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Abstract

The aim of this thesis is to compare the Navier-Stokes equations and a new Eulerian
model proposed by [Sva18]. This is done through numerical simulations applied to
a shock structure problem. Experimental data from [Ste72] for the density profile
of a Mach 8 shock in argon gas is used as a basis for comparison. Different viscos-
ity models (constant dynamic viscosity µ, temperature related power law µ v T ,
Sutherland’s viscosity law) are used with different parameters to achieve the closest
approximations.

The Eulerian model effectively uses the kinematic viscosity ν = α µ
ρ(x,t)

+ β(ρ, T ),

where ρ is the density. Svärd anticipates that the primary dependency is ν v µ(T ),
but the coefficient α is undetermined and reasoned to be either α = {1, 4/3}. Herein,
β is set to zero, and based on the obtained results α = 4/3 is suggested to be the
more proper coefficient.

The results show that power law viscosity, µ ∝ T , produce good approximations
for Navier-Stokes equations but the Eulerian model do not manage to capture the
shock profile well. However, the Eulerian model capture the shock well, within
experimental uncertainties, when constant dynamic viscosity is employed. The clos-
est approximations of both systems are compared and the Eulerian model seem to
capture the shock profile slightly better. This might suggest that using a constant
dynamic viscosity is more appropriate for the Eulerian model.
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Notation

{·, ·, ..., ·} Denotes a set.

′ = to show that a function is differentiated. For example if u = u(x), then
(F (u(x)))x = F ′(u(x))u′(x).

[·] = Vector that contain different quantities. For example for the conserved vari-
ables of the Euler equations [u] = [ρ, ρv, E]T .

d
dt

(·) = (·)t
d
dx

(·) = (·)x

[·, ·] Denotes a closed interval.

Bold Letters = Vectors. For example the discrete vector u = (u1, u2, ...un)T or the
three dimensional velocity vector u = (u, v, w).

New Eulerian Model = The name of the proposed system by Svard [Sva18] will
be denoted by ”new Eulerian model/system”, ”Eulerian model” or simply
”Eulerian”. Reference to the standard Euler equations will be made explicit
where needed.

nodes/grid points: These are used interchangeably.

Abbreviations
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a boundary accuracy
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E energy
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Introduction

The Navier-Stokes equations have been reigning the domain of fluid dynamics for
almost 200 years and have been challenged in later times by for example [Bre05].
Recently [Sva18], proposed a new system of equations that he claims are more physi-
cally consistent than the Navier-Stokes equations. A main feature of this new system
is the introduction of mass diffusion, yielding a set of completely parabolic equations.
Conducting numerical experiments on both the new Eulerian system from [Sva18]
and the Navier-Stokes system, and comparing these with physical experiments, can
give more insight into whether or not the Navier-Stokes should be reconsidered.

A well known, non-equilibrium and simple flow is that of a normal shock wave.
Shock waves occur in e.g. in supersonic flight, explosions, detonations, and are
disturbances of finite thickness that propagate between supersonic and subsonic
fluid. The gradients of the fluid properties are very large in a shock and appear as
discontinuities on a macroscopic scale. However, on a microscopic scale a continuous
profile is apparent [Kun16]. Therefore, the field variables are simulated on a domain
with unit length of upstream molecular mean free path (the inter-molecular mean
distance), denoted λ1.

A normal shock flow gives a good opportunity to numerically capture the shock and
has become one standard way of testing hydrodynamic models. Some characteristic
features that makes the shock structure problem attractive for numerical simulations
are

• It is steady state and one-dimensional

• The upstream and downstream are clearly defined through the Rankine-Hugoniot
relations

• Solid boundaries are not present such that boundary effects can be neglected

• All gradients of the field variables vanish far upstream and far downstream

[RD19].

In this thesis a steady state shock at Mach 8 is simulated and compared with exper-
imental data from [Ste72]. The numerical method is based on Summation By Parts
Operators with a variable coefficient matrix, making the stencils narrow. These
have the inherent ability to dampen the highest frequency mode and extra artificial
diffusion is therefore not added. This enables a coarser spatial discretization and
relatively fast computations. Due to the fundamental difference in the Navier-Stokes
and the Eulerian model of [Sva18], i.e. mass diffusion, different viscosity models are
employed and the results compared.
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Thesis Outline

Chapter 1 introduce some theory on the conservation laws, the new proposed sys-
tem by Svärd and some preliminary knowledge concerning shock waves and viscosity.

Chapter 2 is concerned with the numerical disretization. How the different vari-
ables are calculated in the code. A procedure for the non-dimensional scaling is
shown and how this affects constituting parameters. An explanation of why the
the non-dimensional scaling is chosen instead of using the physical parameters from
experiment is also explained.

Chapter 3 present the results. First simulations of constant dynamic viscosity
is shown, then power laws with different parameters and then results based on
Sutherland’s viscosity law are presented. Subsequently, the simulations closest to
the experimental values are shown and compared for the Navier-Stokes and the new
Eulerian model.

Chapter 4 have a discussion regarding the results, points to some weaknesses and
reason on uncertainties.

Chapter 5 summarize the results. Some conclusions are drawn and a small list of
suggested work for future projects is given.
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Chapter 1

Preliminaries

1.1 Shock Waves and the Shock Structure Prob-

lem

Defining some terminology for shocks is essential to avoid confusion. All the shocks
considered are one-dimensional and stationary in a fixed coordinate system located
at x=0. The inflow/upstream side is denoted by ”1”, and outflow/downstream
denoted by ”2”. The upstream side will be on the left hand side of all figures
throughout.

A shock wave is a traveling signal with almost a discontinuous jump in the fluid
properties. High gradients of temperature and velocity cause entropy production
within in the shock wave. Shocks are very thin, but still of finite thickness, in the
order of micrometers [Kun16]. They are often modeled as discontinuities but have
continuous change in fluid properties over a characteristic distance of a few mean
free paths. This is because the relaxation time for momentum and heat transport is
finite [GR07]. This is opposed to acoustic waves which are infinitely thin with regards
to change in fluid properties. In the experimental data given by [Ste72], the tube of
which the one-dimensional normal shock wave experiments are conducted in, are of
large enough diameter, 17inches ≈ 432 mm, so that wall friction can be completely
neglected. The shock waves studied are steady state shocks. Mathematically one can
derive the shock speed, and this is constant given constant upstream and downstream
conditions. These constant conditions (Rankine-Hugoniot conditions see Section 1.4)
are the basis for the numerical calculations.

For a better understanding of the shock waves and the experimental values, the
experimental setup from [Ste72] and the evolution of a normal shock is briefly ex-
plained: There is a large reservoir of high pressure gas at the downstream side.
This is separated from the shock tube via a diaphragm, which is located next to a
”cookie cutter” (sharp blades). In the tube, upstream of the diaphragm there is a
low pressure gas resting at zero velocity. When gas pressure of a certain state in
the reservoir is achieved, the diaphragm bulges into the cookie cutter and bursts.
The high pressure gas enters the tube. Since this gas is at resting velocity in the
high pressure chamber, there will be an acceleration of the gas into the tube. This
acceleration is a transient phase. The front of the gas builds up speed until it reaches
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supersonic speed (w.r.t to upstream) and then further accelerated to reach its shock
speed. Now, the shock front is in a steady state, no acceleration (equivalent with
no net force according to newtons 2nd law) is apparent, and hence stable profile
variables (density, velocity) of the shock front can be measured. Since the down-
stream gas-reservoir has such a large volume compared to the volume of the tube,
the pressure and density do not change significantly during the shock propagation.
Therefore, once the shock speed has been reached the shock front propagates with
constant speed.

To measure steady state shock density profile, an electron gun and collector (Fara-
day cage) is used. These are located the equivalent to 55 tube-diameters from the
diaphragm position, and measures the electric current flowing through the rarefied
gas normal to the gas-flow direction. The cage current is recorded as a function
of time. Density as a function of position, is subsequently calculated through an
exponential attenuation law and a Galilean velocity transformation, where

ρ ∝ log
I

I0

(1.1)

The thermodynamic behavior of a mono-atomic gas is much simpler than that of
poly-atomic gas. It does not possess the modes of rotation or vibration. Also, it does
not dissociate and only ionizes at very high temperatures, therefore it is preferred
used in shock tube experiments [GR07].

The upstream and downstream conditions are uniquely defined through the Rankine-
Hugoniot conditions. There are no solid boundaries to be taken into account.The
one dimensional steady state nature of the problem allows for a numerical iteration
in time until the solution from two neighboring time steps are less than a small
prescribed tolerance.

It is worthwhile to mention that there are other ways of dealing with 1-dimensional
flow with shocks. One other standard method is the Sod Shock Tube Problem. Here,
high- and low pressure gas is partitioned by a diaphragm, located in the middle of
the tube/domain, which bursts when the the pressure is high enough. The initial
velocity on both sides are zero.

1.2 Continuum hypothesis

At the microscopic spatial scale a fluid consists of discrete molecules, the motions
of which are random. They collide with each other and have different velocities.
These collisions are part of relaxing any disturbances or non-equilibrium states.
This happens on a very small temporal scale [TME12].

The continuum hypothesis is based on the principle that, if the scale one observes the
fluid in is large enough, much larger than the mean free path, the discreteness of the
fluid vanish and one can define a continuum and continuum particles/parcels. That
is, a fluid has a continuous variation in all its field variables. Generally in continuum
mechanics one assumes that the fluid is in local thermodynamic equilibrium at all
instances. This is a result of the temporal scale of the governing equations is much
larger than that of the microscopic one.

Chapter 1 Josef Flatlandsmo
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The well known knudsen number is defined as

Kn =
λ

L
(1.2)

Where, λ is the mean free path of the molecules and L is a characteristic length
scale of the flow. It is used to determine whether a statistical mechanics or contin-
uum mechanics formulation is applicable to model the phenomenon at hand. For
Kn < 0.01 one considers the fluid as a continuum, for Kn > 1 one enters the sta-
tistical mechanics regime. Shock waves typically fall between ≈ 0.2 and ≈ 0.3, i.e.
an intermediate regime [RD19]. Therefore, when analyzing a shock structure this
questions the validity of the local thermodynamic equilibrium assumption and the
continuum hypothesis. However, this is in favor for use of the ideal gas law (approx-
imating molecules as small hard spheres with no spatial extent) as an equation of
state, as the gas is rarefied.

For a PDE in local formulation, one accepts the continuum hypothesis and the PDE
is defined at all (mathematical) points, being infinitely small.

1.3 Conservation Laws and Weak Form Solutions

The conserved quantities for the gas flow herein are mass, momentum and energy.
The conservation principles applied to a control volume, and amended by Gauss
theorem, Reynolds transport theorem and Fouriers law of heat conduction leads to
the equations of conserved variables in local form,

∂ρ

∂t
+∇x·(ρu) = 0

∂(ρu)

∂t
+∇x·(ρu⊗ u) +∇xP = divxS

∂E

∂t
+ divx(Eu + pu) = divxSu + divx(κ∇xT )

p = ρRT, Ideal Gas Law

(1.3)

where x = (x, y, z) are Cartesian spatial coordinates, u = (u, v, w)T is the velocity
vector. ρ, ρu and E are the conserved variables: density, momentum and energy. p
is pressure; T is temperature; S is the stress tensor for Newtonian fluid; R is the gas
constant; µ and κ are the viscosity and thermal diffusivity coefficients, respectively.
The set must be closed by an equation of state. The common approximation is the
ideal gas law, which also is in accordance with [Sva18] as this work is based on the
results and assumptions therein.

This set of equations (1.3) are the Navier-Stokes-Fourier Equations (from here on, re-
ferred to as Navier-Stokes for brevity), and they model a perfect, compressible, heat
conducting, viscous gas at local thermodynamic equilibrium. Generally the stress
tensor contains two different viscosity coefficients stemming from a pure mathemat-
ical derivation rooted in tensor analysis. (For an incompressible flow a thermody-
namic pressure can not be defined, which implies ∇ · u = 0 and φ drops out.) The
coefficient of bulk viscosity is

µv = φ+
2

3
µ (1.4)

Chapter 1 Josef Flatlandsmo
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and it is known to have an appreciable effect on shock wave structure [Kun16]. How-
ever, for simplicity the standard approximation, also known as Stokes assumption,
is applied herein,

φ+
2

3
µ = 0 (1.5)

which is found to be accurate in many cases. This simplification may well affect the
results of the calculations, and will be addressed briefly in Section 4.4.

The ideal gas law is assumed to be valid and it implies that the internal energy is
only dependent on temperature, i.e. e = e(T ). A common and good approximation
is that the internal energy and temperature are simply proportional [LeV92]

e = cvT (1.6)

The total energy is

E =
p

γ − 1
+
ρ|u|2

2
(1.7)

and the ratio of specific heat capacities

γ =
cp
cv

(1.8)

Stability of a nonlinear problem can be ensured by the energy method, and if the con-
tinuous solution is smooth, convergence to the right solution in the discrete sense can
be expected [Gus08]. However, when dealing with nonlinear problems with shocks
(discontinuities) the solutions are not smooth. Even if the initial conditions are
smooth, discontinuities may develop, yielding non-smooth solutions. When facing
such problems, a different definition of a what is meant by a solution is required. A
second problem is how to deal with these definitions numerically.

The Navier-Stokes equations can be written in a compact form as

[u]t + [F (u)]x = [G(u, ux)]x (1.9)

where [u]t = [ρ, ρu, E]Tt , and the remaining terms [F (u)]x and [G(u, ux)]x are readily
seen from (1.3). The inviscid limit of Navier-Stokes, that is [G(u, ux)]x −→ 0, are
termed the Euler Equations. To simplify the following description of shock waves
this idea of inviscid limit is considered. Note however, that the idea of characteris-
tics, entropy condition and weak solutions are still valid for the viscous case, since
[u] = [ρ, ρu, E] are still conserved and the gradients far upstream (x −→ −∞) and
downstream (x −→ +∞) vanish.

As an example, applying the method of characteristics on a scalar conservation law
of the form

{
ut + F (u)x = 0, ∈ R× (0,∞)

u = g, on R× (t = 0)
(1.10)

Chapter 1 Josef Flatlandsmo
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shows that in general some characteristics intersect. That is, there is not a unique
solution. Shock waves introduce discontinuities and therefore dot not satisfy the
PDEs in the classical sense. The need to define a solution a different way is apparent.
Multiplying (1.10) with a test function with compact support

ψ : R× [0,∞) −→ R, is smooth with compact support (1.11)

such that

0 =

∫ ∞
0

∫ ∞
−∞

(ut + F (u)x)ψdxdt (1.12)

Integration by parts and using the initial condition, the following identity is obtained∫ ∞
0

∫ ∞
−∞

uψt + F (u)ψxdxdt+

∫ ∞
−∞

gψdx = 0 (1.13)

where u = u(x, t) and ψ = ψ(x, t).

Weak forms of the equations are valid even across the discontinuities as can be seen
from (1.13), as it does not depend on the derivatives of the variables in the original
form [Eva10]. Note that most of the boundary terms that normally arise from the
integration, vanish here due to compact support of ψ. Suppose that (1.10) do have
an integral solution, and suppose that u is smooth and uniformly continuous on
both sides of the discontinuity. Then by choosing two test functions ψ (one for each
region) with compact support, integration by parts yield for each region

0 =

∫ ∞
0

∫ ∞
−∞

uψt + F (u)ψxdxdt = −
∫ ∞

0

∫ ∞
−∞

(ut + F (u)x)ψdxdt (1.14)

Since the final integrand has to be zero, the conservation law in each region is
satisfied separately

ut + F (u)x = 0, in ΨL (1.15)

ut + F (u)x = 0, in ΨR (1.16)

where ΨL and ΨR denote the left and right region separated by the discontinuity,
respectively.

Defining a smooth curve separating the two regions, and then defining a normal
vector at the curve pointing out of the region ΨL and into ΨR, one can further
show, using (1.15), (1.16) and (1.13), that

F (uL)− F (uR) = σ(uL − uR) (1.17)

where σ is the shock speed. Again, see [Eva10] for the omitted details. This is called
the Jump Condition or the Rankine-Hugoniot Condition along the shock curve. The
final point is that, even though all the quantities in (1.17) may change, they must
always exactly balance.

Chapter 1 Josef Flatlandsmo
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Weak forms are known to have more than one solution. To choose the physically
consistent solutions the entropy condition is introduced, see [Eva10] for details.
Physically, this arises from the second law of thermodynamics and the outcome is an
entropy production across the shock. The entropy condition for a scalar conservation
law is

F ′(uL) > σ > F ′(uR) (1.18)

for a shock wave moving from left to right. This shows that the upstream/left
variables are transported faster than the downstream/right.

Entropy production within a shock is caused by heat conducting and viscous pro-
cesses. As is seen from equation (1.25) the entropy increase is solely determined by
the upstream mach number. The magnitude of µ and κ, only determine the thick-
ness of the shock, or said another way, the spatial extent in which the dissipation
takes place [Kun16].

A general vector form of the conservation law, such as the Euler equations, with the
shock speed σ can be written as,

[ut] + [F (u)]x = 0 (1.19)

where F has a nonlinear vector dependency on u. Now, Rankine-Hugonuiot jump
condition for this set of equations gives the general form,

[F (uL)]− [F (uR)] = σ([uL]− [uR]) (1.20)

and it is immediately understandable that the set of equations are linearly dependent
(owing to the vector form), hence the states upstream and downstream of a shock
are not arbitrary [Gus08].

1.4 Rankine-Hugoniot Relations

I light of the previous section (Section 1.3), the Rankine-Hugoniot relations are now
presented. They give the relation between upstream and downstream conditions
across a shock. See for example [Kun16] for a derivation.

The jump condition together with a moving co-ordinate system (moving with the
shock) yields the Rankine-Hugoniot conditions,

p2

p1

=
2γM2

1 − (γ − 1)

γ + 1
(1.21)

ρ2

ρ1

=
v1

v2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(1.22)

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 + 1− γ

(1.23)

T2

T1

= 1 +
2(γ − 1)

(γ + 1)2

γM2
1 + 1

M2
1

(M2
1 − 1) (1.24)
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s2 − s1

cv
= ln

([
1 +

2γ

γ + 1
(M2

1 − 1)
][(γ − 1)M2

1 + 2

(γ + 1)M2
1

]γ)
(1.25)

where, 1 and 2 as subscripts denote upstream and downstream, respectively.

One solution to (1.23) is M1 = M2. However, on further analysis this violate the
second law of thermodynamics. Therefore, by the entropy condition (1.18), M1 =
M2 is discarded as a solution. Physically this means that shock waves cannot occur
unless M1 > 1, which in turn means that M2 < 1, with consequent increase in
pressure, density and temperature behind the shock [Kun16].

1.5 Steady State Shock

There are two different ways of dealing with steady state shocks. One way is to look
at the steady equations, i.e.,

∂(·)
∂t

= 0 =⇒ [F (u)]x = [G(u, ux)]x (1.26)

See for example [RD19], [GR07] or [ESM05].

In this thesis, the time dependencies are kept, and the computations are done in a
coordinate system moving with the shock. Hence, the equations are of the form

[u]t + [F (u)]x = [G(u, ux)]x (1.27)

1.6 New Eulerian Model

The inconsistencies of the Navier-Stokes equations, argued for in [Sva18], lead to
a different set of equations that model fluid flow in general terms. In short, the
important points from [Sva18] regarding these inconsistencies are

• Positivity: A physical constraint on a fluid model is positive temperature
and density. Artificial diffusion is often needed in numerical codes to avoid
negative values. Adding mass diffusion resolves this.

• Adiabatic Wall: Navier-Stokes allows for Ex 6= 0 and sx 6= 0 at an adiabatic
wall, since in general ρx 6= 0. The claim is that this is an unphysical modelling.
If mass diffusion is included in the model then one more boundary condition
is needed, ∂ρ

∂n
= 0 (normal derivative), which resolves the this issue.

• Far Field Boundary Conditions: Linear analysis of far field boundary
conditions shows that for any flow with subsonic outflow the Navier-Stokes is
incompatible with the Euler equations. That is, the Euler equations are not
the inviscid limit of the Navier-Stokes equations. If mass diffusion is included,
the system would become completely parabolic and the inconsistency resolved.

• Entropy at Supersonic Outflow: A bound on the global entropy, −ρs, is
impossible to obtain since the boundary term is indefinite. Alternative entropy
functions circumvents this for the Euler equations but such functions do not
exist for the Navier-Stokes equations. Again, mass diffusion is the remedy.

Chapter 1 Josef Flatlandsmo



The Shock Structure Problem and Svärd’s New Eulerian Model

• Relaxation to Thermodynamic Equilibrium: Due to the continuum hy-
pothesis, the natural dominating process on a sub-continuum scale is diffusion.
Svärd shows through an example, that a small disturbance in ρ and T , for a
fluid at rest (u = 0), with no pressure gradient (px = 0), induces a velocity
whose function is to redistribute mass to achieve local thermodynamic equi-
librium. This shows that diffusion is not the natural dominating process on
the sub-continuum scale. However, Navier-Stokes is based on this assumption.
Yet another contradicting matter.

• Frame of Reference: Using a Lagrangian frame of reference, the fluid parcels
are modeled as having constant mass, that is, mass diffusion is non-existent.
In an Eulerian frame of reference, the stresses in Navier-Stokes are caused by
diffusion which in turn implies not constant mass. Heat however, is modeled
as diffusive in an Eulerian frame with control volume argument, which im-
plies that energy transfer must occur via molecular collisions exactly on the
boundary (with no molecular transport across) in between control volumes.

The resulting set of equations, termed Eulerian model, that model a perfect, com-
pressible, heat conducting, viscous gas at local thermodynamic equilibrium is

∂ρ

∂t
+ divx(ρv) = ∇x · (ν∇xρ)

∂(ρv)

∂t
+∇x · (ρv ⊗ v) +∇xp = ∇x · (ν∇xρv)

∂E

∂t
+ divx(Ev + pv) = ∇x · (ν∇xE)

p = ρRT, Ideal Gas Law

(1.28)

From the new model a different viscosity is proposed to be consistent, namely a
kinematic viscosity denoted by ν. It has the following form

ν = α
µ(T )

ρ(x, t)
+ β(ρ, T ) (1.29)

where α ∈ {1, 4/3}, but other values of α may be more appropriate if tested against

experiments. The main dependency however is anticipated as ν v µ(T )
ρ

. In accor-

dance with [Sva18] β(ρ, T ) = 0 in this work.

1.7 Viscosity and Gas Properties

The effect of viscosity, µ, on the shock profile is significant, and an accurate model
is hard, if not impossible to obtain. Viscosity is the main concern of much research.
Therefore, an appreciable amount of the deviation between the numerical calcula-
tions herein and the experimental results for comparison, can be attributed to this.
However, the main focus of this thesis is to compare the Navier Stokes equations
with the new Eulerian model of [Sva18], and see how well they approximate the
real physical values. As long as the two systems are based on the same grounds
it is hopefully possible to distinguish the effects of viscosity from the fundamental
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differences in the two. The following regarding viscosity is based on [GR07] which
does an elaborate reasoning of how to model viscosity. They include shock tube ex-
periments from [Als76], [Ste72] and [Sch69], to fit their viscosity model. The main
lines are the following assumptions:

• µ ∝ T r

• The assumption of an inverse power law of temperature for inter-molecular
forces is made. This introduces a coefficient ζ in the exponent.

• r and ζ are related via the following relation

r =
1

2
+

2

ζ − 1
(1.30)

The result is the well known power law relation

µ = AT r (1.31)

Where, theoretically 0.5 < r < 1, but for most real gases 0.64 < r < 0.84. The
r parameter is determined by fitting the values to experimental values of dynamic
viscosity, µ, as a function of temperature, T . The values of r they present, are

• r = 0.68, their best fit for Mach Numbers up to 4.4

• r = 0.76, their best fit for Mach up to 12.5

• r = 0.72, the mean of the best fit values. This value is also used by [Als76] to
fit values of Direct Monte Carlo Simulations to his shock tube experiments.

They set A = 1, since they scale the equations in a non-dimensional form, using
µ1 = 1 and T1 = 1, A becomes independent of r. Please see [GR07] for further
justification of this.

Another suggested power law, employed in [RD19], is also used as a viscosity model
herein. This has a similar form as the above except that A is substituted with γr

such that

µ = γrT r (1.32)

Sutherland’s viscosity law is a well known. It has much of the same characteristics
as the powerlaws, and in the limit Su = 0 it gives the same powerlaw relation as for
hard spheres (r = 0.5). It has the form

µ = µrefC1
T 3/2

T + Su
(1.33)

where,

C1 =
µref

(Tref )3/2
(Tref + Su) (1.34)

uref , Tref are reference values to be chosen, and Su is the Sutherland temperature
[Sut93].
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The common way of relating thermal conductivity, κ, and dynamic viscosity, µ, is
through the Prandtl number

Pr =
cpµ

κ
(1.35)

This is a theoretical derived relationship from kinetic theory by [HCB55].

For a mono-atomic gas Pr = 2/3. This relationship is based on the premise that
the molecules are hard spheres. In the numerical simulations herein, power laws
of viscosity (and constant viscosity) is used. The underlying assumption for these
is that the inter-molecular force is inverse proportional to radial distance, that is,
molecules not being hard spheres. Therefore an error of logic/inconsistency. How-
ever, the difference in the Prandtl number is small if it follows the power law, and
the resulting outcome is not of noteworthy effect (test simulations have been made
herein, by changing the Prandtl number), therefore the Pr = 2/3 is used throughout.

For a mono-atomic gas, the ratio of specific heats is given by kinetic theory

γ =
5

3
(1.36)

Since the gas is considered ideal, the following relations of sound and gas constants
hold

c =
√
γRT =

√
γ
P

ρ
(1.37)

R = cp − cv =
kb
mm

=
c2

γT
(1.38)

where, kb, is the Boltzmann constant and mm the molecular mass [LeV92].

1.8 Summation By Parts Operators

Usually when solving non-linear convective problems, such as (1.3), with central dif-
ferences, artificial dissipation has to be employed to dampen the unresolved highest
frequency mode [Mat03]. A common problem and reason for failure for numeri-
cal codes is the resulting negative values of density, when clearly this is a strictly
positive quantity. As an example of how artificial dissipation works, consider mass
conservation of (1.3) equation with artificial dissipation added at the right hand side

ρt + (ρu)x = Chρxx (1.39)

for some scaling constant, C ∝ u, and h being a measure of the grid size. It is readily
seen that h −→ 0 =⇒ Chρ −→ 0, such that the equation approaches the true mass
conservative equation for finer grid sizes [Sva18]. Artificial dissipation decreases the
accuracy and therefore undesirable to use, however there are many ways to do this.
See for example [MSN04] for a stable and accurate artificial dissipation in the SBP
environment .
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In these simulations compatible narrow stencil SBP operators are used. These
dampen the highest frequency mode without the addition of extra dissipation terms,
as opposed to wide stencils, making the narrow stencils potentially more accurate
than wide stencils [MSS08]. The compatibility is proven by [MSS08] to be a neces-
sary condition for proving stability (i.e. satisfy energy estimate) when combinations
of mixed and non-mixed second derivatives are present. No extra dissipation was
needed to achieve stable simulations herein.

Summation by parts is the discrete version of integration by parts and paves the way
for energy estimates. One popular and effective method for incorporating boundary
conditions is the SAT (Simultaneous Approximation Term). However, stability is not
shown herein, and it is more difficult to show stability for narrow SBP stencils than
wide [MSS08]. Due to the nature of the problem with fixed boundary conditions, the
SAT boundary procedure is not needed for stable calculations, and the simplistic
injection method is employed instead. In general, the injection method destroys
the SBP property which makes the energy estimates/boundedness impossible to
obtain [Mat03]. See for example [NC99] or [SCN07] for stability regarding the
Navier-Stokes equations using the SAT method in 1D, and in 3D with far field
boundaries, respectively.

Chapter 1 Josef Flatlandsmo



Chapter 2

Numerical Discretization

2.1 Spatial Discretization

For more details regarding the following SBP setup, the reader is referred to [Mat12].
The simulations were done on a domain [−12, 12] in units of mean free paths to
comfortably fit the shock. Note that the length of the domain do not alter the shock
structure as long as it is wide enough. For lower Mach numbers, one would need
wider simulation domains as the shocks are thicker. The domain, was discretized
into N equidistant nodes.

xi = ih, i = 0, 1, 2, ..., N, h =
1

N
(2.1a)

Let w be the continuous solution variable representing ρ, u or E. Define a discrete
solution vector v = [v0, v1, ..., vN ]T , such that, vi = w(xi). Then, at every node xi,
there is associated an unique value vi.

The first derivative is approximated by the standard central differential operator
D0, the second derivative approximated by D2. The second derivative with variable
coefficient is approximated by the special operator D

(b)
2 , where b is the variable

coefficient. This yield a more accurate representation than the straight forward
implementation of the first derivative twice, Do(b(x)Do)(·). The explicit form of
these operators can be found in Appendix A.

The variable coefficient matrix approximates the term d
dx

(b(x) d
dx

)(·). In the Navier-
Stokes momentum equation b = 4

3
µ. In the energy equation there are two instances:

b = 4
3
µu and b = κ. In the Eulerian model b = ν. The semi-discrete form of the

Navier-Stokes equations (1.3) in 1D using Stokes assumption (1.5) is,

(ρi)t +D0mi = 0

(mi)t +D0(uimi + pi) = D
( 4
3
µi)

2 ui

(Ei)t +D0(ui(Ei + pi)) = D
( 4
3
µiui)

2 ui +D
(κi)
2 Ti

(2.2)
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The semi-discrete form of New Eulerian model (1.28) in 1D

(ρi)t +D0mi = D
(νi)
2 ρ

(mi)t +D0(uimi + pi) = D
(νi)
2 mi

(Ei)t +D0(ui(Ei + pi)) = D
(νi)
2 Ei

(2.3)

Where, νi = αµi
ρi

. These discretizations is 2nd order accurate in the interior and 1st
order on the boundary.

The simulations were done on a grid of N = 200 nodes. However, with Section 1.8
in mind and the decrease in accuracy due to artificial dissipation, 100 and 800 nodes
simulations were also done and compared. Though, very time consuming, 800 nodes
were not used for all the cases but enough to be certain that 200 nodes gave the
same results. Therefore, the 200 nodes simulations are shown.

Note that, when using upwind or downwind schemes, it requires one to distin-
guish between direction of signal/flux propagation. This is often done using a non-
conservative form of the equations and defining a jacobien-matrix with character-
istics stemming from the differentiation of the flux terms. The scheme used here
however, is a central difference scheme written in conservative form and the above
mentioned considerations are not needed. See for example [Che11] for a comparison
of Navier-Stokes and the Bhatnagar–Gross–Krook equations on the shock structure
problem with an upwind method.

2.2 Time Discretization

Commonly, a procedure to numerically solve time- and spatial-dependent PDEs, is
to first use a semi-discrete scheme for the spatial discretization to obtain a system
of time-dependent ODEs. Then this is discretized by an ODE solver. Stability is
of great concern and for smooth solutions, linear stability analysis in many cases
suffice. However, for solutions with discontinuities, a stronger measure of stability is
often required [GST01]. Convection-diffusion-equations discretized by finite central
differences of second-, fourth- and sixth-order, are proved to give strongly stable
Runge-Kutta schemes in [LT98].

The classical fourth-order and four-stage Runge-Kutta scheme is used for time
marching herein and is given below. Note that the system of equations studied
here do not have explicit time dependencies and therefore the Runge-Kutta scheme
simplifies,

ũk+1 = ũk +
1

6
[K1 + 2K2 + 2K3 +K4] (2.4)

where


K1 = F(ũk)

K2 = F(ũk + ∆t
2
K1)

K3 = F(ũk + ∆t
2
K2)

K4 = F(ũk +K3)

(2.5)
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2.2.1 Time stepping and CFL condition

The Courant-Friedrichs-Lewy (CFL number) condition, gives a limit to how large
the time steps, ∆t, can be in an explicit time-stepping scheme, such as the Runge-
Kutta method. The rationale of the condition is that, the signal with the highest
velocity, can not cover more than one cell (node to neighboring node) at each time
step. In the case of the shock structure problem

∆tmax =
∆x

max(|umax|+ cmax)
(2.6)

In this work the most convenient size of ∆t was found through trial and error with
the CFL condition as a starting point. One interesting artifact, yet of noticeable
concern, is that the Eulerian model (2.3) allowed for (stable simulations) time steps
more than 6 times as large than for (2.2), when using classical fourth-order Runge-
Kutta. However, the time steps were kept the same for both systems due to the
same L2-norm criterion.

2.3 Solution Procedure

2.3.1 Numerical Code

All scripts and programs were coded from scratch in MATLAB. One main script
was used for both models. The only differing part was an extra subroutine to
calculate ν = αµ

ρ
for the Eulerian model. Otherwise, only inputs to the variable

coefficient matrix, D
(b)
2 , differed for the two systems. This ensured that there were

no differences due to coding and bugs. For each time step at node i, pressure,
velocity, temperature, speed of sound and Mach number was computed as

pi = (γ − 1)(Ei −
1

2

m2
i

ri
)

ui =
mi

ri

Ti =
pi
riR

ci =

√
γ
pi
ri

Mi =
ui
ci

(2.7)

In the case of power-law model for the viscosity, µ was computed as

µi = AT ri , A = {1, γr} (2.8)

at node i. Then, the variable coefficient bi, was computed as seen in (2.2) and (2.3).

Likewise for Sutherland’s viscosity law

µi = µrefC1
T

3/2
i

Ti + Su
(2.9)
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where µref = 1.

2.3.2 Experimental Data

The experimental density data for comparison in this thesis are from [Ste72]. This
is the only known source with raw data ( given as data points ρ vs. x/λ. The other
experimental articles mentioned here, only present the graphs). However, the lack
of information therein regarding physical parameters and the scaling used to present
the data, other sources must be looked into. Alsmeyer [Als76], do include the data
from [Ste72] and compare with his own findings. The work of [Sch69] preceded the
work of [Ste72] and the same experimental procedure is used.

The experimental density data in [Ste72] and [Als76] is given in normalized form

ρ∗ =
ρ− ρ1

ρ2 − ρ1

(2.10)

where ρ is the experimental determined value, ρ1 and ρ2 are the upstream and
downstream boundary densities, respectively. In the literature of [Ste72], [Als76]
and [Sch69], only the upstream values of pressure and Mach number are given.
However, the temperature or density, are not explicitly mentioned anywhere which
are needed to fully describe the system. Neither is the value of µ1 or c1 stated
explicitly.

In [Als76] there is a footnote (on page three, section three) stating the value of the
mean free path of argon gas at T=300K and p1=50mTorr. However, it does not say
that the experiments in fact are conducted at these thermodynamic states. This
introduces uncertainties in how to use the experimental data.

Greenshields and Reese [GR07], and Reddy and Dadzie [RD19] acknowledge this,
and non-dimensionalize every quantity. On the other hand, [ESM05] takes for
granted that the temperature of the experiments in [Als76] is conducted at T1 =
300K.

The interpretation chosen, herein, of the footnote is that: Since there is no charac-
teristic scale to compare with in these shock experiments, a scaling that works well
for the x-axis for most Mach numbers, is the relation x

λ1
where, λ1 = 16

5
√

2πγ
c1µ1
p1

is the

mean free path for argon gas at said upstream thermodynamic values (T1 = 300K,
p1 = 50mTorr, µ1 and c1 are retrieved from tables). This scaling of the x-axis en-
sures that the resolution of the shock is small enough and the shock features are
well presented in the graphs. Choosing a large λ1, one would need a very large
domain, and choosing a small λ1, the resolution is to coarse and the shock appear
as a jump (unless one uses a very small domain, i.e. fractions of unit length). So to
summarize, if this λ1 is to be used, it have to be known that T1 in the experimental
data of [Ste72] is conducted at T1 = 300K.

In short the work of [Ste72] part 1, is as follows: The main goal was to determine
inter-molecular potential parameters for different potential models; Lennard-Jones
and EXP-6, through shock profile comparisons. (The potential will be somewhat
analog to viscosity in a continuum model). An experimental density profile is ob-
tained through 5 runs of shocks in Argon (it is also performed for Krypton, Xenon,
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Neon). Then, DSMC (Direct Simulation Monte Carlo) is performed, with Lennard-
Jones potential model and for EXP-6 potential model, and the parameters adjusted
to best fit the experimental curve. These parameters (ε, k) are given explicitly and
a temperature relation is given as

T ∗ =
kT

ε
Inter −Molecular Potential Well Depth (2.11)

The T ∗ = kT
ε

, for each gas is determined when the Monte Carlo profile matches
the experimental one. The variable T is the experimental temperature. So it is, in
principle, possible to determine the experimental temperature through this formula.
But this introduces uncertainty since to achieve the best fit of T ∗ the statistical
scatter (from DSMC) have to be made as small as possible. It is stated in [Ste72]:
”No way is known to remove the expected statistical scatter and thus find the true
density.”. It does not get better when he concludes that: ” Finally, a conclusion,
which applies to all rarefied flows, is that the shock structure method is an ineffective
way to determine the shape of the potential well (i.e. the attractive forces)...”.
Therefore, in this thesis, the idea of finding the temperature and use the real physical
parameters is abandoned. A completely non-dimensional-furnished set of equations
is used for numerical calculations instead.

Further still, the experimental data from [Ste72] are normalized and adapted to fit
the numerical simulations of the aforementioned Monte Carlo simulations (not the
other way around). This, will affect the normalization procedure herein to most
correctly fit the data, see Section 2.3.6.

Note: The subsequent section explaining the normalization, Section 2.3.6, also make
use of the ”∗” notation. This is however not connected to T ∗. It is merely a
coincidental result of being consistent with the notation in [Ste72] in this subsection.

2.3.3 Non-Dimensional Form

The lack of the complete raw data presents the opportunity to let the problem
enjoy the benefits of non-dimensional form. The scaling is inspired by [GR07]. The
variables will be scaled by a value at a chosen reference state. The upstream state,
denoted by 1, is chosen as reference, as is the common practice for shock structure
problems. The following variables are specified freely in the most convenient manner

T, p, c, µ (2.12a)

Keeping

Pr = 2/3, and γ = 5/3 (2.13a)

constant, then, to not over-determine the system the following must be scaled with
dependence from the above

ρ, x, R, κ, cp, cv (2.14a)

A preferable scaling of x, is one that does not change its size, i.e., keeping it as close
to 1 as possible. This enables a direct ”overlap” of the experimental x-axis and the
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one obtained here. Said differently, obtaining a scaling such that λ = 1 implies that
one unit length of the axis in the simulations equals one unit length of the x-axis
for the experimental values. Therefore, it is desirable that

x =
x

λ
≈ x (2.15)

That is λ ≈ 1. Overbar denotes the non-dimensional/scaled variable.

The natural λ is the molecular mean free path upstream

λ1 =
16

5
√

2πγ

c1µ1

p1

(2.16)

It is readily seen that 16
5
√

2πγ
= 0.99 ≈ 1. Now, since c, p, µ are chosen freely, they

can be conveniently set

c1 = 1, µ1 = 1, p1 = 1 (2.17a)

to achieve the desired scaling of x. In addition, T1 = 1 is chosen.

The following non-dimensional forms are now employed

T =
T

T1

, p =
p

p1

, R =
c2

1

γT1

, µ =
µ

µ1

(2.18a)

Yielding R = 3
5
. The remaining parameters are determined through the following

• ρ1 is computed via the ideal gas law: ρ1 = p1
RT1

• The Mach Number M1 on the upstream side, is the supersonic Mach number,
i.e. M1 = 8

• Then, u1=M1, since c1 = 1

• T2, P2, M2, ρ2, u2, can subsequently be determined by the Rankine-Hugoniot
relations(1.21), (1.22), (1.23), (1.24) where needed

• The value of cp also has to be scaled since the Prandtl number is constant
equal to 2/3. The relating equations of cp and cv are

R = cp − cv, γ =
cp
cv

(2.19a)

Since R = 3/5 and γ = 5/3, it is easy to show through simple substitution of
cv that cp = 3/2. The Prandtl number relation gives

κ =
cp µ

Pr
=

9

4
µ (2.20)

By this procedure the Navier-Stokes equations and the Eulerian model do not have
to be changed from their original form when computed. Rather, the boundary
conditions, together with R and cp sets the non-dimensional scene in place. Note
that µ1 = 1 is merely used to scale the x-axis. Once this is done, the unit length of
the x-axis stays fixed for all simulations. The values of µ will vary for the different
simulations and its effect is to thicken/thin the shock [Kun16].
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2.3.4 Boundary and Initial Conditions

This problem has fixed far field boundary conditions with supersonic inflow- and
subsonic outflow conditions. The boundary conditions are given by the Rankine-
Hugoniot relations (1.21),(1.22),(1.24). Far upstream and downstream all gradients
vanish.

The correct number of boundary conditions, as shown in [SCN07] for Navier-Stokes,
is given below in Table 2.1. For the Eulerian model, there is also a diffusive term in
the conservation of mass equation, therefore an extra boundary condition is needed
[Sva18].

Table 2.1: Number of boundary conditions for 1-dimensional supersonic inflow and
subsonic outflow

Supersonic Inflow Subsonic Outflow

Navier-Stokes 3 2

Eulerian Model 3 3

The boundary conditions given below in Table 2.2 were used and produced stable
simulations

Table 2.2: Specified Boundary Conditions for the conservation of mass, density and
energy equations. Computed via the Rankine-Hugoniot Relations

Supersonic Inflow Subsonic Outflow

Mass ρ1

Navier-Stokes Momentum m1 m2

Energy E1 E2

Mass ρ1 ρ2

Eulerian Momentum m1 m2

Energy E1 E2

Generally for a given boundary accuracy of a, a nodes on each boundary are mod-
ified in the SBP-stencils [Gus08]. The SBP operators used herein are second order
accurate for the interior nodes and first order accurate at the boundary. The outer-
most nodes therefore have to be modified. The simplest way to employ this is by the
injection method, that is, overwriting/injecting the fixed values onto the outermost
nodes.

To start the simulation initial values for the variables are needed. The initial con-
ditions are simple step functions where the boundary values are extended to cover
each half of the domain.

2.3.5 Viscosity Model

Modeling viscosity is of paramount importance as it leads to quite substantial dif-
ferences in the density profiles (as is seen in Chapter 3 ). The power-law viscosity
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model is suited for the Navier-Stokes equations, given again here as

µ = AT r, 0.5 < r < 1 (2.21)

for some constant A. Most real gases fall in the range of 0.64 < r < 1 [GR07].

Now, the Eulerian kinematic viscosity is

ν = α
µ(T )

ρ(x, t)
(2.22)

Let, for this subsection, the subscript E and NS, denote Eulerian and Navier-Stokes,
respectively. It is readily seen that one can achieve νE = µNS, at some point if, µE
is kept constant but scaled according to (2.18). This naturally begs the question
if this dependency is enough, i.e. using constant dynamic viscosity µE, for the
Eulerian kinematic viscosity? However difficult to compare the ”function” of ν in
Eulerian model to the function of µ in Navier-Stokes, this idea will be pursued in the
simulations. Letting µE follow the same power law as the Navier-Stokes equations
is also simulated for.

Another way to justify this idea is to differentiate the following

∂µNS
∂r

= Ar
1

T 1−r (2.23)

and, keeping µ constant for Eulerian

∂ν

∂ρ
= −αµE

ρ2
(2.24)

One can say that the rate of temperature dependency is decreasing in both cases.

Svard also propose two different values for α, namely, α = 1 and one in accordance
with the viscosity coefficient in Navier-Stokes equations; α = 4/3. Both was simu-
lated for, and a suggestion for which constant is the more proper one is stated in
Chapter 5.

To determine the upper bound on the constant µ, the power law was used as a
reference. The downstream temperature value is the highest one, i.e. T2 given by
the Rankine-Hugoniot relation (1.24)

Tmax = T2 =⇒ µmax = A(Tmax)
r (2.25)

Now, setting A = γr and r = 0.81,

Tmax ≈ 21 =⇒ µmax = (1.67)0.81(21)0.81 ≈ 17.8 (2.26)

So the range of the dynamic viscosity in this work is

1 ≤ µ ≤ 17.8 (2.27)
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However, the simulations shown with constant dynamic viscosity, were done well
within in the limits with µ ≤ 10. Worse approximations and instability arose above
this.

For the Sutherland viscosity law, the constant C1 needed to be defined. Using again
that Tref = 1 and µref = 1 and testing by trial and error. The largest Sutherland
temperature value Su = 2 was used, giving

C1 =
µref

(Tref )3/2
(Tref + Su) = 3 (2.28)

Then stable simulations were done with

µ = µrefC1
T 3/2

T + Su
(2.29)

The lower value of Su was equal to 0.9, and again determined by test simulations.
Below this value was no point of doing due to poor fit of the simulated data with
the experimental. So to summarize for the application of Sutherland’s viscosity law

0.9 ≤ Su ≤ 2 (2.30)

Note that for Su = 2 =⇒ µ ≈ 12.6. To achieve this with the power law one would
need that

r ≈ 0.83 (2.31)

2.3.6 Normalization and Fitting of Data

One issue that need to be addressed is the normalization of the numerically cal-
culated data. The experimental data from Steinhilper [Ste72], has upstream and
downstream endpoint values for the density; ρ = 0.001 and ρ = 1.009, respectively.
He defines the point x = 0 to be associated to the value ρ∗ = ρ−ρ1

ρ2−ρ1 = 0.5. It
is unclear why this boundary-data is so. It might be because of the fitting pro-
cedure, or it might be because of the experiment is run at about Mach-8, as he
writes. Then if Mach-8 is used as an exact value in the Rankine-Hugoniot relations,
a small deviation in the normalized data will occur. That is, assuming direct den-
sity measurements at the far upstream and downstream were not done. Although
the endpoints having quite a small deviation from 0 and 1, a linear scaling term to
match the endpoints properly is added herein.

ρ∗ =
ρ− ρ1

ρ2 − ρ1

+ (0.001 +
x

L
0.008) (2.32)

Where L is the length of the domain and 0 ≤ x ≤ L. See Appendix B for the
experimental data from [Ste72]. Furthermore, as is common in shock experiments,
the numerically obtained graphs are shifted so that ρ∗ = 0.5 corresponds to the point
x = 0, see for example [Als76] or [RD19]. However, since the value is not predefined
(only boundary conditions are), the value closest to ρ∗ = 0.5 is associated with
x = 0, after the simulation has converged.
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2.3.7 Tolerance

The standard L2 norm was used as a measure on the density for two consecutive
time steps. The size of the tolerance depends on the time step, and by some trials it
was found that TOL = 5 ·10−6, was a reasonable tolerance. That is, the simulations
stopped when ∥∥ρ(k) − ρ(k+1)

∥∥
2
< TOL (2.33)

Where k denotes the timestep. No changes in the shock structure were observed
below this (in some test simulations).
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Chapter 3

Results

3.1 Results

First of all, note that the raw data from [Ste72] has its x-domain from [-8, 7]. Since
it is not straight forward how to employ this, the resulting figures need a little
justification. In [Ste72], the experimental data are shifted to match the DSMC
(Direct Simulation Monte Carlo) not the other way around, and relocated such that
x = 0 corresponds to the normalized value ρ∗ = 0.5. This shift must be done since
the exact location of ρ∗ = 0.5 in the original profile, stemming from the measurement
of the stationary electron gun, is not known in advance due to the lack of no absolute
coordinate.

It is not stated explicitly why the domain is not symmetric, [-8, 8] or [-7,7], but from
reading the thesis of [Ste72] it seems like the original axis spanned from [−7.5, 7.5]
and due to the shift ended up as [−8, 7]

A shift of the shock profile such that the value closest to ρ∗ = 0.5 was relocated at
x = 0, were done for all simulations.

The uncertainties for the experimental values are addressed in Section 4.1. How-
ever, the main point is stated here in advance. Steinhilper does not address the
uncertainties to his experimental procedure, however, Alsmeyer do in [Als76] for his
experimental data. Even though there are some differences between the two exper-
iments (e.g size of the tube is 150mm diameter in Alsmeyer opposed to 432 mm in
Steinhilpers experiment), the best one can do is to hope for a similar uncertainty.
Alsmeyer states that the total uncertainty for the density profiles are ±4% but be-
lieved to be accurate within ±1%. In the subsequent figures, the circles marks the
experimental data, and the extent of the circles is slightly larger than ±1%. For
aesthetic reasons these circles are used instead of error-bars. The ±4% error-bars
was after contemplation left out. They were only seen to clutter the figures and not
add valuable information.
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3.2 Simulations

3.2.1 Constant Dynamic Viscosity

Note that for all following subsections presenting the results the structure is the
same. The first figure shows Eulerian model with α = 1. Then comes Eulerian
model with α = 4/3 followed by Navier-Stokes. In the descriptive labels in the
top-left corner, resides the viscosity information.

In this subsection all the figures presented are simulations where the dynamic vis-
cosity, µ, was kept constant. The viscosity values are scaled as explained in Section
2.3.3. Note that for all figures on the density profile, the normalized density, as
explained in 2.3.6, is plotted against the x-axis whose units are given in mean free
paths.

For values of µ > 10, slow or non converging results emerged from the Eulerian model
while instability for the Navier-Stokes. Hence, the maximum value µmax = 10.

Figure 3.1: Eulerian model with α = 1 and constant dynamic viscosity µ values.

The trend in these simulations is clear. The higher the viscosity the closer the
simulated values approach the experimental values, but still, all curves are poor
approximations.
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In the following plot, Figure 3.2, α = 4/3 but the same viscosity values are used to
compare with the α = 1 case above.

Figure 3.2: Eulerian model with α = 4/3 and constant dynamic viscosity µ values.

The trend in these simulations is the same, as expected. The higher the viscosity
the closer the simulated values approach the experimental values. However, these
curves are better approximations. The curve for µ = 9 follow quite tightly in the left
part, then overshoots a little just right of the middle before hitting close to exact
values near the boundary.
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In light of the two previous results, one would be encouraged to tune the viscosity
around µ = 9 to obtain closely fitting curves. In Figure 3.3 below, the dynamic
viscosity was set to µ = {9, 9.5, 10}.

Figure 3.3: Eulerian model with α = 4/3 and constant dynamic viscosity µ. The
curve with µ = 9.5 seems to be the closest approximation to the experimental values.

Even though hard to see due to overlapping curves, the curve with µ = 9.5 is the
compromise of µ = 9 and µ = 10. In the left half, µ = 10 clearly overshoots, while it
hits the experimental values neatly in the right half. This is the opposite behaviour
of the case µ = 9. For clarity the case of µ = 9.5 i given separately in Figure 3.14 in
Section 3.2.5 below. This is the best approximation obtained with the new Eulerian
model in this work.
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It is well known that constant viscosity lead to poor approximations for the Navier-
Stokes equations. For completeness and comparison this is included below in Figure
3.4.

Figure 3.4: Navier-Stokes equations with constant µ.

Clearly a much poorer fit than for the Eulerian model. Still, the trend is the same.
The highest viscosity curve is closer than the other two.
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3.2.2 Power Law Viscosity Model

In this subsection the simulations for the viscosity model µ = T r are presented. The
descriptive labels in the top left corner gives the value of the exponent.

The following plot 3.5, shows the Eulerian model with 4 different exponent values.
Three of them suggested by [GR07] and the value of r = 0.81 from [ESM05].

Figure 3.5: Eulerian model with α = 1 and viscosity µ = T r

Clearly this power law fails for the case of Eulerian model with α = 1.
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In Figure 3.6 below, the same four cases of r = {0.68, 0.72, 0.76, 0.81} are plotted,
but now for α = 4/3.

Figure 3.6: Eulerian model with α = 4/3 and viscosity µ = T r

This also are poor approximations compared to the constant viscosity cases. The
main difference is that the power law gives no curvature to the left of −2 on the
x-axis, where a dramatic ”kink” emerges. However, for the case of r = 0.81 there is
a very good approximation for the right half part. Again, one can say that α = 4/3
gives better results than α = 1.

One important observation is that this ”kink”, is also seen in Brenner’s modified
Navier-Stokes equations when applied to a similar shock structure problem. See
[GR07] for this.
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In Figure 3.7, the values for r = {0.68, 0.72, 0.76, 0.81} for the Navier-Stokes equa-
tions are shown. Note that for the values r = {0.76, 0.81}, the time step needed
to be halved, due to growing oscillations. The halving of time-step resolved the
instability. The instability emerged from the high viscosity end of the domain, i.e.
the right part/downstream.

Figure 3.7: Navier-Stokes with the viscosity model µ = T r

For this power law it is obvious that Navier-Stokes perform a lot better than the
Eulerian model. The characteristic ”kink” is not seen here, rather a more ”smooth”
curvature all through the domain.

Chapter 3 Josef Flatlandsmo



The Shock Structure Problem and Svärd’s New Eulerian Model

3.2.3 Power Law Viscosity with Coefficient

In this subsection simulations with the power law µ = γrT r are presented. Compared
to Section 3.2.2 above, the resulting viscosity is higher with the coefficient γr. As an
example, if r = 0.72, then since γ = 5/3 =⇒ µ ≈ 1.45T r, a significant difference.

In Figure 3.8 the Eulerian model with α = 1 is presented.

Figure 3.8: Eulerian model with α = 1 and µ = γrT r

The result have the same trend as in Figure 3.5 with the sharp transition from flat
to steep curve at around x = −2. However, the transition is softer here owing to
higher viscosity, and therefore a better approximation.
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In Figure 3.9 the Eulerian model with α = 4/3 is presented.

Figure 3.9: Eulerian model with α = 4/3 and µ = γrT r

Here it is clear that for the highest r values the viscosity is too strong and the curves
are well below the experimental values in the right half part. For r = {0.68, 0.72}
the approximation is only deviating from the 1% (i.e. not touching the circles) in
the interval x = [−4.5,−1]. Once again it can be stated that the Eulerian model
with α = 4/3 perform better than with α = 1.
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The simulations for Navier-Stokes are shown below (Figure 3.10 ). Note that for
r = 0.81 convergence was not achieved due to instability and therefore not shown.

Figure 3.10: Navier-Stokes with dynamic viscosity µ = γrT r

The Navier-Stokes perform well for the case r = 0.76. Only in the interval x ≈ [2, 3]
is it not within the 1%. This is the best approximation achieved for the Navier-
Stokes equations in this thesis.
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3.2.4 Sutherland’s Viscosity Law

In this subsection the simulations using Sutherland’s viscosity law is shown. The
values of the scaled Sutherland temperature are Su = {0.9, 1.3, 1.5, 2.0} and given
in the top-left corner of the figures. Some quick comments can be made

• Eulerian model with α = 4/3 perform better than for α = 1

• The same characteristic ”kink” is observed for the Eulerian model, leading to
poorer results and hence this viscosity model is not well suited

• Navier-Stokes give approximately the same results as for the Power Law, how-
ever not as well.

The approximations are overall of poorer fit, and for brevity comments on the results
are left out.

Figure 3.11: Eulerian model with α = 1 and Sutherland’s viscosity law.
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Figure 3.12: Eulerian model with α = 4/3 and Sutherland’s viscosity law.
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Figure 3.13: Navier-Stokes with Sutherland’s viscosity law.
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3.2.5 Best Fit Comparison

In this subsection the best fitting curves for the Eulerian model and the Navier-
Stokes are given. This gives a clearer picture of the most important results.

From all the plots presented so far it should be clear that too little viscosity yield
simulated values below the experimental data for x < 0, and simulated values above
the experimental data for x > 0. This is also observed in the subsequent figures in
this subsection.

Below in Figure 3.14, the closest approximation for the Eulerian model is shown.

Figure 3.14: New Eulerian model with constant dynamic viscosity µ = 9.5. The
closest approximation obtained.

It is readily seen that all the circles are crossed by the simulated curve.
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The closest approximation obtained with the Navier-Stokes can be seen in the fol-
lowing plot (Figure 3.15 )

Figure 3.15: Navier-Stokes with µ = γrT r and r = 0.76. The closest approximation
for Navier-Stokes equations.

Only four circles are not crossed by the simulated Navier-Stokes curve.
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The closest approximations for the two systems are put together for comparison in
the plot below (Figure 3.16).

Figure 3.16: The closest approximations for the two systems.

It is clear that the two models approximate the experimental values closely. From
inspection of the curves it seems that the Eulerian model has a closer fit than the
Navier-Stokes. However, one can argue that with tuning of the viscosity parameters
one could probably obtain almost identical results. As seen in Figure 3.15, the
Navier-Stokes would have needed higher viscosity in the right part and less in the
left part to follow the experimental values more closely. An easy way would be to
use a slightly lower value than the coefficient γr. This reduce the overshoot in left
half part. To increase the viscosity in the right half part one would in addition need
to use a higher exponent value r > 0.76. Since the temperature is almost constant
up to where the curvature starts, increasing the exponent has the highest impact in
the right half part.

Keeping in mind that the Stokes assumption is employed herein, better results might
be achieved with another constitutive relation. However, the higher viscosity might
introduce instability, with this numerical method. This could be overcome by adding
artificial dissipation, but then more grid points are needed to deal with the added
inaccuracy. Using a more proper boundary procedure, such as the SAT method,
could possibly kill the eventual instability (See [SN14] for an instructive example of
the SAT method effectively killing boundary-induced oscillations, in a Convection-
Diffusion equation, as opposed to fixed boundary conditions). Since it is easier to
have stable simulations with the Eulerian model, this favors mass diffusion.
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3.3 Conservation of momentum

It is interesting to note the difference in momentum. As seen from Figure 3.17 the
momentum is constant through the whole domain for the Navier-Stokes, while the
Eulerian system has a peak slightly to the left of the center. This is consistent with
the findings in [Sva18]. If the simulation is ran further for the Eulerian model, this
peak is observed to traverse very slowly. This in turn makes it hard to achieve lower
tolerance since the variables at the ”peak-affected” area is constantly changing.

For a proper comment on this [Sva18] states that: ”Note that momentum is not
globally conserved in either of the simulations. It is only conserved up to the point
where the solution interacts with the boundary, i.e., initial disturbances from the
shock impinge on the boundary. At that point the boundary conditions produce an
in- or outflux of momentum (and the other conserved variables).”

Figure 3.17: Momentum plot for the whole simulated domain [−12, 12], for the best
fitting curves. Eulerian model with α = 4/3 and constant µ = 9.5. Navier-Stokes
with µ = γrT r and r = 0.76.
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3.4 Overshooting Mach number

Brenner’s modification to the Navier-Stokes [Bre05] equation resulted in an over-
shoot in the Mach number around the discontinuity, see [GR07] for this. It was
observed behaviour towards asymptotic overshoot with decreasing cell size, i.e. the
higher the number of grid points the larger the overshoot. In [Sva18], it is stated
that this phenomenon is non-existing in the new Eulerian model for both α = 1
and α = 4/3. However, the simulations therein were done with a constant dynamic
viscosity and with 100 nodes. Therefore, after seeing the pronounced effect from
the power law models, it would be worth the effort to use the same power law as
in [GR07] and to increase the number of grid points substantially to see if this still
holds.

In the Figure 3.18, three cases are plotted. Two with power law viscosity equivalent
to the one used in [GR07], and one with constant dynamic viscosity for comparison.
The three curves are all for α = 4/3, similar results were obtained with α = 1 and
not shown for simplicity. The distance between two neighboring grid points, denoted
∆x, are 0.024λ1 and 0.12λ1 for 1000 and 200 grid points respectively. In [GR07] the
overshooting phenomenon is clearly seen at cell sizes of 0.083λ1 and below.

Figure 3.18: Mach number plot with power law µ = T r for 1000 nodes and 100
nodes. For comparison a curve of constant µ = 9.5 is included.

Obviously there is no overshoot, and the two curves of the power law for 200 nodes
and 1000 nodes exactly overlap. There is a sharp drop in the power law curves. This
corresponds to the sharp transition for the normalized density plot. Note that, for
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a better visual appearance, both curves are shifted so that the mean value of the
upstream and downstream Mach number is located at x = 0.

No overshoot or unnatural behaviour was observed in the other variables for the
Eulerian model.

3.5 Eulerian Alpha Coefficients

For brevity and unnecessary information overload only one figure is presented here
although more results have been obtained.

All simulations show that a proper viscosity model and the value of α greatly affect
the shock structure. A natural follow up for the power law viscosity would be to
increase α to see whether or not one could make the Eulerian model work with this.
After all, the anticipated dependency is µ v T . As mentioned in Section 1.6, [Sva18]
leaves an opening for the possibility of other values of α than 1 and 4/3.

Below (Figure 3.19 ), simulated values of α = {4
3
, 5

3
, 6

3
} is shown, with the power law

µ = T r, for r = 0.72.

Figure 3.19: Eulerian model with viscosity according to power law µ = T r and
different values of α

.

The case of α = 6/3 fails catastrophically. It reaches the endpoint value, ρ2, very
steeply at the end of the simulated domain [−12, 12] (not shown here.)
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For α = 5/3 there is a better fit than for α = 4/3, but still that sharp transition
appears. For higher values of r, the deviation is larger than for 4/3, and when using
µ = γrT r, this also catastrophically fails (these results are not shown here).

For constant dynamic viscosity, the effective working of α is merely to stretch/shrink
the curve along the x-axis, that is, the same effect as increasing/decreasing µ, re-
spectively. This is also seen from the equations (1.28), since α directly scales µ in
ν = αµ

ρ
. Therefore, in the case of constant µ, one can obtain the same results as

long as the product αµ, is equal.
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Discussion

4.1 Experimental Uncertainties

Some comments regarding the experimental uncertainties is a good practice to get
a better understanding of how close the numerical results are.

The first uncertainty to be mentioned (again) is that the normalized density data
in [Ste72] is not exactly equal zero and one at the boundaries. With the small
linear scaling (2.32) added, one can only be certain that the endpoints match the
experimental data. It is reasonable to believe that it also improves the relationship
between the experimental and simulated data.

Although the experimental values stem from [Ste72], the experimental uncertainties
therein are not explicitly mentioned. Therefore [Als76] is used for this purpose. The
experimental setup in [Als76] is a 150 mm diameter shock tube. The density profile
is measured by the attenuation of an electron beam, going from an injection needle
to a Faraday cage, through a absorption law on the form I

I0
= A[e(−αρl)+B(1−e−αρl),

where I is the electron beam current from injection needle, and I0 is the beam current
measured by the cage. He points out that there are uncertainties due to curvature
of shock, velocity measurement among other things. The curvature of the shock is
corrected for in [Als76] through a calculation. However, in [Ste72] the diameter of
the tube is much larger and it is believed that this curvature due to wall friction
effects is negligible. The total uncertainty in the density profile [Als76] is ±4%, but
believed to be correct within ±1%. Alsmeyer compares results with Shmidt [Sch69]
and for mach numbers between 2.8 - 6.5 the agreement is within ±1%, however, at
higher mach number, Ms = 8 there is a larger deviation. Alsmeyer, believes these
deviations to be from use of an improper absorption law. This fact, points to there
being some uncertainties in the way the absorption laws are used to compute the
density profile. Therefore one has to allow the mathematical models to not exactly
match the experimental values.

Although both system produce good approximations, they are still continuum mod-
els applied to a physical problem in the range between a continuum and molecular
description.
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4.2 Numerical Uncertainties

All simulations have been done with 200, some with 800 and 1000 nodes for com-
parison. All results were similar.

The validity of using constant dynamic viscosity is clearly debatable, since the gen-
eral behaviour of a gas is that this increases with temperature. However, the ”effec-
tive” viscosity used in the Eulerian model is not constant owing to its inverse pro-
portionality of the density. The gas in the experiments are also at very low upstream
pressures and rarefied and typical Knudsen number is in the range 0.2 < Kn < 0.3.

When using the upstream values to scale the x-axis as done in Section 2.3.3, the value
µ1 = 1 is set. When using the power law µ = γrT r or constant dynamic viscosity
µ > 1, one no longer has that µ1 = 1. However, as pointed out previously, the
viscosity only affects the thickness of the shock. And comparing with the possible
range 1 < µ < 17.8, as shown in Section 2.3.5, a value of µ = 9.5 is close to a mean
value, and therefore not unreasonable.

As stated in Section 2.3.3, the unit length of the scaled x-axis is only approximately
equivalent to 1. In fact, it is slightly smaller with 1%. If accounting for this, the
numerical values would have been stretch out, giving an even better fit for both
the best fitting curves for x > 0 (and slightly worse for x < 0), since they slightly
under-damp compared to the experimental values (since they slightly over-damp
compared to the experimental values).

The method used herein have second order accuracy for the interior nodes and first
order on the boundary. To capture the shock even better higher order method
would be desirable. The SBP-operators used here provide an excellent framework
and could be extended to higher order for a comparison. See e.g. [Mat12] for these
operators.

4.3 Model Uncertainties

The equation sets (Navier-Stokes and Eulerian) constitutes the ideal gas law. This
assumption is well reasoned for in a rarefied gas, in which the spatial occupancy of
the molecules are is considered negligible compared to the void. The molecules are
thought to only interact with each other through hard sphere collisions. However,
the higher the pressure and temperature the more faulty this assumption is. In the
experiments obtained by Steinhilper, [Ste72], the upstream argon pressure is 25.5
mTorr ≈ 0,00003355 atmospheres, i.e. a very low pressure (and probably around
room temperature). Similar pressures are also used by Alsmeyer [Als76] (50mTorr)
and Schmidt [Sch69] (1mTorr). Hence, the ideal gas law is believed to be of negligible
uncertainty.

4.4 Viscosity

As mentioned in Section 1.3 the coefficient of bulk viscosity, µv = φ + 2
3
µ, has

an appreciable effect on the shock structure. However, viscosity models that in-
clude this have not been successfully retrieved from the literature. Articles dealing
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with the shock structure problem for reference; [Sva18], [GR07], [Che11], [ESM05]
and [RD19], also use the stokes assumption which is consistent with Newtons vis-
cosity law of viscosity for a parallel flow. For a poly-atomic gas, µv is generally
not zero due to relaxation effects associated with molecular rotation and transla-
tion [Kun16]. Rotational effects are not present in a mono-atomic gas which makes
stokes assumption more accurate than for a poly-atomic gas. Having a more proper
viscosity model with the use of µv and still assuming power law form would be in
favor for the Navier-Stokes.

4.5 Damping

The complete parabolic nature of the Eulerian model makes it less prone to spurious
oscillations. This is clearly an advantage, especially when using central difference
operators. For high viscosity the Eulerian model remained stable while Navier-
Stokes became more oscillatory, resulting in failure for the case µ = γrT r and r =
0.81. This might be overcome by using a more sophisticated boundary procedure.
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Chapter 5

Concluding Remarks and Future
Work

The main objective in this thesis was to compare the Navier-Stokes equations with
the Eulerian model proposed by Svard in [Sva18]. The two system were put into
the same framework. The results indicate that for a properly chosen viscosity model
(although of debatable validity), both systems are able to approximate a shock in
argon gas at Mach 8 within experimental uncertainties.

The coefficient α in the Eulerian model, is suggested to be equal to 4/3 from these
results.

The viscosity that suited the Eulerian model best from the simulations done herein
was constant µ = 9.5.

For Navier-Stokes the power-law viscosity of the form µ = γrT r and r = 0.76
produced the closest approximation to the experimental values.

No overshooting of any variables were observed for the Eulerian model regardless of
grid-size h.

The anticipated kinematic viscosity ν v µ(T )
ρ(x,t)

do not produce as good approxima-

tions as ν v µ
ρ(x,t)

, therefore this is suggested to be a more suiting viscosity model
for the Eulerian system, in particular for the shock structure problem. Owing to
the intermediate Knudsen numbers in this problem, this is not a suggestion of being
the more proper model for pure continuum problems.

In summary the Eulerian model perform at least as well as the Navier-Stokes, and it
is preferable to numerically work with owing to its more stable and non-oscillatory
nature.

For future work:

• A replication of these results are suggested for confirmation. Preferably using
higher order methods as well.

• Show stability of this specific problem within the SBP framework.

• Similar analysis for different Mach numbers and compare with experimental
values.
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• Apply the Eulerian model to ”Sod Shock Tube problem” and compare with
Navier-Stokes.

• Comparison of constant dynamic viscosity calculations for the Eulerian model,
with power law viscosity for Navier-Stokes in pure continuum (low knudsen
number) problems.
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Appendix A

SBP Operators

Discrete Operators Second order

Let yi denote a general discrete variable at node i and h the finite grid length
approximating dx.

First derivative operator

D0yi =
yi+1 − yi−1

2h
(A.1)

yielding the matrix

D0 =
1

2h



−2 2
−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1
−1 0 1

−2 2


(A.2)

Second derivative operator

D2yi =
yi+1 − 2yi + yi−1

h2
(A.3)

giving the matrix operator

D2 =
1

h2



1 −2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1
1 −2 1


(A.4)

For the variable coefficient matrix denoted D
(b)
2 , and the variable coefficient b, the

left boundary closure is given by a 3× 3 matrix
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 b1+b2
2

−( b1+b2
2

) 0
−( b1+b2

2
) b1+2b2+b3

2
−( b2+b3

2
)

0 −( b2+b3
2

) b2+2b3+b4
2

 (A.5)

The corresponding right boundary closure is given by replacing bi −→ bN+1−i for
i = 1..4 followed by a permutation of both rows and columns, such that symmetry
is obtained.

The interior stencil of D
(b)
2 at row i is given by (i = 4...N − 3)

mi,i−1 = −
(bi−1 + bi

2

)
mi,i =

bi−1 + 2bi + bi+1

2

mi,i+1 = −
(bi + bi+1

2

) (A.6)

Chapter A Josef Flatlandsmo



Appendix B

Experimental Data

56



The Shock Structure Problem and Svärd’s New Eulerian Model

Table B.1: Experimental data given obtained from Steinhilper [Ste72]. Argon gas
at Mach 8, p1=25,50 mTorr, 5 runs.

Experimental Data

x/λ1 ρ∗ = ρ−ρ1
ρ2−ρ1

-8 0,001
-7,5 0,001
-7 0,002

-6,5 0,004
-6 0,006

-5,5 0,009
-5 0,013

-4,5 0,019
-4 0,028

-3,5 0,043
-3 0,062

-2,5 0,092
-2 0,133

-1,5 0,19
-1 0,266

-0,5 0,372
0 0,5

0,5 0,624
1 0,735

1,5 0,826
2 0,892

2,5 0,936
3 0,962

3,5 0,977
4 0,989

4,5 0,995
5 1

5,5 1,004
6 1,006

6,5 1,008
7 1,009
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