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Abstract Snow initialization has been previously investigated as a potential source of predictability at
the subseasonal‐to‐seasonal (S2S) timescale in winter and spring, through its local radiative,
thermodynamical, and hydrological feedbacks. However, previous studies were conducted with low‐top
models over short periods only. Furthermore, the potential role of the land surface‐stratosphere connection
upon the S2S predictability had remained unclear. To this end, we have carried out twin 30‐member
ensembles of 2‐month (November and December) retrospective forecasts over the period 1985–2016, with
either realistic or degraded snow initialization. A high‐top version of the Norwegian Climate Prediction
Model is used, based on the Whole Atmosphere Community Climate Model, to insure improved coupling
with the stratosphere. In a composite difference of high versus low initial Eurasian snow, the surface
temperature is strongly impacted by the presence of snow, and wave activity fluxes into the stratosphere are
enhanced at a 1‐month lag, leading to a weakened polar vortex. Focusing further on 7 years characterized by
a strongly negative phase of the Arctic Oscillation, we find a weak snow feedback contributing to the
maintenance of the negative Arctic Oscillation. By comparing the twin forecasts, we extracted the predictive
skill increment due to realistic snow initialization. The prediction of snow itself is greatly improved, and
there is increased skill in surface temperature over snow‐covered land in the first 10 days, and localized skill
increments in the mid‐latitude transition regions on the southern flanks of the snow‐covered land areas, at
lead times longer than 30 days.

1. Introduction

There is now a renewed concerted international effort to improve forecast skill at the subseasonal‐to‐
seasonal timescale (S2S; defined here as the time range between 10 days to one season), which is nested
between the timescale of weather forecasts and the timescale of seasonal prediction (Mariotti et al., 2018;
Vitart & Robertson, 2018). The short‐range weather forecasts largely depend on the accuracy of atmospheric
initial conditions. As information contained in the initial atmospheric state is gradually lost (typically over
10 days), the actual predictability decreases. S2S prediction can be considered as extended‐range weather
forecasting, relying on both the atmospheric initial conditions and the more slowly evolving components
of the climate system (Vitart et al., 2012; White et al., 2017).

Traditionally, coupled air‐sea interactions at low latitudes, such as the El Niño–Southern Oscillation (ENSO)
or the Madden‐Julian Oscillation phenomena have been relied upon to provide enhanced seasonal or S2S
prediction skill in the extratropics through their influence on Rossby wave propagation (Cassou, 2008;
Smith Smith et al., 2016). Surface processes can also provide a source of S2S predictability. Soil moisture
couples the land and the atmosphere, principally in the warm season, through changes in the evaporation
and in the surface energy budget. Extensive multimodel studies consisting of multidecadal retrospective
forecast experiments conducted during the Global Land–Atmosphere Coupling Experiment (GLACE2)
project (Koster et al., 2010, 2011; van den Hurk et al., 2012) demonstrated how soil moisture initialization
increases the predictive skill in near‐surface (2 m) air temperature (TSAT) and, marginally, in precipitation
at the S2S timescale, especially over the semiarid continental interiors, at the boundary of wet and dry
climatic zones.

Besides soil moisture, snow is another surface variable that has received attention as a source of S2S
predictability. The continental snowpacks over Eurasia or North America can influence the local surface
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energy budget and TSAT, and the large‐scale circulation patterns in winter (Dutra et al., 2011; Fletcher et al.,
2009; Li &Wang, 2014; Orsolini & Kvamstø, 2009; Peings et al., 2012; Sobolowski et al., 2007) or in the spring
(Broxton et al., 2017; Halder & Dirmeyer, 2016; Thomas et al., 2016; Xu & Dirmeyer, 2011). A thick snow-
pack tends to raise surface albedo and increases the soil moisture during snowmelt; its insulating property
decouples the atmosphere from the warmer soil layers below. Hence, snow is involved in a combination
of radiative, thermodynamical, and hydrological feedbacks at the surface. Regarding its influence on the
large‐scale circulation, the Eurasian autumn snow cover has been shown to alter the vertical propagation
of Rossby waves into the stratosphere and thereby the stratospheric polar vortex, with a lagged surface
impact projecting onto the Arctic Oscillation (AO), as a result of the downward propagation of zonal‐mean
anomalies induced by wave‐mean flow interactions (e.g., Cohen et al., 2007, 2010, 2014; see Henderson et al.,
2018, for a review). It is worthy to note, however, that many climate models fail to reproduce the apparent
longer‐lead linkage between autumn Eurasian snow cover and the winter‐mean AO, inferred from observa-
tions (Furtado et al., 2015; Hardiman et al., 2008). Possible reasons could be the weak interannual variability
in modeled snow cover, the lack of sensitivity to surface forcings, and the deficiencies in constructive inter-
ference between snow‐induced and background planetary waves; this longer‐lead linkage is also nonstation-
ary (see Henderson et al., 2018, for a review of all these issues).

More specifically, the impact of snow initialization on S2S forecasts in the cold season was investigated in
two studies that showed a moderate TSAT predictive skill improvement (Jeong et al., 2013; Orsolini et al.,
2013). Following the aforementioned GLACE2 approach, these two studies, using either the fully coupled
forecast model of the European Centre for Medium‐range Weather Forecasts (ECMWF; Orsolini et al.,
2013), or the Community Atmosphere Model (CAM; Jeong et al., 2013), examined forecast skill increments
between twin experiments with either realistic or else degraded initial snow states. Firstly and foremost, rea-
listic snow initialization increases the forecast skill of snow itself. Improving skill for snow in S2S and sea-
sonal prediction systems is an important activity per se with many hydrological or cryospheric
applications (He et al., 2016; Sospedra‐Alfonso et al., 2016). In addition, significant forecast skill increments
were found in TSAT over some regions of Eurasia and the Arctic in winter, up to a lead time of 1–2 months.
The two aforementioned forecast studies suffered from several limitations. First, simulations were per-
formed with low‐top models; secondly, the S2S forecasts were evaluated over a short period only, for exam-
ple, 6 years in Orsolini et al. (2013) and 12 years in Jeong et al. (2013). Thirdly, the areas with positive skill
increments were not extensive. These skill increments partly resulted from local surface coupling between
snow and TSAT, but improvement in modeled snow might also improve the large‐scale circulation and
thereby, indirectly, TSAT.

In addition, there could still be additional untapped forecast skill at the S2S timescale resulting from the
snow‐stratospheric teleconnection pathway. Orsolini et al. (2016) demonstrated that the Eurasian snow
cover contributed to the persistence of the negative North Atlantic Oscillation (NAO) during the winter of
2009/2010, via such a stratospheric pathway. By making large changes in the snow initial states (yet within
the bounds of the snow seasonal cycle) in the ECMWF forecast system, that study demonstrated that a
thicker snow cover implied a colder surface, stronger meridional eddy heat fluxes up to the stratosphere,
a weakened polar vortex, and amore persistent negative NAO as diagnosed in surface pressure. Hence, while
snow was not the main driver of the NAO fluctuations, it contributed to its persistence at the S2S timescale.

In the present study, we evaluate the contribution of snow initialization to the S2S predictability over the
northern hemisphere in winter, using a high‐top version of the Norwegian Climate Prediction Model
(NorCPM). To this end, we performed two sets of 2‐month, ensemble, retrospective forecasts starting on 1
November over the period 1985 to 2016 with either realistic or degraded (via scrambling) initialization of
the snow variables. We emphasize both the local and remote impacts of snow initialization on surface tem-
perature and atmospheric circulation, and their potential impact on skill.

2. Model Experiments and Methodology
2.1. The Norwegian Climate Prediction Model High‐Top Version

NorCPM is an initialized seasonal‐to‐decadal climate prediction system (Counillon et al., 2014, 2016) that
combines theNorwegian Earth SystemModel (NorESM; Bentsen et al., 2013) and advanced data assimilation
techniques based on the Ensemble Kalman Filter approach (Evensen, 2003). The ocean component is an
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updated version of the Miami Isopycnic Coordinate Ocean Model (MICOM; Bleck et al., 1992). In this study,
we developed a high‐top variant of NorCPM, in which the atmospheric component (normally the CAM
model) is replaced with the Whole Atmosphere Community Climate Model (WACCM) version 4 (Marsh
et al., 2013). WACCM extends vertically into the mesosphere‐lower thermosphere region (up to 5.9 × 10−6

hPa, approximately 140 km). In addition, it incorporates an interactive stratospheric chemistry package
and a parameterization of orographic and nonorographic (convective and frontal) gravity waves. In the
present study, the atmosphere and land models have a horizontal resolution of 1.9° × 2.5° (termed f19, for
the approximately 2° finite volume grid). The atmospheric model has 66 vertical levels. The ocean and sea‐
ice models have a horizontal resolution of 1° on a tripolar grid. The ocean model uses 53 isopycnal layers.

2.2. Initialization

Following the approach of GLACE2 (Koster et al., 2010) and SNOWGLACE (Orsolini et al., 2013), we per-
form twin ensembles of retrospective forecasts with either realistic or “scrambled” initial snow states.
Starting from 1 November, the 2‐month (November and December) retrospective forecasts are conducted
from 1985 to 2016. The two ensembles of forecasts are nearly identical as they use the same realistic initial
atmospheric and oceanic conditions, and their land initial conditions differ only wherever the snow is pre-
sent on land (in either hemisphere).

More specifically, the initialization procedure (see Figure 1) is performed in two stages. The first stage
ensures that the atmospheric model is realistically initialized using reanalysis data, and provides initial con-
ditions for the second stage, where a coupled simulation intends to minimize initial shock. In the first stage,

1. The initial land state is taken from an off‐line run of the Community Land Model (CLM version 4.5;
Oleson et al., 2013), forced by boundary data from the Climatic Research Unit‐National Center for
Environmental Prediction (CRUNCEP) reanalyses.

2. The atmospheric state is initialized following a 14‐day nudging period of WACCM to the ERA‐Interim
reanalyses (ERA‐I; Dee et al., 2011), started from WACCM default atmosphere. The strong nudging
includes three model prognostic variables (zonal and meridional winds and temperature) in the tropo-
sphere and in the stratosphere, but does not include the model diagnostic variables (humidity, cloud,
etc.) in order to avoid increasing inconsistency due to imperfect subgrid parameterization (Karspeck
et al., 2018).

3. The oceanic and sea‐ice states are initialized from a NorCPM ensemble analysis, produced by assimila-
tion of sea surface temperature (SST) and oceanic temperature and salinity profiles, which update the

Figure 1. A schematic of the two sets of retrospective ensemble subseasonal‐to‐seasonal (S2S) prediction experiments with realistic and “scrambled” snow initial
conditions in high‐top Norwegian Climate Prediction Model (NorCPM).
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ocean and the multicategory sea‐ice model state. During the analysis, the atmospheric model is freely
evolving but is responding to surface flux changes (e.g., over ocean). The assimilation uses observed,
monthly anomalies in order to limit assimilation shock (Wang et al., 2017).

4. The 30 members of the ensemble forecasts start from the 30 different initial oceanic and sea‐ice states in
this ensemble analysis. Hence, the initial ensemble spread arises from the different oceanic and sea‐ice
conditions.

This first stage provides the initial conditions for the second‐stage nudging, which is then performed over a
17‐day period, but this time using the fully coupled NorCPM model to bring these different atmospheric,
land, and ocean components into adjustment, prior to the forecasting stage. The atmospheric component
of NorCPM is again nudged to ERA‐I. In this second stage, each individual member of the ensemble is
nudged until the forecast start date, in order to limit initial shocks.

In the first ensemble (hereafter Series 1 following the GLACE2 nomenclature), the snow variables are rea-
listically initialized and are identical for all members. In the second set (hereafter Series 2), the snow vari-
ables are scrambled, taken at random from the remaining years (but still pertaining to November 1). Each
ensemble member in Series 2 has a different randomized, initial snow state, in which the 13 prognostic snow
variables listed in Table 1 are scrambled in a consistent manner. While individual members of Series 2 can

Figure 2. (a) Interannual variations of Eurasian snow water equivalent (SWE; cm) at day 1 (2 November; 1985–2016).
Series 1: 30‐member ensemble‐mean (red curve); Series 2: members that have substantially lower (0.5 standard devia-
tion for Series 1) Eurasian SWE than Series 1 (blue crosses) and other members (skyblue dots). (b) Example of time
evolution of SWE through the forecast period, in the year 1995. All members of Series 1 (light pink), along with the
members chosen for the conditional (i.e., lower) sampling of Series 2 (blue). (c) The initial difference of SWE between
Series 1 and the conditional Series 2 at day 1 for the 22‐year average (i.e., years with almond stripes in a). In Figure 2c (and
in following Figures 4, 5, 6b, and 7), the 30‐member ensemble‐mean of Series 1 and the ensemble‐mean of the condi-
tionally sampled Series 2 (blue crosses, see text for explanation) are used. Crosses indicate regions where statistical sig-
nificance exceeds the 95% confidence interval, based on a Monte Carlo test (here and hereafter).
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have either less or more snow than prescribed in Series 1 at the initial time (1 November), the climatological
ensemble‐mean initial difference between Series 1 and 2 is very small.

2.3. Diagnostics

Series 1 and 2 each consists of 960 simulations (32 winters × 30 members), providing a large enough sample
to test the impact of snow initialization on predictability. The forecasted atmospheric variables are evaluated
against ERA‐I reanalyses, and the forecasted snow against ERA‐I/Land reanalyses (a version without preci-
pitation correction, here referred to as an uncorrected version; Balsamo et al., 2015). The forecast skill for
each series is quantified by the r‐square metric (r2). Here, r indicates anomaly correlation coefficient
obtained by verifying ensemble‐mean forecasts against reanalyses. The reanalysis anomaly is calculated
from the 1985–2016 climatology. The forecast anomaly is the departure from the 30‐member climatology
over the same period. When taking the difference in r2 between Series 1 and 2, we have multiplied each r2

by the sign of r, following van den Hurk et al. (2012) to avoid rewarding degradation in Series 2. A positive
r2 difference between Series 1 and 2 indicates a location where the difference in snow initialization improved
the skill, supposing that the statistical noise is negligible. The statistical significance is assessed using a
Monte‐Carlo approach based on 1,000 random reshufflings of the observational anomalies. The diagnostics
were averaged in 10‐day subperiods, six per forecast, corresponding to lead times of 0 (days 1–10), 10 (days
11–20), 20 (days 21–30), 30 (days 31–40), 40 (days 41–50), and 50 (days 51–60) days, respectively. Prior to ana-
lyses, the reanalysis data are regridded to the model horizontal grid (1.9° longitude × 2.5° latitude).

Our diagnostic approach is twofold. We want to determine possible skill improvement in Series 1 compared
to Series 2 using the entire forecast ensembles (section 3.4). We also want to explore the mechanisms by
which snow may impact TSAT and the atmospheric circulation (sections 3.2 and 3.3) and, to this end, it is
useful to make a composite difference between high and low initial snow states. Our primary focus is the
Eurasian snow cover and we now explain how we construct this high minus low Eurasian snow composite
difference. Figure 2a shows the spread and interannual variability of the initial snow states, namely, the
Eurasian snow water equivalent (SWE) at day 1 (2 November) for Series 1 (for the 30‐member ensemble‐
mean in red, noting that all members in Series 1 have nearly identical SWE at day 0), and for the 30 indivi-
dual members of Series 2 (blue crosses and skyblue dots, the use of two different symbols to be explained
below). We reiterate that since the snow variables in Series 2 were scrambled at day 0 from the 1
November snow states in other years, the spread of the 30 members in Series 2 is representative of interann-
ual variability. Next, we construct a composite difference using a conditional sampling of Series 2: that is, by
taking the difference between the Series 1 ensemble‐mean and a Series 2 ensemble‐mean that retains only
the members of Series 2 that have less initial Eurasian SWE than Series 1, in any particular year. We

Figure 3. (a) Daily evolution of Eurasian (40–140°E, 40–70°N) snow water equivalent (SWE; cm) in ERA‐I/La
nd (1 October–1 January; black‐gray), Community LandModel (CLM) off‐line run (1–15 October; green), ensemble‐mean
Norwegian Climate Prediction Model (NorCPM) nudging run (16 October to 1 November; orange‐yellow), and
NorCPM Series 1 (red) and Series 2 (blue) ensemble‐mean forecasts (2 November‐1 January). The thin lines indicate
ensemble‐mean SWE for 32 years (1985–2016) individually, and the thick lines are the 32‐year averages. The spread of the
ensemble means for Series 1 is representative of interannual variability (thin red lines); in contrast, the ensemble
means for Series 2 are initially nearly identical from year to year (thin blue lines) and are approximately equal to the
32‐year average of Series 1 (thick blue line, nearly identical to thick red line). (b) The initialization skill (r2, with the sign of
r) of SWE on 1 November between ensemble‐mean NorCPM nudging run and ERA‐I/Land.

10.1029/2019JD030903Journal of Geophysical Research: Atmospheres

LI ET AL. 10,037



further require that the snow difference is large enough, below −0.5 standard deviation (see Figure 2b), so
that the composite difference reflects substantially different initial snow states. The members of Series 2
retained (i.e., with low initial SWE and obeying the aforementioned criterion) are indicated by blue
crosses in Figure 2a. Following that procedure, there are some years when the conditionally sampled
Series 2 has no member, and we neglect these years to retain only the 22 years with at least one member (in
Figure 2a, the selected years are indicated by almond stripes). Figure 2c illustrates the initial SWE difference
(Series 1 minus the conditionally sampled Series 2) at day 1 for the 22‐year average, which we take as
equivalent to a snow composite difference (high minus low Eurasian snow). Higher SWEs are found
indeed over most of Siberia with a maximum over 1.5 cm, to the east to the Ural Mountains. Note that the

Figure 4. The differences of (a–f) snow water equivalent (cm) and (g–l) 2‐m air temperature (TSAT; °C) between Series 1 and the conditionally sampled Series 2 for
the 22‐year average, as a function of lead time (ranging from 0‐ to 50‐day lead times).
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snow evolution in given members of Series 2 in given years may be such that it does not remain lower than
Series 1 throughout the length of the forecast, albeit it was at the initial time (see Figure 2b for example).

3. Results
3.1. Initialized SWE

In order to illustrate the snow evolution during the two nudging initialization stages as well as during the
forecasts, Figure 3a shows the daily time series of SWE averaged over Eurasia (40–140°E, 40–70°N) from 1
October to 1 January, for the climatological mean (1985–2016, thick lines) and for each individual year (thin
lines). The snow evolution is hence shown during the CLM off‐line run (green lines), the full NorCPM nud-
ging stage (yellow lines with orange 32‐year mean), and during the Series 1 (red lines) and Series 2 (blue
lines) forecasts. For reference, we also plotted the snow from ERA‐I/Land reanalyses (grey lines with
black 32‐year mean). There is a climatological bias in the modeled SWE compared to ERA‐I/Land, which
amounts to −0.43 cm on 1 November. Figure 3b shows the skill (r2) of the initial snow states (in terms of
in SWE) against ERA‐I/Land on 1 November. The skill is largely positive at high latitudes and is as high
as 0.8 over Russia, the Far East, and North America, indicating that the interannual variability of snow
initial states produced by our initialization method is representative of realistic conditions.

3.2. Differences in Snow and Surface Temperature Between Series 1 and the Conditionally
Sampled Series 2

The focus of this section is to examine the local thermodynamic feedback and the hemispheric‐scale dyna-
mical interactions between the snow and the atmosphere. The surface impact of the high versus low snow
initial conditions over Eurasia is revealed in Figure 4 in terms of SWE and TSAT in the 22‐year composite
difference between Series 1 and the conditionally sampled Series 2, as defined in the previous section. The
results are presented as a function of lead time and valid for 10‐day periods (ranging from 0‐ to 50‐day

Figure 5. The differences of (a–c) 500‐hPa vertical wave activity flux (shaded; m2 · s−2; Plumb, 1985) and (d–f) zonally‐averaged zonal wind (shaded; m · s−1),
Eliassen‐Palm (E‐P) flux cross sections (vectors; m2 · s−2) and its divergence (red contours; m · s−1 · day−1) between Series 1 and the conditionally sampled
Series 2 for the 22‐year average, at (a and d) 30‐day, (b and e) 40‐day, and (c and f) 50‐day lead times. The red contours in (a–c) indicate the 22‐year climatology of
Series 1. To display the E‐P flux throughout the stratosphere, vectors are scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 000=p

p
and the inverse of the air density. Additionally, the vertical component

is multiplied by 125.
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lead times). Series 1 has higher SWEs initially over Siberia (by the compo-
site design), and these are maintained throughout the entire early winter
(Figures 4a–4f). At the 0‐ and 10‐day lead times, Series 1 exhibits the
expected local surface cooling in response to the positive Siberian snow
anomaly (Figures 4g and 4h). Interestingly, the TSAT response at longer
lead times (20‐day and beyond) migrates southward toward Eurasianmid-
latitudes (where the snow edge line is located) and is statistically signifi-
cant at the 95% level there (Figures 4i–4l).

Figures 5a–5c illustrate the composite differences in the 500‐hPa vertical
wave activity flux at the 30‐, 40‐, and 50‐day lead times, along with its cli-
matology, while Figures 5d–5f illustrate the corresponding height‐latitude
cross sections of zonal‐meanEliassen‐Palm (E‐P)flux(i.e., zonal average of
wave activity flux) and its divergence, along with the zonal‐mean zonal
wind. Startingmore prominently at the 40‐day lead time, the upwardwave
activity over Siberia increases (positive anomalies in Figures 5b–5c).
Meanwhile, the E‐P flux vectors bend more upward in the troposphere
and poleward in the stratosphere (vertical and horizontal arrows in
Figures 5e–5f). Because an upward (equatorward) pointing E‐P flux vector
is proportional to poleward eddy heat flux (poleward meridional eddy
momentum flux), the poleward E‐P flux vectors in the stratosphere and
the upward E‐P flux vectors in the troposphere (Figures 5e–5f) indicate
that (1) there is a deceleration of the zonal‐mean zonal wind at high lati-
tudes (Figure 5f), and (2) the polar vortex is coherently weaker throughout
the stratosphere, although the difference is only significant in the lower
stratosphere. Arguably, these high versus low snow composite differences
indicate that due to the positive snow forcing and associated cooler TSAT
(Figure 4), there is enhanced wave flux into the stratosphere and a wea-
kened polar vortex (Figure 5). Henderson et al. (2018) reviewed the pro-
posed mechanisms by which an increased snowpack over Siberia in fall
or early winter could be followed by a weakened polar vortex, and at least
some studies—but not all—support such a linkage, as discussed in
section 1. In our simulations, the stratospheric changes do not occur before
the 30‐day lead time, likely due to the surface temperature anomalies
being larger at that time (Figure 4j) than at the initial time.

3.3. Snow/Stratosphere/AO Coupling During Negative AO Years

Further clues as to the role of snow emerge by looking specifically at the
winters when the AO is markedly negative, since the feedback from the

thicker and more extensive Siberian snowpack may then act to maintain the negative phase through
surface–stratosphere coupling (Orsolini et al., 2016). For this purpose, a simple AO index is defined here
as a sea level pressure (SLP) difference between the two latitude zones (35 and 65°N), and the normalized
value of the zonal average is then subtracted (Li & Wang, 2003). In the 22 years considered in the composit-
ing, there are 7 strongly negative AO years (Figure 6a: green squares), and we average the composite differ-
ences between Series 1 and the conditionally sampled Series 2 over these 7 years. Figure 7 shows this negative
AO average in SLP, 300‐hPa zonal wind, 150‐hPa geopotential height, and 500‐hPa vertical wave activity
flux, at the 50‐day lead time. The motivation for choosing this lead time will be best seen latter in Figure 6
b. Series 1 shows a more negative AO pattern in SLP (Figure 7a), a southward‐displaced Atlantic westerly
jet stream (Figure 7b), and an averaged positive 150‐hPa geopotential anomaly over the polar cap
(Figure 7c). These features in the composite difference are characteristics of a more pronounced negative
AO. This is also supported by the enhanced wave activity flux at 500 hPa over Eurasia and eastern North
Pacific (Figure 7d). Figure 6b further indicates that the AO index is indeed persistently more negative in
Series 1 than in the conditionally sampled Series 2 since the 20‐day lead time, when the observed AO
becomes more negative. One may note the observed AO is much more negative and persistent than the

Figure 6. (a) Interannual variations of the normalized Arctic Oscillation
(AO) index in early winter (days 1−60) in ERA‐Interim for the 22 years
used in the composite analysis (indicated by almond stripes). The green
squares indicate the 7 negative AO years. (b) Evolution of the normalized
AO indices during each 10‐day subperiod in ERA‐Interim (black squares),
throughout the Series 1 ensemble‐mean forecasts (red circles with cross),
and the conditionally sampled Series 2 forecasts (blue crosses). The value at
day 1 is also indicated to reflect initial conditions. Markers indicate
ensemble‐mean AO indices for 7 negative AO years individually, and lines
are the 7‐year averages.
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forecasted values. As in Orsolini et al. (2016), our main point is not that the snow drives the AO fluctuations,
but rather that it exerts a weak feedback that contributes to its persistence. The seemingly small amplitudes
of the differences in the AO index, for example, 0.5 at 40‐day lead, crucially depends on what is compared
with Series 1. The snow perturbations imposed in Series 2 initial conditions were indeed small,
characteristics of interannual variations, and not as large as the ones used in the 2009/2010 case study in
Orsolini et al. (2016), characteristics of intraseasonal variations (their Figure 1).

3.4. Forecast Skill Increment Between Series 1 and 2

By using realistic oceanic, atmospheric, and land initial states, the NorCPM prediction system incorporates
the potential sources of skill from SST, land, and atmospheric conditions altogether. We now further esti-

mate the specific contribution of snow initialization to the predictability.
Starting with SWE, Figure 8 illustrates the forecast skill (r2) in Series 1
and the forecast skill difference (Series 1 minus Series 2) over the 32 years,
as a function of lead time. As expected from the SWE initialization skill
(Figure 3b), Series 1 tends to exhibit significant positive skill over most
of the high latitudes (poleward of 45°N), which progressively decreases
with time through the six subperiods (Figures 8a–8f). There is a notable
large and coherent positive skill increment over both northern Eurasia
and North America (Figures 8g–8l) up to the 50‐day lead time. This
demonstrates that the realistic snow initialization improves the forecast
of snow itself throughout the 2‐month forecast period, consistent with
previous studies.

Turning to TSAT (Figures 9a–9f), the skill of Series 1 is close to 1 over both
land and oceans at the 0‐day lead time, indicating that the good quality of
the initialization method, while generally decaying afterward, as expected
from forecast degradation at the medium‐range timescale. Over large

Figure 7. The differences of (a) sea level pressure (hPa), (b) 300‐hPa zonal wind (m · s−1), (c) 150‐hPa geopotential
height (m), and (d) 500‐hPa vertical wave activity flux (shaded; m2 · s−2) between Series 1 and the conditionally
sampled Series 2 for the average of 7 negative AO years, at the 50‐day lead time. The black line in (b) indicates the axis of
the climatological westerly jet stream for Series 1. The red contours in (d) indicates the 7‐year climatology of Series 1.

Table 1
The Snow Variables Scrambled in Series 2

Name Long‐name Units

SNLSNO number of snow layers unitless
SNOWDP snow depth m
frac_sno fraction of ground covered by snow 0 to 1
DZSNO snow layer thickness m
ZSNO snow layer depth m
ZISNO snow interface depth m
H2OSNO snow water mm
H2OSOI_LIQ liquid water (only in the snow layer) kg· m−2

H2OSOI_ICE ice lens (only in the snow layer) kg·m−2

T_SOISNO soil‐snow temperature K
snw_rds snow layer effective radius um
albsnd_hst snow albedo (direct) 0 to 1
albsni_hst snow albedo (diffuse) 0 to 1
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oceanic areas (i.e., parts of the North Pacific and Arctic Ocean), the skill persists up to the 50‐day lead
time while it rapidly decays after 20 days over the continents, indicating that this local skill persistence
over the oceans arises from SSTs. The TSAT skill increment resulting from realistic snow initialization
(Figures 9g–9i) is large over snow‐covered land at the 0‐day lead time (Figure 9g), indicating local
feedback from the improved snow state, but it rapidly decays during the next lead time (Figure 9h).

Interestingly, at longer lead times, especially at the 30‐day but also at the next lead times, there are localized
positive skill increments. Hence, there is skill resurgence 1 month into the forecast. The maximum skill
increments (up to 0.3–0.4) are of the same order as those obtained for soil moisture (Koster et al., 2010) or
for snow in Thomas et al. (2016). The ratios of points north of 30°N with significant and positive skill

Figure 8. (a−f) The forecast skill (r2) of snow water equivalent (SWE) for Series 1 and (g−l) the forecast skill differences of SWE between Series 1 and 2, as a func-
tion of lead time (ranging from 0‐ to 50‐day lead times).
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differences to those with significant and negative differences are 3.70, 1.00, 0.67, 1.20, 2.18, and 1.64 at the 0‐,
10‐, 20‐, 30‐, 40‐, and 50‐day lead times, respectively. Hence, at the 40‐day lead time, for example, there are
twicemore points with positive increments. These increments, albeit undoubtedly patchy, are situated in the
transition regions between high and low snow on the southern flank of the snow‐covered land areas, over
parts of the Eurasian and North American continents at midlatitudes (Figures 9j–9l). The green and dark
green contours in Figures 9g–9l delineate these climatological transition regions of low SWE.

The local coupling between snow and TSAT in these transition regions is supported by Figure 10, which
shows the correlation‐square (r2, with the sign of r) between TSAT and SWE for Series 1as a function of lead
time. Broad belts of negative correlations, associating cold and high snow anomalies, stretch across the

Figure 9. As in Figure 8 except for near‐surface air temperature. The green and dark green contours in (g−l) indicate the mid‐latitude snow transition regions,
calculated as the 0.1 and 1 cm of the climatological snow water equivalent for Series 1.
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continents at midlatitudes, migrating southward as the winter season progresses. These broad continental
belts correspond to the transition regions where TSAT predictability is sensitive to snow, while, at higher
latitudes, SWE is always large and decouples from TSAT (Dutra et al., 2011; Thomas et al., 2016). In their
study about soil moisture influence during the warm season, Koster et al. (2004) termed such transition
regions “hot spots” of land‐atmosphere coupling. Examining snow‐atmosphere coupling in the spring in a
potential predictability framework, Xu and Dirmeyer (2011, 2013) appropriately termed these regions
“cold spots.” As pointed out in the latter, the constraint of snow in Series 1 (where all the members have
the same snow state initially) reduces the inter‐member variance in TSAT compared to Series 2 (where
the members have all different snow states, initially). This reduction in intermember variance or spread at
the 0‐lead time is shown in Figure 11, averaged over the 32 years.

3.5. Relation Between the Stratospheric Polar Vortex and Surface Conditions

We have demonstrated that modeled TSAT over Eurasia is strongly influenced by the presence of snow
(Figure 4). However, there are other factors influencing the tempera-
ture. In particular, Garfinkel et al. (2017) demonstrated a relationship
between the winter‐mean (December–February) state of the strato-
spheric polar vortex and TSAT over Eurasia at the interannual time-
scale, associating cold Eurasian winter temperature to a weak polar
vortex. In Figure 12, we verify if such an interannual covariability
between the stratospheric polar vortex and Eurasian TSAT anomalies
is captured in the NorCPM S2S ensemble‐mean forecasts in
November and December. We diagnose the lower stratospheric polar
vortex strength in terms of the polar cap‐averaged (poleward of 70°N)
geopotential height at 150 hPa, while the Eurasian TSAT is averaged
over the area (40–140°E, 40–70°N). There is indeed a significant cor-
relation between the vortex strength and Eurasian TSAT in reanalysis
data, with a correlation coefficient of −0.39 in November and −0.45
in December (statistical significance at the 95% and 99% confidence
intervals, respectively), albeit weaker than the winter‐mean correla-
tion of −0.72 over a slightly different multidecadal period in

Figure 10. The correlation‐square (r2, with the sign of r) between near‐surface air temperature and snow water equivalent for Series 1, as a function of lead time
(ranging from 0‐ to 50‐day lead times).

Figure 11. The differences of intra‐member spread of near‐surface air tempera-
ture (°C) between Series 1 and 2 for the 32‐year average, at the 0‐day lead time.
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Garfinkel et al. (2017). This relation is, to a large extent, captured in Series 1 with a correlation coefficient of
−0.54 in November and−0.34 in December. The model internal dynamics coupling the stratosphere and the
troposphere insures that this relation is captured in Series 2 as well. Since we are using here the full
ensemble for Series 2, with members having either initial snow higher or lower than in Series 1, the
differences with Series 1 are not large.

4. Summary, Discussion, and Outlook

Here, we have extended the studies of Orsolini et al. (2013, 2016) and Jeong et al. (2013) on the influence of
snow initialization upon S2S forecasts by using a high‐top model and a greatly increased analysis period cov-
ering 32 winters (1985–2016) and a larger ensemble size (30 members). By comparing twin 30‐member
ensembles of 2‐month retrospective forecasts with accurate and degraded snow initialization, we extracted
the additional predictive skill (or skill increment) due to a change in snow initialization representative of
interannual variations. We see that (i) the prediction of snow itself is greatly improved by using the realistic
initialization; (ii) there is, in the latter case, increased TSAT skill over snow‐covered land at the 0‐day lead
time; and (iii) although the TSAT skill is low beyond 20 days, limited skill increments in the transition
regions on the southern flank of the snow‐covered land areas, at lead times longer than 30 days. The
skill increments could result from local snow‐atmosphere coupling or from improvements in the
atmospheric circulation.

The actual values of the skill increments crucially depend on how much Series 2 were degraded by design,
and are thereby somewhat artificial. Here, the snow perturbations used in Series 2 are fairly small, represen-
tative of interannual variations (see Figure 3a). More important is the location of the skill increase, sugges-
tive of “cold spots” of local coupling between snow and TSAT in the mid‐latitude snow transition regions
(Dutra et al., 2011; Xu & Dirmeyer, 2011, 2013).

Figure 12. Scatter plots for TSAT (°C) over Eurasia (40–140°E, 40–70°N) and 150‐hPa geopotential height (m) over the polar cap (poleward of 70°N) (a–c) in
November (days 1–30) and (d–f) in December (days 31–60). Values are for (a and d) ERA‐Interim, (b and e) Series 1, and (c and f) Series 2 ensemble‐mean fore-
casts. Note the different scale for TSAT among the graphs.
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Using a composite difference of high versus low initial Eurasian snow constructed from a restricted (condi-
tionally sampled) ensemble of Series 2 members, we also found that the TSAT response at longer lead times
(20‐day and beyond) migrates southward toward Eurasian midlatitudes, where the snow edge is located.
Associated to the colder TSAT (Figure 4), there is enhanced wave flux into the stratosphere and a weakened
polar vortex at 30‐ to 50‐day lead times (Figure 5). Focusing further on 7 strongly negative AO years, we find
that the AO index is indeed persistently more negative in Series 1 than in the conditionally sampled Series 2
after the first month, albeit not as negative and persistent as in the reanalyses (Figure 7). As in Orsolini et al.
(2016), our main point is not that the snow drives the AO fluctuations, but rather that it exerts a weak feed-
back that contributes to its persistence.

Our snow initialization relies upon an off‐line run of the CLMmodel (e.g., without snow data assimilation),
which is then adjusted in the nudging stages. Hence, it relies on model‐generated data, and this state of
affairs still exists in several operational prediction systems (e.g., Jeong et al., 2017; Thomas et al., 2016),
due to the poor spatial and temporal coverage of the observed snow depth data (or equivalently, SWE)
needed to initialize land models. An initialization relying more on land data assimilation would be desir-
able. Heterogeneity of the land surface introduces model errors; this first version of NorCPM has a coarse
atmospheric resolution (1.9° × 2.5°), a standard resolution for WACCM, but a higher resolution version
would be desirable. Another important aspect in estimating actual skill for snow is the verification data.
Here we verified the forecasted snow against ERA‐I/land SWE, which is also produced by an off‐line run
of the ECMWF land model and has biases compared to CLM (see Figure 3a). Incidentally, the model
SWE interannual variability is slightly underestimated compared to ERA‐I/land, which may diminish the
magnitude of the snow‐atmosphere coupling. Newer, blended SWE products have been developed using
an ensemble of gridded observational, satellite or in situ, products, and reanalyses, aimed at providing a
mean SWE reference, a measure of observational uncertainty, and an estimation of regional or temporal
biases in particular datasets (Mudryk et al., 2015). In the future, it would be of interest to test the snow pre-
diction against such verification data to develop hydrological and cryospheric applications of the multide-
cadal S2S reforecasts.
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