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Abstract Surface layer and upper‐air in situ observations from two research vessel cruises and an ice
station in the Weddell Sea from 1992 and 1996 are used to validate four current atmospheric reanalysis
products: ERA‐Interim, CFSR, JRA‐55, and MERRA‐2. Three of the observation data sets were not available
for assimilation, providing a rare opportunity to validate the reanalyses in the otherwise datasparse region of
the Antarctic against independent data. All four reanalyses produce 2 m temperatures warmer than the
observations, and the biases vary from +2.0 K in CFSR to +2.8 K in MERRA‐2. All four reanalyses are
generally too warm also higher up in the atmospheric boundary layer (ABL), with biases up to +1.4 K
(ERA‐Interim). Cloud fractions are relatively poorly reproduced by the reanalyses, MERRA‐2 and JRA‐55
having the strongest positive and negative biases of about +30 % and −17 %, respectively. Skill scores of the
error statistics reveal that ERA‐Interim compares generally the most favorably against both the surface
layer and the upper‐air observations. CFSR compares the second best and JRA‐55 and MERRA‐2 have the
least favorable scores. The ABL warm bias is consistent with previous evaluation studies in high latitudes,
where more recent observations have been applied. As the amount of observations has varied depending
on the decade, season, and region, the consistency of the warm bias suggests a need to improve the modeling
systems, including data assimilation as well as ABL and surface parameterizations.

Plain Language Summary Surface layer and upper‐air in situ observations from two research
vessel cruises and an ice station in the Weddell Sea from 1992 and 1996 are used to validate four
atmospheric reanalyses products. Three of the observation data sets were not available in compiling the
reanalyses. This provides a rare opportunity to validate the reanalyses in the otherwise datasparse region of
the Antarctic against independent data. The reanalyses differ in performance. However, all four reanalyses
have large errors in the cloud cover, and they also generally display too high temperatures in the
lowermost part of the atmosphere. The latter finding is consistent with previous validation studies in polar
regions, in which more recent observations have been applied. As the amount of observations has varied
depending on the decade, season, and region, the consistency of the warm bias suggests a need to improve
the representation of physical processes in the lowest parts of the atmosphere in the reanalyses investigated.

1. Introduction

Reanalyses combine observations and a numerical prediction model providing four‐dimensional gridded
and dynamically coherent data with full spatial and temporal coverage that are used for a wide range of
applications. Their usefulness is particularly high in the Arctic and Antarctic, where observational data
are otherwise sparse and unevenly distributed (Bromwich et al., 2013). Atmospheric reanalyses are also used
for reconstructing near‐surface temperature (Nicolas & Bromwich, 2014; Steig et al., 2009), evaluating cli-
mate models (Perez et al., 2014; Rinke et al., 2006), and providing boundary conditions for land surface mod-
els, ice‐ocean models, and limited area atmospheric models (Assmann et al., 2013; Dutrieux et al., 2014;
Lindsay et al., 2014). The applications of reanalysis data, for example, the provision of input data to models
that are highly sensitive to the forcing conditions, make it important to evaluate reanalyses against available
independent observational data, which are often rare, particularly in the polar regions. Further, reanalyses
are broadly applied in estimating climatological trends, but more attention is needed on the reliability of the
trends based on reanalyses (Chung et al., 2013). This calls for evaluation studies based on observations that
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are not restricted to recent years but also cover periods when less observations were available for
assimilation.

Early reanalyses are known to have larger errors in the Arctic and Antarctic with respect to, for example,
wind speed and direction, air humidity, air temperature, cloud cover, and radiative fluxes (Bromwich
et al., 2007; Screen & Simmonds, 2011; Sturaro, 2003; Vancoppenolle et al., 2011; Walsh & Chapman,
1998). Due to these shortcomings, extensive work has been carried out in producing new reanalyses, incor-
porating among others more sophisticated assimilation methods, better representation of sea‐ice and land‐
surface processes, and better horizontal and vertical grid resolution. Examples of these current reanalyses
are ERA‐Interim (Dee et al., 2011) and ERA‐5 (Copernicus Climate Change Service Climate Data Store
[CDS]) from the European Centre for Medium‐Range Weather Forecasts (ECMWF), the Climate Forecast
System Reanalysis (CFSR; Saha et al., 2006) from the National Centers for Environmental Prediction
(NCEP), the Japanese 55‐year reanalysis (JRA‐55; Kobayashi et al., 2015) from the Japan Meteorological
Agency (JMA), and MERRA Version 2 (MERRA‐2; Gelaro et al., 2017) from the National Aeronautics and
Space Administration (NASA). Even though substantial progress has been made in these products with
respect to their predecessors (Nygård et al., 2016; Tastula et al., 2013), also these have their deficiencies.
For example, spurious warming trends have been identified in many parts of East Antarctica (Y. Wang
et al., 2016) and near‐surface cold biases have been found along the Antarctic coast (Bracegirdle &
Marshall, 2012; P. D. Jones & Lister, 2014; R. W. Jones et al., 2016b).

In this paper we evaluate the ERA‐Interim, CFSR, JRA‐55, and MERRA‐2 reanalyses against a range of in
situ observational data from the Weddell Sea. These data include vertical profiles and surface layer time ser-
ies of temperature, humidity, and wind speed as well as radiative and turbulent surface fluxes and cloud frac-
tion. To extend the evaluation more toward process level, we compare the relationships between different
variables in observations and reanalyses. Our main data source is the Ice Station Weddell (ISW), which
was a U.S.‐Russian campaign conducted from February to June in 1992, providing all of the above‐
mentioned types of data (Gordon & Ice Station Weddell Group of Principal Investigators and Chief
Scientists, 1993). Much of our knowledge of the atmospheric boundary layer over the Antarctic sea ice zone
comes from this campaign (Andreas, 1995, 2002; Andreas et al., 2000, 2004, 2005; Andreas & Claffey, 1995;
Tastula et al., 2012, 2013). The ISW is the hitherto longest lasting Antarctic drift station of its kind, and only
two other ice stations with a duration of at least weeks have been deployed on the Antarctic sea ice: Ice sta-
tion Polarstern (ISPOL), which lasted for 5 weeks in December January 2004 and 2005 (Bareiss & Görgen,
2008; Vihma et al., 2009), and the Sea Ice Mass Balance in the Antarctic (SIMBA), which took place over
2 weeks in September–October in 2007 (Vancoppenolle et al., 2011). The other data sources that we use in
this study are radiosounding data sets originating from two research vessel cruises in the Weddell Sea: the
first by RV Akademik Fedorov (hereafter Fedorov), in February 1992, and the second by RV Aranda
(Vihma et al., 1997), in January to mid‐February 1996. All data sets except the one from Fedorov were with-
held from assimilation and are thus independent data for evaluation of reanalyses. This study is made par-
ticularly actual by the ongoing Year of Polar Prediction (YOPP), which has a main focus on improving
environmental prediction capabilities in polar regions (Goessling et al., 2016; Jung et al., 2016).

2. Data Sets and Methodology
2.1. Observations

We use observational data from three different sources in this study. The first is the ice drift station ISW,
from which we use data on cloud fraction, snow surface skin temperature (the sea ice surface was covered
by snow), radiative and turbulent surface fluxes, and near‐surface air temperature, air humidity, and wind
speed. Near‐surface temperature and humidity were observed at heights of 0.1 and 5 m above the surface
level (ASL), while wind speed was observed at 5 m ASL. The turbulent sensible and latent heat fluxes were
obtained using a sonic anemometer/thermometer and a hygrometer, both mounted at 4.65 m ASL. All these
data are available as hourly averages from the ISW data set, and we extracted these data for the time period
between 25 February 18:00 and 29 May 1992 18:00. More details about these observations and the postpro-
cessing can be found in Andreas et al. (2004) and Andreas et al. (2005).

In addition, 40 airsonde soundings and 128 tethersondes soundings are available from the ISW (Claffey et al.,
1994), the first of which we found to provide reliable data only of temperature and the latter of which
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provided reliable temperature, humidity, and wind data. For the tether-
sonde data, the maximum height reached by each sounding varied sub-
stantially (from 92 to 1,350 m ASL), and the average height was 613 m
ASL. In this study we only use soundings that reached at least 600 m
ASL. Some time periods during ISW had more intensive sounding activity
than others. In order not to weigh these periods excessively in the error
statistics calculations, we selected profiles with a minimum temporal spa-
cing of 12 hr for comparison against the reanalyses. In total we utilize 40
and 56 individual soundings from the ISW airsonde and tethersonde data
sets, respectively.

Two other upper‐air data sets that we use in this study consist of radio-
sonde soundings launched from cruises in the Weddell Sea with Fedorov
and Aranda. A total of 77 soundings are available from Aranda and 40
from Fedorov. Of these, we excluded 17 from further analysis from
Aranda and 11 from Fedorov due to poor data quality. Furthermore, like
with the ISW soundings, we selected soundings with a minimum time dif-
ference of 12 hr, leading to 24 and 34 available soundings from Aranda
and Fedorov, respectively. The airsonde, tethersonde, and radiosonde
soundings all have a fairly similar vertical resolution averaging to about
20 m. Figure 1 presents a map of the locations where the data sets used
in this study originate from.

Among all these observational data sets, the Fedorov data set is the only one sent to the Global
Telecommunication System (GTS) and thereby the only data set made available for assimilation for the rea-
nalysis products considered herein. It is not clear, however, to what degree these observations were actually
used for assimilation in the different products and or how much they were weighted in any assimilation. As
part of our data postprocessing, we removed clearly erroneous values from the observations before we used
them for model evaluation.

2.2. Reanalyses

A wide range of observations have been assimilated in the reanalyses validated in this study, either using
three‐dimensional variational data assimilation (3D‐Var; CFSR and MERRA‐2) or 4D‐Var (ERA‐Interim
and JRA‐55). The reanalyses are available at horizontal resolutions in the range of 0.5–0.75° in a regular
latitude‐longitude grid (ERA‐Interim, CFSR, and MERRA‐2) and 1.25° (JRA‐55). We note that JRA‐55 is
run at a higher native resolution (about 0.5°), but the pressure level data that we use in this study are only
available at this coarser resolution. The pressure levels used in this study are located between 1,000 and 250
hPa in all four reanalyses, with a vertical resolution of 25 up to 750 hPa and 50 hPa farther aloft. MERRA‐2
has an additional level at 725 hPa. The considered reanalysis variables are from the analysis fields. An excep-
tion is the near‐surface temperature, humidity, and wind in CFSR, which are only available as forecast fields.
Another exception is the radiative and turbulent surface heat fluxes, which we obtained and or calculated as
6‐hourly averages accumulated over the model forecasts.

2.3. Methodology

For comparison of the near‐surface data from ISW, we extracted 6‐hourly data from the hourly observations
in order tomatch the time resolution of the reanalysis output. In the case of the temperature, humidity, wind
speed, and cloud fraction, we did this by extracting every sixth data point from the respective time series. For
the radiative and turbulent surface heat fluxes, however, we averaged the hourly observations into 6‐hourly
periods. If more than two values were missing within a 6‐hourly period, the whole period was flagged as
missing. In the resulting observational 6‐hourly data sets, about half of the data are missing in the case of
the turbulent surface heat fluxes. For the surface radiative data, however, there are only 2% missing, and
for the cloud fraction data about 5% is missing. For the temperature, humidity, and wind data about 15%
are missing. We ignored all these data gaps in our error statistics calculations.

The observed cloud fraction was reported on a scale from 0 to 10 with intervals of 1, which we converted to %
with intervals of 10% for comparison with the reanalyses, whose cloud fractions we also rounded off to the

Figure 1. Tracks of R/V Akademik Fedorov (red rectangles and red, solid
line) and Ice Station Weddell (blue circles and blue, solid line) from 1992
and of R/V Aranda (yellow triangles and yellow, solid line) from 1996.
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nearest 10%. We calculated 2 m values for the observed temperature and humidity and 10 m values for the
wind speed using an iterative algorithm provided by Launiainen and Vihma (1990). Surface pressure, which
is essential for calculating the 2 m values, is not available in the ISW data set, and we therefore estimated it
using the average of surface pressure in all four reanalysis products.

For comparison of the sounding data, we first linearly interpolated both the reanalysis and observation pro-
file data to a common, vertical grid with 100 m intervals between 200 and 4,000 m ASL. Thereafter, we lin-
early interpolated the reanalyses horizontally and in time to each location and timestamp of the
observations. Naturally, in some cases the lowest pressure level (1,000 hPa), and even the second lowest
(975 hPa), in each reanalysis profile considered are located below the surface. To minimize the influence
of this problem on the error statistics, we only focus on data down to 200 m ASL.

The error statistics that we apply in this study are bias, root mean square error (RMSE), and the correlation
coefficient (r). In addition, for the surface layer and cloud fraction data, we also consider slopes of linear
regression lines and ratios of standard deviations (standard deviation of the reanalyses divided by that
observed). We estimated the statistical significance at the 95% level for the bias and r using the Student t test.
The values of r are largely significant throughout the results, and we will express in the text if the values are
not significant.

3. Results
3.1. Comparison of Surface Layer Data
3.1.1. Error Statistics
Figure 2 presents error statistics of the surface layer data of temperature, specific humidity, relative humidity
with respect to water and ice, and wind speed from the ISW period. Scatterplots between the observed and
modeled variables are shown in Figure 3.

The mean observed 2 m temperature is 253.2 K, and all the reanalyses are biased warm compared to this
(Figure 2). MERRA‐2 has the highest bias (+2.8 K) and CFSR the lowest (+2.0 K). Furthermore, we see that
the largest warm biases are generally found for the lowest observed temperatures in all four reanalyses
(Figure 3). Correspondingly, the slope of all four linear regression lines is below 1. CFSR has the least scatter
among the products and thus has the most favorable RMSE (4.0 K, same as ERA‐Interim) and r (0.87), while
JRA‐55 has the most scatter and the least favorable RMSE and r (5.2 K and 0.78).

Themean observed skin temperature is 251.1 K and all four reanalyses feature warm biases, which are larger
than for the 2 m temperature. JRA‐55 has the lowest bias (+3.0 K), whereas MERRA‐2 has the highest
(+5.7 K). As for the 2 m temperature warm biases, the strongest warm biases in skin temperature are gen-
erally found for the lowest observed temperature (Figure 3), and the linear regression line slopes are all
below 1. CFSR has the lowest RMSE (5.3 K) and highest r (0.84), while MERRA‐2 has the highest RMSE
(7.3 K) and JRA‐55 the lowest r (0.72).

Considering the 2 m specific humidity, the mean observed value is 0.8 g/kg. All four reanalyses are signifi-
cantly moister than this, corresponding to the warm biases found in the 2 m temperature. The highest moist
bias is found inMERRA‐2 at +0.2 g/kg, and all the other products have biases of +0.1 g/kg (Figure 2). A large
portion of the humidity values are clustered below 1 g/kg in all four products, and the slopes of the regres-
sion lines are all close to one (Figures 2 and 3). Thus, the model moisture biases are not strongly affected by
the observed humidity, though CFSR, JRA‐55, and MERRA‐2 have a slight tendency toward more positive
humidity biases for higher observed humidity values. In terms of RMSE, ERA‐Interim and CFSR have the
lowest values of 0.3 g/kg, and considering r, CFSR has the highest value of 0.91, both ERA‐Interim and
CFSR having relatively small scatter. JRA‐55 has the worst values for both RMSE and r (0.5 g/kg and
0.80), and these are reflected in relatively large scatter.

The mean observed 10 m wind speed is 4.6 m/s. All four reanalyses, except CFSR, are biased high compared
to this, and the highest bias of +0.6 m/s is found in MERRA‐2 (Figure 2). All these biases are statistically sig-
nificant. CFSR, on the other hand, has no bias (0.0 m/s). The positive biases are dominated by a large portion
of relatively low observed wind speeds, and for higher observed wind speeds, all four products on average
underestimate the wind speed (Figure 3). This is reflected by the slopes of the linear regression lines being
below 1 for all four reanalyses. ERA‐Interim and CFSR have the best RMSE (1.5 m/s), and ERA‐Interim
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has the best r (0.82), and both products have relatively little scatter. The worst RMSE and r are found in JRA‐
55 (2.0 m/s and 0.69; Figure 2).
3.1.2. Problems With Relative Humidity
The mean observed 2 m relative humidity with respect to water is close to 85%, and all four reanalyses have
rather small negative biases within about −2% to −3%. An exception is JRA‐55, where it is −11%. The mean
observed 2 m relative humidity with respect to ice indicates super saturation (101.1%), while the reanalyses
all have mean values below 100%. For JRA‐55 the bias is beyond −15%. Similar conclusions as for the biases
can be drawn for the values of RMSE, with worse values with respect to ice than for water, and they are par-
ticularly bad with respect to ice for JRA‐55 with values in the vicinity of 20%. The correlation coefficients, r,
are around 0.5 for all reanalyses with respect to water. With respect to ice, however, they are considerably
worse and vary between 0 (JRA‐55, not significant) to around 0.3 (ERA‐Interim and CFSR, significant).
The scatterplots of observed and modeled 2 m relative humidity (Figure 3) reveal why the values of r are this
poor. We can clearly see that the reanalyses struggle in reproducing the highest observed values of relative
humidity, which with respect to water implies slopes of the linear regression lines that are between 0.4
(CFSR) and 0.7 (JRA‐55 and MERRA‐2). With respect to ice, this slope is even down to 0 in JRA‐55. A closer
look at all data points of relative humidity with respect to ice reveals that none of these are above 100% for
JRA‐55, while the other products do produce some values above 100%.

All four renalyses struggle in reproducing the 2 m relative humidity, in particular with respect to ice
(Figures 2 and 3). Based on among other the near‐surface observations from ISW, Andreas et al. (2002)

Figure 2. Mean values, mean bias, root mean square error (RMSE), correlation coefficient (r), slope of the linear regres-
sion line (slope), and the ratio of the standard deviation of the reanalyses divided by that observed (SD ratio) for the four
reanalyses using Ice Station Weddell observations as reference. A positive bias indicates that the reanalysis product
has a higher value than the observations. The statistics are presented for the 2 m temperature (T2), skin temperature
(SKT), 2 m specific humidity (Q2), 2 m relative humidity with respect to water (RH2w), 2 m relative humidity with respect
to ice (RH2i), and 10mwind speed (U10). In the ranking indicated on each bar, the best reanalysis is given 4 points and the
worst 1 point.
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concluded that water vapor over polar sea ice is nearly always near saturation and often at supersaturation
with respect to ice for temperatures between 0 and −25 °C. For temperatures below −25 °C, their results
were less robust, due in part to the impaired reliability of the humidity sensors applied for such low
temperatures, and this is also a limitation in the ISW observations. We investigate here in further detail
how the 2 m relative humidity with respect to ice is reproduced by the reanalyses for temperatures in the
range of −35 and 0 °C. Our results (Figure 4) reveal that all four reanalyses do reproduce conditions close
to saturation for the entire temperature range, all having relative humidity values of about 95% or higher.
JRA‐55 is an exception to this, which consistently has values below 95% for any temperature, and for
temperatures between −20 and −30 °C, even below 85%. Neither of the products reproduces the observed
onset of supersaturation at temperatures below −15 °C, but for temperatures between −35 and −30 °C,
CFSR and ERA‐Interim do show supersaturation. Though, as we comment on above, and as stated by
(Andreas et al., 2002), the observational evidence for supersation based on the ISW data set for
temperatures below −25 °C is questionable due to instrument limitations.

Figure 3. Scatterplots showing the observed 2 m temperature (T2), surface skin temperature (SKT), 2 m specific humidity
(Q2), 2 m relative humidity with respect to water (RH2w), 2 m relative humidity with respect to ice (RH2i), and 10 mwind
speed (U10) with respect to the same variables in the four reanalysis products.
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3.1.3. Summary of Comparison of Surface Layer Data
To summarize and make an overall assessment of the reanalyses' near‐
surface performance, we applied a ranking system to the error statistics
of temperature, humidity, and wind speed (labels on bars in Figure 2).
The ranking gives 4 points to the best product and 1 point to the worst pro-
duct for each of the error metrics and atmospheric parameters considered.
In case of a tied ranking between two products, for example, for the first
place, both products receive 3.5 points. When all points are summed up
for each reanalysis, ERA‐Interim has the highest ranking (91.5 points),
closely followed by CFSR (85.5 points). MERRA‐2 and JRA‐55 receive
the fewest points (respectively 69 and 54 points).

3.2. Comparison of Radiative and Turbulent Surface Heat Fluxes
and Cloud Fraction
3.2.1. Error Statistics
The error statistics of radiative and turbulent surface heat fluxes and cloud
fraction for the ISW period are shown in Figure 5, and scatterplots
between the different observed and modeled variables are shown in
Figure 6.

Considering the downwelling shortwave radiation, the mean observed value is 50.4 W/m2, and the reana-
lyses come rather close to this, and only MERRA‐2 and JRA‐55 feature significant biases of −10.7 and
+4.1W/m2, respectively (Figure 5). All four reanalyses have linear regression lines with slopes near 1, except
MERRA‐2, where it is 0.7. The RMSE is the most favorable in CFSR (22.4 W/m2) and the worst in MERRA‐2
(32.4W/m2.). The values of r are very high across all the four reanalyses, with values between 0.95 (MERRA‐
2) and 0.97 (CFSR). These high values presumably largely reflect the reanalyses' ability to capture the diurnal
cycle in shortwave radiation and its seasonal evolution from early autumn to winter.

As to the downwelling longwave radiation, the mean observed value is 204.5 W/m2. The largest bias is found
in JRA‐55 (−13.0 W/m2) and the smallest in ERA‐Interim (−2.7 W/m2, not significant). MERRA‐2 is the
only product with a positive bias (+9.6 W/m2). The RMSE lies approximately within 25 and 40 W/m2 for
all four products, which is similar to the values for the downwelling shortwave radiation, JRA‐55 having
the least favorable value of 37.7 W/m2 and the three other products all having values around 28 W/m2.
The values of r, on the other hand, are notably lower for the downwelling longwave radiation than for the
downwelling shortwave radiation, and they are the worst for JRA‐55 and MERRA‐2 (about 0.68) and best
for ERA‐Interim and CFSR (0.75). As indicated by the slopes of the linear regression lines all being below
1, all four reanalyses have a tendency to underestimate higher observed values of the downwelling longwave
radiation (Figure 6). This tendency is the strongest in MERRA‐2 with a slope of only 0.6.

Regarding the turbulent surface flux of sensible heat, the mean observed value is−2.0 W/m2. The reanalyses
also have negative mean values; however, they are larger, ERA‐Interim having the largest negative bias of
−4.4 W/m2. MERRA‐2 is an exception, with a positive bias of +13.1 W/m2. The values of RMSE are approxi-
mately between 10 and 25 W/m2. The slopes of the linear regression lines are all markedly below 1, with the
lowest value of only 0.2 in MERRA‐2 and the highest in CFSR with 0.7. Correspondingly, the correlation
coefficients, r, are rather poor with values below 0.5 for all products and MERRA‐2 having the worst
(0.17), indicating a poor match between the data pairs in the linear sense. This poor match is also evident
from looking at the scatterplots in Figure 6.

The mean observed turbulent surface flux of latent heat is only 0.3 W/m2. The latent heat flux is on average
slightly positively biased in all four reanalyses, with values between +0.5 W/m2 (JRA‐55) and +4.7 W/m2

(MERRA‐2). All these biases are significant, except for the bias in JRA‐55. The RMSE values are also fairly
low, between 3.3 W/m2 in JRA‐55 and 10.0 W/m2 in CFSR. r is rather poor in all reanalyses, with values
between 0.29 (CFSR) and 0.53 (ERA‐Interim). The slopes of the linear regression lines are both above and
below 1 in the respective products, with the strongest deviations from 1 found in ERA‐Interim (1.2) and
JRA‐55 (0.7). All products feature a stronger variability in the latent heat flux than the observed one. This

Figure 4. Relative humidity at 2 m with respect to ice (RH2i) from the Ice
Station Weddell observations and the four reanalyses averaged in bins of 5
°C based on the observed and modeled 2 m temperature (T2).
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is seen in the standard deviation ratios, which are all positive, ranging from 1.4 in JRA‐55 all the way up to 3.6
in CFSR.

Considering the cloud fraction, we see that the mean observed value is 58.4%. ERA‐Interim, CFSR, and
MERRA‐2 all have positive biases, with the latter having the largest of +30.2%. JRA‐55, on the other hand,
has a negative bias of −17.3%. The RMSE is fairly large in all products, with values between 40.8% (CFSR)
and 46.6% (MERRA‐2). The mean r for all reanalyses (0.32) is the lowest for all variables considered, and
forMERRA‐2 it is particularly low (0.21). The relatively high RMSE and low r values are reflected in the scat-
terplots (Figure 6), which show a wide spread between the observed and simulated cloud fraction.
3.2.2. Summary of Comparison of Radiative and Turbulent Surface Heat Flux and Cloud Fraction
We apply the same ranking system for the radiative and turbulent surface heat fluxes and cloud fraction as
for the near‐surface temperature, humidity, and wind (see section 3.1.3). When all points are summed up for
each reanalysis, ERA‐Interim has the highest ranking (74.5 points), followed by CFSR (69.5 points), JRA‐55
(64.5 points), and last MERRA‐2 (41.5 points). We note that r and the slope of the regression line are espe-
cially poor for the cloud fraction, confirming that caution is needed when applying reanalysis products for
cloud fraction.

3.3. Comparison With Upper‐Air Observations

In the following, we evaluate the reanalyses' upper‐air performance between 200 and 4,000 m ASL with
respect to potential temperature, specific humidity, relative humidity, and wind speed. We pay particular
attention to differences in performance with respect to height ASL, geographical location, and data set

Figure 5. Mean values, mean bias, root mean square error (RMSE), correlation coefficient (r), slope of the linear regres-
sion line (slope), and the ratio of the standard deviation of the reanalyses divided by that observed (SD ratio) for the
four reanalyses using Ice Station Weddell observations as reference. A positive bias indicates that the reanalysis product
has a higher value than the observations. The statistics are presented for the downwelling shortwave radiation (swd),
downwelling longwave radiation (lwd), turbulent sensible heat flux (shfx), turbulent latent heat flux (lhfx), and cloud
fraction (cf). In the ranking indicated on each bar the best reanalysis is given 4 points and the worst 1 point.
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independence. Regarding locations, we note that the ISW airsonde and tethersonde soundings were
obtained solely over the Antarctic sea ice pack in autumn and winter, whereas the Aranda and Fedorov
soundings were ship‐based and were thus made partly over the open ocean and partly over the sea ice
(Figure 1) in summer and autumn. The error statistics results for the Aranda and Fedorov data sets, and
the ISW airsondes and ISW tethersondes data sets are presented in Figures 7 and 8, respectively.
3.3.1. Temperature
The mean potential temperature profiles from the ship‐based Aranda and Fedorov data sets (Figure 7) clo-
sely resemble each other, both in terms of their values at the lowest levels (about 270 K at 200 m ASL)
and their shape (variation with height), although the observations cover different years. The mean ISW pro-
files (Figure 8), all observed over a compact sea ice field, deviate from these by being substantially colder
(~255 K at 200 m ASL) and more statically stably stratified in the lower hundreds of meters (~14 K/km vs.
~7 K/km). The mean reanalyses profiles capture the general shapes of these observed profiles quite well,
though there are some biases in the reanalyses. When compared against the Aranda and Fedorov data sets,
the sign of the reanalysis biases depends on the altitude. In the lowest few hundred meters, there are warm
biases of +0.1 to 1.4 K across all the four reanalyses. Compared against the Aranda data set, these warm

Figure 6. Scatterplots showing the observed downwelling shortwave radiation (swd), downwelling longwave radiation
(lwd), turbulent sensible surface heat flux (shfx), turbulent latent surface heat flux (lhfx) and cloud fraction (cf) with
respect to the same variables in the four reanalysis products.
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biases are significant in all four reanalyses, except JRA‐55, and they cover a relatively deep layer of up to
about 1,500 m ASL. Compared against the Fedorov data set, the low‐level warm biases are generally
smaller and occur in a shallower layer, and none of them are significant. Farther aloft, cold biases down
to about −1 K dominate in both data sets. The spread in the biases between the reanalyses is generally
larger for the independent Aranda and ISW sounding data sets than for the Fedorov data set, especially at
the lower levels. In the ISW soundings, the biases also differ in sign from the other two data sets; while
there on average is a warm bias in ERA‐Interim and JRA‐55 in the lower hundreds of meters, there is a
cold bias in MERRA‐2 and CFSR for the same layer. We note that only the cold biases are
statistically significant.

The highest RMSE for all four reanalyses is found in the lowest few hundred meters when compared against
the independentAranda and ISW airsonde data sets. The latter data set reveals the highest RMSE at 200–300
mASL, with the best RMSE found in CFSR (3.8 K) and the worst in JRA‐55 (5.5 K). The Fedorov data set does
not reveal a clear maximum in the RMSE of the reanalyses at the lower levels, and the spread in RMSE is
lower than in the independent data sets.

The least favorable r is found for theAranda data set between 200 and 1,000 mASL, and JRA‐55 has the low-
est r of about 0.45. Farther aloft, r is around or higher than 0.7 in all reanalyses and data sets investigated.

Figure 7. Profiles of mean, bias, root mean square error (RMSE), and correlation coefficient (r) for potential temperature (θ), specific humidity (Q) and wind speed
(U) for the reanalyses using the Aranda and Fedorov profile data sets as reference.
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The overall highest values of r and the smallest spread between the reanalyses are found in Fedorov and the
ISW airsondes.
3.3.2. Specific Humidity
The mean specific humidity profiles in the Aranda and Fedorov data sets have similar shapes and values,
ranging from about 2.5 g/kg or slightly above at the lowest levels down to about 0.5 g/kg at the highest levels.
In comparison, the ISW tethersonde profiles are substantially drier with values between 0.6 and 1 g/kg up to
600mASL, which corresponds to the lower temperatures in these profiles. The largest bias is found for ERA‐
Interim and CFSR in the Aranda data set at 200 m ASL (+0.3 g/kg). Farther aloft, MERRA‐2 has the highest
positive bias with values up to +0.2 g/kg between 2,000 and 3,000 m ASL. Both the spread in bias across the
reanalyses and their absolute values are lower in the Fedorov data set than in the Aranda data set. Also, the

Figure 8. Same as in Figure 7 but for the ISW airsondes and ISW tethersondes data sets.
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biases are not statistically significant for the Fedorov data set, except in JRA‐55, which has a significant dry
bias at most height levels peaking at −0.2 g/kg at 900 and 3,100 m ASL. The ISW tethersonde data set shows
small biases in the reanalyses, and only for CFSR it has a significant value at all height levels of down to
−0.2 g/kg.

Both the largest RMSE (about 0.7 g/kg in JRA‐55 and MERRA‐2) and largest spread in RMSE between rea-
nalyses are found at 2,000 m ASL in the Aranda reanalyses profiles. This is close to where the highest RMSE
is found for the Fedorov data set too, but the absolute values and their variation with height are lower in all
four reanalyses for Fedorov. In the ISW tethersonde data set, there is little variation with height in the RMSE
across the reanalyses, and ERA‐Interim has the lowest values (below 0.3 g/kg for most height levels).

The reanalyses' correlation coefficient, r, features large variability with height for theAranda data set, in par-
ticular in JRA‐55, ranging from only 0.25 (not significant) between 2,000 and 3,000 mASL to 0.7 (significant)
at 4,000 m ASL. r is generally much higher (all above 0.7) for the Fedorov than for the Aranda data set, and
the spread in r between the reanalyses is lower. Also, in the ISW tethersonde data set the spread in r is fairly
low between the reanalyses and the values are all 0.65 or above.
3.3.3. Relative Humidity (With Respect to Water)
The mean relative humidity profiles in the Aranda and Fedorov data sets feature the same variability with
height as the specific humidity; that is, the highest values are found at the lowermost levels (about 85%)
and the lowest values at the uppermost levels (about 55%). The ISW tethersonde profiles also have values
around 85% for the lower altitudes covered by that data set (up to 600 m ASL). Looking at the reanalyses
biases, these are the highest for the Aranda data set between 2,000 and 3,000 m, MERRA‐2 having highest
values at close to +15% between 2,000 and 3,000 m ASL. A similar, but somewhat smaller, bias is seen in
MERRA‐2 for the Fedorov data set. The reanalyses display negative biases throughout with values down
to almost −15% at 200 m ASL for the ISW tethersonde data set. An exception is MERRA‐2, which has a bias
very close to 0% for most altitudes.

As is generally the case for the other variables investigated, both the largest RMSE (up to 30% in JRA‐55 at 3–
4,000 m ASL), and the largest spread in RMSE between the reanalyses are found when compared with the
Aranda data set. The ISW tethersonde data set displays little variation with height in the RMSE across the
reanalyses and ERA‐Interim has the lowest values (below 25% for most height levels).

The correlation coefficients, r, feature a very similar variability with height to the ones for specific humidity
in the Aranda data set. For the Fedorov data set, however, there is a relatively much stronger variability in r
with height for relative than for specific humidity, CFSR having the lowest values down to almost 0.1 at
about 3,500 m ASL. For the ISW tethersondes, the values of r are fairly poor with none of the reanalyses hav-
ing values above 0.5 for any height level.
3.3.4. Wind Speed
While the mean wind speed generally increases with height in the Aranda data set, there is an overall, slight
decrease with height in the Fedorov profiles. This variation with height is seen by the reanalyses, but they do
feature biases.We note that none of the biases in theAranda data set are significant. For the Fedorov data set,
however, ERA‐Interim features significantly negative biases, peaking at about−1.9 m/s at 3,300 m ASL. The
absolute values and variability in the wind speed bias across the reanalyses are larger in the Aranda data set
than in the Fedorov data set. The mean ISW tethersonde reanalyses profiles follow very closely the observed
wind, and the agreement is particularly good for CFSR.

The RMSE is roughly between 2 and 4 m/s in all three wind speed data sets. ERA‐Interim has marginally the
lowest RMSE values for theAranda and Fedorov data sets, and the spread in RMSE between the reanalyses is
somewhat smaller for the Fedorov than for the other data sets.

The highest r (at least 0.6) across all products and height levels are found for the Fedorov data set. The rea-
nalyses also feature the smallest variation in r for this data set. The lowest, and also insignificant value of r
(only 0.1) for any height level, is found at 200 m ASL in JRA‐55 when compared against the ISW
tethersonde profiles.
3.3.5. Influence of Temperature Inversions on the Skill Scores
We have calculated separate error statistics for the lowest 1,500 m ASL for two subsets of profiles, with and
without inversions in the lowermost 1,500 m ASL. Following R. W. Jones et al. (2016a), we define an inver-
sion as an atmospheric layer in which the temperature increases with height by 2 K or more. We only use the
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Aranda and ISW airsonde data sets in the calculations of these statistics because of specific characteristics of
the other data sets, outlined in the following. The Fedorov data set is not independent, and, compared to this
data set, the reanalyses do not have any significant temperature biases nor do they have substantially
increased temperature RMSE in the lower layers as the Aranda and ISW airsonde reanalyses profiles do.
The ISW tethersonde data set has a limited vertical range (up to 600 m ASL) and is therefore also excluded
from this analysis.

In the Aranda data set, we identified at least one temperature inversion in 16 out of 34 profiles, and in the
ISW airsonde data the corresponding numbers were 32 out of 40 profiles. Among the latter, the temperature
data were of poor quality in the lower 1,500 m ASL in one profile, and we therefore set the resulting number
of ISW airsonde profiles containing no inversion to 7. The results from the Aranda reanalysis profile error
statistics (see Table S1 in supporting information) reveal that when temperature inversions are present,
the mean potential temperature bias (mean of all reanalyses biases) in the lowermost 1,500 m layer is
+0.5 K, and for profiles without any inversion, it is +0.1 K. For mean RMSE the values are 2.1 K (inversion)
and 1.5 K (no inversion), and for the mean r they are 0.59 (inversion) and 0.78 (no inversion). Thus, there is
on average a consistent degradation in model performance for potential temperature when the profiles
include inversions, and this result is also largely valid for when the statistics for each individual reanalysis
are considered. The increased positive temperature biases with inversions present alludes to a general under-
estimation of the inversion strength. Furthermore, we also note that the error statistics for specific humidity
are also generally worse for profiles with than without temperature inversions for the Aranda data set and
the same is seen for relative humidity.

For the ISW airsonde data set, the situation is somewhat different with respect to the potential temperature
profile error statistics (see Table S2); while the mean RMSE for all reanalyses degrades from the noninver-
sion (1.7 K) to the inversion profiles (3.6 K), the bias and r improve from +1.1 to −0.5 K and 0.88 to 0.90,
respectively. For ERA‐Interim, the bias is reduced from 0.7 to 0.0 K when going from noninversion to inver-
sion profiles, and the corresponding change for JRA‐55 is from +1.3 to +0.3 K. For CFSR and MERRA‐2, on
the other hand, there is a change in sign in the biases, and they go from +0.7 to −1.4 K and +1.7 to −1.0 K,
respectively, when the noninversion profiles are compared with the inversion profiles. The above suggests a
general overestimation of the inversion strengths by CFSR and MERRA‐2, and an underestimation by ERA‐
Interim and JRA‐55.
3.3.6. Summary of the Reanalyses' Upper Air Performance
In order to summarize the upper‐air performance of the four reanalyses, we have calculated vertically aver-
aged error statistics for each of the atmospheric parameters considered and applied the same ranking system
as for the near‐surface data. The results from the Aranda and ISW airsonde sounding data sets are presented
in Tables S1 and S2, and the results from the Fedorov and ISW tethersonde sounding data sets can be found
in Tables S3 and S4.

The results of the ranking reveal that ERA‐Interim has the highest ranking scores, except for the ISW air-
sonde data set where CFSR has marginally the highest score. JRA‐55 and MERRA‐2 have either the lowest
or the second lowest ranking scores for all four data sets. An exception is the Fedorov data set where
MERRA‐2 has the second highest score. In terms of the vertically averaged values of RMSE and r, ERA‐
Interim is the best, with only a few exceptions, for all data sets and all parameters considered.
Considering biases, however, ERA‐Interim has the worst or second‐worst values for several data sets and
parameters, such as for the potential temperature and wind speed for the Aranda and Fedorov data sets.

4. Discussion and Conclusions

In this study, we used surface layer and upper‐air data from two research cruises and an ice station in the
Weddell Sea from 1992 and 1996 to evaluate four current reanalyses: ERA‐Interim, CFSR, JRA‐55,
and MERRA‐2.

In terms of surface layer performance, we find that CFSR and ERA‐Interim generally perform the best when
the ranking scores are summed, and ERA‐Interim has the overall highest scores. We note that CFSR per-
forms particularly well for the 2 m temperature, for which it has the best bias, RMSE, and r, and it also per-
forms well for 10 m wind speed, for which it is the only product with a nonsignificant bias. We do not know
why CFSR performs this well for these variables, but note that among the reanalyses evaluated here, CFSR is
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the only product based on a coupled atmosphere ‐ sea ice ‐ oceanmodel (Saha et al., 2010). This is expected to
yield advantage close to the air ‐ sea and air‐ ice interphases. ERA‐Interim, on the other hand, performs very
well when it comes to the relative humidity, both with respect to water and with respect to ice. It is also the
product that in general comes the closest to reproducing the observed saturation and supersaturation with
respect to ice.

All four reanalyses feature warm biases in their 2 m temperature, ranging from +2.0 K in CFSR to +2.8 K in
MERRA‐2. There are few other evaluation studies of reanalyses covering the Antarctic sea ice zone, largely
because few observations exist, and those that do cover rather short time periods. This is particularly true for
the current reanalyses as evaluated herein. A study that does evaluate current reanalyses over the Antarctic
sea ice is that by R. W. Jones et al. (2016b). Based on data from three research vessel cruises, they documen-
ted near‐surface cold biases in ERA‐Interim, CFSR, JRA‐55, and MERRA in the Amundsen Sea Embayment
in West Antarctica, though these biases were dominated by strong negative values close to the coast
(approaching ‐6 K). Farther offshore, they found data points with weaker and even positive temperature
biases in all four reanalyses. Regarding older reanalyses, the NCEP‐National Center for Atmospheric
Research (NCAR) reanalysis (Kalnay et al., 1996) has been found to have a cold bias by Vihma (2002) and
Vancoppenolle et al. (2011), who used buoy data and data from SIMBA and ISPOL in their evaluations.
Using ERA‐Interim data from 1979 to 2013, P. D. Jones and Lister (2014) also found cold biases along the
coast, whereas they also documented prominent warm biases in the Antarctic interior. Using satellite data,
Fréville et al. (2014) also found widespread warm biases in the Antarctic interior.

Reliable near‐surface variables in reanalyses are important for climate research, where variables such as 2 m
air temperature and 10 m wind speed often receive much attention, and for usage of reanalyses in driving
ocean and sea‐ice models. For example, too high near‐surface wind speeds, as we document for ERA‐
Interim, JRA‐55, and MERRA‐2, would lead to overestimation of the wind stress and its curl, with implica-
tions to, for example, ocean dynamics and transport, and sea‐ice drift (Saha et al., 2010; Uotila et al., 2014).

Considering the error statistics for surface heat flux and cloud fraction, the relatively largest model errors are
found in MERRA‐2 and JRA‐55 for the latter variable, with biases of respectively +30.2% and −17.3%.
Previous studies have found connections between biases in longwave and shortwave radiation and biases
in cloud fractions (Walsh et al., 2009; Zib et al., 2012). Such an investigation is, however, beyond the scope
of our study. Radiative fluxes are indeed not simply explained by the cloud fraction, and the cloud liquid
water, ice, and aerosol contents are more important for the radiative transfer (Vancoppenolle et al., 2011;
Walsh et al., 2009; Zib et al., 2012).

Regarding the upper‐air performance, ERA‐Interim outperforms all the other reanalyses when the rank
scores are summed up for all data sets, except for the ISW airsondes where CFSR has the marginally highest
score. However, ERA‐Interim does suffer from some prominent biases, including a significant warm bias of
up to +1.4 K compared with the Aranda soundings. This low‐level warm bias in ERA‐Interim is consistent
with findings in more recent data from the eastern side of the Antarctic peninsula (Nygård et al., 2016) and
also with data from the Arctic (de Boer et al., 2014; Jakobson et al., 2012; Liu et al., 2008; Lüpkes et al., 2010;
Wesslén et al., 2014). Corresponding to this warm bias, there is a significant moist bias in the lowermost
layers of the reanalyses, when compared against the Aranda soundings and, to a lesser degree, the
Fedorov soundings. At higher levels (above 1,500 m ASL), all four reanalyses have significant cold biases
compared with both Fedorov and Aranda profiles. Similar cold biases were found by Nygård et al. (2016)
for reanalysis data from the eastern side of the Antarctic Peninsula. They pointed out that such cold biases
are consistent with biases found in satellite data (Boylan et al., 2015; J. Wang et al., 2013) and reasoned that
this might be a source for these cold biases. However, none of the satellite data sets addressed in those studies
were available for 1992 and 1996.

Regarding the data independency, the Fedorov data set was the only data set made available for assimilation
through the GTS. Assuming that the Fedorov data were used in data assimilation, this is probably a major
reason why the error statistics are generally more favorable and there is mostly a smaller spread between
the reanalyses for this data set than for the other upper‐air data sets. Still, significant biases remain, as, for
example, upper‐level cold biases down to −0.7 K in ERA‐Interim. Hence, there are indications that the data
assimilation system does not fully utilize available soundings, for example, by giving them too little weight.
This is consistent with previous studies, for example, by de Boer et al. (2014), Jakobson et al. (2012), Liu et al.
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(2008), Lüpkes et al. (2010), and Wesslén et al. (2014), who found biases similar in nature to these data in
spite of the fact that the radiosonde data used for validation were sent to GTS and were thus available
for assimilation.

Considering spatial variability in reanalysis performance, previous validation studies for the Antarctic have
revealed substantial differences between different products (R. W. Jones et al., 2016b; Nygård et al., 2016). In
our study, we identified strong spatial differences with respect to lower‐level potential temperature. Under
the very stable stratification in the lower layers of the ISW soundings over sea ice, JRA‐55 and ERA‐
Interim both feature warm biases (though not significant), just like in the ship‐based Aranda and Fedorov
soundings under less stable stratification. CFSR and MERRA‐2, however, feature significant cold biases in
the lower levels of the ISW soundings. Temperature inversions are known to be difficult to represent appro-
priately in models, and several previous studies have found larger errors in conditions of strong inversions
(Harden et al., 2011; R. W. Jones et al., 2016b; Lüpkes et al., 2010; Pavelsky et al., 2010). It is therefore not
surprising that such differences may occur. We do see that the reanalyses error statistics for the lower
1,500 m ASL degrade when going from the noninversion profiles to profiles containing inversions for the
Aranda data set, and to some degree also for the ISW airsonde data set.

Finally, it is worth noting that even though the observations considered in this study are older than in several
recent evaluation studies (R. W. Jones et al., 2016b; Lüpkes et al., 2010; Nygård et al., 2016), the documented
biases are largely similar in nature, including dominant warm biases in the ABL. As the amount of observa-
tions has varied depending on the decade, season, and region, the consistency of the warm bias in the ABL
suggests a need to improve ABL and surface energy budget parameterizations. In addition to reanalyses, a
warm near‐surface bias in conditions of a stable boundary layer is a common feature in numerical weather
prediction and often attributed to excessive heat and momentum fluxes in the stable boundary layer (Cuxart
et al., 2006; Vihma et al., 2014).
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