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ABSTRACT 

 

Telemetry tags (e.g. PIT- or acoustic tags) are increasingly used in management to monitor the 

migration timing of Atlantic salmon smolts (Salmo salar). Recent findings, however, suggest 

that tagged fish consistently migrate earlier than untagged counterparts based on monitoring 

with other methods (e.g. trap-nets and video surveillance). It has been postulated that (1) effects 

from tagging and handling may alter migration behaviour, and (2) that the selection of fish 

during sampling is not representative of all migrating smolts, yielding bias in migration timing 

estimates. In the river Dale (Norway), we tagged five groups of wild Atlantic salmon smolts 

(n=385) at different time points in April-May, recaptured them in a wolf trap, and compared 

the migration timing to the untagged population from respective tagging dates. Migration 

timing was not significantly different between tagged (12 mm HDX PIT-tag) and untagged fish. 

Smolts tagged shortly before initiation of migration showed the most similar migration timing 

to the untagged population. Migration timing was size-dependent, such that larger individuals 

migrated earlier than smaller ones. The probability of migration was positively correlated with 

length and decreased the later in the season smolts were tagged. The migration timing of fish 

caught in the wolf trap was positively affected by water temperature and discharge. This pattern 

was not revealed by applying the same model to the tagged fish in the same system, 

exemplifying the limitations of using telemetry tags to study the mechanism of migration. This 

study revealed that tagging studies need to be careful when designing, as well as interpreting, 

their results, particularly related to size-dependent migration behavior.  
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1.0 INTRODUCTION 

Populations of wild Atlantic salmon, Salmo salar L., are facing major threats and have 

experienced pronounced declines throughout its distribution over the past decades (Forseth et 

al., 2017a; Parrish et al., 1998). Besides its ecological and cultural importance, it has also served 

as the canvas for artificial selection within the farming industry (Forseth et al., 2017a). Atlantic 

salmon is an anadromous fish, meaning, it has life stages in both fresh- and saltwater. The adult 

salmon gather in freshwater rivers to spawn in late autumn (October-November), where the 

fertilized eggs are placed in the gravel of the riverbed. They hatch during early summer and 

stay in their natal river as juveniles (parr) for 1-5 years before they migrate to the sea (Forseth 

et al., 2017a). In advance, they transform to smolts (smoltification), a process induced by 

increased photoperiod (Hoar, 1988; McCormick et al., 2007; Saunders & Henderson, 1970) and 

involves extensive physiological, morphological and behavioural changes prerequisites for 

survival at sea (Aas et al., 2011; McCormick, 2012). For example, levels of gill Na+K+-ATPase 

increase to ensure osmoregulatory functioning upon sea entry (high salinity) (McCormick, 

1993; Ugedal et al., 2014).    

 Despite significant reductions in exploitation (WGNAS, 2018), the marine survival of 

Atlantic salmon is low and has declined since the 1980s (Chaput, 2012; Forseth et al., 2017b). 

The exact processes that govern marine survival are relatively poorly understood (Jonsson & 

Jonsson, 2009), but are believed to reflect large-scale changes in ocean ecosystems and climatic 

factors (WGNAS, 2018). In some regions, particularly Western Norway, salmon lice from fish 

farms have had an additional impact on the marine survival of salmon populations, reducing 

the spawning numbers below what is perceived the carrying capacities of the rivers (Forseth et 

al., 2017b).    

 Knowledge regarding the timing of salmon smolt migration is extremely important for 

the understanding of the ecology and recent declines of Atlantic salmon, as it determines how 

and when a smolt encounters natural and man-made threats during its migration to feeding 

grounds (Myksvoll et al., 2020). Increased water temperature (Jonsson & Ruud-Hansen, 1985; 

Jutila et al., 2005; Whalen et al., 1999) and discharge (Hesthagen & Garnås, 1986; Hvidsten & 

Johnsen, 1993) are regarded as the proximate cues for migration (Jonsson et al., 2009). 

However, populations may respond differently to these environmental cues (Thorstad et al., 

2011). Along the Norwegian coast, smolts enter the sea at different times of the year (Rikardsen 

et al., 2004), and even within the same watershed, it has been found that smolts in the upper 

tributary migrate earlier than those from the lower tributary (Stewart et al., 2006). This local 

adaptation resulted in a simultaneous sea entry from the entire watershed (River Tay, Scotland) 
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(Stewart et al., 2006). Hence, a possible explanation (ultimate cause) behind the variations in 

migration timing between populations may be to reach the ocean at a specific time, when 

conditions are favourable for growth and survival (Hvidsten et al., 2009; Rikardsen & 

Dempson, 2010).  

 One important aspect of the timing of migration is related to the likelihood of being 

infested with parasites during migration. The ectoparasitic salmon lice (Lepeophtheirus 

salmonis and Caligus spp) is a natural zooplankton component in the marine environment, but 

their numbers have increased drastically in line with host availability in fish farms (Jansen et 

al., 2012). As a consequence, infestation pressure on wild smolts has risen and is currently 

regarded as one of the most important man-made impacts on wild Atlantic salmon (Forseth et 

al., 2017b). Although fish farms delouse in spring, lice-induced mortalities in wild smolts are 

estimated to > 30 % in farm-intensive areas (Production zone 4, 2019) on the west coast of 

Norway (Vollset et al., 2019a). To mitigate, a newly ratified management system for regulating 

biomass in fish farms have been implemented – the so-called “Traffic light system” (Nilsen et 

al., 2017). The system uses models with a variety of factors (e.g. salmon lice concentrations 

and hydrodynamics) to determine infestation risks and to estimate lice-induced mortalities in 

wild smolts (Nilsen et al., 2017). In this model system, the timing of outwards migration of wild 

Atlantic salmon smolts has been repeatedly pointed out as one of the most sensitive parameters 

(Myksvoll et al., 2020; Nilsen et al., 2017). In many regions, data on outmigration of salmon is 

scarce, and numerous studies around Norway have therefore been initiated to fill these 

knowledge gaps (Anon, 2019).    

 Several methods have been used for monitoring the timing of smolt migration (e.g. video 

surveillance, traps, telemetry). Results from these studies indicate that the majority of smolts 

migrate out in May in southern Norway, while some start already from mid-April. For some of 

the rivers in southern Norway, historical data (5+ years) show considerable among-year 

variation (up to a month) in migration timing (50 % of smolts) from the same river (Ugedal et 

al., 2014). These variations are likely caused by climatic differences, where a cold winter and 

spring result in a later migration.  
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 During the last decade different types of 

telemetry tags, such as PIT-tags (Box 1.1), have 

been used to monitor seaward migration in 

populations of wild Atlantic salmon (Barlaup et al., 

2018). Normal practice has been to capture smolts 

once during spring, before smolt migration, and tag 

a random sample of the population. The tagged 

smolts are registered on antennas further 

downstream. Hence, it is assumed that the tagged 

group is representative of the entire population in 

terms of outwards migration. However, it has been 

a topic of debate whether the selection of fish, 

handling, and tag effects can alter migration and 

survival of smolts, in turn producing unwanted 

biases in the dataset estimating the time of 

migration. This is supported by recent findings 

suggesting that tagged fish consistently migrate 

earlier than other monitoring methods, such as video 

surveillance and traps (Vollset et al., 2019b).  

 One explanation for this difference in 

method estimates might be that the tagged fish is not 

representative of the population of salmon smolts in 

the rivers. For example, individuals lacking 

morphological signs of smoltification could be 

excluded from tagging, even though they might just 

be on a later developmental trajectory and thus 

change coloration and migrate later in the season. Individuals with morphological smolt signs 

will likely migrate earlier than those not yet fully transformed, and not necessarily be 

representative of all out-migrating smolts that season. Similarly, tagging-size restrictions can 

also affect the migration timing estimates if large fish migrate earlier.    

 These migration timing estimates have large implications for our understanding of 

Atlantic salmon ecology and for successful management and regulation of farmed fish. 

Therefore, it is pivotal to resolve these potential biases and understand how the different 

Box 1.1. What is a PIT-tag? 

A PIT-tag (Passively Integrated Transponder) is an 

internal tag with a unique mark (Fig. 1), providing  

individual information about survival, behaviour, 

and spatiotemporal movement (Vollset et al., 

2018). Antennas deployed in the river produce 

magnetic fields which wirelessly charge the tag, 

allowing it to transmit its identification number 

back to a reader for registration (Armstrong et al., 

1996). Detection range (distance from which a tag 

can be read) can be limited due to antenna power, 

tag orientation (parallel or perpendicular) and type 

(full- or half duplex), operation frequency or 

interference from other devices. In addition, 

detection range varies with tag size, the larger the 

tag the better the range (Biomark, 2019; Burnett et 

al., 2013). 

 

FIGURE 1. 12 mm HDX PIT-tag (Biomark) 
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methods impact the predicted migration timing.   

 

This study aims to test if migration timing estimates from tagging studies of Atlantic salmon 

smolts are biased.   

In this study, we tested the null-hypothesis that migration of wild Atlantic salmon smolts 

is independent of tagging time, size, handling, and release time during the season.   

 We investigated this by capturing, tagging, and releasing groups of smolts with 12 mm 

HDX PIT-tags at five different time points throughout April and May and recapturing them in 

a wolf trap. Length measurements were taken at tagging and recapture in the wolf trap. 

Migration timing was compared between each tagged group and the untagged population from 

the respective tagging dates.   

 My a priori hypotheses were that: 

1. Tagged smolts are not representative of all out-migrating smolts due to either (a) 

unrepresentative sampling of the population, or (b) effects of tagging and handling on 

migration. 

2. Migration timing is size-dependent. Large smolts likely migrate before small ones 

because they are physiologically ready earlier. 

 

 Also, to assess whether juvenile salmon recaptured in the wolf trap were indeed smolt 

with the capacity to migrate to sea, I measured gill Na+K+-ATPase activity in samples of wild 

smolts at four time points throughout May. Finally, I investigated the effect of water discharge 

and temperature on the daily smolt counts in the wolf trap, and if tagged fish to represent 

outmigration would render a similar response to these environmental factors.   
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2.0  MATERIALS AND METHODS 

2.1  Study site 

The present study took place during spring 2019 and was conducted in the river Dale (60º35’N, 

5º49’E) on the west coast of Norway, in proximity to the city of Bergen. It is regulated by four 

hydropower plants that are supplied by water from two reservoirs and several impoundments 

(BKK; Sauterleute et al., 2016). The river Dale inhabits populations of both Salmo salar and 

anadromous Salmo trutta within 4.7 km from the river mouth up to a waterfall, Storefossen, 

acting as a natural barrier (Sauterleute et al., 2016). The river has a catchment area of 249 km2 

and a mean, yearly discharge of 21 m3 s-1 (BKK; Vollset et al., 2016).   

 Electrofishing of wild Atlantic salmon smolts was carried out in a ~ 380 m river stretch 

500 m upstream of the wolf trap and lowermost power plant (Fig. 2). The river stretch is a 

residual flow area that includes sandbanks, gravel, and boulders known to be suitable and 

frequently used spawning grounds for salmonids. A standardized procedure for capture and 

PIT-tagging of wild smolts was conducted at five different time points in April and May. 

 

FIGURE 2. Map showing the river Dale (Main river) in relation to tributaries and 

Sørfjorden. The locations of capture/tagging area, wolf trap, power plant, PIT-antennas, 

and trap-net are highlighted. 
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2.2  Electrofishing of wild smolts  

Electrofishing of wild Atlantic salmon smolts was conducted in accordance with the method 

described by Bohlin et al (1989).   

Fish were electroshocked and retrieved from the water using a hand-net and visually identified 

as either salmon smolts or trout (Salmo trutta) based on morphological characteristics (Box 

1.2). Due to size restrictions related to PIT-tagging, only smolts of total length (TL) ≥ 100 mm 

were captured. The fish were then transferred to a bucket with freshwater, which was frequently 

replaced to ensure adequate temperature and dissolved oxygen saturation.  

 

Box 1.2. How to distinguish smolts of Atlantic salmon from anadromous brown trout. 

The morphological characteristics used to distinguish salmon smolts and trout included 

size and shape of pectoral fins, distance the upper jaw reached posteriorly compared to the 

back of the eye, colour of adipose fin, in addition to the amounts of spots below the lateral 

line. Wild Atlantic salmon smolts have bigger, more wing-like pectoral fins compared to 

trout, and if a vertical line was drawn directly behind the eye the upper jaw would not 

usually extend behind it (Fig. 3). In terms of spots the salmon have few or none below the 

lateral line compared to trout. The adipose fin of wild smolts is less pronouncedly red 

relative to the adipose fin of trout (Fig. 4).  

 

FIGURE 3. Wild Atlantic salmon smolt (Salmo salar). Photo: NORCE LFI 

 

FIGURE 4. Sea trout smolt (Salmo trutta). Photo: NORCE LFI 
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Captured fish were regularly transferred to a keep-net to avoid crowding in the bucket 

(Fig. 5). The keep-net was positioned in an area with intermediate flow and if possible, shading. 

They were kept there until electrofishing of the river stretch was finished, approximately two 

hours for the smolts caught first, and 15 minutes for the ones most recently caught. Due to 

limited experience with the identification of smolts and early life-stage trout, every fish was 

double-checked and verified as a salmon presmolt/smolt by an experienced scientist before 

transferring to the keep-net. 

2.3  PIT-tagging procedure and length measurements 

Before PIT-tag implantation, fish were transferred in small batches (~ten fish per batch) from 

the keep-net to anaesthetic solution containing Tricaine mesylate (MS-222) and sodium 

bicarbonate (NaHCO3) as a buffer, both with a final concentration of 100 mg L-1. After 

approximately two minutes in anaesthetic solution the fish reached light anaesthesia with partial 

loss of equilibrium. This was evident when the fish struggled to maintain upright and did not 

react to stimuli. Thus, sufficient analgesia/pain relief had been induced and fish could be 

handled safely (Pharmaq, 2019).   

 Each individual was surgically implanted with a 100 mg, 12 mm long, 2.12 mm wide 

HDX PIT-tag (www.biomark.com). Beforehand, both the scalpel and the PIT-tag were 

sterilized in 100 % ethanol. A small (approximately 5 mm) incision was made between the 

posterior end of pectoral fins on either side of the midventral line (see Prentice et al., 1990). 

Next, the PIT-tag was inserted with the tip first in a vertical position. Once the tip was inside 

the abdomen the tag was tilted horizontally and pushed posteriorly (see Gries & Letcher, 2002). 

This way the tag should be positioned horizontally in the ventral parts of the abdomen. It was 

then visually inspected to ensure that the tag did not protrude from the wound, which 

subsequently could lead to tag loss. Afterwards, the fish was registered on a PIT-tag scanner 

(Biomark) and total length (TL) measured on an attached electronic length measuring board 

(BigFin scientific), both sterilized and covered in freshwater to protect the epidermal mucus of 

the fish. The assemblage was connected to an android tablet with DCS Linkstream application 

(Big Fin scientific). Hence, the tagged smolts could be registered and specific information such 

as date and length gathered. Next, the smolt was put in a recovery bucket containing freshwater. 

The tagging procedure took ~ 10-20 seconds per fish.   

 Once all the fish in a batch had been tagged, they were transferred from the recovery 

bucket to a second keep-net positioned in calm waters for further recovery (Fig. 5). This 

procedure was repeated until all smolts had been tagged and registered. Normal swimming 
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behaviour of fish was visually inspected before release back into the river to reduce the risk of 

predation-induced mortalities. All tagged smolts were released during daytime. An overview of 

the tagging dates and number of fish in each of the different PIT-tagged groups of wild Atlantic 

salmon smolts is presented in Table 1. 

TABLE 1. Tagging date/day and number of fish in each of the different groups of wild Atlantic 

salmon smolts tagged with 12 mm HDX PIT-tag in April and May.  

Date/day of tagging Tagging group Fish in tagging group (N) 

15.04.2019/105 1 100 

25.04.2019/115 2 98 

03.05.2019/123 3 73 

16.05.2019/136 4 71 

24.05.2019/144 5 43 

Sum  385 

FIGURE 5. Capture/tagging area of wild Atlantic salmon smolts in the river Dale including 

the set-up for PIT-tagging with keep-nets.  
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2.4  Capture of wild Atlantic salmon smolts in the wolf trap 

As an effort to obtain an overview of the temporal distribution for outwards migrating smolts 

in Dale, a wolf trap was positioned ~ 325 m downstream (60º34’54.2’’N, 5º48’46.0’’E) of the 

tagging area (Fig. 2). The trap covered the entire river, assuming it would capture all passing 

fish including the recapture of the different PIT-tagged smolt groups. It was deployed prior to 

and operative throughout the entire migration period. This allowed for comparisons in temporal 

migration patterns between tagged smolts and the untagged population.   

 The trap has a horizontal plate with grooves, onto which the fish swim. Steady water 

flow pushes the fish into a pipe, transferring them to a tank compartment (Fig. 7). The tank was 

filled with river water being continuously renewed. A net was attached to a frame surrounding 

the plate to prevent fish from jumping over or otherwise escaping from the trap (Fig. 6). Every 

morning, the tank compartment was emptied for fish. The fish caught were scanned for PIT-

tags, length measured (TL), and registered on that date as either recaptures or untagged smolts, 

as outlined in section 2.3.  

 

 

FIGURE 6. Wolf trap set-up in the river Dale FIGURE 7. Tank compartment containing 

fish caught in wolf trap. 
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2.4.1 Temperature measurements and discharge data 

To gather data and investigate how smolt migration relates to water temperature and water 

discharge, measurements were taken throughout the year. Temperature measurements were 

taken hourly in the wolf trap using an OTT Orpheus Mini Logger. Water discharge data were 

obtained from the power plant (BKK) and collected using a SonTek FlowTracker2.   

 

2.5  Procedure for gill sampling 

Gill samples for measurements of Na+K+-ATPase activity were taken from outwards migrating 

wild smolts at four different occasions throughout May, with approximately one-week intervals 

(Table 2). The objective was to identify if the fish caught in the wolf trap were smolts 

physiologically prepared for sea entry and to compare ATPase activity between time points. 

Approximately ten PIT-tagged wild smolts, captured in the wolf trap, were randomly chosen 

for each gill sampling. If the trap captures contained zero or few tagged individuals, the sample 

was supplied with untagged smolts. Every smolt was given an ID coupled with information 

about the origin, date, total length (TL), gill tube ID, and PIT-number (if tagged). Gill sampling 

was standardized and involved heart puncture before removal of the entire second gill arch. 

Each gill arch was placed in a labelled tube containing SEI-buffer (250 mM sucrose, 10 mM 

Na2EDTA, 50 mM imidazole, pH 7.3) for conservation. Tubes were kept cold before and after 

insertion of the gill arch, then put in the freezer as soon as possible.  

 

TABLE 2. Date of gill sampling, sample size, and proportion PIT-tagged of wild Atlantic 

salmon smolts captured in the wolf trap. 

 

 

 

Date of gill sampling Sample size (N) Proportion PIT-tagged 

03.05.2019 10 0 

16.05.2019 5 1 

24.05.2019 10 9 

31.05.2019 10 9 
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2.6  Measurement of Na+K+-ATPase activity in gill samples 

 

Gill Na+K+-ATPase activity was analyzed according to the method described in McCormick 

(1993). The gill filaments obtained from the wolf trap were thawed before assemblage of the 

kinetic assay. The production of adenosine diphosphate (ADP) in the presence of Na+K+-

ATPase is ouabain-sensitive (ouabain inhibits Na+K+-ATPase). The reaction is enzymatically 

coupled to the oxidation of nicotinamide adenine dinucleotide (NADH) by pyruvate kinase and 

lactic dehydrogenase, which could be directly measured on a Spark multicode microplate reader 

at 340 nm (25ºC, 60 cycles, 10 min). Protein in the homogenate was determined by 

bicinchoninic acid method according to Smith et al (1985). The Na+K+-ATPase activity was 

measured as the difference in activity, with and without ouabain present as an inhibitor, 

expressed as µmol ADP mg protein-1 h-1. For detailed information see Appendix 1. 

2.7 Statistical analysis 

 

All data analyses were conducted in R, version 3.6.0 (R Core Team, https://www.r-

project.org/). The following additional packages were used: Tidyverse package set (Wickham, 

2017), patchwork (Pedersen, 2019), mgcv (Wood, 2017), and AICcmodavg (Mazerolle, 2019). 

Corrected Akaike information criterion (AICc) was used to select the best linear models (lm) 

and generalized linear model (glm) by stepwise selection (backwards elimination). The best 

generalized additive models (GAM) were found by comparing all combinations and selecting 

the model with the lowest AIC.  

2.7.1 Na+K+-ATPase activity in out-migrating wild Atlantic salmon smolts 

 

A linear model was used to compare gill Na+K+-ATPase activity (measured as µmol ADP mg 

protein-1 h-1) between migrating smolts captured in the wolf trap at four different sampling dates 

in May, and to investigate if length affected Na+K+-ATPase activity. 

2.7.2 Capture efficiency of the wolf trap 

 

Although the wolf trap was assumed to capture all fish passing it, a proportion of the tagged 

smolts were detected on PIT-antennas or in the trap-net downstream without being captured in 

the wolf trap first. Assuming the likelihood of being observed downstream of the wolf trap is 

the same for all individuals, it is possible to estimate the total number of tagged smolts that 

were able to cross the wolf trap without being captured (X1), using equation 1. 
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𝑋1

𝑋2
=
𝑌1

𝑌2
   [eq.1] 

Where X1 = total number of tagged smolts able to cross wolf trap, X2 = smolts crossed 

wolf trap and detected downstream (n=10), Y1 = smolts released from wolf trap (n=212), Y2 = 

smolts released from wolf trap and detected downstream (n=47).  

2.7.3 Does tagging length and tagging date affect probability of migration?  

 

To investigate if the time of tagging during the season and the length of a smolt at tagging 

affected the probability that a smolt would migrate, I ran a logistic regression using a 

generalized linear model (GLM) with binomial distribution (Appendix 3). In addition, the 

mean length at tagging was compared between (1) the smolts that had, and (2) the smolts that 

had not migrated for each PIT-tagged group of wild Atlantic salmon smolts. That being (1) 

those either recaptured in wolf trap, detected on PIT-antennas or trap-net downstream, and (2) 

those not. 

2.7.4  Is the migration timing different between PIT-tagged smolts and the untagged 

population? 

 

To test if there was a temporal difference in out-migration between a PIT-tagged group and the 

untagged population, a two-sided Kolmogorov-Smirnov test (KS-test) was performed on 

cumulative relative proportions. The test statistic, D, represents the maximum absolute 

difference between the two cumulative relative proportions (Kirkman, 1996). If the two samples 

were drawn from the same distribution (H0), the D-statistic should be close to zero. The p-value 

is the probability of finding a D-statistic which is at least as large as what we found, if the null-

hypothesis is true (Kirkman, 1996). To reduce the chance of type 1 error, the H0 was tested 

using Bonferroni adjusted alpha levels of 0.01 per test (0.05/5).  Because untagged fish started 

out-migrating before some of the groups were tagged, temporal patterns in out-migration of 

each group was compared to the untagged population from each respective tagging date. For 

example, migration in group 2 (tagged 25.04.2019) was compared to the migration of the 

untagged population from that tagging date. 
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2.7.5 Is length at migration for PIT-tagged smolts and untagged smolts the same? 

 

A potential difference in mean length at out-migration between tagged and untagged smolts 

was tested using a two-sample t-test.  

 

2.7.6 Is timing of migration a function of tagging length and tagging date? 

 

A linear model was used to test if migration timing (day of the year) depended on the length of 

smolts when tagged and the date of tagging (day of the year) (Appendix 3). 

 

2.7.7 Does water discharge and temperature affect migration timing in Atlantic salmon 

smolts? 

 

A potential relationship between daily counts of wild Atlantic salmon smolts in the wolf trap 

and date (day of the year), mean daily water discharge and temperature was investigated using 

a generalized additive model (GAM) with a negative binomial distribution, due to the potential 

non-linearity between response and predictors (Appendix 3).   

 Low count numbers late in the season are not necessarily a small response to predictors, 

but rather due to the emptying of fish from the river throughout the season. Therefore, each 

observation was weighted based on the number of fish remaining in the river at the time of the 

observation. Because the wolf trap was emptied for fish each morning, I also investigated if 

discharge or temperature lag by one day would be better explanatory variables rather than the 

measurements the day of capture, with the rationale that the captures in the wolf trap were 

potentially caused by discharge or water temperature from the previous night. Potential 

autocorrelation was investigated using acf and pacf on model residuals (van RiJ, 2016).  

 To investigate if tagged smolts would render the same final model as data from the 

whole population, I used the same modelling procedure as explained for the data in the wolf 

trap for PIT-group 1 (n=64). The model was fitted using a Poisson distribution because residual 

variance indicated a better fit. The response of the other tagged groups to date, water discharge, 

and temperature could not be explored because there were not enough recaptures in the wolf 

trap from these groups to model a response.  
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3.0 RESULTS 
 

3.1 Na+K+-ATPase activity in out-migrating wild Atlantic salmon smolts 

 

No explanatory variables were included in the best linear model (lowest AICc), indicating that 

date of gill sampling and length of smolts did not affect Na+K+-ATPase activity in wild Atlantic 

salmon smolts captured in the wolf trap. Na+K+-ATPase activity ranged from 5.0 to 16.4, with 

the grand mean being 11.2 (± 3.1 SD) µmol ADP mg protein-1 h-1 (Fig. 8). 

 

 

FIGURE 8. Na+K+-ATPase activity in wild Atlantic salmon smolts at the date of outmigration 

(wolf trap capture) during May. Line in the box represents the median, the dot represents the 

mean. 
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3.2 Capture efficiency of the wolf trap 

 

Out of the 385 PIT-tagged smolts in the river Dale, a total of 231 (60%) were recaptured in the 

wolf trap. Subtracting the tagged smolts euthanized for gill sampling (n=19) results in 212 

smolts released from the wolf trap, out of which 47 (22 %) were observed on PIT-antennas 

(70%) or in the trap-net (30%) downstream of the wolf trap. The wolf trap was assumed to 

capture all fish passing it, but still, 10 of the remaining 154 smolts were detected downstream. 

Seven of the 10 were detected on PIT-antennas, the rest were caught in the trap-net.  

No pattern was found in either group origin or detection timing.  

 From the 154 tagged smolts that were not recaptured in the wolf trap, an estimated 45 

individuals (29%) had been able to cross the wolf trap. That results in an estimated 109 tagged 

smolts left upstream of the wolf trap (28 %), whereas an estimated 276 (231+45) tagged smolts 

migrated (72 %).  
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3.3 Does tagging length and tagging date affect probability of migration? 

 

The mean length of smolts that did (n=241) and did not (n=144) migrate was 133 mm (± 8 SD) 

and 131 mm (± 10 SD), respectively. The probability of migration increased with length at 

tagging (glm, β = 0.02, z = 2.11, p = .04). For example, when tagged on day 115, a smolt of 

length 160 mm (78.9 %) had a 15 % higher probability of migrating than a smolt of length 130 

mm (63.9 %) (Table 3). Smolts tagged later in the season had a lower probability  

of migration (glm, β = - 0.02, z = - 2.10, p = .04; Table 3). For instance, a smolt of length 130 

mm tagged on day 144 (51.8 %) had a 16 % lower probability of migrating than a smolt of 

similar size tagged on day 105 (67.8 %). 

 

TABLE 3. The difference in mean length (TL) at tagging between (1) the proportion that did, 

and (2) did not migrate out for the five PIT-tagged groups of wild Atlantic salmon smolts. Out-

migrated=yes defined as smolts either recaptured in wolf trap, detected on PIT-antennas, or 

caught in trap-net downstream. Out-migrated=no represents those not recaptured nor detected.  

Tagging group ID and date are presented. 

Group of 

PIT-

tagged 

smolts 

 

Date/day 

tagged 

 

Number of 

smolts (n) 

 

Mean total length 

(mm) at tagging 

(SD) 

 

Difference in mean total 

length (mm) at tagging 

between (1) smolts that 

out-migrated and (2) 

those that did not Out-migrated Out-migrated 

No Yes No Yes 

1 15.04.2019/105 

 

32 68 130.8 

(9.6) 

131.9 

(8.4) 

+ 1.1 

2 25.04.2019/115 35 63 129.1 

(11.5) 

130.4 

(8.5) 

+ 1.3 

3 03.05.2019/123 31 42 130.3 

(8.7) 

132.1 

(8.6) 

+ 1.8 

4 16.05.2019/136 22 49 136.9 

(10.9) 

136.6 

(7.0) 

- 0.3 

5 24.05.2019/144 24 19 131.3 

(9.8) 

138.0 

(7.1) 

+ 6.7 
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The proportion of tagged smolts migrating (recaptured in the wolf trap) was similar for 

group 1-4, ranging from 56 to 66 %. In group 5, tagged the latest (24.05.2019), only 18 

individuals out of the 43 tagged (42%) ended up migrating (Table 4).   

TABLE 4. Overview of tagging time, sample size, and proportion out-migrated (recaptured in 

the wolf trap) for the five PIT-tagged groups of wild Atlantic salmon smolts.  

Group of 

PIT-tagged 

smolts 

Date/day 

tagged 

Smolts in 

group 

 (N) 

Proportion  

recaptured in 

wolf trap (n) 

Proportion  

recaptured in wolf 

trap (%) 

1 15.04.2019/105 100 64 64 

2 25.04.2019/115 98 61 62 

3 03.05.2019/123 73 41 56 

4 16.05.2019/136 71 47 66 

5 24.05.2019/144 43 18 42 

Sum  385 231  
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3.4 Is the migration timing different between PIT-tagged smolts and the untagged 

population?  

 

Although on average all five tagging groups migrated later than the comparative non-tagged 

smolts, none of them were significantly different after Bonferroni correction (Group 1: KS-test: 

D = 0.202, p = .39; Fig. 9A, n=64; group 2: KS-test: D = 0.267, p = .17; Fig. 9B, n=61; group 

3: KS-test: D = 0.211, p = .52; Fig. 9C, n=41; group 4: KS-test: D = 0.415, p = .05; Fig. 9D, 

n=47; and group 5: KS-test: D = 0.515, p = .08; Fig. 9E, n=18). The cumulative out-migration 

of group 1, tagged before migration had started, was most similar to the untagged population 

out of the different tagged groups (KS-test: D = 0.202, p = .39; Fig. 9A, n=64).   

 The difference in median out-migration timing (50 % of the group) for tagged smolts 

was 3-9 days (Fig. 9; Table 5). The largest difference occurred in groups 2 and 3 (tagged late 

April-early May), with nine and eight days later than the untagged population, respectively 

(Table 5). The smallest difference in median out-migration was in group 1 (n=64), the earliest 

tagging date, and group 5 (n=18), the latest tagging date. Note that, at the time of tagging for 

group 5 (24.05.2019), 74 % of the untagged population had already migrated out. 

 

Table 5. Median out-migration day (50% of the group) for each PIT-tagged group compared 

to that of the untagged population (from date of tagging for respective groups). The difference 

(number of days) in median out-migration timing is presented. 

 

Group of 

PIT-tagged 

smolts 

Median 

outmigration 

date/day (50% of 

PIT-group) 

Median outmigration 

date/day (50% of group) for 

untagged population 

Difference (number 

of days) in median 

out-migration timing 

for PIT-group 

compared to 

untagged population 

1 20.05.2019/140 16.05.2019/136 + 4 

2 25.05.2019/145 16.05.2019/136 + 9 

3 30.05.2019/150 22.05.2019/142 + 8 

4 30.05.2019/150 25.05.2019/145 + 5 

5 03.06.2019/154 31.05.2019/151 + 3 
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FIGURE 9. Cumulative relative proportion of out-migration day for PIT-tagged smolts and 

the untagged population for A) PIT-group 1 (tagged day 105/15.04.2019, n=64), B) PIT-group 

2 (tagged day 115/25.04.2019, n=61), C) PIT-group 3 (tagged day 123/03.05.2019, n=41),  

D) PIT-group 4 (tagged day 136/16.05.2019, n=47), and E) PIT-group 5 (tagged day 

144/24.05.2019, n=18).  
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3.5 Is length at migration for tagged and untagged smolts the same? 

 

The total length of PIT-tagged smolts (n=231) at the time of out-migration (wolf trap capture) 

ranged from 115-164 mm, while that of the untagged population (n=1964) ranged from 106-

199 mm. The tagged smolts covered 97.8 % of the length distribution of untagged smolts, 

missing 0.92 % (smaller than 115 mm) at the lower tail and 1.27 % (larger than 164 mm) at the 

upper tail (Fig. 10). The difference in mean length between tagged (139 mm ± 8 SD) and 

untagged smolts (141 mm ± 10 SD) was not significant (two-sample t-test (df=2193) = 1.8, p = 

.07). 

 

 

FIGURE 10. Cumulative relative proportion of total length (mm) for PIT-tagged (n=231) and 

untagged (n=1964) wild Atlantic salmon smolts at time of out-migration (wolf trap capture). 

Two outliers of 188 and 199 mm were removed from the length distribution of untagged smolts 

for graphical purposes. 
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3.6 Is timing of migration a function of tagging length and tagging date?  

 

The best linear model (lowest AICc) to explain the timing of out-migration included length at 

tagging and the tagging date, without interaction (adjusted R2= .313). Day of out-migration 

decreased with tagging length, indicating that larger fish would migrate at an earlier date than 

smaller fish (lm, β = - 0.39, t = - 4.2, p <.05; Fig. 11). All tagging groups were significantly 

different from each other where the group tagged first (PIT-group 1) migrated first and the 

group tagged last (PIT-group 5) migrated last (p < .05).    

 

 

FIGURE 11. Relationship between out-migration timing (wolf-capture) and the tagging length 

(TL) of smolts for the different PIT-tagged groups of wild Atlantic salmon smolts. Linear 

regression lines for each group presented. Day 105=group 1 (tagged 15.04.2019, n=64), 

115=group 2 (tagged 25.04.2019, n=61), 123=group 3 (tagged 03.05.2019, n=41), 136=group 

4 (tagged 16.05.2019, n=47), and 144=group 5 (tagged 24.05.2019, n=18). 
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3.7 Does water discharge and temperature affect migration timing in Atlantic salmon 

smolts?  

 

The generalized additive model (GAM) with the best fit (lowest AIC) to predict out-migration 

of wild Atlantic salmon smolts (daily counts in the wolf trap including tagged smolts) included 

mean water discharge the day before capture and mean water temperature the day of capture, 

both as linear smooth terms (Table 6). The model indicates that when discharge was high the 

number of fish being captured the next day was higher (Fig. 12A). Smolt counts were also 

positively correlated with temperature on the day of capture (Fig. 12B). In contrast, the final 

model using the number of tagged fish from PIT-group 1 per day as a response variable did not 

include any explanatory variables (Table 6), and the correlation with both water discharge and 

temperature was clearly not significant (Fig. 12A and B), exemplifying that a tagging study 

would not have revealed a response to discharge or temperature in this system. 

Table 6. Overview of the predictors included and coherent AIC value in each GAM model 

investigated to explain daily counts of a) all wild Atlantic salmon smolts captured in the wolf 

trap (n=2195), and b) tagged smolts from group 1 (n=64). Delta AIC between models 

presented. Predictor explanations: Date= the date of smolt count, water discharge=mean daily 

discharge the day of smolt count (m3s-1), lag water discharge = mean daily discharge the day 

before smolt count (m3s-1), water temperature= mean daily temperature the day of smolt count 

(ºC), lag water temperature=mean daily temperature the day before smolt count (ºC). 

Response GAM model Predictors included AIC Delta 

AIC 

Daily counts 

of wild smolts 

in the wolf 

trap (n=2195) 

1 Lag water discharge, water temperature 231.4 0.0 

2 Date, lag water discharge, water 

temperature 

233.6 2.2 

3 Date, lag water discharge, lag 

temperature 

234.0 2.6 

4 Date, water discharge, water temperature 235.2 3.8 

Daily counts 

of tagged 

smolts from 

group 1 

(n=64) 

1 Date 54.2 0.0 

2 Date, water discharge, temperature 56.0 1.8 

3 Date, lag water discharge, temperature 57.0 2.8 

4 Date, water discharge, lag temperature 60.2 6.0 

 



28 

 

 

FIGURE 12. Daily counts of wild Atlantic salmon smolts in the wolf trap as response to A) 

mean daily water discharge the day before, and B) mean daily water temperature the day of 

capture. The red points and related red regression line correspond to counts of all wild smolts 

(n=2195) and are read on the left y-axis. The blue points and related blue regression line 

correspond to counts of tagged smolts from group 1 (n=64) and are read on the right y-axis. 

The size of the dots represents the weight of the observation. 
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4.0  DISCUSSION 

 

Tagging studies of Atlantic salmon smolts to reveal migration patterns have been conducted for 

several decades (Bourgeois & O’Connell, 1988; Halfyard et al., 2012; Thorstad et al., 2012). 

The results from such studies have direct implications for management, and it is therefore of 

utmost importance to understand if they have any inherent biases. In this study, it was found 

that the migration timing was not significantly different between tagged and untagged fish. 

Smolts tagged shortly before migration started showed the most similar migration timing to the 

untagged population. Furthermore, migration timing was size-dependent, whereas within a 

group of tagged smolts larger individuals migrated earlier than smaller ones. Thus, it is essential 

to sample the entire size-distribution of smolts to minimize biases in migration timing estimates. 

The probability of migration increased with length, whereas it decreased the later in the season 

that the tagging was conducted. Finally, it was found that the migration timing was positively 

affected by water temperature and water discharge (the day before smolt count), but a similar 

response was not observed when modelling based on tagged smolts from group 1, exemplifying 

that a tagging study would not reveal a response to discharge or temperature in this system. 

This study reveals that tagging studies need to be careful when designing, as well as interpreting 

their results, particularly related to size-dependent migration behaviour.  
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4.1 Comparison of migration timing between tagged and untagged smolts 

 

The capture, handling, and tagging procedures include many stressors that may alter survival 

or migration behaviour in smolts; however, the timing of outmigration was not significantly 

different between tagged and untagged fish. One of the a priori hypotheses was that tagged 

smolts are not representative of all out-migrating smolts due to effects from tagging and 

handling, with the rationale that this may affect survival, fitness, or behaviour of smolts. After 

all, smolts are exposed to multiple stressors including electroshock, time out of water, 

anaesthesia, handling, confinement, and internal implantation of the tag. Although mortality 

rates after tagging can be affected by the tag-to-size ratio (Lacroix et al., 2004; Larsen et al., 

2013; Sigourney et al., 2005) they are generally considered negligible (Gries & Letcher, 2002; 

Larsen et al., 2013; Prentice et al., 1990). Tag loss rates are also minor (Foldvik & Kvingedal, 

2018; Gries & Letcher, 2002; Larsen et al., 2013), and repetitive electroshocking does not affect 

growth or survival in smolts (Sigourney et al., 2005). However, these results are based on 

hatchery-smolts not subject to natural stressors (e.g. foraging, predator-avoidance); meaning, 

the validity of these results to the wild may be limited. In addition, knowledge about potential 

adverse, indirect effects from tagging is scarce although some studies suggest that swimming 

capacity (Lacroix et al., 2004; Larsen et al., 2013), buoyancy regulation (Macaulay et al., 2020), 

and growth rate (Lacroix et al., 2004; Prentice et al., 1990; Sigourney et al., 2005) can all be 

depressed after tagging, especially short-term. Consequently, such tagging effects may alter 

survival rates (e.g. predation-induced mortality) or migration behaviour. Hypothetically, after 

tagging a smolt may migrate out immediately to seek better growth opportunities at sea, or it 

could prolong its stay in the river to recuperate from tagging before migration. In this study, 

although each group of tagged smolts on average migrated later than the untagged population, 

none of them were significantly different. Because between-year and between-river variation 

in migration can be considerable (Ugedal et al., 2014), similar research in other river systems 

could add additional weight to these findings. Here, migration was not significantly different 

between tagged and untagged fish, thus, the null-hypothesis that migration is independent of 

tagging time, size, handling, and release time during the season could not be rejected.   

 Only the first group was tagged before fish had started migrating in the river Dale, 

potentially explaining why temporal patterns in migration were not as similar for the remaining 

four groups. After tagging, individuals may need time to recuperate and adapt to the extra 

burden exerted by the tag. If so, such an effect from tagging may have manifested itself more 

in group 2-5 than 1.  Whereas tagged smolts in group 1 could recuperate from the tagging 
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procedure before the smolt run, the other groups could not (untagged smolts had already started 

migrating). In turn, this potentially produced the “lag-periods” in migration compared to the 

untagged population, which were especially noticeable in groups 2 and 3 (although the overall 

migration was not significantly different). Median migration in these groups was nine and eight 

days delayed, respectively. These results indicate that an early tagging date (before the 

migration has started), potentially counteracting a tagging effect, produces the most 

representative sample in terms of migration timing. Subsequently, if outmigration timing in a 

river is unknown, smolts should be tagged early to reduce migration timing bias towards later 

in the season. On the other hand, because of growth, the number of fish eligible for tagging 

(tagging-size restriction) is probably lower the earlier tagging is conducted. As a result, the 

sample would have an overrepresentation of large individuals. Thus, tagging fish earlier in the 

season could cause an early migration estimate, because (1) larger individuals migrate earlier 

than smaller ones, and (2) the sample would not include migrating fish who are just on a later 

developmental trajectory (lacking morphological smolt signs). Perhaps, an even earlier tagging 

date in this study (~ one to two months before migration is initiated), could have presented even 

more valuable insight in terms of the effect of tagging date on migration timing estimates. 

Nevertheless, this study suggests that tagging shortly before migration is initiated produces 

similar temporal patterns in migration between tagged and untagged fish.  

4.2 Size-dependency on migration timing 

 

In concordance with the a priori hypothesis, the timing of migration was size-dependent, 

whereas within a group of tagged smolts larger individuals migrated earlier than smaller ones. 

Previously, a size-dependency on migration phenology has been documented in the river Imsa 

(Norway), where especially small (< 13 cm) and large (> 20 cm) fish migrated outside the 

regular smolt migration period (April-June), in October-March and July-September, 

respectively (Jonsson et al., 2017). Diel migration patterns also seem size-dependent 

(Haraldstad et al., 2017; Ibbotson et al., 2011). Consequently, a size-dependency on migration 

appears evident on both a diel and seasonal scale. A possible explanation for the observed 

pattern could be that size-selective predation is reduced by synchronizing the migration with 

conspecifics of equal size. Although small individuals have more potential piscivorous fish 

predators (Parker, 1971; Poe et al., 1991), it has been proposed that large individuals may also 

be targeted to maximize the cost/benefit ratio for predators (Mather, 1998). Thus, an anti-

predator strategy where migrating smolts are neither unusually small nor large may be 
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advantageous. In terms of monitoring, this result suggests that the migration timing estimate is 

affected by the size distribution of the sample, which potentially can be skewed due to either 

tagging-size restrictions or how and when animals are sampled. Subsequently, an 

overrepresentation of small individuals will lead to a delayed migration timing estimate, 

whereas an overrepresentation of large individuals will lead to an earlier migration timing 

estimate. Thus, a tagged sample covering the size-distribution of all migrating smolts is 

important for representative migration estimates. 

4.3 Tagging date and length of smolts affects probability of migration 

 

The probability of migration increased with length of smolts at tagging, whereas it decreased 

the later in the season tagging was conducted. There are several possible explanations for why 

migration probability was size-dependent. First, smaller individuals can be subject to higher 

natural mortality (e.g. size-selective predation) (Parker, 1971; Poe et al., 1991), and second, 

larger individuals may be further progressed in the smoltification process, whereas smaller 

individuals must prolong their stay in the river until all preparatory changes are complete. These 

smoltification changes (physiological, biochemical, morphological, and behavioural) are 

prerequisites for the high-salinity marine phase (Hoar, 1988; Thorpe et al., 1998). For instance, 

to conceal themselves in the pelagic environment they transform morphologically to a dark 

back, white belly, and silvery sides (Aas et al., 2011). Once these smoltification changes are 

complete, the smolt can start migrating downstream (Aas et al., 2011). However, if a smolt is 

not exposed to seawater within a certain ‘smolt-window’ it can de-smoltify, again taking on a 

darker appearance and reverting physiological functions (Stefansson et al., 2008). This de-

smoltification process is accelerated by warm water temperature (Soivio et al., 1988), possibly 

explaining why the probability of migration decreased for smolts tagged later in the season. 

Another explanation could be that the likelihood of capturing individuals with other life 

histories, for instance, precocious males that do not migrate (Aas et al., 2011), increases during 

the season. For example, only 42 % of the smolts tagged late May migrated whereas 56-66 % 

in the other groups did.  In terms of monitoring, this is indicative that telemetry studies 

investigating the spatiotemporal movement of smolts should tag them either before or early 

during the migration period to increase the probability of obtaining migrating individuals. 
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4.4 Water discharge and temperature as proximate cues for migration 

 

Water discharge and temperature affected migration timing of smolts in the river Dale, 

however, it would not have been revealed in a tagging study. The data including all wild 

Atlantic salmon smolts captured in the wolf trap (n=2195) show that water temperature and 

water discharge (the day before) positively affected migration timing. This coincides with other 

findings stating that downstream migration is initiated by water discharge (Hesthagen & 

Garnås, 1986; Hvidsten & Johnsen, 1993), water temperature (Jonsson & Ruud-Hansen, 1985; 

Jutila et al., 2005; Whalen et al., 1999), or a combination of these environmental cues (Hvidsten 

et al., 1995; Ugedal et al., 2014). Although a few rivers, such as Dale, can deploy wolf traps 

and gather extensive migration data, most rivers cannot (e.g. too high discharge) (Ugedal et al., 

2014). Therefore, it is interesting to see if models based on a tagging study would render the 

same migration response to proximate cues such as water discharge and temperature. If so, that 

could be used to better understand Atlantic salmon ecology and temporal patterns in migration 

in different populations. In this study, the model based on tagged smolts (n=64, tagged before 

the migration started) did not render a similar migration response to water discharge and 

temperature. The final model did not include any explanatory variables, and the correlation with 

discharge and water temperature was clearly not significant. The absence of a response in 

tagged smolts may be due to a different reaction to environmental factors. For instance, it could 

be that tagging alters migration behaviour and that alternative cues for migration (e.g. social 

cues) (Hansen & Jonsson, 1985; Hvidsten et al., 1995), become more important than the water 

temperature and discharge. However, findings suggest that tagged and untagged smolts exhibit 

a similar response to water discharge and temperature (Aarestrup et al., 2002), indicating that 

other factors play a role. A second possible explanation for the absence of migration response 

in tagged smolts is small sample size.  For a variety of reasons, such as upholding the reduction 

principle in animal welfare, telemetry studies often have smaller (Økland et al., 2006; Urke et 

al., 2013)  or approximately equal sample sizes as this study (Urke et al., 2019). However, as 

shown here, it can be problematic to use tagging studies to make inferences about the effects of 

environmental factors (e.g. water discharge and temperature) on migration as tagged smolts did 

not reveal the same response as that obtained when using all smolts captured in the wolf trap. 
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4.5 Limitations of the study 

 

One of the essential questions to answer was whether fish captured in the wolf trap, positioned 

~2-3 km upstream of the estuary, was due to within-river movements rather than actual 

migrating smolts. To investigate this, gill Na+K+-ATPase activity (NKA) as a measure of 

smoltification was investigated in wild smolts (n=35) captured in the wolf trap at four different 

time points during May (Appendix 2). It was found that NKA activity was not affected by the 

length of smolts, did not differ between sampling dates, and that the overall average NKA 

activity was 11.2 µmol ADP mg protein-1 h-1 (± 3.1 SD). Unfortunately, gill samples from parr 

were not collected, removing the possibility of within-population comparisons in NKA activity 

between parr and smolts. Albeit, the overall NKA activity observed represents a threefold 

increase compared to ~3-4 µmol ADP mg protein-1 h-1 found in parr in other studies 

(McCormick, 1993; McCormick et al., 2013). This is in line with the two to fivefold increase 

in gill NKA activity commonly observed during the parr-smolt transformation (D’Cotta et al., 

1996). Note, NKA levels could have been affected by slight deviations in the conservation 

procedure of gill samples. Even though the gill sample tubes were put in a temporary freezer 

within 0.5 h, as described in McCormick (1993), they were not frozen (only cold) during 

transportation (~ 2h) back to a long-term freezer. Also, for four months they were stored at – 

20 °C as opposed to – 80 °C for up to three months (McCormick, 1993). This could have caused 

sample degradation, further reducing observable levels of NKA activity. Nevertheless, except 

for the two outliers (5.0 and 5.9) potentially representing presmolts or within-river movements, 

the overall average NKA activity was comparable or higher than observed smolt levels in other 

studies (Stefansson et al., 2012; Strand et al., 2011). This, and the threefold increase in NKA 

activity compared to parr, is indicative that the majority of wild smolts captured in the wolf trap 

during May were smolts physiologically prepared for sea entry.   

 Another potential source of error in this study is that tagged smolts did not cover the 

size distribution of all migrating smolts that season. In turn, this could have affected temporal 

patterns in migration. To evaluate this, the length distributions of tagged and untagged smolts 

at out-migration/wolf trap capture were compared. Tagged smolts covered 97.8 % of the length 

distribution of untagged smolts, missing a marginal 0.92 % at the lower tail and 1.27 % at the 

upper tail. Although the overlap is substantial, it is not indisputable evidence that the length 

distribution was identical at the time of tagging. Growth rates in tagged smolts can be lower 

than in untagged smolts for ~1-3 months after tagging (Lacroix et al., 2004; Prentice et al., 

1990; Sigourney et al., 2005), which could have shifted the length distribution between the time 
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points. Also, there was not a significant difference in mean length (TL) between tagged 

(mean:139 mm ± 8 SD) and untagged smolts (mean:141 mm ±10 SD) at outmigration. Overall, 

these findings suggest that the sampled smolts, ≥ 100 mm at tagging, covered the size 

distribution of all migrating smolts from the Dale river.   

 It is also noteworthy that the wolf trap did not capture all migrating fish.  231 (60 %) of 

the tagged smolts were captured in the wolf trap, however, an estimated 45 out of the remaining 

154 tagged smolts were able to cross it without being captured. It is unknown when exactly this 

occurred, removing the possibility to compare temporal migration patterns in these individuals 

to the untagged population. During high discharge, the catchability of wolf traps can decrease 

(Ugedal et al., 2014), possibly explaining the observed pattern. Nevertheless, the wolf trap 

captured the majority of migrating smolts enabling comparisons in migration timing to the 

untagged population.  

4.6 Implications of the study 

 

Tagging-size restrictions related to the use of telemetry tags (e.g. PIT- and acoustic tags) can 

alter the size-distributions of samples, further affecting study parameters such as spatiotemporal 

movement. All tags, whether externally attached or internally implanted, will likely influence 

the fish. Therefore, animal welfare committees often use a tag-to-fish weight/length ratio to 

define the potential impact and set tagging-size restrictions accordingly (Vollset et al., 2018). 

Leading up to the decision, the committee weighs different aspects up against each other. If the 

tagging size restriction is set too low it can potentially have negative effects on the survival, 

fitness, and behaviour of animals. Set unnecessarily high, the restriction can exclude a large 

proportion of the size distribution from tagging. All the above can affect the tagged sample and 

determine whether it is representative of the population or not. Recently, the Norwegian animal 

research authority suggested a tagging-size restriction of ≥ 140 mm when using internal 

acoustic tags in smolts (Knut Wiik Vollset 2020, personal comment). This would arguably 

reduce the impact on the animals, but the question is whether a sample restricted to smolts ≥ 

140 mm is still representative. To exemplify, in this study only 20.8 % (n=48) of the migrating, 

tagged smolts (n=231) was ≥ 140 mm at the time of tagging. With that restriction, the median 

migration of tagged smolts (From group 1, n=11) would be 16 days earlier than the untagged 

population according to our data. In contrast, the restriction of ≥ 100 mm in the current study 

did not exclude smaller individuals migrating later in the season. Due to the size-dependency 

on migration timing, this could partly explain why median migration from the same group was 
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four days later than the untagged population. This exemplifies that the size-distribution of a 

tagged sample can have a considerable effect on the migration timing estimate.   

 A size-dependency on migration timing may explain why telemetry studies have shown 

earlier migration estimates than other methods. Whereas the smolts in this study were implanted 

with the smallest PIT-tag (12 mm), other telemetry studies conducted in Norway, such as Urke 

et al (2019) in the river Eio, have primarily used larger acoustic tags (18-22 mm) with 

correspondingly larger smolts (140 mm ± 15 SD). Consequently, this could explain why median 

migration in 2018 was early (17th of May) using acoustic telemetry (Urke et al., 2019), while 

previous studies in the same system, using video surveillance and trap-nets, showed a later 

migration (~29th of May) (Skoglund et al., 2012). Having said that, between year variations in 

migration timing can be up to a month (Ugedal et al., 2014), and thus cannot be neglected as a 

possible explanation. All monitoring methods have potential biases (Vollset et al., 2019b), and 

the extent of these may vary throughout the migration period (e.g. avoid traps as day-length 

increases). Unfortunately, few rivers have more than one monitoring method (Vollset et al., 

2019b). Therefore, to further investigate the effect of these biases on migration timing 

estimates, several methods should be compared within the same river system (Vollset et al., 

2019b).  

 Migration timing estimates that are either too early or too late may have large 

implications for management and our understanding of post-smolt survival of Atlantic salmon. 

Seasonal dynamics of salmon louse in fish farms are repetitive (Aldrin et al., 2013), causing an 

increase in infestation pressure on post-smolts as summer progress (Kristoffersen et al., 2018). 

Therefore, lice-induced mortalities in post-smolts is dependent on both migration timing and 

residency through fjords and coastal areas (affected by progression rates and location of the 

natal river) (Kristoffersen et al., 2018; Nilsen et al., 2017). In fact, Bøhn et al (2020) found that 

chemically unprotected smolts (against salmon lice) had 50 times higher mortality risk than 

protected smolts when migration timing was late (June) and infestation pressure high. In 

contrast, unprotected fish migrating during lower infestation pressures (May) did not have a 

lower likelihood of survival (return to river) than treated fish (Bøhn et al., 2020).  Accordingly, 

migration timing is crucial and one of the most sensitive parameters when modelling parasite-

induced mortalities (Nilsen et al., 2017). The accuracy of these models can be improved by 

monitoring more rivers and quantifying the uncertainties in methods used to estimate migration 

timing (Nilsen et al., 2017). Although more research is needed in other rivers, the results in this 

study help enlighten some of the potential biases produced in telemetry studies, a method that 
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is increasingly used to monitor populations. In turn, by resolving these biases the management 

practices and telemetry-based migration estimates can be enhanced.  

 

5.0 CONCLUSION 
 

Migration timing in Dale was not significantly different between tagged and untagged fish. The 

gill Na+K+-ATPase activity observed in fish captured in the wolf trap indicated that they were 

migrating smolts, and the size distribution of tagged smolts was representative of the untagged 

population. Furthermore, this study provides desired knowledge regarding some of the 

uncertainties in telemetry data. First, results suggest that an early tagging date, before migration 

has started, produces the most representative sample. Second, migration timing is size-

dependent, such that larger individuals migrate earlier than smaller ones. This finding advocates 

that future telemetry studies must consider that the size distribution of the sample (affected by 

e.g. tagging-size restrictions) may cause a bias in migration timing estimates, which in some 

cases can be considerable. Further, the probability of migration increased with length, whereas 

it decreased the later in the season that the tagging was conducted. The likelihood of obtaining 

migrating individuals in the sample therefore decreases with time. Results in this study also 

show that migration timing was positively affected by water temperature and discharge, 

although a tagging study would not reveal a similar response in this system. These findings will 

contribute to management practices and the use of telemetry, further enhancing the accuracy of 

migration timing estimates.   
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7.0 APPENDICES 
 

Appendix 1:   

 

This protocol derives from McCormick (1993) and is among the predominantly used methods 

in the scientific community for measuring Na+K+-ATPase activity in gills (Richards et al., 2003; 

Mancera & McCormick, 2000; Hiroi & McCormick, 2007).  

 The production of ADP (Ouabain-sensitive) in the presence of Na+K+-ATPase is 

enzymatically coupled to the oxidation of nicotinamide adenine dinucleotide (NADH).  

This equimolar removal of NADH can be directly measured on a microplate reader at 340 nm. 

The assay consists of the following three reactions; firstly, adenosine triphosphate (ATP) is 

hydrolysed to adenosine diphosphate (ATP) and phosphate, catalysed by Na+K+-ATPase. 

Secondly, pyruvate kinase aids in the yield of pyruvate and ATP from ADP and 

phosphoenolpyruvate. Lastly, pyruvate and NADH react to produce lactate and NAD+ with the 

help of lactate dehydrogenase (McCormick, 1993). 

 

Reaction 1: ATP

                                    
→              

𝑁𝑎𝐾−𝐴𝑇𝑃𝑎𝑠𝑒
 𝐴𝐷𝑃 + 𝑃𝑖 

 

Reaction 2: ADP + Phospoenolpyruvate 

                                             
→                  

𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 𝑘𝑖𝑛𝑎𝑠𝑒
 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐴𝑇𝑃 

 

Reaction 3: Pyruvate + NADH 

                                                                   
→                           

𝐿𝑎𝑐𝑡𝑎𝑡𝑒 𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑠𝑒
 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 𝑁𝐴𝐷+ 

 

ATPase activity was determined as the difference in absorbance, due to removal of 

NADH, in the absence and presence of ouabain (specific inhibitor of Na+K+-ATPase) 

(McCormick, 1993).  

Assay mixture  

An assay mixture containing 0.22 mM β-Nicotinamide adenine dinucleotide (NADH), 0.7 mM 

adenosine triphosphate (ATP), 2.8 mM phosphoenolpyruvate (PEP), 50 Mm imidazole buffer 

(IB), 4 U mL-1 lactic dehydrogenase (LDH) and 5 U mL-1 pyruvate kinase (PK) was prepared 



46 

 

immediately in advance to the assay. Before mixing chemicals, the calculated volumes of both 

PK and LDH were centrifuged in a 5424 R centrifuge (Eppendorf, Hamburg, Germany) for 8 

minutes (1200 g, 4ºC) resulting in a pellet with supernatant on top. To finish the assay mixture, 

the supernatant was removed, and pellet suspended in 500 µl IB (McCormick, 1993).  

 

ADP standard curve 

An ADP standard curve was run to ensure the assay mixture was of adequate quality. This 

involved the preparation of four different ADP standards (Table 7) containing ADP stocks (4 

mM) and imidazole buffer (50 mM) (McCormick, 1993).  The different ADP stock solutions 

were made beforehand by a lab technician, stored at - 80 ºC and thawed just prior to use.  

 

TABLE 7. Overview of the four ADP standards used to produce the ADP standard curve. 

Concentration and content of each standard presented. 

ADP standard Concentration 

(nmoles 10µl-1) 

50 mM Imidazole 

buffer (µl) 

4 mM ADP stock  

1 0 200 0 

2 5 175 25 

3 10 150 50 

4 20 100 100 

 

Before adding the assay mixture + salt solution (189 mM NaCl, 42 mM KCl, 10.5 mM MgCl, 

and 50 mM imidazole, pH 7.5) to the ADP standards, it was placed in a water bath (25ºC) for 

~ five min, and then shaken thoroughly on a shaker.   

 Each ADP standard was added in triplicates (10 µl) on a Nunc plate (Nunc plate 

#269620, VWR 732-2746). Furthermore, 200 µl of assay mixture + salt solution (189 mM 

NaCl, 42 mM KCl, 10.5 mM MgCl, and 50 mM imidazole (pH 7.5)), was added to each well 

before measuring the absorbance of the different standards at 340 nm (60 cycles, 10 sec 

intervals, 10 min running time) in a Spark multicode microplate reader. The slope of the 

endpoint standard curve should be 17-19 mOD (milli optical density unit) nmole ADP-1. The 

disappearance of NADH is measured, and thus the standard curve will be negative.  

 After a successful quality check, the assay mixture was used as a basis for two separate 
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assay solutions. Assay solution A and B were made with imidazole buffer and ouabain, 

respectively, both with a final concentration of 0.5 mM. Just before the protocol for each 

sampling microplate, both solutions were then separately mixed with salt solution in a 3:1 ratio 

and kept on ice.  

Protocol for Na+K+-ATPase activity measurements 

The frozen gill samples for Na+K+-ATPase activity measurements were taken out of the freezer 

and kept on ice throughout the following procedure.   

 Before analysis, gill filaments (n=4-6, McCormick, 1993) were thawed, kept on ice, and 

homogenized (10-15 seconds using a motor pestle, VWR 431-0100, VWR, Radnor 

Pennsylvania, USA) in 125 µl containing 80 % (v/v) SEI buffer (250 mM Sucrose, 10 mM 

Na2EDTA , 50 mM Imidiazole, pH 7.3) and 20 % (v/v) SEID buffer (0.5 % (w/v) Na 

deoxycholate acid in SEI buffer). Every sample was visually inspected to check if properly 

homogenized. The homogenized samples were then centrifuged (5000 g,1 min, 4ºC) to 

precipitate cell debris (McCormick, 1993).   

 From each sample, quadruplicates of supernatant (10 µl) were loaded in a 96-well Nunc 

microplate (Nunc plate #269620, VWR 732-2746) for the measurements of Na+K+-ATPase 

activity. In addition, three replicates of supernatant (10 µl) were added to a Costar plate (Sigma 

CLS9017, Sigma-Aldrich, St. Louis, Missouri, USA) for protein analysis. Both microplates 

were kept on ice-cold gel packs. Once half of the samples had been added to the microplates, 

assay solution A and B were positioned in water bath at 25ºC (McCormick, 1993).  

 Furthermore, on the Nunc plate 200 µl of solution A was added to half of the replicates, 

whilst 200 µl of solution B were added to the remaining half (McCormick, 1993). 

 The absorbance was measured at 340 nm using a temperature-controlled Spark 

multicode microplate reader with kinetic assay (25 ºC, 60 cycles, 10s intervals, 10 min running 

time). Results were expressed as mOD 10µl-1 min-1 (mOD=milli optical density unit)  

(McCormick, 1993). 

Protein analysis 

Using a bicinchoninic acid method (Smith et al., 1985) the protein concentration in every 

sample was determined. From the Pierce BCA Protein Assay kit (Thermo fisher Scientific, 

Massachusetts, USA), 200 µl of working reagent consisting of reagent A and B in a 50:1 ratio 

was added to every triplicate on the costar plate. Covered in parafilm the plate was shaken for 

30 seconds on an IKA VXR basic Vibrax (IKA, Staufen, Germany), before incubation for 30 
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min at 37 ºC in the INCU-Line digital incubator (IKA, Staufen, Germany). The plate was cooled 

for two-three minutes, parafilm removed, and placed in the plate reader at a wavelength of 562 

nm (endpoint assay). Result outputs were in µg 10 µl-1 (McCormick, 1993). 

 

Na+K+-ATPase activity calculation 

Result outputs from the microplate reader are used to obtain Na+K+-ATPase activity in µmol 

ADP mg protein-1 h-1 using the following calculations.   

 Na+K+-ATPase activity was measured as the difference in activity, with and without 

ouabain present as inhibitor, in the unit mOD 10 µl-1 min-1. This is divided by the standard curve 

slope (mOD nmole ADP-1) resulting in the unit nmole ADP 10µl-1 min-1 (Equation 2). 

Furthermore, this measurement is divided by the protein reading in µg 10 µl-1 and multiplied 

by 60 resulting in ATPase activity measurements in µmol ADP mg protein-1 h-1 (Equation 3). 

 

Equation 2:    

Na+K+-ATPase(mOD 10 µl-1 min-1)

standard curve slope (mOD nmole ADP-1) 
= nmole ADP 10 µl-1 min-1 

 

Equation 3:  
nmoles ADP 10µl-1min-1

µg 10 µl-1
*60 min=µmol ADP mg protein-1 h-1

 

  



49 

 

Appendix 2:  

 

Appendix 2. Specific information for each wild Atlantic salmon smolt euthanized for gill 

sampling in the wolf trap. Sampling date, total length (mm), PIT ID, and all values according 

to equations 2 and 3 (Appendix 1) required to estimate Na+K+-ATPase activity levels presented. 

mOD= milli optical density unit, output from microplate reader. 

Smolt 

ID 

Gill 

sampling 

date  

Total 

length 

(mm) 

PIT ID ATPase activity 

difference with 

and without 

ouabain  

 

 

(mOD  

10 µl-1  

min-1) 

 

ADP 

standard 

curve 

slope  

 

 

(mOD 

nmol 

ADP-1) 

Protein 

reading 

 

 

 

 

(µg 

protein 10 

µl-1) 

 

Final 

measurement 

 

 

 

 

(µmol ADP mg 

protein-1 h-1) 

 

1 03.05.2019 166 NA 18.14165 17.9 7.493426 8.1 

2 03.05.2019 137 NA 10.77095 17.9 3.217729 11.2 

3 03.05.2019 125 NA 9.05065 17.9 2.110691 14.4 

4 03.05.2019 130 NA 2.8968 17.9 1.38496 7.0 

5 03.05.2019 132 NA 9.4883 17.9 3.221315 9.9 

6 03.05.2019 136 NA 9.21685 17.9 2.417629 12.8 

7 03.05.2019 146 NA 20.3543 17.9 4.205246 16.2 

8 03.05.2019 135 NA 10.98405 17.9 4.009761 9.2 

9 03.05.2019 136 NA 16.5617 17.9 5.073108 10.9 

10 03.05.2019 139 NA 4.5696 17.9 2.406441 6.4 

11 16.05.2019 135 NA 13.81465 17.9 2.958013 15.7 

12 16.05.2019 137 982126057879385 6.0732 17.9 1.708846 11.9 

13 16.05.2019 140 NA 6.81665 17.9 2.163269 10.6 

14 16.05.2019 130 NA 1.93551 17.9 1.289679 5.0 

15 16.05.2019 139 NA 9.3666 17.9 2.908269 10.8 

16 24.05.2019 130 NA 5.59055 17.9 1.571016 11.93 

17 24.05.2019 145 982126057877079 9.065 17.9 4.014143 7.57 

18 24.05.2019 126 982126057879368 10.8699 17.9 2.643028 13.79 

19 24.05.2019 137 982126057651525 13.30185 17.9 2.923307 15.25 

20 24.05.2019 158 982126057882072 5.62685 17.9 1.174303 16.06 

21 24.05.2019 134 982126057878865 3.06385 17.9 0.936388 10.97 

22 24.05.2019 125 982126057879408 5.51865 17.9 1.41089 13.11 

23 24.05.2019 126 982126057651555 2.97425 17.9 1.414077 7.05 

24 24.05.2019 140 982126057651522 4.5601 17.9 1.836653 8.32 

25 24.05.2019 132 982126057879404 10.03895 17.9 2.054582 16.38 

26 31.05.2019 139 NA 7.72785 17.9 2.387436 10.8 

27 31.05.2019 156 982126057879370 5.67545 17.9 2.122628 9.0 

28 31.05.2019 144 982126057878890 4.32625 17.9 1.381218 10.5 

29 31.05.2019 149 982126057651558 5.2246 17.9 2.98391 5.9 

30 31.05.2019 137 982126057878046 7.5729 17.9 2.005064 12.7 

31 31.05.2019 141 982126057878923 4.3215 17.9 1.258974 11.5 

32 31.05.2019 138 982126057877133 7.82145 17.9 2.489038 10.5 

33 31.05.2019 134 982126057879361 4.3479 17.9 1.314744 11.1 

34 31.05.2019 140 982126057879421 8.14385 17.9 2.111026 12.9 

35 31.05.2019 130 982126057877069 7.8428 17.9 1.758397 15.0 
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Appendix 3:  

 

The generalized linear model (GLM) with binomial distribution used to run a logistic regression 

and determine the probability of migration depending on tagging length and tagging date of 

smolts.  

log_migrated1<-glm(migrated~LENGDE+Dato.y, data=data_logmod, family="binomial") 

 where migrated is the response and corresponds to if a smolt had migrated (1) or not (0). 

LENGDE refers to tagging length of smolts (mm) and Dato.y refers to tagging date (day of the 

year) of smolts. The dataset used consists of all 385 tagged smolts. 

 Model summary: 

 

 

The linear model (lm) used to investigate if day of migration (day of the year) was affected by 

length of smolts at tagging (mm) and the tagging date (day of the year). 

 fit2<-lm(Dato.x~LENGDE.y+factor(Dato.y),data=n_pit_recap_wolf) 

where Dato.x refers to the day of outmigration, LENGDE.y to length at tagging and Dato.y to 

the tagging date. The dataset used consists of all tagged smolts recaptured in the wolf trap 

(n=231). 
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Model summary: 

 

The final generalized additive model (GAM) with negative binomial distribution used to 

investigate the relationship between daily counts of all wild smolts captured in the wolf trap 

and mean daily water discharge the day before smolt count and mean daily water temperature 

the day of smolt count.  

mod1d=gam(count~s(offsetWd)+s(Temperature.C),weights=vekt,data=mod_data, family=nb) 

 where count refers to daily number of smolts captured in the wolf trap, offsetWd refers 

to the mean daily water discharge the day before smolt count, and Temperature.C refers to mean 

daily water temperature the day of smolt count. S refers to smooth term, and vekt refers to 

weight term.  

Model summary: 

 


