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Abstract 

Ulcer development caused by bacterial infections in the sea is a large problem in the Norwegian 

salmon farming industry, leading to increased mortalities, reduced fish welfare, down-

classification at harvest, and increased use of antibacterial drugs. In recent years, infection with 

Tenacibaculum finnmarkense has been an increasing problem. Tenacibaculosis affects farmed 

salmon of all sizes but especially post-smolts in the first period after sea transfer. The transition 

of smolts from land-based facilities to seawater net-pens is challenging as the period after 

smoltification shows signs of temporary immune suppression. This study investigated if rearing 

conditions affect the barrier functions of Atlantic salmon (Salmo salar) skin and susceptibility 

of infection with T. finnmarkense. The goal was to histologically characterize any structural 

differences in the skin of fish reared at two salinities that could explain any differences in 

mortalities and the prevalence of the bacterium within challenged groups. This study showed 

that the skin is affected by the degree of salinity in the post-smolt phase. The skin of fish reared 

in freshwater (0 ppt) developed differently compared to the fish reared in low strength seawater 

(26 ppt). Also, the skin surface of freshwater fish was poorer compared to brackish water fish 

three days post challenge, suggesting skin of fish without seawater adaptation to be more 

affected when transferred to seawater. Results from gene expression analysis indicate 

significantly stress in the outer skin layers, and the presence of T. finnmarkense in the skin is 

reflected in the up-regulation of several immune-related genes. Although differences between 

rearing conditions were confirmed in this study, no structural differences that would explain 

why adapting smolts to seawater before sea transfer seem beneficial were identified. Therefore, 

more research on this topic is needed. 
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1 Introduction 

1.1 Norwegian salmon farming  

Today, Norway is the world’s largest producer of Atlantic salmon (Salmo salar), with 1.2 

million tons salmon produced in 2018 with a total first-hand value of 60 billion NOK (Statistics-

Norway, 2019). The Norwegian industry has come a long way from the start of salmon fish 

farming in the 1970’ to this day, though not without challenges. The introduction of large net-

pen systems increased water quality but also allowed increased production at each site. Fish 

reared in open environments will be in continuous contact with infectious agents like viruses, 

bacteria, fungi, and protozoan, and the risk and impact of infectious diseases are further 

increased in intensive rearing of fish. In the winter of 1979-1980, several Norwegian fish farms 

suffered from outbreaks of cold-water vibriosis (Aliivibrio salmonicida), followed by outbreaks 

of vibriosis (Vibrio (Listonella) anguillarum) and furunculosis (Aeromonas salmonicida subsp. 

salmonicida) in the early 1990’. The diseases led to mass mortalities and extensive use of 

antibiotics, and it was not until the introduction of the oil-adjuvant injection vaccine in 1992 

that the industry managed to control the diseases (Gudding, 2010; Markestad & Grave, 1997; 

Sommerset, Krossøy, Biering, & Frost, 2005). As a result of the oil-adjuvant injection vaccine, 

there was a substantial decline in levels of antibacterial drugs in Norwegian fish farming. 

Today, these bacterial diseases are controlled by vaccines in combination with improved 

husbandry and management practices, and the consumption of antibacterial drugs in the 

Norwegian aquaculture industry is regarded as low (Sommerset et al., 2020). In 2016 the level 

was at its lowest since 1981. Levels have since increased, due to several outbreaks of yersinosis 

(Yersinia ruckeri) affecting large fish (Grave & Helgesen, 2018) and more frequent treatment 

of cleaner fish (lumpfish, Cyclopterus lumpus) (Hjeltnes, Bang-Jensen, Bornø, Haukaas, & 

Walde, 2019). 

Mortalities associated with ulcer development by infectious agents have been shown to be the 

main cause of death (Aunsmo et al., 2008). In a relatively recent survey from 2015, the 

proportion of sea-farmed salmon dying due to ulcer development (of all causes) in Norway was 

conservatively estimated to be between 1.1 and 2.5 % annually (Takle et al., 2015). Besides, 

0.7 to 3.8 % is down-classified at harvest due to reduced market quality. Application of these 

figures to the NOK 60 billion value of salmon produced in 2018 suggests that losses due to 

ulcer development currently cost the Norwegian aquaculture industry between 0.67 and 1.54 



billion NOK1 annually. In addition to significant financial losses, ulceration contributes to a 

negative reputation of the industry for consumers that have a growing awareness of animal 

rights, health, and aquaculture sustainability.  

Skin disorders are common in fish farming and ulcerative diseases in salmon production in 

Norway need to be addressed (Hjeltnes et al., 2019). For bacterial ulcerative skin diseases, there 

is no vaccine on the market today that provide full protection, and as a result, these diseases are 

difficult to control. Among these are “winter ulcer disease” associated with Moritella viscosa 

and tenacibaculosis associated with Tenacibaculum spp., both of which are of high significance 

to the industry regarding fish welfare, economic losses and use of antibacterial drugs. The 

commercially available vaccines containing M. viscosa-components only includes the “typical” 

genotype of M. viscosa and is shown to provide different levels of protection (Karlsen, 

Thorarinsson, Wallace, Salonius, & Midtlyng, 2017). Also, the whole-cell inactivated vaccine 

using Tenacibaculum finnmarkense (strain HFJT) did not provide protection against 

experimentally induced tenacibaculosis (Småge et al., 2018). Consequently, these diseases are 

considered the main bacteriological problem in the industry today (Småge, 2018). This 

corresponds well with the results from a recent survey conducted by The Norwegian Veterinary 

Institute (Sommerset et al., 2020), where ulcer development is rated of high importance in sea-

pen farming of salmonid fish among fish health workers and The Norwegian Food Safety 

Authority. 

1.2 Skin disorders by infectious agents 

The etiology of skin disorders or ulceration is complex. Mechanical injuries, environmental 

factors, nutrition, and infectious agents are likely central factors (Takle et al., 2015). One of the 

biggest problems in the Norwegian salmon farming industry is infection with salmon lice 

(Lepeophtheirus salmonis). Not only is the parasite inflicting substantial costs to the industry 

and challenging the environment – it is also a big contributor to ulcer development. The salmon 

lice cause both direct and indirect ulcer development. Firstly, salmon lice feeding on mucus and 

skin causes rupture of the skin barriers and can alone cause severe skin damage. Secondly, 

handling of the fish related to de-lousing operations is shown to cause mechanical skin damages 

including loss of scales (Erikson, Solvang, Schei, Ag, & Aalberg, 2018). Outbreaks of 

ulcerative diseases often correlate with de-lousing operations and other treatments of the fish 

 
1 1.1 and 2.5 % of 60 billion NOK = 0.67 and 1.54 billion NOK.  



that cause handling and stress (Sommerset et al., 2020). Considering scales are covered with a 

thin layer of skin cells (epidermal keratocytes) and mucous cells (Kryvi & Poppe, 2016), loss 

of scales is per definition a small ulcer. Skin abrasions can allow bacteria to establish an 

infection (Bornø et al., 2011; Småge, Brevik, et al., 2016).  

“Winter ulcer disease” is caused by M. viscosa (Benediktsdóttir, Verdonck, Spröer, Helgason, 

& Swings, 2000), a bacterium that is pathogenic to a wide range of species reared in marine 

waters all over the world (Lunder, Evensen, Holstad, & Håstein, 1995). However, outbreaks of 

disease are primarily reported from salmonid fish. Little is known of M. viscosa virulence, but 

it is suggested extracellular products (ECPs) are cytotoxic to fish cells and therefore lethal to 

Atlantic salmon (Bjornsdottir, Gudmundsdottir, & Gudmundsdottir, 2011). Different M. 

viscosa strains were discovered to show host-specific virulence (Karlsen, Ellingsen, et al., 

2014), and it is anticipated that environmental factors influence the virulence potential. It is 

further suggested that the status of skin health is important for the susceptibility to infections 

(Karlsen, Sørum, Willassen, & Åsbakk, 2012). Current prophylactics are to avoid management 

that may result in injuries predisposing to ulcers, vaccination (all Norwegian farmed salmon 

are vaccinated against M. viscosa), and removal of infected fish. However, the etiology of 

outbreaks is complex as Aliivibrio wodanis and Tenacibaculum spp. are among the numerous 

bacterial species recurrently reported isolated from winter-ulcer outbreaks (Olsen et al., 2011). 

A. wodanis seems to have an antagonistic effect on M. viscosa infection (Hjerde et al., 2015). 

The bacterium is shown to adhere to the fish cells, causing them to vacuolate, round up and 

detach from the surface as well as rearrange actin filaments in vitro (Karlsen, Vanberg, 

Mikkelsen, & Sørum, 2014). Tenacibaculum spp. has been suggested to be an important factor 

in the pathogenesis of the “winter ulcer disease” (Olsen et al., 2011). Determining which species 

are implicated directly in disease, which are present as opportunists and which are simply 

commensals is challenging. 

1.3 Tenacibaculosis and Tenacibaculum spp. 

Tenacibaculosis is an ulcerative disease caused by Tenacibaculum spp. and is characterized by 

scale loss, frayed fins, fin rot, skin lesions an ulcers and mouth erosions (Bruno, Noguera, & 

Poppe, 2013; Toranzo, Magariños, & Romalde, 2005), with the highest mortality in fish 

recently transferred into seawater (Småge et al., 2017). Tenacibaculosis was first described in 

1977 (Masumura & Wakabayashi, 1977). The genus Tenacibaculum was described several 

years later in 2001 (Suzuki, Nakagawa, Harayama, & Yamamoto, 2001), and today the genus 



comprises several species pathogenic to fish (Hansen, Bergh, Michaelsen, & Knappskog, 1992; 

López et al., 2009; Pineiro-Vidal, Carballas, Gomez-Barreiro, Riaza, & Santos, 2008; Piñeiro-

Vidal, Gijón, Zarza, & Santos, 2012; Pineiro-Vidal, Riaza, & Santos, 2008; Wakabayashi, 

Hikida, & Masumura, 1986). The genus belongs to the family Flavobacteriaceae (Bernardet et 

al., 1996; McBride, 2014), phylum Bacteroidetes, and clade Tenacibaculum-Polaribacter. 

Isolated Tenacibaculum spp. strains from Atlantic salmon are Gram-negative aerobic long rods 

that grow as yellow-pigmented colonies on marine agar. Tenacibaculum spp. are isolated from 

marine organisms such as fish, jellyfish, algae, and sponges (Avendaño-Herrera, Toranzo, & 

Magariños, 2006; Ferguson et al., 2010). During 2015 outbreaks of tenacibaculosis in 

Finnmark, Norway, the link between jellyfish and tenacibaculosis outbreaks were investigated. 

The study concluded that the jellyfish identified as Dipleurostoma typicum most likely are not 

a vector for Tenacibaculum spp., but is thought to cause direct damage to the skin by ejecting 

stinging nematocysts and thereby allowing an entry point for bacteria (Småge et al., 2017).  

Three species of Tenacibaculum spp. are associated with the ulcerative disease tenacibaculosis: 

Tenacibaculum maritimum, Tenacibaculum dicentrarchi, and T. finnmarkense. T. maritimum 

is the most studied bacterium (Suzuki et al., 2001; Wakabayashi et al., 1986) and is associated 

with disease from a large range of wild and farmed fish species all over the world, including 

rainbow trout (Oncorhynchus mykiss) and Atlantic salmon from Europe, North America and 

Australia (Avendaño-Herrera et al., 2006; Bruno et al., 2013; Frisch, 2018; Toranzo et al., 

2005). Recently it was reported for the first time in Norwegian farmed Atlantic salmon, using 

a newly developed assay for T. maritimum (PHARMAQ-Analytiq, 2017). Also, the bacterium 

has been isolated from diseased lumpfish used as cleaner fish in Norway (Småge, Frisch, 

Brevik, Watanabe, & Nylund, 2016). Worth mentioning is that T. maritimum is associated with 

tenacibaculosis in most parts of the world. However, in the Pacific North, the same bacteria 

cause a different clinical presentation, named mouthrot (Frisch, Småge, Vallestad, et al., 2018). 

Mouthrot is characterized by yellow plaques in the mouth as the only external clinical sign, 

with little or no clinical signs internally, and primarily affects smolts recently transferred into 

saltwater (Frelier, 1994). Thus, the same bacterium is associated with two different types of 

clinical presentations (Frisch, 2018). The different clinical presentation of mouthrot and 

tenacibaculosis observed may be due to different factors at different geographical locations, 

such as genetic differences between the strains, host factors, and environmental conditions 

(Frisch, 2018), but this is not yet certain. A possibility is that the fish needs a stressor to develop 

the disease in Canada, similar to what has been reported in Norway (Småge et al., 2017). 



T. dicentrarchi was described in 2012, isolated from diseased European sea bass (Dicentrarchus 

labrax) in Spain (Piñeiro-Vidal et al., 2012) and have later been reported from Atlantic cod 

(Gadus morhua) in Norway in 2009-2010 (Habib et al., 2014) and from Atlantic salmon farms 

in Chile in 2010 and 2014 (Avendaño‐Herrera et al., 2016). The bacterium was for the first time 

reported from Atlantic salmon in Norway in 2019, isolated from an outbreak of diseased 

Atlantic salmon (Klakegg, Abayneh, Fauske, Fülberth, & Sørum, 2019).  

1.3.1. Tenacibaculosis in Northern Norway by Tenacibaculum finnmarkense 

A study from 2011 (Olsen et al.) investigated skin ulcers from 18 different field outbreaks of 

winter ulcer disease in Norway from two different periods, 1996 and 2004-2005. 

Tenacibaculum strains were detected in 70 % of ulcers from all outbreaks. Although the 

bacterium was easily detected histologically, it was difficult to grow the bacterium, suggesting 

Tenacibaculum spp. may have been underdiagnosed previously. Norwegian isolates of 

Tenacibaculum are genotypically diverse but are phylogenetically related to T. dicentrarchi 

isolated from European sea bass (Habib et al., 2014).  Due to the continuation of the ulcerative 

problem in Atlantic salmon farming, research on Tenacibaculum in Norway has gained more 

focus in recent years. 

T. finnmarkense was first described in 2016 from an outbreak of an ulcerative disease from 

Atlantic salmon reared in seawater net pens in Finnmark, Norway (Småge, Brevik, et al., 2016). 

Genetic, phenotypic, and chemotaxonomic analysis indicated that the isolated strain HFJT 

should be classified as a novel species in the genus Tenacibaculum, for which the name 

Tenacibaculum finnmarkense was proposed. Bath challenges showed that T. finnmarkense is 

the causative agent of tenacibaculosis in Northern Norway reproducing jaw erosions, frayed 

fins, and skin lesions, which are all classical signs of tenacibaculosis (Småge et al., 2018). 

Cohabitation experiment showed that T. finnmarkense does not appear to spread horizontally 

from fish to fish (Småge et al., 2018). The results from the bath challenge experiment reflect 

the acute disease progression observed in field outbreaks that often occur within after seawater 

transfer.  

The bacterium is rarely isolated from the kidney. Although the bacterium is not systemic, T. 

finnmarkense can induce disease by effectively colonize skin surfaces of fish. There are so far 

no described virulence mechanisms in Norwegian isolates of Tenacibaculum. In the experiment 

of this master thesis, the T. finnmarkense strain HFJT previously shown to experimentally 

induce tenacibaculosis in Atlantic salmon (Småge et al., 2018) was used. 



1.4 Fish skin 

To understand how skin diseases work, a better understanding of skin structures and their 

functions is needed. The fish skin is a vital organ with many functions and structural 

compartments involved in immunological defense, osmoregulation, respiration, excretion, 

sensing, and pigmentation. The skin, in addition to the gills and the gastrointestinal tract, is 

covered with epithelium and make up the surface and the physical barrier between the internal 

and external environment (Esteban, 2012). The epithelium is covered with mucus, and together 

they are the first line of defense for invading pathogens (Benhamed, Guardiola, Mars, & 

Esteban, 2014). The structure and functions of fish skin vary depending on species, life cycle, 

and area of the body (Kryvi & Poppe, 2016; Pittman et al., 2013; Roberts & Ellis, 2012). 

However, some features are common for most skin types (Figure 1, Figure 2). In general, the 

fish skin consists of an outer epidermis and surface-covering mucus, and an underlying dermis 

and hypodermis. The mucus covering the epithelium is involved in an array of immunological 

functions and is referred to as mucosa-associated lymphoid tissue (MALT). MALT is further 

divided in gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), 

gills-associated lymphoid tissue (GIALT) depending on location (Esteban, 2012). In general, 

when a pathogen adheres to the skin, the response is to increase mucus production. Fish slough 

mucus, and as a consequence, pathogens adhering to skin mucus will be removed (Esteban, 

2012). 



 

Figure 1. Atlantic salmon skin. A. Histological section (Alcian blue – Periodic Acid Schiff, 

AB-PAS) and schematic figure of scaled skin of Atlantic salmon showing normal anatomy, 

with mucus (MUC), surface mucous cells (MCs), underlying mucous cells (MCu), the 

epidermis (EPI), basal membrane (BM), scale pockets (SCP), scales (SC), loose connective 

tissue (LCT), dense connective tissue (DCT), hypodermis (HYP), muscle (MUS) and blood 

vessels (BV). LCT and DCT make up the dermis layer. Only blue mucous cells are pictured. B. 

Scanning electron microscopy (SEM) of surface epithelial cells (keratocytes) with micro ridges 

(black arrows) and intermediate mucous cells (white arrows). 

Histology and SEM samples are from this current study. 



 

Figure 2. Representative histological sections (Alcian blue – Periodic Acid Schiff, AB-PAS) 

of Atlantic salmon skin, showing normal skin anatomy at four different sites of the fish. A. Tip 

of the lower jaw, showing epidermis (EPI), dense connective tissue (DCT), and loose 

connective tissue (LCT), and pigment cells in clusters. B. Longitudinal section of the base tail 

fin, with the epidermis and bone (B). Pigmentation is spread out at the base of the epidermis. C 

- D. Ventral and dorsal side, respectively, showing the epidermis, loose and dense connective 

tissue, scales (SC), scale pockets (SCP), hypodermis (HYP), and muscle (MUS). Pigment cells 

in clusters in the ventral side while it is spread out on the dorsal side.  

All samples are from this current study. 

 

 

 

 

 

 

 

 



The epidermis 

The outermost layer of the fish skin is the epidermis, consisting of an avascular stratified 

epithelium. The cells of the epidermis are called keratocytes. These cells are linked together 

with numerous strong bonds of desmosomes and the intermediate filament cytoskeleton. The 

bonds form a network called the desmosome-intermediate filament complex (DIFC), which 

glue adjacent cells together to an unbroken sheet that provides great mechanical strength and 

integrity (Garrod & Chidgey, 2008; Kryvi & Poppe, 2016). The skin is subjected to a substantial 

amount of mechanical stress. Thus, it is important that cells are strongly held together. The 

thickness of the epidermis varies between species and between different sites of the fish body 

(Kryvi & Poppe, 2016). In salmon, the epithelium is thickest in the scaleless parts of the fish 

like the head region and fins (Pittman et al., 2013) and the jaw (Figure 2). 

The epidermis can be divided into three layers, of which all layers are viable (Kryvi & Poppe, 

2016). The outermost layer is the stratum superficiale. This layer consists of flattened 

keratocytes with surface micro ridges (Figure 1 B). The micro ridges provide a larger surface 

and function to adhere mucus (Kryvi & Poppe, 2016; Quilhac & Sire, 1999). In the case of skin 

injury, the keratocytes can rapidly migrate to re-epithelialize and close the wounds (Sveen, 

Karlsen, & Ytteborg, 2020). The intermediate layer is called the stratum spinosus and consists 

of rounder undifferentiated epidermal progenitor cells. The basal layer is the stratum basale, 

which consists of cubical to tall cells, in addition to a protein layer that makes up the basement 

membrane. The function of the basement membrane is to anchor the epidermis to the dermis. 

In addition to keratocytes, the epidermis always has mucus-secreting cells (mucous cells), and 

in some cases pigment cells and different leucocytes, i.e. macrophages and eosinophilic 

granular cells. Some species have club cells and sacciform cells (Kryvi & Poppe, 2016). The 

density of mucus-producing cells in the epidermis is dependent on the body site, with the 

highest density on the dorsal side of the fish and the lowest in the head region (Pittman et al., 

2013) (Figure 2). The mucous cells produce mucins, which are large and complex glycoproteins 

that make up the mucus layer (Shephard, 1994). There are different types of mucins; acidic, 

neutral, and a combination of the two. The acidic mucins are characterized by the presence of 

sialic acid or sulfated monosaccharides and a blue color when stained with Alcian blue – 

Periodic Acid Schiff (AB-PAS) (Fletcher, Jones, & Reid, 1976), while the neutral mucins stain 

bright purple or pink. The content of the mucous cell is released to the surface (Figure 1 B), 

swells when in contact with water, and is distributed on the surface of the skin (Kryvi & Poppe, 

2016). In addition to mucins, the mucus layer consists of immunological components, sialic 



acid, antibodies, enzymes, and lysosomes (Esteban, 2012), making this an important site for 

antibacterial activity (Svendsen & Bøgwald, 1997). 

The dermis 

The dermis is a vascular tissue consisting of collagen-producing fibroblasts. The dermis 

consists of two main components, loose connective tissue, and dense connective tissue (Figure 

1 A, Figure 2), also referred to as stratum spongiosum and stratum compactum, respectively. 

Dense connective tissue is more defined in scaled skin than in unscaled skin for example in the 

head region and fins of Atlantic salmon (Elliott, 2011) (Figure 2). The loose connective tissue 

consists of unorganized collagen fibers, fibroblasts, pigment cells, nerves, blood vessels, in 

addition to scales. The scales (cycloid scales in salmonids) are located inside scale pockets, 

made up of the scale pocket-lining (Sire, 1989), and covered with a layer of epidermis (Figure 

1 A, Figure 2 C – D). In contrast to loose connective tissue, dense connective tissue consists of 

highly organized collagen fibers in alternating directions, and only fibroblasts additionally 

(Figure 1 A, Figure 2 C – D). The main function of the dense connective tissue is to ensure 

strength and flexibility (Kryvi & Poppe, 2016). 

The hypodermis 

The hypodermis consists of loosely organized collagen fibers, adipocytes (fat storage cells), 

and pigment cells (Figure 1 A, Figure 2 C – D). The thin layer separating the hypodermis from 

the dermis is called the dermal endothelium (Kryvi & Poppe, 2016). 

 

 

 

  



1.5 Aim of study 

Susceptibility to Tenacibaculum infection increase during the first time-period after seawater 

transfer. During this stage, the skin immune system is suppressed, and Atlantic salmon could 

experience increased susceptibility to infectious agents and the risk of diseases. This study 

aimed to investigate if rearing Atlantic salmon post-smolt in two different water qualities over 

time affected the susceptibility of Tenacibaculum finnmarkense after transmission to seawater. 

 

The main aim will be achieved by the fulfillment of the following subgoals: 

- Characterizing the skin structurally by its histological appearance for salmon kept at 

two different water qualities after smoltification. 

- Characterize histopathological changes in the skin after Tenacibaculum finnmarkense 

challenge for smoltified salmon kept in freshwater or low strength seawater.  

 

 

  



2 Material and methods 

The work presented in this thesis use material from a challenge experiment carried out at the 

Industrial and Aquatic Laboratory (ILAB) in Bergen, Norway in the period from February 19th, 

2019 to July 30th, 2019. The experimental model is used to study the development of the skin 

tissue in post-smolts reared at two water qualities, freshwater (F) and low strength seawater 

(LSS) and investigates if the rearing conditions influence susceptibility to T. finnmarkense. The 

two different water qualities and the time before challenge in full-strength seawater represent 

the different production strategies in Norwegian salmon farming today, where the most 

common strategy is to transfer the post-smolt from freshwater directly to seawater when 

smoltified. A separate master thesis (Solheim, 2020) describes the difference in prevalence and 

infection using real-time RT-PCR (rt qPCR) to identify levels of T. finnmarkense between the 

experimental groups utilizing the same sample material as in this thesis.  

2.1 Fish husbandry 

Unvaccinated Atlantic salmon smolts (n = 568) were reared in the production facility at ILAB 

at the University of Bergen. All the fish had the same genetic origin coming from StofnFiskur, 

Iceland. The fish were evenly distributed to four separate freshwater flow-through tanks 

measuring 500 L with water at 12 °C. The water flow was adjusted between 3000 and 2000 L/h 

during the experiment and the oxygen level was monitored. The freshwater in ILAB was from 

Svartediket, Bergen. Two and two tanks had linked water supply. The fish were fed in excess 

with automatic feeding using commercial dry feed Nutra Olympic (Skretting, Norway). The 

fish were monitored twice a day by ILAB staff. The fish were screened by ILAB-staff before 

the start of the experiment and found negative for Piscine orthoreovirus, Piscine myocarditis 

virus, Infectious pancreatic necrosis virus, Infectious salmon anemia virus, and Salmonid 

alphavirus. The fish were kept on a 12-hour photoperiod, except during and after smoltification, 

for which fish were kept on a 24-hour photoperiod. 

2.2 Challenge material 

The bacterial strain used for the challenge was T. finnmarkense strain HFJT isolated from 

diseased Atlantic salmon suffering from tenacibaculosis at seawater site in Finnmark, Norway 

in 2013 (Småge, Brevik, et al., 2016). The strain has previously shown to experimentally induce 

tenacibaculosis in Atlantic salmon (Småge et al., 2018). Preparation of the challenge material 



(batch cultures of T. finnmarkense) used in this study was conducted by Solheim (2020) and 

Cermaq-staff. The stock was made using T. finnmarkense strain HFJT (passage 5) and marine 

broth (MB) and incubated at 16 °C with shaking (140 rpm) for 48-52 hours and stored at -80 

°C until use. See Solheim (2020) for additional details.  

2.3 Experiment design 

Three different challenge trials were carried out to test the different variables (environment 

conditions and smolt size) required to develop the challenge model and test our hypothesis for 

T. finnmarkense infection of Atlantic salmon post-smolts. The experimental trial was approved 

by the Norwegian Food Safety Authority (Mattilsynet) under the identification code 19450 and 

was conducted under regulations controlling experiments and procedures in live animals in 

Norway. For the duration of each challenge trial, the fish were monitored at least twice a day 

for signs of disease (especially post challenge) and fish with behavioral changes and/or clinical 

signs like erratic swimming, swimming near the water surface, color changes or severe 

ulceration were collected, killed and removed from the experiment.  

The experiment design is illustrated in Figure 3. After smoltification, the first smolts were 

transferred from the production facility to the challenge facility for a pre-challenge test to adjust 

the challenge dosage to be used in the challenges. Remaining smolts were kept on freshwater 

in the production facility before fish were transferred to the challenge facility for challenge 1F 

(Trial 1). Remaining smolts in the production facility were divided into two groups, where one 

group was kept on freshwater while the other group was kept on low strength seawater, both 

still at 12 °C and 24-hour photoperiod. The fish were held for four weeks at the production 

facility before the next transmission of smolts to the challenge facility for challenge 2F & 2LSS 

(Trial 2). Remaining smolts in the production facility were held at their respective water 

qualities for another four weeks before being transferred to the challenge facility for challenge 

3F & 3LSS (Trial 3). For all challenge groups, there were three replicate challenge tanks and 

one control tank. 

Before challenge, the fish were starved for 24 hours and then transferred from the production 

facility to challenge-tanks in the challenge facility. The challenge tanks measured 150 L with 

water (the same water quality the fish had in the production facility) at 10 °C and had a flow 

rate at 300 L/h. The fish were fed in excess with automatic feeding and kept at 24-hour 

photoperiod. The water temperature was turned down to 8 °C and full-strength seawater was 

turned on 24 hours before challenge. The fish were starved 48 hours before challenge. 



 

Figure 3. Timeline of the experiment, showing the number of fish (n), the start and the end of the experiment, initiation of smoltification, separation 

of fish into two groups reared in two different water qualities (WQ), freshwater (F) and low salinity seawater (LSS), pre-challenge (red), challenge, 

0-sampling, 3 dpc-sampling (dpc = days post challenge) and termination for Trial 1 (green), 2 (blue) and 3 (orange).



2.3.1 Pre-challenge 

To determine the optimal infection dosage of T. finnmarkense to be used in the challenge trials, 

a pre-challenge was conducted. Five fish from each of the four tanks in the production facility 

was transferred to the challenge facility, where they were acclimated in freshwater tanks at 10 

°C for two days before the temperature was turned down to 8 °C and full-strength seawater was 

turned on 24 hours before challenge. The light regime in the challenge facility was 24 h. The 

fish were then transferred to separate seawater tubs (34 ppt) measuring 60 L at 8 °C. The water 

in the tubs was oxygenated using pressure diffuser and supervised. The fish were then 

challenged with two different dosages, 2.2 x 106 cells/mL (high) and 7.75 x 105 cells/mL (low) 

of T. finnmarkense HFJT, ten fish per dosage. The dosage of 200 and 75 mL (high and low, 

respectively) was added directly in the tubs. The time of infection was two hours before the fish 

were transferred back to their respective challenge tanks. 

2.3.2 Trial 1: Challenge 1F 

Challenge 1F aimed to test the susceptibility for T. finnmarkense of newly smoltified salmon 

(n = 95) with an average weight of 71 g2 after the transition to seawater. The fish were 

transferred from the production facility to four separate challenge-tanks measuring 150 L in the 

challenge facility. Tank 1-3 (n = 23 for each tank) were the challenge tanks while tank 4 (n = 

26) was the control tank. The fish were acclimatized in freshwater at 10 °C for two days before 

the temperature was turned down to 8 °C. Fish were starved 48 hours before challenge. The 

light in the challenge facility was 24 h. Full-strength seawater (34 ppt) was then turned on 24 

hours before the challenge. The fish were then transferred to four separate seawater tubs (34 

ppt) measuring 60 L at 8 °C. The water in the tubs was oxygenated using pressure diffuser and 

supervised. The experimental groups were challenged with the adjusted dosage of T. 

finnmarkense strain HFJT of 1.57 x 106 cells/mL. The dosage was determined based on the 

dosage used in the pre-challenge. The control group was treated the same way as the 

experimental group, only with an uninoculated growth medium as control. The total amount 

added directly in the tubs was 200 mL. The time of infection was two hours before the fish were 

then transferred back to their respective challenge-tanks. The experiment was terminated 19 

days post-challenge.  

  

 
2 Average weight provided by ILAB-staff. 



2.3.3 Trial 2: Challenge 2F & 2LSS 

Challenge 2F & 2LSS aimed to test the susceptibility for T. finnmarkense of post-smolts (n = 

95 for each group) with an average weight of 105 and 90 g, respectively. The process was the 

same as for challenge 1F, with the addition of the 2LSS fish which were acclimated in low 

strength seawater. The experimental groups were challenged using a dose of T. finnmarkense 

strain HFJT of 1.69 x 106 cells/mL. The total amount added was 250 mL. The dosage was 

adjusted from experiment 1F based on the mortality in challenge 1F. The experiment was 

terminated 19 days post-challenge. 

2.3.4 Trial 3: Challenge 3F & 3LSS 

Challenge 3F & 3LSS aimed to test the susceptibility for T. finnmarkense of post-smolts (n = 

95 for each group) with an average weight of 150 and 124 g, respectively. The process for 3F 

& 3LSS were the same as for 2F and 2LSS, respectively. The experimental groups were 

challenged with a dose of 1.71 x 106 cells/mL T. finnmarkense strain HFJT. The total amount 

added was 280 mL. The experiment was terminated 19 days post-challenge.  

2.4 Sampling 

Samplings were carried out at ILAB in Bergen, Norway. Fish sampled before challenge from 

the production facility will hereby be referred to as 0-samples, while fish sampled three days 

post challenge (1F, 2F & 2LSS, and 3 & 3LSS) from the challenge facility will hereby be 

referred to as 3 dpc-samples. In total six samplings were conducted in the period between May 

15th, 2019, and July 15th, 2019. See Figure 3 for the number of fish sampled. 

For all samplings, the following tissues were sampled from each fish: ventral skin, dorsal skin, 

lower jaw, and caudal fin. Each tissue sample was cut in half – one half for gene transcription 

analysis and the other half for histology. The fish were transferred from their tanks to buckets 

where they were euthanized with an overdose of Finquel Vet. (Scan Aqua) and if necessary, a 

stroke to the head. The fish were then transferred to the laboratory where they were weighed 

and measured (fork length) before they were scored according to Nofima’s fish welfare scoring 

scheme (Noble et al., 2018). Additional scoring was performed on 3 dpc-samplings, where 

ulcers were scored according to size and location on the fish (see Appendix 1 for scoring 

schemes).  

Samples were excised from four areas of the fish (left side up) using a scalpel, forceps, and a 

pair of scissors. Dorsal and ventral skin-samples were excised from the area posterior of the 



dorsal and pelvic fins, above and one piece under the lateral line, respectively. The lower jaw 

and the top of the caudal fin were cut off. Samples for microarray analysis were added in 

Eppendorf tubes containing RNAlaterTM (Invitrogen) and stored in room temperature for 1 day 

before stored at –20 °C until RNA extraction. The other set of samples for histology were added 

in 20 ml pots containing 10% buffered formalin (CellStorTM pots, CellPath) and stored at 4 °C 

until preparations for histology.  

For 0-samplings, Solheim (2020) sampled skin and kidney for real-time rt qPCR to screen for 

known bacterial and parasitic pathogens before challenge, in addition to the second gill arch for 

SmoltVision to verify smolt status. For 3 dpc-samplings, skin and kidney were sampled for rt 

qPCR to identify levels of T. finnmarkense, in addition to skin samples for histology and 

scanning electron microscopy (SEM). At the termination of each trial, the fish were weighed 

and measured, and scored for external welfare indicators. 

2.5 Histological analysis  

The histological analyses used in this thesis included manual and digital measurements of 

epidermis thickness and mucous cells of 0-samples, in addition to observation of overall 

morphology and examination of histopathological changes of 3 dpc-samples. 3 dpc-samples 

with beginning ulcers or developed ulcers were selected for analysis based on ulcer scoring 

(Appendix 4). 

2.5.1 Preparations of samples 

Preparations of dorsal, ventral, and jaw 3 dpc-samples (n = 132) were conducted at Nofima, 

Ås. Samples were cut and trimmed to the proper size and placed in tissue embedding cassettes 

(Simport Scientific Inc). Cassettes were then added 10% Titriplex 3 (Merck KGaA) 

decalcifying solution for softening of scales and bones before sectioning. The pH of the solution 

was measured and adjusted with drops of NaOH (sodium hydroxide) or drops of HCl 

(hydrochloric acid) until pH = 7. The ventral and dorsal skin-samples were put in the 

decalcifying solution for a minimum of 24 hours at room temperature and jaw skin-samples a 

minimum of 48 hours at 4 °C, followed by 30 minutes in room temperature. The samples were 

then washed in spring water and transferred to phosphate-buffered saline (PBS) solution. 

Samples were then dehydrated through a graded series of ethanol using a Tissue processor Leica 

TP1020 (Leica Microsystems). The following concentrations of ethanol were used: 50% (1 h), 

70% (1 h), 96% (1 h), 100% (30 min + 30 min + 30 min), followed by xylene (30 min + 30 min 



+ 30 min) and paraffin (1 h + 2 h). Samples were embedded in paraffin using a Paraffin 

embedding module Leica EG1150 H and a Cold plate Leica EG1150 C (Leica Microsystems) 

before sections (5 µm) were prepared using a Microtome Leica RM2165 (Leica Microsystems) 

and a Water bath Leica HI1210 (Leica Microsystems). To ensure a nice and even section when 

cutting in the tough tissue consisting of scales and bone, an extra durable Leica DB80 LX 

microtome blade was used. Sections were dried in a heated cupboard at 37 °C overnight or at 

60 °C for one hour. Slides were deprived of paraffin through deparaffinization in xylene (5 min 

+ 5 min) and ethanol 100% (5 min + 5 min), 96% (5 min + 5 min), 70% (5 min), and 50% (5 

min). Sections (n = 2-3 per sample) and then stained using Leica ST5010 Autostainer XL (Leica 

Biosystems). To differentiate between acidic and neutral mucous cells, slides were stained with 

AB-PAS and counterstained with Lilly's hematoxylin (Sigma-Aldrich). The process was as 

follows: 15 minutes in Alcian Blue (Sigma), pH 2,5 followed by 10 minutes in 1% Periodic 

Acid (Merck KGaA), 15 minutes in Schiff (Merck), and counterstain for 30 seconds. Staining 

with hematoxylin-eosin (HE) was done by staining the slides for seven minutes in Lilly's 

hematoxylin (Sigma-Aldrich), followed by three minutes in 1% Hexamine and three minutes 

in Erythrosine B (Sigma-Aldrich). Right after staining the sections were covered with a 

coverslip using a fully automated glass cover slipper Leica CV5030 (Leica Biosystems) and 

then allowed to air-dry in a fume hood for 1-3 days before microscopy. 

Preparations of dorsal, ventral, jaw, and tail fin 0-samples (n = 120) were conducted at the 

Veterinary Institute in Harstad, Norway. Sections (5 µm) were stained with AB-PAS and sent 

back to Nofima, Ås for scanning, and microscopy.  

All samples were scanned electronically using Aperio CS2 Digital Pathology Slide Scanner 

(Leica Biosystems). The digital slide images were examined in the program Aperio Image 

Scope (Leica Biosystems). 

  



2.5.2 Manual measurements and morphology of jaw 0-samples 

Jaw 0-samples (n = 30) were analyzed manually using Aperio Image Scope. The jaw samples 

were defined into three areas: Area 1, Area 2, and Area 3 (Figure 4). This was because the 

structure of the jaw varied significantly between areas, which could alter the results of the 

measurements. Each area of the jaw was investigated for overall morphology, measured for 

epidermis thickness (µm; six length measurements per area) and area (µm2), and also the 

number, placement (surface or underlying) and color (blue or purple) of mucous cells.  

 

 

Figure 4. Overview of the different areas of the jaw, Area 1, 2 and 3.  

 

  



2.5.3 Digital measurements of ventral and dorsal 0-samples  

Ventral (n = 30) and dorsal (n = 30) 0-samples were analyzed digitally using artificial 

intelligence (AI) software Aiforia® (Aiforia Technologies Oy). The software provides deep 

learning AI or images analysis, based on algorithms. The ventral skin-sample was defined into 

two areas: ventral and vent (Figure 5), for the same reason as for the jaw. The ventral, vent and 

dorsal skin-samples were measured for epidermis thickness, and number, placement, and color 

of mucous cells. 

 

Figure 5. Overview of different areas in ventral skin-samples, showing the ventral area and the 

vent area.  

 

2.5.4 Morphology and histopathological changes of 3 dpc-samples 

Jaw (n = 60), ventral (n = 60) and dorsal (n = 60) 3 dpc-samples were investigated for epidermis 

morphology, overall morphology, and histopathological changes using Aperio Image Scope. 

Samples were compared to controls. Groups investigated were 2F & 2LSS and 3F & 3LSS. 1F 

was excluded due to low mortality and low prevalence of T. finnmarkense (Solheim, 2020). For 

jaw 3 dpc-samples, the epidermis morphology in Area 1, 2, and 3 was scored according to the 



degree of damage, ranging from 0-3. Areas with intact epidermis were given score 0, minor 

damage score 1, moderate damage score 1.5, serious damage score 2, severe damage score 2.5, 

while areas with destroyed or missing epidermis were given the highest score of 3. 

2.5.5 Immunohistochemistry  

A selection of ventral and jaw 3 dpc-samples was prepared for immunohistochemistry to verify 

the presence of Tenacibaculum spp. and to locate in what tissue layers of the skin the bacterium 

was found. Samples (n = 34, including controls) with varying degrees of histopathological 

changes were sent to the Veterinary Institute in Harstad, Norway for preparations, and sent back 

to Nofima, Ås for scanning and microscopy. The antibody used was targeting Tenacibaculum 

spp., and as the fish in this experiment were challenged with T. finnmarkense, positive samples 

are assumed to be T. finnmarkense. 

2.6 Preparations of RNA for gene expression analysis 

The preparations for gene expression analysis consisted of two parts. Part one was the 

separation of the skin-samples into epidermis and dermis. Due to epidermis and dermis being 

two different tissue layers with different cell types and thus functions, these two tissue layers 

are thought to have different transcriptional profiles. Part two was the RNA-extraction using 

the Biomek 4000 (Beckman Coulter) robot and the Agencourt® RNAdvanceTM Tissue Kit.  

Due to economical limitations, only ventral 3 dpc-samples were selected for microarray 

analysis. Based on the ulcer scoring (Appendix 2, Appendix 4), most of the ulcers were located 

on the ventral side, making this area the most interesting tissue to study gene expression.  

2.6.1 Separation of skin samples into dermis and epidermis 

Qiagen collection microtubes (QIAGEN) were prepared with 400 µl lysis buffer (Beckman 

Coulter) and two ~3 mm Qiagen beads (QIAGEN) for each sample. The tubes were placed in 

a 96 well plate. The method for the separation is schematically demonstrated in Figure 6. Each 

skin sample was separated into epidermis and dermis using forceps and scalpel blades in the 

following procedure: The sample was taken out of its Eppendorf tube containing RNAlater and 

placed on a petri dish under the loupe. Six to ten scales were plucked using forceps and the 

scales were placed down with the epidermis side up. The rest of the sample was put back in the 

Eppendorf tube to prevent RNA decomposition. The epidermis was carefully scraped off the 

scales using a scalpel blade and then collected and transferred in the Qiagen collection 

microtubes containing lysis buffer. The sample was again taken out of its Eppendorf tube and 



placed under the loupe. The muscle and the pigmented hypodermis (thin, black layer under the 

dermis) layer were scraped off using a scalpel blade until only the dermis and scale pockets 

remained. A small piece (2x2 mm) of the dermis with scale pockets was then transferred in the 

next Qiagen collection tube containing lysis buffer. This was repeated for all ventral skin-

samples.  

 

Figure 6. Schematic figure demonstrating the method for separation of skin samples into 

epidermis (EPI) and dermis (DER). Scales (SC) were plucked and then the epidermis was 

scraped. The dermis layer was trimmed to the proper size, and both tissues were stored in 

RNAlater until use.  

 

2.6.2 Cellular disruption and RNA extraction 

Qiagen collection tubes containing buffer and sample was used in RNA-isolation protocol. The 

first step of the RNA extraction was the cellular disruption of epidermal and dermal tissue, to 

ensure the RNA is available for isolation. For all samples, 20 µl of Proteinase K (Beckman 

Coulter) was added (cons 50 mg/ml) to ensure protein digestion, and the tubes were sealed with 

collection microtube caps (QIAGEN). The plate with samples was then shaken in the FastPrep 

96 homogenizer (MP Biomedicals) for 120 seconds with maximum shaking (1800) before it 

was spun down in a centrifuge and put in the heated cupboard for minimum 30 minutes at 37 

°C Samples were then stored at -80 °C until RNA extraction. 

The extraction of RNA was performed on the Biomek 4000 (Beckman Coulter) robot. The 

samples were defrosted in the heated cupboard at 37 °C and then transferred to a deep well 

plate. The volume of reagents (70% EtOH, binding solution, DNase, wash buffer) was 

calculated according to the number of samples and placed in the robot according to the RNA 

extraction program.  



2.6.3 RNA quality 

Microarray analysis requires a minimum RNA concentration of 40-50 µl/ml. The purity and 

integrity of the RNA were analyzed to ensure the samples were not contaminated and that the 

RNA was not degraded. The RNA concentration and the purity (A260/A280 and A260/A230) 

of all samples were measured using a NanoDropTM 8000 Spectrophotometer (ThermoFisher 

Scientific) and a multichannel pipette. Before measurements, all eight positions on the lower 

pedestal were blanked with the elution solvent, in this case, nuclease-free water. This to be able 

to distinguish the absorbance from the blank sample from that of the sample containing RNA. 

Then, 1 µl sample was loaded onto all eight positions and measurements made. A sample is 

considered pure when the value for A260/A280 > 2,0 and A260/A230 > 2,2. The integrity of 

the total RNA for four samples was measured using an Agilent 2100 Bioanalyzer (Agilent 

Technologies) and the Agilent Small RNA Kit according to the manufacturer’s instructions. 

The quality was assessed by the RNA integrity number (RIN) and samples were considered OK 

with RIN > 7.5. Total RNA samples were stored at −80 °C until use. 

2.7 Microarray 

Microarray analysis of the epidermis and dermis ventral skin-samples from different 

experimental groups were performed using Nofima’s 44 k Atlantic salmon oligonucleotide 

microarray. Microarray, reagents, and equipment were purchased from Agilent Technologies. 

The microarray contains probes to known protein-coding genes of Atlantic salmon (Salgeno-

2). Microarray preparation and analysis were carried out by lab engineers and researchers at the 

biotechnology lab at Nofima, Department of Fish Health, Ås. In this master thesis, a summary 

of the response to T. finnmarkense infection is presented, including gene transcription patterns 

of immune, cell, and tissue genes in the epidermis and dermis between study groups.  

2.8 Statistical analysis  

All graphs were made, and statistical analysis performed in PRISM GraphPad (GraphPad 

Software) unless stated otherwise. For normally distributed data, a two-way ANOVA was used 

to test for significant interaction between parameters. For data not distributed normally, a 

Kruskal-Wallis test was used for the same purpose. Post hoc differences were investigated using 

either Tukey-Kramer or Dunn’s multiple comparison test. 



Graphs with the results from Aiforia® and the microarray analysis were made, and statistical 

analysis was performed by researchers at Nofima. Graphs were slightly modified before 

presented in this master thesis. 

  



3 Results 

3.1 Sampling 

Weight (W) in grams and condition factor (CF) and standard deviation (SD) from fish sampled 

before and three days post-challenge, i.e. 0-sampling and 3 dpc-sampling respectively, are 

presented in this section. 

3.1.1 0-sampling 

The weight development of fish sampled before challenge is summarized in Table 1. Weight 

data was significantly different regarding both time (p < 0.0001) and water quality (p < 0.0001), 

but not for the interaction between the two (p = 0.1086). Figure 7 A shows that weight increased 

between the three time-points for fish reared in F and between 0-sampling 2 and 3 for LSS. 

Also, the weight for fish reared in F was higher than that of fish reared in LSS for 0-sampling 

2 and 3. CF was significantly different regarding time (p < 0.0001) but not water quality (p = 

0.3896) nor interaction between the two (p = 0.2740). CF was higher at 0-sampling 1 compared 

to 0-sampling 2 and 3 (Figure 7 B). 

 

Table 1. Mean ± SD weight (g) and condition factor (CF) of Atlantic salmon smolts reared in 

two different water qualities, freshwater (F) and low strength seawater (LSS), sampled before 

challenge (i.e. 0-sampling). The time between sample points was four weeks. 

0-sampling Weight CF 

 
0-sampling 1       

n = 15 
F 71.5 ± 7.7 1.23 ± 0.04 

 

 
0-sampling 2       

n = 24 

F 104.7 ± 14.2 1.12 ± 0.06  

LSS 77.7 ± 12.0 1.07 ± 0.04  

0-sampling 3       

n = 24 

F 141.1 ± 19.6 1.12 ± 0.05  

LSS 119.1 ± 20.9 1.12 ± 0.08  

 

 

 



 

Figure 7. Box plot showing mean ± SD weight (g) and condition factor (CF) of Atlantic salmon 

smolts reared in two different water qualities (WQ), freshwater (F), and low strength seawater 

(LSS). Fish were sampled before challenge (n = 15, 24, and 24 for 0-sampling 1, 2, and 3, 

respectively). The time between sample points was four weeks. A. Weight increased between 

all samplings for fish reared in F and for sampling 2 and 3 for fish reared in LSS. The weight 

of F fish was greater than of LSS fish for sampling 2 and 3. B. CF was higher at 0-sampling 1 

compared to 0-sampling 2 and 3.  

A comparison of weight and CF between each pair was assessed by a two-way ANOVA. 

Different letters indicate significant differences between the groups (Tukey-Kramer posthoc 

test, p < 0.05). 



3.1.2 3 dpc-sampling 

Weight development of challenged and control fish is summarized in Table 2. The weight, but 

not CF increased over time. Figure 8 A shows the development in weight between challenged 

and control fish (independent of water quality). Weight was significant different in time (p < 

0.0001) but not between challenged and control fish (p = 0.5129) and neither for the interaction 

between the two (p = 0.7486). Development in CF is shown in Figure 8 B. The effect on 

condition factor was tested using the Kruskal-Wallis test, indicating no significant difference 

between time points (p = 0.1692).  

 

Table 2. Mean ± SD weight (g) and condition factor (CF) of Atlantic salmon smolts reared in 

two different water qualities, freshwater (F) and low strength seawater (LSS), sampled 3 days 

post challenge (3 dpc). The time between sample points was four weeks. 

3 dpc-sampling Weight CF 

 

1F 

challenge (n = 9) 65.6 ± 13.1 1.06 ± 0.04  

control (n = 6) 70.2 ± 7.6 1.07 ± 0.04  

2F 

challenge (n = 9) 98.4 ± 14.3 1.03 ± 0.08  

control (n = 6) 101.8 ± 7.1 1.11 ± 0.03  

2LSS 

challenge (n = 9) 98.2 ± 11.7 1.14 ± 0.05  

control (n = 6) 92.2 ± 13.9 1.06 ± 0.07  

3F 

challenge (n = 9) 151.1 ± 21.2 1.07 ± 0.06  

control (n = 6) 157.8 ± 18.5 1.15 ± 0.03  

3LSS 

challenge (n = 9) 129.0 ± 16.9 1.13 ± 0.06  

control (n = 6) 133.7 ± 25.2 1.12 ± 0.10  

 



 

Figure 8. Box plot showing mean ± SD weight (g) and condition factor (CF) of Atlantic salmon 

smolts sampled 3 days post challenge (n = 18 and 12 for challenged and control fish, 

respectively). The time between sample points was four weeks. A. A comparison of weight 

between each pair was assessed by a two-way ANOVA, showing an increase between time-

points (p < 0.0001). Different letters indicate significant differences between the groups (Tukey-

Kramer posthoc test, p < 0.05). B. CF, showing no significant differences between time-points 

(Kruskal-Wallis, p = 0.1692). 



3.2 Histological analyses  

Histological analyses were performed on jaw, ventral, vent, and dorsal 0-samples and 3 dpc-

samples (all samples AB-PAS). Analyses include manual and digital measurements of 

epidermis thickness and number of mucous cells, in addition to observation of morphology and 

histopathological changes. 

3.2.1 Manual measurements of jaw skin-samples 

Representative images of jaw epidermis from Area 1 are presented in Figure 9. The jaw 

epidermis thickness in µm (mean ± SD) from fish reared in freshwater increased over time, but 

a different development is observed for fish reared in low strength seawater (Table 3). The 

development over time (independent of area) is presented in Figure 10 A, showing an increase 

over time (p = 0.0012), but no significant differences regarding water quality (p = 0.7512), nor 

the interaction between them (p = 0.1078).  There is however a difference in epidermis thickness 

between areas of the jaw (p < 0.0001). Area 1 was thickest followed by Area 2 and Area 3, as 

presented in Figure 10 B.  

 

Table 3. Epidermis thickness of Atlantic salmon smolts reared in freshwater (F) and low 

strength seawater (LSS). Table showing the number of jaw samples (n) and the epidermis 

thickness in µm (mean ± SD) measured in three different areas of the jaw, Area 1, 2, and 3. The 

time between sample points was four weeks. 

0-sampling Area 1 Area 2 Area 3 

 
0-sampling 1       

n = 6 
F 113.3 ± 42.8 56.7 ± 19.3 47.9 ± 21.9 

 

 
0-sampling 2      

n = 12 

F 159.7 ± 48.2 98.7 ± 38.3 52.4 ± 11.9  

LSS 183.1 ± 27.5 137.4 ± 52.9 73.1 ± 16.0  

0-sampling 3      

n = 12 

F 212.4 ± 78.8 145.7 ± 66.6 80.7 ± 18.2  

LSS 171.9 ± 38.1 109.6 ± 30.5 86.6 ± 37.7  

 

 



 

Figure 9. Development of epidermis thickness in Area 1 of the Atlantic salmon jaw, showing 

0-samples taken before challenge, from fish reared at two different water qualities, freshwater 

(F), and low strength seawater (LSS). Samples stained with Alcian blue-Periodic acid-Schiff 

(AB-PAS). Epidermis layer measured as illustrated by lines. The time between each sampling 

is four weeks. 



 

Figure 10. Box plot showing mean ± SD thickness (µm) of jaw epidermis in Atlantic salmon 

smolts (n = 6, 12 and 12 for 0-sampling 1, 2 and 3, respectively) reared in two different water 

qualities (WQ), freshwater (F) and low strength seawater (LSS). The time between sample 

points was four weeks. A. Development of jaw epidermis thickness over time, independent of 

area. B. Jaw epidermis thickness per area (Area 1, 2, and 3), independent of time. Area 1 was 

thickest followed by Area 2 and Area 3.  

A comparison of mean thickness between each pair was assessed by two-way ANOVA. 

Different letters indicate significant differences between the groups (Tukey-Kramer posthoc 

test, p < 0.05).  

  



The data for the number of mucous cells in the jaw epidermis was not normally distributed, due 

to the data varied greatly among individual fish sampled at the same time-point. A Kruskal–

Wallis test (p < 0.0001) followed by a posthoc Dunn for multiple comparisons was used to 

show the difference between the three different areas of the jaw, as shown in Figure 11. The 

percentage of purple and surface mucous cells compared to the total number of mucous cells 

are summarized in Table 4. 

  

Figure 11. Box plot showing mean ± SD number of mucous cells in the jaw epidermis per area 

(Area 1, Area 2 and Area 3) from fish (n = 30) reared at to different water qualities (WQ), 

freshwater (F) and low strength seawater (LSS). A comparison was assessed by the Kruskal-

Wallis test (p < 0.0001) followed by posthoc test Dunn for multiple comparisons between the 

groups (brackets with p-value). 
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Table 4. Measurements of mucous cells in Atlantic salmon smolts reared in freshwater (F) and 

low strength seawater (LSS). Mean ± SD number of mucous cells, percentage ± SD of purple, 

and surface mucous cells in the jaw epidermis (Area 1, 2, and 3 combined), from 0-sampling 1, 

2 and 3. The time between sample points was four weeks. 

Sampling 0-sampling 1 0-sampling 2 0-sampling 3 

Water quality F F LSS F LSS 

Number of mucous 

cells 
4.75 ± 4.93 7.87 ± 7.16 5.06 ± 8.5 

18.22 ± 

22.33 
14.78 ± 19.6 

Percentage of 

purple mucous 

cells 

3.0 ± 10.0 1.0 ± 4.0 1.0 ± 3.0 1.0 ± 4.0 0 ± 0 

Percentage of 

surface mucous 

cells 

26.32 ± 36.21 13.56 ± 18.0 3.70 ± 8.52 6.10 ± 7.74 3.01 ± 3.89 

 

 

  



Correlation between the thickness of the epidermis and the number of mucous cells (both blue 

and purple) in the jaw epidermis was investigated by Spearman’s correlation analysis and the 

results are presented in Figure 12. A correlation was seen for Area 3 (r = 0.6075, p = 0.0005), 

but no correlation was seen for Area 1 (r = -0.0264, p = 0.8983) or Area 2 (r = 0.2621, p = 

0.1778). 

 

 

Figure 12. A. Overview over Area 1, Area 2, and Area 3 of the jaw. B. Correlation between 

epidermis thickness (µm) and the number of mucous cells in the jaw epidermis (0-sampling 1, 

2, and 3 combined). Spearman rank correlation coefficients (r) and p-values between the 

mucous cell numbers and epidermis thickness in three different areas of the jaw, Area 1 (r = 

0.0264, p = 0.8983), 2 (r = 0.2621, p = 0.1778) and 3 (r = 0.6075, p = 0.0005). Statistical 

analysis and presentation of data by Nofima researcher. Graphs are slightly modified.  

 



3.2.2 Digital measurements of ventral and vent skin-samples (Aiforia®) 

A selection of results from the digital measurements of ventral and vent skin-samples (AB-

PAS) are summarized in Figure 13, showing the development of measured variables epidermis 

area (µm2) and mucous cells per mm of skin-sample from fish reared at to different water 

qualities, F and LSS. The results suggest a similar development for the epidermis and mucous 

cells in both tissues. Ventral epidermis thickness was significantly different regarding time (p 

= 0.011) but not water quality (p = 0.556). Similarly, vent epidermis thickness was significantly 

different regarding time (p = 0.0001), not water quality (p = 0.556). Few effects were observed 

for dorsal samples regarding water quality nor time, and therefore the data is not included in 

the results. 

The same development is seen for the number of mucous cells per mm skin-sample. Mucous 

cells in ventral samples were significantly different regarding time (p = 0.049) but not water 

quality (p = 0.408). Also, mucous cells in vent samples were significantly different regarding 

time (p = 0.007), not water quality (p = 0.363). The percentage of purple ventral mucous cells 

was significantly different regarding water quality (p = 0.041), but not time (p = 0.373). 

However, the percentage of purple vent mucous cells were not significantly different regarding 

water quality (p = 0.083) nor time (p = 0.604). Placement of the ventral mucous cells (closest 

distance to epidermis outer border) was significantly different regarding time (p = 0.026) but 

not water quality (p = 0.706). Likewise, the placement of vent mucous cells was significantly 

different regarding time (p < 0.001) not water quality (p = 0.963). In ventral skin-samples, the 

epidermis thickness strongly correlates to the number of mucous cells per mm skin-sample (r = 

0.95, p < 0.001). In the vent skin-samples the correlation is almost as strong (r = 0.84, p < 

0.001).  



 

Figure 13. Aiforia® analysis data from ventral (n = 48) and vent (n = 42) skin 0-samples. Box 

plots showing the development of measured variables epidermis thickness (µm) and mucous 

cells from fish reared at two different water qualities, freshwater (F) and low strength seawater 

(LSS) from three different time-points (TP). The time between 0-sampling 1, 2, and 3 is four 

weeks. A and E. Epidermis thickness. B and F. Number of mucous cells per mm. C and G. 

Ratio of purple mucous cells of total mucous cells. D and H. Distance to epidermis border of 

blue mucous cells.  

Aiforia® analysis, statistical analysis, and presentation of data by researchers at Nofima, Ås. 

Graphs are slightly modified. 

 

  



3.2.3 Description of histopathological changes 

Jaw and ventral 3 dpc-samples (AB-PAS) from challenge 2F & 2LSS and 3F & 3LSS were 

investigated for overall morphology and histopathological changes. Samples from 1F are not 

included due to the low development of clinical disease signs and low mortality after challenge. 

Challenged fish were compared to control fish. Also, differences between fish reared in 

freshwater and fish reared in low strength seawater was investigated. One feature common for 

all groups (both jaw and ventral) is the large variation within groups in terms of tissue damage 

and inflammatory response, ranging from little to widespread damage and infection with T. 

finnmarkense. Tissue damage includes rupture of surface epithelium, degradation, 

vacuolization, and necrosis. In a few cases, tissue damage was observed in all layers of the skin, 

including the hypodermis and muscle tissue. Despite the large variation within challenge 

groups, two groups stood out regarding histopathological changes. In group 2F and 3F, severe 

tissue damage in the epidermis, as well as the dermis and hypodermis, were observed in 

association with large numbers of bacteria resembling Tenacibaculum spp., in addition to 

infiltration of inflammatory cells.  

Jaw samples 

Histopathological changes observed in the jaw samples are presented in Figure 14. A frequent 

observation among jaw samples was a complete loss of epidermis at the tip of the jaw (Area 1), 

with infiltration of immune cells in the dermis layer underneath. In some cases, an abrupt 

change from complete loss of epidermis to intact epidermis was observed (Figure 14 A). In 

other samples, the epidermis was intact, but suffered from tissue damage, including rupture of 

surface epithelium, vacuolization, and degeneration (Figure 14 B). A varying degree of 

pseudopodium-structures (arm-like projections from the cell) was observed in both challenge 

and control samples with different degrees of tissue damage (Figure 14 C). Vacuolization of 

the basal epithelium (Figure 14 D) was observed more frequently in fish reared in F than in LSS 

(Appendix 4). In general, fish reared in F had poorer skin surface compared to LSS (Appendix 

4). In more affected samples, histopathological changes were observed in all layers of skin, 

including dermis and hypodermis. In such samples, the epidermis layer was completely or 

partly lost (Figure 14 E), with vacuolization and degeneration, and infiltration of inflammatory 

cells in the dermis and hypodermis layer (Figure 14 F - G). Inflammation was observed in close 

proximity to tissue damage of the epidermis as well as the dermis. Some of the samples also 

had bacteria in the dermis layer (Figure 14 G - H). Limited changes were observed in most 

control samples (Figure 14 I), however, a few control samples from all groups showed tissue 



damage and/or complete loss of epidermis, in addition to infiltration of inflammatory cells 

(Figure 14 J).  



 



Figure 14. Representative images showing typical histopathology in jaw skin-samples from 

Atlantic salmon smolts 3 days post challenge. A. Complete loss of epidermis at the tip of the 

jaw (Area 1), and infiltration with immune cells in the dermis layer. B - C. Rupture of surface 

epithelium and loss of tissue structure, with arm-like projections between cells in the epidermis. 

D. Vacuolization of the epidermis. E. Severe loss of tissue structure in the epidermis. F - G. 

Loss of tissue structure and infiltration of inflammatory cells in the dermis layer H. Thick layer 

of tread-like bacteria replacing the epidermis. I. Control sample, showing intact epidermis and 

dermis. J. Control sample, showing rupture of the epidermis and infiltration of inflammatory 

cells. Epidermis (EPI). 

 

Ventral and vent skin-samples 

Moderate to severe tissue damage was observed in ventral and vent skin-samples. Tissue 

damage included loss of scales, vacuolization, and loss of structure in the epidermis, and 

infiltration of polymorphonucleated inflammatory cells in the loose connective tissue (Figure 

15 A - C). Also, a frequent finding was dilated blood vessels in the dermis of challenged samples 

(Figure 15 D), but not in controls. This was present in samples with both moderate and more 

severe tissue damage. In samples with severe tissue damage, changes were observed in all layers 

of the skin and the subcutaneous layers. Samples with widespread infection showed similar 

histopathological changes, including complete loss of the epidermis and scales, partial loss of 

tissue structure in the loose connective tissue in the dermis, and melanophore and adipose tissue 

in the hypodermis as well as degeneration and necrosis of muscle fibers (Figure 15 D). 

Infiltration of immune cells in connective tissue (Figure 15 E) and a thick layer of bacteria-like 

structures was also observed (Figure 15 F). Most control samples were unaffected (Figure 15 

G), however, some control samples displayed a thinner, sometimes ruptured epidermis (Figure 

15 H). 

 



  



Figure 15. Representative images showing typical histopathology in ventral skin-samples from 

Atlantic salmon smolts 3 days post challenge. A. Vacuolization and loss of tissue structure in 

the epidermis with dilated blood vessels in the dermis layer. B - C. Loss of tissue structure and 

infiltration of polymorphonucleated inflammatory cells (thin arrows) in the epidermis. D. 

Complete loss of epidermis and scales dilated blood vessels in loose connective tissue (bold 

arrows), and necrosis of muscle fibers. E. Infiltration of immune cells in loose and dense 

connective tissue. F. Loss of tissue structure in loose connective tissue infiltrated with thread-

like structures. G. Control sample showing intact epidermis, dermis, and hypodermis. H. 

Control sample, with a thinner and ruptured epidermis. Epidermis (EPI), loose connective tissue 

(LCT), dense connective tissue (DCT), necrotic muscle (NM), hypodermis (HYP). 

 

3.2.4 Immunohistochemistry 

Selected samples for immunohistochemistry were examined microscopically. Positive sections 

were stained bright red, revealing long rod-shaped bacteria, confirming the presence of T. 

finnmarkense. The bacterium was observed in all layers of the skin, including the epidermis, 

dermis, and the hypodermis layer, however, most frequently observed in the dermis, with the 

highest abundance closest to the outer dermis. Individual bacteria were observed deeper in the 

lesion, and rarely in the epidermis. The presence of the bacterium was often accompanied by 

an immune response. However, inflammation was also observed in some samples with no or 

very little positive staining for bacteria.  

Jaw skin-samples 

Typical findings in positive samples were T. finnmarkense in close proximity to the affected 

epidermis (Figure 16 A – C, Figure 17 A – C). In most cases, the bacterium was observed at 

the tip of the jaw (Area 1). In a few cases, the epidermis was completely lost and replaced by a 

thick layer of bacteria (Figure 16 A – B). T. finnmarkense was rarely observed within the 

epidermis. The bacteria were observed abundantly in the dermis layer right under the epidermis, 

randomly organized in dense and loose connective tissue.  



 

Figure 16. Jaw samples stained using immunohistochemistry, showing an overview of samples 

with widespread infiltration with T. finnmarkense (positive samples stained bright red) from 

Atlantic salmon smolts 3 days post challenge. A - C. Challenged, showing partial or complete 

loss of epidermis, and massive infiltration of bacteria. D. Control samples with intact epidermis 

and negative for T. finnmarkense. Epidermis (EPI). 

 

Investigating the sections at higher magnification reviled bacteria in close proximity to the 

affected epidermis (Figure 17 A - C). T. finnmarkense was typically observed in the top layer 

of the dermis (Figure 17 D). Also, the bacteria were observed transitioning between layers of 

the skin through anchoring points of connective tissue (Figure 17 E). In the hypodermis, the 

bacteria were randomly organized, but observed in close proximity to blood vessels (Figure 17 

F). 

 



 

Figure 17. Jaw samples stained using immunohistochemistry, showing infiltration with T. 

finnmarkense (positive samples stained bright red) from Atlantic salmon smolts 3 days post 

challenge. A - C. Rupture and loss of tissue structure in the epidermis. D. A thick layer of 

bacteria in the dermis layer underneath the epidermis. E. T. finnmarkense transitioning between 

layers of skin in the dermis layer through connective tissue (arrows). F. The bacterium in the 

hypodermis layer surrounding blood vessels. Epidermis (EPI), blood vessel (BV). 

 

Ventral skin-samples 

T. finnmarkense was typically observed in loose and dense connective tissue and inside scale 

pockets in association with inflammatory cells (Figure 18 A and C - D). When present in the 

epidermis, the bacterium was associated with loss of tissue structure and parts of the epithelium 

“peeled” off (Figure 18 A). Inflammation was observed also without the presence of bacteria 

(Figure 18 B). In samples heavily infected, the T. finnmarkense was observed also in the 

subcutaneous layers of the skin, associated with the myocommata close to the vent (Figure 18 

D - E). None of the control samples stained positive for T. finnmarkense (Figure 18 F). 



 

Figure 18. Ventral skin-samples stained using immunohistochemistry, showing an overview of 

samples with widespread infiltration with T. finnmarkense (positive samples stained bright red) 

from Atlantic salmon smolts 3 days post challenge. A. Epidermis «peeling» off. B. Loss of 

tissue structure and infiltration of immune cells in the epidermis and loose connective tissue. 

Dilated blood vessels (arrows) without the presence of bacteria. C. Infiltration of bacteria in 

loose connective tissue and inside scale pockets. Dilated blood vessels (arrows). D. Loss of 

epidermis and scales dilated blood vessels (arrows). Bacteria is observed in dense connective 

tissue as well as in the subcutaneous layers of skin, down to the muscle. E. Bacteria in the 

hypodermis layer, in myocommata, in close proximity to necrotic muscle. F. Control sample 

with intact epidermis, scales, connective tissue, and hypodermis. Epidermis (EPI), loose 

connective tissue (LCT), dense connective tissue (DCT), hypodermis (HYP), necrotic muscle 

(NM). 



Investigating sections on higher magnification reviled T. finnmarkense loosely organized in 

loose connective tissue (Figure 19 A), while in dense connective tissue the bacterium was 

observed oriented between alternating collagen fibers (Figure 19 B - C). Interestingly, the 

bacteria were observed transitioning from loose connective tissue to dense connective tissue 

(Figure 19 D - E) and from dense connective tissue to hypodermis (Figure 19 F) through 

anchoring points. Bacteria were observed surrounding scales (Figure 19 G) and blood vessels 

(Figure 19 H - I). 

  



 

Figure 19. Ventral samples stained using immunohistochemistry, showing infiltration of T. 

finnmarkense (positive samples stained bright red) from Atlantic salmon smolts 3 days post 

challenge. A. Bacteria randomly organized in loose connective tissue. B - C. Bacteria in dense 

connective tissue, following the alternating orientation of the collagen fibers. D - E. Bacteria 

transitioning from loose connective tissue to dense connective tissue through connective tissue 

(arrows). F. Bacteria in anchoring points (arrows) between dense connective tissue and 

hypodermis. G. Bacteria surrounding scales in close proximity to the ruptured epidermis. A few 

bacterial cells can be seen in the epidermis. H - I. Bacteria in the hypodermis, surrounding 

blood vessels filled with blood cells. Loose connective tissue (LCT), dense connective tissue 

(DCT), scales (SC), hypodermis (HYP), blood vessel (BV). 



3.3 Gene expression 

The microarray results presented in this thesis are meant to give an overview of the overall 

effect of T. finnmarkense infection on gene transcription patterns in the epidermis and dermis. 

A selection of results from the microarray analysis of the epidermis and dermis from ventral 

skin-samples from 3 dpc-sampling 1F and 2F & 2LSS are presented in Appendix 6. The 

transcription profile includes patterns of selected immune, cell, and tissue gene categories in 

the epidermis and dermis between the experimental groups. Differentially expressed genes 

(DEG) are organized in gene groups, which are either increased or decreased in expression.  

The results indicate high similarity in gene transcription profiles between the epidermis and the 

dermis layer. Within the tissue layers, a pattern indicating the up-regulation of immune genes, 

down-regulation of cell renewal genes, and up-regulation of cell stress/apoptosis genes was 

observed. For the immune genes, infection with T. finnmarkense stimulates a range of protective 

immune responses in the skin triggered by host immune regulators including chemokines, 

cytokines, and eicosanoids. Other immune genes coding for lymphocytes, B-cells, and antigen-

presentation are also up-regulated in both tissues. The up-regulation of cell stress and apoptosis 

genes suggest that the tissue was suffering from damage. Erythrocyte and plasma genes are up-

regulated, indicating increased blood flow to both tissues. Also, the group of iron heme is 

upregulated in dermis indicating iron to be of relevance in infected tissue. In parallel to the up-

regulation of immune genes, a down-regulation of different factors involved in tissue and 

cellular development was observed, including DNA replication, tissue differentiation and 

cytoskeleton keratin. 

  



4 Discussion 

A newly emerging disease, tenacibaculosis, has inflicted a substantial load on the Norwegian 

salmon farming industry the last years, leading to increased mortalities, reduced fish welfare, 

and higher use of antibacterial drugs. Little is known about factors that trigger disease, or which 

are involved in the pathogenicity of the causative agent, T. finnmarkense. New development in 

smolt production strategies allows a different approach to today’s production strategies, where 

the fish are transferred to seawater net-pens directly from freshwater when smoltified. Increased 

production of post-smolt on land is a strategic focus to reduce mortality in the period after sea 

transfer (Sommerset et al., 2020). This thesis investigates the effect of environmental conditions 

and smolt size on the susceptibility for infection with T. finnmarkense. The different rearing 

conditions, freshwater, and low strength seawater, and the time before transmission to seawater 

and exposure to the bacterium, represents different sea transfer strategies in Atlantic salmon 

farming.  

4.1 Salmon smolts stocked at higher salinity have lower mortality when challenged 

with T. finnmarkense 

Results of Solheim (2020) indicate an effect of both water quality and smolt size on mortality, 

and susceptibility of infection with T. finnmarkense. In Trial 2, the accumulated mortality was 

higher in challenge 2F (48 %) compared to 2LSS (20 %). Likewise, in Trial 3 the accumulated 

mortality was higher in challenge 3F (25 %) than in 3LSS (12 %). The effect of water quality 

is also reflected in the welfare scoring conducted at the samplings, with most ulcers observed 

in fish reared in F (Appendix 2). However, the F fish had better growth (Figure 7, Figure 8) and 

had fewer cases of production disorders (Appendix 2). The same trends as for mortality rates 

were observed in the rt qPCR results (Solheim, 2020) with higher a prevalence of T. 

finnmarkense in F fish than in LSS fish, for Trial 2 and 3. The rapid development in mortality 

at the beginning of the trials, suggests an acute disease progression, similar to what has been 

described in other challenge experiments (Småge et al., 2018) and field outbreaks (Småge et 

al., 2017). Comparing Trial 2 and 3 shows a higher mortality rate and higher prevalence of T. 

finnmarkense in challenge 2F compared to 3F. Although the positive effect of a larger smolt 

size is indicated, Trial 2 and 3 cannot be compared directly because firstly, they are two 

independent trials in time, and secondly, they used two different bacterial batches where the 

infection dose used in challenge 3F was (slightly) higher compared to 2F. 



Several factors are known to affect growth and pathogenicity of fish skin pathogens, including 

salinity (Tunsjø et al., 2007). The effect of salinity on growth and pathogenicity of T. 

finnmarkense is not well-studied. It is, however, described in other members within this taxon, 

including T. maritimum (former Flexibacter maritimus). It has been shown that the salinity 

below 15 ppt can reduce the growth rate of this bacterium, and therefore fish mortalities in 

salmonid fish (Soltani & Burke, 1995). This was supported by Soltani, Munday, and Burke 

(1996), showing reduced salinity below 15 ppt alters the development of skin erosion disease 

caused by T. maritimum.  

Salinity is also shown to affect the performance and welfare of fish. A recent study showed that 

recirculated brackish water (12 ppt) had positive effects on Atlantic salmon smolt growth and 

survival compared to full-strength seawater (Ytrestøyl et al., 2020). The positive effect of 

rearing smolt at 12 ppt was demonstrated on survival post sea transfer (Calabrese, 2017; 

Ytrestøyl et al., 2015). Thus, adapting the smolt to full-strength seawater and allowing bigger 

smolt before sea transfer could influence susceptibility to tenacibaculosis. The use of RAS for 

smolt production would allow better control of the environmental conditions and likely 

protection against some infectious diseases, although successful production in RAS would 

require good biosecurity and control over the water quality parameters (Sommerset et al., 2020). 

By producing a bigger post-smolt in land based brackish water RAS before sea transfer could 

make the fish more robust and be less susceptible to infection (Ytrestøyl et al., 2020), however, 

more research on this field is required.  

Further, using strategies that will reduce fish interaction with infectious agents the first period 

after sea transfer (i.e. closed or semi-closed systems) is suggested as an important factor when 

reducing mortality and increasing fish welfare, as the fish in this period shows signs of 

temporary immune suppression (Johansson, Timmerhaus, Afanasyev, Jørgensen, & Krasnov, 

2016; Karlsen et al., 2018). The drop in immune function could lead to increased susceptibility 

to pathogens and the risk of developing disease like tenacibaculosis. The majority of salmonids 

dying in Norwegian aquaculture die within 0-3 months post sea transfer (Bleie & Skrudland, 

2014; Sommerset et al., 2020). The use of land-based facilities for the production of larger post-

smolts and production in closed or semi-closed systems in the sea are increasing in Norway 

(Sommerset et al., 2020), reflecting the need for new production strategies to lower mortality 

and increase fish welfare in the industry. Results from this current study could be of importance 

regarding the design of future smolt facilities in terms of temperature and salinity. 



4.2 Weight and condition factor 

The fish were sampled at the beginning of the experiment (i.e. 0-sampling 1), right after 

smoltification, and before the fish were divided into F and LSS (Figure 3). This fish represents 

the starting point for the fish in Trial 1, 2, and 3. The weight of fish sampled before challenge 

(from the production facility) increased between all time-points in both water qualities. 

However, differences in growth development between water qualities were observed. The 

weight of F fish was higher than of LSS fish for all time-points. The recent study of Ytrestøyl 

et al. (2020) showed that the growth rate of Atlantic salmon smolts was positively affected by 

lower salinity and higher water velocity, but that this also was influenced by fish size. Previous 

studies have demonstrated that growth of Atlantic salmon smolts was temporarily inhibited by 

increased salinity to 20 and 34 ppt compared to 0 and 10 ppt (Duston, 1994) and similar results 

have been reported from Rainbow trout and Chinook salmon (Oncorhynchus tshawytscha) 

(Morgan & Iwama, 1991), and turbot (Psetta maxima) (Dietz, Stiller, Griese, Schulz, & 

Susenbeth, 2013). Teleost fish have in general, higher growth in brackish water compared to 

seawater (Boeuf & Payan, 2001). However, growth is also highly dependent on temperature, 

and growth is likely effected by both parameters (Handeland, Berge, Björnsson, & Stefansson, 

1998; Imsland et al., 2001).  

Also, the weight of challenged fish increased over time, and no differences were observed 

between challenged and control fish within challenge groups. The condition factor (CF) 

dropped significantly after the first sampling, i.e. 0-sampling 1. For the remaining samplings, 

the CF was at a lower but consistent level. A strong positive correlation between total lipid 

content and CF has previously been reported from Atlantic salmon parr (Herbinger & Friars, 

1991). The drop in CF from this study could thereby be explained by natural changes in fat and 

protein deposition during the post-smolt period.  

4.3 Salinity and growth effects on skin morphology 

For fish sampled before challenge, morphological variables, epidermis thickness, and mucous 

cell number and characteristics were measured histologically. The thickness of the jaw 

epidermis increased over time for fish reared in F. However, in LSS fish, the jaw epidermis 

developed differently. Here, the thickness of the epidermis decreased over time. No effects were 

observed in the number of mucous cells. One challenge with the mucous cell data is that the 

number of mucous cells varied greatly between individuals within sample groups. This is 



affecting the accuracy of predictions, which could have been strengthened by increasing the 

number of samples used. Ventral and vent epidermis thickness developed over time but was not 

affected by water quality. Again, the low number of samples with high individual differences 

produce few significant results. However, the correlation between epidermis thickness and the 

number of mucous cells in ventral and vent-skin samples is strong, as previously described by 

Karlsen et al. (2018). In contrast, the jaw samples epidermis and the number of mucous cells is 

only sparsely correlated in Area 3 of the jaw. In Area 1 and Area 2 of the jaw, no correlation 

was observed. However, Area 1 has the thickest epidermis, but the least number of mucous 

cells. This suggests differences in the composition of the skin in the head region. A difference 

between the dorsal and ventral side of the fish is previously reported by Pittman et al. (2013). 

The recent study by Ytrestøyl et al. (2020) found increased salinity affecting the skin surface 

morphology negatively, which was also mirrored by up-regulation of stress markers while 

downregulated expression of mucus markers and the number of mucous cells (Ytrestøyl et al. 

2020). In general, salinity as an environmental factor has a major influence on skin morphology. 

4.4 Pathological findings 

The main pathological findings in the challenge trials were scale loss, ulcers of various degree, 

and yellow-pigmented skin. Ulcers typically developed on the jaw, ventral skin, and fins. 

However, most were located on the jaw and ventral part of the fish (Appendix 2). These are 

areas where abrasions can easily occur in both field and experiments, for example when fish 

are in contact with the bottom of tanks or tank walls or exhibit aggressive behavior like biting 

of fins (Noble et al., 2018). Skin abrasion could allow the bacteria to establish an infection 

(Bornø et al., 2011; van Gelderen, Carson, & Nowak, 2011). However, the same strain used in 

this challenge experiment have previously induced tenacibaculosis in another challenge 

experiment resulting in skin lesions, mouth erosions and frayed fins without manually induces 

or any pre-existing abrasions (Småge et al., 2018), and the pathology described from this study 

is consistent of the classical sign of tenacibaculosis (Toranzo et al., 2005).  

4.5 Histopathological changes by T. finnmarkense  

Challenge groups from Trial 2 and 3 were compared by their histological appearance after 

challenge with T. finnmarkense. Comparing the groups allows investigation of the effect of 

water quality and increased smolt size to the susceptibility to infection with T. finnmarkense. 

Samples from 1F were not included due to the low development of clinical disease signs and 



mortality after challenge. An important note is that these comparisons are based on 

observations, and they were not measured for epidermis thickness and counting of mucous cells 

by the Aiforia® algorithm as the software has only been trained on normal histology samples.  

The pathological findings were mirrored in the morphological analysis of histological sections, 

where the degree of histopathological changes was most severe in the jaw and ventral skin-

samples. Loss of scales, loss, and degeneration of the epidermis, dilated blood, vessels and 

infiltration of immune cells was among frequent findings described in histological sections. 

These findings are in accordance with what has been observed from Atlantic salmon in field 

outbreaks and in challenge experiments with T. finnmarkense (Småge et al., 2017) as well as 

with T. maritimum (van Gelderen et al., 2011). In this study, the large variation between fish 

reared in the same water quality in terms of tissue damage and inflammatory response 

complicates the process of characterizing differences between water quality and smolt size. 

Most of the pathological changes observed in F fish are also observed in LSS and vice versa. 

However, a difference is observed in the degree of damage to the jaw epidermis, in which F 

fish had the poorest skin surface (Appendix 4). This finding suggests the transfer to seawater 

and challenge with T. finnmarkense is a greater load on fish reared in F compared to LSS. 

Limited changes were observed in most control samples. However, there were control samples 

from all groups and both tissues (jaw and ventral) showing tissue damage and/or complete loss 

of epidermis, in addition to the infiltration of inflammatory cells. This damage is likely due to 

mechanical rupture as a result of the fish being in contact with the bottom of tanks and tank 

walls or handling when fish was transferred between tanks. However, damages to the tissue 

could also be a result of histological preparations, i.e. decalcification of sectioning, though this 

would not explain the immune response observed. 

Welfare parameters and ulcer scoring were combined and used as help when investigating 

samples histologically (Appendix 4). In some fish, a strong correlation between scoring and 

histological appearance was observed, however, this was not consistent in all samples. This 

specific issue is not documented extensively in the literature. The disagreement between the 

methods could relate to that sampled skin areas are not representative of the status of the whole 

fish and vice versa. Also, the level of details attained from examining a histological section is 

greater compared to information attained by macroscopic examination. 

The results from the histopathological analysis are further mirrored in gene expression analysis 

(Appendix 6), indicating increased blood supply to both the epidermis and the dermis as 



indicated by the up-regulation of plasma and erythrocyte related genes. This, in addition to the 

down-regulation of tissue renewal genes in parallel with the up-regulation of cell stress and 

apoptosis related genes, is an indication of the skin dealing with stressful conditions. The 

virulence mechanisms of T. finnmarkense are not well studied. For T. maritimum, however, 

extracellular products (ECPs) (toxins and enzymes together) are suggested to take part in the 

pathogenesis of this bacterium infiltrating the skin of red (Pagrus major) and black sea bream 

(Spondyliosoma cantharus) in experiments (Baxa, Kawai, & Kusuda, 1988). ECPs as a part of 

the pathogenesis in T. maritimum is also suggested from experiments with Atlantic salmon 

where the bacterium causes ulcerative lesions in the skin (van Gelderen, Carson, & Nowak, 

2009). The ECPs of T. maritimum have been shown capable of breaking down components like 

nucleases, amylases, and gelatin, due to their high proteolytic activity (Avendaño-Herrera et 

al., 2006). In addition, efficient uptake of iron is suggested as a virulence mechanism in T. 

maritimum (Avendaño-Herrera, Toranzo, Romalde, Lemos, & Magariños, 2005). The gene 

expression analysis also indicates up-regulation of host iron metabolism in this study which 

suggests a similar virulence mechanism for T. finnmarkense. Lastly, T. maritimum has the 

ability to adhere to hydrophobic components, like fish mucus (Magarinos, Pazos, Santos, 

Romalde, & Toranzo, 1995). As T. maritimum and T. finnmarkense are both from the same 

taxon, Tenacibaculum, and are associated with ulceration and skin lesions, T. finnmarkense 

may possess similar virulence mechanism as described for T. maritimum, including highly 

proteolytic ECPs and iron uptake mechanisms which allows the bacterium to break down host 

cells and compete with the hosts iron-binding proteins. 

Loss of the physical barrier that protects the fish from the outer environment, results in loss of 

keratocytes, which have been shown to exert phagocytic activity including uptake of bacteria 

(Lindell et al., 2012). Keratocytes also possess adaptive immune functions (Holm et al., 2017). 

Lastly, removing the mucus layer may lead to increased infections, ulcer development, and 

mortality (Olsen et al., 2011; Svendsen & Bøgwald, 1997). The effect of the histopathological 

changes observed in the current trial could be associated with higher susceptibility to infections. 

  



4.6 Immunohistochemistry and gene expression provide insights into the 

pathogenesis of T. finnmarkense 

The results from immunohistochemistry verified the presence of T. finnmarkense and gave 

information on where the bacterium is located in the tissue during infection. T. finnmarkense 

was most frequently observed in connective tissue compartments of the skin. However, in 

heavily infected samples, the bacterium was observed in all layers of the skin, including 

subcutaneous connective tissue and the hypodermis. In the dense connective tissue, the 

bacterium was observed oriented between alternating collagen fibers. These findings are also 

reported from T. finnmarkense field outbreaks (Småge et al., 2017) in addition to experimentally 

induced tenacibaculosis using the same strain as in this thesis (Småge et al., 2018). Similar 

microscopic pathology in Atlantic salmon is reported also from other Tenacibaculum spp., 

including T. dicentrarchi (Avendaño‐Herrera et al., 2016; Klakegg et al., 2019) and 

Tenacibaculum spp. (Olsen et al 2011). Tenacibaculum spp. associated with field outbreaks of 

winter ulcer disease (M. viscosa) appear to have an affinity for collagenous tissue (Olsen et al., 

2011), similar to what is observed with T. finnmarkense in this study where the connective 

tissue compartments (anchoring points) seem to work as a transport pathway for the bacterium. 

The affinity for collagenous tissue is also reported of T. maritimum causing tenacibaculosis in 

farmed sole (Solea senegalensis) (Vilar et al., 2012). In some samples, T. finnmarkense was 

observed in the deep layers of the myocommata, close to the vent area. As ulceration in this 

area is common in tank experiments, and the skin is directly linked to this area through major 

connective tissue compartments, this area could be important for the development of infection. 

The bacterium was rarely observed in the epidermis in histological sections. This finding is also 

described by others (Olsen et al., 2011; Småge, 2018). A probable reason for this could be that 

the mucus layer is not preserved during histological preparations as suggested by Handlinger, 

Soltani, and Percival (1997). In SEM sections however, the bacterium is observed in the mucus 

layer on top of keratocytes (Småge, 2018), in similarity to T. maritimum field outbreak (Vilar 

et al., 2012). Gene expression data suggest similar effects from both the epidermis and the 

dermis, suggesting the bacterium was present in both tissue layers at sample points.  

In this study, T. finnmarkense was observed gradually reduced in numbers from the center of 

the infection, as also described for tenacibaculosis caused by T. finnmarkense (Småge, 2018) 

and mouthrot caused by T. maritimum (Frisch, Småge, Vallestad, et al., 2018). Often, the 

separation between damaged and intact tissue was abrupt, suggesting a local infection. This is 

also reported from experimentally induced mouthrot cause by T. maritimum (Frisch, Småge, 



Johansen, et al., 2018). In many samples, tissue damage and the presence of T. finnmarkense 

were observed together with inflammation. This again is reflected by the gene expression data 

where an extensive upregulation of immune-related genes is observed. Also, gene group 

associated with heme is up-regulated. This is mirrored in the histopathological changes 

observed, with dilated blood vessels in the connective tissue compartments of the skin which 

could be one way for T. finnmarkense to gain access to host iron sources.  

The results from the microarray analysis must be seen in correlation to the histopathological 

changes observed and observations from immunohistochemistry. Within each tissue, a pattern 

was observed, indicating upregulating of immune genes, downregulating of cell renewal genes, 

upregulating of cell stress and apoptosis related genes, and downregulating of tissue renewal 

genes. This again could be an indication that immune genes are up-regulated at the expense of 

tissue renewal. Further, the gene expression analysis indicating a similar pattern of expression 

in both the epidermis and dermis is supported by the observation of histopathological changes 

and the presence of T. finnmarkense in both tissues. However, the similarity between tissues 

could also be explained by contamination of dermis in epidermis samples. Contradictions 

between histological analysis and gene expression could be explained by the different 

approaches for investigating the effect of infection with T. finnmarkense. The histological 

changes observed are a result of changes happening over a period of time, while gene expression 

is very fast-changing, and is the result of the state at that exact moment the tissue was sampled. 

4.7 Methodical limitations 

The following section includes considerations regarding histological techniques and the 

challenge experiment used in this thesis. Other methodical limitations are addressed in their 

appropriate section. 

4.7.1 Histology 

Methods used for histological analysis make up the majority of the methods used in this thesis. 

The process of preparing skin samples for histology consists of multiple different steps. All 

methods are not standardized, resulting in the need for discretionary assessments, which could 

alter results. Techniques are probably not optimized for every tissue type used in this study. 

The structure of skin tissue is dependent on body site (Kryvi & Poppe, 2016; Pittman et al., 

2013), for example, the jaw tissue is devoid of scales, however, consists of teeth and bone in 

contrast to ventral and dorsal skin tissue. For the histological preparations in this study, the jaw 



tissue was treated differently than dorsal and ventral skin tissue regarding decalcification. 

Decalcification medium has shown to affect the number of mucous cells (Pittman et al., 2013). 

The information retrieved from a sample may also vary depending on the embedding medium 

(Yeung, 1999), in addition to staining techniques and orientation of samples when sectioning 

(Pittman et al., 2013). As histological preparations are time-consuming and the number of 

samples in this study was relatively large, the preparations were performed in several different 

batches. Between each batch of samples prepared, new solutions (i.e. decalcification, staining) 

were made. Multiple preparations could have introduced minor artifacts, although strict 

compliance with the protocol was followed. 

4.7.2 Experimental setup 

An important limitation of this study is the number of fish used. The number was limited to a 

minimum due to welfare issues regarding challenge of fish to pathogens in accordance with the 

three R’s in animal research (Flecknell, 2002). Also, the number of fish in the experiment was 

reduced after each of the samplings. Reducing the number of fish during the experiment could 

bias the results since there are fewer fish at the end of the experiment than it was at the start. 

For some of the analysis, no significant differences were observed in which could be explained 

by the sample size within groups may have been insufficient for some of the analysis (Charan 

& Kantharia, 2013). In addition, not all fish sampled were in all methods included for analysis 

due to economical limitations.  

The experiment was a part of developing a challenge model for T. finnmarkense. Results from 

this study indicate that the number of fish should be increased if a similar study is done in the 

future. Alternatively, to limit the number of research animals, the number of sample points 

could be reduced.  

One important discovery in this study was the lack of correlation between the welfare score and 

the histology or gene expression. The inconsistent correlation could be explained if the sample 

used for analysis was unrepresentative, as it is only a small part of the whole fish. It could, 

however, also be related to methodological inconsistencies as scoring was conducted by 

different persons throughout the experiment. 

  



5 Conclusion and future perspectives 

The aim of this study was, by using histological techniques, to investigate if two different 

rearing conditions, freshwater, and low strength seawater affected the skin surface morphology. 

Further, the goal was to characterize differences in the skin between water qualities in order to 

explain any differences in susceptibility of T. finnmarkense. Results from this study indicate 

that the skin developed differently for fish reared in LSS compared to F, with reversed 

development of epidermis thickness. Also, the degree of histopathological changes observed 

on the skin surface was more severe in F fish compared to LSS. This is also reflected in the 

prevalence of T. finnmarkense and mortality rates within the challenge groups. The transfer to 

full strength seawater is suggested to be a bigger burden for the skin of fish reared in F compared 

to LSS. Thus, the skin of LSS fish is in a better status to respond to a challenge with T. 

finnmarkense, suggesting a positive effect of salinity adaptation in 26 ppt before sea transfer 

when in the risk of developing tenacibaculosis. However, finding the right production protocol 

that balances salinity in order to maximize growth and survival without the cost of production 

disorders, would require more research. 

Loss of epidermis and scales were observed in challenged and control fish of all groups in both 

water qualities, suggesting ulcers could develop in all groups independently of water quality. 

As F fish had a higher prevalence of T. finnmarkense and more severe histopathological 

changes, this indicates that fish reared in LSS can better respond to and eliminate the bacterium 

compared to fish reared in F, resulting in the prevention of developing disease. This further 

suggests that there could be structural, cellular, and/or humoral differences between the fish 

groups, that in this study was not detected by histology nor gene expression. The effect of the 

presence of T. finnmarkense and the damage the bacterium is inflicting to the host tissue is 

however demonstrated in gene expression data, suggesting the fish are compensating daily 

functions in order to combat the bacterium. Maintaining intact surface barriers including the 

epidermis and mucus layer should be of high importance, as rupture of the surface is most likely 

affecting several skin functions.  

Although differences between water qualities are observed in this study it has been difficult to 

characterize exactly what is the structural difference between the skin of fish reared in 

freshwater compared to low strength seawater. This would be a highly interesting and important 

research area for future studies. Using strategies like brackish water RAS for production of 



post-smolts, and at the same time limit the damage to skin surfaces could prevent infection with 

T. finnmarkense and therefore prevent the development of tenacibaculosis. 
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Appendix 

Appendix 1 – Scoring schemes 

 

The scoring scheme used for fish sampled 3 days post challenge. By Christian René Karlsen. 
 

  



 

 

 



 

(Noble et al., 2018).



Appendix 2 – Challenge experiment 
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Figure 20. Percentage distribution of lesions or ulcers at different sites from Atlantic salmon 

smolts sampled 3 days post challenge (3 dpc). A. Distribution of lesions or ulcers to different 

sites of the fish. B. Comparison of Trial 2 (2F &2LSS) and Trial 3 (3F & 3LSS). 
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Figure 21. The number of cases of upper jaw deformities from all sampled Atlantic salmon 

smolts during the experiment, showing the differences between water qualities, freshwater (F), 

and low strength seawater (LSS). 

 

 

 

 

  



Appendix 3 – Morphology and histological measurements of jaw 0-samples 

Table 5. Histological measurements of Atlantic salmon jaw epidermis from 0-sampling 1, 2, 

and 3, showing the area (um2), thickness (um), number of mucous cells, and morphological 

score from fish reared in freshwater (F). The average thickness is based on six measurements. 

Comments from measurements, and welfare and ulcer score are also included. 

 

 

 

 

 

WQ Date Sample Area Area (um2) Avg. thk (um) Mcu MCs MC tot MC purple Epithelium Comments

Welfare/ulce

r score

F 15. mai 2019 k1 1 53291,54 51,88166667 10 6 16 1 2,00

F 15. mai 2019 k1 2 55839,32 56,38666667 6 6 12 0 2,00

F 15. mai 2019 k1 3 56697,39 76,78166667 5 3 8 0 3,00

F 15. mai 2019 k2 1 46601,65 43,01 1 0 1 0 0,50

F 15. mai 2019 k2 2 58318,77 60,6 11 2 13 0 1,00

F 15. mai 2019 k2 3 51931,79 60,425 10 4 14 0 3,00

F 15. mai 2019 k3 1 41133,07 25,46666667 1 1 2 0 3,00 Mye av epidermis borte

F 15. mai 2019 k3 2 55816,33 64,06333333 7 0 7 0 1,50

F 15. mai 2019 k3 3 54553,37 63,105 7 1 8 0 1,50 Antydning til cellearmer.

F 15. mai 2019 k7 1 101142,7 131,52 0 0 0 0 1,00 Cellearmer

F 15. mai 2019 k7 2 21904,94 21,75166667 0 0 0 0 3,00 Epidermis helt borte 

F 15. mai 2019 k7 3 18997,22 21,405 1 1 2 0 3,00

Nesten bare høye basale 

epitelceller igjen 

F 15. mai 2019 k8 1 98414,82 157,9833333 0 0 0 0 3,00

Cellearmer. Har ikke med 28,7 

og 29 i med i gjennomsnittet.

F 15. mai 2019 k8 2 56554 50,43833333 1 0 1 0 3,00

F 15. mai 2019 k8 3 13707,34 17,21833333 0 0 0 0 3,00

Nesten bare høye basale 

epitelceller igjen. Tar denne ut 

av målingene.

F 15. mai 2019 k9 1 153348,32 120,77 0 0 0 0 0,50

F 15. mai 2019 k9 2 98502,71 86,77 3 0 3 2 1,00

F 15. mai 2019 k9 3 70675 48,65333333 4 3 7 0 1,50

F 11. juni 2019 k1 1 0 0 0 0 0 0 3,00 Epidermis helt borte. Snuteskade

F 11. juni 2019 k1 2 30027,87 31,60333333 0 0 0 0 3,00 Epidermis nesten helt borte. Snuteskade

F 11. juni 2019 k1 3 70559,3 40,04333333 4 1 5 0 2,00 Snuteskade

F 11. juni 2019 k2 1 139920,91 94,36833333 1 2 3 0 1,00

F 11. juni 2019 k2 2 76382,74 51,36 8 1 9 0 1,50

F 11. juni 2019 k2 3 42265,09 39,065 3 2 5 0 2,00

F 11. juni 2019 k3 1 223158,14 138,8616667 0 0 0 0 1,50 Nekrose langs kanten?

F 11. juni 2019 k3 2 193996,98 128,655 10 2 12 0 2,50 Nekrose langs kanten?

F 11. juni 2019 k3 3 88890,74 56,17166667 7 1 8 0 0,50

F 11. juni 2019 k7 1 247270,74 182,2116667 0 0 0 0 0,50

Epitelcellene er kantete med 

mellomrom, og cellearmer.

F 11. juni 2019 k7 2 171628,08 94,45333333 0 0 0 0 1,00

F 11. juni 2019 k7 3 106864,28 63,79833333 3 1 4 0 3,00

F 11. juni 2019 k8 1 126855,98 85,87333333 23 2 25 1 0,50

Kjeven er snittet litt rart, men 

inkluderer den i resultatene.

F 11. juni 2019 k8 2 84924,41 64,98166667 23 1 24 0 1,00

Kjeven er snittet litt rart, men 

inkluderer den i resultatene.

F 11. juni 2019 k8 3 53173,3 45,02333333 12 0 12 0 1,00

Kjeven er snittet litt rart, men 

inkluderer den i resultatene.

F 11. juni 2019 k9 1 248879,3 223,51 1 0 1 1 2,00

Stort "hull" i epidermis.. Måler 

rundt hullet.

F 11. juni 2019 k9 2 240802,1 153,9283333 18 0 18 0 2,00

F 11. juni 2019 k9 3 97923,81 70,31666667 12 5 17 0 1,50

F 5. juli 2019 k1 1 117,1083333 0 0 0 0 0,50

F 5. juli 2019 k1 2 136593,68 93,40666667 17 0 17 0 0,50

F 5. juli 2019 k1 3 84094,54 64,29333333 12 0 12 0 1,00

F 5. juli 2019 k2 1 151648,95 156,2983333 0 0 0 0 0,50

F 5. juli 2019 k2 2 83159,51 49,64333333 1 0 1 0 3,00

Nesten bare høye basale 

epitelceller igjen. 

F 5. juli 2019 k2 3 77477,93 55,61333333 6 0 6 0 2,50 Nekrose? Hullete epitel.

F 5. juli 2019 k3 1 308238,77 206,175 1 0 1 0 2,50 Kantete celler

F 5. juli 2019 k3 2 277065,93 166,8883333 76 3 79 0 2,50 Nekrose? Hullete epitel.

F 5. juli 2019 k3 3 145355,96 97,005 35 3 38 0 1,50

Små kompakte kjerner i basale 

epitelceller.

F 5. juli 2019 k7 1 625146,22 303,37 4 0 4 0 0,50

F 5. juli 2019 k7 2 469334,96 198,5283333 40 5 45 0 2,00

F 5. juli 2019 k7 3 205575 109,2983333 23 5 28 0 1,50

F 5. juli 2019 k8 1 507876,81 331,005 0 0 0 0 1,50

F 5. juli 2019 k8 2 266158,35 248,5333333 54 2 56 4 1,50

F 5. juli 2019 k8 3 118848,76 78,63166667 25 2 27 0 1,50

F 5. juli 2019 k9 1 332644,63 160,66 1 0 1 0 2,00

F 5. juli 2019 k9 2 196957,54 117,3416667 10 0 10 0 2,00

F 5. juli 2019 k9 3 115583,38 79,2 3 0 3 0 1,50



Table 6. Histological measurements of Atlantic salmon jaw epidermis from 0-sampling 1, 2, 

and 3, showing the area (um2), thickness (um), number of mucous cells, and morphological 

score from fish reared in low strength seawater 26 ppt (LSS). The average thickness is based 

on six measurements. Comments from measurements, and welfare and ulcer score are also 

included. 

 

WQ Date Sample Area Area (um2) Avg. thk (um) Mcu MCs MC tot MC purple Epithelium Comments

Welfare/ulce

r score

LSS 11. juni 2019 k1 1 341555,39 220,7966667 0 0 0 0 1,50 Nekroser?

LSS 11. juni 2019 k1 2 264643,02 174,725 1 0 1 0 2,00

Epitelet revner basalt. Nekroser 

på overflaten?

LSS 11. juni 2019 k1 3 92588,96 50,03666667 1 0 1 0 3,00

Basale høye epitelceller får 

rund kjerne der hvor epitelet er 

revnet/løsnet. Inkluderer ikke 

denne i resultatene.

LSS 11. juni 2019 k2 1 188081,83 136,1816667 0 0 0 0 1,50 Nekroser? mopsehode

LSS 11. juni 2019 k2 2 114801,9 76,96833333 9 0 9 0 2,00 Nekroser? mopsehode

LSS 11. juni 2019 k2 3 118519,55 59,94666667 31 3 34 0 3,00

Tre turkise mucusceller, rett 

utenfor sidelinjekanalen. mopsehode

LSS 11. juni 2019 k3 1 68046,82 194,6816667 0 0 0 0 1,00

Mye av kjevetuppen er borte. 

Nekrose (?) langs kanten.

LSS 11. juni 2019 k3 2 37702,07 37,76 0 0 0 0 3,00

Epidermis mangler helt i 

område 2. Inkluderer ikke i 

resultatene.

LSS 11. juni 2019 k3 3 93314,81 74,43 10 0 10 0 2,00

LSS 11. juni 2019 k7 1 242684,61 192,3566667 0 0 0 0 2,00 Cellearmer på tuppen. 

LSS 11. juni 2019 k7 2 369819,87 202,62 1 0 1 1 1,50

LSS 11. juni 2019 k7 3 117616,14 75,52166667 0 0 0 0 1,00

LSS 11. juni 2019 k8 1 142968,46 159,565 0 0 0 0 1,00

Epidermis er løsnet fra 

kjevetuppen, me nmåler 

tykkelsen likevel. Antydning til 

cellearmer. mopsehode

LSS 11. juni 2019 k8 2 124411,83 72,82 8 0 8 0 2,00 mopsehode

LSS 11. juni 2019 k8 3 86624,94 54,83666667 5 0 5 0 2,00 mopsehode

LSS 11. juni 2019 k9 1 294631,77 194,8633333 0 0 0 0 1,00 Cellearmer.

LSS 11. juni 2019 k9 2 338069,65 159,94 1 0 1 0 1,00

Områder med 

cellearmer/vakuoler.

LSS 11. juni 2019 k9 3 208438,8 100,8566667 12 0 12 0 2,00

LSS 5. juli 2019 k1 1 323432,36 217,6166667 2 0 2 0 1,00

Mye pigment. Fin epitelkant, 

men nekroser under? mopsehode

LSS 5. juli 2019 k1 2 256733,47 146,8166667 4 1 5 0 1,50 mopsehode

LSS 5. juli 2019 k1 3 131264,3 79,15 14 0 14 0 2,00 Mye av epitelet er ødelagt. mopsehode

LSS 5. juli 2019 k2 1 112,3916667 2 0 2 0 2,00

Mye av epitelkanten er borte 

lengre bak.

LSS 5. juli 2019 k2 2 103217,88 58,90666667 7 2 9 0 2,00

Mye av epitelet ødelagt, og 

med vakuoler.Antydning til 

cellearmer, men ikke helt.

LSS 5. juli 2019 k2 3 48103,01 27,55833333 2 0 2 0 2,50 Epitel ødelagt hele veien.

LSS 5. juli 2019 k3 1 256131,83 151,2733333 1 0 1 0 2,00 Cellearmer helt på tuppen.

LSS 5. juli 2019 k3 2 267354,77 106,275 39 2 41 0 2,50

LSS 5. juli 2019 k3 3 146663,76 69,25833333 30 0 30 0 2,50

LSS 5. juli 2019 k7 1 225315,25 160,1383333 1 0 1 0 2,00

Antydning til cellearmer. Lag 

med kompakte celler rett over 

basale epitelceller. 

LSS 5. juli 2019 k7 2 227688,39 117,5083333 53 0 53 0 2,00

LSS 5. juli 2019 k7 3 245951,51 144,5666667 66 2 68 0 2,00

LSS 5. juli 2019 k8 1 375803,86 221,9833333 0 0 0 0 2,50

Uklar orientering. Cellearmer 

på det som trolig er tuppen. 

Nekroser? 

LSS 5. juli 2019 k8 2 263600,03 141,4583333 0 0 0 0 2,00 Uklar orientering.

LSS 5. juli 2019 k8 3 212090,73 121,5916667 14 1 15 0 1,00 Uklar orientering.

LSS 5. juli 2019 k9 1 232641,45 167,705 0 0 0 0 1,50

Cellearmer på tuppen. 

Nekroser under epitelkant.

LSS 5. juli 2019 k9 2 142347,52 86,78833333 11 0 11 0 2,00

LSS 5. juli 2019 k9 3 130054,55 77,44833333 12 0 12 0 2,00



Appendix 4 – Morphology and histological measurements of jaw 3 dpc-samples 
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Figure 22. Atlantic salmon jaw epidermis morphology after transfer to full strength seawater 

and challenge with T. finnmarkense. Morphological score ranging from 0-3 is based on 

histological appearance of the epidermis as described in materials and methods section 2.5.4. 

The graph shows the number of jaw measurements (Area 1, 2 and 3) from each group 

(challenged and controls) with score 2 and 2.5 (serious to severe damage to the epidermis) and 

3 (destroyed or missing epidermis). For complete scoring, see Table 7 - 11. 

 

 

 

 



Table 7. Histological measurements of Atlantic salmon jaw epidermis from 3dpc-samples, showing the area (um2), thickness (um), number of 

mucous cells, and morphological score from fish in challenge 1F. The average thickness is based on six measurements. Comments from 

measurements, and welfare and ulcer score are also included.  

Challenge Date Sample Area Area (um2) Avg. thk. (um)Mcu MCs MC tot MC purple Epithelium PP Bas ept. Bacteria Comments

Welfare/ulce

r score

1F 27. mai 2019 1a-1 1 204941,51 119,37 1 0 1 0 1,00 Nei Nei

1F 27. mai 2019 1a-1 2 215184,45 99,725 3 0 3 0 1,00 Nei Nei

1F 27. mai 2019 1a-1 3 121983,35 57,18166667 3 1 4 1 2,00 Antydning Nei

1F 27. mai 2019 1a-2 1 123919,68 76,85 3 1 4 0 3,00

Epidermis mangler i store deler 

av område 1. Mye bet.celler Snuteskade

1F 27. mai 2019 1a-2 2 262548,41 151,1333333 17 2 19 4 1,00 Antydning Snuteskade

1F 27. mai 2019 1a-2 3 257362,42 119,295 33 5 38 0 1,00 snuteskade

1F 27. mai 2019 2a-1 1 260291,73 190,2716667 1 0 1 0 2,00

1F 27. mai 2019 2a-1 2 324037,04 209,5133333 2 0 2 0 2,00

1F 27. mai 2019 2a-1 3 303232,88 191,3766667 23 0 23 0 1,50

1F 27. mai 2019 2a-2 1 217593,41 135,945 1 0 1 0 2,50 Antydning 1 Nei Vakuoler.

1F 27. mai 2019 2a-2 2 329469,94 163,0616667 9 1 10 0 2,50 Ja 1 Nei Vakuoler.

1F 27. mai 2019 2a-2 3 138343,21 85,01166667 8 0 8 0 2,00 Ja 1

1F 27. mai 2019 3a-1 1 183937,06 162,3233333 0 0 0 0 1,00 Ja 1

1F 27. mai 2019 3a-1 2 339642,77 149,1466667 0 0 0 0 2,50 Ja 1

1F 27. mai 2019 3a-1 3 211596,35 98,58666667 6 0 6 0 2,50 Ja 1

1F 27. mai 2019 3a-2 1 253279,36 219,1483333 4 0 4 0 2,00

1F 27. mai 2019 3a-2 2 266759,61 157,8633333 9 0 9 0 2,00 Ja

1F 27. mai 2019 3a-2 3 191763,29 162,7666667 11 0 11 0 2,00

1F 27. mai 2019 K1 1 338812,14 217,6916667 0 0 0 0 1,50 Ja 1

1F 27. mai 2019 K1 2 425371,14 221,5433333 8 0 8 0 2,00 Antydning 1

1F 27. mai 2019 K1 3 392691,48 185,6416667 12 0 12 1 2,50 1 Huller basalt i epidermis.

1F 27. mai 2019 K2 1 382630,41 181,5483333 10 0 10 0 3,00

Epidermis er løsnet store deler 

av område 1.

1F 27. mai 2019 K2 2 270649,48 149,7716667 7 1 8 1 2,50 Antydning

1F 27. mai 2019 K2 3 237399,3 123,3266667 15 1 16 0 2,50

1F 27. mai 2019 K3 1 56843,7 41,195 0 0 0 0 3,00 Nei Nei Epidermis mangler 

1F 27. mai 2019 K3 2 354567,74 183,8283333 21 0 21 6 2,00 Antydning Nei

1F 27. mai 2019 K3 3 252858,2 149,7283333 19 0 19 4 2,50 Antydning Nei

1F 27. mai 2019 K4 1 0 0 0 0 0 0 3,00 1 Nei Mye bet.eller

1F 27. mai 2019 K4 2 225032,27 93,53666667 0 0 0 0 2,50 Nei 1 Epidermis mangler litt.

1F 27. mai 2019 K4 3 326359,26 155,7416667 4 0 4 0 2,00 1

1F 27. mai 2019 K5 1 222316 169,1566667 0 0 0 0 1,50 1

1F 27. mai 2019 K5 2 268772,81 138,0033333 5 1 6 0 2,50 1

Flere rare basale celler (se 

bilde)

1F 27. mai 2019 K5 3 241850,67 112,41 22 1 23 0 2,50 1

1F 27. mai 2019 K6 1 198720,41 118,3483333 0 0 0 0 1,50

1F 27. mai 2019 K6 2 226762,12 101,355 0 0 0 0 2,50 Antydning

1F 27. mai 2019 K6 3 233865,43 104,3383333 3 0 3 0 2,50 Mye bet.celler.



Table 8. Histological measurements of Atlantic salmon jaw epidermis from 3dpc-samples, showing the area (um2), thickness (um), number of 

mucous cells, and morphological score from fish in challenge 2F. The average thickness is based on six measurements. Comments from 

measurements, and welfare and ulcer score are also included. 

 

Challenge Date Sample Area Area (um2) Avg. thk. (um)Mcu MCs MC tot MC purple Epithelium PP Bas ept. Bacteria Comments

Welfare/ulce

r score

2F 20. juni 2019 5b-1 1 #DIV/0! 0 0 0 0 3,00 1

2F 20. juni 2019 5b-1 2 #DIV/0! 0 0 0 0 1,50 1

2F 20. juni 2019 5b-1 3 #DIV/0! 0 0 0 0 1,50 1

2F 20. juni 2019 5b-3 1 #DIV/0! 0 0 0 0 3,00 1

2F 20. juni 2019 5b-3 2 #DIV/0! 0 0 0 0 2,00 1

2F 20. juni 2019 5b-3 3 #DIV/0! 0 0 0 0 2,00 1

2F 20. juni 2019 6b-1 1 58315,6 64,50333333 3 0 3 0 3,00 Ja 1

Store deler av epidermis er 

borte. Har tatt gjennomsnitt av 

der epidermis er hel.

2F 20. juni 2019 6b-1 2 217366,58 104,5133333 6 0 6 0 2,50 Ja 1 Vakuolisert

2F 20. juni 2019 6b-1 3 122983,37 58,80666667 6 0 6 0 2,00 Antydning 1

2F 20. juni 2019 6b-2 1 113464,89 52,24333333 0 0 0 0 3,00 1 Epidermis er nesten helt borte. 

2F 20. juni 2019 6b-2 2 180090,75 84,54333333 0 0 0 0 3,00 1

2F 20. juni 2019 6b-2 3 111599,9 54,35833333 1 0 1 0 2,00 1

2F 20. juni 2019 7b-1 1 455669,16 209,3316667 3 0 3 0 2,00 Antydning.

2F 20. juni 2019 7b-1 2 290402,79 137,5166667 9 1 10 1 1,50 Antydning

2F 20. juni 2019 7b-1 3 181565,05 85,12333333 3 0 3 0 1,00 Antydning.

2F 20. juni 2019 7b-3 1 258111,25 145,0216667 0 0 0 0 1,50 1 Liten del av epidermis er borte.

2F 20. juni 2019 7b-3 2 186662,65 84,44 3 1 4 0 1,50 Antydning 1

2F 20. juni 2019 7b-3 3 147620,9 63,38833333 10 0 10 2 1,00 Ja 1

2F 20. juni 2019 K1 1 355236,31 247,2666667 0 0 0 0 1,00 Nei Nei

2F 20. juni 2019 K1 2 465626,08 248,4383333 21 0 21 0 1,50

2F 20. juni 2019 K1 3 241874,81 107,9316667 10 0 10 0 2,00

2F 20. juni 2019 K2 1 299218,92 169,58 0 0 0 0 2,50 Ja 1 Mye "vakuoler"

2F 20. juni 2019 K2 2 452380,67 213,0016667 3 0 3 0 2,50 Ja 1

2F 20. juni 2019 K2 3 132,5666667 0 0 0 0 2,50 1

2F 20. juni 2019 K3 1 #DIV/0! 0 0 0 0 3,00 1

Mye av epidermis er borte fra 

alle tre områder. kort snute

2F 20. juni 2019 K3 2 #DIV/0! 0 0 0 0 3,00 1 kort snute

2F 20. juni 2019 K3 3 #DIV/0! 0 0 0 0 3,00 1 kort snute

2F 20. juni 2019 K4 1 251381,86 162,76 0 0 0 0 1,00

2F 20. juni 2019 K4 2 200648,77 99,82833333 4 0 4 0 2,50

Rufsete overflate, og basale 

epitelceller sitter litt "løst"

2F 20. juni 2019 K4 3 112246,12 56,105 8 0 8 0 2,50

2F 20. juni 2019 K5 1 178560,55 129,9133333 0 0 0 0 1,50 1

Vakuoler/sitter løst basale 

epitelceller. Mye betceller i 

underliggende vev.

2F 20. juni 2019 K5 2 151072,97 86,795 3 0 3 0 1,00 1

2F 20. juni 2019 K5 3 128547,85 70,98 1 0 1 0 1,00 1

2F 20. juni 2019 K6 1 249102,45 122,1816667 0 0 0 0 2,00 Ja, litt.

Litt av tuppen er fri for 

epidermis. Gjennomsnitt av der 

epidermis er hel.

2F 20. juni 2019 K6 2 265611,33 140,7483333 0 0 0 0 2,00

2F 20. juni 2019 K6 3 211926,57 113,2316667 0 0 0 0 2,00 "løse" basale epitelceller



Table 9. Histological measurements of Atlantic salmon jaw epidermis from 3dpc-samples, showing the area (um2), thickness (um), number of 

mucous cells, and morphological score from fish in challenge 2LSS. The average thickness is based on six measurements. Comments from 

measurements, and welfare and ulcer score are also included. 

 

Challenge Date Sample Area Area (um2) Avg. thk. (um)Mcu MCs MC tot MC purple Epithelium PP Bas ept. Bacteria Comments

Welfare/ulce

r score

2LSS 20. juni 2019 1b-1 1 92963,25 70,48166667 0 0 0 0 3,00

Epidermis er stygg og mangler i 

store deler i område 1.

Lite sår. Kort 

snute

2LSS 20. juni 2019 1b-1 2 150242,85 101,2083333 0 0 0 0 2,00 Ja Lite sår

2LSS 20. juni 2019 1b-1 3 91368,54 64,12166667 0 0 0 0 1,50

Ja, veldig 

tydelig. Lite sår

2LSS 20. juni 2019 1b-2 1 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene. Lite sår

2LSS 20. juni 2019 1b-2 2 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene. Lite sår

2LSS 20. juni 2019 1b-2 3 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene. Lite sår

2LSS 20. juni 2019 2b-2 1 460523,4 289,7733333 0 0 0 0 1,00

2LSS 20. juni 2019 2b-2 2 479916,51 222,815 2 0 2 0 2,00

2LSS 20. juni 2019 2b-2 3 165695,15 91,24833333 1 2 3 0 1,50 Ja

2LSS 20. juni 2019 2b-3 1 277001,92 170,7016667 1 0 1 0 3,00

Ja, antydning 

i basale celler.

Litt av tuppen er fri for 

epidermis. Gjennomsnitt av der 

epidermis er hel.

2LSS 20. juni 2019 2b-3 2 316028,43 160,4533333 10 0 10 2 1,50 Ja

2LSS 20. juni 2019 2b-3 3 72531,86 103,8316667 14 0 14 0 1,00

2LSS 20. juni 2019 3b-1 1 #DIV/0! 0 0 1 Usikker på orientering. Lite sår

2LSS 20. juni 2019 3b-1 2 #DIV/0! 0 0 1 Usikker på orientering. Lite sår

2LSS 20. juni 2019 3b-1 3 #DIV/0! 0 0 1 Usikker på orientering. Lite sår

2LSS 20. juni 2019 3b-2 1 286015,04 173,49 0 0 0 0 1,50 Ja Sår

2LSS 20. juni 2019 3b-2 2 438649,58 179,5266667 5 1 6 0 1,50 Ja Sår

2LSS 20. juni 2019 3b-2 3 236720,06 141,74 9 2 11 0 1,00 Sår

2LSS 20. juni 2019 K1 1 394777,46 213,1 0 0 0 0 2,00 kort snute

2LSS 20. juni 2019 K1 2 238264,98 109,0216667 8 0 8 0 2,00 kort snute

2LSS 20. juni 2019 K1 3 202351,18 92,835 7 0 7 0 2,00 kort snute

2LSS 20. juni 2019 K2 1 279788,47 170,435 0 0 0 0 1,50 kort snute

2LSS 20. juni 2019 K2 2 200054,37 97,88666667 0 0 0 0 2,00 Antydning. kort snute

2LSS 20. juni 2019 K2 3 125338,61 57,59 4 0 4 0 2,00 kort snute

2LSS 20. juni 2019 K3 1 425885,53 175,2716667 1 0 1 0 1,50 Ja kort snute

2LSS 20. juni 2019 K3 2 309234,64 165,9216667 9 0 9 0 2,00 kort snute

2LSS 20. juni 2019 K3 3 124949,33 77,965 1 0 1 0 1,50 Ja kort snute

2LSS 20. juni 2019 K4 1 240720,3 202,42 0 0 0 0 1,00

2LSS 20. juni 2019 K4 2 346562,68 226,9983333 0 0 0 0 1,50

2LSS 20. juni 2019 K4 3 188234,5 118,305 3 0 3 0 1,50

2LSS 20. juni 2019 K5 1 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene.

2LSS 20. juni 2019 K5 2 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene.

2LSS 20. juni 2019 K5 3 #DIV/0! 0 0 0 0

Prøven er snittet rart. 

Inkluderer ikke denne i 

resultatene.

2LSS 20. juni 2019 K6 1 246960,71 119,7533333 0 0 0 0 1,50

2LSS 20. juni 2019 K6 2 206036,96 98,85833333 1 0 1 0 2,00

2LSS 20. juni 2019 K6 3 117648,53 58,63666667 4 0 4 0 2,00



Table 10. Histological measurements of Atlantic salmon jaw epidermis from 3dpc-samples, showing the area (um2), thickness (um), number of 

mucous cells, and morphological score from fish in challenge 3F. The average thickness is based on six measurements. Comments from 

measurements, and welfare and ulcer score are also included. 

 

Challenge Date Sample Area Area (um2) Avg. thk. (um)Mcu MCs MC tot MC purple Epithelium PP Bas ept. Bacteria Comments

Welfare/ulce

r score

3F 15. juli 2019 1c-2 1 #DIV/0! 0 0 0 0 3,00 1 Ja

Epidermis mangler helt i alle tre 

områder.

Lite sår. 

snuteskade

3F 15. juli 2019 1c-2 2 #DIV/0! 0 0 0 0 3,00 1 Ja

Epidermis mangler helt i alle tre 

områder.

Lite sår. 

snuteskade

3F 15. juli 2019 1c-2 3 #DIV/0! 0 0 0 0 3,00 1

Epidermis mangler helt i alle tre 

områder.

Lite sår. 

snuteskade

3F 15. juli 2019 1c-3 1 #DIV/0! 0 0 0 0 3,00 1 Ja?

Epidermis mangler helt i 

område 1.

Lite sår. 

snuteskade

3F 15. juli 2019 1c-3 2 291030,71 132,82 2 0 2 0 2,00 Ja 1 Ja

Lite sår. 

snuteskade

3F 15. juli 2019 1c-3 3 170967,51 94,19333333 4 1 5 0 0,50 Ja 1

Lite sår. 

snuteskade

3F 15. juli 2019 2c-1 1 #DIV/0! 0 0 0 0 3,00

Epidermis mangler helt i 

område 1.

Lite sår. 

snuteskade

3F 15. juli 2019 2c-1 2 463058,99 252,7916667 13 0 13 0 1,00 Ja

Lite sår. 

snuteskade

3F 15. juli 2019 2c-1 3 316993,56 199,6016667 10 2 12 0 1,50

Lite sår. 

snuteskade

3F 15. juli 2019 2c-2 1 #DIV/0! 0 0 0 0 3,00

Epidermis mangler helt i 

område 1.

Lite sår. 

snuteskade

3F 15. juli 2019 2c-2 2 386688,06 200,4416667 1 0 1 0 1,50 Ja

Lite sår. 

snuteskade

3F 15. juli 2019 2c-2 3 291244,59 128,935 6 0 6 0 1,50 Ja

Lite sår. 

snuteskade

3F 15. juli 2019 3c-2 1 #DIV/0! 0 0 0 0 3,00 1 Ja? Epidermis mangler i område 1.

Sår. 

snuteskade

3F 15. juli 2019 3c-2 2 323124,62 144,3283333 5 6 11 0 0,50 Ja 1

Sår. 

snuteskade

3F 15. juli 2019 3c-2 3 326316,08 139,97 26 10 36 0 1,00 1

Sår. 

snuteskade

3F 15. juli 2019 3c-3 1 #DIV/0! 0 0 0 0 3,00 1 Ja

Epidermis mangler helt i 

område 1.

Lite sår. 

snuteskade

3F 15. juli 2019 3c-3 2 137559,32 106,8433333 7 2 9 0 3,00 Ja 1 Ja

Lite sår. 

snuteskade

3F 15. juli 2019 3c-3 3 166850,41 90,88166667 2 0 2 0 3,00 Ja 1

Epidermis mangler delvis. Har 

ikke tatt ålinger av der den 

mangler. 

Lite sår. 

snuteskade

3F 15. juli 2019 K1 1 #DIV/0! 0 0 0 0 3,00 1 Epidermis mangler helt.

3F 15. juli 2019 K1 2 545812,83 243,0883333 9 0 9 0 1,50 1

Basale epitelceller løsner fra 

hverandre.

3F 15. juli 2019 K1 3 394584,91 203,365 32 0 32 0 2,00 1

3F 15. juli 2019 K2 1 256882,45 172,4266667 0 0 0 0 1,00

3F 15. juli 2019 K2 2 239247,52 136,06 0 0 0 0 1,50 Antydning.

3F 15. juli 2019 K2 3 184087,94 100,8116667 1 0 1 0 2,00 Ja

3F 15. juli 2019 K3 1 240012,36 167,7683333 0 0 0 0 1,50 Antydning

3F 15. juli 2019 K3 2 141855,24 70,075 0 0 0 0 3,00

3F 15. juli 2019 K3 3 117762,33 55,23166667 2 0 2 0 2,50

3F 15. juli 2019 K4 1 195074,39 168,0716667 0 0 0 0 3,00 Ja

Epidermis mangler i deler av 

område 1.

3F 15. juli 2019 K4 2 242846,42 137,0616667 4 0 4 0 2,50 Antydning

3F 15. juli 2019 K4 3 215011,34 122,9383333 15 0 15 0 2,00

3F 15. juli 2019 K5 1 273821,51 149,165 0 0 0 0 1,50

3F 15. juli 2019 K5 2 262312,17 127,3783333 2 0 2 0 2,00

3F 15. juli 2019 K5 3 161309,31 77,26 9 0 9 0 2,00

3F 15. juli 2019 K6 1 #DIV/0! 0 0 0 0 3,00 Epidermis mangler helt.

3F 15. juli 2019 K6 2 164619,14 94,51 1 0 1 0 2,00 Ja

3F 15. juli 2019 K6 3 14239,85 71,38666667 2 0 2 0 2,50 Ja



Table 11. Histological measurements of Atlantic salmon jaw epidermis from 3dpc-samples, showing the area (um2), thickness (um), number of 

mucous cells, and morphological score from fish in challenge 3LSS. The average thickness is based on six measurements. Comments from 

measurements, and welfare and ulcer score are also included. 

 

Challenge Date Sample Area Area (um2) Avg. thk. (um)Mcu MCs MC tot MC purple Epithelium PP Bas ept. Bacteria Comments

Welfare/ulce

r score

3LSS 15. juli 2019 5c-1 1 385514 200,6683333 0 0 0 0 1,00 Ja 1 Lite sår.

3LSS 15. juli 2019 5c-1 2 284824,59 171,0566667 6 0 6 0 1,00 Ja 1 Lite sår.

3LSS 15. juli 2019 5c-1 3 154889,06 86,72833333 3 0 3 0 2,00 1 Lite sår.

3LSS 15. juli 2019 5c-2 1 #DIV/0! 0 0 0 0 3,00 Epidermis mangler i område 1.

Lite sår. 

snuteskade

3LSS 15. juli 2019 5c-2 2 405845,44 172,0333333 30 0 30 3 1,50 Ja

Lite sår. 

snuteskade

3LSS 15. juli 2019 5c-2 3 198900,12 108,8333333 11 0 11 0 1,00 Ja

Lite sår. 

snuteskade

3LSS 15. juli 2019 6c-1 1 #DIV/0! 0 0 0 0 3,00

Epidermis mangler helt i 

område 1. Kort snute

3LSS 15. juli 2019 6c-1 2 201016,08 85,86333333 3 0 3 0 2,00 kort snute

3LSS 15. juli 2019 6c-1 3 109881,36 81,01666667 0 0 0 0 2,00 kort snute

3LSS 15. juli 2019 6c-2 1 #DIV/0! 0 0 0 0 3,00

Epidermis mangler helt i 

område 1. Sår.

3LSS 15. juli 2019 6c-2 2 503185,39 243,7533333 0 0 0 0 1,50 Sår.

3LSS 15. juli 2019 6c-2 3 303488,67 176,965 8 0 8 0 2,00 Sår.

3LSS 15. juli 2019 7c-1 1 #DIV/0! 0 0 0 0 3,00

Lite sår. 

Snuteskade

3LSS 15. juli 2019 7c-1 2 139455,3 66,93833333 3 0 3 0 2,00

Lite sår. 

Snuteskade

3LSS 15. juli 2019 7c-1 3 130240,1 61,35666667 0 0 0 2,50 Ja

Lite sår. 

Snuteskade

3LSS 15. juli 2019 7c-2 1 224901,2 149,6516667 0 0 0 0 1,00 Ja 1

3LSS 15. juli 2019 7c-2 2 385444,91 168,4483333 9 0 9 0 1,50 1

3LSS 15. juli 2019 7c-2 3 191762,27 91,76833333 8 0 8 0 1,50 1

3LSS 15. juli 2019 K1 1 323359,2 174,9616667 0 0 0 0 1,50 Ja snuteskade

3LSS 15. juli 2019 K1 2 405392,28 178,1566667 0 0 0 0 2,00 snuteskade

3LSS 15. juli 2019 K1 3 324307,83 158,4566667 8 1 9 0 2,00 snuteskade

3LSS 15. juli 2019 K2 1 130399,12 88,53333333 0 0 0 0 3,00 Ja 1

Mye av epidermis er veldig tynn 

og skadet. kort snute

3LSS 15. juli 2019 K2 2 280036,39 123,25 5 0 5 0 2,50 Ja 1 kort snute

3LSS 15. juli 2019 K2 3 130366,1 76,83333333 10 1 11 0 1,50 1 kort snute

3LSS 15. juli 2019 K3 1 251514,46 176,24 0 0 0 0 1,50 1 kort snute

3LSS 15. juli 2019 K3 2 333096,78 149,0883333 3 0 3 0 2,00 1 kort snute

3LSS 15. juli 2019 K3 3 196396,79 103,4 13 0 13 0 2,50 Ja 1 kort snute

3LSS 15. juli 2019 K4 1 #DIV/0! 0 0 0 0 3,00 Epidermis mangler i område 1.

snuteskade. 

Kort snute

3LSS 15. juli 2019 K4 2 453219,43 201,2916667 0 0 0 0 2,00

snuteskade. 

Kort snute

3LSS 15. juli 2019 K4 3 443212,72 199,2683333 21 0 21 0 1,00 Ja

snuteskade. 

Kort snute

3LSS 15. juli 2019 K5 1 366794,04 203,6733333 0 0 0 0 2,00

3LSS 15. juli 2019 K5 2 513441,03 229,1433333 17 0 17 0 2,00

3LSS 15. juli 2019 K5 3 255746,87 115,0316667 24 2 26 0 1,50

3LSS 15. juli 2019 K6 1 #DIV/0! 0 0 0 0 3,00 Ja

Mye av epidermis er tynn og 

skadet.

3LSS 15. juli 2019 K6 2 145901,71 68,22 2 0 2 0 3,00 Ja

3LSS 15. juli 2019 K6 3 132010,6 59,46833333 3 0 3 0 1,50 Ja



Appendix 5 – Immunohistochemistry 

Table 12. Overview of 3 dpc-samples in combination with welfare and ulcer score. Samples 

for immunohistochemistry are marked either positive (pink) or negative (green) for T. 

finnmarkense. 

pos neg pos neg

Challenge Sample Ventral Jaw Dorsal Challenge Sample Ventral Jaw Dorsal

1F 1a-1 gul langs buk 3F 1c-2

lite sår. 

Snuteskade

1F 1a-2 snuteskade 3F 1c-3

påbegynnen

de sår buk

lite sår. 

Snuteskade

1F 2a-1

sår, reiste 

skjell 3F 2c-1 gulaktig buk

lite sår. 

Snuteskade

1F 2a-2 3F 2c-2 gulaktig buk

lite sår. 

Snuteskade

1F 3a-1 3F 3c-2

sår. 

Snuteskade

1F 3a-2 3F 3c-3

sår. Gulaktig 

buk

lite sår. 

Snuteskade

1F K1 3F K1

1F K2 3F K2

1F K3 3F K3

1F K4 3F K4

1F K5 3F K5

1F K6 3F K6

2F 5b-1 lite sår 3LSS 5c-1 lite sår

2F 5b-3 sår 3LSS 5c-2

lite sår. 

Snuteskade

2F 6b-1 3LSS 6c-1

2F 6b-2 sår 3LSS 6c-2 sår

2F 7b-1

påbegynnen

de sår 3LSS 7c-1

lite sår. 

Snuteskade

2F 7b-3

sår. Gul langs 

buk 3LSS 7c-2

2F K1 3LSS K1 snuteskade

2F K2 3LSS K2

2F K3 3LSS K3

2F K4 3LSS K4 snuteskade

2F K5 3LSS K5

2F K6 3LSS K6

2LSS 1b-1 lite sår lite sår

2LSS 1b-2 sår lite sår

2LSS 2b-2 sår

2LSS 2b-3 lite sår

2LSS 3b-1 sår lite sår

2LSS 3b-2 sår

2LSS K1

2LSS K2

2LSS K3

2LSS K4

2LSS K5

2LSS K6

Welfare/ulcer score Welfare/ulcer score



Appendix 6 – Gene expression 
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Figure 23. Gene transcription profiling in the epidermis (A) and the dermis (B) layer of Atlantic 

salmon smolts challenged with T. finnmarkense. Differently expressed genes (DEG) shown as 

down-regulated or up-regulated organized by gene category for 1F, 2F, and 2LSS 3 days post 

challenge (dpc).  Bars represent the percentage of regulated genes per category. The number of 

DEG vs the number of genes per category is shown for each bar. Dark color versions indicate 

significant enrichment (Fisher test p < 0.05). Light color versions indicate non-significant 

enrichment. Microarray, statistical analysis, and presentation of data by researchers at Nofima, 

Ås. Graphs are slightly modified. 

B 


