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Abstract 
The work in this thesis is a part of a strategic work at the Institute of Marine Research, 

which aims to develop a variety of methods to be used in investigating potential 

endocrine disruption in Atlantic cod (Gadus morhua). 

Produced water, a by-product of offshore oil production, contains significant amounts 

of alkylphenols (APs). Many studies have shown that long-chain para-substituated APs 

cause endocrine disruption in freshwater fish, but relatively little is currently known 

about their long-term effects on the biology of marine fish. Here we describe the 

results from two experiments studing in detail the effects of some APs present in 

produced water on the reproductive potential of first-time spawning Atlantic cod. 

Groups of cod were fed pastes containing four APs (4-tert-butylphenol, 4-n-

pentylphenol, 4-n-hexylphenol and 4-n-heptylphenol), at different concentrations for 

either 4 months (experiment 1) or 5 weeks (experiment 2). AP-exposed fish were 

compared to unexposed fish and to fish fed paste containing natural estrogen (17 β-

estradiol). The results of the present study suggest that multiple mechanisms underlie 

the responses in the AP treated cod. The exposure to APs influences the plasma 

concentration of several male and female sex hormones and the egg yolk precursor 

protein, vitellogenin, in Atlantic cod. This study also shows that AP-exposure down to 

20 μg/kg body burden interferes with the maturation of the sex organs, and that this 

effect is likely caused by disruption of the sex hormone system. There were also found 

effects of the AP treatment on the hepatic P450 systems (CYP1A and CYP3A) as well 

as glutathione, glutathione-related enzymes and changes in the lipid composition in 

liver and brain membranes.  

Even though the concentrations used in our experiments are higher than may be 

reasonably expected as the result of oil production alone, measurements of actual AP 

levels in the sea indicate that APs may still be a significant risk factor in the marine 

environment. 
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1. Introduction 

1.1 Background 

There is need for more knowledge of the effects on the marine environment due to 

discharges to the sea from the offshore oil and gas industry. Norway is currently in a 

period where discharges of produced water from the petroleum sector are increasing 

rapidly as the oil fields ages. Produced water is defined as the water that comes up 

with oil and gas from sea bed reservoirs, separated on the platform from the oil and 

discharged into the sea. In 2004 it was estimated that 143 million m3 of produced 

water was released (OLF, 2005). The prognoses show that the increasing trend will 

continue until 2011, and the discharges may reach 180 million m3 a year before it starts 

to decline. More knowledge of the long-term effects on the marine environment are 

essential for the authorities to ensure a healthy development of this sector and to 

coordinate the exploitation of Norwegian oil and gas reserves with other uses of the 

marine environment. A central aspect of this is that the total impact on the marine 

environment must not lead to changes in biological diversity or in the marine 

ecosystem. 

In 1997, the Institute of Marine Research started the project “The hormonal effects of 

alkylphenols on cod (Gadus morhua)” that aimed to clarify potential harmful effects of 

alkylphenols (APs) on cod. Significant quantities of APs are released into the sea by 

petroleum installations as a result of discharges of produced water. It has been shown 

that APs may have estrogenic (feminising) effects on fish and animals, resulting in 

reproductive disturbances. The question was whether cod, Norway’s most important 

commercially fished species, might be similarly affected. Experiments with long-term 

exposure of cod by environmental relevant doses of selected APs were therefore 

carried out.  



 13 

1.2 Brief overview of the endocrine regulation of fish 
reproduction 

The endocrine system plays a essential role for a successful reproduction, and is 

involved in multiple reproductive functions in vertebrates, like: sex differentiation and 

development of sexual organs, initiation of puberty, development of secondary sexual 

characteristics, sexually behavior and controlling the reproductive cycles. 

There are more than 24000 different fish species and between these there are large 

variety both in mechanism of sex determination and reproductive physiology (Nelson, 

1994). In thise thesis, the focus will be on gonochoristic teleosts, like cod 

(gonochoristic: species with separate sexes, the male and female reproductive organs 

being in different individuals, as opposed to hermaphroditic, gynogenetic, and 

hybridogenetic). 

Sex determination and sex differentiation. 

Sex determination and sex differentiation are defined as two different, but closely 

connected processes (reviewed in Devlin and Nagahama, 2002). The sex determination 

is the primary control (often predetermined genetically at fertilization) that leads to sex 

differentiation, the development and expression of the male or female phenotypes 

(development of testis or ovary). In fish embryos, the germ cells are only present as 

undifferentiated primordial germ cells (PGCs) and are similar for both sexes, and will 

later differentiate into oogonia (females) or spermatogoina (Males). Sex differentiation 

takes first place after hacthing, but there are large differences between species where in 

the larvae development this takes place. However, it appears to be common that there 

are a relative short “critical period” where the fish larvae is especially sensitive for the 

hormonal signals that initiate cell differentiation of PGC and somatic gonadal cells. 

The endocrine regulation of sex differentiation is not completely understood, but it 

involves a complex interplay between the brain and gonad and it is clear that sex 

steroid plays a very important role. Steroid producing enzymes (chapter 1.3) can be 

detected prior to sex differentiation and especially aromatase, the enzyme responsible 
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of the last steep in the estrogen synthesis, is found present in the brain (of both sexes) 

and the gonad (for females) in the time of sex differentiation (Devlin and Nagahama, 

2002). Since the appearance of steroid synthesizing cells requires cells differentiation, 

it is unlikely that the steroids themselves are the primary factors involved in 

determination of sex (“who came first the hen or the egg”?). Nevertheless, steroid 

production is very closely correlated with early steps of gonadal differentiation. This is 

clearly showed by the adverse affect on sex differentiation that can be caused by 

interfering with the steroid balances. For example, inhibition of estrogen synthesis in 

early development using aromatase inhibitors can cause masculinization while 

treatment with exogenous estrogen can cause feminization in many fish species. 

The essential role of steroid hormone makes the sex differentiation event vulnerable 

for endocrine disruption as will bediscussed later in the thesis. 

 

Puberty. 

Puberty is the development that brings an immature juvenile to a mature adult 

reproductive system (Schulz and Goos, 1999). The timing of puberty is in addition to 

genetic factors also controlled by a variety of external stimuli like photoperiod, water 

temperature and availability of food. The pubertal maturation is synchronized via the 

brain-pituitary-gonadal (BPG) axis, and the onset of puberty starts with stimulation of 

the synthesis of the neuroendocrine decapeptide gonadotropins-releasing hormones 

(GnRH) in the brain (Welzien et al., 2004; Whitlock et al., 2006). These do in turn 

control the secretion of gonadotropins (GTH) from the pituitary (follicle-stimulating 

hormone (FSH) and luteinising hormone (LH)). The GTHs are heterdimeric 

glycoproteins, consisting of a common glycoprotein -subunit and a hormone-specific 

-subunit. The GTHs are transported by the blood to the gonads and binds to specific 

membranes reseptors on the gonadal somatic celles, Leydig and Sertoli cells in testis 

and thecal and granulosa cells in the ovary. The GTHs stimulate the maturation of the 

gonads and cause these to produce sex steroid hormones, 17 β-estradiol  (E2) and 
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testosterone (T) in female fish; T and 11-ketotestosterone (11KT) in males. Sex 

steroids have important feedback effects on secretions of hormones from the pituitary 

and the brain, but are also required in the gonads for germ cell maturation (for details, 

see (Baroiller et al., 1999; Nagahama, 2000)). Puberty is the first step into oogenesis 

and spermatogenesis.  

 

Oogenesis 

After sex differentiation at larvae stages, the oogonia increase in numbers in the 

gonads through mitotic proliferation. Oogenesis begins at puberty, when a portion of 

the oogonia entry into meiosis and becomes primary oocytes. The meiosis is arrested in 

diploytene stages of prophases I, and the oocyte stays like that through out the growth 

phases, and until final oocyte maturation where the first meiotic division is completed. 

The second meiotic division of the oocyte is first completed after fertilization. 

Together with the onset of previtellogenic growth the folliculogenesis is started and the 

ovarian follicle is formed (figure 1). In the follicle the oocyte is covered with granulosa 

cells, which in turn is surrounded by thecal cells. A part of the formation of the follicle 

is the zonagenesis. Eggshell proteins, zona radiator proteins (Zrp) are synthesized in 

the liver under the influence of E2 and transported to the ovary and incorporated in the 

corian around the ooctye. Vitellogenisis is the major growth phases of the oocyte and 

account for as much as 90 % of the final egg weight. Vitellogening (VTG) is a 

glycophospholipoprotein and the main source of yolk proteins and lipids in the 

growing oocyte. VTG is, like Zrp, synthesized in the liver in response to E2 and 

transported by the blood and taken up by the oocyte through receptor-mediated 

endocytosis (Tyler and Sumter, 1996; Tyler et al., 1999). 

The BPG axis plays a central role in regulating the oogenesis by controlling the 

synthesis of sex steroids (T and E2) that in turn are stimulating the oocyte growth 

(illustrated in figure 3). In the end of vitellogenisis the BPG axis stimulates a shift in 

the steroidogenesis of the ovary from synthesizing E2 to produce maturation-inducing 
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steroids (MIS), which leads to the breakdown of germinative vesicles, maturation of 

the oocyte and ovulation. At least two different steroid hormones have been identified 

to induce final maturation in teleost: 17 ,20 ,-dihydroxy-4-pregnen-3-one (17α,20 -

P) and 17,20 ,21-trihydroxy-4-pregnen-3-one (17,20 ,21-P) (Nagahama, 1997).  

Fig 1. Diagram of a primær ovarian follicle in fish. The oocyte is covered by zone radiata (also 

known as chorion and wich lather becomes the egg shell). The oocyte is closely connected with 

granulosa cells by microvilli located in the chorionic pores. The oocyte and granulosa cells are 

separated from the surrounding theca cells, blood vessel and fibroblast by a basement membrane. 

(Illustration: Stein H. Mortensen, IMR). 

 

Spermatogenesis 

During spermatogenesis the male germ cells go through four major phases:  

1). Mitotic proliferation, where the Spermatogonial stem cells undergo a specific 

number of mitotic cycles, leading to both new stem cells and differentiated 

spermatogonia. 2). Meiosis, where the differentiated spermatogonia undergo meiosis 

and becomes primary spermatocytes, secondary spermatocytes and finally haploid 

spermatides. 3). Spermiogenesis, where spermatides are transformed into flagellated 

spermatozoa. 4). Sperm maturation, where nonfunctional spermatozoa develop into 

mature spermatozoa (fully capable of motility and fertilization) (Schulz and Miura, 
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2002; Miura and Miura, 2003; Welzien et al., 2004). The germ cells development is 

depending on close association with Sertoli cells. Sertoli cells enclosed the germ cells 

into so called spermatocyst. Each spermatocyst contains clone of germ cells that all are 

in the same stages of development (figure 2). Cell-Cell communication through gap 

junctions between Sertoli-Sertoli, Sertoli-germ and germ-germ cells in the 

spermatocyst is essential for the spermatogenesis. This junctional complexe does 

together with the basement membrane result in a blood-testis barrier, isolating the 

germ cells to a Sertoli cell determinated enviroment. The testis lobules are separated by 

connective tissue containing fibroblast, blood vessels and Leydig cells.  

Sex steroids play an important role several places in the spermatogenesis. E2 is part of 

the regulation of spermatogonia renewal, spermatogonial proliferation toward meiosis 

is promoted by 11-KT and sperm maturation is regulated by 17α,20 -P (MIS) (Miura 

and Miura, 2003). Figure 3 gives a simplified schematic diagram of hormone 

regulation through the BPG axis. 

Fig. 2. Cross-section of testicular lobule with spermatocysts (germ cells surrounded by Sertoli-cells) 

containg the different stades of sperm development. The number shows the chronological order in 

development. (Illustration: Stein H. Mortensen, IMR). 
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 Fig. 3. The reproductive system of fish and possible sites of action of contaminants. The brain-

pituitary-gonadal axis is aktivated by external stimuli (like temperature, photoperiod, pheromones, 

social behavere, etc) and internal stimuli (biological cloks, nutritional status, etc). The hormonal 

system is regulated by a series of complex feedback mechanisms between the organs involved. (Da = 

dopamine; GnRH = gonadotropin-releasing hormone; FSH = follicle-stimulating hormone; LH = 

luteinising hormone; E2 = 17β-Estradiol; T = testosterone; KT = 11-ketotestosterone; 17,20-βP = 

17 , 20β-dihydroxy-4-pregnen-3-one). Black – structures, red – hormones/neurotransmitter, green –

protein, blue – processes. 

1.3 Steroid biosynthesis 

The steroidogenesis is a complex process converting cholesterol into biological active 

steroids. The biosynthesis of steroid hormones is mainly happening in the gonads 

(ovaries and testes), the adrenals and the brain (Kime, 1987; Nagahama, 2000; 

Schumacher et al., 2003).  
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Figure 4 shows the biosynthesis pathways, even though it looks very complex it is only 

involving a small numbers of enzymes:  

 Desmolase/lyase that cleave the side chain between carbon 20 – 22 (P450scc = P450c11A) and 
carbon 17 – 20 (P450c17). 

 Hydroxylases that incorporate hydroxyl groups at different places (P45011β, P450c17, P450C21). 

 Hydroxysteroid dehydrogenase/oxidoredutase that oxidize hydroxyl-groups into keto-groups 
or reducing keto-groups to hydroxyl-groups (3β-HSD, 11β-HSD, 17β-HSD, 20β-HSD). 

 Aromatase that converts androgens into aromatic estrogens (P450arom = P450C19). 

 

The steroidogenic enzymes are located both in the mitochondria and in the 

endoplasmic reticulum and the synthesis involves transport between the different 

organelles. The rate-limiting step in the steroidogenesis is the transport of cholesterol 

between the outer and inner mitochondria membrane where the P450scc is located and 

the first conversion of cholesterol to pregnenolone takes place. Cholesterol cannot 

move over the intermembranal space by itself, but is actively transported by the 

steroidogenic acute regulatory (StAR) protein (Stocco and Clark, 1996).  

In the teleost gonads both the StAR and the steroidogenic enzymes are regulated by the 

GTHs (FSH and LH). The seasonal pattern of FSH and LH differ between different 

species (Hellqvist et al., 2006), but there are some common mechanisms. In female 

fish increasing secretion of GTH from the pituitary glands stimulates increased 

synthesis of sex steroids (E2, T) in the gonads. Plasma levels of E2 and T are rising 

during vitellogenesis and peaks just before the start of spawning. Changes in the GTH 

signal then create a shift in the steroidogenesis by down-regulation of P450arom and up-

regulating 20β-HSD, leading to a drop in E2 production and a rise in 17α,20β-P 

(inducing final maturation of the oocyte) (Senthilkumaran et al., 2004). Similar 

regulation of the steroid synthesis is also seen throughout the spermatogenesis (Schulz 

and Miura, 2002). The synthesis of E2 in the ovary is mediated by a two-cell system, 

where thecal cells in the outer follicular layer are converting cholesterol into T. T is 

secreted from the thecal cells and taken up by the granulosa cells in the inner follicular 

layer, where T is aromatized into E2 (Nagahama, 1994). In the testis, all steroid 

synthesis occurs in the Leydig cells.  
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Fig. 4. Biosynthesis pahtways of steroids in teleosts. Cholesterol is converted to pregnenolone by the 

enzyme (1) cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc). The other enzymes 

involved in the steroid synthesis are: (2) 3β-hydroxysteroid dehydrogenase (3β-HSD); (3) 17α-

hydroxylase/17,20 lyase (P450c17); (4) 21-hydroxylase (P450C21); (5) 11β-hydroxylase (P45011β); (6) 

20β-hydroxysteroid dehydrogenase (20β-HSD); (7) 17β-hydroxysteroid dehydrogenase-oxidoredutase 

(17β-HSD); (8) 11β-hydroxysteroid dehydrogenase (11β-HSD); (9) aromatase (P450arom). 
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1.4 Distribution and reproduction physiology of Atlantic cod 

There are a number of separated stocks of Atlantic cod spread all over the north 

Atlantic from the coast of Newfoundland Canada/USA in west to the Barents Sea in 

east. Atlantic cod is a cold-water species and the southern distribution limit is in the 

English Channel (ICES, 2005). The Arcto-Norwegian cod in the Barents Sea is the 

largest cod stock in the world and is one of the few stocks that are in reasonably good 

conditions. Many of the other cod stocks have experienced a dramatic decline since the 

late 1980s, and several stocks have collapsed and have problems recovering (Myers et 

al., 1996; Cook et al., 1997; Fu et al., 2001). In the Norwegian part of the Atlantic, the 

North Sea cod stock is now at a historically low size (Cook et al., 1997; Rice, 2006). 

The main factor of the collapse in the cod stocks is overfishing. However, there are 

speculation on whether ecosystem regime shifts, probably driven by climate changes, 

can be the reason for the lack of recovery that are observed (Gao, 2002; Beaugrand et 

al., 2003; Alheit et al., 2005). This study has been initiated by the question if pollution 

and especially endocrine disrupting chemicals (EDC) from the oil industry discharges 

play a role in the poor recruitment of the North Sea cod.  

The Atlantic cod is an asynchronous batch-spawner. The ovary of the cod contains 

therefore ooctyes at many different stages of development through out the oogenesis 

and the process of vitellogenesis, final maturation and ovulation are ongoing paralleled 

in the spawning period. Large cod can spawn 20 batches of eggs over a period of 6-8 

weeks from February to April (Kjesbu et al., 1996). The cod have small eggs and a 

very high fecundity. It is normal that large cod spawn more than 2 million eggs. The 

cod, as a species (or in local terms, as a stock) has a long spawning season of more 

than two months and sometimes as long as three months (Brander, 1993). However, in 

UK waters as many as two thirds of the eggs are spawned during a period of four to six 

weeks. The spawning season appears to be centred on the period of plankton blooms, 

with Calanus finmarchicus as an important species (Brander, 1994). It is important to 

ensure that as many eggs as possible will hatch at a time when the availability of food 
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and the level of predation are optimal, thus ensuring good larval survival (Ellertsen et 

al., 1986; Gotceitas et al., 1996). 

The photoperiod is considered the most important factor for the timing of the sexual 

maturation of the cod (Norberg et al., 2004). Vitellogenesis starts in October (Kjesbu 

and Holm, 1994) but the main oocyte growth phase is in the month just prior to 

spawning. As for other teleost species, the oocyte grow by taking up VTG, which is 

synthesized in the liver and regulated by E2 (Silversand et al., 1993). The steroid 

hormone levels in the plasma reflect well the timing of maturation and spawning of 

cod. In female cod, the E2 levels rise from < 1 ng/ml early in the vitellogenesis up to 

40 ng/ml prior to spawning. Testosterone follows a similar seasonal fluctuation as E2, 

but with lower concentrations (maximum 3-4 ng/ml) (Norberg et al., 2004).  Male fish 

mature earlier that the females and the males often have testis with running sperm 

many weeks before the spawning. The plasma levels of T and 11-KT are strongly 

correlated with testis growth (Dahle et al., 2003). 

Aquacultured cod mature much earlier than wild fish, and it is normal that farmed cod 

are first-time spawners at the age of 2 years due to optimal food conditions (Karlsen et 

al., 1995). Wild cod on the other hand mature between 4 and 8 years old (Norwegian 

coastal cod and Arcto-Norwegian cod, respectively) (Godo and Moksness, 1987). 

1.5 Effects of pollution on reproduction 

Aquatic pollution may have severe effects at several different levels in the reproductive 

cycle of fish (Kime, 1995). Since the beginning of the 90s there has been a sharp focus 

on hormone-disrupting substances. A large number of chemical compounds have been 

shown to “resemble” hormones or in other ways to affect the hormonal balance, thus 

disturbing natural reproductive processes. Chemicals with “estrogen mimicking” 

effects have caused most concern (Reviewed by (Arukwe and Goksoyr, 1998)). 

Growing attention is now also paid to other classes of hormones, such as the androgen 

system (Kelce and Wilson, 1997; Fang et al., 2003) and the thyroid hormones 
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(Oberdorster and Cheek, 2001; Brown et al., 2004). Among the xenobiotics that have 

been shown to have estrogen-disrupting effects (whether agonistic or antagonistic) we 

find APs, phthalates, bisphenol A, chlorinated hydrocarbons such as polychlorinated 

biphenyls (PCBs), dioxins and pesticides such as chlordane, dieldrin, DDT and its 

metabolite DDE (Arukwe and Goksoyr, 1998). 

The endocrine apparatus is a complex system with many factors and is therefore liable 

to suffer disturbances at many levels as described by the general definition of 

hormone-disrupting substances, i.e. that they are “exogenous agents that interferes with 

the production, release, transport, metabolism, binding, action or elimination of natural 

hormones” (Kavlock et al., 1996). 

The high degree of “plasticity” in the sexual development of fish results in the 

existence of “critical windows” in early life stages. During these periods fish are 

particularly sensitive to effects from EDCs. Even brief exposures or exposures to low 

concentrations may have important and irreversible consequences. This phenomenon is 

actively exploited in aquaculture in order to produce monosex fish cultures. Hormonal 

treatment of fish in aquaculture is forbidden in Norway, although it is widely used in 

many other countries. Hormonally controlled feminisation of a number of different 

species of fish is widely used. This is primarily carried out by treating eggs and/or 

larvae with estrogens (Piferrer, 2001). 

The sensitivity of early life stages to the effects of estrogen is also reflected in results 

from field works. The clearest evidence of hormonal disturbance in wild fish comes 

from reports of the feminisation of male fish, with findings of intersex/ovo-testis 

gonads (testis that contain morphological characteristics of female fish; i.e. 

hermaphroditism) in a number of freshwater fish species (Jobling and Tyler, 2003) and 

saltwater fish (Matthiessen, 2003).  

The yolk protein VTG is a sensitive biomarker, widely used in studies of the effects of 

estrogen mimics in fish. Even though VTG is a protein specific to female fish, males 

also possess all of the genetic system needed for VTG protein synthesis. Estrogen 
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induces VTG synthesis in the liver of both males and females, and a rise in the level of 

VTG can therefore be used as an indication of estrogen influence. Several studies have 

found increased VTG levels in wild male fish and in fish kept in cages in polluted 

areas. Most of these studies have been done on freshwater fish (Jobling and Tyler, 

2003). Abnormally high levels of VTG have also been found in saltwater fish: flounder 

(Platichthys flesus) caught off the British coast (Allen et al., 1999a; Allen et al., 1999b; 

Lye et al., 1997; Kirby et al., 2004; Kleinkauf et al., 2004) and near offshore 

installations in the UK sector of the North Sea (Matthiessen et al., 1998), flounder 

(Pleuronectes yokohamae) and goby (Acanthogobius flavimanus) caught in coastal 

areas around Japan (Hashimoto et al., 2000, Ohkubo et al., 2003), swordfish (Xiphias 

gladius) and red mullet (Mullus barbatus) in the Mediterranean (De Metrio et al., 

2003; Fossi et al., 2004; Martin-Skilton et al., 2006b) and cod from the North Sea 

(Scott et al., 2006). 

Unlike the great deal of interest that has been shown in estrogenic effects and 

feminisation of male fish, there are only a few reports of masculinizing effects on 

females. It is known that eels (Anguilla anguilla) are particularly sensitive to early 

exposure to environmental hormones, and it has been suggested that the high 

proportion of male eels that are found in European rivers is due to environmental 

factors (Beullens et al., 1997). It has also been shown that discharges of wastewater 

from papermills can contain substances with androgenic or anti-estrogenic effects 

(Bortone et al., 1989; Bortone and Cody, 1999; Bortone and Davis, 1994; Karels et al., 

1999; Hegrenes, 1999; Larsson et al., 2000). 

A few laboratory studies have shown that certain environmental toxins may interact 

with receptors for maturation-stimulating hormones, but there are no data from field 

studies that confirm this (Thomas et al., 1998; Das and Thomas, 1999; Thomas, 2000; 

Tokumoto et al., 2005). Similarly, there is little information in the literature regarding 

disruptions of the thyroid hormones in fish (Oberdorster and Cheek, 2001; Zhou et al., 

2000; Brown et al., 2004). 
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In spite of the relative comprehensive list of field studies given above a, most of the 

evidence for hormonal disturbances caused by hormone mimics is the result of 

laboratory studies. There has been some criticism of the fact that many of these studies 

have been carried out using unrealistically high concentrations in comparison with the 

concentrations that are actually found in nature (Cooper and Kavlock, 1997; 

Oberdorster and Cheek, 2001; Tyler et al., 1998). More field studies, and lower more 

realistic concentrations in the laboratory studies, as well as a sharper focus on long-

term effects have been called for. 

1.6 Alkylphenols in the aquatic environment. 

Most of the research in this field has dealt with the two long-chain APs nonylphenol 

(NP) and octylphenol (OP). These are derivatives of degradation products of the non-

ionic surfactants known as alkylphenol ethoxylates (APE). APE consist of an 

alkylphenol group, principally NP (82%) but also OP or dodecylphenol, coupled to 

long ethylene oxide chains (see (Nimrod and Benson, 1996b)). APE is and has been 

utilised in a large number of products, including herbicides, paint and industrial 

cleaning and degreasing agents (Naylor et al., 1992). APE is one of the most widely 

used surfactants in the world, with an annual production of around 500,000 tons 

(Renner, 1997). In Norway, the use of APE has been very limited, and has fallen 

significantly during the 90s, from 615 tons in 1995 to 113 tons in 2000 (www.SFT.no, 

2001). The use of NP, OP and their APEs has been forbidden in Norway since January 

2002 (www.miljoverndepartementet.no, 2001). The EuropeanUnion is also planning to 

forbid the use of these substances (Directive 2003-53-EC, 2003). The APE and APs 

are on the Oslo-Paris Commission’s (OSPAR) list of toxic chemicals, which ought to 

be phased out.  

The long-chain APEs have low toxicity and have no hormone-mimicking effects. 

However, they are broken down gradually and relatively rapidly in waste-treatment 

plants into the more resistant alkylphenol mono- and di-ethoxylates AP1E and AP2E 

http://www.miljoverndepartementet.no/
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and the short-chain carboxylic acid derivatives (the alkylphenol carboxylates AP1EC 

and AP2EC). These are in turn partly broken down into pure APs (Nimrod and 

Benson, 1996b). A large proportion of these degradation products finally end up in the 

aquatic environment. There have been concern about AP in environment for more than 

two decades (McLeese et al., 1981; Giger et al., 1984; Waldock and Thain, 1986), but 

the research and monitoring of AP was intensified in middle of the 1990es. NP and OP 

have now been found in a large number of freshwater systems all over the world, in 

water concentrations of up to 644 µg/l in particularly highly polluted areas, but with 

typical values from ng/l to the low µg/l range. In sediment, concentrations are found up 

to 60 mg/kg (Ying et al., 2002). 

The APs are transported by the rivers and eventually ends up in the marine 

environment. Measurements of seawater from coastal areas near cities and river 

estuaries have shown concentrations of up to 9 µg/l (table 1), while values from 

sediment samples can be as high as 15 mg/kg at exposed sites (table 2). The effuents 

from the great rivers are the main sources of AP into the oceans (Heemken et al., 2001; 

Stachel et al., 2003; Jonkers et al., 2005a). However, NP, OP and their APE have been 

found in atmospheric samples (Dachs et al., 1999; VanRy et al., 2000; Cincinelli et al., 

2003; Berkner et al., 2004; Xie et al., 2006). It is therefore also possible that air-sea 

exchanges contribute to distribution of AP into the sea (Xie et al., 2006). The 

concentrations of APs in the open sea are, as one should expect, much lower than in 

coastal areas. Kannan et al. (1998) found very low levels of NP in the Sea of Japan 

(0.002 - 0.093 ng/l), while measurement from the North Sea showed significantly 

higher values. In samples from the German Bight, NP and OP concentrations were 

found between 0.09 - 4.4 ng/l and 0.013-0.3 ng/l respectively (Bester et al., 2001; 

Heemken et al., 2001; Xie et al., 2006). In sediment, sampled more than 100 km 

offshore, concentrations up to 13 µg/kg NP were found (Bester et al., 2001). The 

concentration of NP in water from the Dutch coastal zone was found to be as high as 

1700 ng/l (median concentration 77 ng/l) (Jonkers et al., 2005b). 
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In addition to the long-chain OP and NP, there are a number of other APs that are used 

in industrial chemicals and also found in the environment (Remberger et al., 2003). 

2,6-Di-tert-butyl-4-methylphenol (butylated hydroxytoluene = BHT) is a commonly 

used antioxidant and stabiliser in large groups of products. BHT is found in river water 

in concentrations up to 365 ng/l (Kolpin et al., 2002; Fries and Puttmann, 2004) and in 

marine sediments around the coast of UK in concentrations up to 90 g/kg (CEFAS, 

2006). 4-tert-butylphenol (4-tert-BP) are widely used in paint, plastics, rubber and glue 

industry and is found in rivers and coastal areas in both water (up to 2300 ng/l) and 

sediments (up to 3.2 mg/kg) (Heemken et al., 2001; Kannan et al., 2001; Inoue et al., 

2002; Remberger et al., 2003; Uguz et al., 2003; Basheer et al., 2004; Brossa et al., 

2004; Kawaguchi et al., 2004; Koh et al., 2006). Other long-chain APs, 4-n-

pentylphenol (4-n-PP); 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP) 

are reported found in Japanese rivers (30-80 ng/l) (Inoue et al., 2002), coastal waters 

from Singapore (10-2920 ng/l) (Basheer et al., 2004) and 4-n-PP are found in the North 

Sea in concentration up to 8 ng/l (Heemken et al., 2001). 

APs are fully biologically degradable in water, but the degradation rate falls rapidly 

with increasing chain length. Brendehaug et al. (1992) measured the biological 

degradation of phenols in produced water diluted in seawater, and found that phenol 

and cresol (methylphenol) degraded very rapidly (only 0.1% remaining after one 

week), on the other hand, did 33% of the initial concentration of HexP and 60% of 

HepP still remained after one month (Brendehaug et al., 1992). NP also shows 

relatively high resistance to biodegradation. In lake water only 9 % was lost by 

microbial activity in a 57 days experiment (Lalah et al., 2003). Another study of the 

degradation of NP in seawater indicated a very slow rate at the beginning of the study 

(0.06% per day), but that the degradation rate increased rapidly after 28 days to 1% per 

day. This suggests that the microorganisms in the seawater adapt to NP as a substrate 

after a while. After 58 days, 50% of the original quantity of NP was still in the water 

(Ekelund et al., 1993).  
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 APs have high capability of sorption to colloidal particles (Johnson et al., 1998) and 

the primary sink for NP is the sediments. Ahel et al., (1994) found that sediment 

concentrations were up to 5100 times higher than the concentrations in river water. In 

addition to high sedimentation rates it is also important that the degradation rate can be 

very low in surface sediments (Lalah et al., 2003). In anaerobic conditions deeper in 

the sediment core, the degradation is extremely slow and analysis of sediments cores 

can give information of the historical discharges of AP (Shang et al., 1999b; Isobe et 

al., 2001; Hashimoto et al., 2005; Heim et al., 2006; Koh et al., 2006).  Profiling the 

NP distributions in sediment cores from Tokyo Bay showed a maximum of NP in the 

layer deposited around the mid-1970s (Isobe et al., 2001, Hashimoto et al., 2005). 

Similarly maximum NP concentrations were found in 1972 sediment cores from 

Venice Lagoon, Italy (Marcomini et al., 2000). Also in Yeongil Bay, Korea, was the 

highest sendiment concentrations found in sediment cores from 1971-1980 (Koh et al., 

2006). This kind of investigation can track sedimentation of NP all the way back to 

1920s in Venice Lagoon, Italy (Marcomini et al., 2000) and 1950s in Tokyo Bay 

(Isobe et al., 2001).  

It is clear that APs (especially NP and OP) are widely distributed in the aquatic 

enviroment. Analyses of sediment cores from different time periodss show a declining 

trend in NP concentrations, indicating that the discharges to the enviroment are 

decreasing. Because APs are biodegradable, the potential environmental problems 

caused by these substances can disappear in a relatively short time when (if) the 

production and use of APEs are phased out. There are big differences in the view on 

AP legislation around the world, the European Union wants to reduce and ban the use 

of these substances (Directive 2003-53-EC, 2003; OSPAR Commission, 2004), while 

APEs are still widely used in the USA (Renner, 1997).  Increasing use in Asia is also 

causing concern (Zhou et al., 2003). 
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Table 1. Concentration of NP and OP (ng/l) in marine and estuarine waters around the World. 

Location NP OP Reference 
Venice lagoon, Italy 200  (Marcomini et al., 1989) 
Krka River estuary, Croatia <20-1200  (Kvestak and Ahel, 1994) 
Tyne and Tees estuaries, UK <80-5200 <100-1300 (Blackburn and Waldock, 1995)  
Sea of Japan 0.002 - 0.093  (Kannan et al., 1998) 
Tyne and Tees estuaries, UK 30-9050 2-340 (Lye et al., 1999) 
Shipyards in Virginia, USA 1.0–6300  (Hale et al., 2000) 
North Sea, Germany 1-33  (Bester et al., 2001) 
Jamaica Bay, USA 77-416 1.6-8.3 (Ferguson et al., 2001) 
North Sea, Germany 0.3-84 0.1-16 (Heemken et al., 2001) 
The coast of Spain 150-4100  (Petrovic et al., 2002b) 
Tokyo Bay, Japan 10-100  (Hando et al., 2003) 
The coast of China 1-10  (Hando et al., 2003) 
San Francisco estuary, USA <0.25-4  (Oros et al., 2003) 
Costal water from Singapore 200-2760 10-540 (Basheer et al., 2004) 
Coastal area, Okinawa and Ishigaki Islands, Japan <50-150  (Kawahata et al., 2004)  
Tokyo Bay, Japan 0.5-104  (Hashimoto et al., 2005) 
Baltic Sea, Germany 2.5-13.8 0.4-0.95 (Beck et al., 2005) 
Scheldt and Rhine estuaries, Holland 12-962  (Jonkers et al., 2005a) 
North Sea, Holland 31-1700  (Jonkers et al., 2005b) 
Ariake sea, Japan 11-49  (Kim et al., 2005) 
Saemangeum Bay, Korea 7-298  (Li et al., 2005) 
North Sea, Germany 0.09-1.4 0.013-0.3 (Xie et al., 2006) 
 
Table 2. Concentration of NP and OP (μg/kg dry weight) in marine surface sediments around the 

world. 

Location NP OP Reference 
Barcelona, Spain 6-70  (Chalaux et al., 1994) 
Nile estuary, Egypt 19-44  (Chalaux et al., 1994) 
10 estruaries, UK <100-15000  (Blackburn et al., 1999) 
Masam Bay, Korea 113-3890  (Khim et al., 1999) 
Tyne and Tees estuaries, UK 30-9050 2-340 (Lye et al., 1999) 
Strait of Georgia, British Columbia, Canada 280-320  (Shang et al., 1999a) 
Jamaica Bay, USA 7-13700 <2-45 (Ferguson et al., 2001) 
Shipyards in Virginia, USA 0.5–14100  (Hale et al., 2000) 
Tokyo Bay, Japan 30-13000 3-670 (Isobe et al., 2001) 
North Sea, Germany <10-153  (Bester et al., 2001) 
Elbe estuary, Germany 370-480  (Heemken et al., 2001) 
The coast of Spain 8-1050  (Petrovic et al., 2002b) 
Delaware river estuary, USA 0.14-13  (Ashley et al., 2003) 
Coastal area, Okinawa and Ishigaki Islands, Japan <5-44  (Kawahata et al., 2004)  
Urdaibai estuary, Spain 140-1100  (Bartolome et al., 2005) 
Pearl River estuary and South China Sea, China 59-571 1-18 (Chen et al., 2005) 
Scheldt and Rhine estuaries, Holland 3-1026  (Jonkers et al., 2005a) 
North Sea, Holland 0.3-86  (Jonkers et al., 2005b) 
Tokyo Bay, Japan 2-4560  (Hashimoto et al., 2005) 
Bohai Bay, Japan 203  (Hu et al., 2005) 
Southern California bight, USA 122-3200 <2-8 (Schlenk et al., 2005) 
The coast of UK <10-5888 <10-530 (CEFAS, 2006) 
Yeongil Bay, Korea 2-1430 <1-24 (Koh et al., 2006) 
Odense fjord, Denmark 800-3300  (Madsen et al., 2006) 



1.7 Alkylphenols and offshore oil and gas production 

Historically, large quantities of APE have been used in offshore petroleum production, 

both as detergents for platform washing purposes and as additives in the production 

process. Blackburn et al., (1999) suggest that discharges on the British continental 

shelf may have been as much as 100 tons a year per platform. NP and NPE are found 

in high concentrations (up to 68 mg/kg) in the sediments around North Sea platforms 

(CEFAS, 2005, Jonkers et al., 2005b). The use of APE is now forbidden in the 

Norwegian sector of the North Sea (letter from SFT to all operators on the Norwegian 

shelf, dated 31.08.98). The Danish and UK authorities are also working on phasing out 

APE in their sectors of the North Sea (Lye, 2000). 

In addition to being degradation products of the APEs, APs are natural components of 

crude oil (Ioppolo-Armanios et al., 1992, Ioppolo-Armanios et al., 1995, Taylor et al., 

1997, Rolfes and Andersson, 2001, Bastow et al., 2005). As a result of their solubility 

in water, a high proportion of APs will be found in the aqueous phase after water/oil 

separation and discharged into the sea with the produced water. The APs are typically 

found in concentrations of 0.6 - 10.0 mg/l in produced water. About 80 % of the total 

amount consists of the most water-soluble APs (phenol and cresol). Of the remaining 

components, the higher APs from BP - to HepP occur in low concentrations of 0.07 - 

237 µg/l (Grahl-Nielsen, 1987; Brendehaug et al., 1992; Røe and Johnsen, 1996; 

Boitsov et al., 2004).  

It is showed that produced water contains estrogen receptor agonists and APs have 

been identified to be the major contributor to this effect (Thomas et al., 2004a; Thomas 

et al., 2004b; Tollefsen et al., 2006). In vitro screening have found estrogen equivalents 

form <0.03 – 91 ng E2 /l in produced water from different installations in the UK 

sector of the North Sea (Thomas et al., 2004a). 

Very little is known about the fate of these substances in the marine offshore 

environment. There are no empirical data on concentrations of long-chain APs in the 
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sea around North Sea offshore installations. One study showed that phenol and 

lighter APs (C1–C4) occur at the concentrations of 486 and 140 ng/l, respectively 

(Riksheim and Johnsen, 1994). The discharges of produced water from the Norwegian 

petroleum sector are continuously increasing with the age of the oil fields, and were in 

2004 143 million m3. In 2004, approximately 13 tons of long-chain (≥C4) APs were 

released from installations on the Norwegian continental shelf in connection with 

discharge of produced water (OLF, 2005). 

1.8 Bioconcentration of alkylphenols 

NP and OP are both bioconcentrated and have been identified in aquatic organisms in 

nature. Ahel et al. (1993) found concentrations of NP of up to 1600 µg/kg (dry weight) 

in various freshwater fish in Swiss rivers. NP has been found in carp (Cyprinus carpio) 

caught in Lake Mead, Nevada (up to 184 µg/kg) (Snyder et al., 2001a) and in 

Cuyahoga River, Ohio (32-920 μg/kg) (Rice et al., 2003).  Fish from various lakes in 

Michigan, USA had tissue concentrations of <3.3 to 29.1 µg/kg NP (Keith et al., 

2001). Fish from Japanese rivers have been shown to contain from 1 - 110 µg/kg NP 

(Tsuda et al., 2000b) and similar concentrations are also found in periphytons, 8-130 

µg/kg NP and benthos, 8-140 µg/kg NP (Takahashi et al., 2003). Lower levels NP 

were found in fish from Chinese rivers (up to 2 μg/kg) (Shao et al., 2005). Breams 

(Abramis Brama) caught in German rivers contain up to 130 μg/kg NP (Klein et al., 

2005). Retrospective monitoring of APs in aquatic biota (from the German 

Environmental Specimen Bank) from 1985 to 2001 shows a decrease of NP 

concentration in biota from all sampling sites after 1997, the NP content in mussels 

from the German Bight dropped from 4 μg/kg in 1985 to 1.1 μg/kg in 1995 (Gunther et 

al., 2001; Wenzel et al., 2004). Wahlberg et al., (1990) found between 200 and 400 

µg/kg NP in mussels gathered from the sea near the wastewater outlet of a Swedish 

plant that produced APE. Molluscs, crustaceans and fish from the Adriatic Sea, Italy, 

contained 9.5-1431 µg/kg NP and 0.3-4.3 µg/kg OP (Ferrara et al., 2001; Ferrara et al., 

2005). NP and OP were found in the bile of red mullet from the Franch coast of the 
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Mediterranean Sea (Martin-Skilton et al., 2006b). Flounders caught in brackish water 

outside the rivers Tyne and Tees in England have been shown to contain 5 - 118 µg/kg 

NP (Lye et al., 1999). NP was not found (above a detection threshold of 100 µg/kg) in 

fish caught in the British offshore sector of the North Sea (Blackburn et al., 1999). 

Apart from one special case in the Detroit River in the USA, where large amounts of 

2,4 di-tert-pentylphenol were found (Shiraishi et al., 1989), all the studies of APs of 

which we are aware of concerned OP and NP. We have found no field studies that 

have analysed petroleum-related APs. 

APs are a highly diverse group of substances in terms of their physico-chemical 

properties. The water solubility of phenol and the short-chain APs are high, but falls 

drastically with increasing chain length and therefore increasing hydrophobicity. Table 

3 presents an overview of three important physico-chemical properties of importance 

for the behavior of these substances in the environment, aqueous solubility, the 

logarithm of the water/octanol partitition coefficient (Kow) and the bioconcentration 

factor (BCF). A number of studies have shown that OP and NP are readily taken up by 

fish, both via exposure in the water (Lewis and Lech, 1996; Arukwe et al., 2000b; 

Ferreira-Leach and Hill, 2001; Pedersen and Hill, 2002; Pickford et al., 2003) and by 

the food (Thibaut et al., 1998b; Arukwe et al., 2000b; Madsen et al., 2002; Pickford et 

al., 2003; Madsen et al., 2006). The APs are rapidly metabolised, mainly by phase II 

enzymes that conjugate intact APs to their corresponding glucuronides. The APs are 

excreted primarily in the bile and faeces (Ferreira-Leach and Hill, 2001; Thibaut et al., 

2002; Smith and Hill, 2004). The APs accumulate particularly in the bile, digestive 

system and liver, but it has also been shown that AP is taken up by the brain in Atlantic 

salmon (salmo salar) (Arukwe et al., 2000b), rainbow Trout (Oncorhynchus Mykiss) 

(Ferreira-Leach and Hill, 2001; Thibaut et al., 2002), roach (Rutilus rutilus) (Smith and 

Hill, 2004) and cod (Tollefsen et al., 1998). This is of particular interest with respect to 

hormone-disrupting effects in the central-nervous-system. Studies with PCB have 

shown that cod (lean fish) are more likely than trout (fat fish) to accumulate lipophilic 

compounds in the brain (Ingebrigtsen et al., 1990). 
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Arukwe et al. (2000) have compared tissue distributions of NP in salmon following 

two different exposure regimes, via the water and via food. They found that dosing in 

the water results in higher uptake and a more regular distribution throughout the body 

than oral dosing, where NPs are more concentrated around the digestive system. 

Similarly, Pickford et al. (2003) found a 10 fold higher sensitivity for NP in fish 

exposed via the water compared to oral exposure of corresponding doses.  

The bioaccumulation factor (BCF) for long-chain APs (>C4) is in the range of 75 - 

1250 (Table 3). In fish, the biological uptake of chemicals with log Kow < 4 (logarithm 

of the octanol/water partitition coefficient) mainly takes place via the water 

(theoretically 20 times as fast as uptake via food). For more hydrophobic substances 

with log Kow > 6, the situation is reversed, with uptake via food being more important 

(Mackay and Fraser, 2000). As far as the APs are concerned, this means that 

bioaccumulation in nature properly takes place primarily via uptake through the gills 

and skin and not by being biomagnified through the food chain. However, little is 

known about the metabolism of these compounds in organisms that belong to the lower 

end of the food chain. High BCFs have been reported for NP in estuarine amphipods 

and this indicates that biomagnification can be an important source of NP in higher 

trophic levels, such as juvenile fish (Hecht et al., 2004). 
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Table 3. Selection of physicochemical properties of APs that may have relevance for their 

environmental fate. Aqueous solubility, the logarithm of the water/octanol partitition coefficient (Kow) 

and the bioconcentration factor (BCF1). The overview is from (Shiu et al., 1994, Servos, 1999) 
 Water solubility 

(mg/l) 
Log Kow BCF in fish Species Reference 

Phenol 67000-93325 1,46-1,6 17-158 Div. fish (Servos, 1999) 
p-Cresol 1800-53000 1,62-2,06 -  (Servos, 1999) 
4-Ethylphenol 5000 2,39-2,58 -  (Servos, 1999) 
4-n-Propylphenol 1278 3,18-3,20 -  (Servos, 1999) 
4-sec-BP - 2,1 37 Salmon (McLeese et al., 1981) 
4-tert-BP 580-1848 3,04-3,31 118 Golden Ide (Freitag et al., 1985) 
   125 Cod (Sundt and Baussant, 2003) 
4-n-PP - - 90 Cod (Sundt and Baussant, 2003) 
4-HexP - 3,60 346 Salmon (McLeese et al., 1981) 
   592 Cod (Sundt and Baussant, 2003) 
4-n-HepP - 4,00 578 Cod (Tollefsen et al., 1998) 
   520 Cod (Sundt and Baussant, 2003) 
4-tert-OP 12,6 4,12 261 

1134 
Killifish 
Roach 

(Tsuda et al., 2001) 
(Ferreira-Leach and Hill, 2000) 

4-NP 5,4-7 4,20-6,36 75-1250 Div. fish (Servos, 1999) 
1) The Bioconcentration Factor (BCF) is the relationship between the concentration in the fish and 
the concentration in the water; and describes only uptake via gills and skin (Mackay and Fraser, 2000). 

1.9 Estrogen receptor (ER) and the binding affinities of 
alkylphenols to ER. 

The steroid hormone, E2 is a key regulator of growth, differentiation and physiological 

functions in a wide number of target tissues, including the male and female 

reproductive system, neuronal, skeletal and cardiovascular systems. The predominating 

mechanisms of estrogen action are mediated through binding to the nuclear estrogen 

receptor (ER), which induces transcription of target genes containing estrogen 

response element (ERE) (Zhang and Trudeau, 2006). The ER is part of a large nuclear 

receptor superfamily that shares common structure and function/domains. This 

receptor family acts as the signal transmitter for most of the known fat-soluble 

hormones, including steroids (androgen receptor, (AR); progesterone receptor, 

glucocorticoid receptor, mineralocorticoid receptor), retinoids, thyroid hormones and 

vitamin D (Mangelsdorf et al., 1995). Other groups of nuclear receptors, so called 

“Orphan” receptors (the ligands are unknown), pregnane X-receptor (PXR) and 
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constitutive androstane receptor (CAR) are regulating some of the cytochrome P450 

genes and other detoxification genes, (Kretschmer and Baldwin, 2005).  

In addition to the classical mechanism of genomic effects there are also increasing 

evidence for non genomic effects of E2 and other steroids, possible mediated through 

membrane receptors and secondary messenger cascades (such as release of 

intracellular Ca2+, mitogen activated protein kinase (MAPK), protein kinase A (PKA) 

and C (PKC), phospholipase C (PLC), phosphoinositide turnover and adenylate cylase 

(cAMP)) (Sak and Everaus, 2004, Zhang and Trudeau, 2006). The genomic effect has 

time delays from hours to days, while the non-genomic mechanism are characterised 

by very fast signal transmission, from seconds to minutes. Two novel seven-

transmembrane spanning steroid membrane receptors, membrane progestin receptor α 

and membrane estrogen receptor (mER), GRP30, have resently been identified in 

several vertebrates (Thomas et al., 2006). 

In mammals, there have been found two distint forms of nuclear estrogen receptors, 

ERα and ERβ (Enmark and Gustafsson, 1999). Teleosts have in addition to ERα, two 

different forms of ERβ (ERβa and Erβb) (Hawkins et al., 2000; Menuet et al., 2002; 

Hawkins and Thomas, 2004; Sabo-Attwood et al., 2004). The tissue distribution in 

teleost of the different ERs largely overlaps, and ERs are mainly found in the brain, 

pituitary gland, liver and gonads (Menuet et al., 2002). There are reported differences 

in the relative affinity of AP between the ERα and Erβ. In channel catfish, NP showed 

100-fold lower affinity for ERα and 10000-fold lower affinity for ERβ than for E2 

(Gale et al., 2004). On the other hand, difference in NP affinity to the two ERs in an 

assay using recombinant human ERα and ERβ, was not observed (Kuiper et al., 1998). 

The capability of synthetic non-steroid compounds to bind and activate the ER have 

been known for more than 70 years (Cook et al., 1933).  Dodds and Lawson, (1938) 

found that among many others compounds, also 4-tert-PP and 4-n-propylphenol had 

weak estrogenic effects measured by changes in vaginal cytology in ovariectomized 

rats. The estrogenicity of APs were further studied by Mueller and Kim, (1978) and 

many AP isomers were showed to be able to bind and displace E2 from the ER. But it 
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was first in the beginning of the 1990es, after Soto et al., (1991) had rediscovered the 

estrogenic effects of NP that the scientific community started the massive focus that 

have made this group of compounds some of the most intensively studied endocrine 

disruptors. 

Amino acid sequence of the ER and the crystal structures of the E2–ER complex (see 

figure 5) have together with quantitative structure – activity relationship (QSAR) study 

of antagonists identified several criteria for high binding affinity to the ER: (1) 

Phenolic ring with hydrogen-bonding ability; (2) H-bond donor mimicking the 17β-

OH and right O-O distance between 3- and 17β-OH; (3) Hydrophobic moiety 

mimicking the ring structure of E2 (Brzozowski et al., 1997; Sadler et al., 1998; 

Schmieder et al., 2000; Tanenbaum et al., 1998; Fang et al., 2001; Klopman and 

Chakravarti, 2003; Tong et al., 2003). 

 

Fig 5. A). Model of the ERα-ligand binding domain holding E2. The specific binding domain of the 

ER is holding the 3-hydroxy-group of E2 in a water (W) mediated hydrogen-bonding network 

involving glutamic acid (Glu), arginine (Arg) and phenylalanine (Phe). The 17-hydroxy-group of E2 

is bound by hydrogen bonds to histidine (His). In addition, the ligand-binding pocket is covered with 

hydrophobic amino acids making van der Waals contacts with the carbon skeleton of E2. The figure 

are taken from the crystal structure of the E2 complex with the human ERα (Tanenbaum et al., 1998). 

B). Chemical structure of the four alkylphenols used in this study: 4-tert-butylphenol (4-tert-BP), 4-n-

pentylphenol (4-n-PP), 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP).  
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Beacause of the phenol ring, APs fulfil the must important criteria for binding to the 

ER. APs do also have the capability of hydrophobic interaction by the alkyl-chain, but 

as seen on figure 5B the APs are lacking other important structures, like hydrogen-

bond donor capability mimicking the 17β-OH of E2. The APs have therefore relatively 

low affinity to the ER.  

In vitro studies (table 4) have found that the size and degree of the branching of the 

alkyl chain, as well as its position relative to the phenolic hydroxy-group are important 

for binding affinity to the ER. The most vital factor for high estrogenic activity of APs 

are that the alkyl chain is in the para-position (para>meta>ortho) and that the chain-

length is ≥ C6. Maximum activity (400 - 6000 times less potent than E2) has been 

found for C6 – C9 para-substituted tertiary APs, but para-substituted C5, C4 and C3 APs 

are also have weak estrogenic effects (105 - 107 times less potent than E2) (table 5). 

Routledge and Sumpter, (1997) found that the tertiary isomers have the highest 

estrogenic effects (tertiary>secondary=normal), and that 4-tert-OP is 60 times more 

potent than 4-sec-OP. Similarly 4-tert-HepP is 25 times more potent than 4-n-HepP, 

while 4-n-PP on the other hand is three times more potent than 4-tert-PP. Other 

investigations confirm that tertiary isomers are more potent than the normal isomers, 

but with less difference than found by Routledge and Sumptor (1997). 4-tert-OP was 

2-10 times more potent than 4-n-OP (Tabira et al., 1999; Blair et al., 2000; Schultz et 

al., 2000). However, the structure of the carbon chain is important. A recent study has 

examined the estrogenic effects of the alkyl chain of 22 isomers of 4-NP in detail. 

They found that high “bulkiness” on the β-carbon was the most important factor for the 

high estrogenic activity and that the activity could differ as much as 3000 times 

between the most and the least potent 4-NP (Shioji et al., 2006).  

In vivo studies also suggest that the estrogenicity of branched APs is higher than that of 
linear isomers (Pedersen et al., 1999; Chikae et al., 2003).
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Table 4. Estrogen receptor (ER) binding affinities of APs. The most potent isomers are given in bold. 

IC50 value: the concentration of competitor needed to displace half of the bound ligand. 

 
1) (Routledge 
and Sumpter, 

1997) 

2) (Tabira et 
al., 1999) 

3) (Blair et 
al., 2000) 

2) 
(Schmieder et 

al., 2000) 

1) (Schultz et 
al., 2000) 

2) (Hu and 
Aizawa, 
2003) 

Compound Relativ to E2 IC50 (M) IC50 (M) IC50 (M) IC50 (M) IC50 (M) 

E2 1 2.1 x 10 -9 9.0 x 10 -10 - 3.9 x 10 -11 2.3 x 10 -8 

4-dodecylphenol - 2.0 x 10 -4 4.6 x 10 -6 9.3 x 10 -4 - - 
4-sec-decylphenol 1/100000 - - 7.6 x 10 -6 - - 
2-sec-decylphenol Nonactive - - Nonactive - - 

4-NP 1/30000 3.7 x 10 -6 2.4 x 10 –6 _ 
4.7 x 10 -6 3.4 x 10 -6 - - 

4-n-NP - 4.2 x 10 -6 2.8 x 10 -5 - - 9.5 x 10 -6 
4-tert-OP 1/1000 6.3 x 10 -6 6.0 x 10 -6 1.1 x 10 -7 1.8 x 10 -7 1.4 x 10 -5 
4-sec-OP 1/60000 - - - - - 
4-n-OP - 1.0 x 10 -5 1.9 x 10 -5 - 1.9 x 10 -6 - 

2.6-di-butylphenol Nonactive - - Nonactive - - 
2.4-di-butylphenol Nonactive - - - - - 

4-tert-HepP 1/3000 - - 2.6 x 10 -7 - - 
4-n-HepP 1/75000 - - 9.8 x 10 -6 - - 

4-tert-HexP 1/6000 - - 5.8 x 10 -7 - - 
4-n-HexP - 1.7 x 10 -5 - - - - 
4-tert-PP 1/100000 - 1.7 x 10 -4 3.1 x 10 -6 4.8 x 10 -6 - 
4-n-PP 1/30000 - - 1.3 x 10 -5 9.5 x 10 -6 - 

4-tert-BP 1/1500000 - 3.7 x 10 -4 1.6 x 10 -4 - 1.0 x 10 -3 
3-tert-BP Nonactive - - Nonactive - - 
2-tert-BP Nonactive - - Nonactive - - 
4-sec-BP 1/3900000 - 2.1 x 10 -4 3.9 x 10 -4 - 5.8 x 10 -4 
2-sec-BP - - 3.2 x 10 -4 Nonactive - 1.4 x 10 -3 
4-n-BP - 8.5 x 10 -5 - - - - 

4-n-Propylphenol 1/20000000 - - 2.2 x 10 -3 1.5 x 10 -4 - 
4-Ethylphenol Nonactive 6.0 x 10 -3 1.3 x 10 -3 - Nonactive 1.7 x 10 -3 
3-Ethylphenol - - 6.6 x 10 -4 - - - 
2-Ethylphenol - - > 1.0 x 10 -3 - - - 

Phenol Nonactive 2.9 x 10 -3 - - - 9.5 x 10 -2 
1 Recombinat Yeast assay (YES screen) 
2 Estrogen receptor competitive-binding assay (Recombinant human oestrogen receptor. hERa) 
3 Estrogen receptor competitive-binding assay (ER from uterine cytosol from Sprague-Dawley rats) 
 

In addition to be an agonist for the ER, APs have also been shown to interfere with 

several other classes of nuclear receptors. Even though this is not well investigated and 

the results are not as consistent as for effects on the ER, it tells us that AP can act as a 
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endocrine disruptor in a much broader way than only being an estrogen mimic 

(Goksoyr and Male, 2006).  

4-tert-OP (IC50=5 x 10-6 M) and NP (IC50=2.6 x 10-6 M) are potent antagonists for AR 

and can induce anti-androgen effects (Paris et al., 2002; Lee et al., 2003a). On the 

contrary, Sohoni and Sumpter, (1998) found NP to be a weak agonist to AR. It is also 

reported that NP and 4-tert-OP can be both agonists to PR (Scippo et al., 2004) or PR 

antagonist (Tran et al., 1996). The thyroid hormone function can be disrupted by APs 

(Ghisari and Bonefeld-Jorgensen, 2005; Schmutzler et al., 2004). The two orphan 

nuclear receptors that are involved in regulation of several detoxifications enzymes are 

also target for AP endocrine disruption, NP is agonist for PXR and CAR (Masuyama et 

al., 2000, Mikamo et al., 2003, Kretschmer and Baldwin, 2005). 

There are also evidence for NP to induce similar effects as E2 via membrane initiated 

signalling pathways (Loomis and Thomas, 2000; Bulayeva and Watson, 2004; Watson 

et al., 2005; Wozniak et al., 2005; Thomas and Dong, 2006). The binding affinity of 

AP to the nuclear ER is about 1000 times weaker than E2, but the effect-concentration 

of the membrane initiated effect seems to the more equal for E2 and NP. Intracellular 

Ca2+ changes are induced in pituitary tumor cell lines by 10-12 M of both E2 and NP 

within 30 sec of administration, resulting in prolactin (PRL) secretion (Wozniak et al., 

2005). Thomas and Dong, (2006) found that NP binds 47 times weaker than E2 to 

plasma membranes prepared from HEK293 cells transfected with the seven-

transmembrane estrogen receptor, GPR30. 

1.10 Estrogen-receptor mediated and receptor-independent 
mechanisms for the biological effects of alkylphenols 

Numerous in vitro screening systems have been developed to characterise the binding 

affinity of chemicals to ER (reviewed in (Zacharewski, 1997; Soto et al., 2006)). APs 

are shown to bind and induce effects through ER, similar to E2. It has also been shown 

that the effects can be blocked by ER antagonists like tamoxifen or ICI 182,780. The 
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variety of assays used in studying the estrogenic effects of APs includes: competitive 

ER binding assay (White et al., 1994); cell proliferation assay, (e.g. E-screen (MCF7-

cells) (Soto et al., 1995)); protein expression assay, (e.g. VTG expression in fish 

hepatocyte culture (Jobling and Sumpter, 1993)); recombinant assays, (e.g. yeast-based 

screen (YES-screen) (Routledge and Sumpter, 1996) and cell lines (Shelby et al., 

1996)).  

Recent developments in screening for xenoestrogenic effects are by use of 

toxicogenomics (Moggs, 2005) where cDNA microarrays containing multiple 

estrogen-responsive genes can be used both in vitro and in vivo (Terasaka et al., 2004; 

Naciff et al., 2005; Terasaka et al., 2006). Such approache clearly show the complexity 

in estrogen signalling and the disturbers therein. Moggs (2005) reported as many as 

3538 genes to be E2-responsive in the mouse uterus, and through gene ontology, the 

genes are categorised into 35 different biological partways. Toxicogenomics have an 

enormous potential in providing detailed information regarding the molecular response 

to xenoestrogens and revealing new biomarkers. Microarray analysis of gene 

expression profiles in mouse exposed for NP or E2 reveal tissue differences in 

response to E2 and xenobiotics. The gene expression in the gonade was very similar 

after E2 and NP exposure, indicating that these effects mainly are induced through the 

ER or other estrogen receptors. Gene expression in liver, on the other hand was more 

affected by NP than by E2 and activation of many genes involved in lipid and fatty 

acids metabolism were only found in the NP groups (Watanabe et al., 2004). 

Undoubtedly, the “omics” technologies (Genomics, proteomics, metabolomics, 

lipomics) will also play a very important role in the future for studying endocrine 

disruption in fish and other aquatic organisms. Today there is still some limitation in 

that the genome is only sequenced in very few teleosts, but smaller scale DNA 

microarrays are now available for several model species (Miracle and Ankley, 2005; 

Moens et al., 2006; Watanabe and Iguchi, 2006). However, the challenge for this 

approach is the same as for all other use of biomarkers; to create bridges between 

information of gene expression to physiological and toxicological endpoints that can 
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be used to extrapolate the effect to fitness of individuals and populations. (“Fitness = 

the relative contribution of an allele, genotype or phenotype to future generations” 

Wikipedia, the free encyclopedia). 

The following chapters give an overview of different physiological events affected by 

AP exposure. 

 

1.10.1 Effect of AP on sex differentiation and gonad development. 

In non-mammalian vertebrates the genotypic sex can be overridden by exposure to 

steroid hormones and the sex differentiation are therefore vulnerable to EDC. Exposure 

to AP in the early life stages of fishes (Gimeno et al., 1996; Gray and Metcalfe, 1997) 

and amphibians (Kloas et al., 1999; Mosconi et al., 2002) can induce feminization of 

males and result in intersexuality or higher number of female phenotypes.  

AP are stimulating estrogen-dependent uterine growth in rodents (Bicknell et al., 

1995). The rat uterotrophic bioassay is validated as “standard in vivo method” for 

screening of xenobiotics by the Organisation for Economic Co-operation and 

Development (OECD). The lowest observed effect level (LOEL) in the uterotrophic 

assay is found to be 75 mg/kg/day for NP (Kanno et al., 2003; Owens and Koeter, 

2003). Testis development in rats can also be affected by AP, and reduction in testis 

growth and induction of apoptosis have been reported (Han et al., 2004b; Kim et al., 

2004). NP induced apoptosis in rat testis in a similar way as E2 does through the 

FAS/FASL Pathway (Wang et al., 2003; Han et al., 2004a). Apoptosis is also induced 

by NP and OP in human embryonic stem cells, and these effects are also related to the 

FAS/FASL Pathway (Kim et al., 2006b). The FAS-signalling pathway is important in 

the paracrine-signalling system between Sertoli cells and germ cells (Richburg et al., 

2002). In addition to the FAS/FASL pathway, apoptosis can also be induced by a 

variety of other signal transitions leading to stimulation of calcium flux, cAMP 

production, PLC activation, inositol phosphate generation and mitochondrial 
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membrane transition pore permeability. OP and NP also induce apoptosis in Sertoli 

cell lines by inhibiting endoplasmic reticulum Ca+ pumps (Hughes et al., 2000).  

Even though the evidences that AP give endocrine disruption in mammalian 

reproductive tracts are clear, it is important to note that the in vivo effects are only seen 

at relative high doses. Multigenerational studies with rats show a “no observable 

adverse effect level” (NOAEL) of NP > 100 mg/kg/day for effect on the reproduction 

development, (Chapin et al., 1999; Nagao et al., 2001; Tyl et al., 2006). 

The reproductive system of fish seems more sensitive for AP exposure than that of the 

mammalians. Concentrations down to 5 μg/l levels of NP or OP are inhibiting the 

spermatogenesis of male fish, resulting in reduced testis growth, trigging of necrosis 

and apoptosis and altertion of testis morphology (Jobling et al., 1996; Gimeno et al., 

1998; MilesRichardson et al., 1999; Weber et al., 2002). The oogenesis in the female 

fish is also affected by APs, but at higher dose than what is seen for the male fish. As 

example, 100 μg/l NP reduces the ovary weight and increases follicle atresia in 

zebrafish (Weber et al., 2003). End point like fertilization success from life cycle tests 

with zebrafish comfirm the high teleost sensibility for AP, EC50 values = 28 μg/l for 4-

tert-OP (Segner et al., 2003b).  

1.10.2 Effect of AP on brain and the central-nervous-system (CNS). 

Estrogens are one of many neuroactive steroids and play a vital role in many 

neurophysiologic events such as the sexual differentiation and early development of 

the brain; feedback effect on brain-pituitary-gonad axis; higher cognitive functions like 

behavior, memory, etc.; and have neuroprotective effects. (McEwen, 2002; Melcangi 

and Panzica, 2006). The multiple effects are found mediated both by nuclear ER 

receptors and membrane signalling pathways. However, much are still not known and 

there are increasing discoveries of new targets and mechanisms of estrogen effects to 

the CNS (Toran-Allerand, 2004; Ronnekleiv and Kelly, 2005).  
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A particular attention has been put on APs and neuroendocrine disturbances on the 

brain-pituitary-gonadal axis in fish (Jones et al., 1998; Piva and Martini, 1998; Harris 

et al., 2001; van Baal et al., 2000; Zilberstein et al., 2000; Yadetie and Male, 2002; 

Maeng et al., 2005; Vetillard and Bailhache, 2006). The underlying mechanisms of the 

effects of AP on the GnRH and GTH are still unknown and the literature demonstrates 

contradictory effects in different fish species; Harris et al. (2001) found that NP 

reduces the expression of FSH gene in the pituitary gland and FSH secretion to the 

plasma in water exposed female rainbow trout, even at very low concentrations (they 

found a significant effect at the lowest exposure dose; 0.7 µg/l). Similarly, the quantity 

of LH-mRNA is reduced in the pituitary gland on exposure to NP (8.3 µg/l) (Harris et 

al., 2001). As opposed to this, Yadetie and Male (2002) stated that intraperitoneal 

injection of NP (50 mg/kg) strongly induces gene expression of LH in female juvenile 

Atlantic salmon pituitary gland. No effects were seen in male fish. The gene 

expression of FSH was unaffected in both sexes (Yadetie and Male, 2002). Injection of 

low dose (10 mg/kg) of NP induced the GTHα and LHβ mRNA levels in the pituitary 

gland of juvenile masu salmon (Oncorhynchus masou). A high dose (50 mg/kg) did, 

however, not induce this effect on GTHα and LHβ mRNA, but did instead slightly 

reduce FSHβ mRNA levels (Maeng et al., 2005). Tilapia (Oreochromis niloticus) 

showed a suppressed expression of FSH mRNA, but not LH mRNA in the pituitary 

gland after 5 weeks water exposure to NP (10 µg/l) (Zilberstein et al., 2000). In 

African catfish (Clarias garipinus) the amount of LH (protein) was increased in the 

pituitary gland of both sexes, but not in plasma after 7-14 days water exposure of NP 

(10 µg/l) (van Baal et al., 2000). In vitro studies showed an inhibitory effect of NP on 

the secretion of LH from African catfish cultured pituitary cells (van Baal et al., 2000). 

Water esposure of NP (2.2 µg/l to 2.2 mg/l) reduced GnRH in the brain of juvenile 

rainbow trout in a dose dependent manner (Vetillard and Bailhache, 2006). 

The effects from AP on the CNS may be mediated through mimicking estrogenic 

feedback effects. In general, E2 (and other sex steroids) is known to exert positive 

feedback effects on LH levels, but there is species related variation. The feedback 
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control of E2 on FSH levels is much less clear, and both positive, negative or no 

effects are reported from juvenile teleost (Dufour et al., 2000: Kah et al. 2000). It is 

important to recognize that estrogen often shows reproductive stage-dependent effects 

on the gonadotropin secretion (Thomas, 2000).  

Bevan et al., (2003) found a high increase of apoptotic cells in the nervous systems of 

developing tadpoles (Xenopus laevis) after low NP exposure (100 nM). This 

observation is also correlated with increased morphological deformations and high 

mortality. Stimulation of apoptosis by NP exposure are also found in embryonic 

murine neural stem cells (NSC) (Kudo et al., 2004). NP disturbs the cell cycle of NSC 

by accumulation of cells in the G2/M phase by down-regulation the expression of 

cyclin A and B1, which are the major regulatory proteins for the G2 to M transition of 

the cell cycle. The NP exposure can also lead to apoptosis of NSCs by activating the 

caspase cascade (Kudo et al., 2004). Apoptosis is also suggested as the mechanism for 

reduction in tyrosine hydroxylase active cells in the brain of neonatal rats exposed for 

4-n-OP. The effects are thought to explain the hyperactivity behavior in exposed rats 

(Ishido et al., 2004).   

On the contrary, NP can also disturb the neuronal functions by stimulating the 

synthesis of catecholamine (dopamine, epinephrine and norepinephrine) in bovine 

adrenal medullary cells after increased tyrosine hydroxylase activity (Yanagihara et al., 

2005). The effects were not inhibited by ER antagonist (ICI182,780) or protein 

synthesis inhibitors (actinomycin D and cycloheximide), suggesting that NP stimulates 

tyrosine hydroxylase and catecholamine synthesis in a nongenomic manner. This was 

confirmed by the finding of effects of short-term treatment (10 min), and the authors 

suggest that activation of MAP kinase system induces the effects. Behavioral studies 

show that NP exposure has effects on fear response in rats. This is probably induced 

through alterations of the catecholamine systems (Negishi et al., 2004). 

The neurotransmitter acetylcholine can also be affected by AP exposure, both by 

inhibition of acetylcholinesterase activity (Talorete et al., 2001) and modulation of the 
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nicotinic acetylcholine receptor (Nakazawa and Ohno, 2001) or the muscarinic 

acetylcholine receptor (Jones et al., 1998). 

The focus on AP as a environmental problem have mainly been for the para-

substituated APs, but the APs found in crude oil and in produced water contains a large 

number of isomers (Ioppolo-Armanios et al., 1995). It may therefore be interesting to 

draw attention to the ortho-substituated APs. Propofol  is the name of the widely used 

intravenous general anaesthetic, 2,6-diisopropylphenol. Propofol  has an inhibitory 

effect on the neurotransmiter γ-aminobutyric acid (GABA) by binding to the GABAA 

receptor, a property in common with many other general anaesthetics (Trapani et al., 

2000). Similar effects are found with other ortho-substituted AP analogues to 2,6-

diisopropylphenol, like 2,6-dimethylphenol, 2,6-diethylphenol etc. Also mono ortho-

substituted isomers like 2-isopropylphenol show such effects (Krasowski et al., 2001a; 

Krasowski et al., 2001b). No studies on the effects of ortho-substituted APs in wild life 

were found in the literature. However, when working with complex mixtures of AP, 

one should keep in mind that other isomers than para-substituted can also have 

specific biological effects at low concentrations. 

1.10.3 Effects of AP on biosynthesis and metabolism of steroids. 

In addition to affecting the steroid biosynthesis indirectly through the GTH and the 

brain-pituitary-gonadal axis, APs can also act directly on steroidogenesis enzymes.  

In vitro studies with Leydig cells from rats show that 4-tert-OP has a biphasic effect on 

T biosynthesis, with induction of T synthesis at low concentrations (1 and 10 nM) and 

a reduction of T synthesis at high concentrations (100 - 2000 nM). By using different 

steroid precursors like 22(R)-hydroxycholesterol, pregnenolone, progesterone and 

androstenedione as substrate for the T synthesis, inhibitory effects of OP were shown 

early in the biosynthesis of P450scc, 3β-HSD and P450c17, but not 17β-HSD, (the 

enzyme that converts androstenedione to T). No similar effect was seen with E2 and 

the effects of OP were not inhibited by ER antagonist (ICE 182,780), demonstrating 
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that these effects are not modulated through the ER (Murono et al., 1999; Murono et 

al., 2001). NP are also found to decrease T synthesis by inhibiting P450C17 in vitro in 

cells from rat testis, but only minimal effects were seen on T-dependent endpoints in 

vivo (Laurenzana et al., 2002a). 4-tert-PP, 4-tert-OP and 4-NP are inhibiting P450scc 

and the hydroxylases (P45011β, P450c17, P450C21) in human andrenocortical H295R 

cells, resulting in a decrease in cortisol secretion (Nakajin et al., 2001). In microsomes 

from carp testis, NP had no effects on 17β-HSD, but increased 20β-HSD activity 

dramatically and induced production of MIS (17α,20 -P) (Thibaut and Porte, 2004). 

Expression of  P45011β mRNA was completely inhibited in the testis of medaka 

(Oryzias latipes) exposed to  ≥ 413 µg/l 4-tert-PP (Yokota et al., 2005). Similar 

inhibition of P45011β mRNA is found in the brain of salmon exposed to NP (Arukwe, 

2005). The same study also found induction of StAR protein mRNA and P450scc in the 

brain of NP exposed salmon, showing a possible stimulation of the early steps of the 

steroid synthesis (Chapter 1.3). Several studies have found that NP are inducing 

aromatase (P450arom) mRNA expression in the brain (Kazeto et al., 2003; Kazeto et al., 

2004; Meucci and Arukwe, 2006a) and the liver (Min et al., 2003), but not in the gonad 

(Kazeto et al., 2004) of fish.  

Beside effects on the biosynthesis, an increase or a reduction of the metabolic 

elimination rate can also alter the steroid levels. NP is an agonist of the PXR and the 

CAR, and may therefore alter several phase I, II and III enzymes that are impotant for 

the metabolism of natural steroids (Masuyama et al., 2000; Mikamo et al., 2003; 

Kretschmer and Baldwin, 2005; Meucci and Arukwe, 2006b). PXR and CAR are 

regulating many important phase I cytochrome P450 enzymes (CYP2A, CYP2B, 

CYP2C and CYP3A), phase II enzymes, like uridine diphospho-

glucuronosyltransferases (UDPGT), glutathione-S-transferases (GST) and 

sulfotransferases (SULT), and phase III transporters (multidrug resistance proteins that 

are active in transporting polar metabolites across the membranes for excretion). NP 

exposure increases the hepatic microsomal progesterone hydroxylase activity and 

CYP3A proteins in rat liver (Lee et al., 1996). Gender-specific induction of 
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cytochrome P450s is seen in NP treated mice. NP exposure increase expression of 

CYP1B subfamily members in both males and females, but CYP3A is exclusive down 

regulated in the females and CYP2A is induced only in the males (Hernandez et al., 

2006). Arukwe et al., (1997a) found that low levels of NP induce steroid hydroxylase 

activity, but high doses inhibit the activity in vivo in juvenile Atlantic salmon. They 

also found a reduction in CYP1A, CYK2K-like and CYP3A-like proteins in the 

highest exposed group (125 mg NP/kg) together with reduction in UDPGT activity. 

Jurgella et al., (2006) demonstrated that NP (100 M) did not effects E2 metabolism in 

neither liver nor kidny tissue from lake trout (Salvelinus namaycuch). OP (100 M) 

inhibit E2 metabolism in the liver tissue but not in kidney tissue. As seen from this 

discussion is it not clear if AP increase or decrease steroid metabolism, some 

investigations have found increased metabolism (Baldwin et al., 2005), other have 

found reduction or no effects (Laurenzana et al., 2002b; Vaccaro et al., 2005; Jurgella 

et al., 2006).  

The effects of APs on the steroidogenic or metabolic enzymes, either by direct 

inhibition or by altering the gene-expression and protein synthesis (up or down) may 

affect the seasonal pattern of steroids that is so important for synchronising all the 

reproductive events. Induction of P450arom can increase the production of E2, and 

unnatural high levels of E2 have been reported in juvenile male flounders (Mills et al. 

2001), male and female fathead minnow (Giesy et al. 2000) exposed to OP and NP. 

Offspring of NP exposed rainbow trout had increased levels of E2 in males and T in 

females, even though the offspring were grown in clean water for 3 years (Schwaiger 

et al., 2002). However, reduction in E2 and other steroids in plasma have also been 

reported as results of AP exposure. Arukwe et al. (1997) found a reduction in the 

plasma levels of E2 in juvenile Atlantic salmon at relatively low AP concentrations (1 

and 5 mg/kg, injected into the abdomen) but found no effect at higher concentrations 

(25 and 125 mg/kg). Female rainbow trout exposed to NP has reduced E2 

concentration in plasma, but only at the high doses (85.6 µg/l) (Harris et al. 2001). NP 

exposure reduced androgen and estrogen levels in plasma and testis of juvenile male 



 48 

turbot, while no effect was found in female turbot (Labadie and Budzinski, 2006). In 

the same study, the amount of glucoronidated steroids in the bile was reduced in male 

fish, indicating that the drop in steroid concentration was not a result of increased 

metabolism. 

 

The effects of AP on the steroidogenesis are rather contradictory and several studies 

find biphasic responses with different doses. However, a lack of a linear dose-response 

relationship is typical for the steroid system where the nature of the response often is 

different with low and high doses of steroids. For example, low doses of E2 and 

testosterone stimulate the secretion of gonadotropin in fish, while is inhibited by high 

doses (Jalabert et al. 2000).  

1.10.4 Effects of AP on the immune system 

Estrogen plays an important role in the immune system and are involved in 

differentiation and maturation of T-cells in the thymus and B cells in the bone marrow, 

and has other immunoregulatory properties as secretion of cytokines and production of 

antibodies (Sakazaki et al., 2002).  NP have been found to mimic estrogenic effects on 

the immune system like inhibition of lymphocyte mitogenesis (Sakazaki et al., 2002) 

and to induce thymocyte apoptosis (probably by the FAS/FASL pathway) (Yao and 

Hou, 2004, Yao et al., 2005, Yao et al., 2006). NP inhibit lipopolysaccharide induced 

nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in mouse 

macrophages (You et al., 2002, Hong et al., 2004). 4-tert-OP increases the production 

of the pro-inflammatory cytokine, interleukin-4 in T-cells. The effect was blocked by a 

calcineurin inhibitor, FK506, but not by the ER antagonist ICI 182.780, showing that 

the effect was activated by the Ca2+-calcineurin partway independent of ER (Lee et al., 

2003b, Lee et al., 2004). NP is found in vitro to have inhibiting effects on one of the 

key enzymes, cyclooxygenase-1 (COX-1), that converts arachidonic acid (20:4 n-6) to 

prostaglandines. This can also affect the immune system since prostaglandins play a 
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central role in regulation of inflammation, together with many other physiological 

processes (Fujimoto et al., 2005). Multi generation exposure experiments on rats show 

that NP alters the activity of splenic natural killer cell and increases the numbers of 

splenocyte subpopulations in second generation (F1), while no effect was seen in first 

generation, (F0) (Karrow et al., 2004). NP has also myelotoxic potency in F1 male rats 

(Guo et al., 2005). The expermints found that the effects on the immune system were 

gender-specific. Although we not are aware of any studies on effects of AP on the 

immune responses in teleost, AP may probly also interact with the immune systems of 

fish.  

1.10.5 AP induction of oxidative stress and DNA damage. 

Ortho-substituted APs have good antioxidant properties because of the ability to 

stabilise free radicals and thereby reduce autooxidation. BHT is a well known 

antioxidant. A side effect of the anaesthetic, 2,6-diisopropylphenol (propofol ) is also 

that it protect cells against oxidative stress (De la Cruz et al., 1999). Many other 

phenolic compounds also have antioxidant properties, including estrogen. It has been 

suggested that the neuroprotective effects that are found for estrogens are mediated by 

antioxidant activity, even though it is not likely to be the most important mechanism 

(Amantea et al., 2005). As for most antioxidants, phenols can have the opposite pro-

oxidant effect leading to production of reactive oxygen species (ROS), such as 

hydrogen peroxide (H2O2) and superoxide anion (O2
-), and induction of lipid 

autooxidation. There is several defence systems that can be activated for protection 

against oxidative stress: glutathione, glutathione peroxidases, superoxide dismutase 

(SOD) and catalase (CAT). NP exposure of male rats is found to increase H2O2 

generation and lipid peroxidation in the sperm. This increase in oxidative stress is 

over-activating the antioxidant defense systems, resulting in reduced activity of CAT, 

SOD, glutathione peroxidase and glutathione reductase (Chitra et al., 2002). Formation 

of hydroxy radicals is also found in rat striatum (Obata and Kubota, 2000) and rat 

Sertoli cells (Gong and Han, 2006) after NP exposure . The NP induced inhibition of 
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cell growth in bacteria and yeast cultures can be suppressed by adding antioxidants 

showing that the NP effects possibly are associated with ROS generation (Okai et al., 

2000a, Okai et al., 2000b).  Similar does DJ-1 (a protein having anti-oxidative 

function) protect against NP induced cell death in cultured medaka cells (Li et al., 

2006). 

Both estrogens and APs can be metabolized to catechols, phenoxyl radicals, o-

quinones, and semiquinone radicals, all of which could cause damage to cells through 

alkylation or oxidation of cellular macromolecules including DNA (Krol and Bolton, 

1997; Schweigert et al., 2001; Bolton, 2002). DNA damages can in the ultimate 

consequences lead to cancer. Studies of biotransformation show that the majority of 

NP are rapidly conjugated at the phenol group by glucuronidase followed by excreted 

through the bile (Lewis and Lech, 1996). But small amounts of AP are also oxidated to 

catechols, and covalently bound residues are found in trout (1.7 % of the total labelled 

NP) and in rudd (Scardinius erythrophtalmus) (12-62 % of total 4-tert-OP) (Coldham 

et al., 1998, Pedersen and Hill, 2000). 

The metabolism of AP into reactive metabolites shows a potential for DNA damage. 

However, NP is not carcinogenic by itself (Sakai, 2001). NP are, on the other hand, 

shown to promote rat lung carcinogenesis, possibly via mechanisms involving DNA 

damage caused by ROS (Seike et al., 2003). Absence of promoting effects by NP have 

been seen in other carcinogenesis models, like thyroid carcinogenesis (Son et al., 

2000b, Son et al., 2000a), and prostate carcinogenesis (Inaguma et al., 2004). Even 

inhibitory effects of NP are reported for rat ovarian carcinogenesis (Tanaka et al., 

2002) and 4-n-OP and NP are reducing mammary tumor development (Han et al., 

2002). DNA damages in human sperm and lymphocytes after NP exposure have been 

found by the Comet assay (Anderson et al., 2003). DNA damage after 4-n-NP 

exposure is found in larvae of barnacle, an aquatic invertebrate (Atienzar et al., 2002).  

Exposure of turbot to 30 μg/l NP for 3 weeks did not give chromosomal damage, 

determined as micronuclei frequency in the fish erythrocytes. On the other hand, a 

mixture of North Sea oil + APs (oil related isomers) , induced a very high micronuclei 
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frequency showing genotoxicity (Bolognesi et al., 2006). 24 hours exposure to high 

doses of NP (890 μg/l) to juvenile sea bass induced erythrocytic nuclear abnormalities 

(Teles et al., 2004).  

1.10.6 Effects of AP on the cell membrane 

Evidence of APs as membrane active compounds including membrane swelling, 

increase in fluidity, lowering of the phase transition temperature and increased ion 

permeability have been established from two intensively studied APs: the antioxidant 

BHT (Lanigan and Yamarik, 2002) and the intravenous anaesthetic Propofol  (Singer, 

1977; James and Glen, 1980; Tsuchiya, 2001). There are also good support of para-

substituted long-chain APs can be related to membrane effects that are independent of 

the estrogenic pathways. NP provokes vesiculation of the Golgi apparatus of epidermis 

cells from fish at concentration of 20 μM (Lamche and BurkhardtHolm, 2000). 

Similarly, 4-tert-BP and 4-tert-OP cause formation of lipid droplets and other changes 

in Leydig cell membrane structures of rats (Haavisto et al., 2003). Schwaiger et al., 

(2000) suggest that anaemia found in NP exposed fish is a consequence of an 

interaction between NP and the erythrocyte membrane. NP increases membrane 

permeability of mitochondria membranes to protons and act therefore as an uncoupler 

of the oxidative phosphorylation (Bragadin et al., 1999). Mitochondrial depolarization 

by NP has also been suggested as one of the mechanisms behind NP induced 

thymocyte apoptosis (Yao et al., 2006). Several investigations have shown that APs 

disrupt Ca2+ homeostasis by affecting Ca2+ membrane channels (Michelangeli et al., 

1990; Beeler and Gable, 1993; Ruehlmann et al., 1998; Hughes et al., 2000; Logan-

Smith et al., 2002; Kirk et al., 2003; Khan et al., 2003; Lee et al., 2003b; Walsh et al., 

2005; Wang et al., 2005). Gap junctional intercellular communication is reduced in 

murine Sertoli cell line by NP, the effect is partly explained by reduction in 

phosphorylation of connexin 43 (Aravindakshan and Cyr, 2005), but the gap junction 

may also be affected by changes in the membrane lipid bilayer (Cascio, 2005).  
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1.10.7 Alkylphenols and their potential effects on fish reproduction and 
recruritment. 

As discussed in the previous chapters is it quite clear that APs can interfere with a 

large number of biological pathways. There are particularly good evidence from 

laboratory studies that AP can induce endocrine disruption and alter the reproduction 

in fish, and there are also many indications that NP in combinations with other EDCs 

are involved in reproductive disruption in wild freshwater fish (Jobling and Tyler, 

2003) and marine fish (Matthiessen, 2003). Linking the impacts of EDCs with effects 

on population levels is however still lacking and is one of the largest challenges within 

this scientific field (Mills and Chichester, 2005).   

Table 8 (Appendix 1) gives an overview of 176 in vivo laboratory studies that have 

been investigating effects of APs on teleost fish. The majority of the literature is 

related to freshwater fish and the toxicology model species dominate, with Cyprinids 

(zebrafish, fathead minnow, sheephead minnow and goldfish), Salmonides (trout and 

salmons) and Beloniformes (medaka) constituting for more than 60 % of the total 

reports. It is therefore clear that our knowledge of the effects of ECDs on teleost only 

cover a limited number of the more than 24000 different teleost. Especially, there is 

lacking information on endocrine disruption on marine fish, even though the numbers 

of reports are increasing rapidly.  

Table 8 lists the species, exposure regime and lowest effect concentrations for the 

different effect parameters, including: toxicity data (lethal dose), growth inhibition, 

inappropriate production of VTG in male and juvenile fish, inhibited ovarian or 

testicular development (lower GSI), abnormal blood steroid concentrations, up 

regulation of ER, alteration in pituitary hormones, alteration in sterodogenisis 

enzymes, intersexuality and/or feminisation of the gonads, skewed sex ratio, changes 

in male and/or female maturation, increased ovarian atresia, decreased sexual 

behaviour in males, reduced spawning success, reduced hatching success and/or larval 

survival, altered growth and malformations in early development. Some of these 

measurements can directly be correlated to adverse endpoints like survival, growth, 
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morphological development and reproduction. These endpoints tell about the fitness 

of the individual and the effect concentrations can be transferred into “predicted no 

effect concentrations values” (PNECs) necessary for modelling the risk for damages on 

population levels. On the other hand, many of the biomarkers are not easily linked to 

adverse effects. 

Many of the studies on the effects of APs on fish are short-time experiments presenting 

results with different biomarkers. These experiments are very useful in identifying 

which compounds that are having endocrine disruption effects and it can give 

mechanistic information, but it is difficult to transfer results from such studies into 

fitness parameters. One example; APs induce VTG in fish at doses down to 0.1-5 μg/l 

(Jobling et al., 1996; Fent et al., 2000; Hemmer et al., 2001; Kashiwada et al., 2002). 

Induction of VTG is the most used estrogen specific biomarker, because of its very 

high sensitivity and clear link to estrogenic effects. However, the relationship between 

VTG induction and adverse effects on fish reproduction is unclear. Pathological effects 

in liver and kidney have been seen in connection with very high VTG induction after 

exposure of high potent estrogens like E2 or ethynylestradiol (Herman and Kincaid, 

1988; Folmar et al., 2001; Palace et al., 2002), but these effects are found after million-

fold increase of VTG, resulting in plasma concentrations at the high mg/ml levels. 

Exposure to weak xenoestrogens like APs is mostly resulting in lower-level induction 

of VTG and the impact of this is not well defined (Mills and Chichester, 2005). 

The optimal experimental design for EDC testing is full life-cycle tests, where 

multiendpoints are used for investigation of both developmental and reproductive 

effects. In these tests, the fish are exposed from embryos till the stages of sexual 

maturation and through the spawning periods. In some cases also multigenerational 

studies are preformed and the exposure is continued on the second generation. Of 

practical reasons, full life-cycle tests have only been done on small fish with short 

generation time (≤ 4 month) like the zebrafish, fathead minnow and medaka. However, 

even with small laboratory fish that mature rapidly, full-life toxicity tests require very 

long experiment time and are very costly and work intensive. Therefore most studies 
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are done by partial life-cycle test, where the experiments focus on special sensitive 

periods in the fish life. Embryonic and larval development, especially during the 

critical stages of sexual differentiation and gonadal development, has received much 

attention. Similarly, many experiments with adult fish are done in the time of 

vitellogenisis and gonadal maturation. 

The lethal concentrations (LC) of NP are found to be between 18-940 μg/l for different 

species and developmental stages. New hatched fish larvae are most sensitive for the 

acute toxicity of AP, while the LC for juvenile and adult fish are over 100 μg/l for NP 

(table 7). 

Full-life-cycle test shows that NP and OP exposure reduces the reproduction potential 

in zebrafish at 28-100 μg/l (Hill and Janz, 2003; Segner et al., 2003b) and in medaka at 

2-50 μg/l (Gray and Metcalfe, 1997; Gray et al., 1999b; Yokota et al., 2001; Knorr and 

Braunbeck, 2002; Seki et al., 2003b), while the AP with shorter chain length, like 4-

tert-PP are less potent, inducing reproduction disturbance around 200 μg/l both in 

medaka (Seki et al., 2003b) and fathead minnow (Panter et al., 2006). These effect 

concentrations are in good agreement with the results from partial life-cycle tests, but 

there are some differences in sensitivity between different species. The lowest adverse 

effect concentrations reported in the literature are in rainbow trout. Lahnsteiner et al. 

(2005) found that 60 days of exposure to 750 ng/l NP completely inhibits male semen 

production and doses down to 130 ng/l NP significant reduced semen production.  

As discussed in Chapter 1.6 NP is found in freshwater systems, mostly in the 

concentration range ng/l to the low µg/l, but up to 644 μg/l in highly polluted areas. In 

seawater the concentrations are lower, from low ng/l to 9 μg/l. The environmental 

water concentrations correspond well with reported levels of NP found in wild 

freshwater fish, being of the order 1-1600 μg/kg, in view of the fact that the BCF are 

reported to occur from 75-1250 (table 3). As seen here NP is found at exposed sites in 

the natural environment at concentrations high enough for adverse effects on fish to 

occur, but the majority of the measurements are below the known PNEC values. It has 
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been suggested that APs in the marine environment are partly responsible for 

testicular abnormalities and VTG induction in male flounder (Platichthys flesus) from 

the UK estuary (Lye et al., 1999), but no clear evidence is available. It is important to 

note that real environmental exposure will always be a complex mixture of many 

different compounds, never APs alone. Nevertheless, there have been several attempts 

to use the available toxicological data to risk assessment. Brown et al (2003, 2005) 

have estimated that long-time exposure (20 years) to 30 μg/l NP could lead to severe 

decline in population levels of freshwater fish. The U.S. Environmental Protection 

Agency estimated that NPs PNEC values for freshwater organisms is 28 μg/l (acute 

toxicity) and 6.6 μg/l (chronic toxicity) and NPs PNEC values for saltwater organisms 

are 7 μg/l (acute toxicity) and 1.7 μg/l (chronic toxicity) (EPA, 2005). These PNEC 

values agree with those of Staples et al. (2004) who estimated the chronic effect value 

of NP to be 5.7 μg/l.  

1.11 Analytical methods for determination of alkylphenol in 
biological tissue and produced water. 

APs can be analyzed with different chromatographic and electrophoresis methods 

(reviewed in (Lee, 1999, Petrovic et al., 2002a)). For analysis of the whole profile of 

individual isomers of Aps, gas chromatography (GC) is preferred because of the high-

resolution power. Many are analysing phenols directly without derivatisation both with 

GC-FID (Ioppolo-Armanios et al., 1992; Chee et al., 1996; Lye et al., 1999) or GC-MS 

(Giger et al., 1981; Bhatt et al., 1992; Wheeler et al., 1997; Gunther et al., 2001; 

Espejo et al., 2002). 

The APs contain an “active” hydrogen atom and are therefore often converted to 

thermally stable and less polar compounds to improve their chromatographic 

performance before GC. Most of the derivatization methods are used together with 

GC-MS or for the halogenated derivatives with GC-ECD as the detectors. Many 

different derivatization techniques are used for GC these involve: Akylation to methyl 
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ethers (Bolz et al., 2000, Fiamegos et al., 2003), 3,5-bis(trifluromethyl)benzyl ethers 

(Cheung and Wells, 1997), pentaflurobenzyl ethers (Chalaux et al., 1994; Nakamura et 

al., 2000; Doerge et al., 2002) and 4-tetrafluoropyridyl derivatives (Kojima et al., 

2003); silylation to trimethylsilyl ethers (Heberer and Stan, 1997; Mol et al., 2000; Li 

et al., 2001; Guenther et al., 2002). There are also several arylation based 

derivatization methods of phenols. Among the most used methods are acetylation 

(Llompart et al., 1997; Louter et al., 1997; Croley and Lynn, 1998) and 

pentafluorobenzoyl derivatization  (McCallum and Armstrong, 1973; Renberg, 1981; 

Granmo et al., 1986; Wahlberg et al., 1990; Bao et al., 1996; Kuch and Ballschmiter, 

2001; Xiao et al., 2001; Bianchi et al., 2002). Other not so common arylation methods 

are determination of phenols in crude oil as ferrocenecarboxylic acid esters using GC 

withatomic emission detection (Rolfes and Andersson, 2001) and extractive 

derivatization of phenols in oil produced water with methylchloroformat (Grahl-

Nielsen and Landgren-Skjellerudsveen, 1982).  

Table 9 (Appendix 2) gives an overview of different methods developed for analysing 

AP in biota samples, and table 10 (Appendix 2) shows methods for AP analysis in 

produced water.  
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2. Aims of the Thesis 

The work in this thesis is a part of a strategic work at the Institut of Marine Research, 

which aim to develop a variety of methods to be used in investigating potential 

endocrine disruption in Atlantic cod. The main concern that initiated the project were 

whether discharges of APs from the oil industry give endocrine disruption in Atlantic 

cod and thereby effect the reproduction and recruitment of cod and other species in the 

North Sea. 

 

 The major aims of this thesis are: 

 Development of analytical methods for determination of low levels of APs in 

produced water and fish tissue (Paper I, Paper II) 

 To study long-term effects of selected para-substituted APs (4-tert-BP, 4-n-PP, 

4-n-HexP; 4-n-HepP) on the reproduction of male and female cod. The 

objective of this investigation has been to study a wide spectra of biological end 

points (growth and morphological development), biomarkers (GSI, plasma 

steroids, VTG and gonad histology) (Paper III, Paper IV), effects on the redox 

status (glutathione and glutathione-related enzymes) (Paper V), effects on the 

hepatic CYP1A and CYP3A protein expressions and enzyme activities (Paper 

VI) and effects on the phospholipids in the liver and brain (Paper VII) of AP 

exposed cod. 
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4. General discussion 

4.1 Analytical methods for determination of alkylphenols in 
produced water and biological tissues  

The aim of the analytical chemistry study was to develop selective and sensitive 

methods for determination of APs, from phenol to NP, in produced water (Paper I) 

and biota samples (Paper II). 

Establishment of analytical methods has three main challenges. 

1. Extraction of target compounds.  

2. Sample Clean-up to remove matrix effects. 

3. Sensitive and selective analysis. 

Different techniques for all of the above parts of the method development have been 

tested.  

Extraction of target compounds. 

For the biota analysis, cyclic steam-distillation was the first extraction technique 

tested. This method was originally developed by Veith and Kiwus (1977) for pesticide 

analysis in water, sediments and biota. The method uses a water distillation to 

concentrate the analytes and the condensated steam is extracted with a small amount of 

organic solvent in a special apparatus, before it is transferred back to the distillation 

chamber. This method have also been used to investigate AP levels in biota (Ahel et 

al., 1993; Lye et al., 1999; Gunther et al., 2001; Keith et al., 2001; Snyder et al., 

2001a). However, even extensive attempts to optimize the steam distillation with out-

salting, pH adjustment and extraction time did not make this method work satisfactory 

for AP spiked cod liver samples. At the best, only an AP recovery of 30% was 

obtained. It was therefore concluded that steam distillation extraction not is a suitable 
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method for extraction of APs in extremly lipid-rich samples like cod liver. The focus 

was thereafter subjected to liquid-liquid extraction and dichloromethane (DCM) was 

found to be a good solvent for the biota samples with recovery 67-90 % (Paper II). 

The extraction of AP in produced water was done with solid-phases extraction (SPE). 

Three different SPE cartridges were tested (500 mg superclean envi-chromp columns 

(supelco), 200 mg Oasis® HBL and 150 mg Oasis® MAX columns (Waters)). All three 

cartridges contants polymers of styrene-divinyl, this type of sorbents has been shown 

to possess better extraction abilities than other typically used ons (e.g. C18) (Liu et al., 

2004). The MAX column contains quaternary amino groups bound in the styrene-

divinyl polymers, this give these cartridges the ability to extract both acidic and 

hydrophopic compounds. Oasis Max column were used further because they gave the 

highest recovery and the purest extracts (Paper I). 

Sample clean-up. 

Biological samples have a very complex matrix containing a high amount of lipids, 

proteins, etc. Therefore, purification of the extracts is usually necessary. The lipids 

from the biota extracts were effectively removed by gel permeation chromatography 

(GPC). It was found that a columns switch method using two GPC columns removed 

more than 98 % of the lipids in the extracts (Paper II) and that thise were satisfactory 

for GC-MS analysis. The produced water extracts from the Oasis® MAX columns was 

so clean that it did not need any additionally clean-up before derivatisation (Paper I).  

There were problems with background contamination of APs, especially from 4-NP in 

the procedure blanks. It seems that some APs are widely spread in most indoor 

environments (Rudel et al., 2003) and phenol and para-substituted APs (p-cresol, 4-

tert-BP and 4-NP) are intensively used in plastics industry (Cascaval et al., 1996). In 

our work, 4-NP was found in most of the plastic and rubber products used in the 

laboratory, including vinyl gloves, rubber stoppers for glass funnels and plastic tubes 

used for the nitrogen evaporator.  However, despite a significant effort to avoid these 

problems, we still detect small amounts of phenol, cresols, 4-tert-BP, 4-tert-OP and 4-

NP in the blank samples. It is therefore important to have a good and intensive control 
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of procedural blanks. The trace amounts of APs in blank samples increase the risk of 

false positive results and the levels of contaminants may limit the use of the analytical 

method (Paper II). 

Analysis. 

Pentafluorobenzoyl derivatisation was selected for the studies, being a sensitive and 

selective method for the derivatisation of APs for GC-ECD and GC-MS (McCallum 

and Armstrong, 1973, Renberg, 1981). The derivatisation methods were optimised by 

the use of factorial experimental designs. Our results show that pentafluorobenzoyl 

derivatisation is a good and robust method for analysing meta- and para-substituted 

APs. The variations of the 7 parameters tested had no significant influence on the 

recovery of the long chain para-substituted APs, but the ortho-substituted and most 

water-soluble APs were significantly affected. The recoveries of the ortho-substituted 

APs were low. For the most sterically hindered APs (like 2,6-dimethylphenol and 

2,3,6-trimethylphenol) the recoveries were less than 10 % even at the most optimal 

conditions. From this result it was concluded that the pentafluorobenzoyl derivatisation 

is not suitable for analysis of sterically hindered ortho-substituted APs (Paper I). 

Capillary GC with ECD detection was found to be a highly sensitive method for 

analysis of standard solutions. However, GC-MS-NCI (negative ion chemical 

ionisation) methods were preferred when analysing real complex samples (produced 

water and biota) due to matrix effects. The complexity of APs in samples of produced 

water (Paper I) makes it difficult to find good internal standards for GC-ECD. In GC-

MS on the other hand, it is possible to use an isotope-dilution method where 

deuterium-labelled APs are used as internal standards.  

Both methods are now in use at the laboratory of the Institute of Marine Research. 
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4.2 Long-term effect study on alkylphenol effects on the 
reproduction in cod . 

4.2.1 Experimental design 

Paper III-VII present the results from a project carried out during 1997-2001 where 

the goal was to study long-term biological effects of very low concentrations of 

selected C4-C7 APs on sex development in Atlantic cod. The study was carried out 

under controlled laboratory conditions. The compounds tested were 4-tert-BP, 4-n-PP, 

4-n-HexP and 4-n-HepP.  

Very little is known about the fate of these substances in the marine environment. 

There are no empirical data on concentrations of long-chain APs in the sea around the 

North Sea offshore installations (Chapter 1.8). We were therefore forced to use 

models when estimating the levels to which fish may be exposed. Rye et al., (1996) 

simulates the spread of AP discharges from produced water from the Halten Bank, and 

calculates the likely uptake by pelagic fish using a model. The model simulates the 

distribution of total AP discharges from two platforms, and includes biological 

response (Bioconcentration Factor (BCF) and constants for uptake and elimination). 

The calculations of a "worst case scenario" show that the body burden of AP in the fish 

modelled will be up to 10 µg/kg (Rye et al., 1996). 

Given the lack of field data, we used the model values indicated in Rye et al.(1996) as 

a basis for choosing the exposure regimes in our experiments. Using an equal mixture 

of the four components with differing chain lengths (C4 to C7), an attempt has been 

made to take into account the wide range of different APs found in produced water. 

The intention of the tests was to dose the fish to a body burden within the range of Rye 

et al.’s estimates. Using the available information, it was concluded that 5 µg/kg of 

each of the four AP correspond to a fairly realistic dose.  

Two independent experiments were carried out (table 5 and table 6): In Experiment I 

(Paper III), two groups of cod were exposed through regular food per os with a 
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mixture of the four APs, from October to the end of January (14 weeks): 0.02 mg/kg 

in the low dose group and 2 mg/kg in the high dose group. In Experiment II (Paper 

IV-VII) five groups of cod were exposed to the same mixture of APs, ranging between 

0.02 and 80 mg/kg APs and a positive control of 5 mg/kg E2, for 1 or 5 weeks. In 

experiment II the APs were administered to the fish by a plastic tube directly to the 

stomach. The way of exposere assured that each individual got the same defined dose 

per unit weight.  

Table 5.  Exposure and sampling scheme. 

  Experiment I Experiment II 
Start of exposure 1997-09-30 1999-11-16 
Sample 1 1997-10-30 1999-11-23 
Sample 2 1997-11-27 1999-12-21 
Sample 3 1997-12-16 - 
Sample 4 1998-01-26 - 
 

Table 6. Treatment and doses (sum of 4-tert-BP, 4-n-PP, 4-n-HexP and 4-n-HepP) for the two 

experiments. 

Groups Experiment I Experiment II 
Control Untreated Untreated 

Positive control - 5 mg E2/kg 
AP 1 0.020 mg AP/kg 0.020 mg AP/kg 
AP 2 2 mg AP/kg 2 mg AP/kg 
AP 3 - 20 mg AP/kg 
AP 4 - 40 mg AP/kg 
AP 5 - 80 mg AP/kg 

 

The results of the present study suggest a multiple mechanism response in the AP 

treated cod. The exposure to APs can influence the plasma concentration of several 

male and female sex hormones and the egg yolk precursor protein, vitellogenin, in 

Atlantic cod. This study also shows that AP-exposure down to 20 μg/kg body burden 

interferes with the maturation of the sex organs, and that this effect is likely caused by 

disruption of the sex hormone system. There were also found effects of the AP 

treatment on the hepatic P450 systems (CYP1A and CYP3A) as well as glutathione, 

glutathione-related enzymes and changes in the lipid composition in liver and brain 

membranes.  
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4.2.2 Effects of APs on the glutathione-dependent antioxidant system in 
cod. 

The effects of AP on the glutathione-dependent antioxidant system were studied in 

experiment II (Paper V). Total glutathione (reduced + oxidized forms)) increased in 

the livers of female fish after one week of exposure to APs. Males were not sampled 

after one week, so we do not know the early response of this group to AP exposure. 

The second sampling (after 5 weeks exposure) showed a smaller difference in GSH 

levels between the control and exposed groups. The level of reduced glutathione was 

also measured and the ratio of reduced to total glutathione was calculated. This 

relationship was relatively constant, and was similar in controls, positive controls and 

the exposed groups. Overall, the results show that there may be a temporary effect on 

glutathione level, but that the redox ratio remains unchanged. High, relatively stable 

redox ratios also indicate that the system that keeps glutathione in its reduced form, i.e. 

glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), (which 

generates NADPH) function adequately under the experimental conditions reported.  

Neither the activity of glutathione S-transferase (GST) nor of G6PDH appeared to be 

affected by AP exposure. This may indicate that neither of these two enzymes is 

particularly important in AP metabolism. It is known that glucuronidation is the major 

phase 2 metabolism of APs (Lewis and Lech, 1996; Meldahl et al., 1996; Thibaut et 

al., 1998a; Arukwe et al., 2000b; Ferreira-Leach and Hill, 2001), and these results may 

indicate that this metabolic pathway is sufficient to metabolise such quantities of APs 

as the fish were exposed to in our experiments. 

4.2.3 Effects of APs on CYP1A and CYP3A in cod. 

In vivo and in vitro effects of APs exposure in cod have been studied in Paper VI. Fish 

from Experiment II showed a dose-related increase in hepatic CYP1A and CYP3A 

protein in male cod, but no effect was observed in the females. However, this increase 

of CYP1A protein levels in the male fish was not linked to an increase in CYP1A-
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mediated ethoxyresorufin-O-deethylase (EROD) activity, implying that APs inhibit 

the CYP1A activity in vivo. In addition, in vitro studies on the cod hepatocytes showed 

a strong AP dose-dependent reduction in both the CYP1A and CYP3A activity. 

Similar effects were also see in NP treated juvenile cod (Hasselberg et al., 2005; Sturve 

et al., 2006). Kinetic study of recombinant medaka CYP3A activity also found that NP 

are binding CYP3A and blocking the activity (Kullman et al., 2004). AP effects on the 

P450 systems are further discussed in (Chapter 1.10.3, Paper VI). 

 

4.2.4 Effects of APs on membrane lipids in cod liver and brain. 

Paper VII demonstrated that APs and E2 alter the fatty acid profile in the polar lipids 

of the liver to contain more saturated fatty acids (SFA) and less n-3 polyunsaturated 

fatty acids (n-3 PUFA) compared with the control. In the brain of the exposed groups, 

a similar effect was found, although with higher saturation of the fatty acids found in 

the neutral lipids (mainly cholesterol ester). No effects were found in the polar lipids. 

The AP and E2 exposure also gave a decline in the cholesterol levels in the brain. The 

in vitro studies showed that APs increased the mean molecular areas of the 

phospholipids in the monolayers at concentrations down to 5 μM, most likely due to 

intercalation of the APs between phospholipids molecules. The increase in molecular 

area increased with the length of the alkyl side chain. There are several other 

investigations that support that APs can affect the lipid environment in the cell 

membrane (see Chapter 1.10.6). Cakmak et al., (2006) found support for that NP 

exposure induce a decrease the membrane fluidity by increasing the lipid order in the 

liver of rainbow trout. This agrees with our finding of increased amount of SFA in the 

polar lipids. The biological consequences of changes in the lipid compositions of the 

membrane are unknown and need future studies. 
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4.2.5 Effects of APs on sex steroids in plasma of cod. 

A striking observation from both experiments is that AP exposure brings about a 

considerable drop in the plasma E2 level in the females even at very AP low doses 

(0.02 mg/kg). The effects depended on the maturation status of the cod. In experiment 

I the reduction in E2 was first visible after 2 months of exposure in November. In the 

low-dose group and the high-dose group the E2 level were 68 % and 44 % of control, 

respectively. This effect became stronger in December (low-dose 71 % and high-dose 

35 % of the control), but the difference was not significant before January. This was 

probably because the number of fish was to low to give statistically significant effects 

in November and December (see table 6, Paper III). In experiment II the exposure 

first started in November. The down-regulation of E2 levels by AP treatment was 

confirmed in this experiment and significant effects were found both after 1 and 5 

weeks of exposure (Paper IV). The plasma level of T in female fish was also affected, 

but the results were more ambiguous than for E2. 

In male cod, AP exposure also affected the plasma levels of 11-KT and T, basically by 

lowering the levels. However, like T in the female fish, there were large seasonal 

variations and no dose-related trend.  

One hypothesis explaining reductions in the steroid concentrations may be that AP 

exposure increases the steroid catabolism. NP is shown to be an agonist of the orphan 

nuclear receptors, PXR and CAR that are involved in regulation of several 

detoxification enzymes, such as the CYP2B and CYP3A family members, which are 

responsible for the metabolism of steroids and this may alter their physiological levels 

(Chapter 1.10.3). The fact that we found a dose-related increase in hepatic CYP1A 

and CYP3A protein in male cod could indicate an induced metabolism, however, such 

effect was not observed in the females (Paper VI). The increase of CYP1A protein 

levels in the male fish was not linked to an increase in EROD activity, implying that 

APs inhibit the CYP1A activity in vivo. In addition, in vitro studies of cod hepatocytes 

showed a strong AP dose-dependent reduction in both the CYP1A and CYP3A 
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activities. The increase in the amount of CYP3A protein may indicate an increase in 

the potential steroid catabolism in the male cod, but not in the females. A general 

increase in steroid catabolism does not explain the observed decrease in E2 (female) 

and 11-KT levels (male), because the level of testosterone was maintained or even 

increased. There is also support for that AP inhibit phase II enzymes and therby 

decrease steroid catabolism. Kirk et al., (2003) finds that para-substituated APs (C1-

C9) reduces E2 sulfations in liver cytosol of chub (Leuciscus cephalus). Additionally, 

NP exposure has an inhibiting effect on glucuronidation of T and E2 in juvenile turbot 

(Scophthalmus maximus) and juvenile cod (Martin-Skilton et al., 2006c) and NP is also 

reducing E2 sulfation and glucuronidation in carp testicular microsomes (Thibaut and 

Porte, 2004) and E2 sulfation in liver cytosols from two marine fish, mullus barbatus 

and Lepidorhombus boscii (Martin-Skilton et al., 2006a). 

Therefore, another explanation to the drop seen in E2 and 11-KT levels could be that 

AP exposure affects the steroidogenic enzymes (Chapter 1.10.3, Paper IV). One 

interesting finding in the present study has been that there is no clear dose-response 

relationship for E2 to AP exposure. The group that received the lowest dose (0.02 

mg/kg) displayed the same decrease in E2 level as those that received higher doses. 

This may indicate that E2 down-regulation is a result of exceeding a threshold level. 

Currently we are doing further work to reveal the mechanism of action of APs on the 

steroid levels in cod. Several studies indicate that APs disrupt the natural endocrinal 

feedback system of the fish somewhere in the central nervous system and this affects 

the secretion of GTH from the pituitary and thereby indicretly affect the steroid 

synthesis (see Chapter 1.10.2).  

 

4.2.6 Effects of APs on VTG in plasma of cod. 

A massive induction of VTG in female and male cod following exposure to E2 

(5mg/kg) confirms the VTG's sensitivity as a biomarker for estrogen (Paper IV). It 
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confirms previous reports on the cod's suitability as a model organism in these studies 

(Hylland and Haux, 1997; Hylland, 2000).  

We demonstrated that the AP exposure gave a weak induction of VTG in the male cod. 

Experiment I gave statistically inconclusive VTG values. Nevertheless, more male fish 

were producing VTG in the exposed groups than in the control (Paper III). In 

Experiment II, there was a weak dose-related induction of VTG (Paper IV). It should 

be noted that even though there was an induction of VTG following AP exposure, the 

induction was several thousand times lower than in the fish exposed to E2.  

Some surprising seasonal differences were observed in the control groups. November 

samples from both experiments showed higher plasma VTG levels in the males than 

fish from the other samples. After 1 week in Experiment II (November), measurable 

quantities of VTG were found in as much as 80% of the fish in the control group, while 

at the end of December (5 weeks) only 30% of the control fish had detectable levels of 

VTG in their plasma. This may be the effect of normal seasonal fluctuations of 

endogenous E2.  

E2 plays an important role in the early part of spermatogenesis, regulating the renewal 

of spermatogonia (Miura and Miura, 2003). In the few studies reporting E2 in plasma 

from male teleost fish, concentrations are generally below 1 ng/ml (eel (Anguilla 

japonica): 0.5 ng/ml (Miura et al., 1999); huchen (Hucho perryi): 0.35 ng/ml (Amer et 

al., 2001); flounder (Platichthys flesus): 1.2 ng/ml (Scott, 2000); carp (Cyprinus 

carpio): 0.25 ng/ml (Villeneuve et al., 2002): Atlantic cod: 0.04-0.37 ng/ml (Scott et 

al., 2006). It is an unanswered question if these naturally occurring levels of E2 can be 

enough to induce VTG in male fish. Scott et al., (2006) measure induction of VTG in 

blood plasma of male cod caught in the North Sea and other areas around UK and 

Norway. A positive relationship between VTG and fish size was reported, but there 

were not found any correlation between plasma concentrations of E2 and VTG. It is 

suggested that large cod are exposed for estrogenic compounds through the food chain. 

Difference in the feeding ecology between large cod (feeding close to the bottom after 
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large prey) and small cod (feeding on free-swimming organisms in the water 

column) may explain the observed differents in VTG levels. 

In aquaculture, there may be other sources of estrogenic substances. In mature male 

aquaculture cod VTG concentrations of 6.7 ± 4.5 µg/ml have been found and this is 

higher than generally found in wild fish (CEFAS, 2005). This points to the presence of 

elevated estrogen levels in farmed fish. At present, it can only be speculated regarding 

the reason for this. It is possible that phytoestrogens found in commercial fish diets 

play a role. In experimental settings, it is also possible that natural estrogen or its 

metabolites, secreted through urine from female fish, influence the male hormone 

levels. The recent findings of low, natural E2 levels in male fish, as well as the potency 

of E2 as a VTG inductor, may indicate that VTG is unsuitable as a biomarker for 

xenoestrogens at very low concentrations. Our data suggest that the hormone system 

may be affected by environmental contaminants at very low concentrations, while 

VTG-induction is only moderately susceptible to such influence. As research moves 

towards effect-studies of lower and lower concentrations of contaminants, we believe it 

will be necessary to use additional biomarkers for estrogenic substances than VTG 

induction. 

 

4.2.7 Do AP exposure have adverse effects on the reproduction of cod  

The results from the present thesis (Paper III and IV) show a reduction in steroid 

levels, ovary growth and testis maturation status at the lowest concentration tested, 20 

μg/kg nominal body burden (sum of four APs), but it is not clear if these effects are 

causing adverse effects on the cod reproduction. Table 7 gives corresponding water 

concentrations and body burden (assumes a BCF factor of 500), useful when 

comparing the doses of different exposure regimes. Back calculations of the 20 μg/kg 

are equivalent to a theoretical total concentration of 40 ng/l, which are very low effect 

concentrations and below levels reported from other studies. Our finding need to be 
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confirmed in water exposure experiments, but it brings to attention to that there can be 

large differences in the response to AP between different species and that effects 

concentrations may be down in the ng/l levels.  

Table 7. Corresponding water concentration and body burdens, using BCF = 500 

Water concentration  Body burden 
1 ng/l ↔ 0.5 μg/kg 

40 ng/l ↔ 20 μg/kg 
100 ng/l ↔ 50 μg/kg 

1 μg/l ↔ 500 μg/kg 
100 μg/l ↔ 50 mg/kg 

 

Experiment II showed considerable effects on the pattern of maturation of the testis in 

males (Paper IV). There was an increase in the amount of spermatogonia. There also 

appeared to be an increase in the amount of spermatocytes and a reduction in 

spermatozoa. Similar effects after AP exposure have been seen in a number of other 

fish species, but it still remains to find out if the changes in maturation status are 

leading to reduced sperm quality and thereby affecting the cability of the male cod to 

fertilize the eggs. 

As discused above, the most significant effects found from these experiments are an 

anti-estrogenic effect of the APs, possibly by APs causing a down-regulation of natural 

E2 synthesis (Paper III and IV). Normally, there is a direct relationship between E2, 

vitellogenin and gonadal growth. It is therefore not surprising that low E2 levels were 

accompanied by a drop in gonadal weight. The fish from the positive control group 

aborted the oocyte maturation, resorbing the oocytes through atresia. The groups 

exposed to APs did not show an increased occurrence of atresia. However, the oocytes 

had a significant reduction in oocyte diameter. Histologically, the oocytes seem to 

develop slowly but otherwise normally. The oocytes of the exposed groups were in the 

beginning of vitellogenesis at a time when the controls were in late vitellogenesis. The 

significantly smaller oocytes in the exposed groups predicted delayed spawning.  

The natural spawning time for the North Sea cod stock are in spring, around the time 

of the initiation of the seasonal plankton development. The copepod Calanus 
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finmarchicus is a key zooplankton species in Norwegian waters, and early 

developmental stages (nauplius larvae) of this species are the main prey for fish larvae 

(Sundby, 2000). Variation in the timing of the plankton development versus the 

spawning and larval development of fish has been considered in the match-mismatch 

hypothesis to be a major cause for variable recruitment of fish (Cushing, 1990; 

Beaugrand et al., 2003; Platt et al., 2003). A delay in start of spawning, as estimated 

for our AP-exposed fish increases the chances of the eggs being spawned too late 

relative to the optimum. Data from the Baltic Sea show that over the last decade, there 

has been a shift towards spawning several weeks later in the season than has been the 

case in the past (Wieland et al., 2000). The temporal overlap between the developing 

Baltic cod larvae and their prey has decreased since the mid-1980s and this coincides 

with a massive reduction in the recruitment of this cod stock. (Hinrichsen et al., 2005). 

The main theories trying to explain the shift in spawning times are changes in water 

temperature during the period of gonadal maturation, density-dependent processes 

related to the size of the spawning stock, and food availability. But as shown in the 

present work, endocrine disrupting chemicals also effect the maturation of the gonads. 

This indicates that EDCs may be at least partially responsible for the changes seen in 

fish populations in the highly polluted Baltic Sea.  

As support for such a theory, long-term monitoring (1988-2000) in the Baltic Sea of 

the gonadal size of female perch (Perca fluviatilis) revealed a strong trend towards 

decreased GSI. Pollution are suggested to play an important role as causative for this 

phenomenon (Hansson et al., 2006). Similarly, Noaksson et al. found a delay in the 

gonadal maturation of wild female perch, roach (Rutilus rutilus) and brook trout 

(Salvelinus fontinalis) (Noaksson et al., 2001; Noaksson et al., 2003; Noaksson et al., 

2005) living in lakes receiving leakage water from old refuse dumps. The compounds 

causing endocrine disruption are not identified. The observed reduction in plasma 

steroid levels (T and E2) in combination with decreased GSI is, however, similar to the 

findings in cod in the present publication.  
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In medaka, it has been found that exposure to NP results in reduced realised fecundity 

(Gronen et al., 1999; Shioda and Wakabayashi, 2000a). These authors also noted a 

tendency for fewer eggs to hatch when an unexposed female spawned with an exposed 

male. This aspect has not been examined in our study, but there is every reason to look 

further into it. If exposure reduces both realised fecundity and the proportion of eggs 

that actually hatch, this would increase the effects of delayed spawning. 

It is not possible from our results to conclude that the AP exposure is resulting in 

advanced effects on the cod reproduction, but the findings presented clearly calls for 

more studies. 

 

4.2.8 Bioaccumulation and oral uptake of APs in cod 

Our decision to expose fish through their food in our experiments was due to the 

practical and environmental consequences of exposure through the water. Large fish 

were used, and they were kept in large tanks. The fish require a continuous supply of 

large quantities of water (20000 l/h). A large-scale exposure experiment would require 

large amounts of APs and the building of costly infrastructure to properly handle the 

discharged water. 

The body burden of 5µg AP/kg was expected to be equivalent to the quantity that the 

fish might absorb if exposed to seawater with 10 ng/l of the individual APs. This 

simplified calculation assumes a BCF factor of 500 for all four APs. 5 µg/kg is 

equivalent to a theoretical total concentration (sum of all four APs) of 40 ng/l. This 

concentration is lower than the levels that have previously been reported to affect the 

endocrine system in fish. 

It may be argued that oral exposure results in APs being distributed in the body to a 

lesser extent than with exposure through the water. This should, however, result in an 

underestimation of the effects of the exposure. There seems to be no reason to suggest 
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that oral exposure leads to increased bioaccumulation. Consequently, our results 

more likely underestimate than overestimate the effects of AP exposure. Furthermore, 

the concentrations of APs actually found in the tissues are more likely overestimated 

than underestimated. On this background, it is clear that the present findings represent 

a minimum of expected detrimental effects of exposure to the tested concentrations of 

AP. Sundt and Baussant (Sundt and Baussant, 2003) compared the uptake and tissue 

distribution of the four APs used in our study in cod, using oral and waterborne 

exposure. They found that the bioconcentation from seawater was much higher than 

via absorption through the gut wall. A similar situation is also found in fathead 

minnows (Pimephales promelas) (Pickford et al., 2003). These studies suggest that the 

actual AP body burden in the current experiment can be only 10% of the nominal body 

burden and, furthermore, that the exposure level giving significant disruptions in the 

reproductive system of female cod may be as low as 2 µg/kg body burden, which is 

equivalent to 4 ng/l in the seawater. 

4.3 Alkylphenols from offshore oil production 

Limited data have been available on the contents of long-chain APs (C4 - C7) in 

produced water (Brendehaug et al., 1992; Røe and Johnsen, 1996). The analytical 

methods generally used (GC-MS of underivatised phenols with cluster analysis of all 

isomers with specific masses) have low selectivity and overestimations are likely to 

have occurred. Methods with higher sensitivity and more selective detection, have now 

been developed (Paper 1). A large number of APs are found in an average produced 

water sample. Theoretically, there can be hundreds of isomers of C4-C9 APs. Most of 

them are not commercially available. Only the long-chain, para-substituted APs have 

significant estrogenic effects. Ortho-substituted, meta-substituted and short-chain APs 

have very little or no estrogen effect (Routledge and Sumpter, 1997). At the IMR, an 

effort is currently made to synthesise as many as possible of the long-chain para-

substituted AP isomers. We hope to be able to identify and quantify more of the para-
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substituted AP from C4 to C9 and then estimate the total estrogenic potential from APs 

in produced water. Until such data are available, it will only be possible to obtain long-

chain AP concentrations of a few standard compounds or as the sum of all isomers. 

The method described in Paper 1, have been used for determination of APs in 

produced water from 9 different oil fields on the Norwegian sector and the total 

concentrations of APs > C4 are found to be in the range of 5-81 μg/l (in preparation). 

Thomas et al used in vitro methods (yeast estrogen screen, YES) to detect estrogen 

receptor (ER) agonists in produced water from the North Sea oil installation (Thomas 

et al., 2004b; Thomas et al., 2004a). They found that produced water contains ER 

agonists in amounts corresponding to E2 equivalents from the low ng/l and up to 91 

ng/l. This corresponds well with the levels of APs, considering that APs are in the 

order of 1000 times weaker ER agonist than E2 (Routledge and Sumpter, 1997). 

The produced water is rapidly diluted after being discharged from the platform. 

Computer simulations show 30 and 100 times dilution 10 m and 100 m from the outlet, 

respectively.  Further dilution is, however, slower, and the model showed that 1:1000 

dilution occurred as far as 1000 m from the outlet (Neff, 2002). The results from the 

computer model and field data indicate that dispersed oil may be found in 

concentrations from 1-3 µg/l in an area with a radius of 50 to 100 km around the 

largest oil fields in the North Sea (Rye et al., 1998). This corresponds to a dilution 

factor of approx. 1:10.000.  

There are no empirical data available on concentrations of long chain APs in the sea 

around North Sea offshore installations, but as discussed above, the concentrations in 

the marine environment should be low. On the other hand, the discharges are 

continuous and prognoses indicate increased discharges as the oil field age. Little is 

known about the fate of long-chain APs in produced water after it enters the sea. The 

degradation rate of APs falls rapidly with increasing chain length and APs have high 

sedimentation rates (Chapter 1.6). Measurement of long chain APs in seawater and 

sediment around oil installations should therefore be a priority in future risks 

assessment studies.  
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The results from the presented experiments have been used in a theoretical study 

titled: “Risk Assessment of reproductive effects of alkyl phenols in produced water on 

fish stocks in the North Sea” (Myhre et al., 2005). The modeling is done using the 

DREAM software (developed by Sintef, RF-Akvamiljø and TNO, Delft, the 

Netherlands). The model includes the combined discharges from three major 

Norwegian oil fields  (Tampen, Ekofisk and Sleipner). The fish stock distributions 

(cod, saithe and haddock, from the international bottom trawl surveys (IBTS) database) 

and a Predicted No Effect Concentration (PNEC) for APs of 4 ng/l were used as basis 

data for the calculations. The total amount of APs>C4 discharged from all the oil 

installation was estimated to be 25.6 kg/day, dissolved in 364.300 m3/day produced 

water. The conclusion of the risk assessment was: “The overall results of the 

simulations with DREAM show that there is no significant risk potential. In other 

words there were no fish particles, which accumulated APs above the critical body 

burden of 2 µg/kg in any of the simulations. The highest accumulated body burden in 

any of the fish particles was 0.09 µg/kg” (Myhre et al., 2005). This new modelling 

work indicates that the article of Rye et al. (1996) overestimated the body burden and 

that the doses used in these experiments may not be expected to arise from produced 

water discharges alone. However, both models are encumbered with uncertainty, 

primarily because the fate of the long chain APs in the sea is not known. It is 

reasonable to believe that these relatively hydrophobic substances will bind to 

biological particles in the sea. This may affect distribution, degradation and also uptake 

of APs in the food chain. All these unknown factors urge for proper field studies in 

order to be able to forecast the impact of these biologically active chemicals on the 

marine environment. 
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4.4 Conclusions. 

The results presented in this thesis have shown that cod is sensitive to AP 

contamination of the environment. Even though the concentrations used in our 

experiments are higher than may reasonably be expected as the result of oil production 

alone, measurements of real AP levels in the sea indicate that APs may still be a 

significant factor in the marine environment. Only when the environmental fate of the 

long-chain APs has been more thoroughly understood, the APs may possibly be ruled 

out as a significant detrimental factor of proper growth and development of the 

relevant fish populations. Collecting information about the concentrations of long-

chain APs in the open water and in marine sediments is mandatory for sound 

evaluations of the environmental effects of long-chain APs. 

4.5 Future perspectives. 

New experiments have been conducted in 2005 to supplement and clarify the results 

from the present study. These include exposure to lower doses of APs to provide 

knowledge about the true "no effect" concentration. Furthermore, the fish have also 

been exposed to real produced water with its natural high complexity of components. 

Cod have also been reared through spawning after long-time exposure (20 weeks) to 

APs and produced water, aiming to confirm the estimated delay in spawning shown in 

this thesis, as well as searching for any effects on realised fecundity and fertilisation.  

To begin elucidating the complex mechanisms involved in the response to APs, 

pitutitary gene expression related to FSH and LH will be analysed, as well as 

aromatase activity in the gonads and the brain. Steroid profiles will be analysed in 

blood plasma, gonads and brain, together with the amount of conjugated steroids in the 

bile.
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re
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 m
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 c
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ra
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 f
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 m
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 d
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. 

In
cr

ea
se

d 
ce

llu
la

r 
ap

op
to

si
s 

in
 s

pe
rm

at
oc

yt
es

, S
er

to
li 

ce
lls

 a
nd

 
Le

yd
ig

 c
el

ls
, b

ut
 n

ot
 in

 sp
er

m
at

id
s 

 
(W

eb
er

 e
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 p

ro
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.0
2 
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 m
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-
O
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n
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he
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7 

d
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0
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6
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1
0

 f
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h
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d
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00
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g 
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n
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a 
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en
t 
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s. 
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e 
w
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h 

m
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e 

gr
ou

p 
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 m
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e 
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N
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 b
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d 
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ee
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h 
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9 
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/l 

N
P.

 
O
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 b
y 
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l 
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G
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w
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 d
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p 
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d 
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y 
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 d
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M
ed
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. 

R
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 n
um
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f m
ot
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m
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μ
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l N
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0 
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du
ct

io
n 

of
 E

R
 m

R
N

A
 in

 th
e 
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 d
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 d
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 d
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r d
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 f
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0).
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1).
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 V
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Fe

m
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n 
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d 
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x 
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n 
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d 

ob
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rv
at

io
n 
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l t
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4 
µg

/l 
PP

. 
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d 
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at
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 c
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 d
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 d
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in

 th
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 d
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 c
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s f
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d
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 d
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l 

N
P 

(m
ea

su
re

d 
co

nc
.) 

an
d 

5 
%

 a
t 9

 μ
g/

l N
P.
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l N

P.
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 d
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m
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 d
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 m
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re
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 p
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 c
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