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2. Abbreviations 

AA Arachidonic acid 

5-HT 5-hydroxytryptamine (serotonin) 

ApoE Apolipoprotein E 

bHLH basic-helix-loop-helix 

BT4C Rat glioma cell line 

CCF-STTG1 Human astrocytoma cell line 

CNS Central nervous system 

DHA Docosahexanoeic acid  

DISC1 Disrupted-in-schizophrenia-1 gene 

DTNBP1 Dysbindin-1/ Dystrobrevin-binding protein 1 

EFA Essential fatty acid 

EPA Eicosapentanoeic acid  

EPS Extrapyramidal side effects 

EPS Extrapyramidal side effects 

ER Endoplasmic reticulum 

ERP Event-related potential 

FASN  Fatty acid synthase 

GaMg Human glioma cell line 

HCN2 Human cortical neuronal cells 

HepG2 Human hepatoma cell line 

HMGCR HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase)  

HMGCS1 HMG-CoA synthase 1 (cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase) 
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INSIG Insulin-induced gene 

LDLR Low density lipoprotein receptor  

LXR Liver X Receptor 

NHR Nuclear hormone receptor 

NMDA N-methyl-D-aspartic acid 

PLA2 Phospholipase A2 

PPAR Peroxisomal Proliferator Activated Receptor 

PUFA Polyunsaturated fatty acid 

SCAP SREBP Cleavage Activating Protein 

SCD Stearoyl-CoA desaturase (delta-9-desaturase)  

SH-SY5Y Human neuroblastoma cell line 

SREBP Sterol Regulatory Element Binding Protein 
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3. Summary 

The etiology of the serious psychiatric disorder schizophrenia is unknown. Epidemiological 

studies indicate a high heritability with a complex pattern of transmission. Moreover, 

structural and genetic findings indicate that both neuronal and glial function is affected, 

including oligodendrocyte and myelin abnormalities. Antipsychotic drugs are used to treat 

and ameliorate the symptoms of schizophrenia. Drug-mediated Dopamine D2-receptor 

blockage is probably necessary for reducing the positive symptoms (hallucinations, delusions) 

of schizophrenia, but the mechanism(s) involved in the improvement of other schizophrenic 

symptoms (negative and cognitive) are less well established. Unfortunately, there are several 

side effects associated with antipsychotic drug treatment, with increasing focus on weight 

gain and other metabolic adverse effects.  

 

To gain further insight into the mechanisms of antipsychotic drug action, we applied 

microarray technology and quantitative real-time PCR to investigate drug-induced changes in 

global gene expression in various cultured human cell lines, including glial-like cells, neuron-

like cells and liver cells. We found that several typical and atypical antipsychotic drugs 

elevated the expression of genes involved in cellular lipid biosynthesis, including HMG-CoA 

reductase and fatty acid synthase that are essential enzymes in cholesterol- and fatty acid 

biosynthesis, respectively. These genes are controlled by the SREBP transcription factors, 

which we found activated by antipsychotic drugs on the protein level. The increase in gene 

expression had a functional outcome, as demonstrated by accumulation of intracellular 

cholesterol and triglycerides. Although with differences in efficacy, most of the tested 

antipsychotic drugs induced SREBP activation in cell culture. In our studies, the effect was 

more pronounced in glial cell lines than in neuronal-like cell lines. Antipsychotic-induced 
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SREBP activation was also seen in hepatocytes, indicating that clinically significant effects 

might occur in tissues other than the CNS. In a context of therapeutically relevant serum 

concentrations, clozapine and chlorpromazine appear as the most potent SREBP activators. 

Interestingly, clozapine has superior efficacy in otherwise treatment-resistent schizophrenia. 

Clozapine also has the highest liability to induce weight gain, and we further investigated the 

ability of clozapine to induce lipogenesis in vivo. Indeed, in rats exposed to a single 

intraperitoneal dose of clozapine we observed a marked increase in hepatic lipid levels and 

altered expression of several genes involved in the control of lipid homeostasis (e.g. SREBP, 

PPARα and LXRα). 

 

In summary, we have identified transcriptional activation of cellular lipogenesis as a new 

mechanism of action of antipsychotic drugs. Enhanced cholesterol synthesis in the CNS may 

have therapeutic implications (glia-produced cholesterol serves as a glial growth factor to 

promote synaptogenesis and myelination), whereas increased lipid production in the liver and 

adipose tissues may be linked to the well-known metabolic side effects of these drugs. We 

propose that our findings provide new insight into the molecular mechanisms of antipsychotic 

drugs and provide new candidate genes for disease susceptibility and drug response in 

schizophrenia. 
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4. Introduction 

Antipsychotic drugs often reduce many of the symptoms of schizophrenia. These drugs have 

been widely used since the early 1950's, but the molecular mechanisms responsible for their 

therapeutic effects are only partly known. Drug response is individual and optimal treatment 

is at present often obtained by trial and error. Further insight into the molecular mechanisms 

involved in drug response could facilitate individualized treatment, with maximum 

therapeutic outcome and minimum adverse effects, and provide valuable information for the 

development of new antipsychotic drugs. In this thesis I will describe how we identified a 

possible new mechanism of antipsychotic drug action.  

 

4.1 Clinical aspects of schizophrenia 

4.1.1 Heritability 

Schizophrenia is a serious psychiatric disorder with a lifetime risk of approximately 1% for 

the individual and a prevalence of about 0.4% in the population worldwide. Epidemiological 

studies indicate that both environmental and genetic factors contribute to the emergence of the 

disorder. Environmental risk factors associated with schizophrenia include pre-and perinatal 

complications, winter birth, urban birth and residence, paternal age and the use of CNS-

stimulating drugs such as cannabis [1-3]. Evidence that genetic factors are involved in the 

etiology of schizophrenia comes from family, twin and adoption studies, with the risk of 

developing schizophrenia increasing with the proportion of genes shared with an affected 

individual [4] (figure 4.1). Heritability is the calculated proportion of susceptibility to develop 

a disorder that is attributable to inherited genetic factors, and the heritability of schizophrenia 

has been estimated to be around 80% [5]. The mode of inheritance for schizophrenia is 
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complex, probably involving numerous genes of small effect [6, 7]. Several promising 

schizophrenia susceptibility genes have been identified, and they will be further introduced in 

section 4.3.5.  

 

 

Figure 4.1 Risk of developing schizophrenia according to the genetic closeness to an 
affected individual 
Reproduced from Gottesman et al [4] 
 

4.1.2 Symptoms 

Schizophrenia is diagnosed based on the presence and duration of symptoms that fulfil the 

criteria of the The Diagnostic and Statistical Manual of Mental Disorders IV text revision 

(DMS-IV-TR) [8] or the International Statistical Classification of Diseases and Related 

Health Problems, 10th revision (ICD-10) [9]. Schizophrenic symptoms typically emerge 

during adolescence or early adulthood [10], and are often classified into three categories; 

positive, negative and cognitive symptoms [11] (table 4.1). Positive symptoms include 

delusions and hallucinations, interpreted as representing reality. These symptoms are often 

efficiently treated with antipsychotic drugs. Negative symptoms include blunted affect, and 
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social and emotional withdrawal, thereby representing absence of normal behaviour. The 

negative symptoms are usually the most persistent over time and are difficult to treat and 

often lead to various add-on medications such as antidepressants [12, 13]. Cognitive 

impairment is regarded as a prominent characteristic of schizophrenia [14], with cognitive 

symptoms such as poor attention, reduced memory and conceptual disorganization associated 

with the disorder [15, 16]. The cognitive symptoms are merged into the negative symptoms of 

schizophrenia [17].  

 
Table 4.1 Schizophrenic symptoms  
Modified from Lancon et al [16] 

 

 

4.1.3 Pathophysiological alterations 

Structural abnormalities 

There are several macroscopic brain abnormalities associated with schizophrenia, of which 

reduced cortical brain volume and increased ventricular size are the most consistent [18]. The 

degree of structural differences varies between patients and these differences become apparent 

only when comparing large groups of patients and controls. Such changes are also observed in 

drug-naïve schizophrenic patients and their first-degree unaffected relatives, indicating that 

they are not a result of the drug treatment or illness itself, but are rather associated with a 

vulnerability to develop the disorder [19, 20]. Thus, such abnormalities are not suitable as 

diagnostic criteria. At the microscopic level abnormally clustered neurons and reduced 

synaptic spine density have been observed in post-mortem brains of schizophrenic patients 
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and this observation has stimulated hypotheses that synaptic connectivity is reduced in the 

disorder [21-23]. White matter structural abnormalities and reduced levels of myelin are also 

associated with schizophrenia [24, 25]. Downregulated oligodendrocyte- and myelin specific 

genes in post-mortem schizphrenic brains supports the theory that abnormal myelination may 

be involved in the pathophysiology of schizophrenia [26, 27]. Interestingly, regional white 

matter changes in the prefrontal cortex have been associated with presence of negative 

symptoms in patients [28], implying that myelin and oligodendrocytes might serve as 

neuronal targets for future pharmacological treatment with improved effect on negative 

symptoms. 

 

Neurophysiological alterations 

The cognitive-event related potential (ERP) is an example of a potential risk-indicator in 

schizophrenia. ERP is an electrophysiological response to external stimuli and includes both 

automatic (preattentional) and controlled (attention-dependent) processes [29]. Mismatch 

negativity (MMN) is a preattentional ERP component that is elicited when repetitive auditory 

stimuli are interrupted by a deviant ("oddball") signal [30]. It has been widely replicated that 

the MMN response in schizophrenic patients differs from in normal individuals and also 

seems to be specific to schizophrenia relative to other psychiatric disorders, such as bipolar 

and major depressive disorder [31, 32]. P50 ERP suppression is another neurophysiological 

measure altered in schizophrenic patients. In a test situation, subjects are exposed to two 

clicking sounds within a short time interval, each generating a P50 wave. In normal 

individuals the P50 wave generated to the second click is much smaller than the first, whereas 

in schizophrenic subjects the P50 suppression is reduced [33]. Similar to the structural 

abnormalities mentioned above, altered P50 ERP suppression is not limited to schizophrenic 
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patients, but may also occur in their relatives [34]. ERP abnormalities have been suggested as 

a valuable endophenotype for identifying candidate genes involved in cognitive function [35]. 

 

4.2 Antipsychotic drugs 

Antipsychotic drug therapy is considered a cornerstone in the treatment of schizophrenia. 

Usually, they reduce or ameliorate the positive symptoms of the disorder. The effect of the 

presently used drugs on negative and cognitive symptoms is limited, and future drugs should 

have increased focus on these symptoms. Antipsychotic drugs are categorized based on their 

clinical efficacy and their side effect profiles. Table 4.2 lists a selection of antipsychotic drugs 

that belongs to three different classes, as described below. 

 

4.2.1 Classification  

First generation drugs 

The first antipsychotic drug was chlorpromazine. Originally applied to treat preoperative 

anxiety, its antipsychotic properties were discovered by chance in the early 1950’s. The 

effectiveness of chlorpromazine stimulated the synthesis of other antipsychotic agents, some 

of which are still in use today. This first generation (typical) antipsychotic drugs are effective 

against the positive symptoms of schizophrenia, but unfortunately they often induce highly 

unpleasant side effects, such as extrapyramidal side effects (EPS) and hyperprolactinemia 

[36-39].  
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Table 4.2 Classification of antipsychotic drugs 
Chemical structure of a selection of first-, second-, and third generation antipsychotic drugs as 
defined by Roth et al [40]. All of these drugs are chemically classified as cationic 
amphiphiles. Drugs highlighted in red have been investigated in this thesis  
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Second generation drugs 

Clozapine is the prototype of the second generation (atypical) antipsyhotic drugs and was 

introduced in the early 1970's. Due to the serious and sometimes fatal side effect of 

agranulocytosis [41], clozapine was withdrawn from the marked, but was re-introduced and 

approved by the Food and Drug Administration (FDA) in 1989, since clozapine was found 

effective in otherwise treatment-resistant patients [42].  

 

In addition to being equally effective as the first generation drugs against the positive 

symptoms, the second generation drugs seem to have better effect on negative and cognitive 

symptoms [43, 44]. A meta-analysis demonstrated that some atypicals (clozapine, olanzapine, 

risperidone) apparently proved better on overall clinical efficacy than other atypicals 

(ziprasidone, sertindole, quetiapine, remoxipride) and typical drugs (haloperidol), with effect 

sizes calculated from the Positive and Negative Syndrome Scale (PANSS) [45, 46]. 

Unfortunately, clozapine and several other atypical drugs are associated with various 

metabolic disturbances, such as weight gain, hyperglycemia and hypertriglyceridemia [47-

50]. These metabolic adverse effects are of great concern since they increase the risk for 

obesity-related complications and death [51]. They also reduce patient compliance [52, 53]. It 

is therefore noteworthy that olanzapine, which is associated with considerable weight gain, 

recently was ranked as the most effective antipsychotic drug in terms of discontinuation rates 

[54].  

 

Third generation drugs 

Aripiprazole and other benzamides function as partial dopamine agonists. Due to their 

separate mechanism of action, these drugs have been described as the third generation 

antipsychotic drugs [55]. Aripiprazole is claimed to be effective against positive, negative and 
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cognitive symptoms of schizophrenia, whereas EPS and metabolic adverse effects appear to 

be quite infrequent [56].  

 

4.2.2 Mechanisms of action 

Although their mechanisms of action are not fully understood, the ability of antipsychotic 

drugs to block dopamine D2 and other neurotransmitter receptors is considered pivotal for the 

major clinical effects (figure 4.2).  

 

 

 
Figure 4.2 Receptor affinities for antipsychotic drugs 
Relative neurotransmitter receptor affinities (inverse proportional to Ki-values) for the 
antipsychotic drugs investigated in this thesis. Modified from Roth et al [57] 
 

D2-receptor antagonism 

All established antipsychotic drugs share the property of moderate to high dopamine D2-

receptor affinity [58]. The typical antipsychotic drugs exhibit strong dopamine D2-receptor 

antagonism, with D2-receptor affinity correlated to their ability to reduce psychotic (positive) 
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symptoms [59-61]. Clinical effects of dopamine receptor blockade can be numerous, and the 

brain region to which binding occurs seems to be relevant for clinical outcome. Binding to 

dopamine D2-receptors in mesolimbic circuits probably contributes to the antipsychotic 

effect, whereas D2-receptor blockade and reduced dopamine firing in nigrostriatal projections 

may lead to extrapyramidal side effects [38]. In order to balance the therapeutic and adverse 

effects, it is important to treat patients with optimal drug doses. A D2-receptor blockade of 

70-80% is correlated with therapeutic effect with tolerable side effects, whereas occupancy 

above 80% generally leads to EPS [38, 62]. However, clozapine and quetiapine have 

therapeutic effect at D2-receptor occupancy as low as in the range 40-60% [38, 63], 

suggesting that mechanisms other than D2-blockade are important for therapeutic effect. 

 

The role of serotonin (5-hydroxytryptamine; 5-HT) 

The diverse receptor binding profiles of atypical drugs suggest that antipsychotic effect can be 

mediated via receptors other than dopamine [64, 65]. Many antipsychotics demonstrate 5-HT-

receptor antagonism, and the combination of strong 5-HT-receptor binding and low dopamine 

D2-receptor affinity has been suggested as a key mechanism for the improved therapeutic 

profile observed for several atypical drugs [66]. 5-HT antagonism can lead to increased 

dopamine signalling in mesocortical projections, which is a proposed mechanism for the more 

beneficial effects of atypical drugs on the negative symptoms [67, 68]. The 5-HT1-receptor, 

to which clozapine binds, has been suggested to be involved in reduced anxiety and 

depression and improvement of cognitive and negative symptoms [44, 69].  

 

N-methyl-D-aspartic acid (NMDA)-receptor antagonism 

Ketamine and Phencyclidine (PCP) are NMDA-receptor antagonists that reduce glutamate 

signalling and that can induce a psychotic state both in patients and in animal models, 
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including the full range of positive and negative symptoms [70-73]. These findings suggest 

that glutamatergic neurotransmission should be taken into account when designing new 

antipsychotic drugs. Specific NMDA-agonists such as the amino acids glycine and D-serine 

have been demonstrated to promote learning and memory in rats and monkeys [74, 75] and 

may improve on negative symptoms in schizophrenia [76, 77].  

 

4.2.3 Side effects 

Extrapyramidal side effects (EPS) 

EPS is the collective term of involuntary movement disturbances such as akathisia, parkinson-

like akinesia, dystonia and tardive dyskinesia (TD) [78-80]. The typical antipsychotic drugs 

are especially prone to induce EPS, which is assumed to be due to their dopamine D2-receptor 

binding in nigrostriatal circuits [38]. The introduction of atypical antipsychotic drugs was an 

important improvement in order to reduce these troublesome side effects.  

 

Metabolic side effects 

Unfortunately, many atypical drugs are associated with metabolic adverse effects, including 

obesity, hypertension, dyslipidemia and insulin resistance, which are of increasing concern in 

the treatment of schizophrenia [54, 81]. A meta-analysis of over 80 studies examining weight 

gain demonstrated that clozapine was the drug associated with the highest average weight 

gain (Figure 4.3) [48]. The Metabolic syndrome is a collection of risk factors that are 

associated with cardiovascular disease and increased mortality [82], and a recent study 

demonstrated that the prevalence of the metabolic syndrome among clozapine-treated patients 

was significantly higher than in a matched control group [83].  
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Figure 4.3 Antipsychotic-induced weight gain 
Average weight change after 10 weeks on standard doses of different antipsychotic drugs 
(Random Effects Model). From a Meta-analysis by Allison et al [48] 
 

How antipsychotic drugs induce these metabolic disturbances is not fully established, but 

several mechanisms have been suggested. First, antipsychotic-induced weight gain appears to 

induce leptin resistance and elevated levels of circulating leptin [84, 85]. Increased leptin 

levels correlate with the amount of body fat mass and with human obesity in general [86]. 

Further studies are required to reveal whether the increased leptin levels are caused directly 

by the antipsychotic drugs or indirectly via drug-induced obesity. Second, the diverse receptor 

binding profile of atypical drugs has been suggested to be relevant for the development of 

metabolic adverse effects, and some receptors are of particular interest [57]. The antagonistic 

effects of these drugs on 5-HT2C- and histamine H1-receptors seem to be important [87, 88]. 

The hypothalamic 5-HT2C-receptor has been demonstrated to be involved in metabolic 

regulation [89, 90] and agonistic stimulation has been demonstrated to reduce food intake 

[91]. This suggests that the blocking of this receptor with antipsychotic drugs could lead to 

increased apetite and weight gain. The affinity to the histamine H1-receptor provides the best 

correlation to antipsychotic-induced weight gain [92, 93]. However, drugs with high 5-HT2C-

receptor antagonism can be weight neutral [94] and antipsychotics with low H1-receptor 

affinity induce weight gain [95], suggesting that other mechanisms for antipsychotic-induced 
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weight gain exist. Further insight into the mechanism of antipsychotic drug action is 

imperative for a more comprehensive understanding of drug-induced weight gain. 

 

4.3 Theories regarding the etiology of schizophrenia  

4.3.1 Neurotransmitter disturbances 

Dopamine 

The dopamine hypothesis of schizophrenia states that psychotic symptoms are caused by 

overactive dopamine signalling in subcortical brain areas [96, 97]. This theory emerged based 

on the dopamine blocking properties of the typical antipsychotic drugs, and the fact that their 

degree of D2-receptor affinity is correlated with a reduction of the positive (psychotic) 

symptoms in schizophrenic patients [38, 60, 98]. Furthermore, amphetamine-induced increase 

of dopamine signalling leads to psychotic symptoms, with higher degree of dopamine release 

in schizophrenic patients than in age-matched controls [99-101]. In addition, brain-imaging 

studies have demonstrated increased density and occupancy of dopamine D2-receptors in the 

striatum of patients with schizophrenia [102, 103].  

 

In contrast to the overactive dopamine innervation in subcortical brain areas, dopamine 

signalling in the dorsolateral prefrontal cortex (DLPFC) seems to be reduced in schizophrenic 

patients [104]. The current view on the dopamine hypothesis is that schizophrenic symptoms 

are caused by an imbalance of dopamine signalling between cortical and subcortical brain 

areas, with subcortical hyperstimulation of D2-receptor causing the positive symptoms and 

cortical hypostimulation of D1-receptors causing cognitive and negative symptoms [105]. A 

recent study demonstrated increased density of dopamine D1-receptor in prefrontal cortex of 

schizophrenic patients, which was interpreted as a compensatory reaction to decreased 

cortical dopamine signalling [106]. 
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Glutamate 

Glutamatergic hypofunction has been suggested to be involved in the pathophysiology of 

schizophrenia [107-109]. Integrative approaches suggest that alterations both in dopamine and 

glutamate signalling, as well as other neurotransmitters such as serotonin and γ-aminobutyric 

acid (GABA), might be involved in causing schizophrenic symptoms [108, 110]. Most known 

susceptibility genes for schizophrenia are involved in glutamatergic neurotransmission [111], 

and glutamate-receptor agonists have been suggested to improve on negative and cognitive 

symptoms of schizophrenia. However, a recent meta-analysis from the Cochrane Database 

questions the role of glutamate-receptor agonists as potential antipsychotic drugs and 

concludes that additional research on glutamatergic mechanisms of schizophrenia is needed 

[112]. 

 

4.3.2 The neurodevelopmental theory of schizophrenia 

Insight into the neurotransmitter abnormalities associated with schizophrenia might give hints 

about the pathophysiology of the disorder, but does not necessarily provide knowledge about 

the underlying cause. Schizophrenic symptoms have been suggested to be a result of 

disturbances in normal brain development [113, 114], and the predominant view is that CNS 

abnormalities in schizophrenia are caused by both environmental and genetic factors [115, 

116]. Early environmental disturbances such as viral infections, oxygen deficit and 

malnutrition of the mother during pregnancy may influence on brain development and have 

been suggested as risk factors for schizophrenia [117]. The considerable time lag between the 

presumed brain impairment in utero and the manifestation of the clinical symptoms in early 

adolescence is intriguing. The delay has been explained by late maturation of inter-related 

neural systems [114, 118]. Such maturation involves trimming of neurons, or pruning, which 

is the removal of miswired and non-beneficial connections between axons and dendrites that 
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occurs during normal CNS development [117]. Excessive pruning has been suggested to 

cause the abnormal connectivity of cortical neurons observed in schizophrenia [119, 120]. 

One possible mechanism for such excessive removal of essential and functional connections 

is that the pruning process itself is dysfunctional. Another possibility is that the trimming 

process is normal and that it is the unmasking of already existing deficits that cause 

schizophrenic symptoms. In either model, the progression towards schizophrenia would be 

triggered by an erroneous removal of synapses and neurons [121]. 

 

4.3.3 Membrane lipid disturbances in schizophrenia 

The membrane hypothesis of schizophrenia proposes that alterations in membrane 

phospholipid composition can cause schizophrenic symptoms and be involved in the 

pathophysiology of the disorder [122, 123]. This hypothesis was originally based on findings 

of reduced levels of polyunsaturated fatty acids (PUFAs) in red blood cell (RBC) membranes 

from schizophrenic patients [124, 125]. Further supporting this theory are findings of altered 

membrane PUFA levels both in fibroblasts [126] and in post mortem brains from 

schizophrenic patients [127]. The mechanism behind the reduced PUFA levels in cell 

membranes from schizophrenic patients is unknown, but in accordance with the 

abovementioned neurodevelopmental theory, both environmental and genetic factors have 

been suggested [128]. Phospholipase A2 (PLA2)-mediated removal of phospholipid fatty 

acids is one possible mechanism, which is supported by findings of increased PLA2 activity 

in serum from schizophrenic patients [129]. Other suggested mechanisms are reduced 

incorporation of membrane fatty acids [130] and defective conversion of essential fatty acids 

(EFAs) into polyunsaturated fatty acids [131, 132].  
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4.3.4 Mitochondria dysfunction 

Mitochondria are essential for brain energy production and involvement of mitochondria in 

schizophrenia was proposed as early as in 1954 [133]. Mitochondrial dysfunction has been 

suggested to be a part of schizophrenia pathophysiology [134], and independent studies 

demonstrate decreased brain metabolism and reduced mitochondrial gene expression levels in 

brains from schizophrenic patients [18, 135, 136]. A role for impaired mitochondrial function 

in schizophrenia was further supported in a recent study where an integrative approach of 

genomics, proteomics and metabolomics demonstrated alterations in several metabolic 

pathways in schizophrenic brains [137]. Processes such as reactive oxygen species (ROS)-

induced pathways and β-oxidation were activated, whereas carbohydrate- and lipid 

biosynthesis decreased. It was proposed that these alterations were directly involved in the 

myelin degradation associated with schizophrenia [137]. 

 

4.3.5 Genetic predisposition and susceptibility genes 

Linkage and association studies have identified several genetic loci and genes possibly 

associated with schizophrenia [111]. Neuregulin-1 (NRG1) [138] and dysbindin-1/ 

dystrobrevin-binding protein 1 (DTNBP1) [139] are among the most promising candidate 

genes identified with linkage studies, with many independent replications [111, 140, 141]. 

Chromosomal rearrangement studies have identified a balanced translocation t(1;11)(q42;q14) 

that co-segregate with schizophrenia, and the breakpoint has been mapped to the Disrupted-

in-schizophrenia-1 gene (DISC1) [142-145]. Table 4.3 shows an overview of schizophrenia 

susceptibility genes. 
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Table 4.3 Schizophrenia susceptibility genes and the strength of evidence in four 
categories 
Reproduced from Straub et al [146]. 

 

NRG1 is mainly thought to be involved in synaptic function [111], but of its many isoforms, 

one is essential for myelination [147]. Due to the many different NRG1 alleles and haplotypes 

that have been implicated, the functional role of NRG1 in schizophrenia is still unknown 

[148]. DTNBP1 is located presynaptically in glutamatergic neurons and is reduced at these 

locations in schizophrenia [149]. A genetic variant of DTNBP1 has been related to cognitive 

impairment [150]. DISC1 has a complex pattern of expression, with several isoforms [151]. 

DISC1-expression is observed in several intracellular localizations, especially in mitochondria 

[152]. This observation is interesting since mitochondria deficits have been reported in 

schizophrenia and other disorders of the nervous system [134, 153]. It is believed that most of 

the gene products from the schizophrenia suseptibility genes are involved in 

neurotransmission and synaptic plasticity [111]. Several genes seem to be related to 

glutamatergic synapses, supporting the alleged role of glutamate transmission in 

schizophrenia [111, 154]. There is also genetic support for a role of altered dopamine 

signalling in schizophrenia, with polymorphisms linked to the Catechol-O-methyl transferase 

(COMT) gene associated with the disorder [111]. A recent study demonstrated and association 

between schizophrenia and single nucleotide polymorphisms (SNPs) in genes involved in 

oligodendrocyte function, including the oligodendrocyte lineage transcription factor 2 gene 
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(OLIG2), 2',3' cyclic nucleotide 3' phosphodiesterase (CNP) and the tyrosine kinase NRG1 

receptor (ERBB4). These findings provide genetic evidence for oligodendrocyte abnormalities 

in schizophrenia etiology [155].  

 

4.4 Control of lipid biosynthesis 

Lipids have multifunctional roles in the human body, and can act as energy sources, structural 

components and signalling molecules. Lipids are supplied from the diet and from endogenous 

synthesis pathways. This section will introduce key factors involved in several aspects of lipid 

homeostasis such as lipogenesis, lipid breakdown and lipid transport. 

 

4.4.1 The SREBP system 

The Sterol Regulatory Element Binding Protein (SREBP) transcription factors regulate 

expression of a number of genes involved in biosynthesis and uptake of cholesterol, 

saturated/monounsaturated fatty acids, triglycerides and phospholipids (figure 4.4) [156-159]. 

Two different SREBP isoforms, SREBP1 (with two splice variants, SREBP1a and -1c) and 

SREBP2, are both synthesized as 120 kDa inactive precursors in the endoplasmic reticulum 

(ER). In the ER they reside in a complex with the SREBP cleavage activating protein (SCAP) 

and the protein product of the insulin-induced gene (INSIG) (figure 4.5) [160]. At low sterol 

levels in ER, SCAP undergoes a conformational change and the SREBP/SCAP complex is 

released from the INSIG protein and transported to the Golgi apparatus where proteolytic 

cleavage of SREBP occurs by the Site-1 protease (S1P) and Site-2 protease (S2P) [161]. This 

process releases a 60-70 kDa transcriptionally active basic-helix-loop-helix (bHLH) domain 

that is translocated to the nucleus where it binds to the sterol regulatory element (SRE). SRE  
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Figure 4.4 Genes regulated by the SREBP transcription factors 
SREBP1c preferentially activates genes involved in fatty acid and triglyceride biosynthesis, 
whereas SREBP2 preferentially activates genes involved in cholesterol biosynthesis and 
uptake. Reproduced from Horton et al [157] 
 

is present in the promoter of all SREBP target genes and binding of the activated bHLH 

transcription factor stimulates lipogenic gene expression [157]. 

 

Although some degree of overlap occurs, the different SREBP isoforms in principle control 

separate parts of the lipid biosynthesis pathways. SREBP1c almost exclusively controls the 

expression of fatty acid biosynthesis genes, such as acetyl CoA carboxylase (ACC), Stearoyl-

CoA desaturase (delta-9-desaturase) (SCD) and fatty acid synthase (FASN) [162]. SREBP2 

mainly regulates cholesterol biosynthetic and cholesterol uptake genes such as HMG CoA 

reductase (HMGCR), HMG CoA synthase 1 (HMGCS1) and Low-density-lipoprotein receptor 

(LDLR) [163, 164]. SREBP1a regulates expression of both cholesterol and fatty acid 

biosynthesis genes, with most efficient activation of the fatty acid biosynthesis genes [165]. 

Activation of SREBP transcription factors might also stimulate the before-mentioned 
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conversion of EFAs to long-chain PUFAs, since the SREBP target genes delta-5- and delta-6-

desaturase genes are essential for this conversion [166]. 

 

In cultured cells, activation of both SREBP1a and SREBP2 are controlled by cellular sterol 

levels [167]. Sterol levels also control SREBP2 activity in tissues [168], but the in vivo 

situation is generally more complex. SREBP1c, which is the predominant SREBP1 splice 

variant in several tissues, is unaffected by sterol levels and is instead regulated by nutritional 

status [169-171]. Furthermore, SREBP1c has tissue-specific effects with hepatic SREBP1c 

overexpression in rats leading to accumulation of fat in the liver, whereas adipocyte-specific 

SREBP1c overexpression leads to a decrease in adipose lipid levels and lowered fat depots 

[162, 172]. In contrast, adipocyte-specific overexpression of SREBP1a leads to accumulation 

of fat in mouse adipose tissue [173]. Furthermore, the SREBP system interacts with other 

metabolically relevant transcription factors, which adds to the complexity of SREBP 

regulation.  

 

4.4.2 Nuclear hormone receptors 

The transcriptional control of lipid homeostasis is complex and involves several transcription 

factors [174]. The nuclear hormone receptors (NHRs) represents an important class of 

transcription factors involved in metabolic control [175]. In contrast to the SREBP proteins, 

for which nuclear abundance is proportional with transcriptional activity, the NHR 

transcription factors reside in the nucleus and have their activity controlled by ligand binding 

[176]. Upon activation, the NHRs normally form heterodimers with the retinoic X receptor 

(RXR) [177, 178]. The liver X receptor (LXR) and peroxisome proliferator activated receptor 

(PPAR) are metabolically important NHRs, of which the isoforms LXRα and PPARα are 

abundant in tissues with a high metabolic rate [179, 180]. The NHRs can moderate and be  
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Figure 4.5 Proteolytic activation of the SREBP transcription factors 
Cellular sterol levels control the activity of SREBP transcription factors. When sterol levels in 
ER are low, SCAP (green) undergoes a conformational change and assists the transport of the 
120 kDa precursor SREBP (red) to the Golgi apparatus as the initial step in SREBP 
activation. Production of transcriptionally active SREBP is carried out by proteolytic cleavage 
by the Golgi-specific S1P and S2P proteases. The mature, transcriptionally active basic-helix-
loop-helix (red hexagonal) is subsequently translocated to the nucleus where it activates the 
expression of genes involved in cholesterol and fatty acid biosynthesis via binding to the 
sterol regulatory element (SRE) in their promoter region. 
 
influenced by the SREBP system [174, 181, 182], exemplified by LXR-induced activation of 

SREBP1c gene expression [183]. LXRα is also involved in cellular lipid export and controls 

the expression of genes involved in cholesterol transport, such as Apolipoprotein E (ApoE) 

and ATP-binding cassette A1 (ABCA1) [184].  Drug-induced stimulation of the NHR 

transcription factors has been demonstrated to improve several of the symptoms associated 

with the metabolic syndrome [175]. LXRα agonists have been suggested to have beneficial 

effect on artherosclerosis [183] and stimulation of PPARα-receptors increases fatty acid β-

oxidation, improves lipid blood profiles and reduces the risk of cardiovascular disease [185]. 

Other PPAR isoforms, such as PPARδ and PPARγ are also involved in metabolic control, and 
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their stimulation leads to beneficial effects, such as increased energy expenditure and fatty 

acid oxidation as well as improved insulin sensitivity [186, 187]. 

 

4.4.3 Lipid homeostasis in the CNS 

The main cellular components of the brain are neurons and the more abundant glial cells 

(figure 4.6). Several different types of glial cells exist, all with specialized functions: 

Oligodendrocytes form myelin around axons that provide insulation essential to 

neurotransmission. Astrocytes participate in intercellular communication and provide signals 

for synapse formation and neurogenesis. The third glial cell type is microglia that are 

involved in immunological reactions [188].  

 

 
Figure 4.6.Cellular components of the CNS 
The main cellular components of the CNS are neurons and the more abundant glial cells. 
Neurons (shaded grey) are characterized by axons that form connections with other neurons in 
the form of synapses. Neuronal communication occurs via neurotransmitters (yellow) across 
the synaptic cleft. Intercellular communication between glial and neuronal cells exists and 
glia-derived growth factors (green) provide essential signals for intact synapse function.  
 



 32

Cholesterol is the major component of myelin and during CNS development increased 

expression of cholesterol biosynthesis genes parallels the myelination process [159, 189, 190]. 

In the CNS, cholesterol biosynthesis is synthesized de novo by astrocytes and 

oligodendrocytes, underscoring the importance of glial cells in brain lipid homeostasis [159]. 

Interestingly, cholesterol was recently demonstrated as a glia-derived growth factor essential 

for the formation of synapses in culture [191]. The long-chain polyunsaturated fatty acids 

(PUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) 

and docosahexanoic acid (DHA; 22:6, n-3) are enriched in neuronal membranes [192]. These 

fatty acids are structural components of cellular membranes, but can also be converted into 

signalling molecules important for normal brain function, such as eicosanoids and 

docosanoids [193]. In contrast to cholesterol, the majority of the PUFAs are not synthesized 

in the body itself and must be obtained from the diet [193].  
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5. Aims of the study 

The overall aim of this study was to obtain new insight into the molecular mechanisms of 

antipsychotic drug action, through identification of drug-induced changes in global gene 

expression and potential target genes, using clinically relevant model systems. 

 . 

Specific aims 

1. To use microarray technology and real-time PCR to screen for antipsychotic-induced 

gene expression changes in cultured human glial cells (paper I). 

 

2. To compare various antipsychotic drugs for their lipogenic effects and ability to affect 

the expression of SREBP target genes in different CNS-specific cell lines (paper II). 

 

3. To investigate the effect of various antipsychotic drugs on the SREBP transcription 

factors and their target gene expression in cultured hepatocytes (paper III). 

 

4. To expose rats to an acute dose of the antipsychotic drug clozapine in order to 

investigate its effects on the SREBP system and lipid homeostasis in vivo (paper IV). 
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7. Summary of results 

Paper I 

By the use of microarray technology we demonstrated that in cultured human glioma GaMg 

cells, the antipsychotic drugs clozapine and haloperidol up-regulate a cluster of genes 

involved in cholesterol- and fatty acid biosynthesis, including HMGCR, 3-hydroxy-3-

methylglutaryl-CoA synthase 1 (HMGCS1), fatty acid synthase (FASN) and Stearoyl-CoA 

desaturase (delta-9-desaturase) (SCD). The increased gene expression was associated with 

enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and 

triglycerides. The expression of the lipid biosynthesis genes is controlled by the SREBP1 and 

SREBP2 transcription factors that are activated via proteolytic protein cleavage. Both 

clozapine and haloperidol induced proteolytic SREBP cleavage, and antipsychotic-induced 

activation of SREBP-mediated lipogenesis was suggested as a novel mechanism of 

antipsychotic drug action, possibly relevant for both therapeutic- and metabolic adverse 

effects. 

 

 Paper II 

In this study we aimed at investigating whether the haloperidol- and clozapine-induced 

SREBP-activation described in paper I is a general feature for antipsychotic drugs. We 

compared the effect of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and 

ziprasidone on SREBP proteolytic cleavage and SREBP-controlled gene expression (e.g. 

HMGCR, HMGCS1, LDLR, FASN and SCD) in four CNS-relevant human cell lines. There 

were marked differences in the ability of the antipsychotic drugs to activate expression of 

SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a 
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context of therapeutically relevant concentrations, whereas ziprasidone displayed minor 

activation. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed 

more pronounced drug-induced SREBP activation compared to the response in HCN2 human 

cortical neurons and SH-SY5Y neuroblastoma cells. This indicates that antipsychotic-induced 

activation of lipogenesis is most prominent in glial cells. 

 

Paper III 

Since the observed drug-induced lipogenic effects might be relevant for metabolic adverse 

effects, we investigated whether the drug-induced activation of lipogenesis observed in CNS-

related cell lines also occurs in cultured human hepatoma cells.  The effect of antidepressants, 

antipsychotic- and mood-stabilizing drugs was studied. In general, the drugs that had the 

highest propensity to induce SREBP activation (clozapine, imipramine, and amitriptyline) are 

most strongly associated with weight gain. Ziprasidone and buproprion are not associated 

with weight gain, and did hardly stimulate the SREBP system. The mood-stabilizers did not 

increase SREBP activation. The results indicate a relationship between drug-induced 

activation of SREBP in cultured human liver cells and the weight gain associated with 

antidepressant and antipsychotic drugs.  

 

Paper IV  

In order to investigate whether the antipsychotic-induced effects observed in cell cultures also 

occurred in vivo, lipogenic effects were investigated in the liver of rats administered an 

intraperitoneal dose of clozapine. Clozapine exposure led to hepatic accumulation of lipids 

and induced changes in the expression levels of several SREBP target genes and of genes 

controlled by other metabolically important transcription factors, such as PPARα and LXRα. 

These in vivo data show that clozapine affects lipid levels in rat liver and influence on several 
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transcription factors involved in metabolic control. The present results further support a 

relationship between drug-induced perturbation of lipid homeostasis in non-CNS tissue and 

the metabolic adverse effects associated with antipsychotic drugs. 
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8. Discussion 

8.1 Methodological aspects 

8.1.1 Cultured cells as a model system for antipsychotic drug response 

In order to screen for novel biological processes and candidate genes involved in 

antipsychotic drug response, we investigated how gene expression was affected by 

antipsychotic drug exposure in several human cultured cell lines, with emphasis on the human 

glioma GaMg cell line. Cultured cells provide a simplified model to obtain information of 

possible relevance to the in vivo situation, and they offer the opportunity to selectively 

investigate cell type-specific responses to experimental conditions. However, cell cultures are 

often cancer cells, transformed from their original cell population to maintain cell growth. 

Cultured cells are also detached from their original tissue and thus lack stimuli and feedback 

from the surrounding environment. When investigating the effect of drugs or other external 

stimuli, the concentrations used in cultured cells often exceed the "real-life" situation, which 

adds to the potential bias of the results. Furthermore, cell properties may change in culture 

over time and it is important to consider the number of cell divisions (passage numbers) when 

cell culture experiments are carried out.  

 

Antipsychotic-induced stimulation of lipogenic gene expression was found to be a stable 

phenomenon, occurring at different passage numbers. In our studies we used drug 

concentrations in the range of 1-50 µM, which in general are much higher than therapeutically 

relevant serum concentrations. However, due to their lipophilic nature, many psychotrophic 

drugs have large distribution volumes and are enriched in lipid-rich tissues. Levels of 

haloperidol and clozapine have been demonstrated to be 10-30 times higher in the CNS than 
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in serum [194, 195]. This suggests that the high cell culture concentrations still might have 

therapeutic relevance. Cells were exposed to psychotrophic drugs for 24 hours. Even though 

therapeutic effect in patients normally has a lag time of several weeks, the gene expression 

changes identified within the first 24 hours might give important clues about the long-term 

effects of these drugs. The lower serum concentrations in patients makes it is plausible that 

the gene expression changes in the clinical situation is smaller, with functional effects 

developing over time.  

  

In summary, cultured cells represent an inexpensive and easily maintainable model system 

that can rapidly provide experimental results. Nevertheless, in vivo experiments should always 

be carried out before firm conclusions are drawn. 

 

8.1.2 Gene expression analyses 

Microarray technology 

In our study we have used microarray (MA) technology as a screening method to identify 

genes that change their expression in cultured human cells following antipsychotic drug 

exposure. MA technology is a powerful tool to measure global gene expression in a single 

experiment. Several different MA technology platforms exist, including single and dual dye 

methods, cDNA and oligonucleotide probes, as well as commercial and in-house fabricated 

arrays. We initially used in-house cDNA and oligo arrays with dual dye labelling (Cy3 and 

Cy5), performed as a dye-swap experiment. A single dye experiment with commercial arrays 

(Applied Biosystems AB1700 chemiluminescent microarray system) was subsequently 

carried out. In a recent study by Kuo and colleagues [196], multiple MA technology platforms 

were compared, and it was demonstrated that, in general, commercial arrays provide more 

consistent results than in-house arrays. Furthermore, one-dye platforms were more consistent 
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than two-dye platforms and demonstrated higher correlation with real time PCR 

measurements [196]. This is in agreement with our experiments, where we experienced 

problems with dye decomposition, especially with Cy5. Nevertheless, we were able to 

identify the drug-induced upregulation of lipid biosynthesis-related genes in all the different 

types of microarray experiments.  

 

Real time PCR 

With its high sensitivity, accuracy and wide dynamic range, the real-time PCR technology is 

the most commonly used method for quantification of gene expression [197]. Detection of 

PCR products is performed with fluorescent probes or DNA binding dyes, and the term "real-

time" derives from the continuous collection of data throughout the PCR amplification 

process. DNA binding dyes, such as SYBR-green, bind unspecifically to double stranded 

DNA, which make them very flexible since one dye can be used to detect all genes. On the 

other hand the risk for unspecific binding and false positive results increases with this less 

expensive alternative. The more expensive fluorescent probes, that include TaqMan 

chemistry, provide a more specific detection system.  

 

The PCR amplification typically has an initial phase of 10-15 cycles before the fluorescence 

level from the exponential PCR reaction markedly exceeds the background. The cycle at 

which this occurs is called the threshold cycle (Ct). Quantification of gene expression levels 

can be carried out in several ways. In the present study we have used relative quantification, 

using the standard curve method or the comparative ΔΔCt method. The standard curve 

method accounts for any differences in amplification efficiency between a target gene and a 

reference ("housekeeping") gene, to which the target gene expression is normalized. In theory, 

the expression level of the reference gene should remain unchanged across the conditions that 
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are compared. This requirement represents a potential bias, since in most cases it is not 

previously known which genes are regulated. The comparative ΔΔCt method can be used 

when the amplification kinetics between target gene and reference gene are similar, i.e. that 

titration curves for the genes have similar slopes. To avoid inefficient amplification it is 

important to keep the PCR amplification product small (normally <150 bp) [198]. The 

difference in gene expression (fold change) is calculated between an experimental sample and 

a calibrator sample, which in our experiments was the untreated control. The comparative 

ΔΔCt method is useful when assaying many genes in a large number of samples, as the 

number of reactions is minimized since a standard curve titration for each gene on each run is 

not necessary.  

 

In summary, microarray- and real time PCR technolgy are powerful tools to investigate gene 

expression in a high-throughput manner. All the same, it is important to acknowledge the fact 

that changes in gene expression do not necessarily reflect the protein levels and the activity of 

the biological processes that the genes are involved in. Inferences about cellular protein levels 

based on gene expression alone should therefore be careful and verification at protein and 

functional levels should always be carried out for accurate interpretation. 

 

8.1.3 Rat as an experimental model animal 

Rats are frequently used as an animal model to investigate mechanisms involved in 

antipsychotic drug effects [199, 200]. Gene expression analyses in rat brain have been 

performed to search for potentially new mechanisms of antipsychotic drug action. The results 

are ambiguous, but some genes, such as Apolipoprotein D (ApoD), have been found affected 

by antipsychotics in independent studies [201, 202]. A number of rat studies have also been 

performed to investigate the mechanisms involved in the metabolic adverse effects associated 
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with several of the antipsychotic drugs. Similar to the brain studies, these results have been 

conflicting, partly because the phenotype observed for rats does often not match the human 

clinical situation. Female rats seem more prone to develop antipsychotic-induced weight gain 

than male rats, which is not the case in humans. In addition, several of the drugs that 

apparently induce weight gain in rats are not associated with weight gain in humans (table 

8.1) [203]. There may be several explanations for the lack of coherence between rats and 

humans, such as the very different rate of drug metabolism in the two organisms. As an 

example, the half-life for haloperidol in rats is 1.5 hours compared to 24 hours in man [204]. 

For olanzapine the half-life is 2.5 hours and 33 hours, respectively [205]. Traditionally, 

antipsychotic drugs have been administered to rats via intraperitoneal injections [206, 207], 

subcutaneous injection [208] or gavage [209, 210]. The route of drug administration seems to 

be important for the phenotype, and recent studies have provided new hope for a more valid 

rat model for antipsychotic-induced weight gain in humans. When the drugs were mixed in 

the food ad libitum, instead of administered by gavage, the weight of fat tissue in male rats 

increased [211]. Furthermore, when the food composition was similar to a human diet, with 

low protein and high fat and carbohydrate contents, the antipsychotic-induced weight gain 

profile corresponded to what is observed in humans [212]. In this thesis, we exposed rats 

acutely with an intraperitoneal injection of clozapine and subsequently investigated gene 

expression changes during a time course of 48 hours. Although the time frame might not be a 

valid representation of long-term clinical effects in humans, this experimental design may 

provide valuable insight into the molecular pathways that are initially affected by the drugs 

directly.  
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Table 8.1 Rats as an animal model for antipsychotic-induced weight gain 
Antipsychotic-induced weight gain seems to occur mainly in female rats. In most studies the 
propensity of the different drugs to induce weight gain did not match the side-effect profile 
observed in humans. However, by providing an optimal feeding regime and diet composition, 
weight gain can occur in male rats, with apparent correlation to drug-induced weight gain in 
humans [212] 
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8.2 Antipsychotic-induced SREBP activation 

8.2.1 Drug-induced SREBP activation and lipogenesis in cultured glioma 

cells 

In order to gain new insight into the molecular mechanisms of antipsychotic drug action, we 

used microarray technology to investigate global gene expression changes in human cultured 

GaMg glioma cell lines (paper I). Since no a priori biological knowledge or selection of the 

genes is required before the gene expression analysis, it is possible to identify novel targets 

and molecular pathways involved in antipsychotic drug response without any specific 

hypothesis. We demonstrated that antipsychotic drugs upregulate a cluster of genes involved 

in cholesterol and fatty acid biosynthesis, including HMGCR, HMGCS1, FASN and SCD, all 

controlled by the SREBP transcription factors [157]. The gene expression results were 

supported by functional data, with a significant increase in cellular cholesterol and 

triglyceride levels and a doubling of the HMGCR enzyme activity. A time course experiment 

revealed that antipsychotic-induced proteolytic cleavage of the SREBPs at the protein level 

occurred within the first 3 hours after exposure, with the most pronounced effect on SREBP2. 

A corresponding increase in HMGCR and FASN gene expression was observed, as measured 

by real-time PCR. In contrast, SREBP2 gene expression was not increased until 12 hours after 

exposure, and then only slightly. The antipsychotic-induced increase in lipid biosynthesis-

related gene expression is therefore most likely a result of a direct effect on proteolytic 

activation of the SREBP transcription factors, independent of a preceding elevation of the 

SREBP gene expression.  

 

In order to investigate whether the propensity to induce SREBP activation is a shared feature 

of antipsychotic drugs, we compared six antipsychotic drugs for their ability to induce SREBP 

activation and to increase SREBP-controlled gene expression (paper II). All the antipsychotic 
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drugs activated the SREBP system, but with marked differences in efficacy. The mechanisms 

by which the antipsychotic drugs activate the SREBP system could, in principle, involve 

receptor-dependent and -independent processes. Antipsychotic drugs block dopamine D2-like 

receptors, with binding affinities correlated to antipsychotic effect [60]. Many drugs also bind 

extensively to other neurotransmitter receptors, e.g. 5-HT and histamine H1 receptors [40, 

87]. There was no apparent relationship between the receptor binding properties of the drugs 

and their SREBP-stimulating effect, implying that the SREBP activation is not linked to the 

receptor binding profiles. This assumption was supported by a recent study from our 

laboratory, in which several antidepressant drugs, with different receptor-binding properties 

from antipsychotic drugs, also activated the SREBP system in GaMg cells [213]. Our results 

suggest that drug-induced SREBP activation is related to some shared chemical property of 

these psychotropic compounds and is mediated via a receptor-independent mechanism of 

action. Indeed, all of the antipsychotics and antidepressants that we have investigated are 

cationic amphiphiles, substances shown to increase the synthesis and accumulation of total 

cellular cholesterol levels via mechanisms that involve a reduction of cholesterol levels in the 

endoplasmic reticulum (ER) [214, 215]. The exact mechanism of cationic amphiphile-induced 

SREBP activation is not fully understood, but a direct interaction with the ER-located 

SREBP-Cleavage-Activating-Protein (SCAP) has been suggested [216].   

 

We proposed that antipsychotic-induced activation of lipid biosynthesis represents a 

molecular mechanism of psychotrophic drug action. The possible involvement of lipid-related 

effects in antipsychotic drug action is supported by a recent study, demonstrating that 

haloperidol and clozapine treatment alters the expression of lipid-metabolism related genes in 

the mouse frontal cortex and striatum [201]. However, neither of the genes described in that 

study was in the cluster of regulated genes identified by us.  
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8.2.2 Cell type specific effects 

Antipsychotic drugs increased SREBP controlled gene expression in various CNS relevant 

cell lines, demonstrating that antipsychotic-induced SREBP activation is not limited to GaMg 

cells (paper II). The degree of drug-induced SREBP activation was clearly higher in glial cell 

lines (GaMg and CCF-STTG1) than in neuronal-like cell lines (SH-SY5Y and HCN2), which 

is in accordance with the fact that de novo lipid biosynthesis in the CNS primarily occurs in 

glial cells and not in neurons [159, 217, 218]. Any therapeutic effect associated with 

antipsychotic-induced lipogenesis should thus be mediated mainly via glial cells. The drug-

induced SREBP activation evident in the slowly growing HCN2 cells demonstrate that 

antipsychotic-induced SREBP activation is not a phenomenon specific to cancerous cells. 

Antipsychotic-induced SREBP activation also occurred in HepG2 hepatocytes (paper III), 

which was in accordance with our proposal that increased lipid biosynthesis in peripheral 

tissues might represent an important mechanism of action underlying the metabolic adverse 

effects associated with several of the psychotropic drugs [81, 219]. Indeed, a recent study 

suggested that antipsychotic drug effects on glucose transport, lipogenesis and lipolysis in 

adipocytes could be mechanisms that might explain the weight gain and diabetes associated 

with atypical drugs [220].  

 

 8.2.3 Effects of antipsychotic drugs on the SREBP system in rats 

In order to explore how antipsychotic drugs affect lipid metabolism in vivo, we examined 

several aspects of lipid homeostasis in rat liver following an intraperitoneal injection of 

clozapine. Clozapine was chosen due to its high propensity to induce weight gain in humans 

[48, 81]. Indeed, hepatic triglyceride levels were elevated to about 2.5-fold, 48 hours after 

injecting the rats. Our results was concordant with the drug-induced activation of SREBP-

controlled lipogenesis observed in the hepatic cell cultures [221], since SREBP1 
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overexpression in rat liver is known to cause hepatic accumulation of fat [222]. We found 

increased hepatic expression of some SREBP target genes, such as LDLR and FASN, as early 

as one hour after injection. However, in direct contrast to the cell culture results, the 

expression of all SREBP target-genes was markedly downregulated six hours after clozapine 

injection, possibly due to negative feedback mechanisms in response to an initial SREBP 

activation. The reduced expression levels were particularly evident for SREBP1c and FASN 

that remained downregulated even after 24 hours. The amount of nuclear SREBP1 protein 

was strongly reduced and paralleled the gene expression levels. These results demonstrate that 

acute clozapine treatment affect SREBP activity in vivo, but the discrepancy between 

decreased lipogenic gene expression and increased lipid levels is paradoxical and indicates 

that hepatic lipid homeostasis is under complex regulation.  

 

8.2.4 Interplay between metabolically important transcription factors 

How could downregulation of lipid biosynthesis genes be paralleled by a marked increase in 

hepatic triglycerides? When addressing this disagreement it should be remembered that it is 

mainly the balance between lipid biosynthesis (in principle stimulated by the SREBP-

controlled lipogenesis) and lipid breakdown (in principle stimulated by PPARα-controlled 

fatty acid β-oxidation) that determines hepatic lipid levels. Some of the genes involved in 

these processes are given in table 8.2.   

 

In our rat experiments PPARα-, LXRα- and SREBP-controlled genes demonstrated similar 

expression profiles. This was surprising, given the opposite biologic functions of these 

transcription factors (table 8.2). A marked reduction in PPARα-controlled gene expression 

may explain the observed accumulation of hepatic triglyceride levels, since this indicates that  
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Table 8.2 Function of transcription factors involved in metabolic control 
The table summarizes the genes investigated in paper IV and the transcription factors that 
control their expression levels. The main functions of the proteins encoded by the genes are 
indicated 

 

the hepatic fatty acid β-oxidation and the degree of lipid breakdown is reduced. A recent 

study provides a hypothesis that might explain our paradoxical observations.Hepatic 

triglycerides accumulated in mice with a liver-specific knockout of the FASN gene [223]. It 

was proposed that since de novo synthesized fatty acids act as endogenous PPARα-agonists, 

the absence of "new fat" synthesis reduced the hepatic PPARα-mediated β-oxidation, leading 

to the hepatic lipid accumulation. According to the authors, lipid import from adipose tissue 

to the liver was increased, and since this "old fat" could not stimulate hepatic PPARα-

mediated β-oxidation, the lipid accumulation in the liver increased [223]. The reduced 

PPARα-controlled gene expression and subsequent accumulation of hepatic triglycerides 

observed in our experiment may thus be an indirect effect of a transient clozapine-induced 

"knock-down" of FASN gene expression. The mechanism responsible for the SREBP-

controlled downregulation is unclear, but might be related to a negative feedback, responding 

to an initial SREBP activation. The sequential activation of SREBP and PPARα target genes, 

with subsequent parallel expression profiles, supports that an interplay between these 

transcription factors has taken place in the clozapine-treated rats (figure 8.1). The nuclear 

hormone receptor LXRα also seem to promote a similar expression profile, which is in 
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agreement with the extensive "cross-talk" between PPARα, LXRα and SREBP1c that has 

been reported [181, 182]. 

 

 In summary, acute injection of clozapine in rat induces hepatic accumulation of lipids, 

probably as a consequence of reduced fatty acid β-oxidation, which in turn is caused by a 

drug-induced decrease in de novo fatty acid biosynthesis. Increased import of fat from 

peripheral adipose depots might also contribute to the phenotype. The mechanism behind the 

severe decrease in SREBP activity is unclear, but might be caused by a negative feedback, in 

response to an initial SREBP activation. 

 

 

Figure 8.1 The effect of clozapine exposure on hepatic gene-expression in rat 
Expression profiles of genes controlled by the various metabolic transcription factors given in 
table 8.2 (in brackets) following a single intraperitoneal injection of clozapine (50 mg/kg) 
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8.3 Potential therapeutic implications of antipsychotic-

induced SREBP activation 

Although the human brain accounts for only 2% of the total body weight, it contains about 

25% of total body sterol content [159]. Cholesterol is important for various processes in the 

CNS, and drug-induced increase in cholesterol biosynthesis might have clinical impact via 

different cholesterol-dependent processes. This part of the discussion will focus on processes 

with potential relevance to some pathophysiological alterations associated with schizophrenia.  

 

8.3.1 Cholesterol as an important component in myelination 

Oligodendrocyte abnormalities and reduced myelin levels have been postulated to be involved 

in schizophrenia pathophysiology [46, 224]. Gene expression studies have demonstrated 

downregulation of myelin-related genes in post mortem brains from both schizophrenic and 

bipolar patients [26, 27], and it was recently reported that polymorphisms associated with the 

myelin-related transcription factor OLIG2 confer susceptibility to the disorder [155]. 

Furthermore, white matter changes in the prefrontal cortex seem to be associated with the 

presence of negative symptoms in the patients [28, 225]. It is also noteworthy that a large 

subset of patients with the rare late-onset form of metachromatic leukodystrophy, a severe 

demyelinating CNS disorder, display psychotic symptoms [226, 227]. Taken together, these 

findings indicate that reduced myelination might lead to schizophrenic symptoms.  

 

Given that cholesterol is an essential component in myelin, our observation of the 

antipsychotic-induced increase in cholesterol biosynthesis is interesting. During CNS 

myelination, cholesterol biosynthesis is increased [159] and cholesterol availability in the 
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myelin-forming oligodendrocytes has been proposed as the rate-limiting factor for brain 

maturation [228].  

 

Cholesterol biosynthesis in the CNS is primarily confined to glial cells, with neurons 

generally having a low capacity to synthesize lipids [193, 229]. Our cell culture results 

indicate that antipsychotic-induced stimulation of cholesterol biosynthesis is a glial-specific 

phenomenon, and this effect would be expected to also occur in oligodendrocytes, since they 

are specialized glial cells. It is thus possible that antipsychotic-induced cholesterol 

biosynthesis could have a therapeutic effect by providing essential building blocks for myelin 

to counteract the decreased myelination in brains of schizophrenic patients. 

  

8.3.2 Cholesterol and ApoE in synaptogenesis  

Reduced number of synapses and decreased synaptic connectivity has been implicated in the 

pathophysiology of schizophrenia. The presence of astrocytes is essential for synapse 

formation to occur in cultured CNS neurons, suggesting that glial-derived growth factors are 

required [230]. Cholesterol and ApoE particles were shoen to act in concert as a glial-derived 

synaptogenetic factor [191], which is in accordance with the inability of neurons to synthesize 

endogenous cholesterol, as observed in cultured neurons [231, 232]. ApoE mediates 

cholesterol transport from glial to neuronal cells and cholesterol uptake is via low-density-

lipoprotein receptors (LDLRs) (Figure 8.2) [218].  
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Figure 8.2 Cholesterol production and transport in neurons and glial cells 
Illustration of a model for cholesterol production and transport from astrocytes to neurons. 
Glial-derived cholesterol (yellow) is transported from astrocytes to neuronal synapses by 
ApoE particles (green). Cholesterol uptake is mediated through LDL-receptors (light blue), 
located in the neuronal membrane. Glial-derived cholesterol can subsequently be used in 
processes essential for the neurons, such as synaptogenesis [191]. Modified from Pfrieger et al 
[218]. 
 

We have demonstrated that in the glial GaMg cells, antipsychotic drugs increase cholesterol 

biosynthesis, LDLR gene expression and ApoE gene expression and protein levels (paper II 

and Vik-Mo, Fernø et al, unpublished results), which indicates that these drugs induce the 

synthesis of all the essential components of the glial-derived synaptogenic factor. Given the 

description of schizophrenia as a disease of the synapse [233], the antipsychotic-induced 

elevation of a synaptogenetic factor represents a potential new therapeutic mechanism of 

action. Whether antipsychotics stimulate synaptogenesis in the brain in vivo and whether 

synaptogenesis is involved in therapeutic effect remains elusive and should be the scope of 

future studies. If clinically relevant, this effect cannot be related to a specific antipsychotic 

effect, since antidepressant drugs also increase cholesterol biosynthesis in glial cells [213]. 

Instead, the effect might be linked to some common symptoms or deficits that are present in 
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both schizophrenia and major affective disorders (e.g. cognitive dysfunctions). This 

possibility is underscored by the therapeutic breadth of these classes of drugs, with both 

antidepressant and antipsychotic drugs used in psychotic, bipolar and depressed patients. 

Interestingly, synaptic pathology has been observed both in schizophrenia and in mood 

disorders [234]. 

 

8.3.3 Lipid rafts in receptor-mediated neurotransmission  

Cholesterol is essential to maintain cell membrane fluidity and in most cells cholesterol 

accounts for 20-25% of the plasma membrane [159]. Cholesterol is not homogenously 

distributed throughout the membrane, but enriched in microdomains called lipid rafts [235]. 

Embedded in lipid rafts are various signalling proteins and receptors, including the glutamate 

receptors [236] that represent potential pharmacological targets in the treatment of 

schizophrenia [109, 237]. Cholesterol depletion in lipid rafts can cause a gradual loss of 

synapses, and it was suggested that the described synaptogenic effect of glia-derived 

cholesterol could be mediated by cholesterol feeding to neuronal lipid rafts [238]. The same 

study demonstrated that depletion of cholesterol affects the stability of certain 

neurotransmitter receptors. Although speculative, it is thus possible that in addition to positive 

influence on synaptogenesis, antipsychotic-induced increase of glial cholesterol biosynthesis 

could mediate therapeutic effect by influencing neurotransmitter receptor stability.  

 

8.3.4 PUFAs and SREBP 

The nervous system is enriched in essential polyunsaturated fatty acids (PUFAs). PUFAs, 

such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) 

are located in cellular membranes and small changes in their abundance can lead to membrane 

dysfunction with a broad range of implications, including alteration in receptor binding, 
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neurotransmission and signal transduction [127, 239]. Reduced AA-levels have been found in 

post mortem brains from schizophrenic patients, suggesting that altered membrane lipid 

composition can be involved in schizophrenia pathophysiology [127]. Interestingly, long-

chain PUFAs can be converted from dietary precursors in astrocytes [217], via a process that 

involves the SREBP controlled enzymes Δ5- and Δ6-desaturases [240] (figure 8.3). This 

opens for the possibility that antipsychotic-induced SREBP activation may confer therapeutic 

effect by inducing the conversion of essential fatty acids to long-chain PUFAs. On the other 

hand do PUFAs reduce the transcriptional activity of SREBP1c, indicating a complex 

interplay between PUFA levels and SREBP activity [241]. Whether antipsychotic-induced 

activation of the SREBP system has an effect on membrane PUFA levels remains elusive and 

should be a scope of future studies. 

 

 
Figure 8.3 De novo PUFA synthesis 
Essential fatty acids can be converted to long-chain PUFAs by a process of elongation, 
desaturation and β-oxidation. The figure displays only omega-3 (n-3) fatty acids, but a similar 
process occurs for omega-6 fatty acids with AA as an end product. The enzymes that are 
normally involved are the Elovl2 and -5 elongases and the SREBP-controlled Δ5- and Δ6 
desaturases (dark blue text) [174] 
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8.4 Possible metabolic implication of antipsychotic-induced 

changes in lipid homeostasis  

8.4.1 The role of SREBP in metabolic control 

Non-alcoholic fatty liver has been described as the hepatic manifestation of the metabolic 

syndrome in humans [242]. Transgenic overexpression of SREBP1 in rat leads to hepatic 

accumulation of fat in liver, and has been suggested as an animal model for hepatic steatosis 

in humans [162, 222]. Hepatic steatosis has been proposed as a metabolic side effect 

associated with antipsychotic drugs [243, 244]. Thus, our findings of psychotropic drug-

induced elevation in SREBP-controlled gene expression in liver cells (paper III) provide a 

plausible mechanism for some of the metabolic disturbances associated with these drugs. 

 

A marked increase in triglyceride levels was observed in rats injected intraperitoneally with 

clozapine, 48 hours after injection. This is interesting, since clozapine is one of the 

antipsychotic drugs with the highest propensity to induce weight gain [81]. Based on our cell 

culture results, we assumed that this hepatic fat accumulation was a direct result of clozapine-

induced SREBP activation. However, after a possible initial activation, both the SREBP-

controlled gene expression and the nuclear levels of SREBP1 were dramatically reduced in 

the rat liver (paper IV). The elevated levels of liver lipids might be explained by an observed 

reduction in fatty acid β-oxidation, which was probably indirectly caused by the reduced 

SREBP activity.  

 

Do our results imply that drug-induced SREBP activation is confined to cultured cells and 

that SREBP activation cannot cause hepatic steatosis and other metabolic adverse effects 

caused by these drugs in vivo? The fact that some SREBP target genes were upregulated one 
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hour after clozapine injection suggests that an initial SREBP activation did take place, and 

that the reduced SREBP activity observed in rat liver might have been a result of a negative 

feedback response. In chronically treated humans the serum concentrations of antipsychotic 

drugs are increased over time and the low steady state concentrations makes it unlikely that a 

dramatic feedback inhibition would occur. In fact, in blood from patients treated for at least 

three weeks with the atypical drug olanzapine as monotherapy, the expression of the SREBP-

controlled genes FASN and SCD1 was moderately increased (Vik-Mo AO, Birkenaes A, 

Fernø J et al, unpublished results). Taken together, our results demonstrate that the SREBP 

system is affected by antipsychotic drugs, both in vitro and in vivo. Although the response in 

man seems to differ from rat, our in vivo findings indicate that rats provide a useful model 

system to identify factors affected in humans. 

 

8.4.2 Antipsychotic-induced effects on nuclear hormone receptor-controlled 

gene expression 

Drug-induced stimulation of the PPAR and LXR nuclear hormone receptors (NHRs) has been 

demonstrated to have beneficial effects on several aspects of the metabolic syndrome [175]. 

Activation of the PPARα/γ/δ and LXRα transcription factors is associated with improved 

insulin sensitivity [245], better serum lipid profile [246, 247], increased energy expenditure 

[248] and prevention of artherosclerosis [249]. In the clozapine-treated rats, the hepatic 

expression levels of several NHR target genes were decreased. Given their role in stimulation 

of lipid breakdown and lipid efflux, the reduced expression of NHR target genes might 

explain the observed accumulation of hepatic lipids. We proposed that the downregulation of 

NHR-controlled genes was a consequence of reduced SREBP expression, and not an effect of 

clozapine itself. However, since the SREBP system was not downregulated in patient blood 

samples, a reduction in PPARα-mediated β-oxidation would not be expected to have any 
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relevance for metabolic disturbances associated with these drugs in patients. However, an in 

vitro lucferase reporter gene assay demonstrated that clozapine and haloperidol act directly as 

antagonists on PPARα, PPARγ, PPARδ and LXRα and reduce their transcriptional activity 

(paper IV). Hence, the reduced NHR-controlled gene expression observed in clozapine treated 

rats could have been caused both by decreased SREBP activity and by a direct antagonistic 

effect of clozapine. These complex mechanisms of action are speculative and further studies 

are needed. 

  

In summary, the SREBP activation induced by psychotropic drugs may provide a novel 

molecular mechanism of action, involved in one or several of the metabolic adverse effects 

associated with these drugs. In our experiments, the SREBP system is affected both by drugs 

that induce metabolic disturbances in humans, and drugs that do not. This apparently reduces 

the likelyhood that SREBP activation is associated with the drug-induced metabolic adverse 

effects. However, it is important to consider the experimental design before drawing 

conclusions. In the cell culture experiments, the effects of the various drugs were primarily 

compared at molar concentrations. In one study (paper II), we systematically transformed the 

molar concentrations of the drugs into therapeutic relevant units, yielding clozapine and 

chlorpromazine as the most potent activator of the SREBP system in the context of clinically 

relevant concentrations. Indeed, these two drugs both have high propensity to induce weight 

gain [48]. It is also important to consider the lipophilic character of these drugs, with their 

large distribution volumes leading to drug accumulation in lipid rich tissues. Indeed, 

concentrations in brain, liver and adipose tissue are 10-30 times higher than their serum 

concentrations [195, 250, 251]. Thus, the therapeutic relevance of SREBP activation probably 

varies among the drugs, with the concentrations used in the cell culture experiments highly 

clinically relevant for some, but not for others. 
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Studies with the highly active antiretroviral therapy (HAART), which is used in the treatment 

of HIV infected patients, have suggested that drug-induced effects on the SREBP and PPAR 

transcription factors might be relevant to metabolic adverse effects. HAART induces 

metabolic adverse effects, and the occurrence of lipodystrophy and hyperlipidemia has been 

linked to overexpression of SREBP1 and decreased PPARγ expression in liver biopsies from 

patients [252]. Further supporting SREBP as a potential target gene for the interindividual 

variation in drug-induced weight gain is the finding that SREBP polymorphisms are 

associated with obesity and type-2 diabetes in a non-psychiatric French cohort [253].  
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9. Concluding remarks 

In this study we have reported that antipsychotic drugs activate SREBP controlled lipogenic 

gene expression in cell cultures and in rats, and preliminary results indicate that such effects 

also occur in humans. In the cell culture experiments, SREBP activation was associated with 

elevated levels of cholesterol and triglycerides. Acute clozapine treatment in vivo also led to a 

marked accumulation of lipids in rat liver, but the effects on SREBP gene expression were 

ambiguous. We proposed that the activation of cellular lipogenesis is relevant for both the 

therapeutic effect and the adverse metabolic effects of these drugs. This thesis establishes the 

first steps in a translational research approach, where in vitro experiments provide molecular 

targets for further investigation in clinical studies. The dose-dependent SREBP activation in 

cell cultures suggests that activation of SREBP in patients are most pronounced in the tissues 

where antipsychotic drugs have accumulated to high concentrations. Due to the lipophilic 

character of these drugs, this would be in brain, liver and adipose tissue [195, 250, 251].  

 

Fibrates and other lipid-lowering drugs that stimulate the nuclear hormone receptor 

transcription factors are used in the treatment of the metabolic syndrome [175]. Our results 

indicate that antipsychotic drugs act as antagonists on these transcription factors. In parallel 

with SREBP activation, these results provide another mechanism that might be relevant for 

the metabolic adverse effects associated with several antipsychotic drugs. Whether effects on 

nuclear hormone receptors in the CNS are relevant for therapeutic effect remains elusive. 

Based on our results, we here launch a potentially new mechanism of antipsychotic drug 

action and provide several novel candidate genes that may be involved in treatment outcome. 

Further investigations should reveal whether specific variants of these genes are associated 
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with the therapeutic outcome or occurrence of metabolic adverse effects in patients receiving 

antipsychotic drugs. 

 

It is interesting that some of the drugs with best therapeutic effect in terms of therapeutic 

efficacy and continuous treatment [54, 254] are the ones that seem to be most related to the 

adverse metabolic effects [48, 81]. Indeed, weight gain has been suggested as a prognostic 

indicator of therapeutic outcome [255]. This was supported by a recent study, demonstrating 

an association between initial beneficial therapeutic response to clozapine and long-term 

weight gain [256]. The correlation suggests that the molecular mechanisms behind therapeutic 

and metabolic adverse effects could to some degree be shared. The antipsychotic-induced 

activation of the SREBP transcription factors might represent such a shared mechanism of 

action, which should indeed be the scope of future studies. If adverse effects are inevitable 

side effects in order to gain optimal therapeutic effect, the design of novel drugs without 

metabolic adverse effects might be difficult. An alternative approach would then be to 

develop drugs that suppress the effects of antipsychotic drugs in metabolically relevant tissues 

without affecting the therapeutic CNS processes. 
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10. Future perspectives 

In order to investigate the role of the metabolically active transcription factors SREBP, PPAR 

and LXR and their target genes in antipsychotic drug response, further studies should be 

performed both in animal models and in patients. In order to resemble the clinical situation, 

long-term antipsychotic drug treatment in animal models should be performed. Due to their 

lipophilic character, psychotropic drugs accumulate in CNS tissue over time, and it is possible 

that the drug concentrations required for inducing the gene expression changes in the CNS 

will occur after weeks rather than days. For the purpose of the metabolic adverse effects, a rat 

model responding to psychotropic drugs in a manner resembling the clinical situation was 

recently developed [212] and should be applied to investigate the effect on the metabolic 

transcription factors in various organs. The effect of co-treatment of antipsychotic drugs and 

hypolipidemic drugs that mediated their therapeutic effect via activation of LXR and PPAR 

transcription factors should also be explored. 

 

Gene expression changes in blood samples can mirror expression in the brain [257] and 

investigation of expression changes of candidate genes in blood and in biopsies from liver and 

adipose tissue from drug-treated patients might provide valuable information. If SREBP 

activation is related to therapeutic efficacy and/or metabolic side effects, it is possible that 

differential gene expression patterns with respect to SREBP-stimulated lipogenesis in blood 

samples from patients can function as a predictor of therapeutic outcome. Furthermore, 

studying polymorphisms in SREBP- and related candidate genes could provide gene variants 

that determine therapeutic outcome, which will facilitate a more individualized treatment with 

antipsychotic drugs. 
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