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Abstract—The Learning with Errors problem (LWE) has
become a central topic in recent cryptographic research. In
this paper, we present a new solving algorithm combining
important ideas from previous work on improving the Blum-
Kalai-Wasserman (BKW) algorithm and ideas from sieving in
lattices. The new algorithm is analyzed and demonstrates an
improved asymptotic performance. For the Regev parameters
q = n2 and noise level σ = n1.5/(

√
2π log2

2 n), the asymptotic
complexity is 20.893n in the standard setting, improving on the
previously best known complexity of roughly 20.930n. The newly
proposed algorithm also provides asymptotic improvements when
a quantum computer is assumed or when the number of samples
is limited.

Index Terms—LWE, BKW, Coded-BKW, Lattice codes, Lattice
sieving.

I. INTRODUCTION

Post-quantum crypto, the area of cryptography in the pres-
ence of quantum computers, is currently a major topic in the
cryptographic community. Cryptosystems based on hard prob-
lems related to lattices are currently intensively investigated,
due to their possible resistance against quantum computers.
The major problem in this area, upon which cryptographic
primitives can be built, is the Learning with Errors (LWE)
problem.

LWE is an important, efficient and versatile problem. One
famous application of LWE is the construction of Fully
Homomorphic Encryption schemes [14], [15], [16], [21]. A
major motivation for using LWE is its connections to lattice
problems, linking the difficulty of solving LWE (on average) to
the difficulty of solving instances of some (worst-case) famous
lattice problems. Let us state the LWE problem.

Definition 1: Let n be a positive integer, q a prime, and let
X be an error distribution selected as the discrete Gaussian
distribution on Zq . Fix s to be a secret vector in Znq , chosen
according to a uniform distribution. Denote by Ls,X the
probability distribution on Znq × Zq obtained by choosing
a ∈ Znq uniformly at random, choosing an error e ∈ Zq
according to X and returning

(a, z) = (a, 〈a, s〉+ e)
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in Znq × Zq . The (search) LWE problem is to find the secret
vector s given a fixed number of samples from Ls,X .
The definition above gives the search LWE problem, as the
problem description asks for the recovery of the secret vector
s. Another variant is the decision LWE problem. In this case
the problem is to distinguish between samples drawn from
Ls,X and a uniform distribution on Znq ×Zq . Typically, we are
then interested in distinguishers with non-negligible advantage.

For the analysis of algorithms solving the LWE problem in
previous work, there are essentially two different approaches.
One being the approach of calculating the specific number of
operations needed to solve a certain instance for a particular
algorithm, and comparing specific complexity numbers. The
other approach is asymptotic analysis. Solvers for the LWE
problem with suitable parameters are expected to have fully
exponential complexity, say bounded by 2cn as n tends to in-
finity. Comparisons between algorithms are made by deriving
the coefficient c in the asymptotic complexity expression.

A. Related Work
We list the three main approaches for solving the LWE prob-

lem in what follows. A good survey with concrete complexity
considerations is [6] and for asymptotic comparisons, see [26].

The first class is the algebraic approach, which was ini-
tialized by Arora-Ge [8]. This work was further improved by
Albrecht et al., using Gröbner bases [2]. Here we point out
that this type of attack is mainly, asymptotically, of interest
when the noise is very small. For extremely small noise the
complexity can be polynomial.

The second and most commonly used approach is to rewrite
the LWE problem as a lattice problem, and therefore lattice re-
duction algorithms [17], [44], such as sieving and enumeration
can be applied. There are several possibilities when it comes to
reducing the LWE problem to some hard lattice problem. One
is a direct approach, writing up a lattice from the samples and
then to treat the search LWE problem as a Bounded Distance
Decoding (BDD) problem [35], [36]. One can also reduce
the BDD problem to a UNIQUE-SVP problem [5]. Another
variant is to consider the distinguishing problem in the dual
lattice [38]. Lattice-based algorithms have the advantage of
not using an exponential number of samples.

The third approach is the BKW-type algorithms.
1) BKW variants: The BKW algorithm was originally

proposed by Blum, Kalai and Wasserman [12] for solving the
Learning Parity with Noise (LPN) problem (LWE for q = 2).
It resembles Wagner’s generalized birthday approach [45].

For the LPN case, there has been a number of improvements
to the basic BKW approach. In [34], transform techniques
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were introduced to speed up the search part. Further im-
provements came in work by Kirchner [29], Bernstein and
Lange [11], Guo et al. [22], Zhang et al. [47], Bogos and
Vaudenay [13].

Albrecht et al. were first to apply BKW to the LWE
problem [3], which they followed up with Lazy Modulus
Switching (LMS) [4], which was further improved by Duc et
al. in [20]. The basic BKW approach for LWE was improved
in [24] and [30], resulting in an asymptotic improvement.
These works improved by reducing a variable number of
positions in each step of the BKW procedure as well as
introducing a coding approach. Although the two algorithms
were slightly different, they perform asymptotically the same
and we refer to the approach as coded-BKW. It was proved
in [30] that the asymptotic complexity for Regev parameters
(public-key cryptography parameter) q = n2 and noise level
σ = n1.5/(

√
2π log2

2 n) is 20.930n+o(n), the currently best
known asymptotic performance for such parameters.

2) Sieving algorithms: A key part of the algorithm to be
proposed is the use of sieving in lattices. The first sieving algo-
rithm for solving the shortest vector problem was proposed by
Ajtai, Kumar and Sivakumar in [1], showing that SVP can be
solved in time and memory 2Θ(n). Subsequently, we have seen
the NV-sieve [41], List-sieve [39], and provable improvement
of the sieving complexity using the birthday paradox [25],
[42].

With heuristic analysis, [41] started to derive a com-
plexity of 20.415n+o(n), followed by GaussSieve [39], 2-
level sieve [46], 3-level sieve [48] and overlattice-sieve [10].
Laarhoven started to improve the lattice sieving algorithms
employing algorithmic breakthroughs in solving the nearest
neighbor problem, angular LSH [31], and spherical LSH [33].
The asymptotically most efficient approach when it comes to
time complexity is Locality Sensitive Filtering (LSF) [9] with
both a space and time complexity of 20.292n+o(n). Using quan-
tum computers, the complexity can be reduced to 20.265n+o(n)

(see [32]) by applying Grover’s quantum search algorithm.

B. Contributions

We propose a new algorithm for solving the LWE problem
combining previous combinatorial methods with an important
algorithmic idea – using a sieving approach. Whereas BKW
combines vectors to reduce positions to zero, the previously
best improvements of BKW, like coded-BKW, reduce more
positions but at the price of leaving a small but in general
nonzero value in reduced positions. These values are consid-
ered as additional noise. As these values increase in magnitude
for each step, because we add them together, they have to be
very small in the initial steps. This is the reason why in coded-
BKW the number of positions reduced in a step is increasing
with the step index. We have to start with a small number of
reduced positions, in order to not obtain a noise that is too
large.

The proposed algorithm tries to solve the problem of the
growing noise from the coding part (or LMS) by using a
sieving step to make sure that the noise from treated positions
does not grow, but stays approximately of the same size. The

basic form of the new algorithm then contains two parts in
each iterative step. The first part reduces the magnitude of
some particular positions by finding pairs of vectors that can
be combined. The second part performs a sieving step covering
all positions from all previous steps, making sure that the
magnitude of the resulting vector components is roughly as
in the already size-reduced part of the incoming vectors.

We analyze the new algorithm from an asymptotic perspec-
tive, proving a new improved asymptotic performance. For the
asymptotic Regev parameters q = n2 and noise level σ = n1.5,
the result is a time and space complexity of 20.8951n+o(n),
which is a significant asymptotic improvement. We also get a
first quantum acceleration (with complexity of 20.8856n+o(n))
for the Regev parameters by using the performance of sieving
in the quantum setting.

In addition, when the sample complexity is limited, e.g, to
a polynomial number in n like Θ(n log n), the new algorithm
outperforms the previous best solving algorithms for a wide
range of parameter choices.

Lastly, the new algorithm can be flexibly extended and gen-
eralized in various ways. We present three natural extensions
further improving its asymptotic performance. For instance, by
changing the reduction scale in each sieving step, we reduce
the time and space complexity for the Regev parameters to
20.8927n+o(n) in the standard setting. With the help of quantum
computers, the complexity can be even further reduced, down
to 20.8795n+o(n).

C. Organization

The remaining parts of the paper are organized as followed.
We start with some preliminaries in Section II, including more
basics on LWE, discrete Guassians and sieving in lattices. In
Section III we review the details of the BKW algorithm and
some recent improvements. Section IV just contains a simple
reformulation. In Section V we give the new algorithm in its
basic form and in Section VI we derive the optimal parameter
selection and perform the asymptotic analysis. In Section VII
we derive asymptotic expressions for LWE with sparse secrets,
and show an improved asymptotic performance when only
having access to a polynomial number of samples. Section VIII
contains new versions of coded-BKW with sieving, that further
decrease the asymptotic complexity. Finally, we conclude the
paper in Section IX.

II. BACKGROUND

A. Notations

Throughout the paper, the following notations are used.
• We write log(·) for the base 2 logarithm and ln(·) for the

natural logarithm.
• In an n-dimensional Euclidean space Rn, by the norm of

a vector x = (x1, x2, . . . , xn) we refer to its L2-norm,
defined as

‖x‖ =
√
x2

1 + · · ·+ x2
n.

We then define the Euclidean distance between two
vectors x and y in Rn as ‖x− y‖.
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• An element in Zq is represented as the corresponding
value in [− q−1

2 , q−1
2 ].

• For an [N, k0] linear code, N denotes the code length
and k0 denotes the dimension.

• We use the following standard notations for asymptotic
analysis.

– f(n) = O (g(n)) if there exists a positive constant
C, s.t., |f(n)| ≤ C · g(n) for n sufficiently large.

– f(n) = Θ(g(n)) if there exist positive constants C1

and C2, s.t., C1 · g(n) ≤ |f(n)| ≤ C2 · g(n) for n
sufficiently large.

– f(n) = o(g(n)) if for every positive C, we have
|f(n)| < C · g(n) for n sufficiently large.

B. LWE Problem Description

Rather than giving a more formal definition of the decision
version of LWE, we instead reformulate the search LWE
problem, because our main purpose is to investigate its solving
complexity. Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are drawn from the LWE distribution Ls,X , where ai ∈
Znq , zi ∈ Zq . Let z = (z1, z2, . . . , zm) and y =
(y1, y2, . . . , ym) = sA. We can then write

z = sA + e,

where A =
[
aT

1 aT
2 · · · aT

n

]
, zi = yi + ei = 〈s,ai〉 + ei

and ei
$← X . Therefore, we have reformulated the search LWE

problem as a decoding problem, in which the matrix A serves
as the generator matrix for a linear code over Zq and z is the
received word. We see that the problem of searching for the
secret vector s is equivalent to that of finding the codeword
y = sA such that the Euclidean distance ||y− z|| is minimal.

1) The Secret-Noise Transformation: An important trans-
formation [7], [29] can be applied to ensure that the secret
vector follows the same distribution X as the noise. The
procedure works as follows. We first write A in systematic
form via Gaussian elimination. Assume that the first n columns
are linearly independent and form the matrix A0. We then
define D = A0

−1 and write ŝ = sD−1 − (z1, z2, . . . , zn).
Hence, we can derive an equivalent problem described by
Â = (I, âT

n+1, â
T
n+2, · · · , âT

m), where Â = DA. We compute

ẑ = z− (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, one can assume that each entry in
the secret vector is now distributed according to X .

The noise distribution X is usually chosen as the discrete
Gaussian distribution, which will be briefly discussed in Sec-
tion II-C.

C. Discrete Gaussian Distribution

We start by defining the discrete Gaussian distribution over
Z with mean 0 and variance σ2, denoted DZ,σ . That is, the
probability distribution obtained by assigning a probability
proportional to exp(−x2/2σ2) to each x ∈ Z. Then the dis-
crete Gaussian distribution X over Zq with variance σ2 (also

denoted Xσ) can be defined by folding DZ,σ and accumulating
the value of the probability mass function over all integers in
each residue class modulo q.

Following the path of previous work [3], we assume that in
our discussed instances, the discrete Gaussian distribution can
be approximated by the continuous counterpart. For instance,
if X is drawn from Xσ1

and Y is drawn from Xσ2
, then

X + Y is regarded as being drawn from X√
σ2
1+σ2

2

. This
approximation is widely adopted in literature.

1) The sample complexity for distinguishing.: To estimate
the solving complexity, we need to determine the number of
required samples to distinguish between the uniform distribu-
tion on Zq and Xσ . Relying on standard theory from statistics,
using either previous work [35] or Bleichenbacher’s definition
of bias [40], we can conclude that the required number of
samples is

C · e2π
(
σ
√

2π
q

)2

,

where C is a small positive constant.

D. Sieving in Lattices

We here give a brief introduction to the sieving idea and its
application in lattices for solving the shortest vector problem
(SVP). For an introduction to lattices, the SVP problem, and
sieving algorithms, see e.g. [9].

In sieving, we start with a list L of relatively short lattice
vectors. If the list size is large enough, we will obtain many
pairs of v,w ∈ L, such that ‖v ±w‖ ≤ max{‖v‖ , ‖w‖}.
After reducing the size of these lattice vectors a polynomial
number of times, one can expect to find the shortest vector.

The core of sieving is thus to find a close enough neighbor
v ∈ L efficiently, for a vector w ∈ L, thereby reducing
the size by further operations like addition or subtraction.
This is also true for our newly proposed algorithm in a later
section, since by sieving we solely desire to control the size of
the added/subtracted vectors. For this specific purpose, many
famous probabilistic algorithms have been proposed, e.g.,
Locality Sensitive Hashing (LSH) [28], Bucketing coding [19],
and May-Ozerov’s algorithm [37] in the Hamming metric with
important applications to decoding binary linear codes.

In the Euclidean metric, the state-of-the-art algorithm in
the asymptotic sense is Locality Sensitive Filtering (LSF) [9],
which requires 20.2075n+o(n) samples. In the classic setting,
the time and memory requirements are both in the order
of 20.292n+o(n). The constant hidden in the running time
exponent can be reduced to 0.265 in the scenario of quantum
computing. In the remaining part of the paper, we choose the
LSF algorithm for the best asymptotic performance when we
need to instantiate the sieving method.

III. THE BKW ALGORITHM

The BKW algorithm is the first sub-exponential algorithm
for solving the LPN problem, originally proposed by Blum,
Kalai and Wasserman [12]. It can also be trivially adopted to
the LWE problem, with single-exponential complexity.
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A. Plain BKW

The algorithm consists of two phases: the reduction phase
and the solving phase. The essential improvement comes from
the first phase, whose underlying fundamental idea is the same
as Wagner’s generalized birthday algorithm [45]. That is, using
an iterative collision procedure on the columns in the matrix
A, one can reduce its row dimension step by step, and finally
reach a new LWE instance with a much smaller dimension.
The solving phase can then be applied to recover the secret
vector. We describe the core procedure of the reduction phase,
called a plain BKW step, as follows. Let us start with A0 = A.

Dimension reduction: In the i-th iteration, we look
for combinations of two columns in Ai−1 that add
(or subtract) to zero in the last b entries. Suppose
that one finds two columns aT

j1,i−1,a
T
j2,i−1 such that

aj1,i−1±aj2,i−1 = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b symbols

],

where ∗ means any value. We then generate a new
vector aj,i = aj1,i−1 ± aj2,i−1. We obtain a new
generator matrix Ai for the next iteration, with its
dimension reduced by b, if we remove the last b
all-zero positions with no impact on the output of
the inner product operation. We also derive a new
“observed symbol” as zj,i = zj1,i−1 ± zj2,i−1.
A trade-off: After one step of this procedure, we can
see that the new noise variable is ej,i = ej1,i−1 ±
ej2,i−1. If the noise variables ej1,i−1 and ej2,i−1

both follow the Gaussian distribution with variance
σ2
i−1, then the new noise variable ej,i is considered

Gaussian distributed with variance σ2
i = 2σ2

i−1.
After t0 iterations, we have reduced the dimension of the

problem to n−t0b. The final noise variable is thus a summation
of 2t0 noise variables generated from the LWE oracle. We
therefore know that the noise connected to each column is of
the form

e =

2t0∑
j=1

eij ,

and the total noise is approximately Gaussian with variance
2t0 · σ2.

The remaining solving phase is to solve this transformed
LWE instance. This phase does not affect its asymptotic
complexity but has significant impact on its actual running
time for concrete instances.

Similar to the original proposal [12] for solving LPN, which
recovers 1 bit in the secret vector via majority voting, Albrecht
et al. [3] exhaust one secret entry using a distinguisher. The
complexity is further reduced by Duc et al. [20] using Fast
Fourier Transform (FFT) to recover several secret entries
simultaneously.

B. Coded-BKW

As described above, in each BKW step, we try to collide a
large number of vectors ai in a set of positions denoted by an
index set I . We denote this sub-vector of a vector a as aI . We

set the size of the collision set to be ( q
b−1
2 ), a very important

parameter indicating the final complexity of the algorithm.
In this part we describe another idea that, instead of zeroing

out the vector aI by collisions, we try to collide vectors to
make aI small. The advantage of this idea is that one can
handle more positions in one step for the same size of the
collision set.

This idea was first formulated by Albrecht et al. in PKC
2014 [4], aiming for solving the LWE problem with a small
secret. They proposed a new technique called Lazy Mod-
ulus Switching (LMS). Then, in CRYPTO 2015, two new
algorithms with similar underlying algorithmic ideas were
proposed independently in [24] and [30], highly enhancing
the performance in the sense of both asymptotic and concrete
complexity. Using the secret-noise transformation, these new
algorithms can be used to solve the standard LWE problem.

In this part we use the notation from [24] to describe the
BKW variant called coded-BKW, as it has the best concrete
performance, i.e., it can reduce the magnitude of the noise by a
constant factor compared with its counterpart technique LMS.
The core step – the coded-BKW step – can be described as
follows.

Considering step i in the reduction phase, we choose a q-
ary [ni, b] linear code, denoted Ci, that can be employed to
construct a lattice code, e.g., using Construction A (see [18]
for details). The sub-vector aI can then be written in terms of
its two constituents, the codeword part cI ∈ Ci and an error
part eI ∈ ZNiq . That is,

aI = cI + eI . (1)

We rewrite the inner product 〈sI ,aI〉 as

〈sI ,aI〉 = 〈sI , cI〉+ 〈sI , eI〉 .

We can cancel out the part 〈sI , cI〉 by subtracting two vectors
mapped to the same codeword, and the remaining difference
is the noise. Due to symmetry, the size of the collision set can
be qb−1

2 , as in the plain BKW step.
If we remove ni positions in the i-th step, then we have

removed
∑t
i=1 ni positions (ni ≥ b) in total. Thus, after

guessing the remaining secret symbols in the solving phase,
we need to distinguish between the uniform distribution and
the distribution representing a sum of noise variables, i.e.,

z =

2t∑
j=1

eij +

n∑
i=1

si(E
(1)
i + E

(2)
i + · · ·+ E

(t)
i ), (2)

where E(h)
i =

∑2t−h+1

j=1 ê
(h)
ij

and ê(h)
ij

is the noise introduced

in the h-th coded-BKW step. Here at most one error term E
(h)
i

is non-zero for one position in the index set, and the overall
noise can be estimated according to Equation (2).

The remaining problem is to analyze the noise level intro-
duced by coding. In [24], it is assumed that every E(h)

i is close
to a Gaussian distribution, which is tested in implementation.
Based on known results on lattice codes, the standard deviation
σ introduced by employing a q-ary [N, k] linear code is
estimated by

σ ≈ q1−k/N ·
√
G(ΛN,k), (3)
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where G(ΛN,k) is a code-related parameter satisfying

1

2πe
< G(ΛN,k) ≤ 1

12
.

In [24], the chosen codes are with varying rates to ensure
that the noise contribution of each position is equal. This is
principally similar to the operation of changing the modulus
size in each reduction step in [30].

IV. A REFORMULATION

Let us reformulate the LWE problem and the steps in the
different algorithms in a matrix form. Recall that we have the
LWE samples in the form z = sA + e. We write this as

(s, e)

(
A
I

)
= z. (4)

The entries in the unknown left-hand side vector (s, e) are all

i.i.d. The matrix above is denoted as H0 =

(
A
I

)
and it is

a known quantity, as well as z.
By multiplying Equation (4) from the right with special

matrices Pi we are going to reduce the size of columns in the
matrix. Starting with

(s, e)H0 = z,

we find a matrix P0 and form H1 = H0P0, z1 = zP0,
resulting in

(s, e)H1 = z1.

Continuing this process for t steps, we have formed Ht =
H0P0 · · ·Pt−1, zt = zP0 · · ·Pt−1.

Plain BKW can be described as each Pi having columns
with only two nonzero entries, both from the set {−1, 1}. The
BKW procedure subsequently cancels rows in the Hi matrices

in a way such that Ht =

(
0
H′t

)
, where columns of H′t have

2t non-zero entries1. The goal is to minimize the magnitude of
the column entries in Ht. The smaller magnitude, the larger
advantage in the corresponding samples.

The improved techniques like LMS and coded-BKW reduce
the Ht similar to the BKW, but improves by using the fact
that the top rows of Ht do not have to be canceled to 0.
Instead, entries are allowed to be of the same norm as in the
H′t matrix.

V. A BKW-SIEVING ALGORITHM FOR THE LWE
PROBLEM

The algorithm we propose uses a similar structure as the
coded-BKW algorithm. The new idea involves changing the
BKW step to also include a sieving step. In this section we give
the algorithm in a simple form, allowing for some asymptotic
analysis. We exclude some steps that give non-asymptotic
improvements. We assume that each entry in the secret vector
s is distributed according to X .

1Sometimes we get a little fewer than 2t entries since 1s can overlap.
However, this probability is low and does not change the analysis.

A. Initial Guessing Step

We select a few entries of s and guess these values (accord-
ing to X ). We run through all likely values and for each of
them we do the steps below. Based on a particular guess, the
sample equations need to be rewritten accordingly.

For simplicity, the remaining unknown values are still
denoted s after this guessing step and the length of s is still
denoted n.

B. Transformation Steps

We start with some simplifying notation. The n positions
in columns in A (first n positions in columns of H) are
considered as a concatenation of smaller vectors. We assume
that these vectors have lengths which are n1, n2, n3, . . . , nt,
respectively, in such a way that

∑t
i=1 ni = n. Also, let

Nj =
∑j
i=1 ni, for j = 1, 2, . . . , t.

Before explaining the algorithmic steps, we introduce two
notations that will be used later.

Notation CodeMap(h, i): We assume, following the idea of
coded-BKW, that we have fixed a lattice code Ci of length ni.
The vector h fed as input to CodeMap is first considered only
restricted to the positions Ni−1 + 1 to Ni, i.e., as a vector of
length ni. This vector, denoted h[Ni−1+1,Ni], is then mapped
to the closest codeword in Ci. This closest codeword is denoted
CodeMap(h, i).

The code Ci needs to have an associated procedure of
quickly finding the closest codeword for any given vector. One
could then use a simple code or a more advanced code. From
an asymptotic viewpoint, it does not matter, but in a practical
implementation there can be a difference. We are going to
select the parameters in such a way that the distance to the
closest codeword is expected to be no more than

√
ni · B,

where B is a constant.
Notation Sieve(L∆, i,

√
Ni · B): The input L∆ contains

a list of vectors. We are only considering them restricted to
the first Ni positions. This procedure will find all differences
between any two vectors such that the norm of the difference
restricted to the first Ni positions is less than

√
Ni · B. All

such differences are put in a list S∆ which is the output of
the procedure.

We assume that the vectors in the list L∆ restricted to the
first Ni positions, all have a norm of about

√
Ni · B. Then

the problem is solved by algorithms for sieving in lattices, for
example using Locality-Sensitive Hashing/Filtering.

For the description of the main algorithm, recall that

(s, e)H0 = z,

where H0 =

(
A
I

)
. We are going to perform t steps

to transform H0 into Ht such that the columns in Ht are
"small". Again, we look at the first n positions in a column
corresponding to the A matrix. Since we are only adding
or subtracting columns using coefficients in {−1, 1}, the
remaining positions in the column are assumed to contain 2i

nonzero positions either containing a −1 or a 1, after i steps.
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C. A BKW-Sieving Step

We are now going to fix an average level of "smallness" for
a position, which is a constant denoted B, as above. The idea
of the algorithm is to keep the norm of considered vectors of
some length n′ below

√
n′ ·B.

A column h ∈ H0 will now be processed by first computing
∆ = CodeMap(h, 1). Then we place h in the list L∆. After
running through all columns h ∈ H0 they have been sorted
into K lists L∆.

We then run through the lists, each containing roughly
m/K columns. We perform a sieving step, according to
S∆ = Sieve(L∆,

√
N1 · B), for all ∆ ∈ Ci. The result is a

list of vectors, where the norm of each vector restricted to the
first N1 positions is less than

√
N1 · B. The indices of any

, ij , ik are kept in such a way that we can compute a new
received symbol z = zij − zik . All vectors in all lists S∆ are
now put as columns in H1. We now have a matrix H1 where
the norm of each column restricted to the first n1 positions is
less than

√
N1 ·B. This is the end of the first step.

Next, we repeat roughly the same procedure another t − 1
times. A column h ∈ Hi−1 will now be processed by first
computing ∆ = CodeMap(h, i). We place h in the list L∆.
After running through all columns h ∈ Hi−1 they have been
sorted in K lists L∆.

We run through all lists, where each list contains roughly
m/K columns. We perform a sieving step, according to S∆ =
Sieve(L∆, i,

√
Ni · B). The result is a list of vectors where

the norm of each vector restricted to the first Ni positions is
less than

√
Ni · B. A new received symbol is computed. All

vectors in all lists S∆ are now put as columns in Hi. We get
a matrix Hi where the norm of each column restricted to the
first Ni positions is less than

√
Ni · B. This is repeated for

i = 2, . . . , t. We assume that the parameters have been chosen
in such a way that each matrix Hi can have m columns.

After performing these t steps we end up with a matrix
Ht such that the norm of columns restricted to the first n
positions is bounded by

√
n · B and the norm of the last

m positions is roughly 2t/2. Altogether, this should result in
samples generated as

z = (s, e)Ht.

The values in the z vector are then roughly Gaussian dis-
tributed, with variance σ2 · (nB2 + 2t). By running a dis-
tinguisher on the created samples z we can verify whether
our initial guess is correct or not. After restoring some secret
value, the whole procedure can be repeated, but for a smaller
dimension.

D. Algorithm Summary

A summary of coded-BKW with sieving is contained in
Algorithm 1.

Note that one may also use some advanced distinguisher,
e.g., the FFT distinguisher, which is important to the concrete
complexity, but not for the asymptotic performance.

Algorithm 1 Coded-BKW with Sieving (main steps)

Input: Matrix A with n rows and m columns, received vector z of
length m and algorithm parameters t, ni, 1 ≤ i ≤ t, B

change the distribution of the secret vector (Gaussian
elimination)
for i from 1 to t do:

for all columns h ∈ Hi−1 do:
∆ = CodeMap(h, i)
put h in list L∆

for all lists L∆ do:
S∆ = Sieve(L∆, i,

√
Ni ·B)

put all S∆ as columns in Hi

exhaustively guess the sn entry using hypothesis testing

E. Illustrations of Coded-BKW with Sieving

A micro picture of how coded-BKW with sieving works can
be found in Figure 1. A sample gets mapped to the correct list
L∆i

, based on the current ni positions. Here L∆1
, . . . ,L∆K

denote the set of all the K such lists. In this list L∆i
,

when adding/subtracting two vectors the resulting vector gets
elements that are on average smaller than B in magnitude in
the current ni positions. Then we only add/subtract vectors in
the list L∆i

such that the elements of the resulting vector on
average is smaller than B in the first Ni positions. The list of
such vectors is then denoted S∆i

.
A macro picture of how coded-BKW with sieving works

can be found in Figure 2. The set of all samples gets divided
up into lists L∆1

, . . . ,L∆K
. Sieving is then applied to each

individual list. The resulting sieved lists S∆1 , . . . ,S∆K
then

constitute the set of samples for the next step of coded-BKW
with sieving.

F. High-Level Comparison with Previous BKW Versions

A high-level comparison between the behaviors of plain
BKW, coded-BKW and coded-BKW with sieving is shown
in Figure 3.

Initially the average norm of all elements in a sample
vector a is around q/4, represented by the first row in the
figure. Plain BKW then gradually works towards a zero vector
by adding/subtracting vectors in each step such that a fixed
number of positions gets canceled out to 0.

The idea of coded-BKW is to not cancel out the positions
completely, and thereby allow for longer steps. The positions
that are not canceled out increase in magnitude by a factor
of
√

2 in each step. To end up with an evenly distributed
noise vector in the end we can let the noise in the new almost
canceled positions increase by a factor of

√
2 in each step.

Thus we can gradually increase the step size.
When reducing positions in coded-BKW, the previously

reduced positions increase in magnitude by a factor of
√

2.
However, the sieving step in coded-BKW with sieving makes
sure that the previously reduced positions do not increase
in magnitude. Thus, initially, we do not have to reduce the
positions as much as in coded-BKW. However, the sieving
process gets more expensive the more positions we work with,
and we must therefore gradually decrease the step size.
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ni

Ni−1 Ni

1. Coded Step

L∆1

...

L∆i

...

L∆K

L∆i

2. Sieving Step
S∆i

1.
∥∥(a1 − a2)[Ni−1+1:Ni]

∥∥ < B
√
ni

2.
∥∥s[1:Ni]

∥∥ < B
√
Ni

Fig. 1. A micro picture of how one step of coded-BKW with sieving works.

Coded-BKW

L∆1

S∆1

L∆2

S∆2

· · ·

Sieving

· · ·

L∆K

S∆K

Fig. 2. A macro picture of how one step of coded-BKW with sieving works. The set of lists S∆1
, . . . ,S∆K constitutes the samples for the next step of

coded-BKW with sieving.

VI. PARAMETER SELECTION AND ASYMPTOTIC ANALYSIS

After each step, positions that already have been treated
should remain at some given magnitude B. That is, the average
(absolute) value of a treated position should be very close to
B. This property is maintained by the way in which we apply
the sieving part at each reduction step. After t steps we have
therefore produced vectors of average norm

√
n ·B.

Assigning the number of samples to be m = 2k, where
2k is a parameter that will decide the total complexity of the
algorithm, we will end up with roughly m = 2k samples after t
steps. As already stated, these received samples will be roughly
Gaussian with variance σ2 · (nB2 + 2t). We assume that the
best strategy is to keep the magnitudes of the two different
contributions of the same order, so we choose nB2 ≈ 2t.

Furthermore, in order to be able to recover a single secret
position using m samples, we need

m = O
(
e

4π2·σ
2·(nB2+2t)

q2

)
.

Thus, we have

ln 2 · k = 4π2 · σ
2 · (nB2 + 2t)

q2
+O (1) . (5)

Each of the t steps should deliver m = 2k vectors of the
form described before.

Since we have two parts in each reduction step, we need to
analyze these parts separately. First, consider performing the
first part of reduction step number i using coded-BKW with
an [ni, di] linear code, where the parameters ni and di at each
step are chosen for optimal (global) performance. We sort the
2k vectors into 2di different lists. Here the coded-BKW step
guarantees that all the vectors in a list, restricted to the ni
considered positions, have an average norm less than

√
ni ·B

if the codeword is subtracted from the vector. So the number
of lists (2di ) has to be chosen so that this norm restriction is
true. Then, after the coded-BKW step, the sieving step should
leave the average norm over the Ni positions unchanged, i.e.,
less than

√
Ni ·B.

Since all vectors in a list can be considered to have norm√
Ni ·B in these Ni positions, the sieving step needs to find
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Plain BKW Coded-BKW Coded-BKW with Sieving

Fig. 3. A high level illustration of how the different versions of the BKW algorithm work.

any pair that leaves a difference between two vectors of norm
at most

√
Ni · B. From the theory of sieving in lattices, we

know that heuristics imply that a single list should contain at
least 20.208Ni vectors to be able to produce the same number
of vectors. The time and space complexity is 20.292Ni if LSF
is employed.

Let us adopt some further notation. As we expect the
number of vectors to be exponential we write k = c0n for
some c0. Also, we adopt q = ncq and σ = ncs . By choosing
nB2 ≈ 2t, from (5) we derive that

B = Θ(ncq−cs) (6)

and
t = (2(cq − cs) + 1) log2 n+O (1) . (7)

A. Asymptotics of Coded-BKW with Sieving

We assume exponential overall complexity and write it as
2cn for some coefficient c to be determined. Each step is
additive with respect to complexity, so we assume that we
can use 2cn operations in each step. In the t steps we are
choosing n1, n2, . . . positions for each step.

The number of buckets needed for the first step of coded-
BKW is (C ′ · ncs)n1 , where C ′ is another constant. In each
bucket the dominant part in the time complexity is the sieving
cost 2λn1 , for a constant λ. The overall complexity, the product
of these expressions, should match the bound 2cn, and thus
we choose n1 such that (C ′ · ncs)n1 ≈ 2cn · 2−λn1 .

Taking the log, cs log n · n1 + logC ′n1 = cn − λn1.
Therefore, we obtain

n1 =
cn

cs log n+ λ+ logC ′
.

To simplify expressions, we use the notation W = cs log n+
λ+ logC ′.

For the next step, we get W ·n2 = cn−λn1, which simplifies
in asymptotic sense to

n2 =
cn

W

(
1− λ

W

)
.

Continuing in this way, we have W · ni = cn − λ
∑i−1
j=1 nj

and we can obtain an asymptotic expression for ni as

ni =
cn

W

(
1− λ

W

)i−1

.

After t steps we have
∑t
i=1 ni = n, so we observe that

t∑
i=1

ni =
cn

W

t∑
i=1

(
1− λ

W

)i−1

,

which simplifies to

n =
t∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t)
.

Now, we know that

c = λ

(
1−

(
1− λ

W

)t)−1

.

Since t and W are both of order Θ(log n) that tend to
infinity as n tends to infinity, we have that

c = λ

(
1−

(
1− λ

W

)W
λ ·

tλ
W

)−1

→ λ
(

1− e− tλW
)−1

,

when n→∞.
Since t/W → (1 + 2 (cq − cs)) /cs when n → ∞ this

finally gives us

c =
λ

1− e−λ(1+2(cq−cs))/cs
.
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Theorem 1: The time and space complexity of the proposed
algorithm is 2(c+o(1))n, where

c =
λ

1− e−λ(1+2(cq−cs))/cs
,

and λ = 0.292 for classic computers and 0.265 for quantum
computers.

Proof: Since c > λ, there are exponential samples left for
the distinguishing process. One can adjust the constants in (6)
and (7) to ensure a success probability of hypothesis testing
close to 1.

B. Asymptotics when Using Plain BKW Pre-Processing
In this section we show that Theorem 1 can be improved

for certain LWE parameters. Suppose that we perform t0 plain
BKW steps and t1 steps of coded-BKW with sieving, so t =
t0 + t1. We first derive the following lemma.

Lemma 1: It is asymptotically beneficial to per-
form t0 plain BKW steps, where t0 is of order
(2 (cq − cs) + 1− cs/λ · ln (cq/cs)) log n, if

cs
λ

ln
cq
cs
< 2 (cq − cs) + 1.

Proof: Suppose in each plain BKW step, we zero-out b
positions. Therefore, we have that

qb = 2cn+o(n),

and it follows that asymptotically

b =
cn

cq log n
+ o(

n

log n
). (8)

Because the operated positions in each step will decrease
using coded-BKW with sieving, it is beneficial to replace a
step of coded-BKW with sieving by a pre-processing step
of plain BKW, if the allowed number of steps is large. We
compute t1 such that for t ≥ i ≥ t1, we have ni ≤ b. That is,

cn

W

(
1− λ

W

)t1−1

=
cn

cq log n
.

Thus, we derive that t1 is of order cs/λ · ln (cq/cs) · log n.
If we choose t0 = t− t1 plain BKW steps, where t1 is of

order cs/λ · ln (cq/cs) · log n as in Lemma 2, then

n− t0b =

t1∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t1)
.

Thus

1− c

cq

(
2 (cq − cs) + 1− cs

λ
ln

(
cq
cs

))
=
c

λ

(
1− cs

cq

)
.

Finally, we have the following theorem for characterizing
its asymptotic complexity.

Theorem 2: If c > λ and cs
λ ln

cq
cs
< 2 (cq − cs) + 1, then

the time and space complexity of the proposed algorithm with
plain BKW pre-processing is 2(c+o(1))n, where

c =
λcq

(1 + 2λ)(cq − cs) + λ− cs ln
(
cq
cs

) ,
and λ = 0.292 for classic computers and 0.265 for quantum
computers.

Proof: The proof is similar to that of Theorem 1.

C. Case Study: Asymptotic Complexity of the Regev Parame-
ters

In this part we present a case-study on the asymptotic com-
plexity of Regev parameter sets, a family of LWE instances
with significance in public-key cryptography.

Regev parameters: We pick parameters q ≈ n2 and σ =
n1.5/(

√
2π log2

2 n) as suggested in [43].

The asymptotic complexity of Regev’s LWE instances is
shown in Table I. For this parameter set, we have cq = 2 and
cs = 1.5, and the previously best algorithms in the asymp-
totic sense are the coded-BKW variants [24], [30] (denoted
Coded-BKW in this table) with time complexity 20.9299n+o(n).
The item ENUM/DUAL represents the run time exponent of
lattice reduction approaches using polynomial samples and
exponential memory, while DUAL-EXPSamples represents
the run time exponent of lattice reduction approaches using
exponential samples and memory. Both values are computed
according to formulas from [26], i.e., 2cBKZ · cq/(cq − cs)2

and 2cBKZ · cq/(cq − cs + 1/2)2, respectively. Here cBKZ
is chosen to be 0.292, the best constant that can be achieved
heuristically [9].

We see from the table that the newly proposed algorithm
coded-BKW with sieving outperforms the previous best al-
gorithms asymptotically. For instance, the simplest strategy
without plain BKW pre-processing, denoted S-BKW(w/o p),
costs 20.9054n+o(n) operations, with pre-processing, the time
complexity, denoted S-BKW(w/ p) is 20.8951n+o(n). Using
quantum computers, the constant hidden in the exponent can
be further reduced to 0.8856, shown in Table I as QS-BKW(w/
p). Note that the exponent of the algebraic approach is much
higher than that of the BKW variants for Regev parameters.

D. A Comparison with the Asymptotic Complexity of Other
Algorithms

Fig. 4. A comparison of the asymptotic behavior of the best single-exponent
algorithms for solving the LWE problem for different values of cq and cs.
The different areas correspond to where the corresponding algorithm beats
the other algorithms in that subplot.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2018 10

TABLE I
ASYMPTOTIC COMPLEXITY FOR THE REGEV PARAMETERS

Algorithm Complexity exponent (c)

QS-BKW(w/ p) 0.8856
S-BKW(w/ p) 0.8951
S-BKW(w/o p) 0.9054
Coded-BKW 0.9299
ENUM/DUAL 4.6720
DUAL-EXPSamples 1.1680

A comparison between the asymptotic time complexity
of coded-BKW with sieving and the previous best single-
exponent algorithms is shown in Figure 4, similar to the
comparison made in [27]. We use pre-processing with standard
BKW steps (see Theorem 2), since that reduces the complexity
of the coded-BKW with sieving algorithm for the entire plotted
area. Use of exponential space is assumed. Access to an
exponential number of samples is also assumed.

First of all we notice that coded-BKW with sieving behaves
best for most of the area where coded-BKW used to be the
best algorithm. It also outperforms the dual algorithm with
an exponential number of samples on some areas where that
algorithm used to be the best. It is also worth mentioning that
the Regev instances are well within the area where coded-
BKW with sieving performs best.

The area where coded-BKW outperforms coded-BKW with
sieving is not particularly interesting in cryptographical terms,
since cs < 0.5, and thus Regev’s reduction proof does not
apply. It should be noted that the Arora-Ge algorithm [8] has
the best time complexity of all algorithms for cs < 0.5.

VII. ASYMPTOTIC COMPLEXITY OF LWE WITH SPARSER
SECRETS

In this part, we discuss the asymptotic solving complexity
of an LWE variant whose secret symbols are sampled from
a distribution with standard deviation ncs1 and the error
distribution is a discrete Gaussian with standard deviation
ncs2 , where 0 < cs1 < cs2 . One important application is the
LWE problem with a polynomial number of samples, where
cs1 equals cs, while cs2 changes to

cs + 1
2 if we start with Θ(n log n) samples,

cs + 1
2 +

cq
cm−1 if we start with Θ(cmn) samples,

after the secret-noise transform and the sample amplification
procedure (cf. [27]).

We assume that the best strategy is to choose nB2n2cs1 ≈
2tn2cs2 . Therefore, we know that B = C · ncq−cs1 and t =
log2D+ (2(cq − cs2) + 1) · log2 n, for some constants C and
D. We then derive similar formulas except that now W =
cs1 · log n+ o(log n).

We have the following theorem.
Theorem 3: The time and space complexity of the proposed

algorithm for solving the LWE problem with sparse secrets is
2(c+o(1))n, where

c =
λ

1− e−λ(1+2(cq−cs2))/cs1
,

and λ = 0.292 for classic computers and 0.265 for quantum
computers.

Lemma 2: It is asymptotically beneficial to per-
form t0 plain BKW steps, where t0 is of order
(2 (cq − cs1) + 1− cs1/λ · ln (cq/cs1)) log n, if

cs1
λ

ln
cq
cs1

< 2 (cq − cs1) + 1.

If we choose t0 = t− t1 plain BKW steps, where t1 is of
order cs1/λ · ln (cq/cs1) · log n as in Lemma 2, then

n− t0b =

t1∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t1)
.

Thus

1− c

cq

(
2 (cq − cs2) + 1− cs1

λ
ln

(
cq
cs1

))
=
c

λ

(
1− cs1

cq

)
.

Finally, we have the following theorem.
Theorem 4: If c > λ and cs1

λ ln
cq
cs1

< 2 (cq − cs1)+1, then
the time and space complexity of the proposed algorithm with
plain BKW pre-processing for solving the LWE problem with
sparse secrets is 2(c+o(1))n, where c is

λcq

(cq − cs1) + λ (2 (cq − cs2) + 1)− cs1 ln
(
cq
cs1

) ,
and λ = 0.292 for classic computers and 0.265 for quantum
computers.

A. Asymptotic Complexity of LWE with a Polynomial Number
of Samples

Applying Theorems 3 and 4 to the case where we limit
the number of samples to Θ(n log n) gives us the comparison
of complexity exponents for the Regev parameters in Table
II. Notice that, asymptotically speaking, the BKW algorithms
perform much better compared to the lattice reduction coun-
terparts in this scenario. Also, since pre-processing with plain
BKW steps does not lower the complexity in the polynomial
case, we just call the algorithms S-BKW and QS-BKW.

In Figure 5 we compare the asymptotic behavior between
the different algorithms for varying values of cq and cs, when
the number of samples is limited to Θ(n log n). Notice here
that the area where the BKW algorithms perform better is
much larger than in the case with exponential number of
samples.
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TABLE II
ASYMPTOTIC COMPLEXITY FOR THE REGEV PARAMETERS WITH A POLYNOMIAL NUMBER OF SAMPLES

Algorithm Complexity exponent (c)

QS-BKW 1.6364
S-BKW 1.6507
Coded-BKW 1.7380
ENUM/DUAL 4.6720

Fig. 5. A comparison of the asymptotic behavior of the best single-exponent
algorithms for solving the LWE problem for different values of cq and cs.
The different areas correspond to where the corresponding algorithm beats
the other algorithms in that subplot. The number of samples is limited to
Θ(n logn).

VIII. NEW VARIANTS OF CODED-BKW WITH SIEVING

We come back to the general LWE problem (without a
limit on the number of samples). In this section, we present
three novel variants, the first two showing unified views
for the existing BKW algorithms, and the other improving
the asymptotic complexity for solving many LWE instances
including the important Regev ones, both classically and in
a quantum setting. The results can easily be extended to the
solving of LWE problems with sparse secrets.

To balance the noise levels for the best performance, we
always perform t = (2(cq − cs) + 1) log2 n+O (1) reduction
steps and make the noise in each position approximately equal
to B = Θ(ncq−cs). For the t reduction steps, we have three
different choices, i.e., plain BKW, coded-BKW, and coded-
BKW with sieving. We assume that plain BKW steps (if
performed) should be done before the other two options.

A. S-BKW-v1

We start with a simple procedure (named S-BKW-v1), i.e.,
first performing t1 plain BKW steps, then t2 coded-BKW
steps, and finally t3 steps of coded-BKW with sieving. Thus,

t1 + t2 + t3 = t = (2(cq − cs) + 1) log2 n+O (1) ,

and we denote that t3 = α log n+O (1), t2 = β log n+O (1),
and t1 = (2(cq − cs) + 1− α− β) log n+O (1). A straight-
forward constraint is that

0 ≤ α, β ≤ α+ β ≤ 2(cq − cs) + 1.

This is a rather generic algorithm as all known BKW vari-
ants, i.e., plain BKW, coded-BKW, coded-BKW with sieving
(with or without plain BKW pre-processing), can be treated
as specific cases obtained by tweaking the parameters t1, t2
and t3.

We want to make the noise variances for each position equal,
so we set

Bi =
B√
2t3+i

,

for i = 1, . . . , t2, where 2Bi is the reduced noise interval after
(t2 − i+ 1)-th coded-BKW steps.

Let mi be the length of the (t2−i+1)-th coded-BKW step.
We have that, (

q

Bi

)mi
≈ 2cn,

which simplifies to

cn = mi(cs log n+
t3 + i

2
+ C0).

Thus,

mi =
cn

(cs + α
2 ) log n+ i

2 + C1

(9)

where C1 is another constant. We know that

t2∑
i=1

mi = 2cn · ln
cs + α+β

2

cs + α
2

+ o(n). (10)

Let ni be the length of the i-th step of coded-BKW with
sieving, for 1 ≤ i ≤ t3. We derive that

ni ≈
cn

cs log n
exp(− i

cs log n
λ).

Therefore,

t3∑
i=1

ni =
cn

λ
(1− exp(− α

cs
λ)) + o(n). (11)

We then have the following theorem.
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Theorem 5: One (cq, cs) LWE instance can be solved
with time and memory complexity 2(c+o(1))n, where c is the
solution to the following optimization problem

minimize
α,β

c(α, β) = (
2(cq − cs) + 1− α− β

cq

+ 2 ln
cs + α+β

2

cs + α
2

+ λ−1(1− exp(− α
cs
λ)))−1

subject to 0 ≤ α, β ≤ 2(cq − cs) + 1,

α+ β ≤ 2(cq − cs) + 1.

Proof: Since n = t1b+
∑t2
i=1mi +

∑t3
i=1 ni, we have

1 =c(
2(cq − cs) + 1− α− β

cq
+ 2 ln

cs + α+β
2

cs + α
2

+ λ−1(1− exp(− α
cs
λ))),

where b is obtained from (8).
Example 1: For the Regev parameters, i.e., (cq, cs) =

(2, 1.5), we derive that β = 0 for the best asymptotic
complexity of S-BKW-v1. Thus, in this scenario, this generic
procedure degenerates to coded-BKW with sieving using plain
BKW processing discussed in Section VI-B, i.e., including no
coded-BKW steps.

B. S-BKW-v2

Next, we present a variant (named S-BKW-v2) of coded-
BKW with sieving by changing the order of the different BKW
reduction types in S-BKW-v1. We first do t1 plain BKW steps,
then t2 coded-BKW with sieving steps, and finally t3 coded-
BKW steps. Similarly, we let t3 = α log n + O (1), t2 =
β log n+O (1), and t1 = (2(cq−cs)+1−α−β) log n+O (1).
We also have the constraint

0 ≤ α, β ≤ α+ β ≤ 2(cq − cs) + 1.

This is also a generic framework including all known BKW
variants as its special cases.

Let mi represent the length of the (t3 − i + 1)-th coded-
BKW step, for 1 ≤ i ≤ t3, and nj the length of the j-th step
of coded-BKW step with sieving, for 1 ≤ j ≤ t2.

We derive that,

m1 =
cn

cs log n
+ o

(
n

log n

)
,

mt3 =
cn(

cs + α
2

)
log n

+ o

(
n

log n

)
,

t3∑
i=1

mi = 2cn · ln
cs + α

2

cs
+ o(n),

nt2 =
cn

(cs + α
2 ) log n

exp

(
− β
cs
λ

)
+ o

(
n

log n

)
,

t2∑
j=1

nj =
ccs · n

λ(cs + α
2 )

(
1− exp

(
−βλ
cs

))
+ o(n).

We then have the following theorem.
Theorem 6: One (cq, cs) LWE instance can be solved

with time and memory complexity 2(c+o(1))n, where c is the
solution to the following optimization problem

minimize
α,β

c(α, β) =

(
cs

λ
(
cs + α

2

) (1− exp

(
−βλ
cs

))
+

2 ln
cs + α

2

cs
+

1

cq
(2 (cq − cs) + 1− α− β)

)−1

subject to 0 ≤ α, β ≤ 2(cq − cs) + 1,

α+ β ≤ 2(cq − cs) + 1.

Proof: The proof is similar to that of Theorem 5.
Example 2: For Regev parameters, we derive that α = 0

for the best asymptotic complexity of S-BKW-v2, so it also
degenerates to coded-BKW with sieving using plain BKW
processing discussed in Section VI-B.

C. S-BKW-v3

We propose a new variant (named S-BKW-v3) including
a nearest neighbor searching algorithm after a coded-BKW
step, which searches for a series of new vectors whose norm
is smaller with a factor of γ, where 0 ≤ γ ≤

√
2, by adding

or subtracting two vectors in a ball. This is a generalization
of coded-BKW and coded-BKW with sieving from another
perspective, since coded-BKW can be seen as S-BKW-v3 with
reduction parameter γ =

√
2, and coded-BKW with sieving

as S-BKW-v3 with reduction parameter γ = 1.
We denote the complexity exponent for the nearest neigh-

bor searching algorithm λ, i.e., 2λn+o(n) time and space is
required if the dimension is n. We can improve the asymptotic
complexity for the Regev parameters further.

We start by performing t1 plain BKW steps and then t2
steps of coded-BKW with sieving using parameters (λ, γ).
Let t2 = α log n+O (1) and t1 = t− t2 = (2(cq − cs) + 1−
α) log n + O (1). We also have the constraint that 0 ≤ α ≤
2(cq − cs) + 1.

Let n1 be the length of the first step of coded-BKW with
sieving. We have B1 = B/γt2 , so

(t2 log γ + cs log n) · n1 = cn− λn1.

Thus,

n1 =
cn

(cs + α log γ) log n+ C

=
cn

(cs + α log γ) log n
·
(
1 + Θ

(
log−1 n

))
,

where C is a constant.
For the i-th step of coded-BKW with sieving, we derive that

((t2 − i+ 1) log γ + cs log n) · ni = cn− λ
i∑

j=1

nj . (12)

Thus,

ni =

(
1 +

log γ − λ
(t2 − i+ 1) log γ + cs log n+ λ

)
· ni−1
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and if γ 6= 1, we have that

nt2 =

t2∏
i=2

(
1 +

log γ − λ
(t2 − i+ 1) log γ + cs log n+ λ

)
· n1

= n1 · exp

(
t2∑
i=2

ln

(
log γ − λ

(t2 − i+ 1) log γ + cs log n+ λ

+1

))

= n1 · exp

(
t2∑
i=2

(
log γ − λ

(t2 − i+ 1) log γ + cs log n+ λ

+Θ
(
log−2 n

)))

= n1 · exp

(∫ α

0

log γ − λ
t log γ + cs

dt+ Θ
(
log−1 n

))
= n1 · exp

(
log γ − λ

log γ
· ln cs + α log γ

cs
+ Θ

(
log−1 n

))
=

n

log n
· c

cs + α log γ
exp

(
log γ − λ

log γ
· ln cs + α log γ

cs

)
+o

(
n

log n

)
.

We also know that,

N =

t2∑
j=1

nj = λ−1 (cn− (log γ + cs log n) · nt2)

Thus,

N = λ−1

(
cn−

(
cs

α log γ + cs

) λ
log γ

· cn+ o(n)

)
. (13)

If t1b+N = n, then the following equation holds,

n = (2(cq − cs) + 1− α)
cn

cq

+
cn

λ

(
1−

(
cs

α log γ + cs

) λ
log γ

)
.

Thus, we derive the following formula to compute the
constant c, i.e.(

2

(
1− cs

cq
+

1− α
2cq

)
+

1

λ

(
1−

(
cs

α log γ + cs

) λ
log γ

))−1

.

Theorem 7: If 0 ≤ α0 ≤ 2(cq − cs) + 1 and γ 6= 1, then a
(cq, cs) LWE instance can be solved with time and memory
complexity 2(c+o(1))n, where c is((

2

(
1−

cs

cq

)
+

1− α0

cq

)
+

1

λ

(
1−

(
cs

α0 log γ + cs

) λ
log γ

))−1

.

(14)
Example 3: The numerical results for the Regev parameters

using various reduction factors are listed in Table III, where
the complexity exponent λ of the nearest neighbor searching
is computed by the LSF approach [9]. Using S-BKW-v3, we
can further decrease the complexity exponent c for solving
the Regev LWE instance from 0.8951 to 0.8927 classically,

Fig. 6. The optimal γ value for version D of the algorithm, as a function of
(cq , cs).

Fig. 7. A comparison of the asymptotic behavior of the best single-exponent
algorithms for solving the LWE problem for different values of cq and cs.
The different areas correspond to where the corresponding algorithm beats
the other algorithms in that subplot.

and from 0.8856 to 0.8795 in a quantum setting. For these
parameters, the choice of γ to achieve the best asymptotic
complexity is 0.86 classically (or 0.80 using a quantum
computer).

1) Optimal Choice of γ: The optimal choice of γ depends
on the parameters cq and cs, illustrated in Figure 6. The gap
between cq and cs is important, since this optimal γ value
increases with cq for a fixed cs, and decreases with cs when
cq is determined.

D. An Asymptotic Comparison of the New Variants

We present a comparison describing the asymptotic behavior
of the best single-exponential algorithms for solving the LWE
problems with varying (cq, cs) in Figure 7. The upper sub-plot
includes all previous algorithms, which have been shown in
Figure 4. We further add the new BKW variants from this
section in the lower part.

Notice that all previous BKW variants are special cases of
the three new algorithms, i.e., S-BKW-v1, S-BKW-v2, and
S-BKW-v3, so in the lower sub-plot and for a particular
pair of (cq, cs), the best algorithm is always among these
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TABLE III
THE COMPLEXITY EXPONENT c FOR VARIOUS REDUCTION FACTORS WHEN (cq , cs) = (2, 1.5).

γ 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

λ
classic 0.610 0.577 0.544 0.512 0.482 0.452 0.423 0.395 0.368 0.342 0.317 0.292 0.269 0.246
quantum 0.574 0.541 0.509 0.478 0.448 0.419 0.391 0.364 0.338 0.313 0.289 0.265 0.243 0.221

c
classic 0.8933 0.8930 0.8928 0.8927 0.8927 0.8928 0.8930 0.8932 0.8936 0.8940 0.8946 0.8951 0.8959 0.8967
quantum 0.8796 0.8795 0.8795 0.8797 0.8800 0.8805 0.8810 0.8817 0.8825 0.8835 0.8845 0.8856 0.8870 0.8884

three variants and DUAL-EXP. From this sub-plot, firstly, the
area where DUAL-EXP wins becomes significantly smaller.
Secondly, with respect to the area that the BKW variants win,
S-BKW-v3 beats the other two in most pairs of parameters. S-
BKW-v2 is the best algorithm in a thin strip, and by comparing
with Figure 6, we notice that this strip corresponds to an area
where the optimal γ value is close to 1. Therefore, for the
pairs of (cq, cs) in this area, optimizing for γ does not help
that much, and S-BKW-v2 is superior. S-BKW-v1 never wins
for parameters considered in this graph.

E. A High Level Description
A high level comparison showing how the different new

versions of coded-BKW with sieving work, similar to Figure
3, can be found in Figure 8. In all versions, pre-processing
with plain BKW steps is excluded from the description.

In S-BKW-v1, we first take coded-BKW steps. This means
longer and longer steps, and gradually increasing noise. Then
we switch to coded-BKW with sieving steps. Here the steps
get shorter and shorter since we have to apply sieving to an
increasing number of previous steps.

In S-BKW-v2, we begin with shorter and shorter coded-
BKW with sieving steps, keeping the noise of the positions
low. Then we finish off with longer and longer coded-BKW
steps. Here we do not apply sieving to the previously sieved
positions, thus the added noise of these positions grow.

In S-BKW-v3a, we use regular coded-BKW with sieving
steps, but with a reduction factor γ > 1. The steps get shorter
and shorter because we need to sieve more and more positions.
The added noise is small in the beginning, but in each sieved
position it becomes larger and larger for each step. S-BKW-
v3b is similar, but we use γ < 1. This means that the noise is
large in the beginning, but gets smaller and smaller for each
step.

F. More Generalization
A straight-forward generalization of all the new variants

described in Sections VIII-A-VIII-C is to allow different
reduction parameter γi in different steps, after having pre-
processed the samples with plain BKW steps. In addition, we
can allow a sieving operation on positions in an interval Ii (or
even more generally on any set of positions), using a flexible
reduction factor γi. This optimization problem is complicated
due to the numerous possible approaches, and generally, it
is even difficult to write a closed formula for the objective
function. We leave the problem of finding better asymptotic
algorithms via extensive optimization efforts as an interesting
scope for future research.

IX. CONCLUSIONS AND FUTURE WORK

In the paper we have presented a new BKW-type algorithm
for solving the LWE problem. This algorithm, named coded-
BKW with sieving, combines important ideas from two recent
algorithmic improvements in lattice-based cryptography, i.e.,
coded-BKW and heuristic sieving for SVP, and outperforms
the previously known approaches for important parameter sets
in public-key cryptography.

For instance, considering Regev parameters, we have
demonstrated an exponential asymptotic improvement, reduc-
ing the time and space complexity from 20.930n to 20.893n.
Additionally, we showed a similar improvement, when restrict-
ing the number of available samples to be polynomial. Lastly,
we obtained the first quantum acceleration for this parameter
set, further reducing the complexity to 20.880n if quantum
computers are provided.

In the conference version [23], this algorithm has proven
significant non-asymptotic improvements for some concrete
parameters, compared with the previously best BKW variants.
But one should further investigate the analysis when heuristics
like unnatural selection are taken into consideration, in order
to fully exploit its power on suggesting accurate security
parameters for real cryptosystems. Moreover, the influence on
the concrete complexity of using varying reduction factors
is unclear. For this purpose, further analysis and extensive
simulation results are needed, which can be a very interesting
topic for future work.

Another stimulating problem is to search for new algorithms
with better asymptotic complexity by solving the general
optimization problem raised in Section VIII-F, numerically or
analytically.

Lastly, the newly proposed algorithm definitely also has
importance in solving many LWE variants with specific struc-
tures, e.g., the RING-LWE problem. An interesting research
direction is to search for more applications, e.g., solving hard
lattice problems, as in [30].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
from ASIACRYPT 2017 for their invaluable comments.

REFERENCES

[1] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the thirty-third annual ACM
symposium on Theory of computing. pp. 601–610. ACM (2001)

[2] Albrecht, M., Cid, C., Faugere, J.C., Robert, F., Perret, L.: Algebraic
algorithms for LWE problems. Cryptology ePrint Archive, Report
2014/1018 (2014)



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2018 15

S-BKW-v1 S-BKW-v2 S-BKW-v3a S-BKW-v3b

Fig. 8. A high level illustration of how the different new variants of coded-BKW with sieving work.

[3] Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On
the complexity of the BKW algorithm on LWE. Designs, Codes and
Cryptography 74(2), 325–354 (2015)

[4] Albrecht, M.R., Faugère, J.C., Fitzpatrick, R., Perret, L.: Lazy Mod-
ulus Switching for the BKW Algorithm on LWE. In: Krawczyk, H.
(ed.) Public-Key Cryptography–PKC 2014, Lecture Notes in Computer
Science, vol. 8383, pp. 429–445. Springer Berlin Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-642-54631-0_25

[5] Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving
LWE by reduction to unique-SVP. In: International Conference on
Information Security and Cryptology. pp. 293–310. Springer (2013)

[6] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology 9(3), 169–203
(2015)

[7] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic
Primitives and Circular-Secure Encryption Based on Hard Learning
Problems. In: Halevi, S. (ed.) Advances in Cryptology–CRYPTO 2009,
Lecture Notes in Computer Science, vol. 5677, pp. 595–618. Springer
Berlin Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03356-
8_35

[8] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Automata, Languages and Programming, pp. 403–415. Springer (2011)

[9] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in
nearest neighbor searching with applications to lattice sieving. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 10–24. Society for Industrial and Applied
Mathematics (2016)

[10] Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices.
LMS Journal of Computation and Mathematics 17(A), 49–70 (2014)

[11] Bernstein, D.J., Lange, T.: Never trust a bunny. In: Radio Frequency
Identification. Security and Privacy Issues, pp. 137–148. Springer (2013)

[12] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

[13] Bogos, S., Vaudenay, S.: Optimization of LPN solving algorithms. In:
Advances in Cryptology–ASIACRYPT 2016: 22nd International Con-
ference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22.
pp. 703–728. Springer (2016)

[14] Brakerski, Z.: Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In: Advances in Cryptology–CRYPTO 2012,
pp. 868–886. Springer (2012)

[15] Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryp-
tion from (Standard) LWE. In: Proceedings of the 2011 IEEE 52nd

Annual Symposium on Foundations of Computer Science. pp. 97–106.
IEEE Computer Society (2011)

[16] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Annual Cryp-
tology Conference. pp. 505–524. Springer (2011)

[17] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In:
Advances in Cryptology–ASIACRYPT 2011, pp. 1–20. Springer (2011)

[18] Conway, J. H., Sloane, N. J. A.: Sphere packings, lattices and groups.
In: (Vol. 290). Springer Science and Business Media (2013)

[19] Dubiner, M.: Bucketing coding and information theory for the statisti-
cal high-dimensional nearest-neighbor problem. IEEE Transactions on
Information Theory 56(8), 4166–4179 (2010)

[20] Duc, A., Tramèr, F., Vaudenay, S.: Better Algorithms for LWE and
LWR. In: Advances in Cryptology – EUROCRYPT 2015, pp. 173–202.
Springer (2015)

[21] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In: Advances in Cryptology–CRYPTO 2013, pp. 75–92. Springer
(2013)

[22] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes.
In: Advances in Cryptology–ASIACRYPT 2014, pp. 1–20. Springer
(2014)

[23] Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW
with Sieving. In: Advances in Cryptology–ASIACRYPT 2017, Part I,
pp. 323–346. Springer (2017)

[24] Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: Solving LWE using
lattice codes. In: Advances in Cryptology–CRYPTO 2015, pp. 23–42.
Springer (2015)

[25] Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and
closest lattice vector problems. In: Coding and Cryptology, pp. 159–
190. Springer (2011)

[26] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity
of solving LWE. IACR Cryptology ePrint Archive 2015, 1222 (2015),
http://eprint.iacr.org/2015/1222

[27] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. J. Designs, Codes and Cryptography, pp. 1–29 (2017)

[28] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In: Proceedings of the thirtieth annual
ACM symposium on Theory of computing. pp. 604–613. ACM (1998)

[29] Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint
Archive, Report 2011/377 (2011), http://eprint.iacr.org/

[30] Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Advances in Cryptology–
CRYPTO 2015, pp. 43–62. Springer (2015)



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2018 16

[31] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Annual Cryptology Conference. pp. 3–22.
Springer (2015)

[32] Laarhoven, T., Mosca, M., Van De Pol, J.: Finding shortest lattice vectors
faster using quantum search. Designs, Codes and Cryptography 77(2-3),
375–400 (2015)

[33] Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors
using spherical locality-sensitive hashing. In: International Conference
on Cryptology and Information Security in Latin America. pp. 101–118.
Springer (2015)

[34] Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Prisco, R.D.,
Yung, M. (eds.) SCN. Lecture Notes in Computer Science, vol. 4116,
pp. 348–359. Springer-Verlag (2006)

[35] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-
Based Encryption. In: Kiayias, A. (ed.) Topics in Cryptology–CT-RSA
2011, Lecture Notes in Computer Science, vol. 6558, pp. 319–339.
Springer Berlin Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-
19074-2_21

[36] Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In:
Topics in Cryptology–CT-RSA 2013, pp. 293–309. Springer (2013)

[37] May, A., Ozerov, I.: On computing nearest neighbors with applications
to decoding of binary linear codes. In: Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I. pp. 203–228 (2015)

[38] Micciancio, D., Regev, O.: Lattice-based Cryptography. In: Bernstein,
D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp.
147–191. Springer Berlin Heidelberg (2009)

[39] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for
the shortest vector problem. In: Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms. pp. 1468–1480. SIAM
(2010)

[40] Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in
384-bit ECDSA: extended version. J. Cryptographic Engineering 4(1),
33–45 (2014), http://dx.doi.org/10.1007/s13389-014-0072-z

[41] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector
problem are practical. J. Mathematical Cryptology 2(2), 181–207 (2008),
http://dx.doi.org/10.1515/JMC.2008.009

[42] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in
time 22.465n. IACR Cryptology ePrint Archive 2009, 605 (2009),
http://eprint.iacr.org/2009/605

[43] Regev, O.: On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography. Journal of the ACM 56(6), 34:1–34:40 (Sep 2009),
http://doi.acm.org/10.1145/1568318.1568324

[44] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical program-
ming 66(1-3), 181–199 (1994)

[45] Wagner, D.: A generalized birthday problem. In: Advances in
cryptology–CRYPTO 2002, pp. 288–304. Springer (2002)

[46] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic
sieve algorithm for shortest vector problem. In: Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. pp. 1–9. ACM (2011)

[47] Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN. In:
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 168–195. Springer (2016)

[48] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest
vector problem. In: International Conference on Selected Areas in
Cryptography. pp. 29–47. Springer (2013)


