxes

represent the statistical and systematic uncertainties. The black-filled box at RpPb = 1 represents

the normalisation uncertainty.

calculation by Kang et al., that consists of a higher-twist calculation based on incoher-

ent multiple scatterings, has a different trend with respect to the other models and it is

excluded by the data for pT < 4 GeV/c.

In the right panel of figure 9, the measurements are compared with the calculations

of two transport models, Duke [52] and POWLANG [53], both of which assume that a

QGP is formed in p–Pb collisions. These models are both based on the Langevin approach

for the transport of heavy quarks through an expanding deconfined medium described by

relativistic viscous hydrodynamics. The Duke model includes both collisional and radiative

energy loss. The POWLANG model considers only collisional processes with two choices

for the transport coefficients, based on hard-thermal-loop (HTL) and lattice-QCD (lQCD)

calculations. For both the Duke and the HTL based POWLANG estimates, the D-meson

nuclear modification factor distribution has a peak structure, with the maximum at pT ≈
2.5 GeV/c and pT ≈ 3.5 GeV/c, respectively, possibly followed by a moderate (< 20–30%)

suppression at higher pT, resulting from the interplay of CNM effects and interactions of

charm quarks with the radially expanding medium. The trend suggested by these models

is not supported by the data. The strong enhancement at pT ∼ 3 − 4 GeV/c observed in

the model calculations is not consistent with the measured RpPb, and a suppression larger

than 10% for pT > 8 GeV/c is excluded by the data with a 98% confidence level.

The pT-integrated nuclear modification factor of prompt D0 mesons in −0.96 < ycms <

0.04 was obtained from eq. (5.4) by integrating the pT-differential cross sections in pp and
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Centrality classes 0–10% 10–20% 20–40% 40–60% 60–100%

〈TpPb〉 (1/mb) 0.172 0.158 0.137 0.102 0.046

Rel. unc. 6.9% 3.7% 1.7% 4.8% 5.2%

Table 2. 〈TpPb〉 and relative uncertainties for each centrality class considered in the analysis.

p–Pb collisions. The result is

Rprompt D0

pPb (pT > 0, −0.96 < ycms < 0.04) = 0.96± 0.05 (stat.) +0.07
−0.07(syst.) (5.5)

and it is consistent with the atomic mass number scaling of the total charm cross section.

5.3 The pT and centrality-dependent nuclear modification factor

The measurement of the nuclear modification factor was also computed in various centrality

intervals, where the centrality is defined using the energy deposited by neutrons in the ZDC

positioned in the Pb-going side (ZN energy), as described in section 2. For each centrality

class the nuclear modification factor, QpPb, is defined as

QpPb =
(d2Nprompt D/dpTdy)i

p−Pb

〈TpPb〉i × (d2σprompt D
pp /dpTdy)

, (5.6)

where (d2Nprompt D/dpTdy)i
p−Pb is the yield of prompt D mesons in p–Pb collisions and

〈TpPb〉i is the average nuclear overlap function in a given centrality class.

The 〈TpPb〉i is estimated with the hybrid approach described in ref. [69] and is based

on the assumption that the charged-particle multiplicity measured at mid-rapidity (−1 <

ηcms < 0) scales with the number of participant nucleons, Npart. The average nuclear

overlap function is defined as 〈TpPb〉i = 〈Ncoll〉i
σNN

where σNN = (67.6 ± 0.6) mb is the inter-

polated inelastic nucleon–nucleon cross section at
√
sNN = 5.02 TeV [87] and 〈Ncoll〉i is the

average number of binary nucleon–nucleon collisions in a given centrality class. The latter

is obtained as

〈Ncoll〉i = 〈Npart〉i − 1 = 〈NMB
part〉 ·

(
〈dNch/dη〉i
〈dNch/dη〉MB

)
−1<η<0

− 1 , (5.7)

where 〈NMB
part〉 = 7.7 [88] is the average number of participants in minimum bias collisions.

The values of 〈TpPb〉 used for the analyses are reported in table 2 [88].

The average of prompt D0, D+, and D∗+ meson QpPb was calculated as a function of

pT in the interval 1 < pT < 36 GeV/c in 0–10%, 10–20%, 20–40%, 40–60%, and 60–100%

centrality classes, and is shown in figure 10. The D-meson QpPb measurement shows a hint

of suppression in the interval 1 < pT < 2 GeV/c. The observed suppression is strongest in

the most central collisions. This is qualitatively expected from a stronger shadowing at low

Bjorken-x in central collisions. There is also a hint of enhancement at 2 < pT < 6 GeV/c

in the most central classes (0–40% centrality). The results are also compared with the

charged-particle QpPb [69]1 in each centrality class. A similar trend is observed for prompt

D mesons and charged particles in each centrality class.

– 21 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
2

ALICE 

 = 5.02 TeVNNsPb, −p

 < 0.04
cms

y0.96 < −

Prompt D mesons

T
p/dN Syst. on d

〉 
pPb

T 〈 Syst. on 

Charged particles

T
p/dN Syst. on d

5 10 15 20 25 30 35

)c (GeV/
T

p

0.4

0.6

0.8

1

1.2

1.4

1.6

 
p
P

b
Q

20% ZN energy−10

5 10 15 20 25 30 35

)c (GeV/
T

p

0.4

0.6

0.8

1

1.2

1.4

1.6
 

p
P

b
Q

10% ZN energy−0

5 10 15 20 25 30 35

)c (GeV/
T

p

0.4

0.6

0.8

1

1.2

1.4

1.6

 
p
P

b
Q

100% ZN energy−60

5 10 15 20 25 30 35

)c (GeV/
T

p

0.4

0.6

0.8

1

1.2

1.4

1.6
 

p
P

b
Q

60% ZN energy−40

5 10 15 20 25 30 35

)c (GeV/
T

p

0.4

0.6

0.8

1

1.2

1.4

1.6

 
p
P

b
Q

40% ZN energy−20

Figure 10. Nuclear modification factors of prompt D mesons as a function of pT in 0–10%, 10–

20%, 20–40%, 40–60%, and 60–100% centrality classes compared with those of charged particles [69].

The vertical bars represent the statistical uncertainties while the empty boxes and the shaded boxes

represent the systematic uncertainties for the prompt D mesons and for the charged particles. The

colour-filled boxes at QpPb = 1 represent the normalisation uncertainties on the 〈TpPb〉 [88].
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The D-meson QpPb in the 0–10% centrality class is compared with the predictions

of the Duke [52] and POWLANG [53] transport models in figure 11. The POWLANG

model predicts a pronounced bump in the nuclear modification factor at intermediate pT

(3 < pT < 6 GeV/c), which is not supported by the data, considering that the systematic

uncertainties are mostly correlated among the pT intervals of the measurement. At higher

pT (pT > 7 GeV/c), POWLANG simulations with the HTL transport coefficients and the

Duke model predict a suppression of the D-meson yield which is not observed in the data.

The ratio of the D-meson yield in a given centrality class with respect to yield in the

most peripheral centrality class (60–100%), defined as

QCP =
(d2Nprompt D/dpTdy)i

p−Pb

/
〈TpPb〉i

(d2Nprompt D/dpTdy)60−100%
p−Pb

/
〈TpPb〉60−100%

, (5.8)

was also calculated. The QCP observable is independent of the pp cross section and uses the

yields in peripheral p–Pb collisions as a reference. Since the contributions from the track

reconstruction, selection and PID efficiency cancel out in the ratio, the QCP has reduced

systematic uncertainties with respect to the QpPb ratio. The systematic uncertainties on

the yield extraction were estimated by applying the fit variation procedure described in sec-

tion 4 directly on the signal yield ratio obtained from the invariant-mass distributions of the

two centrality classes. To estimate the feed-down correction uncertainty, the contributions

from the hypothesis on the nuclear modification factor of D mesons from B-hadron decays

were considered as uncorrelated in each centrality class and were added in quadrature.

In figure 12, the average D-meson QCP is shown for different centrality classes: 0–

10%, 10–20%, 20–40% and 40–60%. The results are superimposed to those obtained for

charged particles in the same centrality classes [69]. A similar trend is observed for both

measurements: when the results from the most central classes are used as the numerator,

the QCP increases in the interval 1–5 GeV/c, reaching values of about 1.3 and then shows

a decreasing trend with increasing pT. A QCP > 1 with a significance of 3σ is observed in

the range 3 < pT < 7 GeV/c when the 20–40% centrality class is used as numerator. In

this case, the normalisation uncertainty is smaller than the one of more central collisions

due to the smaller separation between the centrality classes used in the calculation of QCP.

When the 0–10% and 10–20% centrality classes are used as numerators, a QCP > 1 is

observed in the same pT interval, with a significance of 1.5σ and 2σ due to the larger 〈TpPb〉
uncertainties. A milder pT dependence is observed when the yields from more peripheral

collisions are used as the numerator. A possible radial flow arising from a hydrodynamic

evolution could modify the hadronisation dynamics of heavy quarks and potentially be the

cause of the enhancement at intermediate pT.

5.4 D-meson ratios

The ratios of the pT-differential cross sections of D0, D+, D∗+, and D+
s mesons in the

minimum bias sample are reported in figure 13. In the evaluation of the systematic un-

certainties of the ratios, the contributions of the yield extraction and selection efficiency

1The 〈TpPb〉 values used to compute the charged-particles QpPb were updated with respect to [69]

according to the values in [88].
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Figure 12. Average D-meson and charged-particles [69] QCP using the yields measured in 0–

10%, 10–20%, 20–40%, and 40–60% as numerators and the yield in 60–100% as the denominator.

The vertical bars and the empty boxes represent the statistical and systematic uncertainties. The

colour-filled boxes at QCP = 1 represent the normalisation uncertainties on the 〈TpPb〉.

were considered as uncorrelated, while those of the feed-down from beauty-hadron decays

and the tracking efficiency were treated as fully correlated among the different D-meson

species. The measurements are compared to the ratios of D-meson cross sections in pp

collisions at
√
s = 5 TeV [70]. The relative abundances of the four species are unmodified

in p–Pb with respect to pp collisions within statistical and systematic uncertainties.

The ratios of the D+
s /D

+-meson yields were also studied in different pT intervals as a

function the multiplicity of charged particles produced in the collision. The charged-particle

multiplicity, Nch, was estimated at mid-rapidity by measuring the number of tracklets,

Ntracklets as in refs. [72, 89]. The D+
s /D

+ ratios were extracted in three multiplicity classes

defined as 1–40, 40–70, 70–200 tracklets. A tracklet is defined as a track segment that

joins the reconstructed primary vertex with a pair of space points on the two SPD layers

within the pseudorapidity range |η| < 1.0. The measured Ntracklets distribution is affected

by the position of the interaction vertex along the beam axis and by the evolution of the

detector conditions. The former is due to the collision system asymmetry and the limited

SPD rapidity coverage, while the latter is a consequence of a variation in active SPD

channels over time. To account for these effects, the Ntracklets distributions were corrected

offline on an event-by-event basis. The correlation between the measured Ntracklets and Nch,

equivalent to the number of generated “physical primaries”, was obtained from a Monte

Carlo simulation and parametrised with a linear function. Here, physical primaries are

defined as prompt particles produced in the collision, along with their decay products, but
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Figure 13. Ratios of prompt D-meson production cross sections as a function of pT in p–Pb

collisions at
√
sNN = 5.02 TeV. The results are compared with those of pp collisions at the same

centre-of-mass energy [70]. The vertical bars and the empty boxes represent the statistical and

systematic uncertainties.

excluding those from weak decays of strange particles [78]. The systematic uncertainty on

the conversion from Ntracklets to Nch was calculated using different Monte Carlo generators

and using different parameterisations of the correlation. The total systematic uncertainty

varies from 2% in the highest multiplicity class to 7% in the lowest multiplicity class.

The ratios of the D+
s /D

+-meson yields are shown in figure 14 as a function of the

number of primary charged particles per unity of pseudorapidity (dNch/dη||η|<0.5) in five

pT intervals ranging from 2 to 16 GeV/c. As a comparison, the measured ratios in pp

collisions [70] and in Pb–Pb collisions [90] at
√
sNN = 5.02 TeV are also shown in the

figure. Within uncertainties, there is no indication of a modification of the D+
s /D

+-yield

ratios in pp and p–Pb collisions, up to the highest multiplicities that could be studied with

the current p–Pb sample, which are similar to those of peripheral Pb–Pb collisions (60–80%

centrality class). A hint of an enhancement of the D+
s /D

+-yield ratios in Pb–Pb collisions

in 4 < pT < 8 GeV/c is observed, as already shown in [90]. The larger data sample of

Pb–Pb collisions collected by ALICE in 2018 will provide a more precise measurement.
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Figure 14. D+
s /D

+-meson yield ratios, as a function of primary charged particles per unity of

pseudorapidity in pp [70], p–Pb, and Pb–Pb [90] collisions at
√
sNN = 5.02 TeV in five different pT

intervals from 2 to 16 GeV/c.

6 Summary

The production cross sections of the prompt charmed mesons (D0, D+, D∗+, and D+
s )

in p–Pb collisions at a centre-of-mass energy per nucleon pair of
√
sNN = 5.02 TeV were

measured as a function of pT in the rapidity interval −0.96 < ycms < 0.04 with luminosity

of Lint = 292± 11 µb−1. The pT-differential production cross sections were reported in the

transverse momentum range 0 < pT < 36 GeV/c for D0 mesons, 1 < pT < 36 GeV/c for

D+ mesons, 1.5 < pT < 36 GeV/c for D∗+ mesons, and 2 < pT < 24 GeV/c for D+
s mesons.

The larger sample used for this analysis, with respect to that collected in 2013, allowed for

a significant reduction, by a factor 1.5–2, of the statistical and systematic uncertainties,

along with an extension of the pT reach.

The pT-differential nuclear modification factor RpPb of D mesons, calculated by using

the pp reference measured at the same centre-of-mass energy, was found to be compatible

with unity for 0 < pT < 36 GeV/c. The RpPb results are described within uncertainties

by theoretical calculations that include initial-state effects. The RpPb is also compared

with parton-transport model based calculations that assume the formation of a deconfined

QCD medium in p–Pb collisions. The trend predicted by these models is not supported by
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the data. The strong enhancement at pT ∼3–4 GeV/c observed in the calculations is not

consistent with the measured RpPb, and a suppression larger than 10% for pT > 8 GeV/c

is excluded by the data at 98% confidence level.

The centrality dependence of the D-meson yields was also studied in different centrality

classes, from most central to peripheral collisions, in the interval 1 < pT < 36 GeV/c.

The average QpPb of prompt D0, D+, and D∗+ mesons is consistent with unity within

the uncertainties for pT > 2 GeV/c. The measurements show a hint of suppression in

1 < pT < 2 GeV/c stronger in the most central collisions with respect to the peripheral

ones, as qualitatively expected from a stronger shadowing at low Bjorken-x in central

collisions [91, 92]. There is also a hint of enhancement in the intermediate pT region in

the most central collision classes (0–40% centrality). The same trend is observed for the

charged-particles QpPb. The average D-meson QCP has been computed. For the most

central collision classes, the QCP increases in the pT interval 1–5 GeV/c, reaching values of

about 1.3. Above a pT of 5 GeV/c the distribution tends to decrease with increasing pT. A

milder pT dependence is observed for more peripheral collisions. A similar trend is observed

for both charmed mesons and charged particles in all the centrality classes considered. A

possible radial flow arising from hydrodynamic evolution could modify the hadronisation

dynamics of heavy quarks and give rise to the enhancement measured in the intermediate

pT interval [52, 53].

The ratios of the pT-differential cross sections of D0, D+, D∗+, and D+
s mesons were

evaluated and compared to those measured in pp collisions at
√
s = 5.02 TeV. The rela-

tive abundances of the four species are unmodified in p–Pb collisions with respect to pp

collisions, within the uncertainties. The ratios of D+
s /D

+-meson yields, as a function of

the number of primary charged particles per unit of pseudorapidity, show no evidence of

modifications in pp and p–Pb collisions, within the uncertainties.

A Additional figures

Figure 15 presents the QpPb results for D0, D+, and D∗+ as a function of pT for the 0–

10% and 60–100% centrality classes. Figure 16 shows the QCP for the three non-strange

D mesons, obtained using 0–10% as central class and 60–100% as peripheral class. The

results are compatible within uncertainties between the three D–meson species.
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Figure 15. D0, D+, and D∗+ meson nuclear modification factors as a function of pT in the 0–

10% (left) and 60–100% (right) centrality classes. The vertical bars and the empty boxes represent

the statistical and systematic uncertainties. The colour-filled boxes at QpPb = 1 represent the

normalisation uncertainties.
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M. Šefč́ık38, J.E. Seger16, Y. Sekiguchi132, D. Sekihata45,132, I. Selyuzhenkov91,105,

S. Senyukov136, D. Serebryakov62, E. Serradilla71, P. Sett48, A. Sevcenco67, A. Shabanov62,

A. Shabetai114, R. Shahoyan34, W. Shaikh108, A. Shangaraev89, A. Sharma98, A. Sharma99,

H. Sharma118, M. Sharma99, N. Sharma98, A.I. Sheikh141, K. Shigaki45, M. Shimomura81,

S. Shirinkin90, Q. Shou111, Y. Sibiriak86, S. Siddhanta54, T. Siemiarczuk83, D. Silvermyr79,

– 38 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
2

C. Silvestre77, G. Simatovic88, G. Simonetti34,103, R. Singh84, R. Singh99, V.K. Singh141,

V. Singhal141, T. Sinha108, B. Sitar14, M. Sitta32, T.B. Skaali21, M. Slupecki126, N. Smirnov146,

R.J.M. Snellings63, T.W. Snellman126, J. Sochan116, C. Soncco110, J. Song60,125,

A. Songmoolnak115, F. Soramel29, S. Sorensen130, I. Sputowska118, J. Stachel102, I. Stan67,

P. Stankus94, P.J. Steffanic130, E. Stenlund79, D. Stocco114, M.M. Storetvedt36, P. Strmen14,

A.A.P. Suaide121, T. Sugitate45, C. Suire61, M. Suleymanov15, M. Suljic34, R. Sultanov90,
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