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Abstract 
 

Anthropogenic climate change is increasing both temperatures and precipitation in Western 

Norway, and these trends will be magnified in the future. This is expected to alter ecosystems, 

and to affect plants at different stages through their life cycle. Investigating variation in plants 

functional traits along spatial climatic gradients can be used to understand the effects of 

climate, and climate change, on different aspects of the plant life cycle. Many have used such 

space-for-time approaches to study vegetative traits, but reproductive- and floral traits have so 

far received less attention. Knowledge about these traits is important for understanding plant-

pollinator interactions and how these interactions could be affected by future climate change. 

The aim of this study was to investigate how reproductive allocation and floral traits of insect-

pollinated forbs in perennial grasslands vary with temperature and precipitation. I collected 

approximately 1300 individuals of 45 different species of forbs for measurements of plant 

vegetative and reproductive size, reproductive allocation and floral traits. To investigate 

intraspecific variation of reproductive allocation and floral traits, I also studied four species 

individually; Campanula rotundifolia, Potentilla erecta, Ranunculus acris and Veronica 

officinalis. The plants were collected in a climatic grid in western Norway consisting of 12 

sites of semi-natural grasslands across three temperature levels and four precipitation levels.  

 

My results showed that across the community, forbs allocated more biomass to reproductive 

organs when temperatures were lower, while size and colour of floral displays were similar 

along the temperature gradient. Precipitation did not affect reproductive allocation or floral 

traits of the community. R. acris showed the same trend as the community for reproductive 

allocation, while there was no intraspecific variation along the temperature gradient for the 

other species. Size of floral displays of the four species changed little with temperature, as for 

the community. Increasing precipitation affected the number and size of floral displays of R. 

acris and P. erecta negatively, while C. rotundifolia and V. officinalis showed no effects of 

precipitation. The different trends found for the four species along both the temperature- and 

the precipitation gradient imply that these species have different reproductive strategies. 

These results also indicate that some species are more vulnerable to climate change than 

others. However, the effects of climate change on the forb communities and the individual 

species will be highly dependent on how pollinators and plant-pollinator interactions are 

affected by increasing temperature and precipitation.   
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Introduction 
 

The climate is changing, and the ongoing anthropogenic climate change is expected to cause 

widespread alterations of ecosystems, communities and species. We know that global 

temperature is already approximately 1 °C higher today compared to pre-industrial 

temperature, and that it will continue to increase at even higher rates the next decades (IPCC, 

2018). Even though the increasing temperatures are often the main focus, we also expect 

changes in precipitation levels. The predicted changes in precipitation vary considerably 

between different parts of the world. Some areas will have reduced precipitation and be 

vulnerable to desertification (IPCC, 2019), while others will experience an increase of heavy 

precipitation (IPCC, 2018). Climate changes are happening faster at high latitudes and 

elevations (IPCC, 2018), which means that Norway is definitely exposed to these changes, as 

the northern and mountainous region this country is. Regional climate projections show that 

both temperature and precipitation will increase in most parts of the country, but especially 

western Norway will experience more extreme levels of precipitation (Hanssen-Bauer et al., 

2017). These changes will affect both ecosystem composition and function, for example by 

leading to higher plant productivity, species turnover (Komatsu et al., 2019; Parton et al., 

1995; Rustad et al., 2001; Wu et al., 2011) or shifts in species ranges (Parolo and Rossi, 

2008). Increased temperature and precipitation will also impact the plants’ life cycles in many 

ways, for instance by prolonging the growing season (Menzel and Fabian, 1999), increase 

vegetative growth (Arft et al., 1999) and cause shifts in phenology (Fitter and Fitter, 2002; 

Scaven and Rafferty, 2013).  

 

A plant’s nutrient- and energy budget is limited, meaning that allocation of resources to 

different life functions, such as leaves, stems, roots and reproductive organs can reflect the 

climate and associated ecological and evolutionary pressures and drivers they are exposed to 

in the environment in which they grow (Poorter et al., 2012). Allocation is a trade-off where 

plants have to find the most optimal strategy in their habitat (Wenk and Falster, 2015). Clear 

patterns of plant size can be seen along temperature- and elevational gradients. Plants 

generally produce more biomass in warmer, lowland habitats (Halbritter et al., 2018), and the 

plants growing here are challenged by competition with other plants for light and resources 

(He et al., 2013; Olsen et al., 2016). With higher plant productivity, investing a relatively 

large part of the energy budget in vegetative growth could be a good strategy in order to grow 
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fast and tall and compete for nutrients, light and water (Arft et al., 1999). Plant productivity is 

lower in alpine habitats, as shorter growing seasons, low temperatures, more wind and 

nutrient poor soils limit growth (Billings and Mooney, 1968), meaning that environmental 

stress is more limiting for growth than competition with other plants for light and resources 

(He et al., 2013). Environmental stress is also causing challenges for plant reproduction in the 

alpines, as pollinator abundance decreases at high elevations due to low temperatures and 

wind (Totland, 2001). Especially bees, which are important pollinators in the lowland, 

become less numerous in the alpines (Totland et al. 2013). The pollinator community is 

instead dominated by flies (Diptera) which are able to fly and forage at harsher climatic 

conditions than bees (Lázaro et al., 2008; Totland, 1993). The combination of lower 

abundance and diversity of pollinators and the short growing seasons in the alpines, makes 

insect-pollination less reliable (Totland et al. 2013). Alpine plants can cope with this 

challenge by allocating more of their biomass to reproductive organs at the cost of vegetative 

growth (Fabbro and Körner, 2004; Hemborg and Karlsson, 1998; Kawano and Masuda, 

1980), which could be the best strategy in habitats where competition for the few available 

pollinators exceeds competition for other resources.   

 

The pollinators with their behaviours, preferences and physical characteristics are drivers of 

selection and evolution in a range of floral characteristics, also known as floral traits 

(Campbell and Powers, 2015; Gervasi and Schiestl, 2017). The floral traits again affect 

pollinator communities, so that floral traits of the plant communities and the pollinator 

communities interactively affect one another (Biesmeijer et al., 2006; Gervasi and Schiestl, 

2017). Floral traits are crucial for plants´ sexual reproduction and they play important roles in 

shaping plant-pollinator interactions, competition or facilitation of pollinators among the 

plants and the diversity of pollinating insects in a community (Carvalheiro et al., 2014; Junker 

et al., 2015). Competition both between plants for attention from pollinators and between the 

pollinators for access to the best food resources has given rise to numerous strategies within 

floral traits like shapes, sizes, scents and colours, and impacted how much resources the 

plants invest in their flowers (Nicolson and Wright, 2017). The quantity and quality of floral 

traits can to a high degree influence the behaviour of pollinators; for instance plants with 

larger floral display areas, numerous open flowers or more available nectar are more visited 

by pollinators than other species growing in the same environment (Cnaani et al., 2006; 

Conner and Rush, 1996; Hegland and Totland, 2005; Stang et al., 2006). Floral colour is also 

an important trait for attracting pollinators, and studies have shown that bees are usually 
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associated with colours seen by the human eye as blue and violet, while flies prefer colours 

that humans perceive as white and yellow (Lázaro et al., 2008; McCall and Primack, 1992). 

Yellow has been associated with several different groups of insects and is assumed to be a 

common colour of plants with a generalistic pollination strategy (Kevan, 1972; McCall and 

Primack, 1992).  

 

Plants growing under contrasting environmental conditions can potentially exhibit large 

variation in floral traits due to differences in selective pressure, even within the same species 

(Adier et al., 2014; Fabbro and Körner, 2004; Helsen et al., 2017; Maad et al., 2013). If the 

pollinator community changes in species composition or abundance, the selective pressure is 

also changing, and the plants will have to respond by adapting their floral traits in order to 

reproduce successfully. For instance, alpine plants need to adapt to the lower abundance and 

species richness of pollinators (Totland, 2001). They can respond to this challenge by being 

pollinator generalists (Totland, 1993) or extending their flower longevity (Fabbro and Körner, 

2004; Stenstrom and Molau, 1992). Several studies have also found that flower size increases 

with elevation (Herrera, 2005; Kudo and Molau, 1999; Maad et al., 2013) as a strategy for 

attracting more pollinators. However, others have found flower size to be constant along an 

elevational gradient (Fabbro and Körner, 2004). It is also not clear if certain floral colours are 

more common in the alpines than others (Arnold et al., 2009), even though associations 

between particular pollinators and floral colours are found (Lázaro et al., 2008; McCall and 

Primack, 1992). In general, much is still unknown when it comes to how floral traits change 

along temperature gradients and there is a need of more research on this topic.   

 

While most studies have focused on variation along elevational- and temperature gradients, 

precipitation could also affect reproductive allocation and floral traits. Water loss through 

inflorescences can be high in dry environments, especially when the flowers have large 

surface-to-volume ratios (Galen et al., 1999). Therefore, it could be beneficial for plants 

growing in arid ecosystems to reduce their flower numbers and size. There is also evidence 

that plants experiencing drought stress save resources by decreasing the proportion of sexual 

reproduction for the benefit of clonal propagation (Xie et al., 2016). In addition, soil moisture 

is important for carbon assimilation, meaning that plants in dry soils gain fewer resources to 

allocate to sexual reproduction (Lambrecht and Dawson, 2007). Many studies have 

investigated reproductive traits under drought stress, but the effects of high levels of 

precipitation on plant-pollinator interactions, reproductive allocation and floral traits have 
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received less attention so far. More precipitation leads to increased plant productivity (Wu et 

al., 2011), which could enhance competition between plants and select for allocation to 

vegetative growth at the cost of reproduction. Heavy rain will also reduce the pollinators’ 

flight activity and flower visitation rates (Poulsen, 2008; Totland, 1994), and leave flowers 

more vulnerable to physical damage (Pacini 1984, cited in Lawson and Rands, 2019). In 

addition, a thicker snow cover and a shorter growing season (Jonas et al., 2008) could 

possibly also have effects on reproductive allocation and floral traits. More research on 

flowering plants along gradients including sites with high precipitation levels is needed to 

understand the effects of this. 

 

Trait-based approaches have become important in ecological research and are being used to 

study impacts of abiotic and biotic factors on plant communities (Diaz et al., 2004; McGill et 

al., 2006). Many studies exist on the vegetative functional traits of plants, but reproductive 

traits or floral traits have so far received less attention, despite their importance for plant 

reproduction, pollinator communities and various aspects of ecosystem functioning. 

Knowledge about several plant traits, reflecting several functions, both vegetative and 

reproductive, is important for understanding the complexity of ecosystem and community 

responses to climate change (Junker and Larue-Kontić, 2018). The aim of this study was to 

investigate how resource allocation to sexual reproduction and floral traits of plant 

communities and individual species vary with different levels of temperature and 

precipitation. To answer this, I collected flowering plants of a number of insect-pollinated 

forbs from several sites of semi-natural grasslands along climatic gradients in western 

Norway.  

 

My questions are as follows: 

 

• Is allocation to reproductive organs changing along temperature and/or precipitation 

gradients? 

• How are floral traits affected by changes in temperature and/or precipitation? 

• Are reproductive allocation and floral traits of individual species changing in 

accordance with the trends of the community, or do individual species follow different 

species-specific trends?  
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Based on the literature presented above, I expect that (1) plants in colder environments 

increase allocation to their reproductive organs in terms of biomass proportion and have more 

floral displays and a larger total display area in relation to total biomass; (2) plants’ floral 

displays are larger in cold environments compared to in warmer environments; (3) there will 

be shift from the floral colours associated with bees to colours associated with flies with 

decreasing temperature; (4) reproductive allocation and the size and number of floral displays 

will increase with increasing precipitation; (5) individual species will follow similar trends by 

adapting genetically or through phenotypic plasticity. 
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Methods 
 

 

Study sites 
 

To study the effects of temperature and precipitation on reproductive allocation and floral 

traits of insect-pollinated forbs, I collected plants in a natural climate grid consisting of 12 

sites. The sites are a part of the SeedClim grid and have been used for several studies over the 

last decade (Guittar et al., 2016; Klanderud et al., 2015). The grid has three temperature 

levels, where mean summer temperature is 6.5, 8.5 and 10.5 °C, and four precipitation levels, 

where mean annual precipitation is 650, 1300, 1950 and 2900 mm (See Table 1 for detailed 

information about each site; Climate data from Norwegian Meteorological Institute). The grid 

is set up so that temperature and precipitation vary independently from each other. In order to 

obtain this wide variety of temperature and precipitation, the sites are located from the boreal 

to the alpine zone and from the wet western to the drier eastern Norway (Figure 1). Distance 

between the sites ranges from 650 m to 175 km (Klanderud et al., 2015). 

 

To minimize variability caused by other factors than climate, the sites are chosen so all these 

factors are as similar as 

possible. All sites are 

semi-natural grasslands, 

dominated by graminoids, 

moderately grazed, 

broadly south-facing and 

with calcareous bedrock 

(Klanderud et al., 2015). 

Prevalent and abundant 

forbs in the grid are 

Achillea millefolium, 

Potentilla erecta, Bistorta 

vivipara, Veronica 

officinalis and Campanula 

rotundifolia (Klanderud et 

al., 2015). 

Figure 1: 12 sites and their locations in Western Norway. The sites make up a 

climate grid with three temperature levels (mean of four warmest months: 6.5, 8.5 

and 10.5 °C) illustrated with shaped figures and four precipitation levels (650, 1300, 

1950 and 2900 mean mm/year) illustrated with lighter and darker colour. Climate 

data from Norwegian Meteorological Institute (met.no). Figure originally from 

Klanderud et al. 2015. 
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Table 1: 12 sites with information about their GPS-coordinates, elevation, precipitation, temperature and bedrock. 

Interpolated climate data is from Norwegian Meteorological Institute. The sites make up a climate grid in Western Norway, 

where insect-pollinated plant species were collected to study how temperature and precipitation affects reproductive 

allocation and floral traits.  

Site UTM zone 33 

Coordinate x 

UTM zone 

33 

Coordinate y 

Elevation 

(m a.s.l.) 

Precipitation 

(Mean annual, 

mm) 

Temperature 

(Mean of four 

warmest 

months, °C) 

Bedrock 

Alpine 

Ulvehaugen 128833.00 6785010.00 1208 596 6.17 Ryolite. 

Ryodacite. 

Dacite 

Låvisdalen 80587.50 6767820.00 1097 1321 6.45 Phyllite. Mica 

schist 

Gudmedalen 75285.30 6769540.00 1213 1925 5.87 Phyllite. Mica 

schist 

Skjellingahaugen 35627.60 6785870.00 1088 2725 6.58 Marble 

Subalpine 

Ålrust 157951.00 6759200.00 815 789 9.14 (Meta)sandstone

. Shale 

Høgsete 75917.50 6774330.00 700 1356 9.17 Phyllite. Mica 

schist 

Rambera 49407.80 6801320.00 769 1848 8.77 Phyllite. Mica 

schist 

Veskre 35390.20 6742090.00 797 3029 8.67 (Meta)sandstone

. Shale 

Lowland 

Fauske 180405.00 6781200.00 589 600 10.30 Phyllite. Mica 

schist 

Vikesland 75604.70 6774850.00 474 1161 10.55 Phyllite. Mica 

schist 

Arhelleren 27494.10 6756720.00 431 2044 10.60 Phyllite. Mica 

schist 

Øvstedal 7643.94 6762220.00 346 2923 10.78 Ryolite. 

Ryodacite. 

Dacite 
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Data collection and trait measurements 
 

Sampling of plants 

 

The goal was to collect as many species from the community of insect-pollinated forbs as 

possible for each of the 12 sites. I also included three insect-pollinated woody species (Dryas 

octopetala, Phyllodoce caerulea and Vaccinium vitis-idaea) as these were prevalent 

components of the field layer vegetation at the sites. Despite these exceptions, I will still use 

the term “forbs” when referring to all 

collected plants in this thesis. The plant 

collection was done during the flowering 

season, between 13th of June and 2nd of 

August 2019 (Figure 2). Because 

different species flower at different times 

in the season, I visited all 12 sites twice 

with two-four weeks between each visit. 

Usually, I spent one day per visit at each 

site. The most abundant species were 

prioritized and collected first. I also 

prioritized species that grow at several of 

the 12 sites and hence could provide 

useful data for sites comparisons. Some 

species flowered too early or too late in 

the season to be available during the 

period of my fieldwork. It was therefore 

not feasible to collect all the prevalent 

forbs. I collected between 7 and 14 

species at each site, with an average of 10.5 species per site and a total of 45 different species 

across the grid (See Appendix 1 for an overview of all collected species at each site). 

 

At each site, I collected ten individuals of each species. They were mostly collected within a 

radius of approximately 30-50 meters from the center of the field site (i.e. the climate station). 

To achieve a representative selection, I chose individuals haphazardly by throwing an object, 

such as a pencil, and then collected the individual of the target species that the pencil pointed 

Figure 2: Sampling of Pinguicula vulgaris at the subalpine site Veskre, 

summer 2019. Photo: Gunvor Skjelstad 
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at. I only included mature individuals with a minimum of one open flower without any large 

damages or signs of developing seeds (i.e. entering post-flowering reproductive stages). This 

was done to make sure I measured all floral traits on flowers at the same stage; when they 

were open and available for pollinators. I did not follow this plant selection procedure strictly 

for less abundant species if there were few individuals to choose from. Instead, I then 

searched the area until I had ten individuals with minimum one open flower. All individuals 

of the same species were collected minimum 2 meters apart to make sure that they were 

different genetic individuals. When several shoots emerged from the same point in the 

ground, I assumed them to be of the same individual and therefore collected them as one. 

After measuring reproductive height (see below), all of each individuals’ aboveground 

biomass was collected. Hereafter, aboveground biomass will always be referred to as 

biomass.  

 

Measurements of plant size and floral traits 

 

For each individual, I measured the reproductive height from the ground to the uppermost 

open flower and counted all the floral structures (Hereafter: floral displays). The species were 

separated into two groups based on their type of floral display: floral displays consisting of 

solitary flowers and floral displays consisting of inflorescences (several flowers in a cluster) 

(Table 2). For solitary species, one open flower per individual was randomly chosen for 

measurements of diameter, flower height 

and petal width and length (Figure 3, 

Figure 4 a-d). For species with 

inflorescences, the diameter(s) and height 

of the whole floral display was measured, 

while one individual flower was 

randomly chosen for measurements of 

petals (Figure 4 e-f). For species with 

round and radial symmetric floral 

displays, I measured only one diameter, 

while I measured two diameters for the species with floral displays of other shapes (Figure 4, 

Table 2). I used a digital caliper (Cocraft 0-150 mm, with 0.01 mm precision) for all 

measurements. No parts of the plants were stretched or unfolded during any of the 

measurements. I also registered floral colour in four colour categories: Pink, yellow, violet 

Figure 3: Using a digital caliper to measure flower diameter of an 

individual of Silene dioca at the boreal site Øvstedal. Photo: 

Ragnhild Gya 
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and white. Most species had one colour per flower, while five species were multicoloured. In 

addition, four species included a minority of individuals with more than one colour (Table 2). 

Maximum three colours were registered per individual.  

 

 

Figure 4: A selection of the collected species illustrating some of the different flower structures and shapes. The arrows 

show how diameters, height of floral display and petal width and length were measured in the field. This illustration only 

shows how height of floral displays were measured for the species were this measure was a part of the formula for calculating 

area of floral display, although it was measured for all collected species. Insect-pollinated forbs were collected during the 

flowering season of 2019 in a climatic grid consisting of semi-natural grasslands in Western Norway. Illustration: Gunvor 

Skjelstad 
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Each individual plant was put into a separate, marked paper bag and brought back to the lab. 

Immediately after return, the paper bags containing the plants were dried in a drying oven 

(Termaks TS 5410) on 65 °C for 72 hours. The dry plants were stored in plastic containers 

until all fieldwork was done and I could start the lab work.  

To make sure that the samples were totally dry during weighing, they were redried for 

minimum one day before they were weighed. I kept 3-4 samples at a time in a desiccator with 

silica gel while weighing. All mentions of biomass in this thesis will refer to the dry mass. 

 

For each plant individual, plant organs were sorted 

into reproductive parts and vegetative parts using 

tweezers. The main rule used in this study is that the 

reproductive part of a plant starts after the last foliage 

leaf before the flower(s). No foliage leaves were 

included in reproductive parts, but bracts were 

(Figure 5). Open flowers were weighed individually, 

maximum ten flowers per individual plant. 

Exceptions were the species Leucanthemum vulgare, 

Hieracium sp., Leontodon autumnalis, Solidago 

virgaurea and Knautia arvensis where I weighed the 

whole floral display as one flower. In this study, these 

species are treated as they have solitary flowers, even 

though they in reality have inflorescences. This was 

because the individual flowers were too small to be 

counted, measured and weighed individually. For all 

species, the flowers, including buds, withered flowers 

and seeds, were weighed together with all flower 

stalks as a measure of the reproductive biomass. 

Finally, I weighed vegetative biomass (i.e., remaining 

above-ground mass) and the total biomass. All 

weighing was done on the same scale (VWR SM425i, 

with a resolution of 0.01 mg) to avoid errors due to 

differences between scales.  

Figure 5:  Separation of plant organs, here 

illustrated with the species Viola biflora. Red 

lines show where reproductive parts were 

separated from vegetative parts. Bracts were 

included in reproductive mass, while foliage 

leaves were not. Illustration: Carl Lindman 

(Swedish botanist 1856-1928) 
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Table 2: All the species collected in the study and some of their basic flower characteristics used in the analyses. For floral 

displays, I=inflorescences and S=solitary flowers. For display area formulas, d1= diameter 1, d2=diameter 2, r=radius and 

h=height of floral display. For floral colour, P=pink, V=violet, W=white and Y=yellow. Insect-pollinated forbs were 

collected during the flowering season of 2019 in a climatic grid consisting of semi-natural grasslands in Western Norway. 

Species Individuals 

collected 

Floral 

display 

Shape of 

floral 

display 

Number 

of 

diameters 

measured 

Display 

area 

formulaa 

Floral 

colour 

Number 

of colours 

per 

individual 

Achillea millefolium 40 I Square/flat 2 d1*d2 W/P 1 

Antennaria dioica 20 I Square/flat 2 d1*d2 W/P 1-2 

Atocion rupestre 10 S Circular 1 πr2 W 1 

Bistorta vivipara 40 I Deep 1 2πrh+πr2 W/P 1-2 

Campanula 

rotundifolia 

120 S Deep 1 2πrh+πr2 V 1 

Cerastium alpinum 10 S Deep 1 2πrh+πr2 W 1 

Cerastium cerastoides 10 S Deep 1 2πrh+πr2 W 1 

Chamaepericlymenum 

suecicum 

10 S Circular 1 πr2 W 1 

Dianthus deltoides 10 S Circular 1 πr2 P 1 

Dryas octopetala 10 S Circular 1 πr2 W/Y 2 

Euphrasia stricta 20 I Deep 2 2πrh+πr2 W/V/Y 2-3 

Euphrasia wettsteinii 20 I Deep 2 2πrh+πr2 W/Y/V 2-3 

Geranium sylvaticum 40 S Circular 1 πr2 V 1 

Hieracium pilosellab 36 I Circular 1 πr2 Y 1 

Hypericum maculatum 20 I - 2 - Y 1 

Knautia arvensis 20 I Circular 1 πr2 V 1 

Leontodon autumnalis 20 I Circular 1 πr2 Y 1 

Leucanthemum vulgare 10 I Circular 1 πr2 W/Y 2 

Lotus corniculatus 20 I Deep 2 2πrh+πr2 Y 1 

Melampyrum pratense 10 S Depth 2 2πrh+πr2 Y 1 

Parnassia palustris 20 S Circular 1 πr2 W 1 

Phyllodoce caerulea 10 S Deep 1 2πrh+πr2 P 1 

Pinguicula vulgaris 40 S Deep 2 2πrh+πr2 V 1 

Potentilla erecta 90 S Circular 1 πr2 Y 1 

Prunella vulgaris 20 I Deep 1 2πrh+πr2 V/P 1 

Ranunculus acris 110 S Circular 1 πr2 Y 1 

Rhinanthus minor 20 I - 2 - Y 1 

Saxifraga aizoides 20 S Circular 1 πr2 Y 1 

Saxifraga stellaris 10 S Circular 1 πr2 W 1 

Silene acaulis 10 S Circular 1 πr2 P 1 

Silene dioica 10 S Circular 1 πr2 P 1 

Solidago virgaurea 20 I - 2 - Y 1 

Trientalis europaea 30 S Circular 1 πr2 W 1 

Trifolium medium 10 I Deep 1 2πrh+πr2 P 1 

Trifolium pratense 20 I Deep 1 2πrh+πr2 P 1 

Trifolium repens 30 I Deep 1 2πrh+πr2 W 1 

Vaccinium vitis-idaea 40 I Deep 2 2πrh+πr2 P/W 1-2 

Veronica alpina 10 S Deep 2 2πrh+πr2 V 1 

Veronica chamaedrys 40 S Deep 2 2πrh+πr2 V 1 

Veronica officinalis 70 S Deep 2 2πrh+πr2 V 1 

Viola biflora 20 S Square/flat 2 d1*d2 Y 1 

Viola canina 30 S Square/flat 2 d1*d2 V 1 

Viola palustrisb 9 S Square/flat 2 d1*d2 P 1 

Viola tricolor 40 S Square/flat 2 d1*d2 V/W/Y 3 

Viscaria vulgaris 10 S Circular 1 πr2 P 1 

a For species where two diameters were measured, diameter 1 (d1), the largest diameter, was used to find r used 

in calculations of display area, in addition to being used in statistical analyses of flower diameter.  

b Some individuals were removed from the dataset as they turned out to be of a different species.  
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Data preparations and statistical analyses 
 

 

Data preparations 

 

For each individual, the mean mass of all the weighed open flowers were calculated to find 

mass per floral display (hereafter: flower mass). To calculate the area of floral displays, I used 

a method by Hegland and Totland  (2005). Three different formulas are made for different 

shaped floral displays: Circular (e.g. Ranunculus acris, Leontodon autumnalis), flat (e.g. 

Achillea millefolium, Viola sp.) and floral displays with depth (e.g. Campanula rotundifolia, 

Prunella vulgaris) (Table 2). It is important to mention that these formulas only result in 

simplifications of the floral displays’ area. Some areas may be overestimated, while others 

might be underestimated. For a few species this became a bigger problem. I decided to 

remove Hypericum maculatum, Rhinanthus minor, Solidago virgaurea from analyses 

including display areas, as it was very clear that the way I measured them in the field resulted 

in highly overestimated values. I also removed Vaccinium vitis-idaea collected at Høgsete and 

Lotus corniculatus collected at Fauske from the same analyses since measurements of the 

relevant traits were done differently here than for the same species at other sites.  

 

Statistical models 

 

First, I investigated how the overall plant size changes along the gradients including all 

species. The measures used in these models were reproductive height, total-, vegetative- and 

reproductive biomass (See all model specifications below). Having information about plant 

size is important when studying reproductive allocation for understanding how the 

relationship between plant size and reproductive organs changes. Second, I made a model 

with reproductive mass/total mass (reproductive to total mass ratio) as response variable to 

test the effects of temperature and precipitation on reproductive allocation of the plant 

communities. I also made models for number of floral displays per gram plant mass (floral 

displays/total biomass) and total display area per gram plant mass (number of floral 

displays*display area/total biomass). The two latter ratios were included because they could 

be an expression of the result or the output of the plants´ reproductive allocation. To answer 

how floral traits change with temperature and precipitation, I made models with number of 

floral displays, display area and flower mass as response variables. In the analysis of flower 

mass at community level I only included species with solitary floral displays (Table 2). This 
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was because flowers from inflorescences were weighed individually. In order for the data to 

be comparable to solitary flowers, the inflorescences should instead have been weighed as one 

unit. I chose four species for further investigations of intraspecific variation of reproductive 

allocation and floral traits. Campanula rotundifolia, Potentilla erecta and Ranunculus acris 

were chosen for these analyses because they were the only species collected at all 

temperature- and precipitation levels, and at most of the sites. I also chose Veronica officinalis 

which was collected at all precipitation levels. Models were made for all the same measures 

on plant size, reproductive allocation and floral traits as already listed for the community of 

species. I also included a few additional floral traits at species level: petal length, petal width 

and flower diameter. The huge variation in floral shapes and sizes between species make 

these traits less applicable for analyses at community level. The largest diameter was used in 

the analysis of flower diameter of V. officinalis, which was one of the species with two 

diameters measured (Figure 4, Table 2).  

 

All statistical analyses were done in R studio version 1.1.456 using the packages lme4 (Bates 

et al., 2015) and nlme (Pinheiro et al., 2019). Since the data is clustered, mixed effect models 

were used. I used linear mixed effect models (lme) for all analyses on continuous data, which 

were all measurement of plant size, reproductive allocation and floral traits, except from 

number of floral displays. Most of the data was non-normal distributed and needed to be log 

transformed before running the lme-models. Only data on floral traits at species level (display 

area, flower diameter and -mass, petal length and -width) did not need log transformation. For 

number of floral displays, which is count data, a generalized mixed effect model (glmm) with 

penalized quasilikelihood (PQL) was used. Both when using lme and glmm, temperature, 

precipitation and their interaction were used as fixed effects. Temperature and precipitation 

were scaled in order to be of similar magnitude in the models. Site was specified as random 

effect. In models including several of or all the collected species, species was also added as 

random effect. To determine if effects were significant, I used 95% confidence intervals. 

Effects with confidence intervals that did not include zero were considered significant.  

 

Floral colour 

 

I also investigated the distribution of floral colours in the communities of insect-pollinated 

forbs across the two gradients. To get a comprehensive overview of floral colours of the 

communities, I supplemented the data with species composition data from 2017 (Vandvik, 
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unpublished data). This data includes cover estimates of all vascular plant species from 25x25 

cm permanent experimental plots at each site from previous studies, from where I used the 

cover data from the control plots for two purposes: First, to supplement the list of insect-

pollinated forb species at each site for colours. Species that I had not registered before were 

added with the help of this dataset. I used “Gyldendals Nordiske Feltflora” (Mossberg and 

Stenberg, 2006) to score floral colours. I only used the main colour of flowers, if the flower of 

a species had several colours. Together with the species I had collected, this was used to find 

the proportion of species of each colour at the sites. Second, to find community abundance-

weighted proportion of each colour, which reflect relative abundances of the different colours 

in the communities, and thus the floral resources available to pollinators. Only the main 

colour of flowers was used here as well. I calculated the sum of cover of all forb species with 

the same colour across the control plots at each site. Then I divided this by the total cover of 

forbs in all control plots at each site, resulting in abundance weighted floral colour 

proportions at each site. The site Øvstedal was excluded from these calculations, as the 

species composition data only included one insect-pollinated forb species in the control plots 

at this site. I was not able to test how temperature and precipitation affects proportions of 

floral colours in the plant communities in a satisfactory way because I did not have enough 

replicate data for statistical analyses. 

 

Data availability  

 

Data on floral traits and biomass of insect-pollinated forbs collected by the author of this 

study during flowering season 2019 is documented with metadata and available in Appendix 

2. This data and metadata include all measures of traits and biomass, also those that were not 

included in this thesis. The species composition data from 2017 used for investigations on 

floral colour are documented and available in the SeedClim dropbox (Vandvik, unpublished 

data). All climatic data used in this study are from met.no (Norwegian Meteorological 

Institute) and retrieved via SeedClim data. See Appendix 3 for Data Sharing Agreement. 

More information about the SeedClim sites and data documentation can be found here:  

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9wP

Agfs/edit?usp=sharing  

 

 

 

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9wPAgfs/edit?usp=sharing
https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9wPAgfs/edit?usp=sharing
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Results 
 

 

Effects of temperature and precipitation on the community of forbs 
 

 

Overall plant size and reproductive allocation 

 

There was a huge variation in size between the species, but in general, forbs at boreal sites 

were larger than forbs at subalpine and alpine sites. Reproductive height, total biomass, 

vegetative biomass and reproductive biomass all significantly increased with temperature 

(Figure 6 a-c, Table 3). The mean total biomass of forbs collected at boreal sites was 0.57 g, 

while it was 0.25 g and 0.15 g for forbs from subalpine and alpine sites, respectively. With 

increased precipitation, all measures of plant sizes trended towards lower values, although not 

significantly. The interactive effects of temperature and precipitation on the plant size-traits 

were all weak and non-significant. 

 

 

Figure 6: Figure caption on next page 
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Figure 6 (previous page): Changes in plant size (Reproductive height, total biomass and reproductive biomass), reproductive 

allocation (Reproductive biomass/Total biomass), number of floral displays per gram plant mass and total display area per 

gram plant mass with temperature (Mean of four warmest months: red = boreal sites (10.5 °C), yellow = subalpine sites (8.5 

°C), blue = alpine sites (6.5 °C)) and precipitation (mean annual) of the community of insect-pollinated forbs. Note that the 

y-axes of plot b-c and e-f are log-scaled. The lines are predictions based on linear mixed models with temperature and 

precipitation as fixed effects and site and species as random effects. Significant trends were determined by confidence 

intervals not overlapping zero and are here indicated by T* (Temperature), P* (Precipitation) or T:P* (Interaction between 

temperature and precipitation). Insect-pollinated forbs were collected during the flowering season of 2019 in a climatic grid 

consisting of semi-natural grasslands in Western Norway.  

 
 
Reproductive allocation varied between species, ranging from approximately 2% to 80%, and 

there was also a difference between different temperature levels. Mean reproductive 

allocation of alpine forbs were 25.1% compared to 23.6% and 21.7% for subalpine and boreal 

forbs, respectively. Reproductive allocation decreased significantly with increasing 

temperature (Figure 6d, Table 3), meaning that the fraction of the plants’ total aboveground 

biomass dedicated to reproductive organs increased at lower temperatures. There was a trend 

towards higher reproductive allocation at dry alpine sites, but neither precipitation or the 

interaction between temperature and precipitation had a significant effect. Number of floral 

displays/g plant mass and display area/g plant mass (Figure 6 e-f, Table 3) showed no 

significant effects along any of the gradients.  

 

 

Floral traits 

 

The plants generally produced more floral displays at higher temperatures. Mean number of 

floral displays was 2.6 for forbs collected at alpine sites, 5.3 for forbs collected at subalpine 

sites and 10.0 for forbs collected at boreal sites. Number of floral displays increased 

significantly with increased temperature (Figure 7a, Table 3). Precipitation and the interaction 

between temperature and precipitation only showed weak and nonsignificant effects for this 

trait. For display area and flower mass, there was no significant effects of either temperature, 

precipitation or the interaction (Figure 7b-c, Table 3). There was a large variation between 

species, but size of floral displays seemed to be constant along the gradients.  
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Figure 7: Changes in number of floral displays, display area and flower mass of flowers from solitary floral displays and 

with temperature (Mean of four warmest months: red = boreal sites (10.5 °C), yellow = subalpine sites (8.5 °C), blue = alpine 

sites (6.5 °C)) and precipitation (mean annual) of the community of insect-pollinated forbs. Note that the y-axes of plot a-b 

are log-scaled. The lines are predictions based on linear mixed models (exception: a generalized linear mixed model with 

penalized quasilikelihood was used for number of floral displays) with temperature and precipitation as fixed effects and site 

and species as random effects. Significant trends were determined by confidence intervals not overlapping zero and are here 

indicated by T* (Temperature), P* (Precipitation) or T:P*. Insect-pollinated forbs were collected during the flowering season 

of 2019 in a climatic grid consisting of semi-natural grasslands in Western Norway. 

 
Table 3: The slopes of the changes in values of plant size, the relationship between plant size and reproductive organs 

(Reproductive allocation = Reproductive biomass/Total biomass) and floral traits per unit of increased, scaled temperature 

and precipitation with standard errors (± SE) for the community of insect-pollinated forbs, retrieved from linear mixed 

models (exception: a generalized linear mixed model with penalized quasilikelihood was used for number of floral displays) 

with temperature and precipitation as fixed effects and site and species as random effects. Significant trends (bold) were 

determined by confidence intervals not overlapping zero. Insect-pollinated forbs were collected during the flowering season 

of 2019 in a climatic grid consisting of grasslands in Western Norway. 

Community of forbs Temperature Precipitation Interaction 

Plant size (log units, *102)    

Reproductive height 26.1 (±7.1) -5.4 (±7.1) -3.0 (±7.0) 

Total biomass 36.0 (±9.0) -5.5 (±9.0) -1.1 (±8.8) 

Vegetative biomass 38.0 (±9.3) -5.0 (±9.3) -2.0 (±9.2) 

Reproductive biomass 27.0 (±7.3) -7.6 (±7.3) 1.2 (±7.2) 

Relationship – plant size and reproduction (log 

units, *102) 

   

Reproductive allocation -8.7 (±3.7) -2.1 (±3.6) 2.2 (±3.6) 

Floral displays/g plant mass -4.4 (±5.3) -3.6 (±5.3) 3.3 (±5.2) 

Display area/g plant mass 2.6 (±5.1) -7.9 (±5.0) 5.5 (±4.9) 

Floral traits    

Floral displays (n) 0.4 (±0.1) -0.1 (±0.1) 0.1 (±0.1) 

Display area (log units, *102) 0.6 (±2.2) -3.5 (±2.0) 1.4 (±2.0) 

Flower mass (Solitary flowers) (log units, *102) -3.2 (±2.3) -1.7 (±2.2) -1.8 (±2.2) 
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Yellow was the most frequent floral 

colour overall followed by white, 

violet and pink in terms of number of 

species. White tended to become more 

common with increasing elevation and 

lower temperatures, while there was no 

clear difference for the other colours 

along the temperature gradient. Yellow 

tended to have a small increase with 

increased precipitation (Figure 8a, not 

tested). 

 

Abundance-weighted colour 

proportions reflect relative abundances 

of the different colours in the 

communities, and thus the floral 

resources available to pollinators. 

When species were abundance 

weighted, the proportion of yellow 

became higher at most sites, especially 

at boreal sites and drier sites. There 

was still a trend of higher proportions 

of white at alpine sites, but the 

difference was smaller than it was 

when species were not abundance 

weighted. Yellow did no longer seem 

to increase with higher precipitation 

levels. There were no clear and 

observable trends for violet and pink 

along the gradients (Figure 8b, not 

tested). 

Figure 8: Percentage of floral colours at each site, sorted in 

temperature levels, where boreal = 10.5 °C, subalpine = 8.5 °C 

and alpine = 6.5 °C. Within temperature levels, sites are sorted 

from low to high precipitation levels. Fau=Fauske, 

Vik=Vikesland, Arh=Arhelleren, Ovs=Øvstedal, Alr=Ålrust, 

Hog=Høgsete, Ram=Rambera, Ves=Veskre, Ulv=Ulvehaugen, 

Lav=Låvisdalen, Gud=Gudmedalen, Skj=Skjellingahaugen. 

Colours of the plots represents a simplified version of the actual 

floral colours. a) Percentage of floral colours in terms of number 

of species b) Percentage of floral colours when species are 

weighted after relative abundance. Due to lack of registered 

insect-pollinated forbs in the species composition data used, the 

boreal and wet site Øvstedal is not included here. 
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Effects of temperature and precipitation on four focal species 
 

 

Overall plant size and reproductive allocation 

 

Individuals of Campanula rotundifolia were larger at boreal sites compared to subalpine and 

alpine sites. Mean total biomass for individuals collected at boreal, subalpine and alpine sites 

were 0.27 g, 0.1 g and 0.08 g, respectively. Reproductive height, total biomass, vegetative 

biomass and reproductive biomass all increased significantly with increasing temperature 

(Figure 9a, Table 4). Precipitation and the interaction between temperature and precipitation 

showed no significant effects for plant size of this species. For P. erecta there were no 

significant effects of temperature on overall plant size, but reproductive biomass decreased 

with increased precipitation (Table 5). R. acris showed significant positive trends with 

increased temperature for reproductive height, total biomass and vegetative biomass (Figure 

9c, Table 6). Mean total biomass for individuals of this species collected at boreal sites were 

0.37 g compared to 0.21 g and 0.14 g at subalpine- and alpine sites, respectively. There were 

no significant effects of precipitation or the interaction on plant size of R. acris. For V. 

officinalis, the only significant effect on plant size was an increase in total- and vegetative 

biomass with the interaction between temperature and precipitation (Figure 9d, Table 7) (See 

Appendix 4 for more plots on plant size of these four species).  

 

Reproductive allocation of R. acris was higher at alpine sites compared to subalpine and 

boreal sites, with a mean of 25%, 21% and 19%, respectively. There was a significant 

negative effect on reproductive allocation with increasing temperatures (Figure 9g, Table 6). 

Although reproductive allocation trended towards lower values with increasing temperatures 

for C. rotundifolia and P. erecta as well (Figure 9e, f), these effects were not significant. 

Precipitation and the interaction between temperature and precipitation did not affect 

reproductive allocation significantly for any of the species. C. rotundifolia showed an increase 

in number of floral displays/g plant mass and display area/g plant mass with increasing 

temperature (Table 4), while R. acris showed a decrease in number of floral displays/g plant 

mass with increasing precipitation (Table 6). There were no significant trends of these ratios 

for the other species. 
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Floral traits 

 

Both C. rotundifolia and R. acris produced significantly more floral displays as temperature 

increased (Figure 9i, k, Table 4, 6). P. erecta and V. officinalis also showed positive trends for 

this trait with increasing temperature, but they were not significant. Increased precipitation 

caused a significant decrease in number of floral displays for P. erecta and R. acris (Figure 9 

j-k, Table 5-6), with negative, but not significant, trends also for C. rotundifolia and V. 

officinalis. The interaction had no significant effects on number of floral displays for any of 

the species. Display area was relatively constant along the gradients for most species. The 

only significant effect of this trait found was a decrease with increased precipitation for P. 

erecta (Figure 9n, Table 5). Petal length decreased with increased temperature for C. 

rotundifolia and R. acris (Figure 9q, s). Petal length of R. acris was also positively affected by 

the interaction. There was a trend towards lower values of display area and petal length at 

wet, alpine sites for all four species, although the effects were not significant. There were few 

significant effects of the other flower size traits: flower diameter, flower mass and petal 

width. Flower diameter decreased with increased precipitation for P. erecta, while flower 

mass decreased with increased temperature for the same species (Table 5). No significant 

effects on petal width were found for these species. None of the floral traits of V. officinalis 

were affected significantly by either temperature, precipitation or the interaction (See 

Appendix 4 for more plots on floral traits of these four species).  
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Figure 9: Changes in total biomass, reproductive allocation (Reproductive biomass/total biomass), number of floral displays, 

display area and petal length of four investigated species with temperature (Mean of four warmest months: red = boreal sites 

(10.5 °C), yellow = subalpine sites (8.5 °C), blue = alpine sites (6.5 °C)) and precipitation (mean annual). The lines are 

predictions based on linear mixed models (exception: a generalized linear mixed model with penalized quasilikelihood was 

used for number of floral displays) with temperature and precipitation as fixed effects and site as random effects. Significant 

trends were determined with confidence intervals not overlapping zero and are here indicated by T* (Temperature), P* 

(Precipitation) or T:P* (Interaction between temperature and precipitation). Individuals of these species were collected during 

the flowering season of 2019 in a climatic grid of consisting of semi-natural grasslands in Western Norway. 
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Table 4: The slopes of the changes in values of plant size, the relationship between plant size and reproductive organs 

(Reproductive allocation = Reproductive biomass/Total biomass) and floral traits per unit of increased, scaled temperature 

and precipitation with standard errors (± SE) for the species C. rotundifolia, retrieved from linear mixed models (exception: a 

generalized linear mixed model with penalized quasilikelihood was used for number of floral displays) with temperature and 

precipitation as fixed effects and site as random effects. Significant trends (bold) were determined by confidence intervals not 

overlapping zero. Individuals of the species were collected during the flowering season of 2019 in a climatic grid consisting 

of grasslands in Western Norway. 

C. rotundifolia Temperature Precipitation Interaction 

Plant size (log units, *102)    

Reproductive height 26.8 (±6.3) -3.3 (±6.3) 1.5 (±6.6) 

Total biomass 41.0 (±13.5) -11.6 (±13.6) 7.5 (±14.0) 

Vegetative biomass 43.0 (±13.5) -11.3 (±13.6) 7.4 (±14.0) 

Reproductive biomass 37.0 (±14.3) -12.0 (±14.3) 7.6 (±14.8) 

Relationship – plant size and reproduction 

(log units, *102) 

   

Reproductive allocation  -5.0 (±5.1) -0.4 (±5.1) 0.12 (±5.3) 

Floral displays/g plant mass 15.3 (±7.2) -0.2 (±7.2) -2.3 (±7.5) 

Display area/g plant mass 13.6 (±6.9) -5.5 (±6.9) 1.1 (±7.1) 

Floral traits    

Floral displays (n) 0.7 (±0.1) -0.1 (±0.1) 0.1 (±0.1) 

Display area (mm2) -33.2 (±53.5) -79.7 (±53.7) 71.0 (±55.5) 

Flower diameter (mm) 0.5 (±0.4) -0.7 (±0.4) 0.4 (±0.4) 

Flower mass (mg) -0.7 (±0.8) -0.3 (±0.8) 0.7 (±0.8) 

Petal length (mm) -1.3 (±0.3) -0.2 (±0.3) 0.4 (±0.4) 

Petal width (mm) -0.1 (±0.2) -0.2 (±0.2) 0.2 (±0.2) 

 

 

 
Table 5: The slopes of the changes in values of plant size, the relationship between plant size and reproductive organs 

(Reproductive allocation = Reproductive biomass/Total biomass) and floral traits per unit of increased, scaled temperature 

and precipitation with standard errors (± SE) for the species P. erecta, retrieved from linear mixed models (exception: a 

generalized linear mixed model with penalized quasilikelihood was used for number of floral displays) with temperature and 

precipitation as fixed effects and site as random effects. Significant trends (bold) were determined by confidence intervals not 

overlapping zero. Individuals of the species were collected during the flowering season of 2019 in a climatic grid consisting 

of grasslands in Western Norway. 

P. erecta Temperature Precipitation Interaction 

Plant size (log units, *102)    

Reproductive height -4.8 (±11.3) -10.0 (±10.0) 0.2 (±15.2) 

Total biomass 12.2 (±15.1) -14.4 (±14.7) 0.19 (±20.4) 

Vegetative biomass 12.9 (±16.1) -13.0 (±15.6) 0.19 (±21.6) 

Reproductive biomass 6.4 (±12.1) -24.1 (±11.7) 0.2 (±16.2) 

Relationship – plant size and reproduction 

(log units, *102) 

   

Reproductive allocation  -5.8 (±9.8) -9.7 (±9.5) 3.5 (±13.2) 

Floral displays/g plant mass 11.5 (±10.9) -10.2 (±10.6) 0.17 (±14.7) 

Display area/g plant mass 10.9 (±11.1) -15.6 (±10.8) 3.5 (±14.9) 

Floral traits    

Floral displays (n) 0.3 (±0.2) -0.3 (±0.2) 0.2 (±0.2) 

Display area (mm2) -0.2 (±3.4) -7.2 (±3.3) 3.8 (±4.6) 

Flower diameter (mm) -0.02 (±0.2) -0.4 (±0.2) 0.2 (±0.2) 

Flower mass (mg) -0.2 (±0.1) 0.02 (±0.1) -0.1 (±0.1) 

Petal length (mm) -0.1 (±0.2) -0.1 (±0.2) 0.07 (±0.3) 

Petal width (mm) -0.07 (±0.1) -0.03 (±0.1) 0.04 (±0.1) 
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Table 6: The slopes of the changes in values of plant size, the relationship between plant size and reproductive organs 

(Reproductive allocation = Reproductive biomass/Total biomass) and floral traits per unit of increased, scaled temperature 

and precipitation with standard errors (± SE) for the species R. acris, retrieved from linear mixed models (exception: a 

generalized linear mixed model with penalized quasilikelihood was used for number of floral displays) with temperature and 

precipitation as fixed effects and site as random effects. Significant trends (bold) were determined by confidence intervals not 

overlapping zero. Individuals of the species were collected during the flowering season of 2019 in a climatic grid consisting 

of grasslands in Western Norway. 

R. acris Temperature Precipitation Interaction 

Plant size (log units, *102)    

Reproductive height 28.6 (±13.1) -4.7 (±13.2) 2.2 (±14.2) 

Total biomass 36.9 (±16.8) -0.17 (±16.9) -8.0 (±18.2) 

Vegetative biomass 40.8 (±18.3) 1.1 (±18.4) -9.3 (±19.8) 

Reproductive biomass 23.6 (±13.1) -4.36 (±13.2) -4.2 (±14.1) 

Relationship - plant size and 

reproduction (log units, *102) 

   

Reproductive allocation  -13.4 (±6.0) -4.2 (±6.0) 3.8 (±6.5) 

Floral displays/g plant mass 8.4 (±9.0) -19.1 (±9.0) 2.3 (±9.7) 

Display area/g plant mass 5.8 (±12.0) -18.2 (±12.1) 11.3 (±13.0) 

Floral traits    

Floral displays (n) 0.5 (±0.1) -0.2 (±0.1) -0.03 (±0.1) 

Display area (mm2) -6.9 (±9.6) 1.27 (±9.7) 19.7 (±10.4) 

Flower diameter (mm) -0.2 (±0.3) 0.07 (±0.3) 0.7 (±0.4) 

Flower mass (mg) 0.3 (±0.3) -0.3 (±0.3) -0.2 (±0.3) 

Petal length (mm) -0.3 (±0.1) -0.08 (±0.1) 0.3 (±0.1) 

Petal width (mm) 0.1 (±0.1) -0.2 (±0.1) 0.09 (±0.1) 

 

 
Table 7: The slopes of the changes in values of plant size, relationship between plant size and reproductive organs 

(Reproductive allocation = Reproductive biomass/Total biomass) and floral traits per unit of increased, scaled temperature 

and precipitation with standard errors (± SE) for the species V. officinalis, retrieved from linear mixed models (exception: a 

generalized linear mixed model with penalized quasilikelihood was used for number of floral displays) with temperature and 

precipitation as fixed effects and site as random effects. Significant trends (bold) were determined by confidence intervals not 

overlapping zero. Individuals of the species were collected during the flowering season of 2019 in a climatic grid consisting 

of grasslands in Western Norway. 

V. officinalis Temperature Precipitation Interaction 

Plant size (log units, *102)    

Reproductive height 9.0 (±7.2) -1.8 (±8.8) -0.9 (±9.5) 

Total biomass 15.3 (±8.2) -7.3 (±10.0) 23.0 (±10.8) 

Vegetative biomass 14.7 (±8.4) -6.9 (±10.3) 25.0 (±11.0) 

Reproductive biomass 16.5 (±14.6) -8.2 (±17.8) 12.2 (±19.2) 

Relationship – plant size and reproduction 

(log units, *102) 

   

Reproductive allocation 1.2 (±11.3) -0.9 (±13.7) -10.8 (±14.8) 

Floral displays/g plant mass -8.6 (±7.6) -0.6 (±9.3) -7.4 (±10.0) 

Display area/g plant mass -8.9 (±6.3) 2.3 (±7.7) -5.5 (±8.3) 

Floral traits    

Floral displays (n) 0.1 (±0.1) -0.1 (±0.1) 0.16 (±0.1) 

Display area (mm2) -0.13 (±10.6) 1.6 (±12.9) 3.8 (±13.9) 

Flower diameter (mm) 0.04 (±0.3) -0.03 (±0.3) 0.02 (±0.4) 

Flower mass (mg) 0.03 (±0.04) -0.04 (±0.05) 0.03 (±0.06) 

Petal length (mm) -0.06 (±0.2) 0.05 (±0.2) 0.1 (±0.2) 

Petal width (mm) 0.01 (±0.1) 0.1 (±0.1) -0.03 (±0.2) 
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Discussion 
 
 
To investigate how reproductive allocation and floral traits change under different climatic 

conditions, I collected insect-pollinated forbs along a temperature- and precipitation gradient.  

The results show that the community of insect-pollinated forbs do allocate more of their total 

biomass to reproductive organs at alpine sites compared to boreal sites. At the community 

level, temperature was the most important factor for plant size, reproductive allocation and 

floral trait distributions. Even though the range of precipitation is large (nearly 2500 mm 

between the driest and wettest site), I found no effects of precipitation. Four of the species 

present in the climatic grid responded differently to changes in temperature and precipitation, 

and each seemed to have their own species-specific strategies. C. rotundifolia responded 

strongly to increased temperature in terms of plant size and floral traits but was not affected 

by precipitation at all. P. erecta showed the opposite pattern with almost no significant effects 

of temperature, but instead several floral traits were affected negatively by increased 

precipitation. R. acris responded to both increased temperature and precipitation and was the 

only species out of these four that followed the trend of the community with an increase in 

reproductive allocation at lower temperatures. V. officinalis changed minimally along the 

gradients. I will first discuss changes in plant size along the gradients, as this is important for 

understanding the relationship between plant productivity, competition for resources and 

allocation to reproduction. Furthermore, I will look into trends of reproductive allocation and 

floral traits and try to explain the different responses of the community and the species. 

Finally, I will discuss potential effects of climate change on the communities of insect-

pollinated forbs and the four species. 

 

Effects of temperature and precipitation on overall plant size 
 

Plant sizes within these grassland communities increased towards higher temperatures, 

coinciding with a well-known pattern; the overall plant size decreases drastically with 

increasing elevation (Halbritter et al., 2018; Körner et al., 1989). This indicates that 

competition between plants for light are higher at warmer sites (Arft et al., 1999; He et al., 

2013; Olsen et al., 2016). C. rotundifolia and R. acris followed the trend of the community 

and clearly increased in plant size with increasing temperature as well. For R. acris, these 

results are consistent with previous studies which have found variation in plant size of this 
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species at different elevations (Totland, 2001) and that it showed plastic responses when 

moved to a warmer and wetter climate (Delnevo et al., 2018). P. erecta and V. officinalis did 

not follow the same trend, and the plant size of these two species remained constant along the 

temperature gradient. V. officinalis is the only out of the four species that does not occur at the 

alpine sites (‘Legeveronika’, n.d.), which suggests that it is not equipped, in terms of traits, to 

cope with the low temperatures and short seasons of these habitats. On the other hand, V. 

officinalis was the only species that showed an increase in growth with the interaction 

between temperature and precipitation. Although it cannot tolerate alpine conditions, it seems 

to be a strong competitor in habitats where plant productivity is high. This is emphasized by a 

study by Olsen et al. (2016), which found that V. officinalis reduced its vegetative growth 

when competitors were removed, indicating that vegetative growth is of higher priority when 

competition with other plants is high. Since plant productivity and competition generally 

increase with both warmer and wetter climate (Arft et al., 1999; Wu et al., 2011), I would 

have expected more species to show such interactive effects.  

 

Considering that there is a difference of nearly 2500 mm in annual precipitation between the 

driest and the wettest site, it is surprising that precipitation seemed to have no effects on plant 

size. The community and all four species showed no change in reproductive height, total 

biomass or vegetative biomass along the precipitation gradient. My findings coincide well 

with earlier studies on vegetative traits conducted in the same grid, which also found mostly 

weak and non-significant effects of precipitation (Guittar et al., 2016; Gya, 2017). Although 

not significant, it is still noteworthy that all measures of plant size investigated showed a 

negative trend of increased precipitation, both at the community level and for the four species. 

While other studies have looked at overall plant productivity (Wu et al., 2011), I only 

included forbs in my study. There is evidence that graminoids benefit more from increased 

temperature and precipitation, and that forbs are negatively affected by the higher competition 

from graminoids (Klanderud et al., 2015). This could be related to the negative trends of 

precipitation and the lacking interactive effects of this study. An alternative explanation for 

the negative trends of precipitation could be that water is not a limiting resource in these 

communities, meaning that more precipitation is not leading to higher productivity. Instead, 

the precipitation levels of the wetter sites could be closer to the point where stress caused by 

too much precipitation is induced. For instance, stress related to water logging or a thick snow 

cover which shortens the growing season could lead to a decrease in plant productivity 

(Elzenga and Van Veen, 2010; Jonas et al., 2008).   
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Effects of temperature and precipitation on reproductive allocation 
 

One of the questions asked in this study was if reproductive allocation changes with 

temperature and/or precipitation. With decreasing temperature, plants within these 

communities became smaller but at the same time they dedicated a larger fraction of their 

total biomass to flowers and flower stalks, which matches my prediction. This is also 

consistent with the findings of Fabbro and Körner (2004) in a similar community-level study. 

The change in reproductive allocation could be interpreted as a shift from high competition 

for light and/or other resources in the lowland to high competition for pollinators in the 

alpines. High competition for light and resources means that vegetative growth is a matter of 

high priority, thus allocation to sexual reproduction is reduced. In the alpines, plant 

productivity and competition for resources is lower (Arft et al., 1999; Halbritter et al., 2018; 

Körner et al., 1989), but competition for pollinators is increased due to lower pollinator 

abundance, which means that the plants need to invest more of their biomass in reproductive 

organs in order to get sufficiently pollinated (Fabbro and Körner, 2004; Hemborg and 

Karlsson, 1998; Kawano and Masuda, 1980). Even though reproductive allocation increased 

at lower temperatures, there were no change in the number of floral displays per gram plant 

mass or total display area relative to total plant mass at the community level. This implies that 

alpine plants need to invest more of their biomass to achieve the same output in pollinator 

attractiveness in relation to plant size compared to lowland plants. The four species showed 

different trends for reproductive allocation along the temperature gradient. C. rotundifolia, P. 

erecta and V. officinalis showed no change in reproductive allocation along the temperature 

gradient. V. officinalis is not experiencing the potentially low pollinator abundances at alpine 

sites since it is not growing in these habitats, which could explain the lacking response of this 

species. Only R. acris followed the trend of the community with increased reproductive 

allocation at lower temperatures. This suggests that the overall community response is rather 

caused by species turnover than by intraspecific changes along the temperature gradient.  

 

The different strategies in reproductive allocation between the four species might be 

explained by their relationship with pollinators. R. acris is not able to self-pollinate and is 

fully dependent on insect pollinators (Totland, 1993). It is almost exclusively visited by flies, 

which are inefficient pollinators (Totland, 1994). Consequently, the flowers need to be visited 

several times in order to get sufficiently pollinated. To compare, other studies have found that 
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only one visit by a bumblebee is enough (Molau et al., 1989; Stenstrom and Molau, 1992). If 

flowers of R. acris and other fly-pollinated species need several visits, this would increase the 

competition for pollinators, especially at high elevations where pollinator abundance is low 

(Totland, 2001). Investing more biomass in flower organs could therefore be a good strategy 

for species that do not have the benefit of getting pollinated by bumblebees. The fact that R. 

acris have green photosynthesizing achenes could help the plants keep the photosynthetic 

activity high enough and mitigate the cost of investing less in vegetative organs (Galen et al., 

1993). On the other hand, P. erecta did not show the same increase in reproductive allocation 

despite that this species is also self-incompatible and mainly fly-pollinated (Hegland and 

Totland, 2005; Matfield et al., 1970). It has been suggested that this species has some of the 

characteristics that could make it work as a “magnet species” among fly-pollinated species, 

which is a particularly attractive species that facilitates pollinator visitation rates for other 

flowering species (Hegland and Totland, 2005). This is emphasized by another study where 

they found that pollination of P. erecta was high no matter if other flowering species were 

abundant or not (Goyder, 1983). The characteristics that are regarded highly attractive to flies 

are long flowering period and radial symmetric yellow flowers (Hegland and Totland, 2005; 

Lázaro et al., 2008). Despite that R. acris has similar characteristics, P. erecta are found to get 

substantially more pollinator visits, both by flies and other pollinator groups, than R. acris 

(Hegland and Totland, 2005). P. erecta could possibly be such a strong competitor for 

pollinators that it does not have to increase allocation to reproductive organs when pollinator 

abundance decreases.  

 

For C. rotundifolia, no change in reproductive allocation with temperature could perhaps be 

explained by their tight relationship with bumblebees. In addition to flies (Lázaro et al., 

2008), bumblebees are also important pollinators of alpine habitats (Bingham and Orthner, 

1998; Yu et al., 2012) as they are more cold-tolerant than bees (Bishop and Armbruster, 

1999). Bumblebees are efficient pollinators for C. rotundifolia, depositing more pollen per 

visit to their flowers than any other pollinator group (Bingham and Orthner, 1998). It has been 

suggested that the efficient pollination by bumblebees in addition to the increased flower 

longevity found for this species at higher elevations, compensates for the lower pollinator 

abundance and visitation rates in the alpines (Bingham and Orthner, 1998). If this is the case, 

it could mean that investing more biomass in reproductive organs is less necessary for this 

particular species. C. rotundifolia also has tubular-shaped and violet flowers, which are traits 
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bumblebees prefer (Lázaro et al., 2008; Raine and Chittka, 2007). This is possibly making the 

species a strong competitor in attracting this group of pollinators.  

 

Previous studies have found that low precipitation levels have the potential of reducing 

number of flowers and reproductive allocation (Galen et al., 1999; Lambrecht and Dawson, 

2007; Xie et al., 2016). I found no significant effects of precipitation on reproductive 

allocation indicating such drought stress. What separates the other studies from mine, is that 

they were conducted in precipitation grids that included sites with lower precipitation levels. 

The driest sites of the studies by Lambrecht and Dawson (2007) and Xie et al. (2016) had a 

mean annual precipitation of 380 mm and 110 mm, respectively. Since I found no signs of the 

same trends, it suggests that the driest site of this study, with an annual precipitation of 596 

mm, is not dry enough to cause any drought stress for the plants. It is possible that the 

precipitation range of the study only includes relatively favorable precipitation levels which 

are not inducing enough stress to cause any changes in either plant growth, as we saw earlier, 

or reproductive allocation. Although the precipitation gradient of this study covers a large 

range, it does not include extremely low or high precipitation levels, if compared to all 

biomes of the world (Mucina, 2019). A second explanation of the non-significant effects of 

precipitation is that mean annual precipitation could be an inadequate explanatory factor. It 

does not take into account underlying factors that are more important for the plants’ water 

availability, for instance the distribution of precipitation between seasons, if precipitation falls 

as rain or snow, soil type or the soil’s water-holding capacity (Moles et al., 2014). There was 

no effect of the interaction between temperature and precipitation either, although it seems 

that reproductive allocation is somewhat higher at dry alpine sites compared to dry boreal 

sites, while temperature matters less at wet sites. 

 

Effects of temperature and precipitation on floral traits 
 

To investigate how floral traits are affected by changes in temperature and precipitation, I 

looked at how many floral displays the plants produced in addition to several traits related to 

size of floral displays (i.e. display area, flower mass, flower diameter, petal length and width. 

I also investigated proportions of floral colours in the communities.  

 

The results show that the forbs within these communities produced more floral displays at 

higher temperatures. C. rotundifolia and R. acris followed the same trend of increasing 
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number of floral displays. Since I found the plants at the community level and these two 

species to also increase in overall plant size as it got warmer, it could indicate that production 

of flowers is at least partly dependent on plant size, in addition to climate, as suggested by 

Meineri et al. (2014). V. officinalis did not show an increase in floral displays along any of the 

gradients, despite that plant size increased as it got warmer and wetter, meaning that there 

must be other factors than plant size involved as well.  

 

R. acris and P. erecta significantly reduced the number of floral displays with increasing 

precipitation, suggesting that high levels of precipitation have a stress-inducing effect. 

At the same time there was no effect of precipitation on number of floral displays at the 

community level or for the other species. Because R. acris and P. erecta are self-incompatible 

(Matfield et al., 1970; Totland, 1994), they are vulnerable to high levels of precipitation 

during flowering season as this reduces pollinator activity sharply and in worst case limits the 

reproductive output (Totland, 1994). If pollinator visitation rates are low due to rainfall, it 

could be a better strategy to not waste resources producing flowers that would not get 

sufficiently pollinated anyway. C. rotundifolia has down-facing flowers which protects the 

nectar and pollen grains when it rains (Aizen, 2003). Moreover, bumblebees remain more 

active than other pollinator groups during rainfall (Tuell and Isaacs, 2010). Even though 

outcrossing is the dominant type of fertilization, C. rotundifolia and V. officinalis are able to 

self-pollinate (Bielawska, 1973; Scalone et al., 2013). For these reasons, C. rotundifolia and 

V. officinalis could be less vulnerable to high levels of precipitation compared to R. acris and 

P. erecta. High precipitation levels will also increase the amount of snow and shorten the 

growing season in alpine and subalpine habitats. A previous study conducted in parts of the 

same climatic grid as in this study found that late snowmelt at the wet alpine site caused R. 

acris to drastically reduce flower production (Delnevo et al., 2018). Even though I only 

detected significant negative trends for R. acris and P. erecta, figure 9 shows that the 

combination of cold and wet conditions results in the lowest number of floral displays for all 

species. This could indicate that snow cover and shorter seasons limit flower production for 

both the community and all four species to various extent.  

 

Despite an increase in reproductive allocation at lower temperatures, the floral displays had 

the same area and mass across the temperature gradient at the community level. I also only 

detected a few significant effects of temperature at species level; C. rotundifolia and R. acris 

showed an increase in petal length at lower temperatures, while P. erecta showed an increase 
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in flower mass. In general, size of floral displays thus remained constant along the 

temperature gradient, in contrast to my prediction of larger floral displays. These findings 

coincide with the findings of Fabbro and Körner (2004), who also found flower sizes to be 

very similar along an elevational gradient. I did not see the same clear increase in flower size 

of C. rotundifolia at higher elevations as other studies have found, which is suggested to be an 

adaptation to larger bumblebees in the alpines (Maad et al., 2013). The contrasting findings 

could be a result of different methodology for measurements of flower size traits, as the traits 

measured in the study by Maad et al. (2013) are quite different compared to the traits of my 

own study. I also had a smaller sample size. Another explanation could be that body size of 

bumblebees are more constant along the temperature gradient of this study. However, this was 

not investigated in this study. Previous studies have found that flower longevity increases at 

higher elevations (Fabbro and Körner, 2004; Stenstrom and Molau, 1992). This adaptation is 

found for R. acris and C. rotundifolia as well (Maad et al., 2013; Totland, 1994). Increased 

flower longevity could be an important adaption to lower pollinator abundance, as it gives 

each flower more time to get sufficiently pollinated (Totland, 1994). It is possible that this 

adaptation leads to higher total visitation rates over the growing season and thus higher 

reproductive output per unit floral size at high elevations, and that increasing flower longevity 

is less resource demanding than producing larger flowers. If the forbs have increased flower 

longevity at the alpine sites of this study, it could perhaps explain why I did not find a clearer 

increase in size of floral displays with decreasing temperatures.  

 

Increased precipitation had significant negative effects on display area and flower diameter 

for P. erecta, while there were no effects of precipitation alone at the community level or for 

the other three species. More interestingly, petal length and flower diameter of R. acris 

significantly increased with the interaction between temperature and precipitation. Such 

interactive effects could possibly exist for size of floral displays of all the four species, even 

though significant effects were not detected. Display area and petal length of all four species 

decreased with increased precipitation at cold sites but had a smaller decrease or even an 

increase at warm sites (Figure 9). This could mean that precipitation is a resource in 

combination with higher temperatures leading to an increase in plant productivity (Wu et al., 

2011), possibly resulting in that plants have more resources to produce larger flowers. In 

combination with low temperatures, precipitation could have the opposite effect and be a 

stress-inducing factor, leading to thicker snow cover, shorter growing season and reduced 

plant productivity (Delnevo et al., 2018).  
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To investigate if there could be a relationship between floral colours and climatic conditions, 

as a result of differences in the species composition of the pollinator communities, I 

studied the proportions of floral colours at 12 sites, both in terms of number of species and 

species weighted after their abundance. Yellow seemed to be the most common floral colour 

overall, especially when species were abundance weighted. This colour is associated with a 

generalistic pollinator strategy and is visited by several different groups of pollinators (Kevan, 

1972; McCall and Primack, 1992). Having yellow flowers could therefore be an efficient 

strategy under several different climatic conditions. The proportion of white seemed to be 

higher at alpine sites, both in terms of number of species and when species were abundance 

weighted. An increase of white along an elevation gradient was also found in the study by 

Arnold et al. (2009) conducted in alpine meadows, but the trend was not significant. Still, it 

could be related to the fact that flies dominate the pollinator communities of alpine habitats 

(Totland, 1993), since studies have shown that white flowers, together with yellow flowers, 

consistently attracted flies (Lázaro et al., 2008). The proportions of pink and violet did not 

seem to change noteworthy between the temperature levels. Since bees, which prefer 

violet/blue flowers (McCall and Primack, 1992), become less abundant in the alpines (Totland 

et al., 2013), I would have expected to see a clearer difference in the proportion of violet 

between boreal and alpine sites. In addition to flies, bumblebees are highly present in the 

alpines (Bingham and Orthner, 1998; Yu et al., 2012), and they also prefer violet and blue 

flowers (Raine and Chittka, 2007). This could explain why the proportion of this colour 

seemed to be relatively similar between temperature levels. To my knowledge there are no 

studies investigating how precipitation affects proportion of floral colours, but bees are found 

to dominate in dry habitats, while flies are more abundant in wetter habitats (Devoto et al., 

2005). Despite this, I saw no clear differences in colour proportion between precipitation 

levels indicating a shift from a bee-dominant to a fly-dominant pollinator community, 

especially not when species were abundance weighted. Although some possible patterns could 

be seen between temperature levels, it is important to mention that the dataset was relatively 

small and that this was not statistically tested.  

 

Possible effects of climate change  
 

My results showed that plant size increased, while reproductive allocation decreased at 

warmer sites at the community level. This suggests that a warmer climate in the future will 
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lead to an increase in vegetative growth and competition for light and resources (Arft et al., 

1999; Wu et al., 2011), possibly leading to a decrease in reproductive allocation. C. 

rotundifolia, R. acris and V. officinalis are likely to handle the increased competition well, 

since they were found to be able to increase their total- and vegetative biomass as it got 

warmer or warmer and wetter. In general, I found few significant effects of precipitation on 

plant size of the investigate community and species of forbs, but many negative trends could 

indicate that we could start to see negative effects if precipitation increases substantially in the 

future, especially if abundance of graminoids increases (Klanderud et al., 2015). R. acris and 

P. erecta responded to increased precipitation by reducing number and/or size of floral 

displays, indicating that these two species are more vulnerable to higher precipitation levels, 

especially if rainfall strikes in the flowering season (Totland, 1994), as discussed earlier. At 

the same time, some of the negative effects and trends of increased precipitation on both plant 

size and floral traits of the community and individual species could be caused by snow cover 

and short growing seasons (Delnevo et al., 2018; Jonas et al., 2008), which means that these 

limitations might become smaller in the future when temperatures increase in the alpines. 

 

We know that species richness and abundance of pollinators decreases in alpine environments 

due to harsh conditions (Totland, 1993, 2001; Totland et al., 2013). With higher temperatures 

in the alpines, it could seem logical that more insects will expand their range to higher 

elevations causing an increase in pollinator activity, however this seems not to be the case. 

Studies have shown that pollinators lag behind and are not expanding their range fast enough 

to keep pace with climate warming (Bedford et al., 2012; Kerr et al., 2015). Climate change is 

also regarded as one of the causes of the current global decline in pollinators (Potts et al., 

2010). Even though my results did not show that the community or the four species are 

excessively and directly threatened by climate change in the nearest future, what happens to 

the pollinator communities and the plant-pollinator interactions will be crucial. For instance, 

my findings imply that C. rotundifolia is not particularly vulnerable to the direct effects of 

climate change, as this species showed positive effects of increased temperature and no 

effects of increased precipitation. At the same time, this species seems to be dependent on 

bumblebees (Bingham and Orthner, 1998). Studies have found that bumblebees have narrow 

climatic niches (Williams et al., 2007) and that their ranges are contracting with climate 

change worldwide (Kerr et al., 2015). This could potentially cause problems for pollination 

and thus reproduction of C. rotundifolia in the future. In addition, only R. acris showed an 

increase in reproductive allocation at higher elevations. If the other species are not able to 
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increase their allocation to reproduction and thus adapt to the increased competition for 

pollinators, they could be vulnerable to pollinator declines.  

 

Limitations of the study and future research 
 

In general, I found few significant effects of the interaction between temperature and 

precipitation. There could exist trends at the community level that were not detected because 

of low statistical power, as I was only able to collect parts of the community of insect-

pollinated forbs at the sites. Huge variation in plant size and floral traits between species 

could also have made such interactions difficult to detect. I suspect that there exist trends of 

the interaction at species level as well, as display area and petal length of all four species 

trended in the more or less opposite direction at warm and cold sites. In retrospect, I see that I 

should have made sure to collect these species at all sites where they occur. P. erecta was for 

instance not collected at the two driest alpine sites because it was less abundant there. It 

would of course have been preferable to have trait measures of these species at all possible 

sites, as this would have given the analyses more statistical power. Lack of statistical power 

also became a problem when investigating floral colour along the gradients. Although I was 

able to visualize the proportions of floral colours at each site, I did not have enough replicates 

in the dataset to conduct a proper statistical analysis. It is possible that this problem could 

have been solved somehow, for instance by using abundance data from earlier years, which 

includes more replicates than the dataset from 2017.   

 

Community weighted means, where trait values are weighted after relative abundance of a 

species, is a common approach in trait-based ecology (Miller et al., 2018). This approach 

would have been useful in this study as well, as it could have provided a more realistic picture 

of the distribution of reproductive strategies and floral traits in these communities. It has been 

used in earlier studies on vegetative traits conducted at the same sites (Guittar et al., 2016; 

Gya, 2017), and the results have turned out to be somewhat different compared to results of 

analyses of non-weighted trait data (Gya, 2017). For this analysis, one should have collected 

traits for minimum 80% of the plant community (Pakeman and Quested, 2007). Collecting all 

the species needed at flowering stage was not logistically possible in this study but is 

something that should be of high priority for future investigations on reproductive allocation 

and floral traits at these study sites.  
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Increased flower longevity at higher elevations (Fabbro and Körner, 2004; Totland, 1994) 

could be an important adaptation to ensure sufficient pollination when pollinator abundance is 

low, as discussed earlier. Since this study, along with others (Fabbro and Körner, 2004; 

Stenstrom and Molau, 1992; Totland, 1994), showed no increase in size of floral displays 

with increasing elevation, it would be of interest to assess if increased flower longevity could 

be a lower-cost substitute for having larger and more attractive flowers in alpine habitats 

where plant-productivity is lower (Billings and Mooney, 1968). More knowledge about the 

pollinator communities at these sites is also needed, as this would make it possible to link the 

findings of this study to the pollinators in addition to the climatic factors. For the individual 

species, I detected some trends that could possibly be explained by their relationship with a 

particular pollinator group, but it remains unclear how strongly the pollinator communities are 

affecting reproductive allocation and floral traits of these species. No previous studies have 

looked at how species composition and abundance of the pollinator communities vary with 

temperature and precipitation in the climatic grid where this study was conducted. We know 

that reproductive allocation and floral traits are highly linked to the pollinator community and 

that the traits of insect-pollinated plants reflects which pollinators are present and vice versa 

(Hegland and Totland, 2005; Junker et al., 2015). To get a better understanding of the 

relationship between reproductive allocation, floral traits and pollinators, which is important 

for predicting effects of climate change on these communities, we need to know more about 

the pollinators in these ecosystems. 

 

Conclusion  
 

This study has shown that the community of insect-pollinated forbs responds to increased 

temperature by increasing their overall plant size and number of floral displays, while 

decreasing allocation to sexual reproduction. Despite this, size of floral displays remained 

constant along the temperature gradient. No trends were detected for increased precipitation 

or the interaction between temperature and precipitation at the community level. The focal 

species responded quite differently to changes in temperature and precipitation, and my 

results indicate that they have different reproductive strategies possibly caused by differences 

in the relationship with pollinators. More research on pollinator species composition, 

abundance and visitation rates in these communities is needed to gain a better insight into the 

relationship between plants’ reproductive traits and pollinators. This will also be important for 

predicting effects of climate change on reproductive strategies and success of forbs.  
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Appendix 1 
 

Table A1: An overview of the species collected at each site. Ten individuals per species per site were collected for 

measurements of plant size and floral traits during the flowering season of 2019. Site abbreviations: Fau = Fauske, Vik = 

Vikesland, Arh = Arhelleren, Ovs = Øvstedal, Alr = Ålrust, Hog = Høgsete, Ram = Rambera, Ves = Veskre, Ulv = 

Ulvehaugen, Lav = Låvisdalen, Gud = Gudemedalen, Skj = Skjellingahaugen. 

Species Fau Vik Arh Ovs Alr Hog Ram Ves Ulv Lav Gud Skj 

Achillea millefolium x x   x x       

Antennaria dioica         x   x 

Atocion rupestre         x    

Bistorta vivipara       x x  x  x 

Campanula rotundifolia x x x x x x x x x x x x 

Cerastium alpinum          x   

Cerastium cerastoides          x   

Chamaepericlymenum 

suecicum 

      x      

Dianthus deltoides x            

Dryas octopetala          x   

Euphrasia stricta       x x     

Euphrasia wettsteinii         x   x 

Geranium sylvaticum x  x  x      x  

Hieracium pilosella x   x x        

Hypericum maculatum   x x         

Knautia arvensis x    x        

Leontodon autumnalis  x      x     

Leucanthemum vulgare x            

Lotus corniculatus x    x        

Melampyrum pratense   x          

Parnassia palustris           x x 

Phyllodoce caerulea       x      

Pinguicula vulgaris       x x  x  x 

Potentilla erecta  x x x x x x x   x x 

Prunella vulgaris     x   x     

Ranunculus acris x x x x x x  x x x x x 

Rhinanthus minor     x      x  

Saxifraga aizoides       x    x x 

Saxifraga stellaris          x   

Silene acaulis          x   

Silene dioica    x         

Solidago virgaurea   x        x  

Trientalis europaea   x    x x     

Trifolium medium x            

Trifolium pratense     x x       

Trifolium repens  x    x   x    

Vaccinium vitis-idaea      x x  x  x  

Veronica alpina          x   

Veronica chamaedrys x x x   x       

Veronica officinalis x x x x x x x      

Viola biflora       x   x   

Viola canina     x x  x     

Viola palustris      x       

Viola tricolor x x   x x       

Viscaria vulgaris x            
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Appendix 2 
 
SeedClim / FunCaB / INCLINE Dataset Metadata 
Dataset: Floral traits in the SeedClim Grid (SG.18) 

 
1. Dataset metadata 
  

1. What is the content of the dataset 

 

The dataset contains floral traits measures and weighed biomass from the SeedClim grid 

(SG.18). 

 

The dataset contains floral traits measures and weighed biomass of 42 forb species and 3 woody 

species (all insect-pollinated), from all 12 SeedClim sites.  

  

The plants were collected between June 13th and August 2nd, 2019. The plants were weighed 

September 2019 – January 2020.  

 

2. Data collection methods 

 

• Only insect-pollinated species were collected. Mainly forbs, but three woody species 

were included as these were prevalent components of the field layer vegetation at the 

sites: (Dryas octopetala, Phyllodoce caerulea and Vaccinium vitis-idaea)  

• The plants were mostly collected within a radius of approximately 30-50 meters from 

the center of the field site (i.e. the climate station) and outside the fenced area. 

Individuals of the same species were collected minimum 2 meters apart.  

• Only plants with minimum one open flower without signs of large damages or 

developing seeds were collected 

• A digital caliper was used for all trait measurements, except from reproductive height. 

• All individuals were dried for 72 hours in a drying oven with 65 °C before weighing. 
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The following traits were registered/measured in the field: 

 

Reproductive height (RepH) 

Measured from the ground and up to the top of the highest open flower, without stretching, 

lifting or moving the plant. The goal was to find the flower´s natural position in the terrain 

and how the pollinators see it.  

 

Number of flowers per floral display (NFFD) 

This point separates the species into two groups. 

 

Solitary flower species: Only one flower per floral display. NFFD is always 1 for these 

species.  

 

Inflorescence species: Floral display consists of several flowers. Here, NFFD is the sum of 

NB, NOF, NWF and S (see below).  

 

Number of floral displays (NFD) 

The total number of floral displays.  

 

For species with solitary flowers: the sum of number of open flowers, closed flowers, buds, 

withered flowers and deflowered flowers that has started to develop seeds.  

 

For species with inflorescences: the number of inflorescences.   

 

 

The following traits, NOFD, NCFD, NBFD, NWFD and NSFD are only relevant for species 

with solitary floral displays 

 

Number of open floral displays (NOFD) 

The number of open flowers of the plant. Sometimes, some of these were damaged, for 

instance with lacking petals, the flower was wet or somehow had an altered shape. These 

were still counted as open flowers as long as they still had the majority of their petals left, did 

not look withered or had started to develop seeds.  
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Number of closed floral displays (NCFD) 

Number of closed flowers. It could be challenging to decide if it was a bud or a closed flower. 

A closed flower is when a flower closes due to rain or night-time, but I also included flowers 

that were in the phase between bud and open flower, where you can clearly see most of the 

petals – they are just not unfolded yet. Stamen and stigma not visible.   

 

Number of budded floral displays (NBFD) 

Number of buds per plant. Flower buds that have not opened or started to open yet.  

 

Number of withered floral displays (NWFD) 

Flowers or buds that are withered because they are aborted/failure in development or due to 

damage, for example by insects. Deflowered floral displays that have gone through normal 

and successful development were not included here. They are counted as NSFD.  

 

Number of seeded floral displays (NSFD)  

Number of withered floral displays that contains seeds OR withered floral displays that look 

like they will continue to develop seeds.  

 

The following traits, NB, NOF, NWF and S, are only relevant for species with inflorescences 

 

Number of flower buds per floral display (NB) 

The number of flower buds in a randomly chosen floral display (if there was more than one) 

 

Number of open flowers per floral display (NOF) 

The number of open flowers in the same randomly chosen floral display.  

 

Number of withered flowers per floral display (NWF) 

The number of withered flowers in the same randomly chosen floral display.  

 

Number of seeds per floral display (S) 

The number of withered flowers that already had seeds or were about to develop seeds in the 

same chosen floral display.  

 

Diameter of floral display (D1 and D2) 
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Solitary floral displays:  

Diameter of a randomly chosen flower. Chosen flowers were always open and without any 

large damages or signs of seed development. Diameters were measured where the flower were 

at its widest – from petal tip to petal tip.  

Two diameters were measured (D1 + D2) for species with non-radial symmetric flowers 

 

Inflorescence floral displays:  

Diameter of the same randomly chosen floral display. The diameter was measured of the 

whole chosen inflorescence, always measured at the widest part. For most species, two 

diameters were measured. The second diameter was measured in the opposite direction of the 

first. For a few species, only one diameter was measured, for example Trifolium sp. and 

Bistorta vivipara, which have round floral displays.  

 

Height of flower/floral display (H) 

Solitary floral displays:  

Height of the chosen flower was measured from as of the receptacle and up to the highest 

point of the flower. Depending on the flower, this could be either a petal, the stigma or the 

stamens.  

 

For inflorescences: 

Height of the chosen inflorescence/floral display was measured from the lowest part of the 

lowest flower and up to the highest point of the highest flower. Here, everything was 

considered a flower, no matter if it was an open flower, a closed flower, a bud or a deflowered 

flower with or without seeds. The whole inflorescence was included, no matter which 

condition the different flowers were in.  

 

Petal width and length 

Same for procedure for both solitary floral displays and inflorescences. Petal width and length 

was measured on a randomly chosen petal within the chosen flower or inflorescence used for 

the other measures. Both measures were done on the same petal. For species with petals of 

different shapes/sizes (Viola sp., Veronica sp. ++), the widest petal was always used for 

measures. 

 

Corolla diameter  
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Corolla diameter was measured where the petals meet and connect. Only measured for species 

with tubular shaped flowers.  

 

Colour 

Colour of petals. Most species had petals with only one colour, but some had two or three 

different colours or shades. Colour was determined with a premade colour chart with 5-6 

coded shades of pink, violet, yellow, red, orange, blue and white. Maximum 3 colours/shades 

per individual was registered. Colour chart can be found here: 

https://drive.google.com/file/d/1DtUd8BPkufiEmnDcdLPte7GT9vIKt1XE/view?usp=sharing  

 

 

The following organs were weighed for all individuals: 

 

Total biomass 

All aboveground biomass 

 

Vegetative biomass 

Mass of all aboveground vegetative organs  

 

Reproductive biomass 

Mass of all aboveground reproductive organs (flowers+flower stalks). Main rule used: 

reproductive part stars after the last foliage leave before the flower(s).  

 

Mass of open flowers 

Mass of all open flowers of an individual 

 

Mass of flower stalks of open flowers 

Mass of all the flower stalks of the open flowers of an individual. Not weighed for species 

without or with very small flower stalks.  

 

Total flower mass 

Mass of all flowers, including buds, withered flowers and seeds of an individual 

 

Total flower stalk mass 

https://drive.google.com/file/d/1DtUd8BPkufiEmnDcdLPte7GT9vIKt1XE/view?usp=sharing
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Mass of all flower stalks of an individual. Not weighed for species without or with very small 

flower stalks.  

 

Mass of individual open flowers 

 Up to 10 flowers were measured per individual 

 

Mass of individual flower stalks 

Mass of the flower stalks of the weighed individual open flowers. Flower stalk 1 belongs to 

Flower 1, and so on. 

 

 

 

3.     Dataset authors 

  

. 
 

Dataset author role contact info 

Gunvor 

Skjelstad 

Study design, collected and managed data 

(MSc student) 

gunvorskj@gmail.com 

Ragnhild Gya Study design, collected data Ragnhild.Gya@uib.no 

Aud H. 

Halbritter 

Study design Aud.Halbritter@uib.no 

Vigdis 

Vandvik 

PI, Study design Vigdis.Vandvik@uib.no 

 
 

 

 

4.     Others who contributed to create the data 

 
 

Contributor name role contact info 

Dagmar Egelkraut Collected data Dagmar.Egelkraut@uib.no 
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Lasse Søgaard Collected data Lasse.f.soegaard@gmail.com 

 

 

5.     Where was it collected 

 

The data collected at all 12 sites of the SeedClim project. More information to the sites 

can be found in the SeedClim and FunCaB data documentation: 

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9

wPAgfs/edit?usp=sharing 

 
 

6.     When was it collected 
  

The data was collected June-August 2019 (fieldwork) and September 2019-January 2020 

(labwork, weighing) 

 

 

 

7.     Experimental / study design (describe here if do not described in project readme) 

 
  

The goal was to collect as many species from the community of insect-pollinated forbs as 

possible for each of the 12sites. I also included three insect-pollinated woody species (Dryas 

octopetala, Phyllodoce caerulea and Vaccinium vitis-idaea) as these were prevalent 

components of the field layer vegetation at the sites. The plant collection was done during the 

flowering season, between 13th of June and 2nd of August 2019. Because different species 

flower at different times in the season, I visited all 12 sites twice with 2-4 weeks between 

each visit. Usually, I spent one day per visit at each site. The most abundant species were 

prioritized and collected first. I also prioritized species that grow at several of the 12 sites and 

hence could provide useful data for sites comparisons. Some species flowered too early or too 

late in the season to be available during the period of my fieldwork. It was therefore not 

feasible to collect all the prevalent forbs. I collected between 7 and 14 species at each site, 

with an average of 10.5 species per site and a total of 45 different species across the grid. A 

full overview of species collected at each site can be found here: 

https://drive.google.com/file/d/1aeUqWziSuf-8S_dj6izZlHSnKhYYqrOQ/view?usp=sharing  

 

At each site, I collected ten individuals of each species. They were mostly collected within a 

radius of approximately 30-50 meters from the center of the field site (i.e. the climate station). 

To achieve a representative selection, I chose individuals haphazardly by throwing an object, 

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9wPAgfs/edit?usp=sharing
https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYegV9wPAgfs/edit?usp=sharing
https://drive.google.com/file/d/1aeUqWziSuf-8S_dj6izZlHSnKhYYqrOQ/view?usp=sharing
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such as a pencil, and then collected the individual of the target species that the pencil pointed 

at. I only included mature individuals with a minimum of one open flower, avoiding 

individuals with any large damages and individuals that showed signs of developing seeds 

(i.e. entering post-flowering reproductive stages). This was done to make sure I measured all 

floral traits on flowers at the same stage; when they were open and available for pollinators. I 

did not follow this plant selection procedure strictly for less abundant species if there were 

few individuals to choose from. Instead, I then searched the area until I had ten individuals 

with minimum one open flower. All individuals of the same species were collected minimum 

2 meters apart to make sure that they were different genetic individuals. When several shoots 

emerged from the same point in the ground, I assumed them to be of the same individual and 

therefore collected them as one. After measuring reproductive height, all of each individuals’ 

aboveground biomass was collected. See descriptions above for how floral traits were 

registered/measured.  

 

Each individual plant was put into a separate, marked paper bag and brought back to the lab. 

Immediately after return, the paper bags containing the plants were dried in a drying oven 

(Termaks TS 5410) on 65 °C for 72 hours. The dry plants were stored in plastic containers 

until all fieldwork was done and I could start the lab work.  

To make sure that the samples were totally dry during weighing, they were redried in for 

minimum one day before they were weighed. I kept 3-4 samples at a time in a desiccator with 

silica gel while weighing. For each plant individual, plant organs were sorted into 

reproductive parts and vegetative parts using tweezers. The main rule used was that the 

reproductive part of a plant starts after the last foliage leaf before the flower(s). No foliage 

leaves were included in reproductive parts, but bracts were. Open flowers were weighed 

individually, maximum ten flowers per individual plant. Exceptions were the species 

Leucanthemum vulgare, Hieracium sp., Leontodon autumnalis, Solidago virgaurea and 

Knautia arvensis where I weighed the whole floral display as one flower. These species were 

treated as they have solitary flowers, even though they in reality are inflorescences. This was 

because the individual flowers were too small to be counted, measured and weighed 

individually. For all species, the flowers, including buds, withered flowers and seeds, were 

weighed together to with all flower stalks as a measure of the reproductive biomass. Finally, I 

weighed vegetative biomass (i.e., remaining above-ground mass) and the total biomass. All 

weighing was done on the same scale (VWR SM425i, with a resolution of 0.01 mg) to avoid 

errors due to differences between scales 
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8.     How was the data collected and developed (curation, corrections, etc) and where is it stored 

 

• The information from the field data sheets was manually entered into digital 

worksheets, manually proof-read and stored in Excel files. 

• Obvious errors were corrected in the Excel sheets before starting the data analysis. 

• A few individuals were deleted from the dataset, because they turned out to be of a 

different species than originally assumed, leaving a total of 1255 individuals for the 

analyses.  

• The data is stored in the SeedClim Dropbox and can also be found here: 

https://drive.google.com/file/d/1sUvIR41RUq79xwUpu0Chj_Lk0paZYD5x/view?usp

=sharing  

 

 

9.   Other datasets within the project of direct relevance (e.g. predictor data) 

 

• All site-level predictor variables, especially   

o SG.101  SG temperature;  

o SG.102 SG precipitation 

o SG.103 SG soil moisture 

o SG.104 SG UVB 

o SG.106 SG TT soil chemistry 

o SG.107 SG gridded climate data 

 

 

10.  Data usage – Publications 

 

 

11.  Data usage – Theses 

 

Skjelstad, Gunvor. 2020. “Reproductive allocation and floral traits of insect-pollinated forbs along 

climatic gradients in semi-natural grasslands”. MSc-theses, Department of biological 

sciences, University of Bergen. 

 

 

2. Data Dictionary 

  

 

Variable name Variable 

type 
variable range 

or levels 
variable or 

factor 

level definition 

how 

measured 
units / 

formats 

Date  DDMMYYYY   Date 

https://drive.google.com/file/d/1sUvIR41RUq79xwUpu0Chj_Lk0paZYD5x/view?usp=sharing
https://drive.google.com/file/d/1sUvIR41RUq79xwUpu0Chj_Lk0paZYD5x/view?usp=sharing
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Site Treatment/ 

covariable 

12 levels Geographic 

location 

 Three first 

letter of site 

name 

Temperature Treatment/ 

covariable 

Alpine Tetraterm 

temperature ca. 

6.5 C 

Met.no 

data 

Level and 

actual 

temperature 

Subalpine Tetraterm 

temperature ca. 

8.5 C 

Met.no 

data 

Level and 

actual 

temperature 

Boreal Tetraterm 

temperature ca. 

10.5 C 

Met.no 

data 

Level and 

actual 

temperature 

Precipitation Treatment/ 

covariable 

Level 1 

(continental) 

Annual precip 

ca. 600 mm 

Met.no 

data 

Level and 

actual prec 

in mm 

Level 2 (sub-

continental) 

Annual precip 

ca. 1300 mm 

Met.no 

data 

Level and 

actual prec 

in mm 

Level 3 (sub-

oceanic) 

Annual precip 

ca. 2000 mm 

Met.no 

data 

Level and 

actual prec 

in mm 

Level 4 

(oceanic) 

Annual precip 

ca. 2700 mm 

Met.no 

data 

Level and 

actual prec 

in mm 

Weather covariable word   factor 

Registrator covariable Name (initials)   factor 

Species covariable Species 

identity 

Species name visually Species 

name (first 

three letters 

of latin 

names) 

Floral display covariable Word/letter Groups: 

Solitary (S) 

Inflorescence 

(I)  

visually factor 

Shape of 

floral display 

covariable Word Groups: 

Circular 

Square/flat 

Deep/Depth 

visually factor 
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ID      

Reproductive 

height 

(RepH) 

Response 0-n mm measure mm 

Nr. of floral 

displays 

(NFD) 

Response 0-n  count count count 

Nr. of open 

floral 

displays 

(NOFD) 

Response 0-n count count count 

Nr. of closed 

floral 

displays 

(NCFD) 

Response 0-n count count count 

Nr. of 

budded floral 

displays 

(NBFD) 

Response 0-n count count count 

Nr. of 

withered 

floral displays 

(NWFD) 

Response 0-n count count count 

Nr. of floral 

displays with 

seeds (NSFD) 

Response 0-n count count count 

Nr. of 

flowers per 

floral display 

(NFFD) 

Response 0-n count count count 

Nr. of buds 

per floral 

display (NB) 

Response 0-n  count  count  count 

Nr. of open 

flowers per 

floral display 

(NOF) 

Response 0-n  count  count count 

Nr. of 

withered 

flowers per 

Response 0-n  count  count  count 
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floral display 

(NWF) 

Nr. of 

flowers with 

seeds per 

floral display 

(S) 

Response 0-n  count count  count 

Diameter of 

floral display 

(D1 and D2) 

Response 0-n  mm  measure  mm 

Height of 

floral display 

(H) 

Response 0-n  mm  measure  mm 

Petal width 

(PW) 

Response 0-n  mm  measure  mm 

Petal length 

(PL) 

Response 0-n  mm  measure  mm 

Corolla 

diameter 

(CD) 

Response 0-n  mm  measure  mm 

Colour 1-3 Response colour  colour  visually  factor 

Comment Any comments of potential relevance (or not) for entry, cleaning, and 

usage of the data. Comments often related to condition of particular 

individuals or categorical traits that were difficult to determine (for 

instance colour) 

Total 

biomass 

(TotalMass) 

Response 0-n  g  weight  g 

Reproductive 

biomass 

(RepMass) 

Response 0-n  g  weight  g 

Vegetative 

biomass 

(VegMass) 

Response 0-n  g  weight  g 

Mass of 

open flowers 

(OFMass) 

Response 0-n  g  weight  g 

Mass of 

stalks of 

Response 0-n  g  weight  g 
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open flowers 

(OFSMass) 

Total flower 

mass 

(TFMass) 

Response 0-n  g  weight  g 

Total flower 

stalk mass 

(TFSMass) 

Response 0-n  g  weight  g 

Open flower 

1-10 (OF 1-

10) 

Response 0-n  g  weight  g 

Flower stalk 

1-10 (FS 1-

10) 

Response 0-n  g  weight  g 
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Appendix 3 
 

 

Data Sharing and Management Agreement 

BetweenTheFjords 

 
This Data Sharing and Management Agreement regulates data management, availability, usage and 

ownership of data within the BetweenTheFjords group, led by Prof Vigdis Vandvik at the University of 

Bergen. The BetweenTheFjords group and is responsible for running two main experimental field 

systems in western Norway: the SeedClim climate gridS and LandPress climate gradientL. Within these 

field systems, there are a number of externally funded research projects* and educational projects**, 

each with a designated Principal Investigator (PI), a number of researchers and students, and various 

collaborators and smaller and larger sub-projects.  

The aim of this data sharing and management agreement is to facilitate collection of high-quality 

research data, to optimize data use and reuse, and to pre-empt data and metadata quality problems and 

misunderstandings or disputes over data ownership and rights.  

BetweenTheFjords adhere to FAIR Data and Open Science principles as part of a broader commitment 

to maximise the use, re-use and impact of our hard-earned and publicly-funded data. This means, firstly, 

that we strive to collect, manage, store and publish our data in ways that ensure they are Findable, 

Accessible, Interoperable, and Reusable (i.e, FAIR). Further, we will share our data openly with the 

scientific community and beyond, as part of a broader Open Science commitment. However, note that 

we expect proper attribution to the original source when our data are used in downstream analyses, 

following community standards, and that we expect that the downstream use of the data, in most cases, 

should also adhere to FAIR Data and Open Science principles. All researchers, technicians and students 

collecting or using BetweenTheFjords data must sign this agreement.  

 I. Data collection and management agreement  

                                                                                                             

1. All staff and students involved in collecting data in BetweenTheFjords and associated projects 

agree to follow the data gathering protocols agreed for each (sub)project, and to collect, record 

and report high-quality research data. 

2. To avoid loss of data all staff and students commit to comprehensive data and metadata 

documentation by following protocols, accurately filling in field sheets, collecting accurate and 

comprehensive field notes, taking pictures in the field and/or lab, digitalizing datasheets, etc. 

All this should be done as early in the process to minimize risk of data loss and errors. 

https://www.force11.org/group/fairgroup/fairprinciples
https://en.wikipedia.org/wiki/Open_science
https://www.etikkom.no/en/ethical-guidelines-for-research/guidelines-for-research-ethics-in-science-and-technology/scientific-integrity-truthfulness-and-accountability/
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3. High-quality and well documented research data is key to ensure scientific reproducibility. It 

requires all data to be correctly and fully recorded and documented; including full openness and 

transparency about any data errors, data loss, uncertainties, data cleaning procedures, outlier 

treatment, etc..  

II. Data documentation, ownership, usage, and sharing agreement 

1. Unless otherwise specified, the raw data and accompanying data documentation belongs to the 

individual research projects and the institution of the PI of each specific research project.  

2. All subprojects, data collection, data storage and data usage should be described in the project 

ReadMe file for each main project, and in a Data Documentation file for each dataset. 

3. The complete data, including data documentation and code from the (sub)projects will be 

delivered to the PI upon completion. 

4. Project PIs are responsible for collecting and safely storing project data and metadata 

5. All data and code from the collaborating projects will be shared with the BetweenTheFjords 

group, and will be made available to the group members as needed and agreed. 

 

III. Authorship rights to reports and downstream publications 

1. All research project participants’ authorship rights to reports and downstream publications 

based fully or in part from the project data, are regulated by international research ethics 

standards (cf. the Vancouver Protocol, and the Norwegian National Research Ethics 

Committees). 

2.  Following these standards, authorship credit should be based on; 

a. substantial contributions to conception and design, acquisition of data, or analysis and 

interpretation of data; 

b. drafting the article or revising it critically for important intellectual content; and 

c. final approval of the version to be published. 

3. Authors should meet conditions a, b, and c. In addition to being accountable for the parts of the 

work they have done, an author should be able to identify which co-authors are responsible for 

specific other parts of the work. In addition, authors should have confidence in the integrity of 

the contributions of their co-authors. 

4. BetweenTheFjord practice an open and inclusive authorships policy, this means that potential 

co-authors (anyone that has contributed to a) above), should be offered the opportunity to earn 

co-authorship by contributing to b) and c) above.    

5. These rules apply to all project participants, from students to 

PIs.                                                        

http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://www.etikkom.no/en/library/topics/authorship-and-co-authorship/co-authorship-in-mathematics-science-and-technology/
https://www.etikkom.no/en/library/topics/authorship-and-co-authorship/co-authorship-in-mathematics-science-and-technology/
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6. Master students hold the rights to be lead author on papers primarily based on their thesis work 

for 12 months after graduating, unless agreed otherwise beforehand. If the student has not taken 

any initiative and made no progress towards publishing their thesis within this period, the right 

to be main author can be transferred to another project participant with co-author rights. The 

student still holds the rights to earn co-authorship rights based on conditions a) – c) above. 

7. The PI regulates the usage of data in downstream research publications for each project. 

IV. Data sharing outside of the BetweenTheFjords group 

1. Unpublished project data can be used, shared or presented outside the projects but this should 

be explicitly agreed (on a case-by case basis with the relevant project PI). 

2. Published data are openly available, but we note that intellectual ownerships and authorship 

rights of the data and broader meta-data (including the study design, raw data, data 

documentation, etc.) follows the data when shared outside of the BetweenTheFjords group. Any 

potential issues should be discussed before data sharing (following best community standards, 

roughly as reflected  by our full data including data documentation are published under CC-BY 

of CC-BY-SA license or similar). 

3. Any publications using the BetweenTheFjords data must follow current international research 

ethics standards such as the Vancouver Protocol, and the Norwegian National Research Ethics 

Committees). 

4. BetweenTheFjords have an Open Science policy, and we will share and make date and code 

publicly available, either as a standalone dataset or when appropriate in databases. We expect 

that the original publication is appropriately cited when data is used in downstream publications. 

V. Reference to projects in acknowledgement 

1. All papers based on or using BetweenTheFjords project sites, data, or metadata shall refer to 

the project short name and funding source and project code in the acknowledgements.   

 

By signing this agreement, I agree to comply by the BetweenTheFjords data sharing and management 

regulations set out above, and I gain rights to access and use project data as needed and agreed with the 

PIs. 

 

Printed name: Gunvor Skjelstad   Place, date: Suldal, 02.06.2020  

 

Signature:  

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://www.etikkom.no/en/ethical-guidelines-for-research/guidelines-for-research-ethics-in-science-and-technology/
https://www.etikkom.no/en/ethical-guidelines-for-research/guidelines-for-research-ethics-in-science-and-technology/
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Appendix: BetweenTheFjords project overview as of January 2019: *Research 

projects **Educational projects SSeedclim climate grid LLandPress climate gradient: 

 

Three-D*S: Integrated assessment to aid mitigation of negative impacts by THREE global change Drivers on alpine 

biodiversity and ecosystem function. NORWEGIAN RESEARCH COUNCIL MILJØFORSK project 287801. kNOK 

6.220. 2019 – 2022. PI Halbritter, Vandvik 

EMERALD*SL: Terrestrial ecosystem-climate interactions of our EMERALD planet. NORWEGIAN RESEARCH 

COUNCIL KLIMAFORSK project 294948. kNOK 29.992. 2019 – 2022.  PI Stordal/ WP lead Vandvik 

Fra vugge til grad*S: Student research – from cradle to grade. Olav Thon Stiftelsen student active research project 

grant XXX. kNOK 1.500. 2019 – 2021. PI Vandvik, Førland, Gya, Lygre. 

ExperTS**SL: Experiments, Traits, Synthesis: Using knowledge from global ecological experiments to validate, 

assess, and improve trait-based theory. NORWEGIAN RESEARCH COUNCIL INTPART project 287784. kNOK 

5.960. 2019 – 2021.  PI Vandvik, Enquist 

INCLINE*S: Indirect climate change impacts on alpine plant communities. NORWEGIAN RESEARCH COUNCIL 

FRIMEDBIO project 274712. kNOK 11.009 .2018 – 2021. PI Vandvik, Töpper 

RECITE**SL: Research and Education Partnership in Climate Change Impacts on Terrestrial Ecosystems. 

NORWEGIAN RESEARCH COUNCIL INTPART project 274831. kNOK 5.787. 2018 – 2021.PI Vandvik 

HiddenCosts*L: Hidden costs of implementing afforestation as a climate mitigation strategy: A comprehensive 

assessment of direct and indirect impacts. NORWEGIAN RESEARCH COUNCIL KLIMAFORSK project 268243. kNOK 

10.936. 2017 – 2020.  PI Lee 

LandPress*L: Land use management to ensure ecosystem service delivery under new societal and environmental 

pressures in heathlands. NORWEGIAN RESEARCH COUNCIL MILJØFORSK project 255090. kNOK 12.983. 2016 

– 2019.PI Vandvik, Velle 

TraitTrain**SL: Comparing climate change impacts on High North vs. Alpine ecosystems through research and 

training in trait-based approaches. SIU project HNP-2015/10037. kNOK 1.500. 2016 – 2018. PI Vandvik 

FunCaB*S: The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics 

and Biodiversity of alpine ecosystems. NORWEGIAN RESEARCH COUNCIL KLIMAFORSK project 244525. kNOK 7.900. 

2015 – 2018. PI Vandvik 

DRIVE*S: The plant root microbiome diversity and resilience in a changing climate. NORWEGIAN RESEARCH COUNCIL 

FRIMEDBIO project 240897. 2014 – 2017. PI: Vik 

TransPlant**S: SIU project UTF-2013/10074. kNOK 1.109. 2014 – 2016. PI Vandvik 

SEEDCLIM*S: The role of seeds in a changing climate - linking germination ecophysiology to population and 

community ecology. NORWEGIAN RESEARCH COUNCIL NORKLIMA project 184912. kNOK 9.566. 2008 – 2015. PI 

Vandvik 

 

Contact information: 

Professor Vigdis Vandvik                                         email:   vigdis.vandvik@uib.no 

Department of Biosciences                                                      phone +47 5558 3332 

University of Bergen                                                         cell: +47 4730 1794 

Postbox 7803 

5020 Bergen, Norway 



 62 

Appendix 4 
 
 

 
Figure A1: Figure caption on the next page 
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Figure A1 (previous page): Vegetative biomass, reproductive biomass, number of floral displays per gram plant mass, 

flower diameter and petal width of Campanula rotundifolia, Potentilla erecta, Ranunculus acris and Veronica officinalis and 

how these measures vary with changes in temperature (Mean of four warmest months: red = boreal sites (10.5 °C), yellow = 

subalpine sites (8.5 °C), blue = alpine sites (6.5 °C)) and precipitation (mean annual). The lines are predictions based on 

linear mixed with temperature and precipitation as fixed effects and site as random effects. Significant trends were 

determined with confidence intervals not overlapping zero and are here indicated by T* (Temperature), P* (Precipitation) or 

T:P* (Interaction between temperature and precipitation). Individuals of these species were collected during the flowering 

season of 2019 in a climatic grid of consisting of semi-natural grasslands in Western Norway. 
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