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Abstract Single- and double-differential cross-section
measurements are presented for the production of top-quark
pairs, in the lepton + jets channel at particle and parton level.
Two topologies, resolved and boosted, are considered and
the results are presented as a function of several kinematic
variables characterising the top and t t̄ system and jet multi-
plicities. The study was performed using data from pp colli-
sions at centre-of-mass energy of 13 TeV collected in 2015
and 2016 by the ATLAS detector at the CERN Large Hadron
Collider (LHC), corresponding to an integrated luminosity
of 36 fb−1. Due to the large t t̄ cross-section at the LHC,
such measurements allow a detailed study of the properties
of top-quark production and decay, enabling precision tests
of several Monte Carlo generators and fixed-order Standard
Model predictions. Overall, there is good agreement between
the theoretical predictions and the data.
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1 Introduction

The detailed studies of the characteristics of top-quark pair
(t t̄) production as a function of different kinematic vari-
ables that can now be performed at the Large Hadron Col-
lider (LHC) provide a unique opportunity to test the Stan-
dard Model (SM) at the TeV scale. Furthermore, extensions
to the SM may modify the t t̄ differential cross-sections in
ways that an inclusive cross-section measurement [1] is not
sensitive to. In particular, such effects may distort the top-
quark momentum distribution, especially at higher momen-
tum [2,3]. Therefore, a precise measurement of the t t̄ differ-
ential cross-sections has the potential to enhance the sensi-
tivity to possible effects beyond the SM, as well as to chal-
lenge theoretical predictions that now reach next-to-next-
to-leading-order (NNLO) accuracy in perturbative quantum
chromodynamics (pQCD) [4–6]. Moreover, the differential
distributions are sensitive to the differences between Monte
Carlo (MC) generators and their settings, representing a
valuable input to the tuning of the MC parameters. This
aspect is relevant for all the searches and measurements
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that are limited by the accuracy of the modelling of t t̄
production.

The ATLAS [7–15] and CMS [16–22] Collaborations
have published measurements of t t̄ differential cross-sections
at centre-of-mass energies (

√
s) of 7 TeV, 8 TeV and 13 TeV

in pp collisions using final states containing leptons, both
in the full phase-space using parton-level variables and in
fiducial phase-space regions using observables constructed
from final-state particles (particle-level). These results have
been largely used to improve the modelling of MC generators
[23–27] and to reduce the uncertainties in the gluon parton
distribution function (PDF) [28].

The results presented in this paper probe the top-quark
kinematic properties at

√
s = 13 TeV and complement recent

measurements involving leptonic final states by ATLAS [13–
15] and CMS [19,21] by measuring single- and double-
differential cross-sections in the selected fiducial phase-
spaces and extrapolating the results to the full phase-space
at the parton level.

In the SM, the top quark decays almost exclusively into
a W boson and a b-quark. The signature of a t t̄ decay is
therefore determined by the W boson decay modes. This
analysis makes use of the �+jets t t̄ decay mode, also called
the semileptonic channel, where one W boson decays into
an electron or a muon and a neutrino, and the other W boson
decays into a quark–antiquark pair, with the two decay modes
referred to as the e+jets and μ+jets channels, respectively.
Events in which the W boson decays into an electron or muon
through a τ -lepton decay may also meet the selection criteria.
Since the reconstruction of the top quark depends on its decay
products, in the following the two top quarks are referred to
as ‘hadronically (or leptonically) decaying top quarks’ (or
alternatively ‘hadronic/leptonic top’ ), depending on the W
boson decay mode.

Two complementary topologies of the t t̄ final state in
the �+jets channel are exploited, referred to as ‘resolved’
and ‘boosted’, where the decay products of the hadronically
decaying top quark are either angularly well separated or
collimated into a single large-radius jet reconstructed in the
calorimeter, respectively. As the jet selection efficiency of the
resolved analysis decreases with increasing top-quark trans-
verse momentum, the boosted selection allows events with
higher-momentum hadronically decaying top quarks to be
efficiently selected.

The differential cross-sections for t t̄ production are mea-
sured as a function of a large number of variables (described
in Sect. 7) including, for the first time in this channel
in ATLAS, double-differential distributions. Moreover, the
amount of data and the reduced detector uncertainties com-
pared to previous publications also allows, for the first time,
double differential measurements in the boosted topology to
be made.

The analysis investigates a list of variables that charac-
terise various aspects of the t t̄ system production. In par-
ticular, the variables selected are sensitive to the kinematics
of the top and anti-top quarks and of the t t̄ system or are
sensitive to initial- and final-state radiation effects. Further-
more, the variables are sensitive to the differences among
PDFs and possible beyond the SM effects. Both normalised
and absolute differential cross-sections are measured, with
more emphasis given to the discussion of the normalised
results.

Differential cross-sections are measured as a function
of different variables in the fiducial and full phase-spaces,
since they serve different purposes: the particle-level cross-
sections in the fiducial phase-space are particularly suited
to MC tuning while the parton-level cross-sections, extrapo-
lated to the full phase-space, are the observables to be used
for stringent tests of higher-order pQCD predictions and for
the determination of the proton PDFs and the top-quark pole
mass in pQCD analyses.

2 ATLAS detector

ATLAS is a multipurpose detector [29] that provides nearly
full solid angle1 coverage around the interaction point.
Charged-particle trajectories with pseudorapidity |η| < 2.5
are reconstructed in the inner detector, which comprises a sil-
icon pixel detector, a silicon microstrip detector and a tran-
sition radiation tracker (TRT). The innermost pixel layer,
the insertable B-layer [30,31], was added before the start of
13 TeV LHC operation at an average radius of 33 mm around
a new, thinner beam pipe. The inner detector is embed-
ded in a superconducting solenoid generating a 2 T axial
magnetic field, allowing precise measurements of charged-
particle momenta. The calorimeter system covers the pseu-
dorapidity range |η| < 4.9. Within the region |η| < 3.2,
electromagnetic calorimetry is provided by barrel and endcap
high-granularity lead/liquid-argon (LAr) calorimeters, with
an additional thin LAr presampler covering |η| < 1.8, to cor-
rect for energy loss in material upstream of the calorimeters.
Hadronic calorimetry is provided by the steel/scintillating-
tile calorimeter, segmented into three barrel structures within

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector. The positive x-
axis is defined by the direction from the interaction point to the centre
of the LHC ring, with the positive y-axis pointing upwards, while the
beam direction defines the z-axis. Cylindrical coordinates (r, φ) are
used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity η is defined in terms of the polar angle θ by
η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln[(E+ pz)/(E− pz)]
where E denotes the energy and pz is the component of the momen-
tum along the beam direction. The angular distance �R is defined as√

(�y)2 + (�φ)2.
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|η| < 1.7, and two copper/LAr hadronic endcap calorime-
ters. The solid angle coverage is completed with forward cop-
per/LAr and tungsten/LAr calorimeter modules optimised
for electromagnetic and hadronic measurements respectively.
The calorimeters are surrounded by a muon spectrometer
within a magnetic field provided by air-core toroid magnets
with a bending integral of about 2.5 Tm in the barrel and
up to 6 Tm in the endcaps. Three stations of precision drift
tubes and cathode-strip chambers provide an accurate mea-
surement of the muon track curvature in the region |η| < 2.7.
Resistive-plate and thin-gap chambers provide muon trigger-
ing capability up to |η| = 2.4.

Data were selected from inclusive pp interactions using
a two-level trigger system [32]. A hardware-based trigger
uses custom-made hardware and coarser-granularity detec-
tor data to initially reduce the trigger rate to approximately
100 kHz from the original 40 MHz LHC bunch crossing rate.
A software-based high-level trigger, which has access to full
detector granularity, is applied to further reduce the event
rate to 1 kHz.

3 Data and simulation

The differential cross-sections are measured using data col-
lected during the 2015 and 2016 LHC pp stable collisions
at

√
s = 13 TeV with 25 ns bunch spacing and an average

number of pp interactions per bunch crossing 〈μ〉 of around
23. The selected data sample, satisfying beam, detector and
data-taking quality criteria, correspond to an integrated lumi-
nosity of 36.1 fb−1.

The data were collected using single-muon or single-
electron triggers. For each lepton type, multiple trigger con-
ditions were combined to maintain good efficiency in the full
momentum range, while controlling the trigger rate. Differ-
ent transverse momentum (pT) thresholds were applied in
the 2015 and 2016 data taking. In the data sample collected
in 2015, the pT thresholds for the electrons were 24 GeV,
60 GeV and 120 GeV, while for muons the thresholds were
20 GeV and 50 GeV; in the data sample collected in 2016,
the pT thresholds for the electrons were 26 GeV, 60 GeV and
140 GeV, while for muons the thresholds were 26 GeV and
50 GeV. Different pT thresholds were employed since tighter
isolation or identification requirements were applied to the
triggers with lowest pT thresholds.

The signal and background processes are modelled with
various MC event generators described below and sum-
marised in Table 1. Multiple overlaid pp collisions were
simulated with the soft QCD processes of Pythia 8.186
[33] using parameter values from the A2 set of tuned param-
eters (tune) [34] and the MSTW2008LO [35] set of PDFs
to account for the effects of additional collisions from the
same and nearby bunch crossings (pile-up). Simulation sam- Ta

bl
e
1

Su
m

m
ar

y
of

M
C

sa
m

pl
es

us
ed

fo
r

th
e

no
m

in
al

m
ea

su
re

m
en

ta
nd

to
as

se
ss

th
e

sy
st

em
at

ic
un

ce
rt

ai
nt

ie
s,

sh
ow

in
g

th
e

ev
en

tg
en

er
at

or
fo

r
th

e
ha

rd
-s

ca
tte

ri
ng

pr
oc

es
s,

th
e

or
de

r
in

pQ
C

D
of

th
e

cr
os

s-
se

ct
io

n
us

ed
fo

r
no

rm
al

is
at

io
n,

PD
F

ch
oi

ce
,a

s
w

el
la

s
th

e
pa

rt
on

-s
ho

w
er

ge
ne

ra
to

r
an

d
th

e
co

rr
es

po
nd

in
g

tu
ne

us
ed

in
th

e
an

al
ys

is

Ph
ys

ic
s

pr
oc

es
s

G
en

er
at

or
PD

F
se

tf
or

ha
rd

pr
oc

es
s

Pa
rt

on
sh

ow
er

T
un

e
C

ro
ss

-s
ec

tio
n

no
rm

al
is

at
io

n

tt̄
si

gn
al

Po
w
h
eg

-
B
o
x

v2
N

N
PD

F3
.0

N
L

O
Py

th
ia

8.
18

6
A

14
N

N
L

O
+
N

N
L

L

tt̄
PS

sy
st

.
Po

w
h
eg

-
B
o
x

v2
N

N
PD

F3
.0

N
L

O
H
er

w
ig

7.
0.

1
H

7-
U

E
-M

M
H

T
N

N
L

O
+
N

N
L

L

tt̄
ge

ne
ra

to
r

sy
st

.
Sh

er
pa

2.
2.

1
N

N
PD

F3
.0

N
N

L
O

Sh
er

pa
Sh

er
pa

N
N

L
O

+
N

N
L

L

tt̄
ra

d.
sy

st
.

Po
w
h
eg

-
B
o
x

v2
N

N
PD

F3
.0

N
L

O
Py

th
ia

8.
18

6
V

ar
3c

D
ow

n/
V

ar
3c

U
p

N
N

L
O

+
N

N
L

L

Si
ng

le
to

p:
t-

ch
an

ne
l

Po
w
h
eg

-
B
o
x

v1
C

T
10

f4
Py

th
ia

6.
42

8
Pe

ru
gi

a2
01

2
N

L
O

Si
ng

le
to

p:
t-

ch
an

ne
ls

ys
t.

Po
w
h
eg

-
B
o
x

v1
C

T
10

f4
Py

th
ia

6.
42

8
Pe

ru
gi

a2
01

2
ra

dH
i/r

ad
L

o
N

L
O

Si
ng

le
to

p:
s-

ch
an

ne
l

Po
w
h
eg

-
B
o
x

v1
C

T
10

Py
th

ia
6.

42
8

Pe
ru

gi
a2

01
2

N
L

O

Si
ng

le
to

p:
tW

ch
an

ne
l

Po
w
h
eg

-
B
o
x

v1
C

T
10

Py
th

ia
6.

42
8

Pe
ru

gi
a2

01
2

N
L

O
+
N

N
L

L

Si
ng

le
to

p:
tW

ch
an

ne
ls

ys
t.

Po
w
h
eg

-
B
o
x

v1
C

T
10

Py
th

ia
6.

42
8

Pe
ru

gi
a2

01
2

ra
dH

i/r
ad

L
o

N
L

O
+
N

N
L

L

Si
ng

le
to

p:
tW

ch
an

ne
lD

S
Po

w
h
eg

-
B
o
x

v1
C

T
10

Py
th

ia
6.

42
8

Pe
ru

gi
a2

01
2

N
L

O
+
N

N
L

L

t
+

X
M
a
d
G
ra

ph
5

N
N

PD
F2

.3
L

O
Py

th
ia

8.
18

6
A

14
N

L
O

W
(→

�
ν
)+

je
ts

Sh
er

pa
2.

2.
1

N
N

PD
F3

.0
N

N
L

O
Sh

er
pa

Sh
er

pa
N

N
L

O

Z
(→

�
�̄
)+

je
ts

Sh
er

pa
2.

2.
1

N
N

PD
F3

.0
N

N
L

O
Sh

er
pa

Sh
er

pa
N

N
L

O

W
W

,
W

Z
,
Z
Z

Sh
er

pa
2.

1.
1

N
N

PD
F3

.0
N

N
L

O
Sh

er
pa

Sh
er

pa
N

L
O

123



1028 Page 4 of 84 Eur. Phys. J. C (2019) 79 :1028

ples are reweighted so that their pile-up profile matches the
one observed in data. The simulated samples are always
reweighted to have the same integrated luminosity of the
data.

The EvtGen v1.2.0 program [36] was used to simulate
the decay of bottom and charm hadrons for all event gen-
erators except for Sherpa [37]. The detector response was
simulated [38] in Geant 4 [39]. A ‘fast simulation’ [40]
(denoted by AFII in the plots throughout the paper), utilis-
ing parameterised showers in the calorimeter [40], but with
full simulation of the inner detector and muon spectrometer,
was used in the samples generated to estimate t t̄ modelling
uncertainties. The data and MC events were reconstructed
with the same software algorithms.

3.1 Signal simulation samples

In this section the MC generators used for the simulation of
t t̄ event samples are described for the nominal sample, the
alternative samples used to estimate systematic uncertainties
and the other samples used in the comparisons of the mea-
sured differential cross-sections [41]. The top-quark mass
(mt ) and width were set to 172.5 GeV and 1.32 GeV [42],
respectively, in all MC event generators.

For the generation of t t̄ events, the Powheg- Box v2
[43–46] generator with the NNPDF30NLO PDF sets [47]
in the matrix element (ME) calculations was used. Events
where both top quarks decayed hadronically were not
included. The parton shower, fragmentation, and the under-
lying events were simulated using Pythia 8.210 [33] with
the NNPDF23LO PDF [48] sets and the A14 tune [49]. The
hdamp parameter, which controls the pT of the first gluon or
quark emission beyond the Born configuration in Powheg-
Box v2, was set to 1.5mt [24]. The main effect of this param-
eter is to regulate the high-pT emission against which the t t̄
system recoils. Signal t t̄ events generated with those settings
are referred to as the nominal signal sample. In all the fol-
lowing figures and tables the predictions based on this MC
sample are referred to as ‘Pwg+Py8’.

The uncertainties affecting the description of the hard
gluon radiation are evaluated using two samples with dif-
ferent factorisation and renormalisation scales relative to the
nominal sample, as well as a different hdamp parameter value
[26]. For one sample, the factorisation and renormalisation
scales were reduced by a factor of 0.5, the hdamp parameter
was increased to 3mt and the Var3cUp eigentune from the
A14 tune was used. In all the following figures and tables
the predictions based on this MC sample are referred to as
‘Pwg+Py8 Rad. Up’. For the second sample, the factorisa-
tion and renormalisation scales were increased by a factor
of 2.0 while the hdamp parameter was unchanged and the
Var3cDown eigentune from the A14 tune was used. In all

the following figures and tables the predictions based on this
MC sample are referred to as ‘Pwg+Py8 Rad. Down’.

The effect of the simulation of the parton shower and
hadronisation is studied using the Powheg- Box v2 genera-
tor with the NNPDF30NLO PDF interfaced to Herwig 7.0.1
[50,51] for the showering, using the MMHT2014lo68cl PDF
set [52] and the H7-UE-MMHT tune [53]. In all the following
figures and tables the predictions based on this MC sample
are referred to as ‘Pwg+H7’.

The impact of the generator choice, including matrix ele-
ment calculation, matching procedure, parton-shower and
hadronisation model, is evaluated using events generated
with Sherpa 2.2.1 [37], which models the zero and one
additional-parton process at next-to-leading-order (NLO)
accuracy and up to four additional partons at leading-order
(LO) accuracy using the MEPS@NLO prescription [54],
with the NNPDF3.0NNLO PDF set [47]. The calculation
uses its own parton-shower tune and hadronisation model. In
all the following figures and tables the predictions based on
this MC sample are referred to as ‘Sherpa’.

All the t t̄ samples described are normalised to the
NNLO+NNLL in pQCD by the means of a k-factor.
The cross-section used to evaluate the k-factor is σt t̄ =
832+20

−29(scale) ± 35 (PDF, αS) pb, as calculated with the
Top++2.0 program to NNLO in pQCD, including soft-gluon
resummation to next-to-next-to-leading-log order (NNLL)
[55–61], and assuming mt = 172.5 GeV. The first uncer-
tainty comes from the independent variation of the factorisa-
tion and renormalisation scales, μF and μR, while the second
one is associated with variations in the PDF and αS, follow-
ing the PDF4LHC prescription with the MSTW2008 68%
CL NNLO, CT10 NNLO and NNPDF2.3 5f FFN PDF sets,
described in Refs. [48,62–64].

3.2 Background simulation samples

Several processes can produce the same final state as the t t̄
�+jets channel. The events produced by these backgrounds
need to be estimated and subtracted from the data to deter-
mine the top-quark pair cross-sections. They are all estimated
by using MC simulation with the exception of the background
events containing a fake or non-prompt lepton, for which
data-driven techniques are employed. The processes consid-
ered are W+jets, Z+jets production, diboson final states and
single top-quark production, in the t-channel, in association
with a W boson and in the s-channel. The contributions from
top and t t̄ produced in association with weak bosons and
t t̄ t t̄ are also considered. The overall contribution of these
processes is denoted by t + X .

For the generation of single top quarks in the tW channel
and s-channel the Powheg- Box v1 [65,66] generator with
the CT10 PDF [63] sets in the ME calculations was used.
Electroweak t-channel single-top-quark events were gener-
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ated using the Powheg- Box v1 generator. This generator
uses the four-flavour scheme for the NLO ME calculations
[67] together with the fixed four-flavour PDF set CT10f4.
For these processes the parton shower, fragmentation, and
the underlying event were simulated using Pythia 6.428
[68] with the CTEQ6L1 PDF [69] sets and the correspond-
ing Perugia 2012 tune (P2012) [70]. The single-top-quark
cross-sections for the tW channel were normalised using its
NLO+NNLL prediction, while the t- and s-channels were
normalised using their NLO predictions [71–76].

The modelling uncertainties related to the additional radi-
ation in the generation of single top quarks in the tW - and t-
channels are assessed using two alternative samples for each
channel, generated with different factorisation and renormal-
isation scales and different P2012 tunes relative to the nom-
inal samples. In the first two samples, the factorisation and
renormalisation scales were reduced by a factor of 0.5 and
the radHi tune was used. For the second two samples, the
factorisation and renormalisation scales were increased by
a factor of 2.0 and the radLo tune was used. An additional
sample is used to assess the uncertainty due to the method
used in the subtraction of the overlap of tW production of
single top quarks and production of t t̄ pairs from the tW sam-
ple [77]. In the nominal sample the diagram removal method
(DR) is used, while the alternative sample is generated using
the diagram subtraction (DS) one. All the other settings are
identical in the two samples.

Events containingW or Z bosons associated with jets were
simulated using the Sherpa 2.2.1 [37] generator. Matrix ele-
ments were calculated for up to two partons at NLO and
four partons at LO using the Comix [78] and OpenLoops
[79] ME generators and merged with the Sherpa parton
shower [80] using the ME+PS@NLO prescription [54]. The
NNPDF3.0NNLO PDF set was used in conjunction with
dedicated parton-shower tuning. The W/Z+jets events were
normalised to the NNLO cross-sections [81,82].

Diboson processes with one of the bosons decaying
hadronically and the other leptonically were simulated using
the Sherpa 2.2.1 generator. They were calculated for up to
one (Z Z ) or zero (WW , WZ ) additional partons at NLO and
up to three additional partons at LO using the Comix and
OpenLoops ME generators and merged with the Sherpa
parton shower using the ME+PS@NLO prescription. The
CT10 PDF set was used in conjunction with dedicated parton-
shower tuning. The samples were normalised to the NLO
cross-sections evaluated by the generator.

The t t̄W and t t̄ Z samples were simulated using Mad-
Graph5_aMC@NLO and the NNPDF23NNLO PDF set
[48] for the ME. In addition to the t t̄W and t t̄ Z samples, the
predictions for t Z , t t̄ t t̄ , t t̄WW and tW Z are included in the
t+X background. These processes have never been observed
at the LHC, except for strong evidence for t Z [83,84], and
have a cross-section significantly smaller than for t t̄W and

t t̄ Z production, providing a subdominant contribution to the
t + X background. The simulation of the t Z , t t̄WW and
t t̄ t t̄ samples was performed using MadGraph while the
simulation of the tW Z sample was obtained with Mad-
Graph5_aMC@NLO. For all the samples in the t + X back-
ground, Pythia 8.186 [33] and the PDF set NNPDF23LO
with the A14 tune were used for the showering and hadroni-
sation.

4 Object reconstruction and event selection

The following sections describe the detector- and particle-
level objects used to characterise the final-state event topol-
ogy and to define the fiducial phase-space regions for the
measurements.

4.1 Detector-level object reconstruction

Primary vertices are formed from reconstructed tracks that
are spatially compatible with the interaction region. The
hard-scatter primary vertex is chosen to be the one with at
least two associated tracks and the highest

∑
p2

T, where the
sum extends over all tracks with pT > 0.4 GeV matched to
the vertex.

Electron candidates are reconstructed by matching tracks
in the inner detector to energy deposits in the EM calorime-
ter. They must satisfy a ‘tight’ likelihood-based identifica-
tion criterion based on shower shapes in the EM calorimeter,
track quality and detection of transition radiation produced
in the TRT detector [85]. The reconstructed EM clusters are
required to have a transverse energy ET > 27 GeV and a
pseudorapidity |η| < 2.47, excluding the transition region
between the barrel and endcap calorimeters (1.37 < |η| <

1.52). The longitudinal impact parameter z0 of the associ-
ated track is required to satisfy |�z0 sinθ | < 0.5 mm, where
θ is the polar angle of the track, and the transverse impact
parameter significance |d0|/σ(d0) < 5, where d0 is the trans-
verse impact parameter and σ(d0) is its uncertainty. The
impact parameters d0 and z0 are calculated relative to the
beam spot and the beam line, respectively. Isolation require-
ments based on calorimeter and tracking quantities are used
to reduce the background from jets misidentified as prompt
leptons (fake leptons) or due to semileptonic decays of heavy-
flavour hadrons (non-prompt real leptons) [86]. The isolation
criteria are pT- and η-dependent, and ensure an efficiency of
90% for electrons with pT of 25 GeV and 99% efficiency
for electrons with pT of 60 GeV. The identification, isolation
and trigger efficiencies are measured using electrons from Z
boson decays [85].

Muon candidates are identified by matching tracks in the
muon spectrometer to tracks in the inner detector [87]. The
track pT is determined through a global fit to the hits, which
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takes into account the energy loss in the calorimeters. Muons
are required to have pT > 27 GeV and |η| < 2.5. To reduce
the background from muons originating from heavy-flavour
decays inside jets, muons are required to be isolated using
track-quality and isolation criteria similar to those applied to
electrons.

Jets are reconstructed using the anti-kt algorithm [88] with
radius parameter R = 0.4 as implemented in the Fast-
Jet package [89]. Jet reconstruction in the calorimeter starts
from topological clustering of individual calorimeter cell [90]
signals. They are calibrated to be consistent with electromag-
netic cluster shapes using corrections determined in simula-
tion and inferred from test-beam data. Jet four-momenta are
then corrected for pile-up effects using the jet-area method
[91]. To reduce the number of jets originating from pile-up,
an additional selection criterion based on a jet-vertex tag-
ging (JVT) technique is applied. The jet-vertex tagging is
a likelihood discriminant that combines information from
several track-based variables [92] and the criterion is only
applied to jets with pT < 60 GeV and |η| < 2.4. The jets’
energy and direction are calibrated using an energy- and η-
dependent simulation-based calibration scheme with in situ
corrections based on data [93], and are accepted if they have
pT > 25 GeV and |η| < 2.5.

To identify jets containing b-hadrons, a multivariate dis-
criminant (MV2c10) [94,95] is used, combining informa-
tion about the secondary vertices, impact parameters and the
reconstruction of the full b-hadron decay chain [96]. Jets are
considered as b-tagged if the value of the multivariate anal-
ysis (MVA) discriminant is larger than a certain threshold.
The thresholds are chosen to provide a 70% b-jet tagging
efficiency in an inclusive t t̄ sample, corresponding to rejec-
tion factors for charm quark and light-flavour parton initiated
jets of 12 and 381, respectively.

Large-R jets are reconstructed using the reclustering
approach [97]: the anti-kt algorithm, with radius parameter
R = 1, is applied directly to the calibrated small-R (R = 0.4)
jets, defined in the previous paragraph. Applying this tech-
nique, the small-R jet calibrations and uncertainties can be
directly propagated in the dense environment of the reclus-
tered jet, without additional corrections or systematic uncer-
tainties [98]. The reclustered jets rely mainly on the technique
and cuts applied to remove the pile-up contribution in the cal-
ibration of the small-R jets. However, a trimming technique
[99] is applied to the reclustered jet to remove soft small-R
jets that could originate entirely from pile-up. The trimming
procedure removes all the small-R jets with fraction of pT

smaller than 5% of the reclustered jet pT [100,101]. Only
reclustered jets with pT > 350 GeV and |η| < 2.0 are con-
sidered in the analysis. The reclustered jets are considered
b-tagged if at least one of the constituent small-R jets is b-
tagged. To top-tag the reclustered jets the jet mass is required
to be 120 < mjet < 220 GeV. This selection has an effi-

ciency of 60%, evaluated by only considering reclustered jets
with a top quark satisfying�R

(
reclustered jet, thad

)
< 0.75,

where thad is the generated top quark that decays hadroni-
cally.

For objects satisfying more than one selection criteria,
a procedure called ‘overlap removal’ is applied to assign
a unique hypothesis to each object. If a muon shares
a track with an electron, it is likely to have undergone
bremsstrahlung and hence the electron is not selected. To
prevent double-counting of electron energy deposits as jets,
the jet closest to a reconstructed electron is discarded if
�R(jet, e) < 0.2. Subsequently, to reduce the impact of
non-prompt electrons, if �R (jet, e) < 0.4, then that elec-
tron is removed. In case a jet is within �R (jet, μ) = 0.4
of a muon, if the jet has fewer than three tracks the jet is
removed whereas if the jet has at least three tracks the muon
is removed.

The missing transverse momentum Emiss
T is defined as

the magnitude of the �pmiss
T vector computed from the neg-

ative sum of the transverse momenta of the reconstructed
calibrated physics objects (electrons, photons, hadronically
decaying τ -leptons, small-R jets and muons) together with
an additional soft term constructed with all tracks that are
associated with the primary vertex but not with these objects
[102,103].

4.2 Particle-level object definition

Particle-level objects are defined in simulated events using
only stable particles, i.e. particles with a mean lifetime τ >

30 ps. The fiducial phase-spaces used for the measurements in
the resolved and boosted topologies are defined using a series
of requirements applied to particle-level objects analogous
to those used in the selection of the detector-level objects,
described above.

Stable electrons and muons are required to not originate
from a generated hadron in the MC event, either directly or
through a τ -lepton decay. This ensures that the lepton is from
an electroweak decay without requiring a direct match to a W
boson. Events where the W boson decays into a leptonically
decaying τ -lepton are accepted. The four-momenta of the
bare leptons are then modified by adding the four-momenta
of all photons, not originating from hadron decay, within a
cone of size �R = 0.1, to take into account final-state photon
radiation. Such ‘dressed leptons’ are then required to have
pT > 27 GeV and |η| < 2.5.

Neutrinos from hadron decays either directly or via a τ -
lepton decay are rejected. The particle-level missing trans-
verse momentum is calculated from the four-vector sum of
the selected neutrinos.

Particle-level jets are reconstructed using the same anti-kt
algorithm used at the detector level. The jet-reconstruction
procedure takes as input all stable particles, except for
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charged leptons and neutrinos not from hadron decay as
described above, inside a radius R = 0.4. Particle-level jets
are required to have pT > 25 GeV and |η| < 2.5. A jet is iden-
tified as a b-jet if a hadron containing a b-quark is matched
to the jet through a ghost-matching technique described in
Ref. [91]; the hadron must have pT > 5 GeV.

The reclustered jets are reconstructed at particle level
using the anti-kt algorithm with R = 1 starting from the
particle-level jets with R = 0.4. The same trimming used
at detector level is also applied at particle level: subjets of
the reclustered jets with pT < 5% of the jet pT are removed
from the jet. The reclustered jets are considered b-tagged
if at least one of the constituent small-R jets is b-tagged.
As in the case of detector-level jets, only reclustered jets
with pT > 350 GeV and |η| < 2.0 are considered and
the jet is tagged as coming from a boosted top quark if
120 < mjet < 220 GeV.

Particle-level objects are subject to different overlap
removal criteria than reconstructed objects. After dressing
and jet reclustering, muons and electrons with separation
�R < 0.4 from a jet are excluded. Since the electron–muon
overlap removal at detector level is dependent on the detector-
level reconstruction of these objects, it is not applied at par-
ticle level.

4.3 Parton-level objects and full phase-space definition

Parton-level objects are defined for simulated events. Only
top quarks decaying directly into a W boson and a b-quark
in the simulation are considered. The full phase-space for the
measurements presented in this paper is defined by the set of
t t̄ pairs in which one top quark decays leptonically (including
τ -leptons) and the other decays hadronically. In the boosted
topology, to avoid a complete dependence on the MC pre-
dictions due to the extrapolation into regions not covered by
the detector-level selection, the parton-level measurement is
limited to the region where the top quark is produced with
pT > 350 GeV. This region represents less than 2% of the
entire phase-space. The measurement in the resolved topol-
ogy covers the entire phase-space.

Events in which both top quarks decay leptonically are
removed from the parton-level signal simulation.

4.4 Particle- and detector-level event selection

The event selection comprises a set of requirements based on
the general event quality and on the reconstructed objects,
defined above, that characterise the final-state event topol-
ogy. The analysis applies two exclusive event selections:
one corresponding to a resolved topology and another tar-
geting a boosted topology, where all the decay products of
the hadronic top quark are collimated in a single reclustered

jet. The same selection cuts are applied to the reconstructed-
and particle-level objects.

For both selections, events are required to have a recon-
structed primary vertex with two or more associated tracks
and contain exactly one reconstructed lepton candidate with
pT > 27 GeV geometrically matched to a corresponding
object at trigger level. The requirements on the primary ver-
tex and trigger matching are applied only at detector level.

For the resolved event selection, each event is also required
to contain at least four small-R jets with pT > 25 GeV and
|η| < 2.5 of which at least two must be tagged as b-jets. As
discussed in Sect. 6.1, the strategy employed to reconstruct
the detector-level kinematics of the t t̄ system in the resolved
topology, when performing the measurement at parton level,
is a kinematic likelihood fit. When this method is applied, a
further selection requirement on the likelihood of the best per-
mutation is introduced, i.e. it must satisfy log L > −52. The
selection criteria for the resolved topology are summarised
in Table 2.

For the boosted event selection, at least one reclus-
tered top-tagged jet with pT > 350 GeV and at least
one small-R jet close to the lepton and far from the
reclustered jet, i.e. with �R

(
jetR=0.4, �

)
< 2.0 and

�R
(
reclustered jet, jetR=0.4

)
> 1.5, are required. All the

small-R jets fulfilling these requirements are considered
associated with the lepton. The reclustered jet must be well
separated from the lepton, with �φ (reclustered jet, �) >

1.0. In the boosted selection, only one b-tagged jet is required
in the final state, to reduce the loss of signal due to the
decrease in b-tagging efficiency in the high pT region. This
jet must fulfil additional requirements: it is either among the
components of the reclustered jet, or it is one of the small-R
jets associated with the lepton. To suppress the multijet back-
ground in the boosted topology, where only one b-tagged jet
is required, the missing transverse momentum is required to
be Emiss

T > 20 GeV and the sum of Emiss
T and the transverse

mass of the W boson is required to be Emiss
T +mW

T > 60 GeV,

with mW
T =

√
2p�

TE
miss
T

(
1 − cos �φ

(
�, �pmiss

T

))
. The selec-

tion criteria for the boosted topology are summarised in
Table 3.

Finally, to make the resolved and boosted topologies sta-
tistically independent, an additional requirement is defined
at detector level: all events passing both the resolved and the
boosted selection are removed from the resolved topology.
The net effect of this requirement is a reduction in the overall
event yield of the order of 2% in the resolved topology.

5 Background determination

After the event selection, various backgrounds, mostly
involving real leptons, contribute to the event yields. Data-
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driven techniques are used to estimate backgrounds that
derive from events containing jets mimicking the signature
of charged leptons or leptons from hadron decay, for which
precise enough simulations are not available.

The single-top-quark background, comprising t-channel,
s-channel and tW production modes, is the largest back-
ground contribution in the resolved topology, amounting to
4.3% and 4.2% of the total event yield and 39% and 30%
of the total background estimate in the resolved and boosted
topologies, respectively. Shapes of all distributions of this
background are modelled using MC simulation, and the event
yields are normalised using calculations of its cross-section,
as described in Sect. 3.

TheW+jets background represents the largest background
in the boosted topology, amounting to approximately 3% and
7% of the total event yield, corresponding to approximately
25% and 44% of the total background estimate in the resolved
and boosted topologies, respectively. The estimation of this
background is performed using MC simulations as described
in Sect. 3.

Multijet production processes, including production of
hadronically decaying t t̄ pairs, have a large cross-section
and mimic the �+jets signature due to fake leptons or non-
prompt real leptons. The multijet background is estimated
directly from data using a matrix method [104]. The esti-
mate is based on the introduction of a ‘loose’ lepton defi-
nition, obtained by removing the isolation requirement and
loosening the likelihood-based identification criteria in the
electron case, compared to the ‘tight’ lepton definition given
in Sect. 4.1. The number of fake and non-prompt leptons
contained in the signal region is evaluated by inverting the
matrix that relates the number of ‘loose’ and ‘tight’ leptons
to the number of real and fake leptons. This matrix is built
using the efficiencies for fake leptons and real leptons to pass
the ‘tight’ selection. The fake-lepton efficiency is measured
using data in control regions dominated by multijet back-
ground with the real-lepton contribution subtracted using MC
simulation. The real-lepton efficiency is extracted by apply-
ing a tag-and-probe technique using leptons from Z boson
decays. The multijet background contributes approximately
3% and 2% to the total event yield, corresponding to approx-
imately 24% and 15% of the total background estimate in the
resolved and boosted topologies, respectively.

The background contributions from Z+jets, diboson and
t + X events are obtained from MC generators, and the event
yields are normalised as described in Sect. 3. The total con-
tribution from these processes is approximately 1.4% and
2.1%, corresponding to approximately 12% and 15% of the
total background estimate in the resolved and boosted topolo-
gies, respectively.

Dilepton top-quark pair events (including decays into τ -
leptons) can satisfy the event selection and are considered in
the analysis as signal at both the detector and particle levels.

Table 4 Event yields after the resolved and boosted selections. Events
that satisfy both the resolved and boosted selections are removed from
the resolved selection. The cut on the kinematic fit likelihood has not
been applied. The signal model, denoted t t̄ in the table, was gener-
ated using Powheg+Pythia8, normalised to NNLO calculations. The
uncertainties include the combined statistical and systematic uncertain-
ties, excluding the systematic uncertainties related to the modelling of
the t t̄ system, as described in Sect. 9

Process Yield

Resolved Boosted

t t̄ 1 120 000 ± 90 000 44 700 ± 1900

Single top 54 000 +10000
−11000 2000 ± 900

Multijet 34 000 ± 16 000 1000 ± 400

W+jets 34 000 ± 20 000 3200 ± 1500

Z+jets 12 000 ± 6000 380 ± 210

t + X 3800 ± 500 440 ± 60

Diboson 1680 +220
−190 194 +19

−21

Total prediction 1 260 000 ± 100 000 52 000 ± 2900

Data 1 252 692 47 600

Data/Prediction 0.99 ± 0.08 0.92 ± 0.05

They contribute to the t t̄ yield with a fraction of approxi-
mately 13% (8% after applying the cut on the likelihood of
the kinematic fit described in Sect. 6.1) in the resolved topol-
ogy and 6% in the boosted topology. In the full phase-space
analysis at parton level, events where both top quarks decay
leptonically are considered as background and a correction
factor is applied to the detector-level spectra to account for
this background.

In the fiducial phase-space analysis at particle level, all
the t t̄ semileptonic events that could pass the fiducial selec-
tion described in Sect. 4.4 are considered as signal. For this
reason, the leptonic top-quark decays into τ -leptons are con-
sidered as signal only if the τ -lepton decays leptonically.
Cases where both top quarks decay into a τ -lepton, which
in turn decays into a quark–antiquark pair, are accounted for
in the multijet background. The full phase-space analysis at
parton level includes all semileptonic decays of the t t̄ system,
consequently the τ -leptons from the leptonically decaying W
bosons are considered as signal, regardless of the τ -lepton
decay mode.

As the individual e+jets and μ+jets channels have very
similar corrections (as described in Sect. 8) and give con-
sistent results at detector level, they are combined by sum-
ming the distributions. The event yields, in the resolved and
boosted regimes, are shown in Table 4 for data, simulated sig-
nal, and backgrounds. The selection leads to a sample with
an expected background of 11% and 15% for the resolved
and boosted topologies, respectively. The overall difference
between data and prediction is 1% and 8% in the resolved and
boosted topologies, respectively. In the resolved topology
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this is in good agreement within the experimental systematic
uncertainties, while in the boosted topology the predicted
event yield overestimates the data.

Figures 1, 2, 3 and 4 show,2 for different distributions, the
comparison between data and predictions. The reconstructed
distributions, in the resolved topology, of the pT of the lep-
ton, Emiss

T , jet multiplicty and pT are presented in Fig. 1
and the b-jet multiplicity and η in Fig. 2. The reconstructed
distributions, in the boosted topology, of the reclustered jet
multiplicity and jet pT are shown in Fig. 3 and the pT and η

of the lepton, Emiss
T and mW

T in Fig. 4. In the resolved topol-
ogy, good agreement between the prediction and the data is
observed in all the distributions shown, while in the boosted
topology the agreement lies at the edge of the uncertainty
band. This is due to the overestimate of the predicted rate of
events of about 10%, varying with the top quark pT, reflected
in all the distributions.

6 Kinematic reconstruction of the t t̄ system

Since the t t̄ production differential cross-sections are mea-
sured as a function of observables involving the top quark
and the t t̄ system, an event reconstruction is performed in
each topology.

6.1 Resolved topology

For the resolved topology, two reconstruction methods are
employed: the pseudo-top algorithm [9] is used to recon-
struct the objects to be used in the particle-level measure-
ment; a kinematic likelihood fitter (KLFitter) [105] is used
to fully reconstruct the t t̄ kinematics in the parton-level mea-
surement. This approach performs better than the pseudo-top
method in terms of resolution and bias for the reconstruction
of the parton-level kinematics.

The pseudo-top algorithm reconstructs the four-momenta
of the top quarks and their complete decay chain from final-
state objects, namely the charged lepton (electron or muon),
missing transverse momentum, and four jets, two of which
are b-tagged. In events with more than two b-tagged jets,
only the two with the highest transverse momentum values
are considered as b-jets from the decay of the top quarks. The
same algorithm is used to reconstruct the kinematic proper-
ties of top quarks as detector- and particle-level objects. The
pseudo-top algorithm starts with the reconstruction of the
neutrino four-momentum. While the x and y components of
the neutrino momentum are set to the corresponding compo-
nents of the missing transverse momentum, the z component

2 Throughout this paper, all data as well as theory points are plotted
at the bin centre of the x-axis. Moreover, the bin contents of all the
histograms are divided by the corresponding bin width.

is calculated by imposing the W boson mass constraint on the
invariant mass of the charged-lepton–neutrino system. If the
resulting quadratic equation has two real solutions, the one
with the smaller value of |pz| is chosen. If the discriminant
is negative, only the real part is considered. The leptonically
decaying W boson is reconstructed from the charged lep-
ton and the neutrino. The leptonic top quark is reconstructed
from the leptonic W and the b-tagged jet closest in �R to
the charged lepton. The hadronic W boson is reconstructed
from the two non-b-tagged jets whose invariant mass is clos-
est to the mass of the W boson. This choice yields the best
performance of the algorithm in terms of the correspondence
between the detector and particle levels. Finally, the hadronic
top quark is reconstructed from the hadronic W boson and
the other b-jet. The advantage of using this method at particle
level is that any dependence on the parton-level top quark is
removed from the reconstruction and it is possible to have
perfect consistency among the techniques used to reconstruct
the top quarks at particle level and detector level.

The kinematic likelihood fit algorithm used for the parton-
level measurements relates the measured kinematics of the
reconstructed objects (lepton, jets and Emiss

T ) to the leading-
order representation of the t t̄ system decay. Compared to the
pseudo-top algorithm, this procedure leads to better resolu-
tion (with an improvement of the order of 10% for the pT

of t t̄ system) in the reconstruction of the kinematics of the
parton-level top quark. The kinematic likelihood fit has not
been employed for the particle-level measurement because its
likelihood, described in the following, is designed to improve
the jet-to-quark associations and so is dependent on parton-
level information. The likelihood is constructed as the prod-
uct of Breit–Wigner distributions and transfer functions that
associate the energies of parton-level objects with those at the
detector level. Breit–Wigner distributions associate the miss-
ing transverse momentum, lepton, and jets with W bosons
and top quarks, and make use of their known widths and
masses, with the top-quark mass fixed to 172.5 GeV. The
transfer functions represent the experimental resolutions in
terms of the probability that the given true energy for each
of the t t̄ decay products produces the observed energy at the
detector level. The missing transverse momentum is used as a
starting value for the neutrino transverse momentum, with its
longitudinal component (pν

z ) as a free parameter in the kine-
matic likelihood fit. Its starting value is computed from the
W mass constraint. If there are no real solutions for pν

z then
zero is used as a starting value. Otherwise, if there are two
real solutions, the one giving the larger likelihood is used.
The five highest-pT jets (or four if there are only four jets in
the event) are used as input to the likelihood fit. The input jets
are defined by giving priority to the b-tagged jets and then
adding the hardest remaining light-flavour jets. If there are
more than four jets in the event satisfying pT > 25 GeV and
|η| < 2.5, all subsets of four jets from the five-jets collection
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(a) (b)

(c) (d)

Fig. 1 Kinematic distributions in the �+jets channel in the resolved
topology at detector-level: a lepton transverse momentum and b miss-
ing transverse momentum Emiss

T , c jet multiplicity and d transverse
momenta of selected jets. Data distributions are compared with pre-
dictions using Powheg+Pythia8 as the t t̄ signal model. The hatched

area represents the combined statistical and systematic uncertainties
(described in Sect. 9) in the total prediction, excluding systematic uncer-
tainties related to the modelling of the t t̄ events. Underflow and overflow
events, if any, are included in the first and last bins. The lower panel
shows the ratio of the data to the total prediction

are considered. The likelihood is maximised as a function of
the energies of the b-quarks, the quarks from the hadronic W
boson decay, the charged lepton, and the components of the
neutrino three-momentum. The maximisation is performed
for each possible matching of jets to partons and the com-
bination with the highest likelihood is retained. The event
likelihood must satisfy log L > −52. This requirement pro-
vides good separation between well and poorly reconstructed
events and improves the purity of the sample. Distributions
of log L in the resolved topology for data and simulation are
shown in Fig. 5 in the �+jets channel. The efficiency of the

likelihood requirement in data is found to be well modelled
by the simulation.

6.2 Boosted topology

In the boosted topology, the same detector-level reconstruc-
tion procedure is applied for both the particle- and parton-
level measurements. The leading reclustered jet that passes
the selection described in Sect. 4 is considered the hadronic
top quark. Once the hadronic top-quark candidate is identi-
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(a) (b)

Fig. 2 Kinematic distributions in the �+jets channel in the resolved
topology at detector-level: a number of b-tagged jets and b b-tagged
jet pseudorapidity. Data distributions are compared with predictions
using Powheg+Pythia8 as the t t̄ signal model. The hatched area rep-
resents the combined statistical and systematic uncertainties (described

in Sect. 9) in the total prediction, excluding systematic uncertainties
related to the modelling of the t t̄ events. Underflow and overflow events,
if any, are included in the first and last bins. The lower panel shows the
ratio of the data to the total prediction

(a) (b)

Fig. 3 Kinematic distributions in the �+jets channel in the boosted
topology at detector-level: a number of reclustered jets and b reclus-
tered jet pT. Data distributions are compared with predictions using
Powheg+Pythia8 as the t t̄ signal model. The hatched area repre-
sents the combined statistical and systematic uncertainties (described

in Sect. 9) in the total prediction, excluding systematic uncertainties
related to the modelling of the t t̄ events. Underflow and overflow events,
if any, are included in the first and last bins. The lower panel shows the
ratio of the data to the total prediction

fied, the leptonic top quark is reconstructed using the leading
b-tagged jet that fulfils the following requirements:

• δR (�, b-jet) < 2.0;
• δR

(
jetR=1.0, b-jet

)
> 1.5.

If there are no b-tagged jets that fulfil these requirements then
the leading pT jet is used. The procedure for the reconstruc-
tion of the leptonically decaying W boson starting from the
lepton and the missing transverse momentum is analogous
to the pseudo-top reconstruction described in Sect. 6.1.
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(a) (b)

(c) (d)

Fig. 4 Kinematic distributions in the �+jets channel in the boosted
topology at detector-level: a lepton pT and b pseudorapidity, c missing
transverse momentum Emiss

T and d transverse mass of theW boson. Data
distributions are compared with predictions using Powheg+Pythia8
as the t t̄ signal model. The hatched area represents the combined sta-

tistical and systematic uncertainties (described in Sect. 9) in the total
prediction, excluding systematic uncertainties related to the modelling
of the t t̄ events. Underflow and overflow events, if any, are included in
the first and last bins. The lower panel shows the ratio of the data to the
total prediction

7 Observables

A set of measurements of the t t̄ production cross-sections is
presented as a function of kinematic observables. In the fol-
lowing, the indices had and lep refer to the hadronically and
leptonically decaying top quarks, respectively. The indices
1 and 2 refer respectively to the leading and subleading top
quark, where leading refers to the top quark with the largest
transverse momentum.

First, a set of baseline observables is presented: transverse
momentum (ptT) and absolute value of the rapidity (|yt |) of
the top quarks, and the transverse momentum (ptt̄T ), absolute
value of the rapidity (|yt t̄ |) and invariant mass (mtt̄ ) of the
t t̄ system and the transverse momentum of the leading (pt,1T )

and subleading (pt,2T ) top quarks. For parton-level measure-
ments, the pT and rapidity of the top quark are measured
from the pT and rapidity of the reconstructed hadronic top
quarks. The differential cross-sections as a function of all
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Fig. 5 Distribution in the �+jets channel of the logarithm of the like-
lihood obtained from the kinematic fit in the resolved topology. Data
distributions are compared with predictions usingPowheg+Pythia8 as
the t t̄ signal model. The hatched area represents the combined statistical
and systematic uncertainties in the total prediction, excluding system-
atic uncertainties related to the modelling of the t t̄ events. Underflow
and overflow events are included in the first and last bins. The lower
panel shows the ratio of the data to the total prediction. Only events
with log L > −52 are considered in the parton-level measurement in
resolved topology

these observables, with the exception of the pT of the lead-
ing and subleading top quarks, were previously measured
in the fiducial phase-space in the resolved topology by the
ATLAS Collaboration using 13 TeV data [14], while in the
boosted topology only pt,had

T and |yt,had| were measured. The
differential cross-sections as a function of the pT of the lead-
ing and subleading top quarks were previously measured, at
particle- and parton-level, only in the boosted topology in the
fully hadronic channel [106].

The detector-level distributions of the kinematic variables
of the top quark and t t̄ system in the resolved topology are
presented in Figs. 6 and 7, respectively. The detector-level
distributions of the same observables, reconstructed in the
boosted topology, are shown in Figs. 8 and 9.

Furthermore, angular variables sensitive to the momen-
tum imbalance in the transverse plane (ptt̄out), i.e. to the
emission of radiation associated with the production of the
top-quark pair, are used to investigate the central produc-
tion region [107]. The angle between the two top quarks
is sensitive to non-resonant contributions from hypothetical
new particles exchanged in the t-channel [108]. The rapidi-
ties of the two top quarks in the t t̄ centre-of-mass frame are
y∗ = 1

2

(
yt,had − yt,lep

)
and −y∗. The longitudinal motion

of the t t̄ system in the laboratory frame is described by the
rapidity boost yt t̄boost = 1

2

(
yt,had + yt,lep

)
. The production

polar angle is closely related to the variable χ t t̄ , defined as
χ t t̄ = e2|y∗|, which is included in the measurement since
many signals due to processes not included in the SM are pre-
dicted to peak at low values of this distribution [108]. Finally,
observables depending on the transverse momentum of the
decay products of the top quark are sensitive to higher-order
corrections [109,110]. In summary, the following additional
observables are measured:

• The absolute value of the azimuthal angle between the
two top quarks (

∣∣�φ
(
t, t̄

)∣∣).
• The out-of-plane momentum, i.e. the projection of the

top-quark three-momentum onto the direction perpen-
dicular to the plane defined by the other top quark and
the beam axis (z) in the laboratory frame [107]:

pt,had
out = �p t,had · �p t,lep × �ez∣∣ �p t,lep × �ez

∣∣ ,

pt,lep
out = �p t,lep · �p t,had × �ez∣∣ �p t,had × �ez

∣∣

In particular, |pt,had
out |, introduced in Ref. [11], is used

in the resolved topology, while in the boosted topology,
where an asymmetry between pt,had and pt,lep exists
by construction, the variable |pt,lep

out | is measured. This
reduces the correlation between pout and pt,had, biased
toward high values by construction, while keeping the
sensitivity to the momentum imbalance.

• The longitudinal boost of the t t̄ system in the laboratory
frame (yt t̄boost) [108].

• χ t t̄ = e2|y∗| [108], closely related to the production polar
angle.

• The scalar sum of the transverse momenta of the hadronic
and leptonic top quarks (Htt̄

T = p t,had
T + p t,lep

T ) [109,
110].

These observables were previously measured in the
resolved topology by the ATLAS Collaboration using 8 TeV
data [11] and, using 13 TeV data, as a function of the jet
multiplicity [15]. Figures 10 and 11 show the distributions
of these additional variables at detector-level in the resolved
topology, while the distributions of |pt,lep

out |, χ t t̄ and Htt̄
T in

the boosted topology are shown in Fig. 12.
Finally, differential cross-sections have been measured at

particle level as a function of the number of jets not employed
in t t̄ reconstruction in the resolved and boosted topology
(N extrajets). In addition, in the boosted topology, the cross-
section as a function of the number of small-R jets clustered
inside a top candidate (N subjets) is measured.

In the resolved topology, as shown in Figs. 6, 7, 10
and 11, good agreement between the prediction and the
data is observed. Trends of deviations at the boundaries of
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(a) (b)

(c) (d)

Fig. 6 Distributions of observables in the �+jets channel reconstructed
with the pseudo-top algorithm in the resolved topology at detector-level:
a transverse momentum and b absolute value of the rapidity of the
hadronic top quark, c transverse momentum of the leading top quark
and d transverse momentum of the subleading top quark. Data distribu-
tions are compared with predictions, using Powheg+Pythia8 as the t t̄

signal model. The hatched area represents the combined statistical and
systematic uncertainties (described in Sect. 9) in the total prediction,
excluding systematic uncertainties related to the modelling of the t t̄
events. Underflow and overflow events, if any, are included in the first
and last bins. The lower panel shows the ratio of the data to the total
prediction

the uncertainty bands are seen for high values of mtt̄ and
ptt̄T . In the boosted topology, the predicted rate of events
is overestimated at the level of 8.5%, leading to a corre-
sponding offset in most distributions, as shown in Figs. 8, 9
and 12.

A trend is observed in the Htt̄
T distribution, where the pre-

dictions tend to overestimate the data at high values. This is
more pronounced in the boosted topology, where the agree-
ment lies outside the error band towards high values of Htt̄

T .

A summary of the observables measured in the particle and
parton phase-spaces is given in Tables 5, 6 for the resolved
topology and in Tables 7, 8 for the boosted topology.

8 Cross-section extraction

The underlying differential cross-section distributions are
obtained from the detector-level events using an unfolding
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(a)

(c)

(b)

Fig. 7 Distributions of observables in the �+jets channel reconstructed
with the pseudo-top algorithm in the resolved topology at detector-level:
a invariant mass, b transverse momentum and c absolute value of the
rapidity of the t t̄ system. Data distributions are compared with pre-
dictions, using Powheg+Pythia8 as the t t̄ signal model. The hatched

area represents the combined statistical and systematic uncertainties
(described in Sect. 9) in the total prediction, excluding systematic uncer-
tainties related to the modelling of the t t̄ events. Underflow and overflow
events, if any, are included in the first and last bins. The lower panel
shows the ratio of the data to the total prediction

technique that corrects for detector effects. The iterative
Bayesian method [111] as implemented in RooUnfold [112]
is used.

Once the detector-level distributions are unfolded, the
single- and double-differential cross-sections are extracted
using the following equations:

dσ

dXi
≡ 1

L · �Xi
· N unf

i

d2σ

dXidY j
≡ 1

L · �Xi�Y j
· N unf

i j

where the index i ( j) iterates over bins of X (Y ) at genera-
tor level, �Xi (�Y j ) is the bin width, L is the integrated
luminosity and N unf represents the unfolded distribution,
obtained as described in the following sections. Overflow
and underflow events are never considered when evaluating
N unf , with the exception of the distributions as a function of
jet multiplicities.

The unfolding procedure described in the following is
applied to both the single- and double-differential distri-
butions, the only difference being the creation of concate-
nated distributions in the double-differential case. In partic-
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(a) (b)

(c) (d)

Fig. 8 Distributions of observables in the �+jets channel in the boosted
topology at detector-level: a transverse momentum and b absolute
value of the rapidity of the hadronic top quark, c transverse momen-
tum of the leading top quark and d transverse momentum of the sub-
leading top quark. Data distributions are compared with predictions,
using Powheg+Pythia8 as the t t̄ signal model. The hatched area rep-

resents the combined statistical and systematic uncertainties (described
in Sect. 9) in the total prediction, excluding systematic uncertainties
related to the modelling of the t t̄ events. Underflow and overflow events,
if any, are included in the first and last bins. The lower panel shows the
ratio of the data to the total prediction

ular, N unf is derived by introducing a new vector of size
m = ∑nX

i=1 nY,i , where nX is the number of bins of the vari-
able X and nY,i is the number of bins of the variable Y in
the i-th bin of the variable X . The vector is constructed by
concatenating all the bins of the original two-dimensional
distribution.

The total cross-section is obtained by integrating the
unfolded differential cross-section over the kinematic bins,

and its value is used to compute the normalised differential
cross-section 1/σ · dσ/dXi .

8.1 Particle level in the fiducial phase-space

The unfolding procedure aimed to evaluate the particle-level
distributions starts from the detector-level event distribution
(Ndetector), from which the expected number of background
events (Nbkg) is subtracted. Next, the bin-wise acceptance
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(a)

(c)

(b)

Fig. 9 Kinematic distributions in the �+jets channel in the boosted
topology at detector-level: a invariant mass, b transverse momentum
and c absolute value of the rapidity of the t t̄ system. Data distribu-
tions are compared with predictions, using Powheg+Pythia8 as the t t̄
signal model. The hatched area represents the combined statistical and

systematic uncertainties (described in Sect. 9) in the total prediction,
excluding systematic uncertainties related to the modelling of the t t̄
events. Underflow and overflow events, if any, are included in the first
and last bins. The lower panel shows the ratio of the data to the total
prediction

correction facc, defined as

facc = Nparticle ∧detector

Ndetector
,

with Nparticle ∧detector being the number of detector-level
events that satisfy the particle-level selection, corrects for
events that are generated outside the fiducial phase-space but
satisfy the detector-level selection.

In the resolved topology, to separate resolution and com-
binatorial effects, distributions evaluated using a MC simu-
lation are corrected to the level where detector- and particle-

level objects forming the pseudo-top quarks are angularly
well matched. The matching is performed using geometri-
cal criteria based on the distance �R. Each particle-level
e (μ) is required to be matched to the detector-level e (μ)
within �R = 0.02. Particle-level jets forming the particle-
level hadronic top are required to be matched to the jets from
the detector-level hadronic top within �R = 0.4. The same
procedure is applied to the particle- and detector-level b-jet
from the leptonically decaying top quark. If a detector-level
jet is not matched to a particle-level jet, it is assumed to
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(a)

(c)

(b)

Fig. 10 Distributions of observables in the �+jets channel recon-
structed with the pseudo-top algorithm in the resolved topology
at detector-level: a azimuthal angle between the two top quarks∣∣�φ

(
t, t̄

)∣∣, b production angle χ t t̄and c absolute value of the longi-

tudinal boost yt t̄boost . Data distributions are compared with predictions,
using Powheg+Pythia8 as the t t̄ signal model.The hatched area rep-

resents the combined statistical and systematic uncertainties (described
in Sect. 9) in the total prediction, excluding systematic uncertainties
related to the modelling of the t t̄ events. Underflow and overflow events,
if any, are included in the first and last bins. The lower panel shows the
ratio of the data to the total prediction

be either from pile-up or from matching inefficiency and is
ignored. If two jets are reconstructed with a �R < 0.4 from
a single particle-level jet, the detector-level jet with smaller
�R is matched to the particle-level jet and the other detector-
level jet is unmatched. The matching correction fmatch, which
accounts for the corresponding efficiency, is defined as:

fmatch = Nparticle ∧detector ∧match

Nparticle ∧detector
,

where Nparticle ∧detector ∧match is the number of detector-level
events that satisfy the particle-level selection and satisfy the
matching requirement.

The unfolding step uses a migration matrix (M) derived
from simulated t t̄ events that maps the binned generated
particle-level events to the binned matched detector-level
events. The probability for particle-level events to remain
in the same bin is therefore represented by the diagonal ele-
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(a) (b)

Fig. 11 Kinematic distributions in the �+jets channel in the resolved
topology reconstructed with the pseudo-top algorithm at detector-level:
a absolute value of the out-of-plane momentum |pt,had

out | and b scalar
sum of the transverse momenta of the hadronic and leptonic top
quarks Htt̄

T . Data distributions are compared with predictions, using
Powheg+Pythia8 as the t t̄ signal model.The hatched area repre-

sents the combined statistical and systematic uncertainties (described
in Sect. 9) in the total prediction, excluding systematic uncertainties
related to the modelling of the t t̄ events. Underflow and overflow events,
if any, are included in the first and last bins. The lower panel shows the
ratio of the data to the total prediction

ments, and the off-diagonal elements describe the fraction
of particle-level events that migrate into other bins. There-
fore, the elements of each row add up to unity as shown,
for example, in Fig. 13d. The binning is chosen such that
the fraction of events in the diagonal bins is always greater
than 50%. The unfolding is performed using four iterations
to balance the dependence on the prediction used to derive
the corrections3 and the statistical uncertainty. The effect of
varying the number of iterations by one is negligible. Finally,
the efficiency correction 1/ε corrects for events that satisfy
the particle-level selection but are not reconstructed at the
detector level. The efficiency is defined as the ratio

ε = Nparticle ∧ detector

Nparticle
,

where Nparticle is the total number of particle-level events. In
the resolved topology, to account for the matching require-
ment, the numerator is replaced with Nparticle ∧ detector ∧ match.
The inclusion of the matching requirement, in conjunction
with the requirement on 2 b-tagged jets, identified with 70%
efficiency, reflects in an overall efficiency below 25% in the
resolved topology. This is lower than in the boosted topology,
where the efficiency ranges between 35% and 50% thanks to

3 At every iteration the result of the previous iteration is taken as prior.
This allows information derived from the data to be introduced into the
prior and hence reduce the dependence on the prediction.

the request of only one b-tagged jet and the absence of the
matching correction.

All corrections ( facc, fmatch and ε) and the migration
matrices are evaluated with simulated events for all the distri-
butions to be measured. As an example, Figs. 13 and 14 show
the corrections and migration matrices for the case of the pT

of the hadronically decaying top quark, in the resolved and
boosted topologies, respectively. This variable is particularly
representative since the kinematics of the decay products of
the top quark change substantially in the observed range. In
the resolved topology, the decrease in the efficiency at high
values is primarily due to the increasingly large fraction of
non-isolated leptons and to the partially or totally overlap-
ping jets in events with high top-quark pT. An additional
contribution is caused by the event veto removing the events
passing the boosted selection from the resolved topology, as
described in Sect. 4.4. This loss of efficiency is recovered by
the measurement performed in the boosted topology.

The unfolded distribution for an observable X at particle
level is given by:

N unf
i ≡ 1

εi
·
∑

j

M−1
i j · f j

match · f j
acc ·

(
N j

detector − N j
bkg

)
,

where the index j iterates over bins of X at detector level,
while the i index labels bins at particle level. The Bayesian
unfolding is symbolised by M−1

i j . No matching correction is
applied in the boosted case ( fmatch =1).
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(a)

(c)

(b)

Fig. 12 Distributions of observables in the �+jets channel in the
boosted topology at detector-level: a absolute value of the out-of-plane
momentum |pt,lep

out |, b production angle χ t t̄ and c scalar sum of the
transverse momenta of the hadronic and leptonic top quarks Htt̄

T . Data
distributions are compared with predictions, using Powheg+Pythia8
as the t t̄ signal model.The hatched area represents the combined sta-

tistical and systematic uncertainties (described in Sect. 9) in the total
prediction, excluding systematic uncertainties related to the modelling
of the t t̄ events. Underflow and overflow events, if any, are included in
the first and last bins. The lower panel shows the ratio of the data to the
total prediction

8.2 Parton level in the full phase-space

The measurements are extrapolated to the full phase-space
of the parton-level t t̄ system using a procedure similar to
the one described in Sect. 8.1. At detector level, the only
difference is in the definition of the reconstructed objects for
the measurement in the resolved topology, where the event

reconstruction uses the kinematic fit method instead of the
pseudo-top method.

To define �+jets final states at the parton level, the contri-
bution of t t̄ pairs decaying dileptonically (in all combinations
of electrons, muons and τ -leptons) is removed by applying a
bin-wise correction factor fdilep (dilepton correction) defined
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Table 5 The single- and double-differential spectra, measured in the
resolved topology at particle level

1D observables 2D combinations

mtt̄ In bins of: |yt t̄ | and N extrajets

ptt̄T In bins of: mtt̄ , |yt t̄ | and N extrajets

|yt t̄ | In bins of: N extrajets

pt,had
T In bins of: mtt̄ , ptt̄T , |yt,had| and N extrajets

|yt,had| In bins of: N extrajets

pt,1T

pt,2T

χ t t̄ In bins of: N extrajets

|yt t̄boost|∣∣�φ
(
t, t̄

)∣∣ In bins of: N extrajets

Htt̄
T In bins of: N extrajets

|pt,had
out | In bins of: N extrajets

N extrajets

Table 6 The single-differential and double-differential spectra, mea-
sured in the resolved topology at parton level

1D observables 2D combinations

mtt̄ In bins of: |yt t̄ |
ptt̄T In bins of: mtt̄ and |yt t̄ |
|yt t̄ |
pt,had

T In bins of: mtt̄ , ptt̄T and |yt,had|
|yt,had|
χ t t̄

|yt t̄boost|
Htt̄

T

Table 7 The single- and double-differential spectra, measured in the
boosted topology at particle level

1D observables 2D combinations

mtt̄ In bins of: Htt̄
T , |yt t̄ |, ptt̄T and N extrajets

ptt̄T In bins of: N extrajets

|yt t̄ |
pt,had

T In bins of: mtt̄ , ptt̄T , |yt,had|, |yt t̄ | and N extrajets

|yt,had|
pt,1T

pt,2T

χ t t̄

H t t̄
T

|pt,lep
out |

N extrajets

N subjets

Table 8 The single-differential and double-differential spectra, mea-
sured in the boosted topology at parton level

1D observables 2D combinations

mtt̄ In bins of: pt,had
T

pt,had
T

as

fdilep = Ndetector ∧ �+jets

Ndetector
,

which represents the fraction of the detector-level t t̄ single-
lepton events (Ndetector ∧ �+jets) in the total detector-level t t̄
sample (Ndetector), where the lepton can be either an electron,
muon or τ -lepton. The cross-section measurements corre-
spond to the top quarks before decay (parton level) and after
QCD radiation. Observables related to top quarks are extrap-
olated to the full phase-space starting from top quarks decay-
ing hadronically at the detector level.

The acceptance correction facc corrects for detector-level
events that are generated at parton level outside the range of
the given variable, and is defined by a formula similar to the
particle-level acceptance described in Sect. 8.1. The migra-
tion matrix (M) is derived from simulated t t̄ events decay-
ing in the single-lepton channel and the efficiency correction
1/ε corrects for events that did not satisfy the detector-level
selection where

ε = Ndetector ∧ �+jets

N�+jets
,

Ndetector ∧ �+jets is the number of parton-level events in
the �+jets channel passing the detector-level selection and
N�+jets is the total number of events at parton level, as defined
in Sect. 4.3.

All corrections and the migration matrices for the parton-
level measurement are evaluated with simulated events. As an
example, Figs. 15 and 16 show the corrections and migration
matrices for the case of the pT of the top quark, in the resolved
and boosted topologies, respectively.

The unfolding procedure is summarised by the expression

N unf
i ≡ 1

B · 1

εi
·
∑

j

M−1
i j · f j

dilep · f j
acc ·

(
N j

detector − N j
bkg

)
,

where the index j iterates over bins of the observable at the
detector level, while the i index labels the bins at the parton
level, B = 0.438 is the �+jets branching ratio [113] and
M−1

i j represents the Bayesian unfolding.

8.3 Unfolding validation

The statistical stability of the unfolding procedure has been
tested with closure tests. With these tests it is checked that the
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(a) (b)

(c) (d)

Fig. 13 The a acceptance facc, b matching fmatch and c efficiency ε

corrections (evaluated with the Monte Carlo samples used to assess the
signal modelling uncertainties, as described in Sect. 9.2), and d the

migration matrix (evaluated with the nominal Powheg+Pythia8 sim-
ulation sample) for the hadronic top-quark transverse momentum in the
resolved topology at particle level

unfolding procedure is able to correctly recover a statistically
independent sample generated with the same modelling used
in the production of the unfolding corrections. These tests,
performed on all the measured differential cross-sections,
confirm that good statistical stability is achieved for all the
spectra.

To ensure that the results are not biased by the MC gener-
ator used for the unfolding procedure, a study is performed
in which the particle-level and parton-level spectra in the
Powheg+Pythia8 simulation are altered by changing the
shape of the distributions using continuous functions of the
particle-level and parton-level ptT and of the actual data/MC

ratio observed at detector level. These tests are performed
on all the measured distributions using the final binning and
employing the entire MC statistics available, and are referred
to as stress tests. An additional stress test is performed on the
distributions depending on mtt̄ , where the spectra are modi-
fied to simulate the presence of a new resonance. Examples
of stress tests performed by changing the distribution of the
pT of the hadronic top employing a linear function of the
particle-level pt,had

T are presented, for both the resolved and
boosted topologies, in Fig. 17. The studies confirm that these
altered shapes are preserved within statistical uncertainties
by the unfolding procedure based on the nominal corrections.
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(a)

(c)

(b)

Fig. 14 The a acceptance facc and b efficiency ε corrections (evalu-
ated with the Monte Carlo samples used to assess the signal modelling
uncertainties, as described in Sect. 9.2), and c the migration matrix

(evaluated with the nominal Powheg+Pythia8 simulation sample) for
the hadronic top-quark transverse momentum in the boosted topology
at particle level

9 Systematic uncertainties

This section describes the estimation of systematic uncer-
tainties related to object reconstruction and calibration, MC
generator modelling and background estimation. As a result
of the studies described in Sect. 8.3 no systematic uncertainty
has been associated to the unfolding procedure.

To evaluate the impact of each uncertainty after the unfold-
ing, the reconstructed signal and background distributions in
simulation are varied and unfolded using corrections from
the nominal Powheg+Pythia8 signal sample. The unfolded
distribution is compared with the corresponding particle- and

parton-level spectrum and the relative difference is assigned
as the uncertainty in the measured distribution. All detector-
and background-related systematic uncertainties are evalu-
ated using the same generator, while alternative generators
and generator set-ups are employed to assess modelling sys-
tematic uncertainties. In these cases, the corrections, derived
from the nominal generator, are used to unfold the detector-
level spectra of the alternative generator and the comparison
between the unfolded distribution and the alternative particle-
or parton-level spectrum is used to assess the corresponding
uncertainty.
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(a)

(c)

(b)

Fig. 15 The a dilepton fdilep and b efficiency ε corrections (evalu-
ated with the Monte Carlo samples used to assess the signal modelling
uncertainties, as described in Sect. 9.2), and c the migration matrix

(evaluated with the nominal Powheg+Pythia8 simulation sample) for
the hadronic top-quark transverse momentum in the resolved topology
at parton level, for events selected with the kinematic likelihood cut

The covariance matrices of the statistical and systematic
uncertainties are obtained for each observable by evaluat-
ing the covariance between the kinematic bins using pseudo-
experiments, as explained in Sect. 10.

9.1 Object reconstruction and calibration

The small-R jet energy scale (JES) uncertainty is derived
using a combination of simulations, test-beam data and in
situ measurements [93,114]. Additional contributions from
jet flavour composition, η-intercalibration, punch-through,
single-particle response, calorimeter response to different
jet flavours and pile-up are taken into account, resulting

in 29 independent subcomponents of systematic uncer-
tainty, including the uncertainties in the jet energy resolution
obtained with an in situ measurement of the jet response in
dijet events [115]. This uncertainty is found to be in the range
of 5%–10%, depending on the variable, increasing to 20% in
regions with high jet multiplicity.

The efficiency to tag jets containing b-hadrons is cor-
rected in simulated events by applying b-tagging scale fac-
tors, extracted from a t t̄ dilepton sample, to account for the
residual difference between data and simulation. Scale fac-
tors are also applied for jets originating from light quarks that
are misidentified as b-jets. The associated flavour-tagging
systematic uncertainties, split into eigenvector components,
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(a)

(c)

(b)

Fig. 16 The a dilepton fdilep and b efficiency ε corrections (evalu-
ated with the Monte Carlo samples used to assess the signal modelling
uncertainties, as described in Sect. 9.2), and c the migration matrix

(evaluated with the nominal Powheg+Pythia8 simulation sample) for
the hadronic top-quark transverse momentum in the boosted topology
at parton level

are computed by varying the scale factors within their uncer-
tainties [94,116]. The uncertainties due to the b-tagging effi-
ciencies are constant for most of the measured distributions,
amounting to 10% and 2% for the absolute differential cross-
sections in the resolved and boosted topologies, respectively,
and become negligible in most of the normalised differential
cross-sections.

The lepton reconstruction efficiency in simulated events
is corrected by scale factors derived from measurements of
these efficiencies in data using a control region enriched
in Z → e+e− and Z → μ+μ− events. The lepton trig-
ger and reconstruction efficiency scale factors, energy scale

and energy resolution are varied within their uncertainties
[85,87,117] derived using the same sample.

The uncertainty associated with Emiss
T is calculated by

propagating the energy scale and resolution systematic uncer-
tainties to all jets and leptons in the Emiss

T calculation. Addi-
tional Emiss

T uncertainties arising from energy deposits not
associated with any reconstructed objects are also included
[102,103].

The systematic uncertainties due to the lepton and Emiss
T

reconstruction are generally subdominant (around 2%–3%)
in both the resolved and boosted topologies.
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(a) (b)

Fig. 17 Stress tests for the particle-level normalised differential cross-
sections as a function of the pT of the hadronically decaying top in
a the resolved and b the boosted topologies. The pseudo-data are
obtained by reweighting the detector-level distributions obtained with
Powheg+Pythia8 generator using a linear function of the particle-
level pt,had

T andunfolded using the nominal corrections. The pseudo-

data are compared to the nominal prediction and the prediction obtained
by reweighting the particle-level distribution. The bands represent the
uncertainty due to the Monte Carlo statistics. Pseudo-data points are
placed at the centre of each bin. The lower panel shows the ratios of the
predictions to pseudo-data

9.2 Signal modelling

Uncertainties in the signal modelling affect the kinematic
properties of simulated t t̄ events as well as detector- and
particle-level efficiencies.

To assess the uncertainty related to the choice of MC
generator for the t t̄ signal process, events simulated with
Sherpa 2.2.1 are unfolded using the migration matrix and
correction factors derived from the nominalPowheg+Pythia8
sample. Sherpa 2.2.1 includes its own parton-shower and
hadronisation model, which are consequently included in the
variation and considered in the systematic uncertainty. This
variation is indicated as ‘generator’ uncertainty. The sym-
metrised full difference between the unfolded distribution
and the generated particle- and parton-level distribution of
the Sherpa sample is assigned as the relative uncertainty in
the distributions. This uncertainty is found to be in the range
of 5%–10%, depending on the variable, increasing to 20% at
very low mtt̄ at particle level, and at high pT at parton level,
in both the boosted and resolved topologies.

To assess the impact of different parton-shower and hadro-
nisation models, unfolded results using events simulated with
Powheg+Pythia8 are compared with events simulated with
Powheg+Herwig7, with the same procedure as described
above to evaluate the uncertainty related to the t t̄ generator.

This variation is indicated as ‘hadronisation’ uncertainty. The
resulting systematic uncertainties, taken as the symmetrised
full difference, are found to be typically at the level of 2%–
5% in the resolved and boosted topologies, increasing to 20%
at high top and t t̄ transverse momentum.

To evaluate the uncertainty related to the modelling of
additional radiations (Rad.), two t t̄ MC samples with modi-
fied hdamp, scales and showering tune are used. The MC sam-
ples used for the evaluation of this uncertainty were generated
using the Powheg- Box generator interfaced to the Pythia
shower model, where the parameters are varied as described
in Sect. 3. This uncertainty is found to be in the range of
5%–10% for the absolute spectra in both the resolved and
the boosted topology, increasing to 20% at high pT at parton
level.

The estimation of the uncertainty due to different parton-
shower models and additional radiation modelling is per-
formed using samples obtained with the ‘fast’ simulation,
introduced in Sect. 3. In most of the distributions the fast
simulation gives the same result as the full simulation, and
consequently the corrections obtained with the two samples
are consistent as shown in Fig. 16a, comparing the two ver-
sions of Powheg+Pythia8. However, in some distributions
a difference between fast and full simulation is observed, as
shown in Fig. 13a in the low pT range. To completely disen-
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tangle this effect from the modelling uncertainties estimate,
the AFII version of Powheg+Pythia8 is used to calculate
the unfolding corrections when the alternative samples, used
to evaluate the systematic uncertainty, are produced with the
fast simulation.

The impact of the uncertainty related to the PDF is
assessed using the nominal signal sample generated with
Powheg- Box interfaced to Pythia8. Acceptance, match-
ing, efficiency and dilepton corrections and migration matri-
ces for the unfolding procedure are obtained by reweighting
the t t̄ sample using the 30 eigenvectors of the PDF4LHC15
PDF set [118]. Using these corrections, the detector-level
Powheg+Pythia8 distribution, obtained with the central
eigenvector of the PDF4LHC15 set, is unfolded and the rel-
ative deviation from the expected particle- or parton-level
spectrum obtained with the same PDF set is computed. The
total uncertainty is then obtained by adding these relative
differences in quadrature. This procedure, obtained applying
the recommendation given in Ref. [118] to unfolded measure-
ments, differs from the approach used for the other modelling
uncertainties, where nominal corrections are used to unfold
detector-level distributions obtained with alternative genera-
tors. In addition, a further source of uncertainty derived from
the choice of the PDF set is considered. This is estimated in
a similar way to the other component but comparing the cen-
tral distribution of PDF4LHC15 and NNPDF3.0NLO sets.
The two components are added in quadrature. The total PDF-
induced uncertainty is found to be less than 1% in most of
the bins of the measured cross-sections.

9.3 Background modelling

Systematic uncertainties affecting the backgrounds are eval-
uated by varying the background distribution, while keeping
the signal unchanged, in the input to the unfolding procedure.
The shift between the resulting unfolded distribution and the
nominal one is used to estimate the size of the uncertainty.

For the single-top-quark background, three kind of uncer-
tainties are considered:

1. Total normalisation uncertainty: the cross-section of the
single-top-quark process is varied within its uncertainty
for the t-channel (5%) [71], s-channel (3.6%) [73] and
tW production (5.3%) [72].

2. Additional radiation uncertainty: single-top-quark (tW
production and t-channel) MC samples with modified
scales and showering tunes are used in a similar way
to those for estimating the equivalent systematic uncer-
tainty for the signal sample. The samples are described
in Sect. 3.

3. Diagram subtraction versus diagram removal (DR/DS)
uncertainty: the uncertainty due to the overlap of tW pro-

duction of single top quarks and production of t t̄ pairs
is evaluated by comparing the single-top-quark samples
obtained using the diagram removal and diagram subtrac-
tion schemes [77], using the samples described in Sect. 3.

In the final measurement, the sum of these components, dom-
inated by the DR/DS uncertainty, gives a small contribution in
the low pT region, while it reaches 9% and 12% in the high pT

region of the resolved and boosted topologies, respectively.
For the W+jets process, two different uncertainty com-

ponents are constructed from two αS variations of ±0.002
around the nominal value of 0.118 and from an envelope
formed from 7-point scale variations of the renormalisa-
tion and factorisation scales, following the prescriptions
described in Ref. [81]. The uncertainty due to the PDF vari-
ations is found to be subdominant and consequently not
included. An additional uncertainty in the fraction of the
heavy-flavour components is considered. This uncertainty
is evaluated by applying a 50% shift to the cross-section of
the samples in which the W boson is produced in associ-
ation with at least one b-quark and also rescaling the other
samples to keep the total W+jets cross-section constant. This
uncertainty is considered sufficient to cover a possible mis-
modelling of the heavy-flavour composition since no dis-
agreements among predictions and data are observed. The
W+jets uncertainty on the final result ranges from 2 to 4% in
the resolved topology, depending on the variable and phase-
space, and between 2 and 12% in the boosted topology.

The uncertainty due to the background from non-prompt
and fake leptons is evaluated by changing the parameterisa-
tion of the real- and fake-lepton efficiencies used in the matrix
method calculation. In addition, an extra 50% uncertainty is
assigned to this background to account for the remaining
mismodelling observed in various control regions. The com-
bination of all these components also affects the shape of
this background and the overall impact of these systematic
uncertainties on the measurement is at the 2% level in both
topologies, increasing to almost 4% in the low pT region in
the resolved topology.

In the case of the Z+jets processes, a global uncertainty,
binned in jet multiplicity and based on αS, PDF and scale
variations calculated in Ref. [81], is applied to the MC pre-
diction of the Z+jets background components.

For diboson backgrounds, a 40% uncertainty is applied,
including the uncertainty in the cross-section and a contribu-
tion due to the presence of at least two additional jets. For
the t t̄V background, an overall uncertainty of 14% is applied,
covering the uncertainties related to the scale, αS and PDF
for the t t̄ + W and Z components.

The overall impact of these additional background uncer-
tainties on the final result is less than 1%, and the largest
contribution comes from the Z+jets background.
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9.4 Statistical uncertainty of the Monte Carlo samples

To account for the finite number of simulated events, test
distributions based on total predictions are varied in each bin
according to their statistical uncertainty, excluding the data-
driven fake-lepton background. The effect on the measured
differential cross-sections is at most 1% in the resolved and
boosted topologies, peaking at 6% in the highest top-quark
pT bins in the boosted topology.

9.5 Integrated luminosity

The uncertainty in the combined 2015–2016 integrated lumi-
nosity is 2.1% [119], obtained using the LUCID-2 detector
[120] for the primary luminosity measurements. This uncer-
tainty is not dominant for the absolute differential cross-
section results and it mostly cancels out for the normalised
differential cross-section results.

9.6 Systematic uncertainties summary

Figures 18, 19, 20 and 21 present the uncertainties in
the particle- and parton-level normalised differential cross-
sections as a function of some of the different observables in
the resolved and boosted topologies, respectively.

The dominant systematic uncertainties in many measured
normalised differential cross-sections in the resolved topol-
ogy are those related to the jet energy scale and resolu-
tion, especially for differential cross-sections sensitive to
the jet multiplicity. While negligible in the normalised spec-
tra, the uncertainties related to the flavour tagging become
dominant when measuring inclusive and absolute differen-
tial cross-sections. Other significant uncertainties, dominant
in the boosted topology, include those from the signal mod-
elling with, depending on the observable, either the generator,
hadronisation or the additional radiation component being
the most dominant.

For most distributions in the resolved topology and in large
parts of the phase-space, the measurements have a precision
of the order of 10%–15%, while for the boosted topology
the precision obtained varies from 7 to about 30% at particle
level, increasing to 40% at parton level.

10 Results

In this section, comparisons between the measured single-
and double-differential cross-sections and several SM predic-
tions are presented for the observables discussed in Sect. 7.
The results are presented for both the resolved and boosted
topologies, at particle level in the fiducial phase-spaces and
at parton level in the full phase-space.

For the comparisons at the particle level, the predictions
are obtained using different MC generators. The Powheg-
Box generator, denoted ‘PWG’ in the figures, is used with
two different parton-shower and hadronisation models, as
implemented in Pythia8 and Herwig7, as well as two
extra settings for the radiation modelling. In addition the
Sherpa 2.2.1 generator is also compared with the data. All
the MC samples are detailed in Sect. 3.1.

The measured differential cross-sections at the parton
level are compared with NNLO pQCD theoretical predic-
tions [4,5]. An additional comparison is performed, for a sub-
set of the differential parton-level cross-sections, with exist-
ing fixed-order predictions at NNLO pQCD accuracy and
including electroweak (EW) corrections [121].

To quantify the level of agreement between the measured
cross-sections and the different theoretical predictions, χ2

values are calculated, using the total covariance matrices
evaluated for the measured cross-sections, according to the
following relation

χ2 = V T
Nb

· Cov−1
Nb

· VNb ,

where Nb is the number of bins of the spectrum under con-
sideration, VNb is the vector of differences between the mea-
sured and predicted cross-sections and CovNb represents the
covariance matrix. This includes both the statistical and sys-
tematic uncertainties and is evaluated by performing 10 000
pseudo-experiments, following the procedure described in
Ref. [14]. No uncertainties in the theoretical predictions are
included in the χ2 calculation. The p-values are then eval-
uated from the χ2 and the number of degrees of freedom
(NDF).

For normalised cross-sections, VNb must be replaced with
VNb−1, which is the vector of differences between data and
prediction obtained by discarding one of the Nb elements
and, consequently, CovNb−1 is the (Nb − 1)× (Nb − 1) sub-
matrix derived from the full covariance matrix discarding
the corresponding row and column. The sub-matrix obtained
in this way is invertible and allows the χ2 to be computed.
The χ2 value does not depend on the choice of the element
discarded for the vector VNb−1 and the corresponding sub-
matrix CovNb−1.

The determination of statistical correlations within each
spectrum and among different spectra are evaluated using
the Bootstrap Method [122]. The method is based on the
extraction of 1000 Bootstrap samples (pseudo-experiments)
obtained by reweighting the measured data sample on an
event-by-event basis with a Poisson distribution.

To allow comparisons to be made between the shapes
of the measured cross-sections and the predictions, all the
results included in this section are presented as normalised
cross-sections: the measurement of the normalised cross-
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(a)

(c)

(b)

Fig. 18 Uncertainties in the particle-level normalised differential
cross-sections as a function of a the transverse momentum, b the mass
of the t t̄ system, and c the transverse momentum of the t t̄ system as

a function of the jet multiplicity in the resolved topology. The bands
represent the statistical and total uncertainty in the data

sections significantly reduces the contribution of uncertain-
ties common to all bins of the distributions, highlighting
shape differences relative to the absolute case. Examples to

illustrate this features are presented in Sect. 10.1, while the
results of χ2 and p-value calculations are always reported
for both the normalised and absolute cross-sections.
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(a) (b)

(c)

Fig. 19 Uncertainties in the particle-level normalised differential
cross-sections as a function of a the transverse momentum, b the rapid-
ity of the hadronically decaying top quark and c the pT of the t t̄ system

as a function of the number of additional jets in the boosted topology.
The bands represent the statistical and total uncertainty in the data
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(a)

(c)

(b)

Fig. 20 Uncertainties in the parton-level normalised differential cross-
sections as a function of a the t t̄ system transverse momentum b the
absolute value of the rapidity and c the transverse momentum of the top

quark as a function of the mass of the t t̄ system in the resolved topology.
The bands represent the statistical and total uncertainty in the data
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(a)

(c)

(b)

Fig. 21 Uncertainties in the parton-level normalised differential cross-
sections as a function of a the transverse momentum of the top quark,
b the mass of the t t̄ system and c the mass of the t t̄ system as a function

of the pT of the top quark in the boosted topology. The bands represent
the statistical and total uncertainty in the data
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(a) (b)

Fig. 22 Particle-level normalised differential cross-sections as a func-
tion of a the transverse momentum and b the absolute value of the
rapidity of the hadronically decaying top quark in the resolved topol-
ogy, compared with different Monte Carlo predictions. The bands rep-

resent the statistical and total uncertainty in the data. Data points are
placed at the centre of each bin. The lower panel shows the ratios of the
simulations to data

(a) (b)

Fig. 23 Particle-level normalised differential cross-sections as a func-
tion of the transverse momentum of a the leading and b the subleading
top quark in the resolved topology, compared with different Monte Carlo

predictions. The bands represent the statistical and total uncertainty in
the data. Data points are placed at the centre of each bin. The lower
panel shows the ratios of the simulations to data
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(a) (b)

Fig. 24 Particle-level normalised differential cross-sections as a func-
tion of a the mass and b the transverse momentum of the t t̄ system
in the resolved topology, compared with different Monte Carlo predic-

tions. The bands represent the statistical and total uncertainty in the
data. Data points are placed at the centre of each bin. The lower panel
shows the ratios of the simulations to data

10.1 Results at particle level in the fiducial phase-spaces

10.1.1 Resolved topology

The normalised single-differential cross-sections are mea-
sured as a function of the transverse momentum and absolute
value of the rapidity of the hadronically decaying top quark,
as well as of the mass and transverse momentum of the t t̄
system and of the additional variables

∣∣∣pt,had
out

∣∣∣,
∣∣�φ

(
t, t̄

)∣∣,

Htt̄
T and jet multiplicity. Moreover, the differential cross-

section as a function of the pT of the top quark is mea-
sured separately for the leading and subleading top quark.
The results are shown in Figs. 22, 23, 24 and 25. The quantita-
tive comparisons among the particle-level results and predic-
tions, obtained with a χ2 test statistic, are shown in Tables 9
and 10, for normalised and absolute single-differential cross-
sections, respectively.

The normalised double-differential cross-sections, pre-
sented in Figs. 26, 27, 28, 29, 30, 31, 32, 33, 34 and 35,
are measured as a function of the pT of the hadronically
decaying top quark and of the t t̄ system in bins of the mass

the t t̄ system, as a function of
∣∣∣pt,had

out

∣∣∣ in bins of the pT of

the hadronically decaying top quark and finally as a func-

tion of pt,had
T , mtt̄ , ptt̄T ,

∣∣∣pt,had
out

∣∣∣,
∣∣�φ

(
t, t̄

)∣∣ and Htt̄
T in bins

of jet multiplicity. The quantitative comparisons among the
particle-level results and predictions, obtained with a χ2 test
statistic, are shown in Tables 11 and 12, for normalised and

absolute double-differential cross-sections, respectively. An
example of an absolute differential cross-section, as a func-
tion of mtt̄ in bins of jet multiplicity, is given in Fig. 31. In
this case, the total uncertainty is larger than the uncertainty
in the corresponding normalised differential cross-section, as
shown Fig. 30.

Additionally, the total cross-section is measured in the
fiducial phase-space of the resolved topology and is com-
pared with the MC predictions previously described, as
shown in Fig. 36. The total cross-section predicted by each
NLO MC generator is normalised to the NNLO + NNLL
prediction as quoted in Ref. [55] and the corresponding
uncertainty only includes the uncertainty affecting the k-
factor used in the normalisation. The differences between
the quoted fiducial cross-sections hence result from different
acceptance predictions from each model.

All the measured differential cross-sections are compared
with the MC predictions. Overall, these MC predictions give
a good description of the measured single-differential cross-
sections. Poorer agreement is observed in specific regions of
the probed phase-space. In Figs. 24b and 25a, showing the
differential cross-sections as a function of ptt̄T and |pt,had

out |,
the predictions overestimate the data in the high ptt̄T region,
with the exception of Powheg+Pythia8 prediction with
the Var3cDown tuning, and several generators overestimate
the high |pt,had

out | region. A similar trend is observed in the
double-differential cross-sections as a function of the pT of

123



Eur. Phys. J. C (2019) 79 :1028 Page 37 of 84 1028

(a) (b)

(c) (d)

Fig. 25 Particle-level normalised differential cross-sections as a func-

tion of a
∣∣∣pt,had

out

∣∣∣, b
∣∣�φ

(
t, t̄

)∣∣, c Htt̄
T and d additional jet multiplicity

in the resolved topology, compared with different Monte Carlo predic-

tions. The bands represent the statistical and total uncertainty in the
data. Data points are placed at the centre of each bin. The lower panel
shows the ratios of the simulations to data

the t t̄ system in bins of jet multiplicity (Fig. 32), in particular
for bins of higher jet multiplicities. The Var3cUp tuning of
Powheg+Pythia8, in combination with the increase of the
hdamp value to 3mt , is the prediction that shows the largest
disagreement with the data. Overall, the NLO+PS generator
that gives the better description of several double-differential
distributions is Powheg+Pythia8.

The measured single- and double-differential cross-sections
are often able to discriminate between the different fea-
tures exhibited by the MC predictions and this sensitivity is
hence relevant for the tuning of the MC generators and will
contribute to improving the description of the t t̄ final state
and to reducing the systematic uncertainties related to top-
quark modelling. A relevant example is the fiducial single-
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Table 9 Comparison of the measured particle-level normalised single-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T 9.5/17 0.92 12.3/17 0.78 12.1/17 0.80 7.6/17 0.97 7.7/17 0.97

|pt,had
out | 6.3/7 0.51 71.3/7 < 0.01 6.3/7 0.51 12.9/7 0.07 24.6/7 < 0.01

|yt t̄boost| 5.9/14 0.97 7.4/14 0.92 5.1/14 0.98 8.4/14 0.87 7.8/14 0.90

χ t t̄ 18.1/12 0.11 10.5/12 0.57 36.0/12 < 0.01 14.6/12 0.26 22.7/12 0.03

|�φ(t, t̄)| 3.3/6 0.77 45.8/6 < 0.01 8.0/6 0.24 5.7/6 0.46 21.6/6 < 0.01

pt,1T 6.0/10 0.81 10.0/10 0.44 6.8/10 0.74 3.1/10 0.98 3.0/10 0.98

pt,2T 4.2/8 0.84 3.4/8 0.91 5.3/8 0.73 1.9/8 0.98 0.9/8 1.00

|yt,had| 9.1/19 0.97 9.6/19 0.96 9.0/19 0.97 10.4/19 0.94 14.6/19 0.74

pt,had
T 11.7/18 0.86 11.1/18 0.89 14.3/18 0.71 6.4/18 0.99 6.8/18 0.99

|yt t̄ | 8.2/15 0.91 11.1/15 0.75 7.4/15 0.95 9.1/15 0.87 10.6/15 0.78

mtt̄ 16.0/15 0.38 14.8/15 0.46 19.8/15 0.18 14.7/15 0.48 15.3/15 0.43

ptt̄T 19.6/10 0.03 165.0/10 < 0.01 17.5/10 0.07 28.6/10 < 0.01 71.2/10 < 0.01

N extrajets 5.8/6 0.44 14.4/6 0.03 29.2/6 < 0.01 94.0/6 < 0.01 8.8/6 0.19

Table 10 Comparison of the measured particle-level absolute single-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T 11.1/18 0.89 17.7/18 0.48 10.5/18 0.91 11.4/18 0.88 11.9/18 0.85

|pt,had
out | 9.2/8 0.32 97.3/8 < 0.01 8.3/8 0.41 11.2/8 0.19 27.8/8 < 0.01

|yt t̄boost| 7.0/15 0.96 8.7/15 0.89 6.1/15 0.98 9.8/15 0.83 10.2/15 0.81

χ t t̄ 20.4/13 0.09 12.3/13 0.51 38.3/13 < 0.01 17.7/13 0.17 22.5/13 0.05

|�φ(t, t̄)| 3.0/7 0.89 57.7/7 < 0.01 12.3/7 0.09 4.7/7 0.70 22.1/7 < 0.01

pt,1T 9.2/11 0.60 15.0/11 0.18 8.8/11 0.64 7.8/11 0.73 6.5/11 0.84

pt,2T 5.3/9 0.80 5.2/9 0.81 6.0/9 0.74 2.5/9 0.98 2.1/9 0.99

|yt,had| 12.7/20 0.89 13.5/20 0.86 12.5/20 0.90 13.2/20 0.87 19.5/20 0.49

pt,had
T 19.0/19 0.46 23.3/19 0.23 18.0/19 0.52 15.0/19 0.72 14.5/19 0.75

|yt t̄ | 9.2/16 0.90 11.5/16 0.78 8.3/16 0.94 9.8/16 0.88 13.5/16 0.64

mtt̄ 17.8/16 0.34 16.4/16 0.43 20.2/16 0.21 15.5/16 0.49 17.1/16 0.38

ptt̄T 23.1/11 0.02 196.0/11 < 0.01 16.9/11 0.11 33.4/11 < 0.01 88.0/11 < 0.01

N extra jets 9.5/7 0.22 7.7/7 0.36 28.3/7 < 0.01 104.0/7 < 0.01 11.5/7 0.12

differential cross-section as a function of mtt̄ and pt,had
T that

is well described by all the NLO MC predictions, as shown in
Figs. 22a and 24a and Table 9, while the double-differential
cross-section where these two variables are combined shows
strong disagreement with several predictions, as shown in
Fig. 26. The comparison of the NLO MC predictions with the
measured double-differential cross-sections reveals, overall,
poorer agreement than in the single-differential case. In par-
ticular, it is observed that no generator is able to describe any

double-differential observable that includes ptt̄T as a probed
variable.

10.1.2 Boosted topology

The single-differential cross-sections are measured as a func-
tion of the transverse momentum and absolute value of the
rapidity of the hadronically decaying top quark as well as of
the mass, transverse momentum and rapidity of the t t̄ system
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(a) (b)

Fig. 26 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of mtt̄ in the resolved topology compared with the
prediction obtained with the Powheg+Pythia8 MC generator. Data

points are placed at the centre of each bin. b The ratio of the measured
cross-section to different Monte Carlo predictions. The bands represent
the statistical and total uncertainty in the data

(a) (b)

Fig. 27 a Particle-level normalised differential cross-section as a func-
tion of ptt̄T in bins of mtt̄ in the resolved topology compared with the
prediction obtained with the Powheg+Pythia8 MC generator. Data

points are placed at the centre of each bin. b The ratio of the measured
cross-section to different Monte Carlo predictions. The bands represent
the statistical and total uncertainty in the data

and of the additional variables
∣∣pt,lep

out

∣∣, Htt̄
T , χ t t̄ , additional

jet multiplicity and the number of small-R jets reclustered
inside the hadronic top. The differential cross-section as a
function of the pT of the top quark is also measured sepa-
rately for the leading and subleading top quark. The results
are shown in Figs. 37, 38, 39, 40, 41, and 42. The quantita-
tive comparisons among the particle-level results and predic-
tions, obtained with a χ2 test statistic, are shown in Tables 13
and 14, for normalised and absolute single-differential cross-
sections, respectively. In Fig. 40b an example of an absolute
differential cross-section in the boosted topology is given.
The total uncertainty in the differential cross-section as a

function of mtt̄ is reduced relative to the corresponding nor-
malised cross-section, Fig. 40a.

The double-differential cross-sections, presented in
Figs. 43, 44, 45, 46, 47, 48, 49, 50, 51, and 52, are mea-
sured as a function of pt,had

T in bins of ptt̄T ,
∣∣yt t̄

∣∣,
∣∣yt

∣∣ and

mtt̄ as well as a function of mtt̄ in bins of ptt̄T ,
∣∣yt t̄

∣∣ and

Htt̄
T and finally as a function of pt,had

T , ptt̄T and mtt̄ in bins
of jet multiplicity. The quantitative comparisons among the
particle-level results and predictions, obtained with a χ2 test
statistic, are shown in Tables 15 and 16, for normalised and
absolute double-differential cross-sections, respectively.
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(a) (b)

Fig. 28 a Particle-level normalised differential cross-section as a func-

tion of
∣∣∣pt,had

out

∣∣∣ in bins of pt,had
T in the resolved topology compared with

the prediction obtained with the Powheg+Pythia8MC generator. Data

points are placed at the centre of each bin. b The ratio of the measured
cross-section to different Monte Carlo predictions. The bands represent
the statistical and total uncertainty in the data

(a) (b)

Fig. 29 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of the jet multiplicity in the resolved topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

Additionally, the total cross-section is measured in the
fiducial phase-space of the boosted topology and is compared
with the MC predictions previously described, as shown
in Fig. 53. The total cross-section predicted by each NLO
MC generator is normalised to the NNLO+NNLL predic-
tion as quoted in Ref. [55] and the corresponding uncer-
tainty only includes the uncertainty affecting the k-factor
used in the normalisation. As in the case of the inclu-
sive fiducial cross-section in the resolved topology, the dif-
ferences between the quoted fiducial cross-sections result
from different acceptance predictions from each model. It is

observed that several NLO+PS predictions, with the excep-
tion of Powheg+Herwig7 and Powheg+Pythia8 Rad.
down, overestimate the measurement of the inclusive cross-
section.

The MC predictions are not always able to describe the
measured single-differential cross-sections in the entire fidu-
cial phase-space; mismodelling is observed, in particular, for
the differential cross-section as a function of the pT of the
hadronic top quark, shown in Fig. 37a, for the differential
cross-section as a function of mtt̄ , shown in Fig. 40a, and
for the observable Htt̄

T , shown in Fig. 41c, where all the MC
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(a) (b)

Fig. 30 a Particle-level normalised differential cross-section as a func-
tion of mtt̄ in bins of the jet multiplicity in the resolved topology com-
pared with the prediction obtained with the Powheg+Pythia8 MC

generator. Data points are placed at the centrer of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 31 aParticle-level absolute differential cross-section as a function
of mtt̄ in bins of the jet multiplicity in the resolved topology compared
with the prediction obtained with the Powheg+Pythia8 MC genera-

tor. Data points are placed at the centre of each bin. b The ratio of the
measured cross-section to different Monte Carlo predictions. The bands
represent the statistical and total uncertainty in the data

predictions tend to overestimate the data in the tails of the
distributions. A similar trend is observed for the differential
cross-sections as a function of the transverse momentum of
the leading and subleading top quark (shown in Fig. 38). To
a smaller extent, discrepancies are observed at high values
of

∣∣yt t̄
∣∣, shown in Fig. 39b, and in the tails of the

∣∣pt,lep
out

∣∣
distribution, shown in Fig. 41b.

The tensions between the MC predictions and the data
are observed also in the measured double-differential cross-
sections, in particular for the cross-sections as a function
of pt,had

T in bins of
∣∣yt t̄

∣∣,
∣∣yt

∣∣ and mtt̄ (shown in Figs. 44,
45, 46) and as a function of mtt̄ in bins of

∣∣yt t̄
∣∣ (shown

in Fig. 49). As in the case of the double-differential cross-
sections in the resolved topology, the measurements allow
discrimination between the different MC predictions. Over-
all, for the double-differential cross-sections, the MC predic-
tions obtained from Powheg+Herwig7 provide the better
description of the data while those from Sherpa 2.2.1 and
Powheg+Pythia8 with the Var3cDown tuning show a sig-
nificant disagreement with the data, as also observed in the
resolved topology to a smaller extent.

Since the definitions of the phase-space and the particle-
level hadronic top quark differ between the resolved and
boosted topologies, a direct comparison of the measured dif-
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(a) (b)

Fig. 32 a Particle-level normalised differential cross-section as a func-
tion of ptt̄T in bins of the jet multiplicity in the resolved topology com-
pared with the prediction obtained with the Powheg+Pythia8 MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 33 a Particle-level normalised differential cross-section as a func-

tion of
∣∣∣pt,had

out

∣∣∣ in bins of the jet multiplicity in the resolved topology

compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

ferential cross-sections is not possible. However, it can be
seen in Fig. 54 that the ratio of data to prediction is consistent
between the measured absolute differential cross-sections in
the overlap region of the two topologies.

10.2 Results at parton level in the full phase-space

10.2.1 Resolved topology

The single-differential normalised cross-sections are mea-
sured as a function of the transverse momentum and abso-
lute value of the rapidity of the top quark and as a func-

tion of the mass, transverse momentum and absolute value
of the rapidity of the t t̄ system and of the additional vari-
ables

∣∣yt t̄boost

∣∣, Htt̄
T and χ t t̄ . The results are shown in Figs. 55,

56 and 57. The quantitative comparisons among the parton-
level results and MC predictions, obtained with a χ2 test
statistic, are shown in Tables 17 and 18, for normalised and
absolute single-differential distributions, respectively. The
double-differential cross-sections, presented in Figs. 58, 59,
60, 61, 62, and 63, are measured as a function of ptT in bins
of mtt̄ , ptt̄T and

∣∣yt
∣∣, as a function of ptt̄T in bins of mtt̄ and∣∣yt t̄

∣∣ and finally as a function of mtt̄ in bins of
∣∣yt t̄

∣∣. The
quantitative comparisons among the parton-level results and
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(a) (b)

Fig. 34 a Particle-level normalised differential cross-section as a func-
tion of

∣∣�φ
(
t, t̄

)∣∣ in bins of the jet multiplicity in the resolved topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 35 a Particle-level normalised differential cross-section as a func-
tion of Htt̄

T in bins of the jet multiplicity in the resolved topology com-
pared with the prediction obtained with the Powheg+Pythia8 MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

MC predictions, obtained with a χ2 test statistic, are shown
in Tables 21 and 22, for normalised and absolute single-
differential distributions, respectively.

The measured differential cross-sections are compared
with the fixed-order NNLO pQCD predictions and with the
Powheg+Pythia8 NLO+PS parton-level predictions. In the
case of the top-quark pT and rapidity, NNLO predictions
are available for the distributions of the top/anti-top average,
which are calculated not on an event-by-event basis but by
averaging the results of the histograms of the distributions

of the top and anti-top quark [121]. For these variables, the
measured differential cross-sections are taken as a function
of the hadronic top quark’s kinematics.

The NNLO pQCD predictions are obtained, for the opti-
mised binning of this analysis, using the NNLO NNPDF3.1
PDF set [123] with the renormalisation (μR) and factorisa-
tion (μF) scales both set to HT/4 (with HT equal to the sum
of the transverse masses of the top and anti-top quark) for
all the measured differential cross-sections with the excep-
tion of the differential cross-section as a function of ptT, for
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Table 11 Comparison of the measured particle-level normalised
double-differential cross-sections in the resolved topology with the pre-
dictions from several MC generators. For each prediction a χ2 and a

p-value are calculated using the covariance matrix of the measured
spectrum. The NDF is equal to the number of bins in the distribution
minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T vs N extrajets 9.7/19 0.96 57.9/19 < 0.01 19.4/19 0.43 48.7/19 < 0.01 27.4/19 0.10

|pt,had
out | vs N extrajets 10.8/9 0.29 89.2/9 < 0.01 31.9/9 < 0.01 32.6/9 < 0.01 19.2/9 0.02

χ t t̄ vs N extrajets 37.6/19 < 0.01 31.6/19 0.03 88.9/19 < 0.01 84.8/19 < 0.01 23.7/19 0.21

|�φ(t, t̄)| vs N extrajets 21.8/18 0.24 125.0/18 < 0.01 31.0/18 0.03 44.4/18 < 0.01 36.7/18 < 0.01

|yt,had| vs N extrajets 9.5/12 0.66 19.1/12 0.09 26.8/12 < 0.01 30.8/12 < 0.01 10.4/12 0.58

|yt,had| vs pt,had
T 14.9/12 0.25 11.9/12 0.45 18.1/12 0.11 8.4/12 0.75 9.4/12 0.67

pt,had
T vs |pt,had

out | 10.5/12 0.57 74.5/12 < 0.01 25.3/12 0.01 13.4/12 0.34 22.4/12 0.03

pt,had
T vs N extrajets 14.2/16 0.58 45.7/16 < 0.01 37.3/16 < 0.01 67.5/16 < 0.01 13.9/16 0.60

|yt t̄ | vs N extrajets 8.2/12 0.77 14.6/12 0.26 25.4/12 0.01 55.5/12 < 0.01 13.9/12 0.30

|yt t̄ | vs mtt̄ 18.0/14 0.21 12.0/14 0.60 23.1/14 0.06 13.2/14 0.51 14.8/14 0.40

|yt t̄ | vs ptt̄T 28.5/12 < 0.01 149.0/12 < 0.01 23.2/12 0.03 31.8/12 < 0.01 70.7/12 < 0.01

mtt̄ vs N extrajets 29.1/16 0.02 25.5/16 0.06 49.6/16 < 0.01 24.6/16 0.08 11.5/16 0.78

mtt̄ vs pt,had
T 58.9/31 < 0.01 51.4/31 0.01 92.3/31 < 0.01 35.6/31 0.26 44.8/31 0.05

mtt̄ vs ptt̄T 43.6/21 < 0.01 260.0/21 < 0.01 47.0/21 < 0.01 44.7/21 < 0.01 149.0/21 < 0.01

ptt̄T vs N extrajets 69.1/19 < 0.01 283.0/19 < 0.01 58.5/19 < 0.01 82.8/19 < 0.01 102.0/19 < 0.01

ptt̄T vs pt,had
T 39.2/19 < 0.01 282.0/19 < 0.01 51.5/19 < 0.01 55.8/19 < 0.01 137.0/19 < 0.01

Table 12 Comparison of the measured particle-level absolute double-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T vs N extrajets 13.8/20 0.84 72.9/20 < 0.01 31.3/20 0.05 56.6/20 < 0.01 40.5/20 < 0.01

|pt,had
out | vs N extrajets 16.3/10 0.09 165.0/10 < 0.01 15.7/10 0.11 35.6/10 < 0.01 50.9/10 < 0.01

χ t t̄ vs N extrajets 44.4/20 < 0.01 60.3/20 < 0.01 88.3/20 < 0.01 62.2/20 < 0.01 24.6/20 0.21

|�φ(t, t̄)| vs N extrajets 41.6/19 < 0.01 183.0/19 < 0.01 43.6/19 < 0.01 44.2/19 < 0.01 60.0/19 < 0.01

|yt,had| vs N extrajets 11.3/13 0.59 50.3/13 < 0.01 23.1/13 0.04 28.7/13 < 0.01 14.8/13 0.32

|yt,had| vs pt,had
T 13.3/13 0.42 12.9/13 0.45 15.6/13 0.27 8.7/13 0.80 9.8/13 0.71

pt,had
T vs |pt,had

out | 8.6/13 0.80 79.6/13 < 0.01 28.8/13 < 0.01 9.7/13 0.72 16.0/13 0.25

pt,had
T vs N extrajets 19.3/17 0.31 59.5/17 < 0.01 43.3/17 < 0.01 65.3/17 < 0.01 24.7/17 0.10

|yt t̄ | vs N extrajets 7.0/13 0.90 26.7/13 0.01 22.1/13 0.05 51.5/13 < 0.01 31.5/13 < 0.01

|yt t̄ | vs mtt̄ 22.3/15 0.10 15.0/15 0.45 29.8/15 0.01 15.8/15 0.40 19.1/15 0.21

|yt t̄ | vs ptt̄T 32.7/13 < 0.01 143.0/13 < 0.01 21.2/13 0.07 36.8/13 < 0.01 81.4/13 < 0.01

mtt̄ vs N extrajets 28.0/17 0.04 29.0/17 0.03 49.2/17 < 0.01 36.3/17 < 0.01 14.0/17 0.67

mtt̄ vs pt,had
T 56.2/32 < 0.01 59.9/32 < 0.01 79.9/32 < 0.01 31.9/32 0.47 48.5/32 0.03

mtt̄ vs ptt̄T 49.0/22 < 0.01 310.0/22 < 0.01 53.3/22 < 0.01 55.1/22 < 0.01 175.0/22 < 0.01

ptt̄T vs N extrajets 93.2/20 < 0.01 412.0/20 < 0.01 51.9/20 < 0.01 91.8/20 < 0.01 163.0/20 < 0.01

ptt̄T vs pt,had
T 38.6/20 < 0.01 294.0/20 < 0.01 66.5/20 < 0.01 46.1/20 < 0.01 128.0/20 < 0.01
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Fig. 36 Comparison of the measured inclusive fiducial cross-section in
the resolved topology with the predictions from several MC generators.
The bands represent the statistical and total uncertainty in the data. The
uncertainty on the cross-section predicted by each NLO MC generator
only includes the uncertainty (due to PDFs, mt and αs ) affecting the
k-factor used in the normalisation

which both scales were set to mT/2 [5].4 The top-quark pole
mass is set to 172.5 GeV. The theoretical uncertainty in the
central NNLO predictions is obtained by summing in quadra-
ture the uncertainty due to the higher-order terms, estimated
from the envelope of the predictions obtained by indepen-
dently increasing and decreasing μR and μF by a factor of
two relative to the central scale choice, and the uncertainty
due to the PDFs obtained according to the prescription of the
NNPDF Collaboration. The quantitative comparisons among
the parton-level results and the NNLO pQCD predictions,
obtained with a χ2 test statistic, are shown in Tables 19 and 20
and Tables 23 and 24, for single- and double-differential dis-
tributions, respectively.

For the single-differential cross-sections the NNLO and
NLO+PS predictions give a good and comparable description
of the data, with the exception of mtt̄ that is poorly described
by several NLO+PS predictions. Regarding the measured

4 mT =
√
m2

t + p2
T,t .

double-differential cross-sections, tensions are observed for
several variables with respect to the NLO+PS predictions
while a better description is observed when comparing the
measurements with the NNLO calculations. In the double-
differential cross-sections as a function of ptT in bins of mtt̄ ,
shown in Fig. 60, the NNLO and NLO+PS central predictions
show a contrasting behaviour, with the Powheg+Pythia8
predictions giving a better description of the data in the low
mtt̄ region while the NNLO predictions better model the mea-
surements in the high mtt̄ region.

The absolute differential cross-sections as a function of
ptT, yt , ptt̄T ,

∣∣yt t̄
∣∣ and mtt̄ are also measured using a coarser

binning,5 used in a recent measurement from the CMS Col-
laboration [21], to test the impact of including EW correc-
tions in the NNLO pQCD predictions. These EW corrections
[121] include the NLO EW effects ofO(α2

Sα), all subleading
NLO (O(αSα2) andO(α3)) terms as well as the LO (O(αSα)

and O(α2)) contributions in the QCD and EW coupling con-
stants. For these predictions, the mass of the top quark is set
to 173.3 GeV.

These additional measurements are shown in Figs. 64
and 65 and are compared with theoretical predictions
obtained, with and without EW corrections, with two dif-
ferent PDF sets: the NNLO NNPDF3.1 PDF set and the
LUXQED17 PDF set [124], the latter includes in addition to
the standard partonic structure of the proton its photon com-
ponent. The still rather limited range covered by the trans-
verse momenta of top and anti-top quarks does not yet allow
quantitative tests of the impact of the EW corrections as well
as the contribution of the PDF of the photon in the proton to
the production of top-quark pairs.

10.2.2 Boosted topology

In the boosted topology, the parton-level normalised differ-
ential cross-sections are extracted in a region of the phase-
space where the top quark is produced with pT > 350 GeV.
The single-differential cross-sections are measured as a func-
tion of the transverse momentum of the top quark and of the
invariant mass of the t t̄ system. The results are shown in
Fig. 66. The parton-level double-differential cross-sections,
presented in Fig. 67, are measured as a function of mtt̄ in
bins of ptT.

5 The binning used for this comparison is tested and fully validated
against the stability of the unfolding procedure.
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(a) (b)

Fig. 37 Particle-level normalised differential cross-sections as a func-
tion of a the transverse momentum and b the absolute value of the
rapidity of the hadronically decaying top quark in the boosted topol-
ogy, compared with different Monte Carlo predictions. The bands rep-

resent the statistical and total uncertainty in the data. Data points are
placed at the centre of each bin. The lower panel shows the ratios of the
simulations to data

(a) (b)

Fig. 38 Particle-level normalised differential cross-sections as a func-
tion of the transverse momentum of a the leading and b the subleading
top quark in the boosted topology, compared with different Monte Carlo

predictions. The bands represent the statistical and total uncertainty in
the data. Data points are placed at the centre of each bin. The lower
panel shows the ratios of the simulations to data
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(a) (b)

Fig. 39 Particle-level normalised differential cross-sections as a func-
tion of a the transverse momentum and b the absolute value of the
rapidity of the t t̄ system in the boosted topology, compared with dif-

ferent Monte Carlo predictions. The bands represent the statistical and
total uncertainty in the data. Data points are placed at the centre of each
bin. The lower panel shows the ratios of the simulations to data

(a) (b)

Fig. 40 Particle-level a normalised and b absolute differential cross-
sections as a function of mtt̄ in the boosted topology, compared with
different Monte Carlo predictions. The bands represent the statistical

and total uncertainty in the data. Data points are placed at the centre of
each bin. The lower panel shows the ratios of the simulations to data
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(a)

(c)

(b)

Fig. 41 Particle-level normalised differential cross-sections as a func-
tion of a χ t t̄ , b

∣∣pt,lep
out

∣∣ and c Htt̄
T in the boosted topology, compared

with different Monte Carlo predictions. The bands represent the statisti-

cal and total uncertainty in the data. Data points are placed at the centre
of each bin. The lower panel shows the ratios of the simulations to data
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(a) (b)

Fig. 42 Particle-level normalised differential cross-sections as a func-
tion of a the number of additional jets and b the number of small-R jets
composing the hadronically decaying top quark in the boosted topology,
compared with different Monte Carlo predictions. The bands represent

the statistical and total uncertainty in the data. Data points are placed at
the centre of each bin. The lower panel shows the ratios of the simula-
tions to data

Table 13 Comparison of the measured particle-level normalised
single-differential cross-sections in the boosted topology with the pre-
dictions from several MC generators. For each prediction a χ2 and a

p-value are calculated using the covariance matrix of the measured
spectrum. The NDF is equal to the number of bins in the distribution
minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

pt,1T 6.2/7 0.51 10.3/7 0.17 2.8/7 0.90 2.4/7 0.93 11.1/7 0.14

pt,2T 4.0/6 0.68 3.9/6 0.69 4.1/6 0.66 3.2/6 0.78 4.4/6 0.62

Htt̄
T 9.0/9 0.44 7.1/9 0.62 24.1/9 < 0.01 10.4/9 0.32 7.8 /9 0.56

∣∣pt,lep
out

∣∣ 7.1/ 6 0.31 17.2/6 < 0.01 43.3/6 < 0.01 25.4/6 < 0.01 2.9/6 0.82

χ t t̄ 3.5/6 0.74 1.0/6 0.98 18.4/6 < 0.01 3.2/6 0.79 8.9/6 0.18

N extrajets 5.5/4 0.24 15.7/4 < 0.01 17.0/4 < 0.01 2.5/4 0.64 8.6/4 0.07

pt,had
T 6.2/7 0.52 11.0/7 0.14 3.2/7 0.86 3.5/7 0.83 10.6/7 0.16

N subjets 0.3/3 0.95 4.3/3 0.23 0.7/3 0.86 2.1/3 0.55 2.6/3 0.46

|yt,had| 0.6/3 0.90 0.5/3 0.93 1.5/3 0.68 0.6/3 0.90 1.2/3 0.75

|yt t̄ | 3.2/3 0.36 1.9/3 0.60 4.5/3 0.21 5.2/3 0.16 4.2/3 0.24

mtt̄ 7.5/9 0.59 11.8/9 0.23 16.2/9 0.06 8.1/9 0.52 8.3/9 0.50

ptt̄T 3.5/5 0.63 25.6/5 < 0.01 35.7/5 < 0.01 9.8/5 0.08 19.7/5 < 0.01
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Table 14 Comparison of the measured particle-level absolute single-
differential cross-sections in the boosted topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

pt,1T 7.8/8 0.46 14.1/8 0.08 3.9/8 0.86 2.8/8 0.95 12.9/8 0.11

pt,2T 5.3/7 0.62 6.6/7 0.47 5.7/7 0.58 5.6/7 0.59 4.8/7 0.68

Htt̄
T 10.9/10 0.37 10.5/10 0.40 15.5/10 0.12 7.0/10 0.72 11.4/10 0.33

∣∣pt,lep
out

∣∣ 24.2/7 < 0.01 21.7/7 < 0.01 72.0/7 < 0.01 31.9/7 < 0.01 9.9/7 0.19

χ t t̄ 12.9/7 0.07 9.2/7 0.24 32.0/7 < 0.01 4.5/7 0.72 17.2/7 0.02

N extrajets 38.5/5 < 0.01 46.0/5 < 0.01 57.0/5 < 0.01 4.7/5 0.45 33.4/5 < 0.01

pt,had
T 9.2/8 0.33 16.0/8 0.04 5.9/8 0.66 4.5/8 0.81 12.0/8 0.15

N subjets 7.6/4 0.11 11.2/4 0.02 8.1/4 0.09 1.3/4 0.87 3.6/4 0.46

|yt,had| 4.0/4 0.41 5.8/4 0.21 3.9/4 0.42 2.3/4 0.68 10.6/4 0.03

|yt t̄ | 8.8/4 0.07 10.3/4 0.04 8.1/4 0.09 6.7/4 0.15 10.5/4 0.03

mtt̄ 16.5/10 0.09 28.5/10 < 0.01 24.3/10 <0.01 11.2/10 0.34 25.5/10 < 0.01

ptt̄T 21.0/6 < 0.01 59.3/6 < 0.01 107.0/6 < 0.01 27.8/6 < 0.01 38.4/6 < 0.01

(a) (b)

Fig. 43 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of ptt̄T in the boosted topology compared with the
prediction obtained with the Powheg+Pythia8 MC generator. Data

points are placed at the centre of each bin. b The ratio of the measured
cross-section to different Monte Carlo predictions. The bands represent
the statistical and total uncertainty in the data

(a) (b)

Fig. 44 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of the absolute value of the rapidity of the t t̄ system
in the boosted topology compared with the prediction obtained with the
Powheg+Pythia8 MC generator.Data points are placed at the cen-

tre of each bin. b The ratio of the measured cross-section to different
Monte Carlo predictions. The bands represent the statistical and total
uncertainty in the data
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(a) (b)

Fig. 45 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of the absolute value of the rapidity of the hadroni-
cally decaying top quark in the boosted topology compared with the pre-
diction obtained with the Powheg+Pythia8 MC generator.Data points

are placed at the centre of each bin. b The ratio of the measured cross-
section to different Monte Carlo predictions. The bands represent the
statistical and total uncertainty in the data

(a) (b)

Fig. 46 a Particle-level normalised differential cross-section as a func-
tion of pt,had

T in bins of the mass of the t t̄ system in the boosted topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 47 a Particle-level normalised differential cross-section as a func-
tion of the mass of the t t̄ system in bins of Htt̄

T in the boosted topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data
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(a) (b)

Fig. 48 a Particle-level normalised differential cross-section as a func-
tion of the mass of the t t̄ system in bins of ptt̄T in the boosted topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 49 a Particle-level normalised differential cross-section as a func-
tion of the mass of the t t̄ system in bins of |yt t̄ | in the boosted topology
compared with the prediction obtained with the Powheg+Pythia8MC

generator. Data points are placed at the centre of each bin. b The ratio
of the measured cross-section to different Monte Carlo predictions. The
bands represent the statistical and total uncertainty in the data

(a) (b)

Fig. 50 a Particle-level normalised differential cross-section as a func-
tion of the pT of the hadronically decaying top quark in bins of the
number of additional jets in the boosted topology compared with the
prediction obtained with the Powheg+Pythia8 MC generator. Data

points are placed at the centre of each bin. b The ratio of the measured
cross-section to different Monte Carlo predictions. The bands represent
the statistical and total uncertainty in the data
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(a) (b)

Fig. 51 a Particle-level normalised differential cross-section as a func-
tion of the pT of the t t̄ system in bins of the number of additional jets
in the boosted topology compared with the prediction obtained with the
Powheg+Pythia8 MC generator. Data points are placed at the cen-

tre of each bin. b The ratio of the measured cross-section to different
Monte Carlo predictions. The bands represent the statistical and total
uncertainty in the data

(a) (b)

Fig. 52 a Particle-level normalised differential cross-section as a func-
tion of the mass of the t t̄ system in bins of the number of additional jets
in the boosted topology compared with the prediction obtained with the

Powheg+Pythia8 MC generator. Data points are placed at the centre
of each bin. bThe ratio of the measured cross-section to different Monte
Carlo predictions

Table 15 Comparison of the measured particle-level normalised
double-differential cross-sections in the boosted topology with the pre-
dictions from several MC generators. For each prediction a χ2 and a

p-value are calculated using the covariance matrix of the measured
spectrum. The NDF is equal to the number of bins in the distribution
minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

mtt̄ vs N extrajets 14.3/12 0.28 30.4/12 < 0.01 28.7/12 < 0.01 5.4/12 0.94 19.1/12 0.09

ptt̄T vs N extrajets 13.5/10 0.20 43.0/10 < 0.01 41.9/10 < 0.01 13.0/10 0.22 22.7/10 0.01

mtt̄ vs Htt̄
T 7.3/8 0.51 16.5/8 0.04 15.7/8 0.05 7.1/8 0.53 20.8/8 < 0.01

mtt̄ vs |yt t̄ | 4.8/13 0.98 11.5/13 0.57 15.9/13 0.26 5.8/13 0.95 16.4/13 0.23

mtt̄ vs ptt̄T 7.8/12 0.80 34.6/12 < 0.01 40.6/12 < 0.01 18.6/12 0.10 18.0/12 0.12

pt,had
T vs |yt | 8.6/9 0.47 12.7/9 0.17 6.5/9 0.69 5.7/9 0.77 12.5/9 0.18

pt,had
T vs |yt t̄ | 10.0/9 0.35 11.6/9 0.24 8.5/9 0.48 8.9/9 0.45 13.5/9 0.14

pt,had
T vs N extrajets 16.3/14 0.29 42.6/14 < 0.01 30.3/14 < 0.01 18.6/14 0.18 30.8/14 < 0.01

pt,had
T vs mtt̄ 6.9/7 0.44 18.7/7 < 0.01 8.9/7 0.26 4.4/7 0.73 25.6/7 < 0.01

pt,had
T vs ptt̄T 16.1/13 0.24 50.4/13 < 0.01 63.2/13 < 0.01 26.0/13 0.02 33.9/13 < 0.01
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Table 16 Comparison of the measured particle-level absolute double-
differential cross-sections in the boosted topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

mtt̄ vs N extrajets 38.9/13 < 0.01 53.2/13 < 0.01 73.4/13 < 0.01 9.1/13 0.77 35.9/13 < 0.01

ptt̄T vs N extrajets 41.6/11 < 0.01 86.5/11 < 0.01 102.0/11 < 0.01 25.4/11 < 0.01 45.9/11 < 0.01

mtt̄ vs Htt̄
T 12.7/9 0.17 17.8/9 0.04 25.3/9 < 0.01 11.8/9 0.22 24.4/9 < 0.01

mtt̄ vs |yt t̄ | 18.4/14 0.19 17.3/14 0.24 36.5/14 < 0.01 14.2/14 0.43 22.1/14 0.08

mtt̄ vs ptt̄T 15.5/13 0.28 70.1/13 < 0.01 86.4/13 < 0.01 27.8/13 < 0.01 28.8/13 < 0.01

pt,had
T vs |yt | 11.2/10 0.34 15.9/10 0.10 7.3/10 0.70 6.7/10 0.75 15.3/10 0.12

pt,had
T vs |yt t̄ | 9.7/10 0.47 10.6/10 0.39 8.1/10 0.62 8.5/10 0.58 13.4/10 0.20

pt,had
T vs N extrajets 35.7/15 < 0.01 74.2/15 < 0.01 61.1/15 < 0.01 22.5/15 0.09 59.6/15 < 0.01

pt,had
T vs mtt̄ 14.8/8 0.06 29.8/8 < 0.01 16.4/8 0.04 4.4/8 0.82 32.6/8 < 0.01

pt,had
T vs ptt̄T 24.6/14 0.04 70.1/14 < 0.01 94.3/14 < 0.01 30.0/14 < 0.01 48.7/14 < 0.01

Fig. 53 Comparison of the measured inclusive fiducial cross-section
in the boosted topology with the predictions from several MC genera-
tors. The bands represent the statistical and total uncertainty in the data.

The uncertainty on the cross-section predicted by each NLO MC gen-
erator only includes the uncertainty (due to PDFs, mt and αs ) affecting
the k-factor used in the normalisation
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Fig. 54 The ratios of the measured fiducial phase-space abso-
lute differential cross-sections to the predictions obtained with the
Powheg+Pythia8 MC generator in the resolved and boosted topolo-

gies as a function of the transverse momentum of the hadronic top quark.
The bands indicate the statistical and total uncertainties of the data in
each bin

(a) (b)

Fig. 55 Parton-level normalised differential cross-sections as a func-
tion of a the pT and b normalised rapidity of the top in the resolved
topology, compared with the NNLO predictions obtained using the
NNPDF3.1 NNLO PDF set and the predictions obtained with the
Powheg+Pythia8MC generator. The hatched band represents the total

uncertainty in the NNLO prediction. The solid bands represent the sta-
tistical and total uncertainty in the data. Data points are placed at the
centre of each bin. The lower panel shows the ratios of the predictions
to data
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(a)

(c)

(b)

Fig. 56 Parton-level normalised differential cross-sections as a func-
tion of a the mass, b pT and c absolute value of the rapidity of the
t t̄ system in the resolved topology, compared with the NNLO predic-
tions obtained using the NNPDF3.1 NNLO PDF set and the predictions
obtained with the Powheg+Pythia8 MC generator. The hatched band

represents the total uncertainty in the NNLO prediction. The solid bands
represent the statistical and total uncertainty in the data. Data points are
placed at the centre of each bin. The lower panel shows the ratios of the
predictions to data
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(a)

(c)

(b)

Fig. 57 Parton-level normalised differential cross-sections as a func-
tion of a |yt t̄boost|, b Htt̄

T and c χ t t̄ in the resolved topology, compared
with the NNLO predictions obtained using the NNPDF3.1 NNLO PDF
set and the predictions obtained with the Powheg+Pythia8 MC gen-

erator. The hatched band represents the total uncertainty in the NNLO
prediction. The solid bands represent the statistical and total uncertainty
in the data. Data points are placed at the centre of each bin. The lower
panel shows the ratios of the predictions to data
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Table 17 Comparison of the measured parton-level normalised single-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T 3.8/8 0.88 2.9/8 0.94 4.0/8 0.86 2.1/8 0.98 10.1/8 0.26

|yt t̄boost| 4.9/8 0.77 5.3/8 0.73 5.1/8 0.74 4.8/8 0.78 5.6/8 0.70

χ t t̄ 9.7/3 0.02 4.2/3 0.24 20.9/3 < 0.01 5.8/3 0.12 19.1/3 < 0.01

|yt | 9.4/4 0.05 8.8/4 0.07 10.3/4 0.03 8.4/4 0.08 9.8/4 0.04

ptT 6.4/7 0.49 5.8/7 0.56 6.8/7 0.45 4.7/7 0.69 7.6/7 0.37

|yt t̄ | 4.1/6 0.67 4.5/6 0.61 4.3/6 0.63 4.1/6 0.66 4.4/6 0.62

mtt̄ 32.1/8 < 0.01 26.7/8 < 0.01 37.6/8 < 0.01 29.6/8 < 0.01 17.1/8 0.03

ptt̄T 7.8/8 0.45 41.7/8 < 0.01 25.0/8 < 0.01 11.9/8 0.15 22.1/8 < 0.01

Table 18 Comparison of the measured parton-level absolute single-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

Htt̄
T 9.9/9 0.36 10.1/9 0.34 9.9/9 0.36 6.7/9 0.67 19.6/9 0.02

|yt t̄boost| 5.9/9 0.75 6.4/9 0.70 6.2/9 0.72 5.8/9 0.76 6.4/9 0.70

χ t t̄ 10.7/4 0.03 4.5/4 0.34 23.6/4 < 0.01 6.3/4 0.18 22.1/4 < 0.01

|yt | 10.8/5 0.06 10.0/5 0.08 12.2/5 0.03 9.5/5 0.09 10.9/5 0.05

ptT 9.9/8 0.27 8.8/8 0.36 10.8/8 0.21 8.2/8 0.42 11.9/8 0.15

|yt t̄ | 5.0/7 0.66 5.5/7 0.60 5.2/7 0.63 4.9/7 0.67 5.2/7 0.63

mtt̄ 29.1/9 < 0.01 22.9/9 < 0.01 36.8/9 < 0.01 25.6/9 < 0.01 15.4/9 0.08

ptt̄T 8.6/9 0.47 42.4/9 < 0.01 24.3/9 < 0.01 14.1/9 0.12 20.6/9 0.01

(a) (b)

Fig. 58 a Parton-level normalised differential cross-section as a func-
tion of ptT in bins of

∣∣yt
∣∣ in the resolved topology compared with the

NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data
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(a) (b)

Fig. 59 a Parton-level normalised differential cross-section as a func-
tion of ptT in bins of ptt̄T in the resolved topology compared with the
NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data

(a) (b)

Fig. 60 a Parton-level normalised differential cross-section as a func-
tion of ptT in bins of mtt̄ in the resolved topology compared with the
NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data

(a) (b)

Fig. 61 a Parton-level normalised differential cross-section as a func-
tion of ptt̄T in bins of

∣∣yt t̄
∣∣ in the resolved topology compared with the

NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data
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(a) (b)

Fig. 62 a Parton-level normalised differential cross-section as a func-
tion of ptt̄T in bins of mtt̄ in the resolved topology compared with the
NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data

(a) (b)

Fig. 63 a Parton-level normalised differential cross-section as a func-
tion of mtt̄ in bins of

∣∣yt t̄
∣∣ in the resolved topology compared with the

NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The solid bands represent the
statistical and total uncertainty in the data

Table 19 Comparison of the
measured parton-level
normalised single-differential in
the resolved topology
cross-sections with the NNLO
predictions and the nominal
Powheg+Pythia8 predictions.
For each prediction a χ2 and a
p-value are calculated using the
covariance matrix of the
measured spectrum. The NDF is
equal to the number of bins in
the distribution minus one

Observable NNPDF31 NNLO Pwg+Py8

χ2/NDF p-value χ2/NDF p-value

Htt̄
T 5.0/8 0.76 3.8/8 0.88

|yt t̄boost| 8.60/8 0.38 4.9/8 0.77

χ t t̄ 2.40/3 0.50 9.7/3 0.02

|yt,had| 8.20/4 0.09 9.4/4 0.05

ptT 6.30/7 0.51 6.4/7 0.49

|yt t̄ | 6.10/6 0.41 4.1/6 0.67

mtt̄ 17.20/8 0.03 32.1/8 < 0.01

ptt̄T 3.70/8 0.88 7.8/8 0.45
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Table 20 Comparison of the
measured parton-level absolute
single-differential in the
resolved topology cross-sections
with the NNLO predictions and
the nominal Powheg+Pythia8
predictions. For each prediction
a χ2 and a p-value are
calculated using the covariance
matrix of the measured
spectrum. The NDF is equal to
the number of bins in the
distribution

Observable NNPDF31 NNLO Pwg+Py8

χ2/NDF p-value χ2/NDF p-value

Htt̄
T 10.4/9 0.32 9.9/9 0.36

|yt t̄boost| 10.9/9 0.28 5.9/9 0.75

χ t t̄ 2.6/4 0.63 10.7/4 0.03

|yt,had| 9.5/5 0.09 10.8/5 0.06

ptT 7.8/8 0.45 9.9/8 0.27

|yt t̄ | 7.2/7 0.41 5.0/7 0.66

mtt̄ 14.0/9 0.12 29.1/9 < 0.01

ptt̄T 4.9/9 0.84 8.6/9 0.47

Table 21 Comparison of the measured parton-level normalised double-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

|yt | vs ptT 30.9/12 < 0.01 30.2/12 < 0.01 34.7/12 < 0.01 22.9/12 0.03 44.3/12 < 0.01

|yt t̄ | vs mtt̄ 51.8/19 < 0.01 47.0/19 < 0.01 56.6/19 < 0.01 49.4/19 < 0.01 41.4/19 < 0.01

|yt t̄ | vs ptt̄T 17.6/13 0.17 61.8/13 < 0.01 32.4/13 < 0.01 28.3/13 < 0.01 39.5/13 < 0.01

mtt̄ vs ptT 64.6/14 < 0.01 118.0/14 < 0.01 129.0/14 < 0.01 60.9/14 < 0.01 63.4/14 < 0.01

mtt̄ vs ptt̄T 62.6/16 < 0.01 163.0/16 < 0.01 82.1/16 < 0.01 66.4/16 < 0.01 118.0/16 < 0.01

ptt̄T vs ptT 37.4/16 < 0.01 87.1/16 < 0.01 95.0/16 < 0.01 50.7/16 < 0.01 47.2/16 < 0.01

Table 22 Comparison of the measured parton-level absolute double-
differential cross-sections in the resolved topology with the predictions
from several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

|yt | vs ptT 33.2/13 < 0.01 32.4/13 < 0.01 37.3/13 < 0.01 24.5/13 0.03 48.5/13 < 0.01

|yt t̄ | vs mtt̄ 55.6/20 < 0.01 50.4/20 < 0.01 61.3/20 < 0.01 52.9/20 < 0.01 44.6/20 < 0.01

|yt t̄ | vs ptt̄T 18.8/14 0.17 67.1/14 < 0.01 35.1/14 < 0.01 30.2/14 < 0.01 42.9/14 < 0.01

mtt̄ vs ptT 70.5/15 < 0.01 126.0/15 < 0.01 138.0/15 < 0.01 65.5/15 < 0.01 73.3/15 < 0.01

mtt̄ vs ptt̄T 69.8/17 < 0.01 174.0/17 < 0.01 89.5/17 < 0.01 75.5/17 < 0.01 128.0/17 < 0.01

ptt̄T vs ptT 44.2/17 < 0.01 92.7/17 < 0.01 112.0/17 < 0.01 57.6/17 < 0.01 51.4/17 < 0.01
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Table 23 Comparison of the measured parton-level normalised double-
differential cross-sections in the resolved topology with the NNLO pre-
dictions and the nominal Powheg+Pythia8 predictions. For each pre-

diction a χ2 and a p-value are calculated using the covariance matrix
of the measured spectrum. The NDF is equal to the number of bins in
the distribution minus one

Observable NNPDF31 NNLO Pwg+Py8

χ2/NDF p-value χ2/NDF p-value

|yt | vs ptT 25.4/12 0.01 30.9/12 < 0.01

|yt t̄ | vs mtt̄ 39.9/19 < 0.01 51.8/19 < 0.01

|yt t̄ | vs ptt̄T 15.9/13 0.26 17.6/13 0.17

mtt̄ vs ptT 55.7/14 < 0.01 64.4/14 < 0.01

mtt̄ vs ptt̄T 40.6/16 < 0.01 62.6/16 < 0.01

ptt̄T vs pt,had
T 22.2/16 0.14 37.4/16 < 0.01

Table 24 Comparison of the measured parton-level absolute double-
differential cross-sections in the resolved topology with the NNLO pre-
dictions and the nominal Powheg+Pythia8 predictions. For each pre-

diction a χ2 and a p-value are calculated using the covariance matrix
of the measured spectrum. The NDF is equal to the number of bins in
the distribution

Observable NNPDF31 NNLO Pwg+Py8

χ2/NDF p-value χ2/NDF p-value

|yt | vs ptT 26.8/13 0.01 33.2/13 < 0.01

|yt t̄ | vs mtt̄ 43.7/20 < 0.01 55.6/20 < 0.01

|yt t̄ | vs ptt̄T 17.1/14 0.17 18.8/14 0.17

mtt̄ vs ptT 60.7/15 < 0.01 70.5/15 < 0.01

mtt̄ vs ptt̄T 47.4/17 < 0.01 69.8/17 < 0.01

ptt̄T vs pt,had
T 25.6/17 0.08 44.2/17 < 0.01

(a) (b)

Fig. 64 Parton-level absolute differential cross-sections as a function
of a ptT and b yt in the resolved topology. The results are compared
with NNLO QCD and NNLO QCD+NLO EW theoretical calculations
using the NNPDF3.1 and LUXQED17 PDF sets. The vertical bars on
each marker represents the total uncertainty in the prediction. The solid

line is the nominal NLO Powheg+Pythia8 prediction. The bands rep-
resent the statistical and total uncertainty in the data. Data points are
placed at the centre of each bin. The lower panel shows the ratios of
the predictions to data. The binning adopted in these distributions is the
same used in a recent measurement from the CMS collaboration [21]
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(a)

(c)

(b)

Fig. 65 Parton-level absolute differential cross-sections as a function
of a mtt̄ , b ptt̄T and c yt t̄ in the resolved topology. The results are com-
pared with NNLO QCD and NNLO QCD+NLO EW theoretical calcula-
tions using the NNPDF3.1 and LUXQED17 PDF sets. The vertical bars
on each marker represents the total uncertainty in the prediction. The

solid line is the nominal NLO Powheg+Pythia8 prediction. The bands
represent the statistical and total uncertainty in the data. Data points are
placed at the centre of each bin. The lower panel shows the ratios of
the predictions to data. The binning adopted in these distributions is the
same used in a recent measurement from the CMS collaboration [21]
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(a) (b)

Fig. 66 a Parton-level normalised differential cross-section as a func-
tion of ptT in the boosted topology, compared with the NNLO predic-
tions obtained using the NNPDF3.1 NNLO PDF set and the predictions
obtained with the Powheg+Pythia8 MC generator. The hatched band
represents the total uncertainty in the NNLO prediction. b Parton-level

normalised differential cross-section as a function of mtt̄ in the boosted
topology, compared with predictions obtained with different MC gen-
erators. The bands represent the statistical and total uncertainty in the
data. Data points are placed at the centre of each bin. The lower panel
shows the ratios of the predictions to data

(a) (b)(a) (b)

Fig. 67 a Parton-level normalised differential cross-section as a func-
tion of mtt̄ in bins of ptT in the boosted topology compared with the
NNLO prediction obtained using the NNPDF3.1 NNLO PDF set. Data
points are placed at the centre of each bin. b The ratio of the measured

cross-section to the NNLO prediction and the prediction obtained with
the Powheg+Pythia8 MC generator. The hatched band represents the
total uncertainty in the NNLO prediction. The bands represent the sta-
tistical and total uncertainty in the data
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The inclusive parton-level cross-section measured in the
boosted topology is shown in Fig. 68, where it is compared
with the MC predictions previously described and the NNLO
calculation. The total cross-section predicted by each NLO
MC generator is normalised to the NNLO + NNLL prediction
as quoted in Ref. [55] and the corresponding uncertainty only
includes the uncertainty affecting the k-factor used in the nor-
malisation. Since the parton-level definition in the boosted
topology doesn’t cover the full phase space, the inclusive
cross-section predicted is different for each generator and
differs from the normalisation value described in Sect. 3.
The prediction given by the NNLO calculation shows better
agreement with the measured inclusive cross-section, while
several NLO predictions overestimate data.

The measured single- and double-differential cross-
sections are compared with the fixed-order NNLO pQCD
predictions, obtained using the same parameter settings
already described for the resolved topology, and with the
Powheg+Pythia8 NLO + PS parton-level predictions. A
trend is observed in the agreement between the predictions
and the measured single-differential cross-sections in the
high ptT and mtt̄ regions, where both the NLO + PS and
NNLO (when available) predictions lie at the edge of the
uncertainty band. Both the predictions, however, give a good
description of the double-differential cross-section as a func-
tion of mtt̄ in bins of ptT.

Tables 25 and 26 and Tables 27 and 28 show the quan-
titative comparisons among the parton-level results and the
Monte Carlo and NNLO predictions. The normalised and
absolute single- and double-differential cross-sections are
shown.

Unlike the particle-level measurements, at parton level the
definition of the top-quark observables is identical between
the resolved and boosted topologies. This allows a direct
comparison to be made between the measured differential
cross-sections as a function of the pT of the top quark in the
two topologies, shown in Fig. 69. The two measurements are
consistent in the overlap region.

11 Conclusion

Single- and double-differential cross-sections for the produc-
tion of top-quark pairs are measured in the �+jets channel at
particle and parton level, in the resolved and boosted topolo-
gies, using data from pp collisions at

√
s = 13 TeV collected

in 2015 and 2016 by the ATLAS detector at the CERN Large
Hadron Collider and corresponding to an integrated luminos-
ity of 36.1 fb−1. The differential cross-sections are presented
as a function of the main kinematic variables of the t t̄ sys-
tem, jet multiplicities and observables sensitive to extra QCD
radiation and PDFs.

Fig. 68 Comparison of the measured inclusive parton-level cross-
section in the boosted topology with the predictions from several MC
generators and the NNLO prediction obtained using the NNPDF3.1
NNLO PDF set. The uncertainties associated to the NNLO prediction
have been calculated starting from the scale and PDF uncertainties asso-
ciated to the NNLO prediction of the differential cross-section as a func-
tion of ptT. The uncertainty on the cross-section predicted by each NLO
MC generator only includes the uncertainty (due to PDFs, mt and αs )
affecting the k-factor used in the normalisation. The bands represent
the statistical and total uncertainty in the data

The particle-level measurements are compared with NLO+
PS MC predictions as implemented in state-of-the-art MC
generators. At the particle level, the predictions agree with
the single-differential measurements over a wide kinematic
region for both the resolved and boosted topologies, although
poorer modelling is observed in specific regions of the probed
phase-space. In the boosted topology, which is focused in
the region where the hadronic top quark is produced with
high pT, a disagreement between the measured inclusive
cross-section and several predictions is observed. Over-
all, the NLO+PS MC generators show poorer modelling
of the double-differential distributions and no combination
that includes ptt̄T can be described by the generators in the
resolved topology. Overall, the Powheg+Pythia8 and, in
the boosted topology, Powheg+Herwig7 are the two gen-
erators able to give a good prediction of the largest fraction
of the probed variables. The measurements show high sen-
sitivity to the different aspects of the predictions of the MC
generators and are hence relevant for the tuning of the MC
generators and will contribute to improving the description of
the t t̄ final state and to reducing the systematic uncertainties
related to top-quark modelling.
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Table 25 Comparison of the measured parton-level normalised differ-
ential cross-sections in the boosted topology with the predictions from
several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution minus one

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

mtt̄ vs ptT 0.5/4 0.97 11.6/4 0.02 4.9/4 0.30 0.7/4 0.95 9.0/4 0.06

ptT 4.9/5 0.43 6.9/5 0.23 5.0/5 0.41 4.6/5 0.46 10.4/5 0.07

mtt̄ 4.3/6 0.64 7.5/6 0.28 19.2/6 < 0.01 5.4/6 0.49 5.0/6 0.55

Table 26 Comparison of the measured parton-level absolute differen-
tial cross-sections in the boosted topology with the predictions from
several MC generators. For each prediction a χ2 and a p-value are

calculated using the covariance matrix of the measured spectrum. The
NDF is equal to the number of bins in the distribution

Observable Pwg+Py8 Pwg+Py8 Rad. Up Pwg+Py8 Rad. Down Pwg+H7 Sherpa 2.2.1

χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value χ2/NDF p-value

mtt̄ vs ptT 6.2/5 0.29 29.6/5 < 0.01 18.7/5 < 0.01 3.9/5 0.56 41.5/5 < 0.01

ptT 4.7/6 0.58 6.2/6 0.41 5.8/6 0.45 4.1/6 0.67 9.7/6 0.14

mtt̄ 5.9/7 0.55 18.8/7 < 0.01 18.5/7 < 0.01 6.0/7 0.54 23.8/7 < 0.01

Table 27 Comparison of the measured parton-level normalised differ-
ential cross-sections in the boosted topology with the NNLO predictions
and the nominal Powheg+Pythia8 predictions. For each prediction a
χ2 and a p-value are calculated using the covariance matrix of the
measured spectrum. The NDF is equal to the number of bins in the
distribution minus one

Observable NNPDF3.1 NNLO PWG+PY8

χ2/NDF p-value χ2/NDF p-value

mtt̄ vs ptT 6.2/4 0.18 0.5/4 0.97

ptT 4.8/5 0.44 4.9/5 0.43

The measured parton-level differential cross-sections are
compared with state-of-the-art fixed-order NNLO QCD pre-
dictions and a general improvement relative to the NLO+PS
MC generators is found in the level of agreement of the
single- and double-differential cross-sections in both the
resolved and boosted regimes. The comparison of double-
differential distributions with NNLO predictions provides a
very stringent test of the SM description of t t̄ production. The
comparison with the NNLO pQCD predictions including

Table 28 Comparison of the measured parton-level absolute differen-
tial cross-sections in the boosted topology with the NNLO predictions
and the nominal Powheg+Pythia8 predictions. For each prediction
a χ2 and a p-value are calculated using the covariance matrix of the
measured spectrum. The NDF is equal to the number of bins in the
distribution

Observable NNPDF3.1 NNLO PWG+PY8

χ2/NDF p-value χ2/NDF p-value

mtt̄ vs ptT 6.3/5 0.28 6.2/5 0.29

ptT 4.3/6 0.64 4.7/6 0.58

EW corrections, due to the still rather limited range probed
for the measured transverse momenta of the top and anti-top
quarks, does not yet allow the impact of the EW corrections
in the production of top-quark pairs to be quantified.

The measured differential cross-sections at the parton
level will be able to be used in detailed phenomenological
studies and in particular to improve the determination of the
gluon density in the proton and of the top-quark pole mass.
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(a) (b)

Fig. 69 a Comparison between the measured full phase-space nor-
malised differential cross-sections in the resolved and boosted topolo-
gies as a function of the transverse momentum of the top quark. b
The ratios of the measured full phase-space absolute differential cross-

sections to the NNLO predictions in the resolved and boosted topologies
as a function of the transverse momentum of the top quark. The bands
indicate the statistical and total uncertainties of the data in each bin
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