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Abstract 
This study assesses changes in glacier area, velocity, and geodetic mass balance for a 

selection of glaciers in the Lunana glacier system of Bhutan, Himalaya. It takes considerations 

to Glacial Lake Outburst Floods (GLOFs) by creating a glacial lake inventory of two 

important potential dangerous glacial lakes, Raphstreng Tsho and Luggye Tsho. Bhutan is 

located in the eastern parts of the HKH region and is known for its earlier GLOF events. The 

precipitation in Bhutan is driven by the Indian monsoon resulting in 60% annual precipitation, 

the high amount of rainfall results in rockfalls that covers large valley glacier tongues with 

debris.  I studied the glacier area changes between 1976, 1996 and 2018 using freely available 

Landsat satellite imagery, SAR Sentinel 1&2, the SRTM Digital Elevation Model (DEM) and 

HMA DEM. The geodetic mass balance was calculated between 1976, 2000 and 2018/9 (for 

selected glaciers) using DEM constructed from high-resolution stereo images, Pléiades and 

SPOT, granted from the European Space Agency, as well as using the already accessed 

SRTM DEM and a Hexagon DEM courtesy of King, et al. (2019). The glacier velocity was 

generated using SAR TerraSAR-X data from 2016 and shows an average yearly displacement 

over the Lunana glacier system. The glacial lake time series for Raphstreng Tsho and Luggye 

Tsho where studied between 1993 and 2018 using a stack of freely available Landsat imagery. 

The results of this study, show a variety of decadal glacial changes over Lunana glacier 

system, with glaciers lowering on an average by 0.48± 0.08 m a-1 between 1976 and 2018/9 

which calculates to a geodetic mass balance of -0.41 ± 0.068 m w.e. a-1. The system had a 

total average of 12.73% area of reduction for all glaciers, between the same time period. The 

Lunana glacier system consists of both debris-covered glaciers in the south and debris-free 

glaciers in the north, and as a result, the glacier changes vary between the two regions. 

Between 1976 – 2018/9 the southern region had an average surface melt of 0.76 ± 0.07 m a-1 

which calculates to a geodetic mass balance of -0.65 ± 0.06 m w.e. a-1 and a 12.65% area of 

reduction. For the Northern region, the average surface melt was measured to be 1.26 ± 0.07 

m a-1 which calculates to a geodetic mass balance of 1.07 ± 0.06 m w.e. a-1 and a 12.80% area 

of reduction. The glacier velocity was calculated to be at average of 3.05 ± 0.73 m a-1 over the 

south region and 3.78 ± 0.73 m a-1 over the north region.  

The Luggye glacier 1, located in the southern parts of Lunana glacier system, is the main 

input source for glacier meltwater to Luggye Tsho an ice-moraine dam proglacial lake which 

outburst in 1994 due to hydrostatic pressure. Between 1976 and 2019, the Luggye glacier 1 

has had a considerable loss in surface elevation by 1.19 ± 0.07 m a-1 which calculates to a 
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geodetic mass balance of 1.01 ± 0.069 m w.e. a-1. The 1994 GLOF event discharged over 18 

million m3 of water, destroying infrastructure, flooding villages and houses which killed 21 

humans. Today, Luggye Tsho is classified to yield over 1.41 km2 of water, an increase from 

its former state of 1.12 km2 in 1993, just before the event. This study cannot affirm if PDGLs 

such as Luggye Tsho is to outburst in the future, but it does affirm its growth in lake area and 

its input source from glacier melt over Luggye glacier from the past 40 years, and that it 

should be monitored in case of potential outbreak. This can be done by doing repeated 

analysis of glacier velocity and calculation of glacier mass balance, as this would calculate the 

input source amount of meltwater to the lake, as well as keep monitoring the areal growth of 

Luggye Tsho.
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Chapter 1: Introduction 
This study revolves around the study of glacier changes in Himalaya and their connections to 

glacial natural hazards such as glacial lake outburst floods (GLOFs). This chapter is 

introducing the relevance of monitoring glaciers and why it is important to do so, as well as 

gives an influence on the story of Himalaya and the usefulness of using remote sensing to 

monitor such glacial mountain ranges.  

 

1.1 Importance of monitoring glaciers 
Glaciers are known to be a strong and important natural resource for both power and 

electricity for certain countries and regions, like the Himalayas. Glaciers provide insight to 

regional global climate change, as they work as indicators due to their influential response to 

temperature fluxes and precipitation (Karpilo, et al. 2009). Monitoring of these glaciers 

provides therefore information of the conditions of the local, regional, and global 

environment, and how to understand climate change and learn about the past, present, and 

future conditions of these environments. This gives influence to local and regional authority 

and provides them with data and information on how to operate a responsible land 

management (Karpilo, et al. 2009), as well as help certain facilities make predictions on how 

glacier changes impacts the environment. An example could be: if the glacier melts increases 

exponentially due to an increase in global warmth climate, there is a high risk that local 

hydrologic systems will experience an increase in water flow and will not be able to sustain 

the seasonal variability1 (Fountain and Tangborn 1985; Gill and Niller 1973), and as a result 

the sea level would rise. Monitoring glacier changes can also further study on how glacial 

hazards operates. Hazards like e.g. glacial lake outburst floods (GLOFs) and jökulhlaups are 

known for their destructive effects on infrastructure and civilizations, and operates through 

sudden outburst of waters and are often released due to failure moraine damn (Emmer 2017; 

Yuanfang, et al. 2002: p. 57 - 63). Other glacial hazards like, glacier icebergs known as 

tidewater glaciers which are known for their destruction on oceanic infrastructure, such as 

drilling platforms and passing ships (Karpilo, et al. 2009; Lawrence 2012). 

 

 
1 Seasonal variability: is the expected change in streamflow which follows throughout the year. This includes 
the seasonal of snow, snowmelt, rainfall, and dry periods (Gill and Niller, 1973).  



 

7 
 

1.2 Relevance of Himalayan glaciers 
The Hindu Kush- Himalayan (HKH) region is the highest mountain region on earth and is 

ranging from Afghanistan and to Bhutan, covered by 60 000 km2 of glaciers (Dyurgerov and 

Meier 2005). The region includes 14 of the world’s biggest mountain tops (peaks over 8000 

meters), this includes the world’s biggest mountain Mount Everest (8848 m a.s.l), and trends 

east-west and extends for over 2900 km, including the Tibetan plateau (Coenraads, et al. 

2008). The Himalayas was formed approximately 40-50 million years ago, when the Indian 

tectonic plate collided with the Eurasian plate resulting in an uplift of metamorphic processed 

rocks from the Tehtys ocean, building up the mountain range known as the Himalayas. The 

rising process is still on going by more than 1 cm a year and are resulting in great seismic 

activities (Coenraads, et al. 2008). These forces are resulting in eroding powers which can 

later result in other different catastrophic phenomena’s, e.g. glacial lake outburst floods 

(GLOFs). These outbursts of water can lead to catastrophic damage on villages and 

infrastructure nearby and can easily be triggered by e.g. earthquakes (Fig. 1.1), like the one in 

Kashmir in 2005. More than a thousand proglacial- and supraglacial lakes have been 

developed in the HKH region and increased in area these last few decades due to glacial 

retreat (Ives, et al. 2010). Which makes it one of the world greatest freshwater resources as 

water from the snow, ice and the monsoons enrichen the great river system. These water 

sources are used as drinking water for the villages and to drive several hydropower stations 

used to provide electricity and heat to the same villages. As an example, in Bhutan there are 

five major hydropower projects, according to IHA (2016), that are operational and in 2013-14 

these stations provided over 4,9 GWh wort of power to India, as the domestic demand for 

electricity and powers are quite low in Bhutan. Even though the glacial landscape provides 

with feasible water resources they do also provide with extreme and dangerous glacial 

hazards, e.g. GLOFs. Due to climate change, high mountain glacier has had an increase in 

glacier melt leading to an increase in supraglacial and proglacial lake area in the HKH 

(Maurer, et al. 2019). The HKH region is scattered with proglacial lakes, and in 2011 these 

numbers where counted to be almost 1700 lakes calculated cover over 80 km2 of water 

surfaces (Gardelle, et al. 2011). 
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Fig 1.1: GLOF causes. (A) causes relevant for all glacial lake subtypes and part (B) a longitudinal 

section of a dam, relevant for only a certain number of subtypes.  Source: (Emmer 2017). 
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1.3 Use of remote sensing for studying glaciers 
Remote sensing is a way to process and monitor the physical characteristic of an area. This is 

done by using satellites or aircrafts with cameras to detect and measure the radiation that an 

environment is reflecting and emitting (Clark 2001). The uses for remote sensing are 

abundant, but the main pro factors for remote sensing are, large area coverage and repetitive 

coverage. Remote sensing allows for very large area coverages, which enables regional 

surveys and classification. Kääb, et al. (2012) studied mass changes and glacier thickness over 

the Hindu Kush-Karakoram-Himalaya (HKKH) region by combining two elevation data sets 

(DEMs). Gardelle, et al. (2011) focuses on evolution of glacial lakes along the Hindu Kush 

Himalaya mountain range between 1990 and 2009, and Bajracharya, et al. (2014) which 

focuses on decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite 

data, both covers a large time period of decades. Not to mention, there are methods which 

uses high-resolution imagery for a more local approach on glacier changes. Hubbard, et al. 

(2000) determined the glacier mass balance of the Haut Glacier d’Arolla in Valais, 

Switzerland, by comparing two DEM data created by analytic photogrammetry using 20 m 

high-resolution images. Berthier, et al. (2007) determined the glacier mass balance in the 

Himachal Pradesh, Western Himalaya, India, by comparing a 2004 DEM to the 2000 SRTM 

(Shuttel Radar Topgraphic) DEM. The 2004 DEM was calculated from two high-resolution 

SPOT5 optical images using the PCI-Geomatica software. These remote sensing methods can 

be processed fast using a computer and by using the needed software’s, and the same data can 

be used for a variety of remote sensing methods. Remote sensing optical imagery are usually 

free to download if one is not using high-resolution images such as SPOT or Pléiades images. 

Satellites provide regular sampled scenes which can be utilized to give almost daily updates 

of glacier changes. Not to mention that sampled areas, such as the Himalayas, are difficult 

areas to excavate field work from and hard to get to. Remote sensing gives any user the ability 

to survey these areas from their own computer, making it extremely more viable to survey. As 

the time moves forward, processing is becoming more and more automated which means 

users can study even larger scale areas in less amount of time (Gardelle, et al. 2011; Kääb, et 

al. 2012). However, there are some limitations to remote sensing. One of the biggest struggles 

with remote sensing and its image analyzing is the interference by other variables such as 

weather conditions and sun oscillation which results in shadowing. These variables will cause 

distortion in optical images and can lead to faulty imagery. This problem can be dealt with by 

using radar images instead of optical (Clark 2001), and can also be acquired free of charge. 
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1.4 Study area 
The field of study is in the north-western part of Bhutan, Himalaya called Lunana, a region 

north of the main capital called Thimpu close to the Masang Kang mountain (Fig. 1.1), and is 

located on the border with the Tibetan plateau, China. The glacier environment is mainly 

consisting of both debris-covered glaciers in the south and clean ice in the north. The Lunana 

glacier system is therefore consisting of both southern glaciers within the north western part 

of Bhutan, and northern glaciers located within the south western part of China. For this 

study, nine glaciers within the Lunana glacier system will be individually picked based on 

their glacial characteristic and their location to two glacial lakes, the Luggye Tsho- and 

Raphtreng Tsho proglacial lakes (Fig. 1.2). The different glaciers consist of either just clean 

ice, or a combination of both clean ice and debris-covered glaciers. The southern glaciers 

terminate into a basin that is derived by a river called Pho Chhu river. The northern region is 

contains over 640 km2 of glaciers (Bajracharya, et al. 2014),which is a huge source of 

meltwater and results in fast flowing rivers which the hydropower relies on (Williams, et al. 

2016). There are five hydropower projects that are currently operational in Bhutan and are 

located in the south western part of Bhutan. In 2015 a total of 1,615 MW of hydropower was 

already installed and had generated 7,780 GWh of power. The glaciers of the Lunana system 

is connected to the Pho Chhu river, which of runs down towards Gasa a town located in 

northwestern Bhutan. The meltwater that these glaciers produce is essential for the generation 

of hydropower from the power stations that are located further down the stream in south 

western Bhutan.   

In Bhutan, the precipitation are driven by the Indian monsoon, occurring from June to 

September (Bohner 2006), resulting in 60% of annual precipitation (Dorji, et al. 2016). Also, 

that is the season when ablation and accumulation is at its highest (Fujita 2008), leading to 

massive cloud cover during this season.  
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Fig. 1.2: (A) Overview map of the study area in Bhutan, outlines of the glacier are derived from the glacial area 

classification. (A) The study area is fully covered by the Landsat datasets used, as well as SRTM and Hexagon 

DEM. (A) The PLÉIADES datasets are shown by the yellow polyline indicators, the SPOT data is shown by the 

green outline and the TerraSAR-X data is shown by the pink outline. (A) 1 - Bechung glacier, 2 – Raphstreng 

glacier, 3 – Thorthormi glacier, 4 – Luggye glacier 2, 5 – Luggye glacier 1, 6 – Lianggang glacier, 7 – Zeng 

glacier, 8 - G090157E28136N, 9 – Shimo glacier. (B) Overview map of South Asia, overviewing Bhutan, the 

Tibeatan Plateau, and parts of central Himalya. (B) The study area is marked with a purple outline. (C) A 

hillshade model (marked in pink on image (A)) of the Raphstreng Tsho, glacial and Luggye Tsho glacial lake. 

Background image (A): Landsat 8 false color composition (13.12.2018).  
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1.5 Objectives 
The objectives of this thesis are to study how glacier parameters, such as volume, area, 

and velocity changes, can be extracted from remote sensing and how to use them to 

assess and study GLOF risks. 

- Could glacial inventories extracted from remote sensing be used to better understand 

the temporal and spatial dynamics of GLOF events?  

- Can a combination of optical- and SAR data be used to effectively identify debris-

covered ice? 

- In what way does a debris-cover effect the glacier? 

o Will the glacier melt rate be affected by the debris-covers?  

o Is there any connection between the melt rate and the glacier velocity?   

- How have Luggye Tsho- and Raphstreng Tsho glacial lake developed to over the last 

25 years?   
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Chapter 2: Background 
The background for this study is comprised of studies regarding the use of remote sensing for 

studying Himalayan glaciers and what methods can be used to create a glacier inventory as 

well as the methods to study glacial lakes change in physical state. This chapter will also 

include former GLOF events that has occurred in the Himalayas with focus on Bhutan.   

 

2.1 Use of remote sensing for studying Himalayan glaciers 
Remote sensing has long been a sought-out way to monitor the glacier changes over the world 

and is mostly used for the places that are way more complicated to collect ground truth data 

from. Places like the Himalaya mountains, which contains over 24 000 km2 of glacier ice 

(Gardelle, et al. 2011) with a mean altitude of over 5500 m, which is making it difficult to 

engage field surveys and collect good ground data from. There is a lack of in-situ data when it 

comes to the studying of Himalayan glaciers, due to it being remote and hard to access 

(Bolch, et al. 2012), and the data that does exist are mostly bias towards small, debris-free 

glaciers (Berthier, et al. 2007). Remote sensing has the potential to cover these large areas in a 

systematic way.  

While there are certain studies revolving around identifying glacier structures and glacier 

surfaces manually (Kulkarni and Bahuguna 2002; Nuimura, et al. 2015), there are also studies 

doing this automatically. Automatic classification methods are often using algorithms to 

identify and classify pixels with certain spatial values. Gupta, et al. (2005) used remote 

sensing data to identify and classify dry- and wet snow in the Gangotri glacier, located in the 

Uttarkashi District in India. The project used IRS – LISS – III multispectral data and a digital 

elevation model. The classification used an algorithm called Normalized-Difference Snow 

Index (NDSI) as a main parameter for the spectral reflectance classification of snow-covered 

areas and use the Near-Infrared band (NIR) to differentiate between dry- and wet snow areas. 

NDSI utilizes the spectral characteristics from snow and ice, which is characterized with a 

high reflectance value in the visible spectrum (usually green band, 0.5-0.7 μm) and a high 

absorption in the short-wave infrared (SWIR) spectrum (1.0 – 3.5 μm) (Gupta, et al. 2005; 

Hall, et al. 1995). They unified a threshold value for the NIR classification between dry- 

(≥ 0.5) and wet (< 0.5) snow and conclude that based on IRS-LISS-III sensor data it is 

possible to classify and differentiate between wet- and dry snow areas. 

 



 

14 
 

2.2 GLOFs in the Himalayas 
Glacial lake outburst floods (GLOFs) is a huge problem in Hindu Kush Himalayan (HKH) 

region and has shaped the major valley trains of the Himalaya for the last thousand years 

(Korup and Tweed 2007). A GLOF commonly occurs through sudden emptying of glacial 

lakes and are often released through faulty moraine dams. GLOFs have taken several 

hundreds of lives these past decades and destroyed infra structures and damaged hydropower 

stations and livestock in many villages (Kuensel 1994a; Kuensel 1994b), and research shows 

that Bhutan and Nepal may have suffered the most from GLOF events when looking at the 

socio economic impact2 (Carrivick and Tweed 2016).  These GLOFs are known to transport 

millions of cubic meters of water and sediments within hours, and is considered one of the 

most dangerous glacial hazards known to mankind (Richardson and Reynolds 2000). Table 

2.1 provides a list of some of the former GLOF events that has occurred in the HKH region 

with general information on how great their collateral damage was as well as their outburst 

volume.  

Earlier GLOF events have been studied and observed in the north-western area of Bhutan, 

Himalaya. On 6 - 7 October 1994 there was an outburst flood in the Luggye Tsho glacial lake. 

A moraine dammed glacial lake that is in the upper valley of the East Pho Chhu, Lunana, 

south west from Thanza. The lake was, according to Bhutan’s daily newspaper, ranging of a 

depth between 60-100 meters (Kuensel 2011). According to (Fountain, et al. 2000: pp. 169) 

the outburst was caused by a failure of the moraine dam by a sudden expansion of a small gap 

at the lower end of the western lateral moraine of Luggye glacier 1. This led to an expansion 

of the outlet channel to Luggye Tsho and cause a sudden outburst of water draining parts of 

the lake. The outburst created a chain reaction, where the water from Luggye Tsho lake 

flooded down towards another lake just downstream, Tshopdak Tsho, which collapsed as a 

result. The discharged from Luggye Tsho was calculated to be around 23 m (Kuensel 1994a) 

and a total water amount of around 18 million cubic meters (WWF 2009). The flooding 

resulted in several houses in Chozo village (at 4000 m) was laid to ruins and the village of 

Thanza & Tenchey (at 4100 m) were flooded and cut off from each other because the bridge 

where destroyed (Kuensel 1994b). The outburst also resulted in an increase in area of the 

channel path to the Pho Chu river and caused damage to the moraine wall that is currently 

damming Raphstreng Tsho glacial lake. The flooding event carried lots of debris through the 

 
2 Socio-economic impact: tells about the advantages and disadvantages of a certain object or proposal and see 
how it impacts a society (Carrivick and Tweed 2016).   
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channel of Pho Chu river. The debris deposited in the same channel path shows a distinct light 

tone that is located along the drainage channel and banks, this is because of the bank erosion 

and the deposition along the river, from the GLOF event. After the event Luggye Tsho 

reduced in size, with the western end of the lake being receded by almost 500 m (Fountain, et 

al. 2000: pp. 169), and became less hazardous because of this great loss of water after the 

event (Kuensel 2012). Research has theorized that the Luggye  Tsho lake could have another 

outburst in the future, if the outlet channel of the lake where to become block and the water 

level where to rise (Fountain, et al. 2000: pp. 169). At the same time the lake is located at a 

higher altitude and in a very close vicinity of the western located glacial lake Raphstreng Tsho 

and the small supra glacial lakes located on the far end of Thorthormi glacier tongue. If 

Luggye Tsho where the outburst in the future there could be a possibility of the outbursting 

water flooding the supraglacial lakes on Thorthormi glacier and cascading down into 

Raphstreng Tsho leading to a catastrophic chain GLOF event. (Fountain, et al. 2000: pp. 169-

170).  

To prevent that such an event to ever happen again in the future the government of Bhutan 

invited experts from several countries to investigate the conditions of the glacial lakes and 

conclude with some resilience to prevent similar events in the future (Ahmed, et al. 2020; 

Singh 2009). As a result, the experts conclude with a set of risk reduction measures which 

consist of structural interventions: such as repairing the moraine wall dam of Raphstreng Tsho 

which were damaged by the 1994 GLOF event, building set of gabion-toe structure walls 

along the Pho Chhu river to provide surface roughness to the river channel, and lowering the 

water level of Luggye Tsho and other adjacent lakes in the area. The drainage was provided to 

reduce the hydrostatic pressure of the lake, and therefore reduce the risk of causing another 

fault in the moraine dam of Luggye Tsho. These structural interventions where accompanied 

by other long-term actions such as: safeguards against earthquakes, vegetation plantings to 

strengthen slope stability against debris fall, and set up surveillance and monitoring stations 

(Mool, et al. 2001). The Raphstreng Tsho Outburst Flood Mitigation Project was a project 

initiated in 1996 as a counterattack for the 1994 GLOF event, ensuring structural mitigation of 

the Raphstreng Tsho lake as well as drainage of glacial lakes surrounding Luggye Tsho. 

Where they were able to lower the glacial lakes water level by four meters in just a couple of 

years (Singh 2009). 

After the 1994 GLOF event, downstream valleys like Thimphu have become more and more 

populated and several hydroplants have been constructed as a result of the increase in 
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production of glacier meltwater due to the climate change-induced glacial melt (Singh 2009). 

As a consequence, this increase in population and infrastructure can lead to a more 

devastating outcome if a new GLOF event would originate from the Lunana glacier system. A 

similar event like the one in 1994 could lead to 10 times more fatalities and damage (Brauner, 

et al. 2003).  

Another event, more present to time, took place in 2015 in the Lemthang Tsho glacial lake, a 

supra glacial lake located north west from Thimphu. The lake outburst as a result of 2 days of 

continuing rainfall, that breached the vertical wall of glacier that was damming the lake up, 

emptying 0.37 million m3 of water streaming at a velocity of 7.14-7.57 m/s 30 km 

downstream from the lake (Deo Raj, et al. 2017).  
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Table 2.1: Documented GLOF events between 1964 and 2016 in the Himalayas. Source: (Ashraf, et al. 2010; 

Daisuke, et al. 2012; Deo Raj, et al. 2017; Govindha Raj K 2009; Kuensel 1994a; Kuensel 1994b; Li, et al. 2017: 

pp. 397; Mei, et al. 2020; Mool, et al. 2001; Vuichard and Zimmermann 1987; Watanbe and Rothacher 1996; 

WWF 2009). 

Year Lake River Basin/ 

Area 

Country 

affected 

Cause of 

GLOF 

Outburst 

volume (m3) 

Note 

September 

1964 

Gelhaipuco Purn Qu / 

Arun 

China and 

Nepal 

Glacier 

surge 

Unknown Destroyed one highway 

and 12 trucks. 

September 

1977 

Nare Dudh Koshi Nepal Moraine 

collapse 

Unknown Human lives taken and 

bridges destroyed.  

June 1980 Nagma Pokhari  Tamor Nepal Moraine 

collapse 

Unknown Villages destroyed 71 km 

downstream. 

July 1981 Zhangzangbo Boqu / Sun 

Koshi 

China and 

Nepal 

Glacier 

surge 

0.2 million 

m3 

Damaged friendship bridge 

China-Nepal highway. 

Destroyed Koshi power 

station and caused serious 

economic loss.  

August 

1985 

Dig Tsho Lagmoche 

valley 

Nepal  Ice 

avalanche 

5 million m3 New hydroplant, livestock, 

houses, trails, and bridges 

destroyed.  

October 

1994 

Luggye Tsho Pho Chhu Bhutan Moraine 

collapse 

18 million m3 21 people died. 

2008 Ghulkin Glacier 

lake 

Karakoram Pakistan Moraine 

collapse 

Unknown Flooded 4 times in six 

months. Damaged many 

properties, land, and 

infrastructure of Ghulkin 

village. 

July 2015 Lemthang Tsho Mo Chu Bhutan Moraine 

collapse 

0.37 million 

m3 

No casualties.  

July 2016 Gongbatongshaco Zhangzangbo 

Valley 

Nepal Moraine 

collapse 

0.11 million 

m3 

Damage site was affected 

by the Gortha earthquak, 

setting debris-covers that 

was later transported by the 

GLOF event. 77 houses, 3 

bridges, 1 highway and a 

dam destroyed. 
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2.3 Methods for studying glaciers with remote sensing 
Remote sensing has long been a sought-out way to monitor the glacier changes over the world 

and is mostly used for the places that are way more complicated to collect ground truth data 

from. Places like the Himalaya mountains, which contains over 24 000 km2 of glacier ice 

(Gardelle, et al. 2011) with a mean altitude of over 5500 m, which is making it difficult to 

engage field surveys and collect good ground data from. There is a lack of in-situ data when it 

comes to the studying of Himalayan glaciers, due to it being remote and hard to access 

(Bolch, et al. 2012), and the data that does exist are mostly bias towards small, debris-free 

glaciers (Berthier, et al. 2007). Remote sensing has the potential to cover these large areas in a 

systematic way.  

The objectives of this thesis are to investigate the glacier properties of the Lunana glacier 

system, through remote sensing. To do this there are different methods which one can utilize. 

Based on the time and the amount of resources, this thesis will focus on these methods: 

calculation of glacier area changes through glacier classification, change in mass balance 

through geodetic mass-balance and calculation of glacier velocity by the using feature 

tracking. The method to distinguish the area of the glacier is divided between different 

methods, this because of the glaciers complex structure between clean ice and debris-covered 

ice.  

2.3.1 Glacier area 

This study is revolving around using multispectral data to efficiently detect, classify, and 

assess changes on the glaciers within the Lunana region of Bhutan. This can be done through 

two different methods, either by manual delineation or by automatic classification. A paper by 

Bishop, et al. (1998) used SPOT Panchromatic satellite data to study and determine if spectral 

variability can be quantified and used to identify and characterize glacier surfaces. Bishop, et 

al. (1998) used SPOT data to perceive different features of glacier structure that resulted from 

glacier movement, ablation, and supraglacial fluvial action, by using semivariogram3- and 

fractal analysis. The study took place on the Batura Glacier, in the Karakoram Himalaya of 

northern Pakistan and concluded that the semivariogram could be used to describe ice 

structure and characteristics of the debris load, and that the fractal analysis has the potential to 

be used to differentiate other characteristics of the glacier surface, but that further research is 

needed. This research shows and proves that by using spectral variability one can identify and 

 
3 A semivariogram is a graph showing the changes between observation changes. Bishop, et al. (1998) used this 
analysis to differentiate different classes of structures directed to the glacier surfaces, and how these classes 
corresponds to the spatial patterns and their reflectance.  
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characterize glacier surfaces. Other studies have proved the same point but by using other 

different methods and different data.  Kulkarni and Bahuguna (2002) used high-resolution 

(5.8 m) stereo data to monitor retreat of the glaciers in the Baspa basin, India. Based on 

manual digitization and visual interpretation of the glacier snouts for 1997-98 and 1962-63 in 

the Baspa basin where identified and classified. Both studies used visual interpretations to 

classify glacier structures, but both in a different way to conclude with the result.  Bishop, et 

al. (1998) used semivariogram analysis and mathematical models to discuss their observations 

while Kulkarni and Bahuguna (2002) relied on experience and used more remote sensing 

methods by using photogrammetry and orthorectified images to identify glacier snouts.  

To classify glacier system, one needs to account for the structure of the glacier system one is 

studying. In this case the Lunana glacier system is a combination of clean ice, that are in the 

north region of the study area, and debris covered glaciers which are more abundant in the 

south region of the study area. Debris-covered glaciers are usually found in the Himalayas, 

and even almost all large valley glaciers are covered with debris in the ablation zone of the 

glaciers (Sakai, et al. 2000). These large valley glaciers are actually known to occupy more 

than 80% of the glacier areas in the Himalayas (Fujii and Higuchi 1977), and are therefore 

highly expected to come over when one is classifying glacier outlines in the Himalayan 

region.   

2.3.1.1 Manual digitization 

Manual digitization, or manual divinization, is a method where one is using visual tools to 

manually map certain areas or objects in a GIS system. This method is a well-known method 

and it is easy to perfect if you know what to classify. When it comes to deriving outlines for 

glacier areas, there is the conflict on classifying the clean ice vs debris-covered ice. In a paper 

by Paul, et al. (2013)  they tested the accuracy of the glacier outlines derived from remote 

sensing through manual digitization. This was done by comparing outlines from clean ice and 

debris-covered glaciers, by using multiple digitization by different or the same analyst on 

high- (1m) and medium resolution (30m) images. The results proved that manual digitization 

of clean ice had an overall good accuracy, confirming about 95%. However, the debris-

covered outlines did not bear the same result where almost 30% where wrongly classified. It 

is therefore a clear conclusion. That while manual digitization is a promising method to 

classify clean ice, it is not a recommended method when one is classifying debris-covered 

parts because of difference in interpretation (Fig. 2.1).  
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Fig. 2.1: shows an overlay of manually delineated glacier outlines for three test glacier in the Swiss 

Alps, results from Paul, et al. (2013): (a)  Vadret Futschöl, (b) Vadret d’Urezzas and (c) Geren glacier. 

Notice how the debris-covers on the glacial surfaces (b) and on the glacial tongue (c) is interpreted 

differently. Background images: screenshots from Google Maps. 
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2.3.1.2 Automated methods 

While there are certain studies revolving around identifying glacier structures and glacier 

surfaces manually (Kulkarni and Bahuguna 2002; Nuimura, et al. 2015), there are also studies 

doing this automatically. Automatic classification methods are often using algorithms to 

identify and classify pixels with certain spatial values. Gupta, et al. (2005) used remote 

sensing data to identify and classify dry- and wet snow in the Gangotri glacier, located in the 

Uttarkashi District in India. The project used IRS – LISS – III multispectral data and a digital 

elevation model. The classification used an algorithm called Normalized-Difference Snow 

Index (NDSI) as a main parameter for the spectral reflectance classification of snow-covered 

areas and use the Near-Infrared band (NIR) to differentiate between dry- and wet snow areas. 

NDSI utilizes the spectral characteristics from snow and ice, which is characterized with a 

high reflectance value in the visible spectrum (usually green band, 0.5-0.7 μm) and a high 

absorption in the short-wave infrared (SWIR) spectrum (1.0 – 3.5 μm) (Gupta, et al. 2005; 

Hall, et al. 1995). They unified a threshold value for the NIR classification between dry- 

(≥ 0.5) and wet (< 0.5) snow and conclude that based on IRS-LISS-III sensor data it is 

possible to classify and differentiate between wet- and dry snow areas.While the manual 

delineation proves a high accuracy when it comes to deriving glacier outlines for clean ice, it 

is limited by the fact that manual classification is both time consuming and wearisome when it 

comes to deriving multiple large glacial areas (Paul, et al. 2013). It can therefore be more 

useful to utilize automated methods such as supervised and unsupervised classification 

methods.  

 

Supervised classification, the human guided method, is classification method that uses 

reference data or training sites as references for the classification. The user therefore select 

and sample pixels within the data files, directing the processing software to these training sites 

(Belgiu and Dr Guţ 2014). Gratton, et al. (1990) used supervised classification when they 

were mapping glacial covers of the Columbia Icefield, Canada. They used automated 

classification based on the maximum-likelihood algorithm, which they concluded with being 

the most efficient and accurate method to map scattered covers such as snow and vegetation. 

The problem with using supervised classification in mountains areas like the Himalaya is the 

issue with identifying good training areas for the classification, due to the shadows. 
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Unsupervised classification is where the software groups pixels that share the same 

characteristics without having the user provide sample classes, as they do in a supervised 

classification. This method is therefore bearing more on the software to classify pixels in GIS. 

The user is dominate on choosing the specific algorithm the software should be using to 

perform the classification. The user controls the inputs, how many times this algorithm should 

be run and the threshold, which tells when the software should end the procedure (Lillesand, 

et al. 2004: 573). An example of an unsupervised classification is ISODATA clustering. An 

article by Paul, et al. (2002) used ISODATA clustering as a method to create glacier 

inventories in the Swiss alps. ISODATA clustering is basically an algorithm that the software 

uses to split and merge clusters of pixels that were assigned based on their spectral 

information. These clusters will be split and merged as much as needed to fulfill the users 

thresholds criteria, which they input before the procedure initiates. Paul, et al. (2002) 

compared both unsupervised ISODATA clustering with a supervised maximum likelihood 

method to see what gave the best result when it came the classify glaciers in the Swiss alps. 

Much like Gratton, et al. (1990)  used the same supervised method to classify glacier covers 

in Canada.  

 

However, to fully classify glacier covers the user also needs to select criteria that will be 

inserted within the algorithm methods. The most normal criteria for classification methods are 

band ratios. Band ratios are combination of individual bands within a data image. Examples 

could be, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Snow Index (NDSI) and TM4/TM5 also known as 

NIR/SWIR (see table 2.2). In the article by Paul, et al. (2002) he used both supervised and 

unsupervised classification method with TM4/TM5 as input indices for the algorithm. 

According to the article TM4/TM5 yields good result when the user is mapping debris-free 

glacier areas and is therefore normally used to classify clean ice on glacier systems. Other 

papers such as Robson, et al. (2015) used the same band ratio when they were mapping 

glacier covers of the Manaslu Region within Nepal.  
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Table 2.2: Custom indices used in the glacier and glacial lake classification. 

Index Acronym Custom Index Name Band formula  

NDVI Normalized Difference Vegetation Index (NIR - Red) / (NIR + Red) 

NDSI Normalized Difference Snow Index (Green – SWIR) / (Green + SWIR) 

NDWI Normalized Difference Water Index (Green – NIR) / (Green + NIR) 

SWIR/NIR  Commonly referred to as TM4/TM5 SWIR/NIR 

 

 

2.3.1.3 Difference between pixel-based image analysis and object-based image analysis 

The most traditional way of classifying pixels in a GIS software is to use a pixel-based 

classification. According to Richards (1993); pixel-based classification (PBIA) is defined as 

an analyzation of individual images pixel containing spectral information. This is the 

traditional way of classification, given the fundamental value of pixel, as they are spatial units 

of satellite images, are easy to implement. The method uses the spectral information for every 

pixel which is stored in the image bands for each dataset. From there the method will classify 

each individual pixels based on each bands variability of the reflectance values (Lillesand, et 

al. 2015). Traditionally, in pixel-based classification operates with class characterizations that 

in theory are well-known and well-defined, but in practice may not be so defined. An example 

may be glaciers, which can consist of objects like; clean ice and debris-covered ice, all of 

which can be contained within different pixels. This problem is often related to the spatial 

resolution and sets up a relationship between spatial resolution and the object that is being 

classified. Making it so that more than one landform class is include within the same pixel, 

and therefor misclassify certain landforms with other landforms (Fig. 2.2). 

This complicates the glacier classification and leads to certain problems involving the pixel-

based classification (Rastner, et al. 2014; Robson, et al. 2015). 
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Fig. 2.2: Shows the relationship between spatial resolution and objects that are being classified: (a) 

low resolution, where the pixel is larger than the objects. (b) medium resolution, where the pixel and 

objects are about the same size. (c) high resolution, where the pixels are largely smaller than the 

objects. Figure gathered from Blaschke (2010). 

 

 

Object-based image analysis is spatial information4 extraction, used in software’s like 

ArcGIS, PCI Geomatica and eCognition, to process and classify spatial contextual 

information, e.g shape or texture (Rastner, et al. 2014; Robson, et al. 2015). It starts by 

segmenting the pixels into objects (Baatz and Schäpe 2000). Which is an algorithm that 

merges pixels into groups by utilizing three parameters: scale, shape, and compactness. The 

scale parameter is used for the size of the individual objects, the shape drives the homogeneity 

of objects. The parameter “compactness” is used to change the compactness of the resulting 

objects (Baatz, et al. 2005). The segmentation is often applied several times to create different 

segmentation levels, which amplifies and group finer objects that would not be included in the 

earlier stages of segmentation (Fig. 2.3). After the segmentation, the objects can then be 

classified using different classification procedures such as: band ratio, slope, elevation, 

thermal information, SAR coherence.   

 

 

 

 
4 Spectral information: Spectral imaging is an image that uses multiple bands through the electromagnetic 
specter. Spectral information is therefore the information from these bands or what color it is (Heywood, et al. 
2011). 
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Fig. 2.3: Shows a multiscale segmentation on two different levels of segmentation. On the left is a 

very coarse segmentation aiming at the pasture fields, and the one on the right is a much finer 

segmentation aiming at the groups of shrubs. Figure gathered from (Blaschke and Strobl 2001).   

 

Compared to traditional pixel-based methods, OBIA transform pixels into near-homogenous 

objects. This removed the incident of getting faulty imagery through misclassifications in low 

spatial resolution images (Fig. 2.2) (Paul, et al. 2004; Robson, et al. 2015). For this purpose, 

OBIA can, e.g., be used to automatically remove water bodies or include/exclude debris-

covered glacier tongues. Based on an article by Rastner, et al. (2014), where they compared 

OBIA and PBIA by mapping glaciers through optical images, they concluded that OBIA had 

12% better accuracy of mapping debris-covered glaciers, than PBIA. The disadvantages with 

PBIA was that misclassification would occur, since PBIA classifies each individual pixel 

through their spectral information and could therefore classify multiple landforms within the 

same pixel. On the other hand, Rastner, et al. (2014) noticed that OBIA could miss tiny 

objects that PBIA would include in the mapping (ice couloirs or nunatakes), but includes the 

larger objects (e.g., elongated medial morraines). However, they did conclude that OBIA is 

recommended when one is mapping glaciers in regions where there are multiple spectral 

information’s (e.g. clean ice, debris-covered glaciers) to be mapped. 
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2.3.1.3 Automatic delineation of Debris-covered ice 

Studies have revealed that manual digitization is extremely time-consuming when one is 

outlining debris-covered glaciers and also known to lead to faulty and inaccurate results 

(Bhambri, et al. 2011; Bolch, et al. 2008; Paul, et al. 2013). It is therefore not recommended 

as a method for this part of the classification. Debris-covered glaciers is ice covered with 

debris from surrounding landslides, and as every other glacier, these parts do also experience 

glacier movement. This is an important factor when it comes to classifying debris-covered ice. 

In the article by Paul, et al. (2002) they mentioned that the TM4/TM5 method proved 

sufficient when one is mapping debris-free glaciers or clean ice, but that the method failed to 

map debris-covered parts. This is because debris-covered glaciers and stable ground are 

spectrally similar and can therefore be misclassified as one another. This can be avoided by 

focusing on the movement of the glacier rather than its reflectance from light. Synthetic 

Aperture Radar (SAR) is a system that sends out radar waves that backscatter of the ground 

and back up to the radar. This SAR system measures and records the amplitude and the phase 

that the backscatter echoes return and produces SAR images. A SAR image pair can be used 

to measure shift in phase (interferometric fringes), and by using two images with slightly 

different viewing angels one can monitor change in terrain, also called coherence (Zebker and 

Goldstein 1986). SAR coherence is a parameter often used to differentiate debris-covered ice 

with the surrounding stable terrain, and there have been recent studies that have been using 

this with great result (Frey, et al. 2012; Robson, et al. 2015; Zongli, et al. 2011). Loss in 

coherence value is correlating to the change over time or movement over the glacier and is 

therefore often used as a guide to indicate debris-covered glacier parts (Frey, et al. 2012; 

Robson, et al. 2015).  Fig. 2.4 shows the advantages of using coherence over debris covered 

ice compared to using the NIR/SWIR band ratio. In the figure one can clearly see that both 

clean ice and debris-covered parts show very low coherence value, displayed with a dark 

indication in image (C). This is due to the change in geometrical configuration of the scatters 

(Frey, et al. 2012). Robson, et al. (2015) automatically mapped debris-covered parts in the 

Manaslu Region, Nepal, by using SAR coherence as a parameter for the classification. It is 

worth to notice while the coherence data can identify both clean ice and debris-covered ice, it 

is also able to classify water bodies, which would also display a low coherence value. 

However, since water bodies already have an easy straightforward method by using optical 

satellite images and band ratio (see section 2.5 “ Methods for studying glacial lakes with 

remote sensing”), this means that the coherence method is a more glacier focused 

classification method (Frey, et al. 2012). As low coherence values measures shift in phase and 
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therefore identifies changes in terrain, it therefore also identifies change in vegetation and 

mass movements in non-glaciated terrain. This means that is impossible to compute an 

automated mapping of a debris-covered glacier based solely on coherence images, one would 

need other parameters, such as: e.g. NDVI and NDSI. The NDVI is to remove vegetation at 

the glacier terminus, as the vegetation could be picked up by the coherence, and the NDSI is 

used to include the dirty ice that would protrude from the debris (Robson, et al. 2015).  

It is also possible to use NIR/SWIR bands combined with thermal data over the given study 

area for mapping debris covered glaciers (Casey, et al. 2012; Karimi, et al. 2012; Shukla, et 

al. 2010). On the other hand, thermal data over debris-covered ice is limited by the thickness 

of the debris layer. Reznichenko, et al. (2010) explained in his paper on “Effects of debris on 

ice-surface melting rates: an experimental study” they noted that the overall melting of ice 

was considerable smaller under 130 mm of debris. The debris-cover would therefore be less 

than 130 mm thick for the thermal data to show much sign of activity and since the thickness 

of the debris-covers from the study areas are unknown, thermal data will therefore not be used 

for this study.  
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Fig. 2.4: (A) An overview image of the Lianggang glacier located west in the Lunana glacier system. (B)  

Coherence image cropped over the Lianggang glacier; the image shows the glacier movements over the clean ice 

as well as the debris covered parts. Both of the images are marked with two individual transect lines: the green 

line represents clean ice and the red line represents debris-covered glacier. (C) Graph showing the reflectance 

values of the NIR/SWIR ratio as well as the coherence values over clean ice, displayed as green transect line. (D) 

Graph showing the reflectance values of the NIR/SWIR ratio as well as the coherence values over the debris-

covered glacier, displayed as a red transect line in. 
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2.3.2 Glacier mass balance 

Geodetic mass balance is a way to indirect determine the mass balance of glaciers, this differs 

from glaciological measures of mass balance which uses field data to directly calculate the 

changes. Glacier mass balance changes by the result from ablation and accumulation, and is 

therefore an indicator for volume changes within the glacier (Fischer 2011). Two different 

DEMs from two different periods are gathered to generate a DEM co-registration (see chapter 

4.1.2 for further explanation). The geodetic calculation method uses volume change with the 

mean density to calculate the mass balance (Fig. 2.5). This and most studies estimate the 

density and is therefore differencing from direct mass balance which uses a calculated 

density.  

Direct mass balance is determined through the direct in situ determination of accumulation 

and ablation for that mass balance year (Braithwaite 2002). Ablation stakes are drilled down 

into the glacier and read at the end of the hydrological5 year (Fischer 2011). While the 

accumulation is determined by digging snow its and measure the thickness and the density of 

the snowpack and firn. However, the glaciological method does not account for the mass 

changes below the surface and therefore only confirms the surface mass balance (Fischer 

2011).   

𝐵𝑔𝑒𝑜 =  ∆𝑉 ×  𝜌 

Fig. 2.5: The formula to calculate the geodetic mass balance (Bgeo) using the volume change (ΔV) 

times the density (ρ) (Fischer 2011). 

Both methods account on good data to present good results, the glaciological method has field 

survey data and the geodetic method has DEM data. These data processes can lead to certain 

uncertainties. The ablation stakes can yield small sample size, and as an example, the 

measuring from the stakes can significantly differ from one stake to another, as a result from 

surface albedo changes (Fischer 2011). However, as proven by Kuhn, et al. (1999), this is not 

defined as an error, but that some stakes are valued less important than others. The accuracy 

of the glaciological mass balance is controlled by the amount of snow pits and stakes. This 

same statement can be transferred to the geodetic method as the accuracy of the geodetic mass 

balance is controlled by the resolution of the DEMs.  

 
5 Hydrological year also known as the water year, is a term used to describe a period of 12 months for which 

precipitation is measured. Example: in 2010 the water year started on October 1, 2009 and ended on September 

30, 2010.  
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2.3.3 Glacier velocity  

Glacier velocity is a last method used to look at the velocity measurements of the Lunana 

glacier system. This study is focusing at glacier changes with the supplement of GLOF 

events, and GLOF hazards can have an increase in hazardous effect as active glaciers 

produces meltwater that can lead to more production of glacial lakes and/or lead to cause of 

impact to a GLOF event (Emmer 2017).  

Dehecq, et al. (2015) used all available Landsat 5/7 pairs that where taken over the Himalaya 

to produce a large and robust 3-year glacier velocity time series. The displacement was 

estimated by using repeat-image feature tracking and a complex cross correlation algorithm of 

the Landsat image pairs. The software used for this study is unknown. Feature-tracking is a 

method used to estimate a displacement between an image pair, by using generated reference 

windows that are compared between the image pair using a function of similarity. This is a 

repeating process and the results yield the maximum similarity which then is translated to be 

the measure of the displacement (Dehecq, et al. 2015).  

Another method was used by Varugu, et al. (2015), where they were using high resolution 

SAR images to estimate the glacier velocity to Gangotri glacier in India, Himalaya. The 

explained that the SAR method can be used in two different approaches: the interferometric 

(InSAR) approach and the offset tracking approach. The interferometric method was executed 

by using two SAR data sets from ERS-1&2 with a one-day interval and co-registered to 

record the displacement. The entire process was done through the Gamma Remote Sensing 

and Consulting (GAMMA) software. The interferometric approach uses coherence to 

calculate the displacement change, and according to Varugu, et al. (2015) the significant 

amount of coherence is lost after one day. This limits the interferometric approach to only 

measure glacier displacement with a maximum one-day interval. This is different for the 

offset tracking approach which uses intensity values instead of coherence loss, resulting in a 

fine displacement measurement over glaciers with even longer repeat periods. Varugu, et al. 

(2015) executed the offset tracking approach by using TerraSAR-X and TanDEM-X image 

pairs with a low repeat period of 11 days and co-registered through the GAMMA software. 

Both methods showed valid results and where highly efficient in detriment the displacement 

in glaciers.   

In the end, the feature tracking method versus the SAR offset tracking and interferometric 

method both uses cross correlation of images. The difference is the speed of the glacier which 
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can be measured between a short time interval, like the SAR approach, or in a more complex 

but longer time interval, the optical feature tracking approach.  

2.4 Methods for studying glacial lakes with remote sensing 
Classifying glacial lakes with multi-spectral data bears a lot of similarities to classifying 

glaciers. One could for example use manual delineation to identify these lakes. With a trained 

eye and some geological experience, one could even delineate different types of glacial lakes, 

e.g. proglacial lakes, and supra glacial lakes.  

Key concept in the identifications of various objects through remote sensing is that these 

objects reflect energy differently and by using the electromagnetic spectrum one can easily 

identify them (Govindha Raj, et al. 2013), and water bodies absorbs high amount of infrared 

radi. Band ratios are an easy tool to derive from this concept and has been used in many ways 

to identify glacial lakes. NDWI is the main band ratio to use to identify water surfaces and has 

been since index was first used by McFeeters (1996). Water bodies, e.g. glacial lakes, absorbs 

high amount of infrared radiation as well as green light due to the green pigment in 

chlorophyll (McFeeters 1996). The NDWI uses the reflected near-infrared (NIR) radiation 

and the visible green light to intensify the state of features, such as water bodies, but at the 

same time remove the presence of soil and vegetation features (Fig. 2.6). After that there has 

been several different versions of the NDWI by using different combinations and different 

equations to improve the classification or to better asses for the different types of lakes, e.g. 

mudded water, clean water, etc.  

 

𝑁𝐷𝑊𝐼 =  
(𝑋𝐺𝑟𝑒𝑒𝑛 − 𝑋𝑁𝐼𝑅)

(𝑋𝐺𝑟𝑒𝑒𝑛 + 𝑋𝑁𝐼𝑅)
 

Fig 2.6: McFeeters (1996) NDWI equation used to classify water bodies in GIS.  

 

An example could be Wessels et al. (2002) which was using spectral analysis, based on 

ASTER-imagery, to identify terrain features in the region of Mount Everest and locate glacial 

lakes. They used automatic classification to identify and locate these glacial lakes. By using 

bands in the NIR (Near Infra-Red) and MIR (Middle Infra-Red) of the ASTER data. The 

results led to two ratios to distinguish (Fig 2.67:         
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𝑅1 =  
𝐵𝐺𝑟𝑒𝑒𝑛

𝐵𝑁𝐼𝑅
 

𝑅2 =  
𝐵𝑁𝐼𝑅

𝐵𝑀𝐼𝑅
 

Fig. 2.7: Wessels et al. (2002) equation to calculate the location of glacial lakes in Mount Everest 

region. Where Bi is the ASTER spectral band image. Source: (Gardelle, et al. 2011) 

                             

1: With ratio R1 to distinguish water surfaces from non-water surfaces (Eq. (1)). 

2: With ratio R2 to distinguish solid (ice or snow) from liquid (water) surfaces (Eq. (2)), 

among already classified water surfaces (from Eq. (1)).  

Huggel et al. (2002) studied glacier hazards in the Swiss Alps, using LANDSAT images and 

applied the NDWI (Normalize Difference Water Index, Eq. (3)) (Fig. 2.8). This formula was 

able to calculate and locate glacial lakes by utilizing the low water reflectance in the NIR 

(Near Infra-Red) band.  

 

𝑁𝐷𝑊𝐼 =  
𝐵𝑁𝐼𝑅 −  𝐵𝐵𝑙𝑢𝑒

𝐵𝑁𝐼𝑅 +  𝐵𝐵𝑙𝑢𝑒
 

Fig. 2.8: Huggel et al. (2002) equation to calculate the location of glacial lakes by using the NDWI 

formula. 

 

These are just two examples to identify and classify glacial lakes, but there are situations 

where these types of classifications are not good enough. Situations like; when lakes are 

frozen and covered by snow, these formulas will not be able distinguish them from water and 

non-water areas, and solid from liquid (e.g. snowy glaciers). It will be therefore needed to use 

visual inspections to distinguish them, and still then it could be hard to identify.  
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2.4.1 Lake monitoring with SAR data 

However, using optical data as an input for monitoring glacial lakes have shown to be 

challenging in the past, reason being that cloud-free image are required as well as the inability 

to reveal the location during night hours. Therefore, several optical data inputs cannot be used 

because of their limitations, and the seasonal variations to glacial lakes cannot be observed as 

well. To prevent this, Wangchuk, et al. (2019) proved in his paper that optical imagery can be 

substituted with SAR imagery. Which is not limited by cloud cover and nighttime, because of 

their active remote monitoring. The threshold parameters are the same both for the optical 

data as the SAR data (figure SAR). Sentinel 1 data will be used as input data for the SAR 

classification and will be preprocessed through SNAP and then converted to ArcMap for the 

binary classification.  
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Chapter 3: Data 
This chapter consist of all the different datasets used for this study. The data files are 

explained accordingly to their different paragraphs: optical data, stereo data, SAR data and 

DEM data. They are divided up between their different satellites or their data type (e.g. 

optical and DEM). The datasets used for all the methods are listed in table 3.1.  

3.1 Optical data 
Optical data sets where used for the classification method of both glacial lake- and glacier 

area. These optical datasets consisted of Landsat 5 & 8 TM and Sentinel 2B. The Landsat data 

where downloaded for free from earthexplorer.usgs.gov website, with a spatial resolution of 

30 m. The Sentinel 2 dataset where downloaded from scihub.copernicus.eu website, with a 

spatial resolution of 20 m. The Landsat 5 temporal archive ranges from 1984 until 2018 and 

Landsat 8 ranges from 2013 until present day.  

3.1.1 Stereo data 

The Stereo data were used to generate DEM for the calculation of geodetic mass balance. 

These datasets were consisting of 2019 Pléiades data (0.5 m resolution) and 2018 SPOT 6/7 

(2.5 m resolution). These high-resolution images cannot be downloaded for free and for this 

study a quota where applied to the European Space Agency to produce Pléiades scenes and 

SPOT 6&7 scenes for this project. This application was granted in February 2019 and 

Pléiades scenes was taken during October. The SPOT 6&7 was accessed through the Geostore 

for the ESA website with the allocated quota from the application. 

3.2 SAR data 
The Synthetic Aperture Radar (SAR) data were used for the calculation of glacial velocity as 

well as for the generating of the coherence parameter used for the glacial area classification. 

The SAR data was consisting of 2016 TerraSAR – X (TSX) data gathered free of charge from 

terrasar-x-archive.terrasar.com website and 2018 Sentinel 1A data gathered free from 

scihub.copernicus.eu website. The TerraSAR – X data had a spatial resolution of 3 m.  

3.3 DEMs 
Digital elevation models (DEM) where used for the classification method as well as the 

calculation of the geodetic mass balance, where they were used to calculate surface and 

volume changes. The DEMs where 2000 Shuttle Radar Topography (SRTM), downloaded for 

free from srtm.csi.cgiar.org website, 2016 High Mountain-Asia (HMA), downloaded from 

free from NASA National Snow and Ice Data Center Distributed Active Archive Center 

(NSIDC DAAC), and a 1976 HEXAGON DEM obtained from King, et al. (2019)
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Table 3.1: A table showing all the downloaded satellite scenes that was used for this study. 

Scene ID Date of 

acquisition  

Sensor Resolution 

(m) 

 

Bands used 

 

Purpose 

 

LM02_L1TP_148041_19761217_20 17/12/1976 Landsat 2 30 - Glacial area 

LT05_L1TP_138041_19941227_20 12/27/1994 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_19950128_20 1/28/2995 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_19961130_20 11/3/1996 Landsat 5 30 Green/NIR Lake area/glacial 

area 

LT05_L1TP_138041_19970101_20 1/1/1997 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_19970218_20 2/18/1997 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_19990208_20 2/8/1999 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20001109_20 11/9/2000 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20001227_20 12/27/2000 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20041104_20 11/4/2004 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20050107_20 1/7/2005 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20070129_20 1/29/2007 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20080116_20 1/16/2008 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20081217_20 12/17/2008 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20090203_20 2/3/2009 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20091001_20 10/1/2009 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20091017_20 1/17/2009 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20101223_20 12/23/2010 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20110108_20 1/8/2011 Landsat 5 30 Green/NIR Lake area 

LT05_L1TP_138041_20111108_20 11/8/2011 Landsat 5 30 Green/NIR Lake area 

LC08_L1TP_138041_20131012_20 10/12/2013 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20151119_20 11/19/2015 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20161020_20 10/2/2016 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20170414_20 4/14/2017 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20171108_20 11/8/2017 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20171210_20 12/10/2017 Landsat 8 30 Green/NIR Lake area 

LC08_L1TP_138041_20171226_20 12/26/2017 Landsat 8 30 Green/NIR Lake area 
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LC08_L1TP_138040_20181213_20 12/27/2018 Landsat 8 30 Green/NIR 

& 

SWIR/NIR 

Glacial area 

S2A_MSIL1C_20181027T043851_N0206_R033_T46RBR_20181027T074001 10/27/2018 Sentinel 2 20 - Glacial area 

 

S1A_IW_SLC__1SDV_20181006T235450_20181006T235517_024022_029FEB_2D73 10/6/2018 

 

Sentinel 1 Level 1 

SLC 

- Coherence 

S1A_IW_SLC__1SDV_20181018T235450_20181018T235517_024197_02A59F_5D32 10/18/2018 

 

Sentinel 1 Level 1 

SLC 

- Coherence 

SRTM_DEM_30m 2/11/2000 SRTM 90 - DEM/Slope 

SEN_SPOT7_20181216_041435900_000_RAW_MS 12/16/2018 SPOT 6 - DEM/Geodetic 

mass balance 

TPMESA4_SO19043731-5-

01_DS_PHR1B_201910160452100_FR1_PX_E090N28_0305_02222 

10/16/2019 PLÉIADES 0.5 - DEM/Geodetic 

mass balance 

TPMESA4_SO19043731-2-

01_DS_PHR1B_201910160452208_FR1_PX_E090N28_0505_01880 

10/16/2019 PLÉIADES 0.5 - DEM/Geodetic 

mass balance 

TPMESA4_SO19043731-8-

01_DS_PHR1B_201911060441036_FR1_PX_E090N28_0303_00786 

11/6/2019 PLÉIADES 0.5 - DEM/Geodetic 

mass 

balance/glacial 

area 

HEXAGON_DEM_BHUTAN_1976 1976 HEXAGON 90 - DEM/Geodetic 

mass balance 

TDX1_SAR__SSC______SM_S_SRA_20161126T115334_20161126T115342.xml 

 

26/11/2016 TerraSAR - 

X 

3 - Glacier velocity 

TDX1_SAR__SSC______SM_S_SRA_20161218T115334_20161218T115342.xml 

 

18/12/2016 TerraSAR - 

X 

3 - Glacier velocity 
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Chapter 4: Methods 
In this chapter the different types of remote sensing methods used in this study will be 

explain. The glacier classification consisted of two OBIA classification of the Lunana glacier 

system: one where based solely on the optical satellite data and focused on classifying clean 

ice and glacial lake, while the second included SAR coherence images to classify the debris-

covered parts of the glacier system. The glacial lake classification included identification of 

the shape and area of Raphstreng Tsho- and Luggye Tsho proglacial lake from 1993 until 

2018. The geodetic mass balance includes calculation of both the surface elevation- and the 

volume change for the Lunana glacier system, between 1976 and 2019. The glacier velocity 

where calculated from TerraSAR-X data and shows a 22 days displacement change over 

Lunana from 2016. 

 

4.1 Preprocessing 

The preprocessing step is a crucial step before exerting the methods used to identify glaciers 

and or calculate the geodetic mass balance. The step is needed transform input data into 

output data that can be used as input into another method. It consists of methods like e.g. 

cleaning, normalization, transformation, and more (Frey, et al. 2012; Gardelle, et al. 2013; 

Robson, et al. 2015). In this study, the preprocessing steps consist of DEM creation and DEM 

co-registration, as well as SRTM radar penetration correction.    

4.1.1 DEM creation 

To calculate the geodetic mass balance for the Lunana glacier system, several DEMs where 

required. Some of the DEMs like the SRTM and HMA where freely accessed and generated. 

Stereo imagery was used to generate DEMs from 2018/9. This study is using Pléiades data 

from 2019 and SPOT data from 2018 as raw images to generate DEM data. The data was 

processed through the software PCI Geomatica and created the DEMs by using Normalized 

Cross-Correlation (NCC) as method and parameters such as rational polynomial coefficients 

and tie points. The method used 3000 tie points to generate a 30 m resolution DEM 
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4.1.2 DEM Co-registration 

To calculate the linear co-registration the method by Nuth and Kääb (2011) was utilized. This 

co-registration is done by looking at the elevation bias (dh) over the stable terrain by using the 

minimization of the root mean square residuals of said stable terrain. To calculate the 

elevation bias the formula by Nuth and Kääb (2011) (Fig. 4.1) was used, and the elevation 

bias has proven to be more visible on steeper slopes. Therefore, the elevation bias over the 

slope (tan α) is calculated by the magnitude and direction (a & b) of the co-registration shift 

and plotted against the aspect (ψ). The process is then iterated until the shift and the standard 

deviation of the residual over stable terrain is less than 2 %  (Robson, et al. 2018). The co-

registration shifts are shown in Fig. 4.2, where it shows a graph of the normalized elevation 

bias before and after co-registration process.  

 

𝑑ℎ

tan 𝛼
= 𝑎 cos(𝑏 −  ψ) + 𝑐  

Fig. 4.1: Formula to linearly co-register DEM’s. The elevation bias (dh) is calculated given that the elevation 

differences are larger on steeper slope, considering the magnitude (a), the direction of the co-registration shift (b) 

and the tangent of the slope terrain (α). This concept is then plotted against the aspect (ψ) and the mean elevation 

bias (c). Gathered from Robson, et al. (2018).   
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Fig. 4.2: Shows the co-registration shifts between the 2019 Pléiades DEM and the 2000 SRTM DEM. The 

graphs show the co-registration before (A) and after three iterations of co-registration (B). The co-registration 

shifts that where applied are displayed in red text, which includes the z-residual.   
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4.1.3 SRTM radar penetration correction 

According to Rignot (2001) the X-band in the SRTM DEM can penetrate the snow and firn 

by several meters, and will therefore cause a problem when calculating the co-registration 

with a DEM pair that includes the SRTM dataset. To prevent this a penetration correction was 

made, and there have been several estimates on the level of penetration in the Himalayas. 

Estimates like 1.4-3.4 m (Gardelle, et al. 2013) and even 8-10 m (Kääb, et al. 2012). The final 

decision was to use the same estimates as Robson, et al. (2018), which was the correction 

stated in Kääb, et al. (2012) for clean ice as 1.5 m. These value changes will be added to the 

results for the co-registration files through modelbuilder and by using the raster calculator tool 

in ArcMap. 
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4.2 Glacial lake time series 

This thesis is focusing on deriving and classifying two important glacial lakes that have been 

categorize as potential dangerous glacial lakes (PDGLs) by Mool, et al. (2001), that is 

Raphstreng Tsho and Luggye Tsho. These glacial lakes will be classified in temporal listing 

from 1993 until 2018. By doing so this inventory should be able to reveal the state of Luggye 

Tsho lake before and after the 1994 GLOF event which outburst from Luggye Tsho (Watanbe 

and Rothacher 1996). To fully compile a time series showing the change in physical states of 

the two PDGLs lake, Raphstreng Tsho and Luggye Tsho, a digital data base of these two 

glacial lakes was necessary to calculate the temporal change in area. To identify these two 

glacial lakes over several optical datasets an automatic classification method was needed. As 

a manual delineation over several optical datasets would be time consuming and therefore not 

be suited for this sort of classification. For this study I developed a model in ArcGIS that can 

automatically chose a threshold in the NDWI to separate water surfaces from non-water 

surfaces, as a binary classification. and applied on a stack of optical imagery (Fig. 4.3).  

The PBIA classification process: 

1. Pre-processing: The SRTM DEM were resampled to 30 m resolution, as well as 

projected to 45 UTM. This was done to match up geographically with the Landsat 5 & 

8 data files and to bear the same spatial resolution. A slope file was generated from the 

SRTM file as it would be used as a parameter for the classification. A raster calculator 

tool was used to set up the NDWI calculation of the NIR- and green band for all of the 

Landsat images. 

2. Classification: Fig. 4.3 shows the flowchart of the PBIA classification done for 

Raphstreng Tsho and Luggye Tsho glacial lake. The classification uses NDWI as main 

parameter and derived a binary classification to create a raster consisting of two 

classes: 1 – potential water pixels and 0 – non-water pixels. The elevation and slope 

data from the SRTM DEM were added trough “add surface information” tool. These 

parameters where adjusted with different values to further assess the potential water 

pixels.  

3. Clean up: The potential water pixels derived from the binary classification where 

adjusted through some clean-up methods. Firstly, the pixels where added area values 

in km2 through the geometry calculator. Secondly, any potential water pixels smaller 

than 0.09 km2 where removed. Lastly, every potential water pixel where enclosed and 

adjusted through manual editing. 
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Fig. 4.3: Flowchart showing the essential parameters and methods used to classify the glaclial lakea areas through the optical classification method.
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4.3 Glacier area change 

To classify the glacier surfaces of the Lunana glacier system, the classification will be 

separated between classification of clean ice and debris covered ice, as they need different 

algorithms and parameters to be identified. The debris-covered glacial areas are mostly 

abundant in the southern part of the Lunana glacier system, the northern parts are dominated 

by clean ice. By applying a threshold to the ratios of Landsat TM bands, mainly TM4/TM5 

(NIR/SWIR band) or TM3/TM5 as a main parameter, one could classify clean ice areas (Paul, 

et al. 2004). The debris-covered parts will be classified by using low coherence values (Fig. 

4.4). This will be all achieved through automatic classification (OBIA) in the eCogntion 

software.  

To be able to estimate the glacier change over Lunana glacier system, there will be three 

different glacier outlines derived for this study. A glacier inventory for 2018 will be made 

through the OBIA classification method, and two individual glacier inventories for 1996 and 

1976 will be made through the manual delineation method. 
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Fig. 4.4: A flowchart showing the processes to classify clean ice, glacial lakes and debris-covered ice. The clean ice was classified solely on the use of optical and elevation
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4.3.1 Creation of 2018 glacier inventory 

The 2018 glacier inventory was made through OBIA classification. The method is consisting 

of pre-processing, image segmentation, classification, mapping of glacial lakes and clean ice, 

and mapping of debris-covered ice. The individual mappings are then merge together to make 

one complete glacier inventory of the Lunana glacier system of 2018.  

The OBIA classification process: 

1. Pre-processing: The first step will be consisting of pre-processing steps, to make sure 

that one can use the individual raw data files. The SRTM and HMA DEMs were 

resampled to 30 m resolution, as well as projected to 45 UTM to match the Landsat 8 

image, at the same time a slope raster was generated both from the SRTM and the 

HMA. Different indices and band ratios where generated in eCognition. The SAR 

coherence where created in SNAP, using Sentinel 1 data. Two Sentinel 1 data files 

where co-registered, terrain corrected and geocoded within the same remote sensing 

software, before they were made into a single coherence data file. 

2. Image segmentation: The image segmentation is a crucial step within OBIA, and is a 

near-homogenous process, done to group pixels into objects. These objects can than 

again be merged into individual objects, called hierarchical levels (Robson, et al. 

2015). By using the multi-resolution segmentation in eCognition, image objects where 

created for three classifications; both glacial lakes and clean ice used the same two 

hierarchical leveled segmentation. In Robson, et al. (2015) paper, he mentioned that 

by using multiple image objects helps grouping the non-glacier features together, this 

makes it easier to exclude these features from the classification, and this paper is 

therefore using multiple hierarchical6 levels. For the debris-covered glacier 

classification the image segmentation was processed one finale time, making it the 

third hierarchical leveled segmentation.  

3. Classification: Fig. 4.4 shows the workflow used for the OBIA classification, this 

includes all the pre-process steps, parameters and thresholds used for the 

classification, and the post-classification filtering used to clean up the classification. 

The different indices and their thresholds used for the classification where gathered 

from the literature: NDVI, NDSI, SWIR/NIR ratio (see Table 2.1), slope and the SAR 

coherence where gathered from Robson, et al. (2015) & Bajracharya, et al. (2014), 

 
6 Hiercarchial: meaning a way to organize. In this case, the hierarchical level is used to organize the different 
levels of the segmentations used in the OBIA classification. 
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while the NDWI where partly gathered from Wessels, et al. (2002), and was also used 

in the pixel based classification of glacial lakes in chapter “4.2 Glacial lake time 

series”. 

4.  Mapping of lakes and clean ice: Firstly, the glacial lakes and the clean ice was first 

classified as they were the easiest to classify and can therefore be masked out for the 

rest of the classification. By using the NIR/SWIR or TM4/TM5 ratio, the slope, 

elevation and the NDVI and NDWI as thresholds, clean ice was classified. It is 

important to notice that instead of using the SRTM for slope, the HMA DEM was 

used instead. This is because the classification was based of Sentinel 2 data and 

Landsat 8 data from 2018, and the SRTM DEM was generated in 2000. Therefore, the 

slope generated from the SRTM DEM would read glacier slope from the 2000, and 

because of glacier movement this would not suffice for a classification of 2018 data. 

Since HMA data set was generated in 2016 it is therefore more sufficient for this 

classification, then the SRTM DEM from 2000. To classify the glacial lakes, the same 

inputs as for the clean ice classifications where used, but instead of the NIR/SWIR 

ratio the SAR coherence where used instead. The SAR coherence is mainly used to 

track changes over time and should therefore be able to measure movement inn 

individual glacial lakes, as certain lakes have water outputs through runoff. These 

runoff causes movements in the lakes and can therefore be picked up by the coherence 

as low values, see Fig. 4.4 for these values. Certain supraglacial lakes are considered 

to be rather troublesome when one is classifying debris-covered glaciers and 

comparing it to other images and classifications. If a supraglacial lake is small enough 

and frozen, it can easily be classified as clean ice and therefore be mistaken as part of 

the debris-covered glacier. To avoid this, a certain threshold was introduced and 

removing any glacial lake classification less than 0.1 km2.  

5. Mapping of debris-covered glacier: As mentioned, certain glacier areas in the 

Himalayas are covered in a layer of supraglacial debris from surrounding 

environments and are observed through their typical shape and the supraglacial lakes 

located on the top of the glaciers. The debris covered parts are classified using SAR 

coherence, as the coherence will be able to pick up the glacier movement over time. 

The usual classification parameters as: slope, elevation, NDSI and NDVI will also be 

used to classify the debris covered parts.  
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4.3.2 Creation of 1976 & 1996 glacier inventory 

The glacier area change was divided in to three different time periods: 1976, 1996 and 2018. 

In order to determine the glacier area, change between 2018 and 1996, a glacier polygon for 

1996 was needed. Therefore, a manual delimitation of 1996 where created, by using the 

polygon for 2018 and manually adapt it with reference of a Landsat 5 image from 1996. The 

polygon will have no other variables than the optical image and is therefore only to be 

consider a sudo classification of the glacier in Lunana in 1996. The same was done for the 

glacier outline of 1976. The glacier polygon from 1996 was manually adapted with reference 

of a Landsat 2 image from 1976. These two manually delineated polygons where only created 

to compare with the OBIA glacier outline from 2018.  

 

4.3.3 Glacier area change calculation 

The areas (km2) for both of the glacier inventories was calculated through the geometry 

calculator tool in ArcMap. The differentiate between the two inventories are displayed as 

north area change, south area change, and area change for the whole glacier system. The 

percentage of area change was also calculated for the Lunana glacier system with the same 

layout. The glacier outlines where individually divided based on the glacier borders from the 

GLIMS outline polygon. 
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4.4 Glacier geodetic mass balance 

The geodetic mass balance was calculated based on the surface elevation changes and the 

glacier outlines from given time periods (1974-2019). After the DEM co-registration; pixels 

that yield a surface change over 300 m, which is to remove impossible values like cloud and 

shadows, and/or has a value greater than three standard deviations based on (Gardelle, et al. 

2013), was masked out. To convert the volume to mass a conversion factor was used by 

assuming a density of 850 kg m-3 following Huss (2013). It is worth to note that the 

PLÉIADES and SPOT DEM does not cover the same type of area as the SRTM and Hexagon 

does (see Fig. 1.1). The stereo data does only cover about 225 km of the Lunana glacier 

system, and therefore about only half of the study area, which covers 500 km of the Lunana 

glacier system.   

 

4.5 Glacier velocity 

TerraSAR-X images was used to determine glacier velocity. The TerraSAR-X images was 

processed through the offset tracking tool within SNAP, which uses patch intensity cross-

correlation optimization to measure feature motion between to images (Lu J. 2016; 

Schellenberger, et al. 2015). This will ultimately calculate the displacement of the debris-

covered glaciers located in the southern end of the glacier system. The absolute accuracy is 

dependent on the overall surface displacement and the orbital errors from the satellites 

(Floricioiu, et al. 2009). The two TerraSAR-X images where taken on 22.10.2016 and 

18.10.2016, the displacement was therefore calculated to be between 22 days. Because of the 

lack of time management this thesis will not include any normalized cross-correlation 

calculations of the glacier velocity for the Lunana glacier system, which would have given a 

broader depth to the glacier velocity change. 
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4.6 Uncertainty assessment 

The uncertainty assessment is divided up between the different methods and their field of 

target. The accuracy was measured through error assessment and target field to ground truth 

method within the ArcMap software.  

 

4.6.1 Glacier outline accuracy 

The accuracy of the glacier outline OBIA classification was achieved by computing a 

confusion matrix. The confusion matrix is a summary of the classification performance and is 

achieved by using the incorrect and the correct predications of the classification. The accuracy 

is achieved by doing an error matrix, a class-by-class comparison between the ground truth 

data, also known as reference data, and the corresponding results of the classification 

(Sammut and Webb 2010: p. 209). For this accuracy assessment, the ground truth data where 

glacier outlines downloaded from Global Land Ice Measurements glacier database (GLIMS), 

which where contributed by Nuimura, et al. (2015) and their manual derived “Glacier Area 

Mapping for Discharge from the Asian Mounatins” (GAMDAM). Based on the accuracy 

there are two error assessments one needs to take account to: producer’s accuracy (omission 

error) and user’s accuracy (commission error). The producer accuracy represents how 

accurate the reference pixels of the land cover are classified, and the user accuracy represents 

how accurate the pixel classified represent that category on the ground (Lillesand, et al. 2015; 

Sammut and Webb 2010: p. 209). For this accuracy, the producer accuracy for the glacier 

classification was 98% accurate, while the user accuracy was 99% accurate. The total results 

where therefore 98% accurate for the glacier outline OBIA classification.  

 

4.6.2 Glacial lake outline accuracy 

The accuracy of the glacial lake outlines PBIA classification was calculated with the same 

tool output as that of the glacier outline accuracy assessment. The ground truth data used for 

the assessment where a glacial lake inventory downloaded from the Japan Aerospace 

Exploration Agency database (JAXA). For this classifcaiton the producer accuracy was 97% 

accurate, while the user accuracy was 92% accurate. The total results where therefore 94% 

accurate for the glacial lake outline PBIA classification. 
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4.6.3 Glacier mass balance accuracy 

The accuracy for the glacier mass balance was estimated through the error assessment based 

on analysis of the stable terrain (Robson, et al. 2018). The analysis was consisting of 

calculating the standard error (SE), which was needed to calculate the DEM differencing 

uncertainty (e). The standard error was calculated based on the standard deviation over stable 

terrain (SDSTABLE) divided by the number of pixels included in the DEM differencing (n) (Fig. 

4.5). 

 

 

𝑆𝐸 =
𝑆𝐷𝑆𝑇𝐴𝐵𝐿𝐸

√𝑛
 

Fig. 4.5: The standard error (SE) equation based on standard deviation over stable terrain (SDSTABLLE) 

and the number of pixels from the DEM differencing (n) (Robson, et al. 2018).  

 

The pixels included in the DEM differencing is calculated from the original number of pixels 

(Ntot), the pixel size (PS) and the spatial autocorrelation (d) (Fig. 4.6).  

 

𝑛 =  
𝑁𝑡𝑜𝑡  × 𝑃𝑆

2𝑑
 

Fig. 4.6: The number of pixels from the DEM differencing (n) equation. Calculated from the original 

number of pixels (Ntot), the pixel size (PS) and the spatial autocorrelation (d) (Robson, et al. 2018).  

 

The spatial correlation distance for the SRTM, SPOT, HEXAGON, and PLÉIADES DEM was 

concluded to be at 400 m based on the work of others (Robson, et al. 2018). The DEM differencing 

uncertainty (e) was then calculated (Fig. 4.7), which is the sum of root mean square of the standard 

error (SE) and the z-residual (Z) from the triangulation of the DEM co-registration (Fig. 4.2). 

 

𝑒 =  √𝑆𝐸2 +  𝑍2 

Fig. 4.7: The DEM differencing uncertainty (e) equation. Calculated from the root mean square of the 

standard error (SE) and the z-residual (Z) from the triangulation of the DEM co-registration (Robson, 

et al. 2018).  
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4.6.4 Glacier velocity accuracy  

The accuracy for the glacier velocity measurement was determined by measuring the 

displacements over the stable ground around the Lunana glacier system. The stable ground 

where defined as the terrain with little to no displacement. The final velocity data where 

modified to only show the stable ground, by removing the glacier (consisting of clean ice and 

debris-covered glacier), slope that exceed 30°, and glacial lakes. The stable ground where 

then calculated to the mean displacement which revealed to be about 0.04 m. The 

displacement was calculated from November 22 to December 18 2016, which is a 

displacement of 22 days.   
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Chapter 5: Results 
The study area covers large parts of the Lunana glacier system that is divided between the 

southern glacier system and the northern glacier system and will be referred to as such in this 

chapter. The results from the glacial lake classification is restricted to the Raphstreng Tsho 

and Luggye Tsho glacial lake, both located on the southern parts of the Lunana glacier 

system. 

5.1 Glacier area change  

The classification of the glacier in the study area where, as explained in chapter 4.3 “Glacier 

area change”, divided into two classification parts; debris covered glacier and the clean ice 

glacier. The total area of study in 2018 was 513 km2 of which 64.1 km2 (12.5%) was debris-

covered ice. The glacier area change covers the physical change of state of the Lunana glacier 

system from three different time periods: 1976, 1996 and 2018. The debris covered glacier 

was dominant in the southern part of the glacier and the clean ice was dominant in the 

northern part. Because of this, the two classifications will therefore be explained accordingly: 

5.1.1 Glacier area change - Southern glaciers 

The classification revealed several glacier tongues consisting of only debris-covered ice, 

everything else was classified as clean ice.  Between 1996 and 2018 the glaciers lost 30.2 km2 

an approximant of 12.1 % reduction in area (Table 5.2). The results are about the same for the 

ice loss between 1976 and 2018, where the reduction in area is at ca. 12.7%. Glacier 

G090157E28136N had the biggest retreat of over 3.2 km between 1996 and 2018 and was 

classified as debris-covered ice (Fig. 5.1), it had a 17.1% reduction in area, and was classified 

to have the same frontal retreat between 1976 and 2018 at about 17% reduction in area. The 

glacier does not terminate into any lake but terminates into the Pho Chu river. The Luggye 

glacier 1, which terminates in the Luggye Tsho lake had a frontal retreat of 1.2 km between 

1976 and 2018 and had a 41.7% reduction in area. These numbers increased between 1976 

and 2018, where the frontal retreat of the glacier was about 1.9 km and had a 47% reduction 

in area, resulting in that the Luggye glacier 1 almost halved in size from 1976 to 2018. The 

Raphstreng glacier had a 0.9 km2 reduction in area between 1976 and 2018, calculating to be 

a 21 % reduction in area. The glacier terminates directly in Raphstreng Tsho glacial lake and 

between 1976 and 2018 the glacier had a frontal retreat of about 0.9 km. The Thorthormi 

glacier has several supraglacial lakes on the terminating tongue, these supra glacial lakes 

where difficult to classify and calculate between this timeline, as some of the would merge or 

freeze and melt over time. It where therefore decided that the supraglacial lakes would only 
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be classified when they were at minimum of 0.1 km2. This was done so that the classification 

of the clean ice at the Thorthormi glacier would not be compromised with very small 

inconvenient supraglacial lakes, and only be taking acquaintance to when they are of suitable 

size and therefore not be classified as part of the glacier . The Thorthormi glacier had a small 

frontal retreat between 1976 and 2018 of about 0.2 km, but had an 1.3 % increase in size 

between 1976 and 1996 as the supraglacial lakes that where observed in 1976 (<0.1 km2) 

where frozen solid in 1996, and between 1996 and 2018 the glacier had a 8.3% reduction in 

area with no new supraglacial lakes being observed in 2018. The debris covered glacier with 

the glacier id G090157E28136N (no name) had a large frontal retreat of 2.3 km between 1976 

and 2019 and is consisting of both clean ice and debris covered ice, but the whole glacier 

tongue is completely covered by debris. Glacier G090157E28136N went from 61.2 km2 in 

1976 to 53.9 km2 in 2018, a total of 7.3 km2 loss in area and a 12 % reduction in size. 

 

5.1.2 Glacier area change - Northern glaciers 

Based on the classification the Northern glaciers of the Lunana glacier system, consists of 

dominantly clean ice, if one is overlooking the Lianggang glacier which consists of both clean 

ice and debris-covered ice. Between 1996 and 2018 the northern glaciers lost ca. 45 km2 of 

ice, equating to approximately a reduction of 14.7 % (Table 5.2). The same result is presented 

between 1976 and 2018, where the loss of ice is about 45 km2. The Shimo glacier 

(G090045E28198N), which terminates in a pro glacial lake, had a retreat of 1.27 km with an 

8.1% area reduction between 1996 and 2018, and had a retreat of 1.65 km with an 9.52% area 

reduction between 1976 and 2018 (this retreat is visible in Fig. 5.1). Which lead to an increase 

in area of the pro glacial lake it was terminating in. The Zeng glacier had one of the least 

frontal retreat of the northern glaciers, it had a retreat of under 0.1 km between 1996 to 2018 

but had a 11.3% area reduction. The same glacier showed no frontal retreat between 1976 and 

2018 but did however had a 9.9% area reduction. The Lianggang glacier was consistent of 

both debris-covered ice and clean ice and showed no significant retreat from 1996 to 2018 and 

a it had a 1.3% area reduction. The results are the same between 1976 and 2018.      
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Table 5.1: Glacier area change for some of the individual glaciers in the Lunana glacier system. The 

general timespan has been divided into three zones: 1976, 1996 & 2018.  

Glacier name Glacier id Area 1976 (km2)  Area 1996 (km2) Area 2018 (km2) 

Lianggang Glacier 

(North) 

G090383E28118N 46.92 46.92 46.33 

Luggye Glacier 1 (South) G090326E28109N 7.56 7.07 4.41 

Luggye Glacier 2 (South) G090305E28114N 2.46 2.46 1.35 

Raphstreng Glacier 

(South) 

G090246E28129N 4.27 3.62 3.37 

Bechung Glacier (South) G090217E28130N 12.05 12.05 10.76 

None (South) G090157E28136N 61.2 61.17 53.89 

Shimo glacier (North) G090045E28198N 31.09 30.61 28.13 

Zeng glacier (North) G090273E28197N 92.068 93.58 82.96 

Thorthormi glacier 

(South) 

G090278E28132N 18.79 18.50 17.2 

 

 

 

 

Table 5.2: Glacier area change for the Lunana glacier system. Calculated from three different time 

periods: 1976, 1996 & 2018. The area change (%) is calculated with the values from 1976 vs 2018. 

Glacier 

region 

Number of 

glaciers  

Median elevation 

(m a.s.l.) 

Area 2018 

(km2) 

Area 1996 

(km2) 

Area 1976 

(km2) 

Area change 

(%) 

Northern 74 5873 306.12 351.5 350.9 12.8 

Southern 51 5953 219.42 249.63 251.19 12.65 

All Glaciers 125 5913 525.54 601.13 602.09 12.73 
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Fig. 5.1: (A) Shows the glacial area change of the Lunana glacier system from 1996 to 2018. The OBIA 

classification is marked with a yellow polyline indicator and the visual classification based on a Landsat 5 

dataset from 30.11.1996. (B) A close-up image of glacier G090157E28136N, a glacier compiled of both debris-

covered glacier and clean ice from the southern parts of the Lunana glacier system. (C) Close-up image of the 

Shimo glacier located in the northern parts of the Lunana glacier system. Background image: False color 

composite Landsat 8 (13.12.2018). 
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5.2 Glacial lake area change 

Luggye Tsho- and Raphstreng Tsho lake was both rated as potential dangerous glacial lakes 

given their physical state today and the past outburst event. The result for Luggye Tsho 

glacial lake shows a gradient growth in area, where the lake increased from 0.9 km2 in 1994 to 

1.47 km2 in 2018. Fig. 5.2 displays this gradient growth in area and shows the overall change 

of the Luggye Tsho lake from 1994 post GLOF event and in 2017, which is closer to today. 

The graph in the figure plots all of the recorded data of the pixel-based image classification 

(PBIA) of the two pro glacial lakes. The graph shows an immediate reduction in area of the 

Luggye Tsho lake, from 1993 to 1994, where the area changes from 1.12 km2 to 0.92 km2. 

From there, Luggye Tsho has been classified to have a general increase in area up to 1.27 km2 

in 2005, before it drops to 1.07 km2 in 2007 and after the area grows to 1.47 km2 in 2017 and 

drops to 1.40 km2 in 2018.  

The outburst of Luggye Tsho in 1994 left a trace from the water streaming down towards Pho 

Chhu river and following the flowline further south, these traces are possible to see in Fig. 

5.3, where a polygon has been manually generated to highlight these traces. In the figure there 

are also indications of an outlet zone as a result of the event. After the event in 1994 the 

Lugge Tsho lake increased in area, and today it is about 0.5 km2 bigger than what it was 

before the GLOF event. 

The Rampstreng Tsho lake has, according to Fig. 5.2, had almost no increase in lake area 

from this time period. While Luggye Tsho glacial lake decreased in size from 1993 to 1994, 

Raphstreng Tsho lake increased in area from 1.27 km2 to 1.31 km2. Raphstreng Tsho did 

however have a drop in area from 2005 to 2007 where it decreased from 1.12 km2 to 1.07 

km2, this decrease corresponds with the same decrease in lake area that was classified for the 

Luggye Tsho glacial lake. After 2007 Raphstreng Tsho had a small increase before it 

stagnated around 1.3 km2 in 2017/2018. 
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Fig. 5.2: Shows the change in area for the Luggye Tsho proglacial lake between 1994 and 2017, while including 

the location of Luggye glacier- 1 (L1) and 2 (L2) . Both images are displayed with a respective glacial lake 

outline that was generated through the PBIA classification of Raphstreng Tsho and Lugge Tsho lake. It displays 

a graph showing the area change (km2) of both Raphstreng Tsho- and Luggye tsho lake, from 1993 until 2018.  

Background image: false colour composite Landsat 5 (27.12.1994 & 26.12.2017).  
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Fig. 5.3:  Displaying the state of Luggye Tsho (L)- and Raphstreng Tsho (R) glacial lake, pre- and post Luggye 

Tsho GLOF event in October 1994. It also displayes to location of Thorthormi glacier (T) where one can clearly 

see a abundance of supraglacial lakes. The figure highlights a manual delineation of the flowline to Pho Chhu 

river both before and after the event as well as the outlet channel for the two glacial lakes and Luggye glacier 2 

(L2). The last image is he green band of the Landsat 5 1994 November image displayed right above; it easily 

shows the missing debris from the flowline as the soil is fresher contra the stable ground around it. Background 

image: false color composite Landsat 5 (December 1993 & November 1994) and green band Landsat 5 

(November 1994).
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5.3 Glacier mass balance- and surface elevation change 

The mean geodetic mass balance change and the mean surface elevation change was divided 

and the result are presented for some individual glaciers (Table 5.4 & 5.5) and the glacier 

changes for all of the glaciers are calculated as a mean change value in Table 5.3. The 

individual glaciers are divided in cardinal directions, north and south, separated by the Bhutan 

border in the Lunana glacier system. The northern parts are mostly dominant of clean ice 

sections and the southern parts are dominated by glacier tongues covered with debris. Seven 

of (225 km2) the glaciers were covered by Pléiades- and SPOT imagery from 2018/9, while 

the SRTM and HEXAGON DEM covered the whole Lunana glacier system. This means that 

the calculation of geodetic mass balance and surface elevation changes between 2000-2018/9 

and the total calculation between 1976-2018/9 are limited to the stereo data outlines and will 

affect the results and the discussion of this study. All an all, the Lunana glacier system has 

had a decrease in both mass balance (m w.e. a-1) and in surface elevation (m a-1). Between 

1976 and 2018/9 the Lunana glacier system had a mean reduction in surface elevation of 0.48 

± 0.08 m a-1. This was divided up between two time periods: from 1976 until 2000 the glacier 

system had a mean reduction in surface elevation of 0.79 ± 0.0075 m a-1, which calculates to a 

total mean value of 19 ± 0.18 m, and from 2000 until 2019 where the mean reduction in 

surface elevation was 0.24 ± 0.15 m, which calculates to a total mean value of 4.6 ± 2.9 m. 

The mean mass balance shows the same type of gradient as the surface elevation change. 

Between 1976 and 2000 the glacier system had a mean reduction in mass balance of about 

0.67 ± 0.0081 m w.e. a-1, which calculates to a total mean value of about 16.1 ± 0.2 m w.e. 

This mass balance reduction where smaller between 2000 and 2019, where the mean mass 

balance where measured to be 0.2 ± 0.13 m w.e. a-1, which calculates to a total mean 

reduction of about 3.8 ± 2.5 m w.e. In total the mean mass balance where processed between 

1976 and 2018/9 and calculated to be a reduction of 0.41 ± 0.068 m w.e. a-1. The nine 

individual glaciers from Fig. 1.1, and their mass balance change values can be seen in Table 

5.5, as well as their surface elevation change values in Table 5.4. Both Bechung glacier and 

glacier G090157E28136N where located outside the range of the Pléiades and SPOT data and 

has therefore no mass balance- nor surface elevation change value after 2000.  
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5.3.1 Glacier mass balance- and surface elevation change - Northern glaciers  

In the north the two glaciers, Lianggang- and Zeng glacier, both experienced a great loss in 

mass balance and surface elevation (Fig. 5.4). The Lianggang glacier had a 0.97 ± 0.06 m w.e. 

a-1 mass balance reduction and a 1.14 ± 0.08 m a-1 surface elevation loss of between 1976 and 

2019, calculated to a total of 49 ± 3.4 m surface elevation reduction. Based on Fig. 5.5, the 

surface elevation change is considerably larger between 2000-2019 then 1976-2000. The 

glacier was partly made of debris covered glacier at the tongue and clean ice near the mid 

region of the glacier. The Zeng glacier had a 1.17 ± 0.06 m w.e. a-1 mass balance reduction 

and a 1.37 ± 0.08 m a-1 surface elevation loss between 1976 and 2019, calculated to a total loss 

of 58.9 ± 3.4 m in surface elevation, and the glacier was solely consisting of clean ice.  

 

5.3.2 Glacier mass balance- and surface elevation change - Southern glaciers 

In the south the glaciers, Luggye glacier 1 and 2, both experienced great loss in surface 

elevation as well as great reduction in mass balance (see Table 5.4 & 5.5). Both of these 

glaciers are connected to the Luggye Tsho glacial lake, however Luggye glacier 1 is the 

glacier that is terminating directly into Luggye Tsho lake. From 1976 to 2019 Luggye glacier 

1 had a 1.01 ± 0.069 m w.e. a-1 reduction in mass balance and a 1.19 ± 0.07 m a-1, calculating 

to a total loss value of 51.2 ± 3.0 m in surface elevation. During the same period, Luggye 

glacier 2 experienced a 0.89 ± 0.06 m w.e. a-1 reduction in mass balance and a 1.04 ± 0.07 m 

a-1 in surface elevation, calculating to a total loss value of 44.7 ± 3.0 m in surface elevation. 

Other southern glaciers such as the Raphstreng glacier, terminating directly in Raphstreng 

glacial lake, did also experience loss in mass balance and surface elevation between 1976 and 

2019, but was the only glacier that had an increase in both surface elevation and mass balance 

between 1976 and 1996. Raphstreng glacier had a 0.33 ± 0.0081 m w.e. a-1 increase in mass 

balance and a 0.39 ± 0.0088 m a-1 increase in surface elevation, calculating to a total increase 

value of 7.8 ± 0.18 m in surface elevation. Between 1996 and 2019 the same glacier had a 

0.52 ± 0.1 m w.e. a-1 reduction in mass balance and a 0.62 ± 0.11 m a-1 loss in surface 

elevation, calculating to a total loss value of 14.3 ± 2.5 m in surface elevation. As a result, 

between 1976 and 2019 Raphstreng glacier had a 0.21 ± 0.06 m w.e. a-1 reduction in mass 

balance and a 0.28 ± 0.07 m a-1 loss in surface elevation.  
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Table 5.3: Mean glacier mass balance- and surface elevation changes on the Lunana glacier system 

between 1976 and 2019. 

Timeline Mean mass balance (m w.e. a-1) Mean surface elevation change (m a-1) 

1976-2000 -0.67 ± 0.0081 -0.79 ± 0.0075 

2000-2019 -0.2 ± 0.13 -0.24 ± 0.15 

1976-2019 -0.41 ± 0.068 -0.48 ± 0.08 

 

 

Table 5.4: Surface elevation (m a-1) changes divided into individual glaciers located in the Lunana 

glacier system, between 1976 and 2018/9. 

Glacier name Glacier id 1976-2000  

(m a-1) 

2000-2018/9 

(m a-1) 

1976-2018/9 

(m a-1) 

Lianggang Glacier 

(North) 

G090383E28118N -0.8 ± 0.0093 -0.14 ± 0.15 -1.14 ± 0.08 

Luggye Glacier 1 (South) G090326E28109N -0.52 ± 0.0088 -0.695 ± 0.2 -1.19 ± 0.07 

Luggye Glacier 2 (South) G090305E28114N -0.23 ± 0.0083 -0.82 ± 0.15 -1.04 ± 0.07 

Raphstreng Glacier 

(South) 

G090246E28129N 0.39 ± 0.0088 -0.62 ± 0.11 -0.28 ± 0.07 

Bechung Glacier (South) G090217E28130N -1.38 ± 0.0088 - - 

Shimo glacier (North) G090045E28198N -1.42 ± 0.0090 - - 

Zeng glacier (North) G090273E28197N -1.06 ± 0.0094 -0.33 ± 0.12 -1.37 ± 0.08 

None (South) G090157E28136N -0.73 ± 0.0091 -0.004 ± 0.1 -0.69 ± 0.12 

Thorthormi glacier 

(South) 

G090278E28132N 0.23 ± 0.0087 -0.43 ± 0.18 -0.59 ± 0.07 

 

 

Table 5.5: Glacier mass balance (m w.e. a-1) changes divided into individual glaciers located in the 

Lunana glacier system, between 1976 and 2018/9. 

Glacier name Glacier id 1976-2000  

(m w.e. a-1) 

2000-2018/9 

(m w.e. a-1) 

1976-2018/9 

(m w.e. a-1) 

Lianggang Glacier (North) G090383E28118N -0.67 ± 0.0081 -0.12 ± 0.17 -0.97 ± 0.06 

Luggye Glacier 1 (South) G090326E28109N -0.45 ± 0.0081 -0.65 ± 0.2 -1.01 ± 

0.069 

Luggye Glacier 2 (South) G090305E28114N -0.12 ± 0.0081  -0.74 ± 0.17 -0.89 ± 0.06 

Raphstreng Glacier (South) G090246E28129N 0.33 ± 0.0081 -0.52 ± 0.1 -0.21 ± 0.06 

Bechung Glacier (South) G090217E28130N -1.17 ± 0.0081 - - 

Shimo glacier (North) G090045E28198N -1.22 ± 0.0081 - - 

Zeng glacier (North) G090273E28197N -0.9 ± 0.0081 -0.28 ± 0.1 -1.17 ± 0.06 

None (South) G090157E28136N -0.62 ± 0.0081 -0.003 ± 0.09 -0.65 ± 0.04 

Thorthormi glacier (South) G090278E28132N 0.19 ± 0.0081  -0.37 ± 0.15 -0.5 ± 0.06 
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Fig. 5.4: Change in surface elevation change in the Lunana region between 1976 and 2000. Two 

individual images show the difference between the surface elevation change on clean ice (right), 

Shimo glacier, and the surface elevation change on debris-covered glacier (left), Lianggang glacier. 

The noise visible in the figure comes most likely from bad elevation points from the Hexagon DEM.  
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Fig. 5.5: Change in surface elevation for the Lianggang glacier. The two images display how the 

surface elevation change has evolved from 1976-2000 to 2000-2019. There is a clear indication that 

the surface elevation change is higher between 2000-2019 then 1976-2000.  
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5.4 Glacier velocity 

The glacier velocity over the Lunana glacier system was divided up between the nine glaciers 

(Fig. 1.1). These glaciers have been calculated individual mean glacier velocity, displayed in 

both velocity per day (m d-1) and velocity per year (m d-1). The velocity per year was 

calculated from the velocity per day value that was generated from the offset tracking tool. 

The glacier velocity is divided up between the respective region, north and south, of the 

Lunana glacier system. 

 

5.4.1 Glacier velocity – Northern glaciers 

The highest achieved glacier velocity in 2016 is both located in the north and south region of 

Lunana, Lianggang glacier and Luggye glacier 1. The Lianggang glacier had a mean glacier 

velocity of 0.013 ± 0.002 m d-1 calculated to be about 4.75 ± 0.73 m a-1. However, the 

Lianggang glacier was not completely covered by the TerraSAR – X data, and the velocity 

data was therefore partly generated (Fig. 5.6). The velocity over Lianggang glacier is 

measured mostly over the clean ice parts and covers almost no part of debris covered tongue. 

This result is therefore to be partly weighted later in the discussion. The Zeng glacier had a 

mean glacier velocity of 0.012 ± 0.002 m d-1 calculated to be about 4.4 ± 0.73 m a-1. Based on 

Fig. 5.6 the majority of the Zeng glacier velocity is allocated in the mid region of the glacier 

and weakens further down the tongue.  
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5.4.2 Glacier velocity – Southern glaciers 

As said in the last paragraph, Luggye glacier 1 was one of the glaciers calculated to have had 

the largest glacier velocity in 2016. Luggye glacier 1 had a mean glacier velocity of 0.013 ± 

0.002 m d-1calculated to be 4.75 ± 0.73 m a-1. Luggye glacier 1 is connected to Luggye glacier 

2 which had a mean glacier velocity of 0.006 ± 0.002 m d-1, which calculates to a velocity of 

2.2 ± 0.73 m a-1. In comparison this is less than half the speed of Luggye glacier 1. The 

Raphstreng glacier had a mean glacier velocity of 0.010 ± 0.002 m d-1, which calculates to a 

velocity of 3.65 ± 0.73 m a-1. According to Fig. 5.6 the Raphstreng glacier as well as Luggye 

glacier 1 showed similar placement of the glacier’s velocity as the Zeng glacier, where most 

of the velocity was located in mid part region of the glaciers. The Thorthormi glacier had a 

mean glacier velocity of 0.009 ± 0.002 m d-1, which calculates to a velocity of 3.29 ± 0.73 m 

a-1. This glacier had most of its velocity allocated in the top region of the glacier, while the 

results show some parts of it moving down in the mid and bottom region (Fig. 5.6). Glacier 

G090045E28198N had a mean glacier velocity of 0.007 ± 0.002 m d-1, which calculates to a 

velocity of 2.56 ± 0.73 m a-1. G090045E28198N was corresponding of part debris covered ice 

and clean ice, where the majority of the velocity was located in clean ice region of the glacier 

(Fig. 5.6). The result shows some movement in the debris covered region, but most of the 

glacier is stagnant in this region.   

 

Table 5.6: Mean glacier velocity of the nine glaciers located in the Lunana glacier system, measured 

based on data from 2016. The glaciers velocities are displayed in both meter per day (m d-1) and meter 

per year (m a-1).  

Glacier name Glacier id Mean glacier 

velocity (m d-1) 

Mean glacier 

velocity (m a-1) 

Lianggang Glacier 

(North) 

G090383E28118N 0.013 ± 0.002 4.75 ± 0.73 

Luggye Glacier 1 

(South) 

G090326E28109N 0.013 ± 0.002 4.75 ± 0.73 

Luggye Glacier 2 

(South) 

G090305E28114N 0.006 ± 0.002 2.2 ± 0.73 

Raphstreng Glacier 

(South) 

G090246E28129N 0.010 ± 0.002 3.65 ± 0.73 

Bechung Glacier 

(South) 

G090217E28130N 0.005 ± 0.002 1.83 ± 0.73 

Shimo glacier (North) G090045E28198N 0.006 ± 0.002 2.2 ± 0.73 

Zeng glacier (North) G090273E28197N 0.012 ± 0.002 4.4 ± 0.73 

None (South) G090157E28136N 0.007 ± 0.002 2.56 ± 0.73 

Thorthormi glacier 

(South) 

G090278E28132N 0.009 ± 0.002 3.29 ± 0.73 
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Fig. 5.6: Displaying the velocity changes over the Lunana glacier system by the outline of the 

TerraSAR-X data. The values are displayed as meters per day and the glacier outline was limited due 

to the TerraSAR-X outline.  Background image Landsat 8 true color composite (13. Dec.2018).
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Chapter 6: Discussion 
In this chapter the presented result of the glacier changes of the Lunana glacier system and the 

evolution of the Luggye Tsho and Raphstreng Tsho glacial lakes will be discussed. The main 

objectives for the glacial lakes are to summarize their evolution and investigate their physical 

state as of today and discuss what sort of risk they possess as being labeled potential 

dangerous glacial lakes.  The chapter will also include a discussion on how the surface melt 

are displayed on debris-covered glacier parts as oppose to on clean ice, and how the debris 

covers effect the glacier flow of the glacier. Discuss the compatibility between the glacier 

flow and the glacier mass loss, and as a last subject, discuss the importance of using 

coherence data when one is classifying debris-covered glaciers.   

 

6.1 Evolution of Luggye Tsho glacial lake and the Luggye glaciers 

Given the past event of the outburst of Luggye Tsho glacial lake in October 1994, the glacial 

lake has been labeled as a potential dangerous glacial lake and should be monitored with the 

caution. In November 1993, 11 months before the time of the GLOF event, Luggye Tsho was 

classified with a 1.12 km2 area. After the event, the area reduced to 0.92 km2 which was 

classified about a month after the event. The theory is therefore that minimum 0.2 km2 area of 

the Luggye Tsho glacial lake where the main discharge that caused the outbreak of Tshopdak 

Tsho, leading to initiation of the 1994 GLOF event. Fountain, et al. (2000: p. 169) mentioned 

in the workshop that the western end of the Luggye Tsho glacial lake recede by about 500 m 

because of the GLOF event, and this statement corresponds with Fig. 5.2 in this study which 

showcases the area change of Luggye Tsho between 1993 and 1994.  

In 2018 Luggye Tsho stands at a size of 1.41 km2, which is 29 km2 greater than before it 

outburst in 1994, and it can therefore cause more harm and damage if it were to outburst at its 

current state. Fountain, et al. (2000: p. 169) raised the awareness that if the outlet zone to 

Luggye Tsho where to be blocked in the future a rise of water level would increase the risk of 

another GLOF event happening. The blockage could be caused by such events as: a landslide 

originating just above the inner lateral moraine of Luggye Tsho, or a large-scale failure of the 

damn caused by melting of the ice core within the lateral moraine (Fountain, et al. 2000: pp. 

169). Where the last event is similar to what happened originally during the 1994 GLOF 

event. The outlet zone was expanded as a result of the 1994 GLOF event and is easily 

recognized on the Landsat image taken just before and after the event in Fig. 5.3. Based on 

observations from these Landsat 8 images, the SPOT image taken in December 2018 and the 
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Pléiades images taken in November 2019, the outlet zone seems presumably just as expanded 

as it was after the GLOF event. There is no newer study of the state of Luggye Tsho’s outlet 

zone after Fountain, et al. (2000), and therefore no newer field study can confirm the state of 

Luggye Tsho outlet zone after 1994.   

The Luggye glacier 1 & 2 are both connected to Luggye Tsho glacial lake and has been since 

the appearance of Luggye Tsho in the 1980s (Fountain, et al. 2000: p. 169). These two 

glaciers have since 1976 reduced in size by a total of 4.66 km2, both experiencing greater loss 

after 2000. Luggye glacier 1 went from an area of 7.56 km2 in 1976 to an area of 4.41 km2 in 

2018, almost halving in size, and had a mass balance change of 1.01 ± 0.069 m w.e. a-1 

between the same time frame. The glacier changes correspond to the change in physical state 

of Luggye Tsho. As the proglacial lake increased in size from the GLOF event in 1994 until 

2018, Luggye glacier 1 had a frontal retreat of 1.2 km and a 41.7% area reduction during the 

same time-period. At the same time, Luggye glacier 1 experienced increase reduction in size 

and mass balance after the 2000. This corresponds with increase in area of Luggye Tsho after 

1994. The frontal retreat of Luggye glacier 1 after 2000 and the area reduction of 41.7% could 

indicate an increase in production of meltwater. The glacier was calculated to have an average 

velocity of 4.75 ± 0.73 m a-1, making it a highly active glacier. The Luggye glacier 1 is 

classified of consisting of both debris-covered ice parts and debris-free ice parts, and 

according to Fig. 6.1 there is a clear difference between the two parts regarding surface melt 

and glacier flow. The surface melt over the bottom part tongue region of Luggye glacier 1 is 

considerably larger (0.5 m a-1) over the clean ice parts, than the debris-covered parts, and at 

the mid part the parts seems to uniformly reduce in surface melt. However, close to the 

bottom of the tongue where the glacier is terminating in Luggye Tsho, the surface melt is 

actually larger over the debris-covered part. This could indicate that debris-covered is mostly 

absent at the bottom of the glacier tongue creating a relative thin cover of debris over the 

glacier. The surface melt difference between debris-covered and clean ice will be discussed 

and elaborated more, later in this chapter. The glacier velocity over Luggye glacier 1 seems to 

be acting opposite to how the surface melt is, meaning that if there is an increase in surface 

melt than there is a reduction in glacier velocity. The velocity is increasing at a higher 

elevation as oppose to the surface melt which decreases at the same elevation, and this is due 

to state of equilibrium that the glacier is maintaining. The glacier flow concept balances the 

inputs and outputs by transferring ice from the accumulation zone (higher elevation) to the 

ablation zone (lower elevation), called balance velocity (Benn and Evans 2013). The glacier 
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flow is controlled by the surface melt rate, and therefore the higher the surface melts the faster 

the mass turnover rate (glacier movement) (Benn and Evans 2013; Chandler and Evans 2019). 

Also, the glacier velocity acts differently regarding if it is over debris-covered or clean ice. 

The glacier velocity is considerably high over the mid part region of the clean ice, and 

considerably low over the debris-covered parts with the same elevation (see chapter 6.4.2.  

Between 2000-2018, Luggye Tsho had a lake area increase of 28% (according to the graph at 

Fig. 5.2) and the runoff from Luggye glacier 1 seems to be flowing directly into Luggye Tsho, 

as the glacier is terminating directly into the glacial lake (Fig. 5.2). The meltwater should 

therefore be an input source to Luggye Tsho, and therefore, an increase in meltwater 

production could lead to an increase in glacial lake area. This seems a little different for 

Luggye glacier 2. Based on observing Landsat 5 & 8 (Fig. 5.2), SPOT and Pléiades images of 

Luggye glacier 2, its outlet channel does not seem to connect to Luggye Tsho but seems to 

outlet down towards Thorthormi glacier. It then may work as an input source for the 

supraglacial lakes located on the southern parts of the tongue of Thorthormi glacier. 

According to the results, Luggye glacier 2 reduced in area from 2.46 km2 in 1976 to 1.35 km2 

in 2018, with a 0.89 ± 0.06 m w.e. a-1 reduction in mass balance. While Luggye glacier 2 did 

have a considerable amount of glacier loss during the total time period, it was calculated to 

have an average velocity of 2.2 ± 0.73 m a-1 which is only half as fast as Luggye glacier 1. 

Glacier tongue of Luggye glacier 2 is classified to contain large amount of debris-covered 

parts, and the glacier tongue of Luggye glacier 1 is only partly covered with debris, which 

could be an indication to why the velocity over Luggye glacier 2 is considerably slower than 

Luggye glacier 1.  

According to Fig. 5.3 there is a clear visual that there are several supraglacial lakes located on 

the top of the tongue of Thorthormi glacier. However, this study does not take account for the 

formation nor the classification of these supraglacial lakes located on Thorthormi glacier and 

this paper can therefore not discuss if there are or seems to be any correlation between the 

reduction of Luggye glacier 2 and the formation of supraglacial lakes on Thorthormi glacier. 

If Luggye Tsho glacial lake where to outburst again by a blockage of the outlet channel today, 

the glacial lake area would be around 1.42 km2 of water with a depth ranging from 60-100 

meters (Ahmed, et al. 2020).  
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Fig. 6.1: Surface elevation change and glacier velocity measured over Luggye glacier 1. The 

two transect lines is divided between clean ice (red) and debris-covered ice (blue).  
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6.2 Evolution of Raphstreng Tsho and Raphstreng glacier 

Based on previous research there has been no trace that Raphstreng Tsho glacial lake has ever 

been part of a GLOF event before its appearance in the 1980s (Fountain, et al. 2000: pp. 171). 

The lakes condition is based on the result of this study, very stagnant. The timeseries in Fig. 

5.2 shows that Raphstreng Tsho has been maintaining its same state from 1993 until 2018, 

increasing by only 0.03 km2 in area. The fluctuation in water area that is visible in the 

timeseries is most likely caused by drop in water level as water seeps out of a small outlet 

channel, that is located on southern part of the glacial lake. The outlet channel is not so easily 

visible on the low-resolution Landsat 5 & 8 images but can be seen in the higher resolution 

Pléiades image from 2019. The Raphstreng Tsho moraine dam where fixed due to the 

structural mitigation done by The Raphstreng Tsho Outburst Flood Mitigation Project, which 

lowered the risk of Raphstreng Tsho outbursting quite gradually. It has been reported by 

several studies that the Raphstreng Tsho glacial lake does not pose any GLOF threat on its 

own. However,  given its large volume consisting with an area of 1.3 km2 and an average 

depth of 100 meters (Fountain, et al. 2000: p. 169) and its location being just 80 meter below 

Thorthormi glacier which is separated by an unstable 32 meter, at its thinnest, high ice-core 

moraine, one cannot overlook that Raphstreng Tsho could outburst in the future if the 

supraglacial lakes on Thorthormi glacier where to outburst first (Singh 2009). 

Based on the result the Raphstreng glacier had a glacier reduction of 0.9 km2 in area as well as 

0.21 ± 0.06 m w.e. a-1 reduction in mass balance between 1976 and 2018. The glacier is 

terminating directly in Raphstreng Tsho and therefore works as an input source for the 

proglacial lake. Observing the different Landsat 5 & 8 images (Fig. 5.3) as well as the 

Pléiades data from 2019 and the SPOT data from 2018 there seems to be no other glacier 

input sources for the expansion of Raphstreng Tsho. Between 1976 and 1996 the glacier area 

reduced by 0.65 km2, which was about three times as much as it did between 1996 and 2018 

where the glacier reduced by mere 0.25 km2. Which is a quite opposite behavior than for e.g. 

Luggye glacier 1, which according to the result reduced gradually more between 1996 and 

2018 than it did between 1976 and 1996. The surface melt over Raphstreng glacier is mostly 

oriented around the bottom part of the glacier tongue, much like Luggye glacier 1 (Fig. 6.2). 

This is opposite for the velocity as the glacier flow is highest around the mid/top part of the 

glacier tongue (Fig. 6.2). This again proof of balance velocity, where the glacier is trying to 

maintain a state of equilibrium.  
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Fig. 6.2: Surface elevation and velocity change over Raphstreng glacier, with regards to rise 

in elevation.  
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6.3 Further investigation of the potential GLOF threat 

The results from this study does not invoke any direct answer to if Luggye Tsho or 

Raphstreng Tsho will be a potential GLOF outbreak in the future. The results show only the 

potential outcome if the lakes where to outbreak. As a further investigation for this study I 

would recommend monitoring and study the stability of the ice-moraines that dam these two 

glacial lakes. This can be done by using SAR interferometry (InSAR) and coherence 

mapping. InSAR mapping is an important tool to monitor and measure surface displacements, 

and can also measure moraine degradation (Chen, et al. 1999; Joughin, et al. 2010). By doing 

so, the investigations will provide further assessment to the GLOF risk that these two PDGLs 

contains. It will also provide with further learning on how to prevent certain outbreaks or at 

least minimize their potential outbreaks by enforcing the structural integrity of the ice-

moraine dam, which has proven to be successful in the past (Fountain, et al. 2000: p. 169). 

6.4 Surface change over debris-covered and clean ice surfaces 

Debris-covered glacier relative to clean ice glaciers have some certain differences when it 

comes to the thinning rate. According to the result it seems that the average surface melt is 

slower over a debris-covered glacier than clean ice glaciers at low elevations. Looking at Fig. 

5.4 the surface melt is displayed by the change in surface elevation between 1976 and 2000. 

The figure reveals an overall similar surface melt for debris-covered glaciers, e.g. Lianggang 

glacier, G090157E28136N, Luggye glacier 2, Bechung glacier. Which is a low surface melt at 

the lowest part of the glacier, but as the elevation rises towards the mid part of the glacier, 

there is an increase in thinning rate. However, as the elevation rises the surface melt seems to 

slow more and more down, and at the high parts where it transitioned into clean ice the 

surface melt would be equal to zero. Fig. 6.3 displays how the surface melt are changing, 

between 1976-2000, with the rise in elevation, and shows a measurement for the debris-

covered glacier G090157E28136N. The mid-range elevation of a debris-covered glaciers are 

where the debris covers are not settled in or sparse, but also where the majority of the glacier 

area are resided (Maurer, et al. 2019). The surface melt seems to increase where the debris-

covers are sparse or almost absent. This statement is already justified as Benn and Evans 

(2013) states that the thickness of debris-cover parts are what controls the melt rate and 

therefore also the thinning rate. They state that where the debris-covers are sparse is where the 

albedo7 effect has the strongest influence on the ablation rate. The fluctuation in the surface 

 
7 Albedo = a term used in glaciology to explain the amount of solar radiation that is reflected on a surface. On 
debris-covered surfaces this term would be explained as having a low albedo effect, as debris-covered surfaces 
absorb more incoming solar radiation than e.g. clean ice or snow (Benn and Evans, 2013). 
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elevation values are probably caused by the supraglacial lakes that have been observed over 

glacier G090157E28136N and should not take accounted to when one is observing the 

thinning rate.    

Clean ice surfaces, such as the Shimo glacier, have a different form of thinning rate. 

According to Fig. 5.4 the Shimo glacier had a faster surface melt at the lower elevation parts 

but seemed to be reducing as the elevation increased. The same goes for other glacier that 

consist of solely clean ice, e.g. Luggye glacier 1 and Raphstreng glacier both experience the 

same form of thinning rate. The surface melt seemed to be uniformly the same as for the 

debris-covered glaciers and clean ice but are experienced at different levels of elevations. This 

statement was also found true by Maurer, et al. (2019) in their paper on increased mass loss 

over the Himalaya. However, one clean ice surface seems to be behaving a bit differently. 

According to Fig. 6.3 the surface melt over Zeng glacier behaves quite the same as it would 

over a debris-covered surface. Where the highest amount of surface melt is on the mid part of 

the glacier and not the lower part. Based on observing the results this glacier seems to be the 

only clean ice glacier that has this sort of thinning rate. The Zeng glacier will therefore not be 

sufficient to discuss, as one glacier cannot overdue the results of several other uniform 

glaciers.  

6.4.1 Glacier change and climate change: 

According to table 5.1, most of the glaciers had a larger reduction in area size after the 2000, 

and Fig. 5.5 shows that the surface elevation change shows the very same trend. This increase 

in glacier melt and area reduction could be an indication to a local climate change increase 

after the 2000. Even though table 5.4 & 5.5 present a different result they are both limited by 

the stereo data outlines. This study where only able to get some high-resolution imagery that 

covered only a part of the Lunana glacier system, and therefore the 2000-2018/9 and the total 

results between 1976 and 2018/9 for the geodetic mass balance and surface elevation change 

do not support enough information to value if there were a higher loss of glacier before or 

after the 2000.  
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Fig. 6.3: Shows how the surface elevation change is differentiating between clean ice (Zeng glacier) 

and debris-covered ice (G090157E28136N). The measurements are between 2000-2018/9 for the 

Zeng glacier, and between 1976-2000 for glacier G090157E28136N. The graphs are generated from 

the two transect lines in the images, green (G090157E28136N) and blue (Zeng glacier).  
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6.4.2 Velocity over debris-covered and clean ice surfaces 

Based on the result there seems to be almost no velocity on certain debris-covered glacial 

surfaces. Glacier G090157E28136N had almost no displacement on the debris-covered 

surfaces with low elevations (Fig. 6.4) but increased when the elevation increased to the 

higher parts where the transition between clean ice and debris-covered ice where. The 

fluctuation of velocity change over G090157E28136N is most likely caused by the 

supraglacial lakes located on the debris-covered tongue, as they might give a higher or lower 

for of displacement then the glacier itself. The same goes for other debris-covered glaciers, 

e.g. Bechung glacier and Luggye glacier 2, where the velocity is barely picked up in the 

debris-covered parts but are higher registered in the clean ice parts. The lack of velocity over 

some surfaces can indicate that the glacier is stagnant ice. This can be compared with a totally 

debris free glacier, like Zeng glacier, which was calculated to have an average velocity of 

0.012 ± 0.002 m d-1 which is almost twice as fast as glacier G090157E28136N which had an 

average glacier velocity of 0.007 ± 0.002 m d-1. Based on Fig. 6.4 the Zeng glacier flowed the 

fastest on the mid part region of the glacier tongue. This gradient of the velocity is not visible 

on the debris-covered glacier G090157E28136N and based on these results it would seem that 

the debris-covered surfaces limit the movement of the glacier at low elevations.  

Comparing it to other work, Sam, et al. (2016) presented with similar observations in their 

paper. They presented a COSI-Corr correlation of the displacements between Landsat 8 

images, to figure out the yearly velocity of debris-covered glacial surfaces in India. The 

figures presented in the paper showed similar effects of the glacier velocities over low 

elevation glacial surfaces. The glacier velocities where slow over low elevation glacial 

surfaces, where most of the debris-covered surfaces where located and would start to increase 

as the elevation got higher and the surface transgressed to clean ice surfaces. There where 

however some debris-covered surfaces that showed an increase in velocity as the elevation 

and slope got higher. Sam, et al. (2016) study used a COSI-corr correlation to show a yearly 

displacement change over time, which is different from this study which are using offset 

tracking to show a daily displacement between 22 days. The range between this study and the 

study by Sam, et al. (2016) is therefore limited by the temporal visualization of the glacier 

velocity change over debris-covered surfaces and to get a better comparison the area should 

be calculated with similar methods as the one Sam, et al. (2016) is using. This would lead to a 

better understanding on how the glacier flow works over the debris-covered surfaces in 

Lunana, Bhutan.  
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Fig. 6.4: A velocity and elevation change measurements are computed into two individual graphs, 

displaying the measurements for the clean ice Zeng glacier and the debris covered G090157E28136N 

glacier. The transect lines over the Zeng glacier (red) and G090157E28136N glacier (purple) are 

indicate on the two maps. The X’ marks the transition between debris-covered surface to clean ice.   
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6.5 Glacier flow against glacier mass loss 

The glacier flow over the Lunana glacier system was defined for the temporal period of 

Nov/Dec 2016 and will be compared to the glacier mass loss that was calculated for the 

temporal period between 1976 and 2019.  

One of the objectives for this paper was to study the compatibility between glacier velocity 

and the glacier volume change and see if a loss of glacier mass responses with an increase 

glacier flow. There seems to be a link between the temporal window and how the glacier 

flows. Based on the results, the glacier with the highest loss of mass was the Zeng glacier with 

a 1.17 ± 0.06 m w.e. a-1 mass balance reduction between 1976 and 2019. However, if one is 

looking at the temporal period between 2000 and 2019, Luggye glacier 2 had a 0.74 ± 0.17 m 

w.e. a-1 mass balance reduction and the Zeng glacier was one of the lowest with a 0.28 ± 0.1 

m w.e. a-1 mass balance reduction. Luggye glacier 2 was classified to consist of both debris-

covered glacier parts as well as clean ice parts and Zeng glacier is solely consisting of clean 

ice. Looking at table 5.6 the average glacier velocity on Zeng glacier was 0.012 ± 0.002 m d-1 

while on Luggye glacier 2 the velocity was 0.006 ± 0.002 m d-1 about half as fast as the Zeng 

glacier. As discussed in the last subject, the velocity flow of a glacier seems to be faster in 

clean ice parts than in the debris-covered parts. This will compute a theory that a glacier 

consisting of clean ice will flow faster than if it contained debris-covered parts.   

The melt rate of a debris-covered glacier decreases with the thickness of the debris layer 

(Östrem 1959: p. 228 - 230), where the debris layer is at its thinnest, the rate of melting is at 

its highest, and if the debris cover is thicker than 2 cm the melting rate decreases 

exponentially. The rate of ice melting inflicts the overall mass balance of a glacier, as glacier 

melting controls the ablation rate which is used to calculate the glacier mass balance. Based 

on this, the ticker the layer of the debris, the lower the melting rate and therefore a more 

positive glacier mass balance. Based on the results of the glacier mass balance, the Zeng 

glacier had a glacier mass balance reduction (1.17 ± 0.06 m w.e. a-1) that was almost twice as 

big as glacier G090157E28136N (0.65 ± 0.04 m w.e. a-1), and as mentioned before, glacier 

G090157E28136N was calculated to have a glacier velocity which was almost twice as slow 

as the Zeng glacier.  

Given that glacier G090157E28136N was classified with debris-covered parts and the Zeng 

glacier was classified as just clean ice, there could be a connection between glacier melt 

within debris-covered glaciers and how fast these glacier flows. Based on this, it seems that 

clean ice flow faster and melt faster than what debris-covered glaciers does. Hence, glacier 
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melt over clean ice can supplement more meltwater than what debris-covered glaciers can, as 

clean ice are more active. Emmer (2017) explained that active glaciers supplement meltwater 

that leads to expansion and/or production of glacial lakes, which in the end can lead to cause 

of impact to glacial hazards, e.g. GLOF event. It should therefore be taking accountant to 

what type of glacier is supplementing what glacial lake. If the lake is rated as a potential 

dangerous glacial lake (PDGL) and it is supplemented by a clean ice glacier, then there should 

be high glacial hazard risk. 

6.5.1 Surface elevation change and velocity 

Based on the last chapter there seems to be a correlation between glacier mass balance and 

glacier velocity. However, based on looking at the results there seems to be a connection 

between surface elevation change and glacier velocity as well. Fig. 6.3 revealed that the Zeng 

glacier had an increased surface melt in the mid part region of the glacier. This uniform flux 

of change can be observed on Fig. 6.4 where the same glacier had a similar increase in 

velocity over the same region. However, the Zeng glacier was the only clean ice glacier that 

showed this type of thinning rate, every other clean ice glacier was observed to have a 

different, but uniform, thinning rate.  

Assessment of the glacier movement and the change of the glacier surfaces are important 

regarding debris-covered glaciers. Bolch, et al. (2012) stated that if a debris-covered glacier is 

stagnating and experiencing surface loss the glacier is in fact producing supraglacial ponds. 

Supraglacial ponds are already observed on debris-covered glaciers such as glacier 

G090157E28136N and the graphs in Fig. 6.3 & 6.4 confirms these observation, as the debris-

covered glacier is experiencing very low glacier velocity, and is therefore considered as 

stagnate ice, and high amounts of surface loss. These ponds can lead to hazardous 

implications in the future as they increase the local ablation by transmitting stored thermal 

energy down to the underlying glaciers (Benn, et al. 2012), growing them into larger 

supraglacial lakes. Based on this it seems to be a certain connection between the glacier flow 

and how the glacier melts.  
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6.6 Coherence data and classification of debris-covered glaciers 

The glacier classification from this study did it able to classify and compute an estimation on 

the glacier area change of the Lunana glacier system. The debris-covered glaciers where 

classified by using coherence data as one of the main threshold inputs. The classification had 

an accuracy of 97% based on the GLIMS glacier outline polygons. Based on previous studies 

that have used coherence data as a threshold input for classifying debris-covered glacier, they 

concluded that by using coherence data one could easily identify moving debris covered 

tongues (Frey, et al. 2012; Robson, et al. 2015). It was especially effective and precise when 

they were mapping large valley glaciers that where consisting of extensive debris covers 

(Frey, et al. 2012). Robson, et al. (2015) noted that their OBIA classification of the glacier 

system failed to identify some debris-covered parts, because of the threshold set for the slope 

values. The classification fully classified step tributary of clean ice that flow down towards 

the glacier, as they had a steepness between 25-50°, when they had set a threshold between 

14-16°. In this study there where similar problems. There were certain debris-covered glaciers 

that where not classified due to slope of these glaciers being either to low or too big for the 

threshold. This study had a 14-19° slope threshold and would often fail to identify certain 

glacier parts that where not within the threshold and would have to be corrected by a visual 

editing. Fig. 6.5 shows this classification error, where the two separated glacier tongues (X & 

Y) where failed to identify as debris-covered glaciers. Both glaciers where estimated to have a 

slope value (ca. 12°) under the threshold, and they had a high coherence value based on the 

coherence image B in Fig. 2.2, thus excluding them from the classification. Trying to change 

the threshold to accommodate these types of glacier parts, resulted in the classification 

including non-glacial debris parts that where surrounding the glacier tongues. High coherence 

values indicate no movements and the two debris-covered glacier tongues could be assumed 

to be stagnant ice and not active ice. It is therefore important to know that by using coherence 

data, you will not be able to classify stagnant debris-covered glaciers. 

The GLIMS glacier inventory outlines seem to have similar issues when it comes to 

classifying every parts of the glacier system (Fig. 6.5). According to GLIMS glacier inventory 

website, the delineation of the glacier outlines where gathered from Nuimura, et al. (2015) the 

creator of the “Glacier Area Mapping for Discharge from the Asian Mountains” (GAMDAM). 

The GAMDAM was manually delineated from 356 Landsat ETM+ scenes from the period 

1999-2003, and by using DEM and high-resolution Google Earth. The glacier outlines are 

regularly updated and was last updated in 2018, according to the metadata from GLIMS data 
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files. As mentioned before, studies prove that manual delineation is a time consuming and  

ineffective way to classify debris-covered glacier parts (Bhambri, et al. 2011; Bolch, et al. 

2008; Paul, et al. 2013; Robson, et al. 2015). Nuimura, et al. (2015) generate debris-cover 

outlines by identifying it using contour lines at 20 m intervals and thermal band imagery, and 

as a last resort thermokarst features. Thermal band imagery can identify thin debris-covers, 

which has relative low surface temperature (Reznichenko, et al. 2010), and by using high 

resolution images to identify thermokarst features, one can use these rugged surfaces to 

identify exposed ice cliffs located on debris-covered glaciers (Nuimura, et al. 2015). In the 

end, Nuimura, et al. (2015) was able to identify more debris-covered glaciers than the OBIA 

classification, before the manual correction, from this study. It can be smart to consider the 

usage of some of the methods used by Nuimura, et al. (2015), e.g. thermal bands, to use as a 

input threshold for the classification, but that is important to take notice of the thickness of the 

debris-covers, as anything more than 130 mm would show no thermal activity (Reznichenko, 

et al. 2010).  

The OBIA classification was successful in classifying the large debris-covered glaciers like 

the Lianggang glacier and G090157E28136N, where there where several shifts in lithology 

and vegetation, as well as the transition from debris-covered ice to clean ice. However, based 

on the results, there were some misclassification and overestimations of the glacier outline, 

with debris masses being classified as debris-covered ice (Fig. 6.6). The very same glacier 

overestimation where a problem in the OBIA classification from the study of Robson, et al. 

(2015), where debris mass flow where classified as debris-covered ice due to the spectral 

similarity of the two. This comes to show that automatic classifications like the OBIA cannot 

solely relay on inputted data and thresholds to get the most accurate results but use them as a 

guide for large scale classifications and use manual editing to perfect the result.  
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Fig. 6.5: Figure showing how the OBIA classification struggles to classify certain debris-covered 

glacier tongues. (A) shows this identification issue and displays the two glacier tongues as X and Y. 

While the OBIA classification struggles to classify all the glacier parts, the GLIMS inventory seems to 

have a similar issue (B). Glacier part X is not identified by the GLIMS outline.  Background image: c 
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Fig. 6.6: An example of debris masses (green square) on the Lianggang glacier. Due to spectral 

similarity between the debris masses and the debris-covered glacier, as well as loss of coherence, they 

have been misclassified as debris-covered ice. Background image: SPOT data (16.12.2018). 
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6.7 Comparison with other glacier classifications 

Other studies have proven the efficiency of using remote sensing to classify glacier changes. 

Nuimura, et al. (2015) contributed to the GLIMS databases with their manual delineated 

glacier outlines over high mountain Asia and identified over 87 000 glaciers covering a total 

area of 91 263 ± 13 689 km2. Compared to this study, which covers just over 1000 km2 and 

about 125 glaciers, Nuimura, et al. (2015) covers a vastly bigger area. However, it seems that 

the overall area of the glacier outlines is not so accurate even though they use manual 

delineation to identify them. The GLIMS outlines seems to have overestimated some of their 

glacier outlines. Fig. 6.7 displays the outline of the glacier done by the OBIA classification 

from this study and the GLIMS glacier outline. The GLIMS outline do not seem to take 

account for high altitude high slope areas, as the nunataq on the Shimo glacier was classified 

as glacier, and the high slope terrain on glacier G090157E28136N was also classified as 

glacier. According to Nuimura, et al. (2015) they had excluded steep headwalls (>40°) for the 

classification as they don’t experience any change in surface elevation and therefore has no 

input for the glacier mass balance change. This study tried to replicate the same threshold 

maximum for slope based on the literature as (Nuimura, et al. 2015; Paul, et al. 2013; Robson, 

et al. 2015), but the OBIA classification ended up excluding glacier areas that where snow 

covered and therefor important for the classification. The result threshold for the slope where 

sett to 75°. Nuimura, et al. (2015) were following GLIMS outline protocol, where all 

perennial snow masses had to be classified as glaciers, and that only exposed ground could be 

excluded from the outlines (Raup and Khalsa 2007), but they were also using both summer 

and winter Landsat scenes to avoid seasonal snow cover, which this study did as well. The 

inclusion of snow covers was to take account for avalanches, as they are important sources of 

glacier nourishment (Nuimura, et al. 2015).  
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Fig. 6.7: Shows the outlines of both the OBIA classification (2018) as well as the GLIMS glacier 

inventory outlines (2018). Notice the overestimation on glacier outlines from the GLIMS glacier 

inventory on both glacier G090157E28136N (A) and the Shimo glacier (B). Background image: 

Landsat 8 false color composite (13.12.2018). 
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Chapter 7: Conclusion 
This study has been using different methods of automatic classifications and manual 

delineation as well as offset tracking and DEM co-registration, to create a glacier inventory of 

the Lunana glacier system. It has provided a large-scale time series for the two potential 

dangerous glacial lakes, Luggye Tsho and Raphstreng Tsho, to enlighten their outburst risk in 

the future. The Luggye Tsho glacial possesses a dangerous outcome if it were to outburst 

again, as it has greatly been increasing in size since the 1994 GLOF event, from 0.93 km2 in 

1994 to 1.41 km2 in 2018, due to increase in glacier retreat and production of meltwater. The 

geodetic mass balance provided information on the surface elevation and volume change for 

the Lunana glacier system. The reduction in mass balance of Luggye glacier 1, 1.01 ± 0.069 

m w.e. a-1 (1976-2019), shows to why the Luggye Tsho glacial lake has had an increase in 

size over the past 25 years. The Raphstreng Tsho possesses a similar risk, as its areal size of 

1.31 km2, and its location makes it a potential outburst threat. If the supraglacial lakes on 

Thorthormi glacier or if Luggye Tsho where to outburst and flow down towards Raphstreng 

Tsho, the hydrostatic pressure from the outburst could result in a massive GLOF event. 

The OBIA classification of the Lunana glacier system provided an accurate glacier outline 

inventory consisting of both debris-covered glaciers and clean ice. The OBIA classification 

had some restriction when it came to classify stagnant debris-covered ice and of non-glacial 

debris surfaces. Nevertheless, the classification proved a 97% accuracy and was able to 

account for every active debris-covered glacier in the study area, with just a small need for 

post-processing and editing. This study has been investigating how debris-covered surfaces 

affect the glacier changes and revealed that the glacier velocity is lower over supraglacial 

debris as to oppose to debris-free ice. For example, G090157E28136N had an average of 2.56 

± 0.73 m a-1 glacier velocity over the debris-covered tongue, while the Zeng glacier had an 

average of 4.4 ± 0.73 m a-1 at a maximum of 10± 0.73 m a-1 (Fig. 6.4). 

Between 1976 and 2018/9 the Lunana glacier system had a large reduction in area of 12.7% 

and a reduction in surface elevation of 0.48 ± 0.08 m a-1, which calculates to a -0.41 ± 0.068 

m w.e. a-1 in mass balance, and the rate of change is becoming more negative over the last 

decade. The glacier velocity was only studied on a local scale, divided up between nine 

glaciers, and the results showed some individual debris-covered glaciers to be stagnant. These 

debris-covered glaciers showed also high increase in surface elevation change which could 

indicate production of supraglacial ponds (Emmer 2017). E.g. G090157E28136N where the 

surface melt was between 1.5 and 2 m a-1 (see Fig. 6.3) over several locations on the debris 
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tongue. The increase in production of supraglacial ponds is an indication of surface melt and 

results in large supraglacial lakes, which can eventually turn into GLOF hazards.  

As a continuation from this study there are some recommendations for future studies and 

improvements: 

• To conduct a Normalized Cross Correlation with optical data of the Lunana glacier 

system to extend the temporal scale for the glacier velocity, as this would further 

investigate the glacier movement paradox for the debris-covered glaciers. 

• Use automatic classification to identify several more glacier outlines of the Lunana 

glacier system, between 1976 and 2019. To provide a more accurate time series of the 

glacier changes to further investigate how the glacier area has changed during the last 

few decades.  

• Generate an informetric SAR (InSAR) mapping over the PDGLs, Raphstreng and 

Luggye Tsho, to monitor and study if the ice-moraine dams are degrading and if so, 

how much. This will provide a further assessment to the GLOF risk that these two 

PDGLs contains and provide better learning on how to prevent certain outbursts.  

• Study the evolution of the supraglacial lakes on Thorthormi glacier and classify their 

surface area. As the supraglacial lakes seems to have a high impact on the GLOF risk 

of Raphstreng Tsho.   
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Chapter 8: Attachments  
I. Surface_elevation_change_2000_1976 

II. Surface_elevation_change_2018_9_1976 

III. Surface_eleavtion_change_2018_9_2000 

IV. Volume_change_2000_1976 

V. Volume_change_2018_9_1976 

VI. Volume_change_2018_9_2000 

VII. Table_mean_glacier_velocity  
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