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Abstract 

Sub-cellular localization is key to the specific function of proteins. Proteins can be recruited to 

different cell compartments via their interaction with the signaling lipids, 

polyphosphoinositides (PPIn). While their actions have been comprehensively documented in 

cytoplasmic membranes, these lipids are also present in membrane-less compartments within 

the nucleus. To understand the function of PPIn in the nucleus, we thought to identify nuclear 

PPIn binding proteins using quantitative mass spectrometry combined with PPIn affinity pull 

down. Using this approach, we identified ErbB3-binding protein 1 (EBP1), known to contribute 

to many cellular functions through interactions with RNA, DNA as well as other proteins. Using 

biochemical and biophysical approaches, we have demonstrated a direct interaction between 

EBP1 and PPIns via two lysine rich motifs located in the N- and C-termini. The C-terminal 

motif was shown to be required for the localization of EBP1 in nucleoli. A frameshift tumor 

mutant which introduced additional basic residues in the C-terminal motif led to an increase in 

PPIn binding and nucleolar localization of EBP1. Here we showed that the nucleolar presence 

of EBP1 correlated with the presence of rRNA for the WT and the frameshift tumor mutant but 

not the C-term PPIn-binding mutant. This suggests a molecular link between EBP1’s 

localization and its subsequent effect on nucleolar processes thereby playing a role in cells 

transformation. We also performed CRISPR/CAS genome editing of exon 2 on PA2G4 gene in 

HEK293T cells however it didn’t yield any fruitful outcomes. The clones analyzed by 

sequencing were wild type with no expected change, though few clones showed reduction at 

protein level with one clone suggesting an in-frame deletion 
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Introduction 

Polyphosphoinositides 

Polyphosphoinositides (PPIn) are low in abundance but essential phospholipids in eukaryotes. 

They are present as minority acidic phospholipids in the eukaryotic cell membranes 

(Falkenburger et al, 2010). Polyphosphoinositides are derivatives of phosphatidylinositol 

(PtdIns) (Michell et al, 2006) which is a glycerol-based phospholipid composed of two 

hydrophobic fatty acids (mostly stearic and arachidonic acids) and a phosphodiester linked to a 

myo-inositol ring (Figure 1A). When the inositol head group is reversibly mono or multi 

phosphorylated on 3, 4, or 5 positions, it results in seven different combinations of PtdIns-

phosphates with distinct biological functions, termed as PPIn (Figure 1B). The metabolism of 

different PPIn regulated by different kinases and phosphatases as shown in Figure 1B. Since 

their discovery by Hokin and Hokin (Hokin & Hokin, 1953) in the 1950s, these lipids have 

established to become important signaling mediators driving several cellular functions. They 

exert their function either indirectly as precursors of second messengers such as inositol- 1,4, 

5-triphosphate (Ins(1,4,5)P3) and diacylglycerol (DAG) or directly by association with the 

effector proteins stimulating different signaling cascades (Payrastre, 2001; Toker, 2002; Blind 

et al, 2014). 

Cellular localization and function 

Although PPIn constitute only 1% of total phospholipids, they are one of the most universal 

signaling entities in eukaryotic cells and involved in almost all cellular aspects. PtdIns is 

primarily synthesized in the endoplasmic reticulum (ER) and delivered to the plasma membrane 

(PM) and other membrane compartments (e.g. Golgi, lysosomes and the nucleus) by vesicular 

transport or via cytosolic PtdIns transfer proteins (Di Paolo & De Camilli, 2006). 

PPIn controlled signaling pathway is mediated in two distinct ways, directly via PPIn or 

indirectly via other second messengers such as DAG and Ins(1,4,5)P3. PtdIns(4,5)-bisphosphate 

is the precursor of these second messengers which is hydrolyzed at PM by PLC in response to 

receptor activation, thus contributing to the regulation of intracellular Ca2+ homeostasis via its 

production (William et al, 2013). Ins(1,4,5)P3 can be further phosphorylated to generate higher 

phosphorylated inositol phosphates (Tsui & York, 2010) and play role in several aspects, but 

they will not be detailed more here. 
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Figure 1. PtdIns and its phosphorylated derivatives polyphoshoinositides (PPIn). A) 

Structural representation of phosphatidylinositol (PtdIns) with two fatty acid tails and an 

inositol head group linked to the glycerol backbone. B) Pathway of polyphosphoinositide 

(PPIn)-generation in mammalian cells. PtdIns in the gray dashed circle shows the labeled 

positions of the phosphorylation sites. All seven PPIn-products (see text above) are presented 

with their PPIn-metabolizing enzymes (in italic). Red arrows designate phosphorylation by 

given kinases, and black arrows are for dephosphorylation by phosphatases. Dashed arrows 

indicate PPIn-synthesis in vitro. DAG and Ins(1,4,5)P3 are products of PtdIns (4,5)P2 hydrolysis 

by Phospholipase C (in purple). Percentages under PPIns indicate the relative abundances of 

these lipids relative to PtdIns in resting cells. Figure taken from (Fiume et al., 2015) and 

modified using (Maffucci, 2012) and (Leslie & Downes, 200 

 

Membrane anchored PPIn, on the other hand, play a fundamental part on the membrane– 

cytosol interface by recruiting proteins that recognize the head groups via their PPIn-binding 

domain or motifs to PM and often transduce downstream signals. These lipids mediate acute 

responses, but also act as constitutive signals that define the identity of organelles. Besides 

acting as a signal transducer at the cell surface, PPIn play important roles in the regulation of 

membrane traffic, cytoskeleton remodeling, endocytic and exocytic processes, cell survival and 

proliferation and nuclear events (Balla, 2013; Shah et al., 2013). 
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Nuclear polyphosphoinositide signaling 

Phospholipids have not only been shown to play structural roles in membranes but also initiate 

signaling pathways. However, they have also been found to be vital constituents of nuclei, not 

only just in nuclear envelope but also within nuclei, the nuclear matrix and also associated with 

the chromatin (Albi et al, 2003 & Hunt, 2006). This pool of endonuclear PPIn make up 6-10% 

of the total PtdIn composition (Postle et al, 2007) and are found in nucleus with their enzymes 

responsible for the interconversions (Barlow et al, 2010; Flume et al, 2012; Schramp et al, 2012; 

Shah et al, 2013; Jacobsen et al, 2019). Until now, several studies have provided evidence about 

the presence of PPIn and metabolizing enzymes: lipases, kinases and phosphatases in several 

sub nuclear compartments. This generates a PPIn pool involved in distinct functions such as 

chromatin remodeling, DNA repair, transcriptional processing and regulating gene expression 

(Castano et al, 2019; Fiume et al, 2019; Jacobsen et al, 2019). Smith and Wells in 1983 showed 

not only the presence of PtdIn in the nucleus but also the lipid kinases which generate 

phosphatidylinositol 4,5-bisphosphate PtdIns(4,5)P2 to be also present there. While the studies 

by Smith and Wells confirmed the presence of PPIn and their metabolizing enzymes in purified 

nuclear envelopes, Van and colleagues further showed their presence within the nucleus as well 

(Van et al, 1997). Washing highly purified rat liver nuclei with Triton X 100 0.04% removed 

the membrane but the mass level of PPIn only decreased by 40%. Moreover under similar 

conditions nuclei labelling with 32P-ATP showed significant presence of PtdOH, PtdIns4P and 

PtdIn(4,5)P2. Figure 2A shows the PPIn species found in different compartments of the nucleus 

and 2B highlights the enzymes which are involved in their metabolism. Further studies showed 

that PtdIns 4-kinase (PI4K) is localized to the outer matrix of the nucleus and PtdIn4P-5-Kinase 

PIP5K to the inner matrix (Payrastre et al, 1992). As stated earlier these PPIn are reported to be 

involved in different nuclear functions, and PtdIn (4,5)P2 has been shown to directly be related 

to chromatin remodeling (Zhao et al, 1998) and  PtdIn(3,4,5)-trisphosphate PtdIn(3,4,5)P3 is 

also involved in mRNA export by interacting with Aly, a RNA-binding adaptor protein required 

for transcription export complex in nuclear speckles (Masuda et al., 2005).  
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Figure 2. Nuclear sub compartments and nuclear polyphosphoinositide signaling. (A) 

Membrane less sub compartments where different PPIn: PtdIn(3,4,5)P3, PtdIns(4,5)P2, 

PtdIns4P are found. (B) Nuclear PPIn metabolism along with respective enzymes involved: 

PI4K, PIP5K, PLCβ1 and other lipid kinases shown. Boxed PPIn represent nuclear/nucleolar 

PPIn while un-boxed are non-nuclear. Figure adapted from Xian et al, 2020. PtdIn(3,4,5)P3: 

Phosphatidylinositol 3,4,5 triphosphate. PI4K: PtdIns 4-kinase, PIP5K: PtdIns 4P-5-Kinase, 

PLCβ1: Phospholipase C beta 1.  
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Nucleolus  

Structure  

When the nucleus is stained with fluorescent DNA dyes such as 4′,6-diamidino-2-phenylindole 

(DAPI), the nucleolus is seen as a dark dense structure, DAPI negative, amongst the more 

brightly stained chromatin which is an indication of the presence of active rDNA throughout 

the structure (Figure 3A). As evident by electron microscopy, the nucleolus in many animal 

cells have been identified as a structure with tripartite architecture. This consists of lightly 

stained regions fibrillar centers (FCs) surrounded by a dense fibrillar component (DFC): the 

remaining which appears to be granular in nature is called Granular component (Shaw & Jordan, 

1995), Figure 3B.  

 

Figure 3. Nucleolar structure and different regions. A) Darkly stained nucleoli (white box) 

against light staining of chromatin (DAPI, blue). B) Shows the cartoon diagram of the nucleolus 

highlighting DFC, GC and FC regions. TS represents the transcription site. A is from this work 

and B adapted from Peter and John, 2012. DFC: Dense fibrillar component, GC: Granular 

component and FC: Fibrillar center.  
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Functions 

Ribosome biogenesis (Figure 4) is the key function of nucleolus. It is an orchestrated process 

occurring in the nucleolus consisting of the transcription of rRNAs, and processing of 

polycistronic 47S pre-rRNA into smaller transcripts (18S, 5.8S and 28S rRNAs). The rRNA 

synthesis is catalyzed by RNA Polymerase 1. Moreover the assembly of ribosome unit 

(association of ribonucleoprotein (RP) and rRNAs as well as export of assembled ribosomes to 

cytoplasm also happen (Bosivert et al, 2007; Henras et al, 2008, Lindstrom et al, 2009; Moss et 

al, 2007; Rodnina & Wintermeyer, 2009; Thomson et al, 2013; Woolfbord & Baserga, 2013). 

Ribosome biogenesis is a well-regulated process important for cell cycle and growth however 

under stress conditions, the cells respond by downregulating it because of its energy expense 

aspect (Grummt et al, 2013). Although ribosome biogenesis is the key function of nucleolus, it 

is now established that the nucleolus also serves many additional roles which have no apparent 

link with ribosome synthesis. Signal recognition particle (SRP) assembly (Politz et al, 2000), 

U2 and U6 spliceosome small RNA modification (Ganot et al, 1999; Yu et al, 2001) are for 

instance non-ribosomal roles that have been clearly reported. Other visiting molecules present 

in the nucleolus which are involved in cellular functions like cell growth control, telomere 

maintenance, protein degradation and some microRNAs (Politz et al, 2009; Reyes- Gutierrez et 

al, 2014) have been studied as well.  More than 700 nucleolar proteins have been evidently 

shown to be un-related to ribosome biogenesis after a proteomic analysis on purified nucleoli 

from HeLa cells by two groups (Anderson et al, 2002 & 2005; Scherl et al, 2002). Pederson and 

Tsai, 2009 later showed that a few of them were closely connected to cell cycle progression and 

cell division.  
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Figure 4. Model of ribosome biogenesis. Transcription of the ribosomal DNA (rDNA) occurs 

in the dense fibrillar component (DFC) region or at the boundary of fibrillar center (FC) and 

DFC. These transcripts are spliced into small rRNAs by small nucleolar ribonucleoprotiens 

(snoRNPs) and the final maturation and assembly occurs in Granular component (GC) where 

5.8S rRNA, 28S rRNA combine with 5S transcript to make the 60S subunit and 18S assembles 

alone into 40S. Figure adapted from Boisvert et al, 2007 
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PPIn signaling 

Until now, PPIn have been reported to be a part of cytoplasm and nuclear compartments, 

however recent studies have also now elucidated the presence of these unique molecules in the 

nucleolus, regulating rRNA synthesis in normal and transformed cells. Table 1 shows the 

summary of some PPIn and involved enzymes.  Previously our group also identified p110β and 

PtdIns (3, 4, 5)P3 in nucleoli of AU565 breast cancer cell line (Karlsson et al, 2016).  

 

Table 1. Summary of nucleolar PPIn and enzymes reported. Table updated from Jacobsen et al, 2019 

and Victoria Arnesen’s master thesis.  

PPIn/PPIn enzymes Identified function in the nucleolus Reference 

 

PtdIn(4,5)P2 

Promotes RNA Pol 1 transcription but not as a 

source for DAG and IP3 

 

Structural role 

(Yildirim et al, 2013) 

 

 

(Sobol et al, 2013 

 

 

PtdIns(3,4,5)P3 

Binds to nucleolar protein nucleophosmin 

(alias B23) 

 

Binds EBP1 

 

(Ahn et al, 2005) 

 

 

(Karlsson et al, 2016) 

PI4K230/IIIα Possibly in complex with DNA and RNA (Kakuk et al, 2006, 

2008) 

PIP5KIα Member of rDNA silencing complex (Chakrabati et al, 

2015) 

p110β Unknown (Karlsson et al, 2016) 

PTEN Contributes to phenotypic changes of 

nucleolus 

(Li et al, 2014) 

SHIP1 Localizes in the nucleolar cavity upon 

proteasome inhibition, unknown function 

(Ehm et al, 2015) 

PtdIn4P Unknown (Kalasova et al, 2016) 

PtdIn3P Unknown (Gillooly et al, 2000) 
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Cancer predisposition linked with ribosome biogenesis 

Nucleolar proteins have been linked with predisposition to cancer which is further associated 

with disrupted ribosome biogenesis and rRNA synthesis. Dyskeratosis congenita syndrome 

(Heiss et al, 1999) in which the nucleolar protein, Dyskerin’s low expression has been linked 

to abnormally low levels of rRNA’s pseudouridylation in some specific tumors (Montanaro et 

al, 2006). Similarly nucleophosmin/B23, has been identified to have both oncogenic and 

suppressor effects. Mutation in B23 is implicated in hematological cancers (Grisendi et al, 2005; 

Naoe et al, 2006). There are also other proto-oncogenes and tumor suppressor proteins which 

affect production of the ribosomes, highlighted in the sections below.  

Oncogenes up-regulate ribosome biogenesis 

Mitogens and growth factors stimulate the PI3K pathway which activates MYC (Zhu et al, 

2008), which is the main modulator of ribosome biogenesis. It enhances the process by 

increasing RNA Pol 1 transcription by recruiting Selective factor 1 (SL1) to the promoter, 

stimulates ribosomal protein synthesis by Pol 1 transcriptional activity and promotes RNA Pol 

III activity by transcription factor IIIB, TFIIIB mediated pathway (White et al, 2005; Gomez et 

al, 2006; Van et al, 2010). Oncogenic transformations due to highly increased production of 

ribosome biosynthesis, therefore, result in changes in nucleolar function and morphology, like 

increased size and number which has been observed in cancer tissues (Donizy et al, 2017). This 

has been highlighted in this thesis.  

Tumor Suppressor genes down-regulate ribosome biogenesis 

Once the cell enters mitosis, the ribosome biogenesis is regulated by the factors controlling the 

cell cycle progression, including the transcription factor retinoblastoma (RB). Active un-

phosphorylated pRB inhibits rRNA transcription by binding to UBF (Cavanaugh et al, 1995; 

Voit et al, 1997; Hannan et al, 2000; Ciarmatori et al, 2001) and Pol III transcription by binding 

to TFIIIB (White et al, 1996; Felton et al, 2003). Hence the progressive phosphorylation of pRB 

during a cell cycle progression also increases rRNA synthesis from G1 to G2 phase. Another 

negative regulator of ribosome biogenesis is p53, which works by inhibiting the factor SL1 

which helps recruit RNA Pol1 to rRNA promoter (Zhai et al, 2000) and Pol III transcription by 

inhibiting TFIIIB (Felton et al, 2003).  This negative regulation is also supported by p14ARF 

which disrupts the recruitment of UBF factor on the transcription process and further increases 

p53 activity. It also inhibits nucleophosmin, a nucleolar protein involved in rRNA processing 

(Ayrault et al, 2006).  
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Ribosome biogenesis is up-regulated in cancers 

Together, the oncogenic and suppressor genes controlling cell proliferation also regulate 

ribosome biogenesis and neoplastic transformation is characterized by either uncontrolled 

activity of oncogenes or inactivation of tumor suppressor genes. Both cases result in the hyper 

activation of MAPK/ERK pathway, increasing rRNA synthesis (Hanhan & Weinberg, 2000) 

TP53 mutations leading to p53 inactivation have been characterized in 50% of tumors in 

humans (Vogelstein et al, 2000; Vousden et al, 2007) and mutated p53 no longer exerts its 

negative control over rRNA transcription. Similarly ARF14 inhibition results in enhancement 

of ribosome biogenesis both through p53 stabilization and directly (Sher, 2001; Low & Sher, 

2003).  Also tumor suppressor PTEN is very frequently mutated in cancers (Yin & Shen, 2008) 

losing its repression on Pol 1 transcriptional activity. 

Nucleolar PPIn signaling landscape in Cancer 

The PI3K pathway is hyperactivated in cancers mostly due to alteration in several gene 

members of the pathway (Engelmann, 2009; Fruman & Rommel, 2014; Thorp et al, 2015). 

Interestingly, the pathway has also been linked with nucleolar activity. Although, the 

localization has not been defined, the class I PI3K catalytic p110β and regulatory p85 subunits 

were found to interact with insulin receptor substrate (IRS-1) and UBF, upon stimulation of 

insulin like growth factor (IGF), enhancing rRNA transcription (Drakas et al, 2004). Nuclear 

upregulation of PI3K pathway involving p110β has also been linked with increase rDNA 

transcription in endometrial cancer cells (Fatemeh et al, 2019*). Moreover PI3K-Akt/mTOR 

pathway also interacts with c-MYC, which is dysregulated in 15-20% of human malignancies 

either by enhanced translocation or expression. (Wendel et al, 2004; Udin et al, 2006). In 

addition part of the role in malignancy development is also attributed to its ability to promote 

ribosome biogenesis (Rugerro & Pandolfi, 2003; Poortinga et al, 2004; Grandori et al, 2005; 

Barna et al, 2008; Dai et al, 2008). The level of PtdIn(3,4,5)P3 is also modulated by PTEN, 

another nucleolar protein and somatic mutations targeting PTEN (Ali et al, 1999) causing 

increased signaling in the pathway have been identified (Catalogue of Somatic mutations in 

Cancer, see for more information). Loss of function of this tumor suppressor is implicated in 

several sporadic cancers; endometrial, breast, ovarian, gliomas, melanomas, lung, renal and 

prostrate (Maehama, 2007). Other target proteins which might be involved in this pathway are 

5-Phospahatases 1 such as SH-domain- including 5-Phosphatase 1 (SHIP1) encoded by 

INPP5D and SHIP2 by INPPL1. There are several lines of studies which have shown the 

oncogenic implications of SHIP1. Inpp5d-/- mouse developed a myeloproliferative disease, 

similar to Chronic myelogenous leukemia (CML) (Helgason et al, 1998). Similarly activation 

of SHIP1 by some inhibitory molecules has shown to reduce the levels of PtdIn(3,4,5)P3 in 
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haematapoetic and myeloma cells (Ong et al, 2007; Kennah et al, 2009). Moreover PI4KIIIα 

among the four types of PI4K which is the kinase enzyme generating PtdIn4P and also linked 

with Akt/PI3K pathways have been identified in various cancers (Waugh, 2012). Although 

PtdIn4P nucleolar function has not yet been identified (see table 1), its metabolizing enzyme 

PI4KIIIα is associated with more invasive phenotypes in pancreatic cancers (Ishikawa et al, 

2003) as well as linked with poor prognosis in hepatocellular carcinoma (Ilboudo et al, 2014). 

Recently, a studied reported that the upregulation of PI4KIIIα enhanced the invasion and 

metastasis by prostate cancer cells (Sbrissa et al, 2015). A recent study has shown the 

relationship between upregulation of PIP5K1α (Table 1) circular RNA in non-small cell lung 

cancer (Zhang et al, 2018) and another report has shown the relationship between upregulation 

of circular PIP5K1α RNA and colon cancer development (Zhang et al, 2019). PtdIn(4,5)P2, the 

product of PIP5KI pathway has also been associated with invadopodia development in human 

breast cancer cells and was found to regulate several components localized at invadopodia such 

as N- WASP(Neural Wiskott Aldrich syndrome protein), coflin and dynamin ( Takenava & Itoh 

2001; Ling et al, 2006). Nucleolar functions of most of the PPIn and their metabolizing enzymes 

still need to be identified (refer to table 1), however their roles in tumorigenesis have been 

reported extensively, evident by the studies mentioned above.   
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ErbB3 binding protein 1 

Background and Structural insights. 

ErbB3 binding protein 1 (EBP1), also known as Proliferation-associated 2G4 protein (PA2G4) 

was originally identified as an ErbB3 binding protein (Yoo et al., 2000a). PA2G4 gene is located 

on chromosome 10D3 (chromosome12q13.2), and composed of ten exons. ErbB3 belongs to 

the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, and is 

activated by the ligand heregulin (HRG). Due to its lack of tyrosine kinase activity, ErbB3 

heterodimerizes with other ErbB receptors, preferentially ErbB2 to transduce its downstream 

signaling. ErbB3 is frequently overexpressed in breast cancer and co-expression of ErbB2/3 is 

a poor prognostic indicator (Hamburger, 2008). By using the yeast two-hybrid system, Yoo et 

al, 2000 have identified EBP1 interacting with the first 15 amino acids of juxtamembrane 

domain of unphosphorylated ErbB3 receptor. The association of EBP1 with ErbB3 appears to 

be regulated by PKC activity, although the details are not clear (Lessor and Hamburger, 2001). 

Treatment of the breast cancer AU565 cells with HRG but not EGF, however, resulted in 

dissociation of EBP1 from ErbB3, and subsequently, translocation from the cytoplasm into the 

nucleus (Yoo et al., 2000a). EBP1 is mostly involved in cell growth and differentiation by acting 

as a transcriptional and translational regulator in addition to participating in ribosome assembly 

(Squatrito et al., 2004).  

EBP1 is highly conserved in eukaryotes and is ubiquitously expressed in a wide variety of 

tissues and organisms (Yamada et al., 1994, Xia et al., 2001b, Horvath et al., 2006), including 

hematopoietic cells, which do not express the ErbB receptors (Pinkas-Kramarski et al 1997; 

Xia et al., 2001b). Previously, EBP1 was discovered as a murine cDNA encoding a 38 kDa 

protein named p38-2G4 (Radomski & Jost, 1995), and later, the human homologue was 

identified as PA2G4 gene product (Lamartine et al., 1997). 

Its crystal structure was first reported in 2007 by two separate groups which provided the same 

structures for the murine and human proteins (Kowalinski et al., 2007; Monie et al., 2007). The 

structure revealed a pita-bread fold forming a hydrophobic cavity in the center, and an insert 

domain of unknown function (Figure 5). This pita-bread fold is conserved in methionine 

aminopeptidase (MAP), and human MAP2 was identified as the closest homologue of EBP1. 

Although EBP1 shares the structural similarity of the binding pocket with MAP2, it showed 

that EBP1 lacks the enzymatic activity. Compared to MAP2, EBP1 has a C-terminal elongation 

of 57 residues, part of which is ordered (aa 340-362), including a short α-helix (α10) 

(Kowalinski et al., 2007). The last part (aa 364-373) is unstructured, and was not unresolved in 

these 3D-structure. But it is now included in the cryo_EM structure. 
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Figure 5. Structure of EBP1. A) EBP1 is shown in a ribbon representation with the beta barrel 

forming the hydrophobic cavity in the center (indicated by an arrow). The pita-bread domain is 

colored in blue, the insert domain in orange, the β-sheet connecting these domains in green, the 

EBP1 specific helix at the entrance of the cavity in turquoise and the C-terminal elongation in 

red. B) Topology diagram of EBP1. For clarity, the orientation is chosen 90° rotated compared 

to (A). β-Strands are represented by arrows and triangles, α-helices by cylinders and circles, 

and 310 helices by hexagons. Figure from Kowalinski et al, 2007.  
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Nucleolar localization, RNA-binding properties of EBP1 and its growth regulation.  

After EBP1 was identified in the nucleolus, its RNA-binding property was first discovered in 

2004 by Squatrito et al., using mass spectrometry. Analysis of the data showed that EBP1 was 

part of the pre-ribosomal ribonucleoprotein (RNP) complexes. Moreover, EBP1 associated with 

some rRNA precursors and the mature rRNAs, such as 28S, 18S and 5.8S through its σ70-like 

motif, a eukaryotic RNA-binding domain. In addition, EBP1 interacted also with 5S and other 

RNA species, thus suggesting its role in ribosome biosynthesis, particularly in maturation of 

the 60S subunit. This study showed also that EBP1 mutant lacking this motif did not have any 

growth-suppressing activity, in contrast to WT (Squatrito et al., 2004). By the same group, a 

dsRNA-binding domain (dsRBD) was also identified in EBP1 (aa 91-156), and it showed that 

this domain can drive EBP1 to the nucleolus as well as σ70-like motif. Both motifs were shown 

to be required for its nucleolar localization and the formation with the RNP complexes. Thus, 

deletion of either of them led to accumulation in the cytoplasm and failure of RNP complexes 

constitution (Squatrito et al., 2006). 

Squatrito et al, 2004 also demonstrated that sequences in both the C and N termini were 

responsible for the nucleolar localization. Mutants with K20 and K22 and R364 and K365 

substituted to Alanines failed to localize properly in the nucleolar compartment. The K20A-

K22A mutant, but not the R364A-K365A lost the ability to suppress cell growth compared to 

Wild type protein (Squatrito et al, 2004). Later on our group also identified that amino acids 

K369-K372 were also involved in the nucleoar signal at the C-terminus (Karlsson et al, 2016) 

which has also been validated in this thesis. These experiments provided the evidence of the 

co-relation between EBP1’s localization to nucleolus and the binding capacity to different RNA 

forming RNP complexes leading to their maturation.  

EBP1 as a translational regulator.  

In the cytoplasm, EBP1 was shown to regulate translation, primarily by binding to mature RNA 

40S. Previously, Pilipenko et al, 2000 demonstrated EBP1’s role in initiating the 48S complex 

formation on the Foot and mouth disease Virus Internal ribosomal entry site (FMDV IRES) by 

biophysical toe-printing analysis. This was later on confirmed in a study conducted by Monie 

et al, 2007 in which by RNAi mediated reduction of EBP1, 55% of the IRES activity was shown 

to reduce whereas Encephalomyocarditis virus (EMCV) IRES and cap dependent translation 

was unaffected. Both studies reveal the potential role of EBP1 at translational level. In 

Castration resistant prostate cancer cells (CRPC), EBP1 was found to inhibit Androgen receptor 

(AR) translation (Zhou et al, 2010), consistent with the previous findings that it associates with 

40S, 60S and 80S ribosomes and is a part of ribonucleoprotein complex in HeLa cells (Squatrito 
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et al, 2004; Squatrito et al, 2006. Most recently, a cryo-EM structural study revealed the 

interaction of EBP1 with mature 80S non-translating ribosome tunnel exit site by recruiting 

rRNA expansion segment ES27L (Figure 6) to it via specific interactions with rRNA consensus 

sequences (Wild et al, 2020).   

 

Figure 6. Cryo EM EBP1-ribosome complex composite. A. larger subunit (gray), smaller 

subunit (yellow), EBP1 (blue) and ES27L (green) are depicted. B shows ribosome-EBP1 

complex, rRNA (green), ribosomal proteins (yellow orange and brown) and EBP1 (blue). C 

cryo-EM structure of EBP1-ribosome complex, EBP1 (blue) modified showing rRNA 

expansion segments (green) and the C-terminus binding motif 369KKKK372 (purple). Figure 

adapted from Wild et al, 2020 and modified in PyMol. PDB ID: 6SXO. Modified part shown 

in black box 

  



24 
 

 

Role of EBP1 in tumorigenesis.  

EBP1 has been reported to be closely related in the development of several cancers. Altered 

expression of EBP1 has been observed, and associated with higher histological grade as well as 

poor prognosis in some cancers. However, EBP1 can function as an oncogene or tumor 

suppressor, depending on the tissue and cancer type.  

 

EBP1 as a tumor suppressor 

Upon HRG stimulation, EBP1 was shown to be dissociated from ErbB3, followed by its 

translocation into the nucleus, which resulted in increased cell arrest in G2/M (Lessor et al., 

2000). Transfection of the PA2G4 cDNA into AU565 cells localized in the nucleus, and 

appeared to mimic some of the growth suppressing and differentiating effects of HRG, in 

absence of HRG. In addition to reduced cell growth and increased cell cycle arrest in G2/M, 

cellular differentiation was also induced, with appearance of increased lipid droplets, and 

production of milk protein casein. Overexpression of the PA2G4 gene in androgen-dependent 

LNCaP prostate cancer cells also resulted in inhibition of cell growth (Zhang et al., 2002). This 

in cellulo effect of EBP1 was also observed in severe combined immunodeficiency (SCID) 

mice injected with LNCaP cells overexpressing EBP1 (Zhang et al., 2005b). The tumor growth 

in those prostate cancer xenografts developed slower in EBP1 transfected cells. The inhibitory 

properties of ectopic EBP1 was shown to be beneficial in salivary adenoid carcinoma as well 

(Yu et al., 2007). In clinical studies of human bladder cancer and hepatocellular carcinoma, 

EBP1 expression was low, and the reduction of EBP1 was associated with enhanced cell growth 

and tumor progression (He et al., 2013, Hu et al., 2014). 

Further studies have shown that EBP1 decreases cell proliferation in prostate and breast cancer 

cells by directly binding to the androgen receptor (AR) and tumor suppressor retinoblastoma 

(Rb) and inhibiting transcription of AR and E2F1 regulated genes, such as prostate specific 

antigen (PSA) and genes involved in cell cycle progression such as Cyclin E, cyclin D1 and c‐

myc (Xia et al., 2001a; Zhang et al., 2002,). Although interaction with Rb was required to bind 

E2F1 promotor, EBP1 can repress the E2F1 regulated genes in Rb negative cells, and the 

mechanism is thus unclear (Zhang et al., 2003). In both cases, addition of HRG enhanced EBP1 

binding to E2F1 and AR, and the repression of their transcriptional activity (Zhang & 

Hamburger, 2004; Zhang & Hamburger, 2005). The same group has also shown that EBP1 

recruits histone deacetylase 2 (HDAC2) and Sin3A (a corepressor of Sin3) to the AR and E2F 

promoters to repress the transcription of AR and E2F-mediated genes (Zhang et al., 2003, Zhang 
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et al., 2005a). Phosphorylation at S363 in EBP1 was required for its protein-protein interaction 

with HDAC and Sin3A, whereas the S363A mutant could still bind to E2F1 but without 

repressing transcription (Akinmade et al., 2007a). EBP1 acts also as a suppressor by negatively 

regulating Annexin A2, which is often upregulated in breast cancer cells and known to enhance 

the proliferation and invasion of breast cancer cells (Zhang et al., 2015). 

EBP1 with oncogenic functions 

On the other hand, there are emerging evidences where EBP1 promotes cell proliferation and 

cancer progression. Several studies on the expression of EBP1 in tumor tissues and its clinical 

pathological relevance show often an association of overexpressed EBP1 with tumorigenesis. 

Patients with breast cancer expressing high levels of EBP1 have poor clinical outcomes, 

suggesting it may promote aggressive behavior (Ou et al., 2006). EBP1 was overexpressed in 

colorectal cancers compared to normal areas adjacent to the cancer (Santegoets et al., 2007). 

Characterization of EBP1 expression in prostate cancer patients showed also high levels of 

EBP1 to correlate with the occurrence of prostate cancer (Gannon et al., 2008). EBP1 also 

promotes cell growth and invasion in human glioblastoma (GBM), and high levels of EBP1 

was correlated with poor prognosis in GBM patients (Kim et al., 2010; Kim et al., 2012, Thus 

overexpression of EBP1 in these cancers associates with tumorigenesis. 

It is reported that in NGF-treated PC12 cells, EBP1 acted in an anti-apoptotic manner, thus 

increasing cell survival (Ahn et al., 2006). EBP1 also promotes cell proliferation and invasion 

in human glioma cells through downregulation of the tumor suppressor, p53 (Kim et al., 2010). 

In unstressed cells, p53 is maintained at low levels by HDM2, also known as MDM2, an 

ubiquitin ligase that mediates its degradation (Li et al., 2003). EBP1 binds to HDM2, enhancing 

HDM2-p53 association and thereby, promoting p53 polyubiquitination and degradation (Kim 

et al., 2010). Another mechanism suggested by the same group is that EBP1 stabilizes Akt-

mediated HDM2 phosphorylation, thus preventing HDM2 self-ubiquitination, and confining 

HDM2 in the nucleus to antagonize p53 (Kim et al., 2012). However, a recent study has shown 

that phosphorylation of serine 34 by CDK2 led to an accelerated tumor cell growth, thus 

suggesting that this phosphorylation is critical for tumorigenic function of EBP1 (Ko et al., 

2014). 

In addition to its role in promoting cell growth and inhibition of apoptosis, EBP1 regulates other 

proteins that are responsible for malignant transformation in cancer cells. Recently, a study 

showed that EBP1 upregulates podoplanin expression and promotes oral cancer progression. 

Podoplanin is normally expressed in lymphatic endothelial and fibroblastic reticular cells, but 

is highly expressed in various human cancers (Wicki & Christofori, 2007) and promotes 

tumorigenesis in oral squamous cell carcinoma (OSCC) (Yuan et al., 2006). An investigation 
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by Mei et al., on the regulation of podoplanin expression has shown that EBP1 indirectly binds 

to the podoplanin promoter, thus resulting in a dramatic increase of podoplanin (Mei et al., 

2014). OSCC cells express podoplanin mRNA despite the fact that no protein can be detected 

until the cells reach confluency, and when EBP1 is translocated into the nucleus and acts as 

transcriptional activator, hence contributing to oral tumorigenesis. 

 

Isoforms and their antagonizing roles in cancer development.   

PA2G4 encodes two alternatively spliced EBP1 isoforms p42 and p48 (p48 used in this study) 

which are transcribed into two mRNA transcripts, however interestingly speaking the gene 

PA2G4 has three in frame ATG codons (Liu et al, 2006). Translation for p48 begins at the first 

ATG codon and the protein tends to migrate at an apparent molecular weight of 48 kDa on SDS 

polyacrylamide gels. p48 is 54 amino acids longer at the N terminus than the p42 isoform which 

is translated at the third ATG codon removing a 29 nucleotide exon and hence the elimination 

of second ATG codon. p42 migrates at the molecular weight of 42 kDa (Liu  et al, 2006). In rat 

PC12 cells, they localize differently and regulate cell proliferation, survival and differentiation 

in opposite way. p42 localizes predominantly in the cytoplasm and suppresses cell growth and 

induces differentiation, while p48 localizes in both the cytoplasm and the nucleolus, and 

enhances cell growth in addition to inhibiting apoptosis (Liu et al., 2006). Figures 7 depicts the 

schematic models of p42 mediated oncogenic suppressor activity and p48 driven tumorigenesis 

respectively. The fact that p42 is missing the 54 amino acids may account for the unstable nature 

of the protein and the different roles of the isoforms (Monie et al, 2007).  
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Figure 7. Opposing roles of two isoforms in human cancer cells. A shows p42 mediated 

tumor suppressing activity. When p42 levels are low, p85 cannot interact with heat shock 

protein 70 (HSP70/CHIP) mediated ubiquitation and degradation which results in higher PI3K 

activity. However when p42 is up-regulated, it associates p85 with HSP70/CHIP complex 

inhibiting the PI3K pathway and suppressing tumor. B shows the opposing role of p48 which 

is localized in cytoplasm and nucleus. In the nucleus p48 linked with Akt inhibits Carbamoyl-

phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) suppressing 

DNA degradation and increasing cell survival. P48 also enhances tumorigenesis by an 

alternative mechanism i.e by activating Akt which increases the level of Human double minute 

2 homolog (HDM2) and this in turn causes degradation of p53 which is a tumor suppressor. In 

addition p48 is also phosphorylated at Ser 34 by Cyclin dependent kinase 2 (CDK2/Cyclin A) 

which enhances the oncogenic properties of p48 Ebp1. Figures adapted from Ko et al, 2016. 

 

Aims of the study 

Previously, Lewis et al identified EBP1 as one of the potential nuclear PPIn binding proteins 

through PtdIn(4,5)P2 interactomics coupled with MS, (Lewis et al, 2011). Moreover two lysine 

rich motifs, one at the C terminus (364RKTQKKKKKK373) and another at the N-terminus 

(65KKEKEMKK72) were shown to be involved in the interaction of EBP1 with PPIn (Karlsson 

et al, 2016). In addition, the C-terminal motif was shown to be necessary for the nucleolar 

localization of the protein.  In Figure 8, it is shown that the N terminal KR motif is located right 

after the RBD α70 like region and the C-term motif consists of R364-K365 which was previously 

shown to contribute to nucleolar localization.  
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Figure 8. Characterized motifs and their roles in EBP1. K/R motifs at N- and C-terminal ends 

(orange) are responsible for binding to PPIns (Karlsson et al, 2016). EBP1 interacts with RNA 

via its RNA binding domain (RBD) (46-64) and the first 48 amino acids (green) are critical for 

nuclear localization whereas K20-K22 (blue) and R364 and K365 (blue) are responsible for 

nucleolar localization (Squatrito et al, 2004 and 2006). EBP1 binds to other proteins Rb, HDAC2, 

PKR and Nucleolin by C-term region. Figure by Lewis AE.  

 

 

 

 

 

 

 

 

 

The aim of this project was to determine how PPIn interaction regulate the function of EBP1 

by influencing its subcellular localization and to elucidate its effect on ribosomal RNA 

synthesis, which has effect on cell proliferation and subsequent transformation. Moreover we 

also investigated into an EBP1 tumor mutant’s effect on the nucleolar localization and rRNA 

synthesis. Lastly, the CRISPR\CAS mediated editing of PA2G4 aimed at generating a Knocked 

out cell line in order to better understand the physiological role of the protein.  
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Materials and Methods 

Materials and instruments 

Table 2. Chemicals  

Name Abbreviation Supplier 

2-amino-2hydroxymethyl-propane-2,3-
diol 

Tris Merck 

2,2',2'',2'''-(Ethane-1,2-
diyldinitrilo)tetraacetic acid 

EDTA Merck 

4-(1,1,3,3-Tetramethylbutyl)phenyl-
polyethylene glycol 

Triton-X100 Sigma 

Acrylamide/Bisacrylamide - Sigma 

Ammonium persulfate  
APS 

Bio-Rad 

Ampicillin amp 
SSigma 

Agarose - Bio-Rad 

Β-glycerophosphate - Sigma 

Bovine serum albumin BSA  Sigma 

Bromophenol blue BPB Lonza 

Calcium chloride CaCl2 Sigma 

Deoxycholic acid -  Sigma 

Dimethyl sulfoxide DMSO Sigma 

DL-Dithiothreitol DTT Merck 

Essentially fatty acid free bovine serum 
albumin 

- Sigma 

Ethanol EtOH Merck 

Fetal bovine serum FBS Sigma 

Hydrogen chloride HCl Sigma 

Isopropanol - Sigma 

LB Agar - Sigma 
Magnesium chloride MgCl2 Kemetyl 

Methanol MeOH  Sigma 

N,N,N',N'-tetramethyl-ethane-1,2-
diamine 

Temed Sigma 

Sodium chloride NaCl Merck 

Sodium hydroxide NaOH Merck 

Non-fat milk powder - Sainsbury 

PFA PFA  

Polyoxyethylenesorbitan monolaurat Tween 20 Sigma 

Potassium chloride KCl Merck 

Sodium Chloride NaCl Merck 

Tryptone - Bacto™ 
Yeast extract - Bacto™ 
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Table 3.  Commercial kits 

Plasmid Mini Kit I Small scale plasmid purification Omega 

Plasmid Maxi Kit (25) Big scale plasmid purification QIAGEN 

Big Dye Terminator version 3.1 Sequencing  Biosystems 

SuperSignal®West-Pico 
Chemiluminescent 

Immunoblotting Thermofisher scientific 

SuperSignal®West-femto 
Maximum 

Immunoblotting  Thermofisher Scientific 

Pierce® BCA Reagent A Protein assay Thermofisher Scientific 

Pierce® BCA Reagent B Protein assay Thermofisher Scientific 

Click ItTM RNA Alexa flour 594 
imaging kit 

RNA labelling Thermofisher Scientific.  

TOPO® TA cloning kit Sequencing Invitrogen 

 

  

Table 4. Commercial reagents, buffers and solutions 

Name Purpose Supplier 

0,5 M Tris-HCl pH 6,8 SDS PAGE Biorad 

1,5 M Tris-HCl pH 8,8 SDS PAGE Biorad 

ProLong® Gold antifade reagent with 
DAPI 

Mounting solution Molecular Probes 

SDS Solution 20 % (w/v) SDS PAGE Biorad 

Sequencing buffer Sequencing UiB Sequencing lab 

RestoreTM Western Blot Stripping buffer Strip WB Thermofisher 

Lipofectamine 3000 Transfection Thermofisher 

Goat serum Blocking Invitrogen 

Cas/Grna proteins  CRIPSR/CAS  Sigma Aldrich 

 

Table 5. Buffer recipes.  

  Name       Recipe 

  SDS Loading dye 11mM Tris-HCl pH 6.8, 1% v/v SDS, 4% v/v glycerol, 
0.05% M DTT, 0.04% w/v BPB 

  Transfer buffer 192mM Glycine, 25mM Tris-HCl pH 8.3, 10% v/v 
Methanol 

  1x TBST 50mM Tris pH 7.5, 150mM NaCl, 0.1% v/v Tween 
20 

  RIPA 50 mM Tris HCl pH 8, 1.5 mM KCl, 2.5 mM MgCl2, 5 
mM NaF, 2 mM Na3VO4 , 1:100 v/v mPIC* 

*mammalian protease inhibitor cocktail 
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Table 6. List of in house plasmids used. F= Full length, fs= frame-shift. M=mutant, W= wild type 

Plasmid name Description Abbreviated name 

pEGFP-C2-EBP1 WT Full length EBP1 a1-394 pEGFP-C2-FW 

pEGFP-C2-EBP1-K369A-K370A-
K371A-K372A 

C-terminal motif mutant pEGFP-C2-FM3 

pEGFP-C2-EBP1-K65A-K66A-K68A N-terminal motif mutant pEGFP-C2-M57 

pEGFP-C2-EBP1-K65A-K66A-
K68A-K369A-K370A-K371A-
K372A 

N and C terminal mutant 
 

pEGFP-C2-FM357 

pEGFP-C2-EBP1-K372Rfs 
c1108delA 

K372Rfs tumour mutant  pEGFP-C2-F-K372Rfs 
c1108delA 

 

Table 7. Primers used PCR amplification of CRIPSR clones 

            Primer          Sequence 

     Forward     5’ TTGGAAACCTTTTGGGATACTG 3’ 

     Reverse    5’ CCTGAAAACATGGAGTAGAGGG 3’ 

 

Table 8. Cell lines 

Name                                            Type Source 

AU565                                    Breast cancer cells Dr.  Elisabet Ognedal Berge, Klinisk 

institutt 2, UiB 

 

HEK293T                            Human embryonic kidney cells 

  

                                 

 

Research group  

 

 

   

Table 9. Culture reagents 

Name Abbreviation Source 

Dulbecco’s modified eagles 

medium 
DMEM Sigma Aldrich 

Roswell Park Memorial Institute 

medium, 

RPMI Sigma Aldrich 

Fetal bovine serum FBS Sigma Aldrich 

0.25% Trypsin-EDTA solution Trypsin Sigma Aldrich 

100 x Penicillin-Streptomycin PS Sigma Aldrich 

Dimethyl sulfoxide DMSO Sigma Aldrich 

Phosphate buffer saline PBS  - 
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Table 10. Primary and secondary antibodies 

Antibody/10  

And 20 

 Type Dilution LB/WB Supplier             Catalog # 

EBP1 Mouse monoclonal 1:1000 Santacruz Sc-393114 

β-actin Mouse 1:2000 Santacruz Sc-69879 

Lamin A/C Mouse  1:10.000 Santacruz Sc-376248 

20  Anti-mouse Goat 
IgG HRP  

1:10.000 Invitrogen                   G21040 

10: Primary 20: Secondary 

 

 

Table 11. Instruments 

Name Purpose Manufacturer 

Allegra® X-15R Centrifuge Centrifugation        Beckman Coulter 

Alpha™ unit block for DNA Engine 

Systems    

     PCR                                                               Biorad 

Avanti® J-26 XP Centrifugation Beckman Coulter 

ChemiDoc™ XRS+ Western and lipid blot imaging Bio-Rad 

Fluorescence microscope DMI 

6000 B 

Immunostaining Leica 

GelDoc™ EZ imager Gel imaging Bio-Rad 

NanoDrop ND-1000™ DNA quantification Saveen-Werner 

Spectrophotometer w/Take 3 

plate 

Protein assay BioTek 

BD Facs Aria SORP Single cell sorting         Beckton Dickinson 

 

 

Table 12. Softwares and programs 

Name     Purpose     Manufacturer/developer 

Imagelab   Western blot and gel  imaging Biorad 

Leica X    Cell imaging Leica Microsystems 

Fiji Image J   Cell imaging and processing National institute of Health 

Cell Profiler   Quantification McQuin et al, 2018 
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Methods 

Cell culturing.  

All cell culturing procedures were carried out under sterile conditions in a Laminar flow cell 

culture bench with a High efficiency particulate air filter (HEPA). AU565 which is a breast 

cancer cell line were grown following the general cell culturing guidelines using RPMI-250 

supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin (PS) and 

the growth was monitored on a frequent basis by light microscope. HEK293T cells were 

similarly cultured using complete Dulbecco’s Modified Eagles Medium (DMEM) with low 

glucose plus 10% FBS and 1% PS and grown under standard cell culturing conditions.  

Cell passaging  

When the cells reached 70-80% confluency, they were split.  For this, the medium was 

aspirated, cells were washed with 1x Phosphate Buffer Saline (PBS), pre-warmed to 37℃, and 

0.25% Trypsin-EDTA was added. The cells were incubated at 37 ℃ with trypsin until they 

were detached.  Cell detachment was observed under the microscope. As AU565 were hard to 

detach, the plate was shaken a bit or the dish sides were hit with a mild force. When the cells 

were observed to be flowing freely, trypsin was inactivated by adding fresh RPMI 

(supplemented with 10% FBS and 1% PS). The medium was pipetted up and down multiple 

times and transferred to a new plate. AU565 were split in 1:2 or 1:3 and HEK293T 1:3 or 1:4. 

Similarly HEK293T cells were trypsinised and split but they detached comparatively easily. 

Plasmid transfection   

When AU565 cells reached 70-80% confluency, they were split in a 6-well plate containing a 

coverslip. Before carrying out transfection, the medium was replaced with fresh RPMI 

(supplemented with 10% FBS). 2 µg of each plasmid construct was added to 250 µL of pre-

warmed OPTI-MEM. The transfection reagent LipofectamineR 3000 (6 µL) was mixed 

separately with the same volume of OPTI-MEM. Then the diluted plasmids were slowly added 

to the diluted Lipofectamine, mixed slowly and incubated for complex formation at RT for 20 

min. After the prescribed period, the mixture was added drop by drop to the cells and incubated 

at 37℃ for 24 h. After 24 h, the medium was changed to RPMI (supplemented with FBS and 

PS) and incubated at 37℃ for another 24 h. 
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RNA EU labelling   

ClickIT RNA imaging assay is used to detect global RNA synthesis temporally and spatially in 

cells and tissues1. Utilizing an alkyne-modified nucleoside, 5-ethyluridine (EU) and click 

chemistry, newly synthesized RNA can be detected. Detection uses the ‘click’ reaction between 

the fluorescent dye (azide modified dye or hapten) and alkyne base modified RNA (Figure 9).  

At 48 h post-transfection, 2 ml from the initial 3 ml medium was aspirated leaving 1 ml on cells. 

1 mM EU in pre-warmed medium was added to the cells and incubated at 370C for 15 min. 

After washing in PBS, the cover slips were transferred to a separate 6 well plate and placed in 

PBS. The remaining cells, attached to the plate were collected and lysed (see whole cell 

extraction) for use in Western immunoblotting. Cells on cover-slips were fixed using pre-

warmed 3.7% Paraformaldehyde in PBS for 10 min and washed with PBS thrice. The wash 

buffer was removed and cells were permeabilised with 0.5% Triton X -100/PBS at RT for 15 

min. After washing once in PBS, 500 µL of the Clickit cocktail: 1x Clickit reaction RNA buffer, 

100  mM Copper (II) Sulfate, 1x Clickit reaction buffer additive using the Alexa Fluor 594 azide 

was added per slip and incubated in the dark for 30 min. Afterwards, the cocktail was removed 

and cells washed briefly with 1x reaction rinse buffer. The cells were mounted with ProLong® 

Glass antifade mountant with NucBlue on glass slides and stored at 4℃ and imaging was done 

the next day or the day after.  

 

Figure 9. Click chemistry between RNA and fluorescent azide dye. 5-Ethyl-Uridine 

Incorporates into RNA first followed by reaction with the fluorescent dye. The fluorescence 

was later detected with a Leica microscope. Figure adapted from Thermofisher Scientific 

product protocol. 
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Imaging, Acquisition, Quantification  

The glass slides were imaged using a Leica microsystems fluorescence microscope DMI 6000 

equipped with three filters: blue band pass for the excitation of DAPI (4′,6-Diamidino-2-

phenylindole dihydrochloride) (DNA), red band pass for Alexa594 and green band pass for 

GFP.  The acquisition settings for EU fluorescence intensity was kept constant for all the 

constructs. The images were processed using Cell Profiler (for quantifying the EU fluorescence 

intensity in the nucleoli, and Leica X imaging tool (for quantifying the transfection and EU 

labelling. 

Inhibition of RNA expression  

The RNA expression was inhibited by using 1 µM RNA Pol 1 inhibitor BMH21 for 2 h 45 min 

followed by 15 min of EU labelling.  

Whole cell extract preparation 

To detect the overall expression of different proteins in different cell lines, the cells were lysed 

and the whole cells extracts were subjected to western blotting. Cells at 70-90 % confluency 

were washed twice with cold PBS, and lysed with 150 µl of cold RIPA buffer: 50 mM Tris HCl 

pH 8, 1.5 mM KCl, 2.5 mM MgCl2, 5 mM NaF, 2 mM Na3VO4 and 1:100 v/v mPIC 

(mammalian protease inhibitor cocktail from Sigma). Cell debris and the DNA were pelleted 

by centrifuging the lysate at 13,000 x g, 4 °C for 5 min and the supernatant was collected as 

whole cell extract (WCE) and stored at – 80 °C for further analysis. For CRISPR/CAS9 

experiment (following later), the extracts were also sonicated before centrifugation step: 3 x 

sonication for 5 sec with 1 min rest between each.  

Bicinchoninic acid protein assay 

The protein concentration in the cell lysates obtained was determined using Thermo 

Scientific™ Pierce™ BCA™ (Bicinchoninic acid) Protein Assay kit. It uses the peptide bond’s 

ability to reduce Cu2+ to Cu+, and the reduced Cu+ will be proportional to the amount of protein 

present in the solution. BCA in the reagent chelates with Cu+ and forms a purple-colored 

product which is measureable by a standard spectrometer at 562 nm.  For this purpose, the cell 

lysates were run in duplicates on a 96 well plate along with the blank buffer (RIPA) and serial 

dilutions: 0 µg/µl, 0.625 µg/µl, 0.725 µg/µl, 1.25 µg/µl, 2.5 µg/µl, 5.0 µg/µl and 7.5 µg/µl 

made from the stock of 10 mg/ml Bovine Serum Albumin (BSA) in RIPA buffer. 200 µl of 

Pierce™ BCA™ Protein Assay reagent mix was added to each well containing 2 µl of the 

lysates in duplicate as well as BSA standard dilutions and the blank and incubated at 37℃ for 

10 min. Absorbance measurements were performed at 562 nm on the Epoch microplate 

spectrophotometer and concentrations calculated using Excel. A linear graph was constructed 
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with x-axis representing the standard BSA concentrations vs absorbance values on y-axis. The 

equation of the graph was used to determine the concentrations of protein.  

Sodium dodecyl Sulfate Polyacrylamide Gel Electrophoresis.   

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is a routine method 

for separating proteins based on the molecular weights. 30 µg of cell extracts were resolved on 

the SDS gel. The samples were mixed with 5x loading dye: 13 mM Tris-HCl pH 6.8, 1% w/v 

SDS, 4% v/v glycerol, 50 mM Dithiothreitol (DTT), 0.04% w/v Bromophenol Blue (BPB)and 

boiled for 5 min. The gel was run at 120 V for about 1 h 30 min until the dye reached the bottom 

end of the gel.   

Western Immunoblotting 

Western blotting is a routine molecular biology method that allows the detection of specific 

proteins from extracts made from cells or tissues, and can be used to semi-quantitatively 

compare protein levels between extracts. Proteins are separated by size using SDS-PAGE and 

transferred to a membrane where they are probed with antibodies specific to the target proteins. 

 Proteins from the gel were transferred onto nitrocellulose membrane with 0.45 m pores via 

blotting method. First, a 3 mm thick Whatman Filter paper and matching the size of the gel was 

pre-soaked in the transfer buffer: 192 mM Glycine, 25 mM Tris-HCl pH 8.3, 10% v/v Methanol. 

Following the wet western blotting protocol, the transfer was conducted overnight at 4℃. Once 

the transfer was completed, the membrane was blocked with 10 ml of 5 % (w/v) powdered skim 

milk in TBST (5 mM Tris pH 7.5, 15 mM NaCl, 0.01% v/v Tween 20) for 1h at RT. After 

blocking, the membrane was rinsed with TBST and probed with primary antibody (Table 10) 

diluted in TBST for 1 h at RT or o/n at 4 °C followed by 3 x 10 min washes in TBST. To detect 

the protein bound to the primary antibody, the membrane was incubated with Horseradish 

peroxidase (HRP)-conjugated secondary antibody diluted 1:10, 000 in TBST for 1 h at RT 

followed by 3 x 10 min washes in TBST. All incubations and washes were done on the shaker. 

The protein-antibody complexes were detected using SuperSignal® West Pico 

Chemiluminescent Substrate (ECL-PLEX) from Thermo Scientific per membrane. The 

membrane was incubated for 5 min with ECL-PLEX and detected with Bio-Rad’s Molecular 

Imager® ChemiDoc™ XRS+ using ImageLab™ Software Version 3.0.  

  



37 
 

Clustered regularly interspaced short palindromic sequences/Cas9 

(CRISPR/CAS9) mediated genome editing 

 

CRISPR/CAS9 is increasingly becoming popular in the fields of genomic editing and gene 

regulation. Based on a type II prokaryotic immune system, this mechanism provides acquired 

immunity gained through resistance against foreign elements (Wiedenheft et al, 2012). The 

mechanism was first identified as a bacterial defense against viruses. 

Genomic editing via the use of CRISPR, by creating a single stranded gRNA (guide RNA) 

directed to the gene of interest and recruiting Cas9, several genes have been studied and their 

function determined using this system (Feng et al, 2015).  

Identifying the desired sequence and designing gRNA. In-silico 

In this project we aimed to disrupt the PA2G4 gene in order to understand the function of its 

encoded protein Ebp1. For this purpose, we targeted the exon 2 in PA2G4 located on 

chromosome 12. Firstly, by using CHOP-CHOP https://chopchop.cbu.uib.no/ several guide 

RNA (gRNA) sequences were identified and the most suitable gRNA sequence was selected 

based on the best Score and maximum efficiency with minimum off-targets. 

Preparation of Cas9/gRNA ribonucleoprotein complex.  

Trans-activating (tracrRNA) and Crispr RNA (crRNA ) conjugated to ATT0590 from Sigma 

Aldrich were re-suspended to a final concentration of 100 µM each in 10 mM nuclease-free 

Tris-HCl pH 7.8. Lyophilized EGFP-Cas9 was re-suspended to a total concentration of 2.5 

µg/µl in the reconstitution buffer (50% glycerol in water).  3 µl of 100 µM crRNA and 

ATT0590-tracrRNA were mixed together forming the gRNA (1:1) and then mixed with 4 µl of 

2.5 µg/µl Cas9 to finally form the ribonucleoprotein complex (5:1). They were mixed 

thoroughly and incubated on ice for 20 min.  

Transfection of HEK293T cells with CRISPR/CAS9 complex product.  

HEK293T cells were seeded in a 6-well plate and left to recover for 18-24 h before being 

transfected. The required confluency was 80%. Next day the medium was changed to DMEM 

and 10% FBS. The cells were transfected with CAS9/gRNA complex using 18.75 µl TransIT-

CRISPR® Transfection Reagent (Sigma-Aldrich, Catalog Number T1706) as transfection agent 

and were allowed to grow at 37 °C in a CO2 incubator for 48 h post transfection.  
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Fluorescence assisted Cell Sorting.  

Cells were washed with 1x PBS, trypsinized and centrifuged in 2 ml PBS at 900g for 5 min. 

This was repeated once and cells were suspended in 0.6 ml PBS containing 10% FBS and were 

sorted by Fluorescence assisted Cell sorting (FACS), to select the EGFP (Cas-9 green 

fluorescent) and m-cherry (Atto-590 fluorescent gRNA) positive cells and re-plated in 1-2 wells 

of a 6 well plate and left for recovery for two  days. After recovery they were washed again as 

before and were FACS single-cell sorted for EGFP and Atto590 into 96 well plates and grown 

in a mix of conditioned medium previously collected from HEK-293 cells and fresh growth 

medium (1:1). Each clone was further cultured in 48, 24, 12, 6 well plates to finally reach 10 

cm dishes. The procedure is shown in Figure 10 

 

 

 

 

  

Agarose gel 
electrophoresis, 
Sequencing 

Figure 10. Fluorescence assisted cell sorting.  EGFP-Cas9 and Atto-gRNA red fluorescent 

cells were sorted by FACS and sequentially grown in 96, 48, 24, 12 and 6 well plates. 800 µl 

was separated for PCR/restriction digestion and sequencing.  Remaining was transferred to 6 

well plates and then cultured in 6 cm and 10 cm plates for whole cell extraction.  
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Preparation of lysates  

When cells grown in the 12 well plate reached 80% confluency, they were washed with 1x PBS, 

trypsinized following the usual protocol and 800 µl was collected and the remaining 1.2 ml was 

transferred to 6 well plate for further growth. Cells were centrifuged at 17000xg for 2 min at 

4℃. Supernatant was removed and the pellet was re-suspended in 1 ml 10 mM Tris-HCl pH 

8.5 and centrifuged again at 17000xg for 2 min.  The cell pellets were re-suspended in 25-100 

µl 10 mM Tris, vortexed thoroughly and heated at 95℃ for 15 min followed by a quick cool 

down on ice. Cells were incubated with 4 µl Proteinase K at 50℃ for 30-45 min and the enzyme 

was inactivated at 95℃ for 10 min. After cooling on ice for a short time, the cell lysates were 

ready for PCR. 

Polymerase Chain Reaction 

15 µl of cell lysate was mixed with 1x HotFire PolR master mix, 0.5 M MgCl2, 10 µM of forward 

and reverse primers in 10 mM Tris HCl pH 8.5 in a total volume of 20 µl (refer to Table 5 for 

primer sequences). PCR was performed with the following running conditions. A total of 40 

cycles were run.  

Table 13. Running conditions for PCR.  

              Stage          Time            Temperature/℃ 

Initial Denaturation            12 min             95 

Denaturation            30 sec             95  

40 cycles 

 

Annealing            20 sec             50 

Initial Extension            45 sec             72 

Final Extension            7  min             72 

Hold               ∞              4 

 

Agarose gel electrophoresis 

Samples were mixed with DNA loading buffer and run on a 2-3.5 % agarose gel made in 1x 

Tris Acetate- EDTA (TAE) buffer: 40 mM Tris base, 1 mM EDTA pH 8.0 and 20 mM Acetic 

acid containing 1.2 µg/µl EtBr along with 2log DNA marker. To visualize the PCR 

amplification products, the gel was run for 30 min at 100V and for restriction digestion analysis, 

it was run for 15 min, imaged and then run for further 15 min at 100V.  
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Purification of PCR product  

The remaining PCR product for M3 and S3 clones was purified using MachereyTM Nagel 

NucleospinTM Gel and PCR clean up kit from Thermofisher Scientific.   

Restriction digestion  

The purified PCR product (212 ng M3 and 243 ng S3) was digested with N1aIV restriction 

endonuclease, 1x SmartCut buffer in a total volume of 20µl followed by incubation at 37℃ for 

1 hour.  

DNA sequencing 

M3 and S3 were sequenced following the BigDye v.3.1 Protocol. 1 µl of each product was 

added to 10 µM forward primer (5´TTGGAAACCTTTTGGGATACTG’3) and 1x 

Sequencing buffer. PCR was ran for 27 cycles with the following conditions. After PCR the 

final volume was made to 10 µl and samples delivered for sequencing at the UIB sequencing 

facility.  

Table 14. Running conditions for Big Dye PCR.  

              Stage            Time       Temperature/℃ 

     Initial Denaturation          5  min             96 

     Denaturation          10 sec             96 

27 cycles      Annealing          5  sec             50 

     Extension          4  min             60 

     Hold          ∞             10 

 

  

  



41 
 

Results 

EBP1 localizes to the nucleolus via its C-terminus PBR. 

EBP1 has been shown previously to localize into the nucleolus of HeLa and NIH-3T3 cells 

(Squatrito et al, 2004) and in the breast cancer cell line AU565. The group identified the lysine 

rich binding motifs at N and C terminus which are involved for interacting with PPIns with the 

C-terminal motif contributing the most to the nucleolar localization (Karlsson et al, 2016). In 

the present study, we first revalidated the previous findings.  AU565 were transfected with 

EGFP-tagged EBP1 FL WT and the following mutants; EGFP-FL-C term: 369KKKK372 to 

AAAA, EGFP-FL-N term: 65KKEK68 to AAEA and EGFP-FL C-term and N-term double 

mutant (Figure 1 A). The expression of the EGFP-tagged protein was also checked against 

endogenous EBP1 in AU565 cells using Western immunoblotting (Figure 1 B). The 

endogenous EBP1 protein was found approximately near 50 kDa which matches with the 

known molecular weight of p48-EBP1 i.e 48 kDa (Liu et al, 2006).  EGFP-EBP1 was observed 

at approximately 75 kDa. It is clear from the figure that EGFP-FL WT EBP1 and EGFP-FL C 

term had almost the same signal strength of bands than the endogenous EBP1 while EGFP-FL 

N term and EGFP-double mutant had stronger bands.  

The transfected AU565 were examined by fluorescence microscopy and representative pictures 

are shown in (Figure 2).  The cells were further quantified for nucleolar and non-nucleolar EBP1 

for wild type and mutants. Results were gathered as percentage of EGFP positive cells being 

nucleolar or non-nucleolar (Figure 1 C). The Graph shows that 80% of the cells expressing 

EGFP-FL WT showed a nucleolar localization which was greatly decreased in all the mutants.  

FL-EGFP N terminal mutant had a higher percentage of cells with nucleolar EBP1 than the C-

terminus mutant and the double mutant showed the lowest nucleolar EBP1 localization. Hence 

it was established that the C-terminus binding motif does contribute the most to nucleolar 

localization.  
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Figure 1. Schematic illustrations for EGFP-wild type EBP1 and respective mutants, expression 

relative to endogenous EBP1 and nucleolar quantification.  A: Diagram of the constructs used in 

this study. Top most shows wild type Ebp1 with the N and C terminal KR motifs. <=. N-terminal 

mutant 65KKEK68 to AAEA, mutation highlighted in red) and C terminal-mutant (369KKKK372 to 

AAAA, mutation highlighted in blue) and double mutant (Red and blue) are shown. B: AU565 were 

transfected with the constructs: EGFP-Full length Wild type EBP1, EGFP-FL C terminal, EGFP FL- 

N terminal mutants and EGFP- FL C and N term and then whole cell extracts were obtained and 

protein expression of our constructs checked on western blot. FL WT: Full length wild type, C term: 

FL C terminal mutant, N term: FL N terminal mutant, C: EGFP positive cells were quantified for 

nucleolar and non-nucleolar Ebp1. C is the average quantification of a biological triplicate.  

 

 



43 
 

           

 

Figure 2. EBP1 subcellular localization and EU pattern for wild type protein and mutants. 

AU565cells were transfected with EGFP-EBP1 Full length wild type and mutant constructs: 

EGFP-FL C term, EGFP-FL N term and EGFP-FL C and N term. RNA was labelled by EU 

labelling followed by fluorescence microscopy. Separate lane of magnified images of FL-WT 

nucleolar EBP1 (Blue square) and EU while FL CT (cell in the yellow square) showing empty 

nucleoli in GFP positive cell as well as for EU (mainly nuclear). The images are representative 

of three biological experiments. FL-WT: Full length wild type, CT: C-terminal mutant, NT: N-

terminal mutant, FL-DM: Full length double mutant.  

  



44 
 

Localization of EBP1 in the nucleolus correlates with the presence of nascent rRNA in 

the nucleolus.  

As it has already been established that the C- terminal binding motif contributes the most to 

EBP1’s nucleolar localization, the next objective was to investigate into the effect of the PPIn 

interaction on rRNA synthesis. We tried to find out if there is any co-relation between the 

nucleolar sub-cellular localization of EBP1 and the presence of nascent ribosomal RNA, as 

labelled by EU. Figure 3 A represents the quantification as percentage of cells for wild type and 

mutants. 50% of EGFP positive cells expressing FL-WT EBP1 had nucleolar EU and all the 

mutants showed a decrease in the percentage for nucleolar EU with double mutant being the 

least nucleolar. The C terminal mutant was about 20% nucleolar and 80% non-nucleolar and 

N- terminal mutant compared to C- terminus was more nucleolar(25%) and 75% non-nucleolar. 

Overall the mutants showed empty nucleoli that is no or very weak signal of EU in the 

nucleolus. (Figure 2).  

4 different patterns were studied to analyze the correlation between localization of EBP1 and 

nascent ribosomal RNA as labelled by EU. Figure 3 B shows the quantified results and Table 1 

summarizes the patterns observed and their corresponding percentages. FL WT EBP1 

demonstrated a strong correlation between the presence of EBP1 in the nucleolus together with 

rRNA. More than 50% of the cells were positive for both nucleolar EBP1 and EU and about 

17.9% of the cells had non-nucleolar EBP1 and EU. As for the C-terminal mutant 0% of cells 

had both nucleolar EU and EBP1 while the N-terminal was 18.7%. Interestingly double mutant 

had a slight percentage (2.78) of cells with nucleolar EBP1 and EU nevertheless more than 90% 

were non-nucleolar for both EBP1 and EU.  

 

Table 1.0. Summary highlighting the correlation between localization of EBP1 and presence of 

EU in the nucleolus.  

EGFP-EBP1 

plasmids  
EU and EBP1 non-
nucleolar (%) 

EU and EBP1 
nucleolar (%) 

EU non- nucleolar 
EBP1 nucleolar 
(%) 

EU nucleolar EBP1 
non-nucleolar (%) 

FL WT 17.9 56.04 29.6 0.86 

FL C term mutant 69.5 0.00 2.80 24.5 

FL N term mutant 61.8 18.7 9.31 10.3 

FL double mutant 90.6 2.78 0 5.32 
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 Table 1. Patterns observed and corresponding percentages for different constructs used. Table  

 

  

Figure 3. Study of the RNA level in relation to localization of EBP1. AU565 cells were 

transfected with the constructs: EGFP-FL WT EBP1, EGFP-FL C term, EGFP-FL N term and 

EGFP-FL C and N term mutants and RNA labeled by EU. 20-25 EGFP positive cells were 

quantified for each construct and 3 biological experiments were analyzed. The figures show the 

average + SDs of the triplicate. A: Bar graph showing the percentage of EGFP-positive cells 

with nucleolar and non-nucleolar EU for EGFP-EBP1 wild type and mutants. B: Bar graph 

highlighting the correlation between the localization of EBP1 and presence of EU in the 

nucleolus corresponding to wild type and mutants. FL M3: C term FL M57: N term FL M357: 

C and N term mutant.  
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RNA Pol 1 inhibitor BMH21 treated cells were EU negative.  

AU565 cells were transfected with EGFP-FL WT EBP1, treated with or without the RNA Pol 

1 BMH21 inhibitor and EU-labelled (Figure 4). The inhibitor blocks the transcription of nascent 

rRNA without interfering with GFP signal hence empty nucleoli were observed in the cells for 

EGFP-FL WT treated with BMH21 while the positive control i.e EGFP-FL WT EBP1 minus 

BMH21 expressed rRNA showing presence of EU in the nucleolus.  

 

 

Figure 4. AU565 cells treatment with RNA Pol 1 inhibitor BMH21. AU565 cells were 

transfected with EGFP- FL WT EBP1 and treated with (+) or without (-) the RNA Pol 1 

inhibitor BMH21 followed by EU labelling and examination by epifluorescence microscopy. 

Treated cells showed empty nucleoli for EU (FL WT + BMH21) and untreated cells expressed 

rRNA hence presence of EU did not change in the nucleolus (FL WT – BMH21).  
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An EBP1 tumor mutant showed a stronger nucleolar localization and rRNA levels than 

Wild type EBP1 

EBP1 as a growth regulatory protein has been documented to be involved in cancer 

development.  K372Rdel-fs is one of characteristic mutations identified in a pancreatic, large 

intestine, stomach and ovary cancer according to the public data from the Catalogue of Somatic 

Mutations in Cancer (COSMIC, v91). A former master student worked partially on it and we 

decided to take forward the findings because the mutant has been linked to the nucleolar 

localization of EBP1. The mutation lies in the C term motif and that the frameshift deletion 

altered the part of the motif and changed the protein sequence, Figure 5 A highlights the location 

of the mutation within the motif along with wild type protein. AU565 cells were transfected 

with the constructs; Full length wild type EGFP-tagged EBP1 and K372Rdel-fs mutant. In 

addition, cells were treated with the RNA polymerase I inhibitor, BMH21 to demonstrate as a 

control for EU labeling as shown earlier.  The negative control showed a decrease in the level 

of rRNA.  The cells were again monitored by fluorescence microscopy (5B). Percentage of 

transfected cells with nucleolar and non-nucleolar EBP1 and EU was also determined. 

K372Rdel- frame shift tumor mutant had a higher % of cells with nucleolar EBP1 (100% 

nucleolar) and EU (92.5%) compared to wild type (87.7% nucleolar EBP1, 12.24% non-

nucleolar EBP1; 85.81% nucleolar EU, 14.17% non-nucleolar EU). Figure 6 A and B show the 

results.  
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Figure 5. Schematic constructs and Subcellular localization of EBP1 and EU signaling for 

wild type and Tumor mutant. A: WT shown as the 394 amino-acids long protein with KR 

motif intact (underlined in the sequence). Tumor mutant protein (K37Rdel-fs) was shorter than 

the wild type and due to the  mutation at  Lysine 372 ( arrow), there was a frameshift caused by 

the deletion of 1 base (c.1115) (underlined in the mutant) in the reading frame encoding a shorter 

and more positive protein. B: Fluorescence microscopy of AU565 cells transfected with WT 

EBP1 and K372Rdel-fs and EU labelled. K372Rdel-fs showing a strong GFP-EBP1 signal as 

well as EU in the nucleolus. K372Rfs-del: deletion frame shift mutant. Image is representative 

of two biological repeats.  
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K372Rdel-fs increased the number of nucleoli  

 K372Rdel-fs tumor mutant and the wild type Ebp1 were also analyzed for the number of 

nucleoli in the EGFP-positive cells. The nucleoli were counted per cell. K372Rdel-fs tumor 

mutant showed an increase in the number of nucleoli compared to wild type as shown in Figure 

7; Figure 7 A and B show the results for two separate experiments. For experiment 1, 

approximately 18-20 EGFP positive cells were analyzed. A shows that the tumor mutant had 1-

2 cells with enhanced number of nucleoli (9/cell) and most of the cells still had 2, 3, or 4 

nucleoli. Most cells transfected with FL-WT EBP1 had one or two nucleoli (Figure 7 A), 12 

cells had only one nucleolus. Experiment 2 (B) also showed a similar trend although the number 

of GFP positive cells taken into account were less compared to experiment 1, nevertheless it 

was established that K372Rdel-fs mutant tend to increase the number of nucleoli.  

Figure 6. Percentage of transfected cells with nucleolar/non-nucleolar EBP1and EU 

for wild type, and tumor mutant. 20-25 GFP positive cells were counted for K372del-

fs and FL-WT EBP1. Tumor mutant was 100% nucleolar for EBP1 (A) and more than 

90% of the cells also had nucleolar EU compared to FL wild type (more than 80% 

nucleolar and 10-20% non-nucleolar EBP1 and EU (A and B). Results represent the 

duplicate.  
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Integrated EU intensity in the nucleolus was lower for the K372Rdel-fs tumor mutant. 

A procedure was developed to quantify the intensity of EU in the nucleoli of EGFP-positive 

cells transfected with the tumor mutant and FL-WT EBP1. Approximately 30 GFP-positive 

cells were analyzed for each construct from comprising of 8 sets of images and 2 biological 

replicates for each construct was taken into account. For this purpose we used the software Cell 

profiler (Figure 8).  The images were run through a designed pipeline relevant to the objective 

and analyzed (Figure 8 A-B). The program first detects the nucleus via the DAPI channel and 

this allows for the detection of GFP signal within the nucleus and excluding the cytoplasm 

(Figure 8 C). Then it is set to detect the nucleoli based on a suitable threshold factor which was 

selected according to the GFP signal in the image (see Supplementary Figure S3). Cell profiler 

then creates a filtered image of the nucleoli further refining the threshold parameter and gives 

the output as a csv file for Integrated EU intensity and other parameters but they were not 

considered. The results were plotted as Average Integrated Nucleolar EU intensity against the 

total number of GFP positive cells of the constructs. Interestingly, the calculated average for 

the tumor mutant was lower than the Wild type EBP1 (Figure 9). 

Figure 7. Number of nucleoli in GFP positive cells for tumor mutant and FL Wild type 

EBP1. Experiment 1 (A): 12 EGFP positive cells had one nucleolus for wild type whereas 6 

cells had one nucleolus for K372del-fs. The highest number recorded was 9 nucleoli for 

K372del-fs. Experiment 2 (B) showed a similar trend and K37del-fs had the highest number of 

4 while FL-WT highest number was 3 and most cells still had 1 or 2 nucleoli.  
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Figure 8. Cell profiler overview and features.  (A) Main interface of cell profiler and pipeline 

used shown. (B) Overview of modules in the pipeline and identification of the region of interest 

in the cell (nucleolus in this case) and output generated as an excel file. (C) Images obtained 

from a run highlighting thresholding, filtration modules and final nucleolus overlay in AU565 

cells. CP: Cell profiler 
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Figure 9. Average Integrated Nucleolar EU intensity. 30 GFP positive cells for each 

construct were analyzed through cell profiler. Bar graph showing Average Integrated Nucleolar 

EU intensity for EGFP-FL WT EBP1 and K372Rdel-fs mutant. EGFP-FL WT EBP1 had a 

higher intensity (447.86 + SD) than K372Rdel-fs tumor mutant (344.18 + SD) as seen above. 

Graph represents two biological repeats.   
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CRISPR/CAS editing of PA2G4  

In parallel, we tried to generate a PA2G4 gene knocked out cell line by CRISPR/CAS. By using 

ENSMBL genome browser an early exon on the gene was identified and we used CHOPCHOP 

to design a gRNA that would target that exon of the gene, with the lowest off target possibilities 

and the highest efficiency. Figure 10 A and B shows CHOP-CHOP output.  Top 10 scoring 

gRNA target sites are shown in table attached with Figure 10 A. As depicted by the table, the 

only coding region in the gene which is targeted by our gRNA was on exon 2 (rank 2). For our 

CRISPR/CAS experiments, we applied the gRNA targeting approximately the middle of exon 

2 (5’GGGTTGGCACCTACTTCTGCTGG 3’) which also harbored the restriction site for 

N1aIV (Figure 11). Successful transfection of the CRISPR/CAS9 ribonucleoprotein complex 

in HEK293T cells should result in the double strand break in PA2G4 gene.  

 

 

Figure 10. Exon 2 Identification on PA2G4 gene using CHOP-CHOP tool and selection 

of potential off targets. A: CHOP-CHOP utilized to identify target sites on PA2G4 gene with 

exon 2 (Ranking 2, highlighted by yellow box) being the most efficient target site (shown in 

the table, highlighted blue). B: Further information on exon 2, target site shown in red circle.  
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Figure 11. Schematic representation of PA2G4 gene and Cripsr/Cas mediated genome 

editing. A: Cartoon diagram of PA2G4 showing the first 4 of the 13 exons and adjacent introns. 

Exon 2 has been further magnified highlighting the sequence targeted by the crRNA for 

CRISPR/Cas9 editing. B: Part of the DNA sequence of PA2G4 (5125-5491 bp) and exon 2 (at 

5308 bp) with the crRNA shown in blue, restriction site highlighted in green, PAM in red and 

forward (yellow) and reverse (purple) primers. PAM: Protospacer adjacent motif. CrRNA: 

CRISPR RNA 
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Selection of positive clones by FACS.  

Following transfection of HEK293T cells with the gRNA/CAS9 ribonucleoprotein complex, 

the positive cells were sorted using Fluorescence assisted cell sorting (FACS). First they were 

sorted as Cas9-GFP fluorescent and Atto-red-g RNA m-cherry fluorescent cells and re-plated 

in 1-2 wells of a 6 well plate and then FACS single cell sorting was done on 5 96 well plates. 

Figure 12 A, B,C and D show the screening results by FACS and D highlights the EGFP-

Cas9/Atto-red gRNA positive cells A total of 37 clones were able to grow from the 5 96 well 

plates and further expanded on 48, 24, 12, 6 well plates until we reached 10 cm dish. Each clone 

was allocated an ID to keep track.  

 

 

  

Figure 12. Cell sorting by FACS of Cas9/gRNA positive HEK293T cells. HEK293T cells 

were transfected with ribonucleoprotein complex and first sorted in 1-2 wells of a 6 well 

plate and then FACS single sorted. A: Wild type HEK-293 cells. B: EGFP-Cas9 positive 

HEK-293 cells C: Atto-red gRNA positive cells marked by m-cherry fluorescence and D: Cas9/ 

gRNA positive cells both green (FITC compensated) and red (m-cherry-A compensated): Area 

shown by blue box.  
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PCR amplification, restriction digestion, DNA sequencing and immunoblotting. 

Cell lysates from a few clones were used to generate the templates for PCR amplification 

followed by agarose gel electrophoresis and PCR product purification. The clones S3 and M3 

showed a light PCR between 200 and 300 marker matching the size of 244 bp expected product. 

(Figure 13 A). Figure 13 B shows amplification of a few other clones.  M3 and S3 were purified 

and digested with the NIaIV restriction endonuclease (Figure 13 C) and sequenced. Restriction 

gel revealed two products at expected 101 bp and 143 bp for each clone if the restriction site 

was kept intact, this would likely suggest that M3 and S3 are wild type. Figure 14 A shows the 

S3 and M3 sequences with target site and cut off sequence and B1 and B2 shows the sequencing 

results of the parts of S3 and M3 DNA respectively The chromatograms revealed both clones 

to be wild type with no expected change.  

We first followed the approach of analyzing DNA followed by western blotting to check 

expression of the clones which was not feasible hence decided to re-direct to first immunoblot 

and then if there is any positive result, follow on with the PCR purification and digestion. 

Therefore we performed the immune blot of clones C2 and C3 as they showed a strong band 

for PCR amplification (Figure 13 B). Cell extracts were collected using RIPA buffer and 

sonicated followed by centrifugation and resolving on SDS PAGE. 30 µg of protein for each 

clone was resolved and transferred overnight for western blotting (Figure 15).There was 

reduction at protein for C2 but C3 seemed to have increased. Other clones which were not 

amplified by PCR but only checked for protein reduction were G1, 1v and 2v and all had a 

lower expression (checked against Lamin A/c).  Band for 2v was also found to be slightly lower 

than WT and its lower expression suggests an in-frame deletion. C31 did not have any band 

when amplified and resolved on agarose gel (result not shown) but was reduced at protein level 

(Figure 15). The clones were not subjected to restriction digestion. 
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A 

S3 

NNNNNNNNNNNNNNTTGTGTACTATCTACAGGTATGCTGTCACACCAGTTGAAGCAGCATGTCATCGATGGAGAA

AAAACCATTATCCAGAATCCCACAGACCAGCAGAAGTAGGTGCCAACCCTACTTATTACCTTCTACCACACAAGA

CTAGTCATCAGGTTTTTTTCTATACTCCCAACTGAATCTTGTCCGCCCTCTACTCCATGTTTTCAGGNAAGTTTT

ACAGTAGAGGTANGACTTTCTTGGNNTTNGCTGCNTTTCCTCCGAGGGACCNATGAATACATTATCATNTTTCAT

CTAGCCTGATTATGTCTCNAAACACAAGNAGGTGGCTGTTTANGNGCCTTNTTN 

 

 

M3 
 

NCTACAGGTATGCTGTCACACCAGTTGAAGCAGCATGTCATCGATGGAGAAAAAACCATTATCCAGAATCCCACA

GACCAGCAGAAGTAGGTGCCAACCCTACTTATTACCTTCTACCACACAAGACTAGTCATCAGGTTTTTTTCTATA

CTCCCAACTGAATCTTGTCCGCCCTCTACTCCATGTTTTCAGGA 

Figure 13.  PCR amplification and restriction digestion of CRISPR clones.  A: PCR 

amplification of S3 and M3 clones on 2% agarose gel. M3 and S3 observed between 200 and 

300 bp which matches the expected product size i.e 244 bp.  B: PCR amplification of A2, A4, 

B1, C1, C3 and C5 clones with HEK293 control cell lystate resolved on a 2% agarose gel. C: 

Restriction digestion of S3 and M3 with N1aIV and PCR products resolved on 3.5% agarose 

gel with two products seen at 102 and 143 bp for each clone 
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Figure 15. Protein expression of Crispr/Clones by western blot. Cell lysates from 

the indicated clones were checked for protein reduction by immunoblotting against 

wild type using an anti-EBP1 antibody and anti-Lamin A/C used as the loading 

control. 

Figure 14. Schematic diagram of S3 and M3 sequences and DNA sequencing 

chromatograms. A: S3 and M3 sequences shown with gRNA site highlighted in green and 

PAM in red. Cas9 cleavage downstream PAM sequence and 3 nucleotides after GCA (light 

blue). B: DNA chromatograms of parts of S3 (B1) and M3 (B2) DNA sequencing respectively. 

PAM cut off at CCA (shown by black lines, S3 at 102 bp and M3 at 78 bp).  
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Discussion 

Previously, EBP1 has been identified as a potential PtdIn(4,5)P2 binding protein by combining 

PtdIns(4,5)P2 pull down from neomycin displaced nuclear proteins and quantitative MS (Lewis 

et al, 2011). In this present study, we first reconfirmed the contributing role of C terminal motif 

to the nucleolar localization of EBP1 in AU565 cells (Karlsson et al, 2016). EBP1 doesn’t 

harbor PPIn binding motifs such as PH, PX or FYE domains (Lemmon, 2008) but stretches of 

basic amino acids at C and N terminus producing a polybasic binding motif region (PBR) 

following the sequence K/R-(Xn =3–7)-KXKK,  have been reported for electrostatic interactions 

between EBP1 and PPIns(Martin, 1998). Specifically the C terminus harbors the nucleolar 

retention signal (NoRs) and the nuclear export signal NES (Squatrito et al, 2004). Another 

protein SAP30L has also been found to harbor the nucleolar signal located C-terminus of its 

nuclear localization signal (NLS) and also involved in PPIn interaction (Viiri et al, 2009). When 

the polybasic sequence 120RRYKRHYK127 was mutated to Alanines (all the residues), SAP30L 

was found to exclude from nucleolus and retain in nucleus (Viiri et al, 2006), consistent with 

the behavior of C- terminal PBR of EBP1. Our results were coherent with these previous 

findings as Wild type EBP1 with intact C-terminal motif had the highest percentage of cells 

with nucleolar EBP1 compared to corresponding mutants in which the PBR positive stretch of 

Lysine was mutated to Alanine hence the C terminal motif may provide a stronger binding 

probabilities to several PPIns with differently spaced phosphates on inositol ring, at least in 

vitro and also help the protein’s nucleolar localization.   

It had already been established that the C-terminal binding motif contributes more to nucleolar 

localization of EBP1 (Squatrito et al, 2004; Karlsson et al, 2016). We aimed to find out the 

effect of this interaction on the function of EBP1 with respect to rDNA transcription and 

ribosome biogenesis. The results showed that Full length Wild type EBP1 not only localized 

more strongly into the nucleolus but its localization also correlated with the presence of nascent 

RNA including the rRNA as labelled by EU compared to mutant constructs. C-terminal mutant 

also showed lower nucleolar EU signal than N-terminal mutant hence aligning with the stronger 

binding of EBP1 with PPIns when it is intact as stated earlier. It had also been speculated that 

EBP1 interferes with the rRNA synthesis. Nyugen et al, 2015 for the first time demonstrated 

the inhibitory action of mycophenolic acid (MPA) on GTP which affected the interaction of 

TIF-IA factor with Ebp1 which played a key role in regulating PCNA (proliferating cell nuclear 

antigen) and rRNA synthesis. Similarly Squatrito et al, 2004 demonstrated EBP1 as a part of 

ribonucleoprotein (RNP), suggesting that its localization, interaction with RNP and 

proliferation inhibition are tightly connected.  

EBP1 has been documented to be involved in cancer development extensively. While p42 

isoform has shown to be a tumor suppressor, the pro-oncogenic characteristics of p48 has been 

documented in various cancers (Santegoets et al., 2007; Kim et al., 2010; Ko et al,  2015; 

Nguyen et al., 2016; Nguyen et al 2018). The synthesis of pre-ribosomal RNA which reflects 

the overall transcription of RNA is increased in various human cancers and is indeed one of the 

hall marks of tumor (Pelletier et al, 2018). K372Rdel-frameshift tumor mutant when analyzed 

against Full length Wild type Ebp1, not only showed an enhanced nucleolar signal but also 

more than 90% of the transfected cells had a stronger nucleolar EU suggesting higher rRNA 

levels. The encoded shorter, yet more positive protein harboring additional Arginine and Lysine 

due to the K372R mutation may offer stronger PPIn binding chance, hence stronger nucleolar 

localization. Moreover addition of prolines might also have a stabilization effect leading to a 

greater retention in the nucleolus (Yutani et al, 1991). This stronger retention and localization 

could have had enhanced the rRNA synthesis through several ways which still need to be 

uncovered, however few identified mechanisms including TIF-90 mediated pathway as evident 

in colon tumor cells (Nyugen et al, 2019), or regulation of rRNA through Pol 1 activity and 

stabilization of PCNA as reported in Acute myelogenous leukemia cells (Nyugen et al, 2016) 

might be involved.  The actual tumorigenic property of this mutant also needs to be verified.  
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K372Rdel-fs mutant also enhanced the number of nucleoli. Hypertrophy of nucleoli, manifested 

by their increased size and number has been correlated with increased cell proliferation rate and 

growth in cancer tissues (Donizy et al, 2017). Consistently, increased size and number is related 

with higher rRNA transcriptional activity by multiple regulating factors such as upstream 

binding factor (UBF), DNA topoisomerase, fibrillarin and agryophylic proteins (AgNOR), 

snoRNPs, and small as well as large subunit proteins (Derenzini et al, 1998; Chang et al, 2016). 

What effect the K372R mutation might have on EBP1 and its binding capacity needs to be 

further investigated, however the effect is coherent with the documented studies describing 

increased nucleoli number and size as hallmarks of cancer.  

We hypothesized that increased nucleolar localization of K372Rdel-fs tumor mutant will 

enhance the intensity of EU in the nucleolus. Though as described earlier that more than 90% 

of the cells had nucleolar EU, the nucleoli number and size were increased, the integrated 

nucleolar EU intensity determined by the program contradicted our hypothesis. Full length Wild 

type EBP1 had a higher Int. EU intensity than the tumor mutant. Despite the contradicting 

results, we concluded it might be possible that EBP1 regulate rRNA synthesis by different 

mechanism which still needs to be uncovered and doesn’t interfere directly with rRNA synthesis 

The CRISPR/CAS experiment did not yield fruitful outcomes. Almost all the clones analyzed 

after FACS were wild type as shown by PCR amplification. The clones digested and sequenced 

also showed wild type nature. Some of the clones did show a reduction at protein level and one 

particular clone even suggests in-frame deletion, however the results are not conclusive yet. In 

addition, the protein extracts of the potential KO clones were collected when we had trouble 

with the incubators showing low CO2 levels. This was in contrast to the WT protein extract 

collected under normal cell growth and that may account for the different levels of protein in 

the clones compared to the WT sample. Due to time constraint, I was not able to further validate 

these or other clones. No previous study is linked with the CRISPR/CAS mediated editing of 

the gene, hence it will be beneficial to generate a knocked out cell line as it will help refine the 

study and give a more clear answer to the physiological role of EBP1.  

In summary, EBP1’s multifactorial role in the nucleolus have been investigated previously. It 

interacts with many RNAs; mRNA, rRNA, ribosomal subunits (Squatrito et al, 2004 and 2006) 

as well as other proteins such as Nucleolar protein nucleophosmin 1(NPM 1) promoting 

ribosome biogenesis (Okada et al, 2007). Its varying role in tumor development has also been 

reported with respect to two antagonizing isoforms however whether a friend or a foe, this still 

needs to be further investigated.  

Concluding remarks and future perspectives 

In a nutshell, we validated the more contributing role of C-terminal motif in the nucleolar 

localization of EBP1 in AU565 breast cancer cells which aligned with the previous findings by 

our group and other reports. Moreover we also proved that the nucleolar localization of EBP1 

correlates with the presence of nascent rRNA in the nucleolus. We also investigated into the 

tumor mutant which suggests possible effect of mutated EBP1’s role in cancer development 

through enhanced nucleolar localization and retention and increased nucleolar number as well 

as size. A correlation was shown between the nucleolar presence of EBP1 and rRNA synthesis, 

due to the C-term motif which could also be further validated by more precise methods such a 

as luciferase assay, though due to unfortunate circumstances of covid-19 situation, I could not 

continue that. In addition to, we also need to test and compare the transforming properties of 

the N-term and C-term PPIn binding mutants to WT EBP1. This would tie an oncogenic role of 

EBP1 to PPIn interaction. The question regarding the exact mechanism of EBP1 mediated 

rRNA synthesis still needs to be answered. Whether EBP1 retention in the nucleolus is solely 

due to PtdIn interaction or there is more to it? It also would be interesting to find out the exact 

localization of EBP1 in the nucleolus (FC/DC or GC region?). These are some of the intriguing 

questions that are linked with this study and need further research and investigation. We also 
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tried to generate a PA2G4 knocked out cell line in order to find out the lethality if there is any 

due to low or no expression of its protein EBP1 on the cells.  The clones collected will be further 

analyzed. The purpose of the KO cell lines was to stably reintroduce the different EGFP-EBP1 

constructs (WT and mutants) and to test them for cell proliferation, transforming properties, 

rRNA synthesis.  
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Appendix 

 

 

Supplementary figure S-1. In vitro binding of N- and C-terminal EBP1 constructs. A) 

Representation of the primary structure of the recombinant GST-EBP1 and the deletion 

constructs. The approximate locations of the lysine-rich regions are indicated by arrows. B) PIP 

strips incubated with recombinant wild type FL-EBP1 and the N-and C-terminal constructs. All 

three strips were processed simultaneously using the same amount of protein and same antibody 

dilution. Figure adapted from (Karlsson, 2011) 
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Supplementary figure S3. Detection of nucleoli by Cell Profiler. Pipeline module selects nucleoli 

in the GFP positive cells based on a specific threshold factor which is adjusted accordingly. Red 

circles represent the detected nucleoli from a sample run of K372Rdel-fs tumor mutant. 

 

Supplementary figure S2: Increased PPIn interaction with K372Rdel- 

fs tumor mutant. K372Rdel-fs tumor mutant showing an enhanced 

binding with PPIn compared to wild type construct. Figure taken from 

former master’s student thesis.  


