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ABSTRACT 

In the current study, we conducted a quantitative in-depth proteome and deglycoproteome 

analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and 

neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins 

and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides 

significantly changed between pools of RRMS and pools of controls. Approximately 300 of 

the significantly changed proteins were assigned to various biological processes, including 

inflammation, extracellular matrix organization, cell adhesion, immune response and neuron 

development. Ninety-six significantly changed deglycopeptides mapped to proteins that were 

not found changed in the global protein study. In addition, four mapped to the proteins oligo-

myelin glycoprotein and noelin, which were found oppositely changed in the global study. 

Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be 

affected by RRMS. Our study gives the most extensive overview of the RRMS affected 

processes observed from the CSF proteome to date, and the list of differential proteins will 

have great value for selection of biomarker candidates for further verification. 

Data are available via ProteomeXchange with identifier PXD004572 and PXD004540.  
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INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) 

which causes demyelination and axonal damage. The disease affects more than 2 million 

people worldwide and is the most common cause of neurological disability in young adults 

besides trauma 1. The etiology of MS is still unknown, but data implies that susceptibility to 

MS is a combination of genetic and environmental risk factors 2, 3.   

Currently there is no general cure for MS. Multiple disease modifying drugs are 

available (reviewed in 4, 5), but they may be moderately effective and result in serious side 

effects 6-9. In the recent years, hematopoietic stem cell transplantation has emerged as a 

treatment option, but at the moment it is only given to patients with severe and aggressive MS 

10, 11. Novel medication offers new possibilities for individualized treatment, but also raises 

new questions given that the heterogenic nature of MS may complicate the treatment 

decisions. It is therefore critical to understand the nature of the disease and how the disease 

pathogenesis varies between patients. Disease activity and therapeutic efficiency is at present 

measured through relapse rate, magnetic resonance imaging (MRI) outcome, and changes in 

the expanded disability status scale (EDSS) score (reviewed in 4), which all have limited 

sensitivity. New biomarkers for diagnosis, therapeutic response and disease progression are 

therefore needed.  

Cerebrospinal fluid (CSF) is the most commonly used body fluid for studying 

neurological disorders as it reflects ongoing pathological and inflammatory processes related 

to CNS diseases 12. Normally, the blood-brain-barrier (BBB) protects the CNS from entry of 

immune cells, but in MS this protective barrier is disrupted, and this allows for activated 

immune cells to migrate across the BBB. Proteomics has already proven useful for biomarker 

studies in MS, and elevated chitinase-3-like protein 1 (CHI3L1) levels in CSF was suggested 

as a biomarker for disease progression from clinically isolated syndrome (CIS) to clinically 

definite MS (CDMS) 13 as well as a potential biomarker for therapeutic response 14. 

A number of biomarker studies have been published for MS (reviewed in 15), but they 

all present a low number of quantified proteins compared to the number of identified proteins 

in CSF 16, 17. Furthermore, none of these studies provide quantitative information for the 

glycoproteome, which is expected to contain promising biomarkers for various diseases, 

including MS 18-21. In a recent glycoproteome experiment in CSF from neurologically healthy 

patients, more than 500 glycoproteins from over 1,100 deglycopeptides were identified 16, 

indicating that the CSF glycoproteome could be an important source of information for 

monitoring CNS processes.   
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In this study, we present a quantitative in-depth comparison of CSF from RRMS 

patients and neurological controls, with protein quantification data for more than 2,000 

proteins and 1,700 deglycopeptides. This is the most comprehensive quantitative proteomics 

study of the CSF proteome to date, and it provides a new and deeper level of information 

about the pathological processes in RRMS patients reflected in the CSF proteome. 

 

 

EXPERIMENTAL PROCEDURES  

CSF collection and patient information  

CSF was collected from individuals that underwent a diagnostic lumbar puncture (LP) at the 

Department of Neurology, Haukeland University Hospital, Bergen, Norway, according to the 

recommended consensus protocol for CSF collection and biobanking 22. All RRMS patients 

were diagnosed according to the revised McDonald criteria 23 and were diagnosed as RRMS 

at the time of LP. The samples comprised CSF from 21 patients diagnosed with RRMS and 21 

controls with other neurological diseases (OND). The OND controls were evaluated by a 

neurologist to have no risk of developing MS. None of the RRMS patients received 

medication prior to the LP. All RRMS patients had oligoclonal CSF bands (OCB), whilst all 

OND controls were OCB negative. All included CSF samples had to have normal protein 

concentration and cell count. Detailed patient information is shown in Table S1. The study 

was approved by The Regional Committee for Medical Research Ethics of Western Norway. 

Written informed consent was obtained from all patients and controls. 

 

Preparation of pooled samples 

The 42 CSF samples were randomly divided into three pools of RRMS patients and three 

pools of OND controls, using controlled randomization ensuring that one male was in each 

pool, resulting in six pools with seven individuals in each pool (Table S1 and Figure 1A). 

Equalized CSF amounts presenting 200 µg of protein total content from every donor were 

used to create the pools, making the final total protein amount in each pool 1,400 µg. The CSF 

protein concentration was measured using turbidimetry instrumentation (Roche). The total 

protein concentration in each pool is shown in Table 1. The same pools were used for both 

the global proteome analysis and the glycoproteome analysis.  
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Table 1. Summary information on all CSF donors.  

 
 Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6 t-test p-

value 

Diagnosis RRMS RRMS RRMS OND OND OND  

n 7 7 7 7 7 7  

Male/female 1/6 1/6 1/6 1/6 1/6 1/6  

Age at LP. 36.4 (7.5) 38.3 (6.7) 35.7 (8.3) 34.1 (9.7) 35.7 (9.2) 36.4 (8.6) 0.5798 

Total [protein] (µg/µL) 0.314 

(0.091) 

0.311 

(0.157) 

0.335 

(0.070) 

0.326 

(0.113) 

0.369 

(0.095) 

0.330 

(0.106) 

0.6164 

[IgG] (µg/µL) 0.069 
(0.038) 

0.056 
(0.035) 

0.053 
(0.024) 

0.026 
(0.013) 

0.031 
(0.012) 

0.027 
(0.017) 

0.0003 

# months from first symptom to LP 10.6 (22.2) 11.1 (18.4) 9.4 (10.5) N/A N/A N/A  

EDSS score at LP 1.4 (0.79) 1.2 (0.70) 1.2 (1.07) N/A N/A N/A  

OCB positive 100 100* 100 0 0 0  

Total [protein] after depletion 

(µg/µL) 

0.743  0.839 0.953 1.41 1.01 1.30 0.0419 

TMT label  global 

proteome analysis 

126 128 130 127 129 131  

TMT label  

deglycoproteome analysis 

128 130 127 126 129 131  

*One patient was not analyzed for OCB (oligoclonal bands). All data are expressed as mean (SD). 

 

Chemical, reagents and solutions 

Iodoacetamide (IAA), urea, calcium hydrochloride, methylamine, N-Octyl-β-D-

glucopyranoside (NOG), ammonium formate, DTT, sodium periodate and PNGase F enzyme 

were purchased from Sigma Aldrich. Trypsin was purchased from Promega (sequencing 

grade). Affi-Prep® Hz hydrazide support slurry was purchased from Bio-Rad (control 

210011598). Water, ACN, TFA and formic acid (FA) were purchased from Sigma Aldrich 

and were mass spectrometry grade. Tandem-mass-tag (TMT) 6-plex reagents were purchased 

from ThermoFischer Scientific (Lot number OI191932). Solutions for protein depletion were 

purchased from Agilent Technologies.  

  

Sample preparation, protein depletion, protein digestion and TMT labeling  

Global proteome analysis 

A CSF aliquot from each pool (500 µg) was immunodepleted (MARS Hu-14, 4.6 mm x 50 

mm LC column, Agilent Technologies), desalted and concentrated as described previously 24. 

The protein concentration after depletion was measured in each pool using the QubitTM 

fluorometer (Invitrogen) and 30 µg protein from each pool were in-solution digested as 

described in 25, except that trypsin was used in a 1:40 ratio. Each sample was desalted using 

the reverse phase Oasis® HLB µElution Plate 30 µm (Waters), labeled using TMT 6-plex 

reagents as detailed in Table 1, combined according to the manufacturer’s protocol and 

desalted as described in 24. The experimental workflow is illustrated in Figure 1B. The 

labeling efficiency was investigated prior to combining the TMT labeled samples, and showed 

an efficiency of > 99%.  
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Figure 1. Illustration of the pooling procedure (A) and the workflow of global (B) and deglycoproteome 

(C) experiments performed in this study. The pooling procedure shown in Figure 1A illustrates that 21 

relapsing-remitting multiple sclerosis (RRMS) patients and 21 neurological controls with other neurological 
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diseases (OND) were separated into six pools, with seven individuals in each pool. These pools were used for 

two separate experiments: B) Global proteome analysis and C) Deglycoproteome analysis. Only the global 

experiment included protein depletion (B), while trypsin digestion, TMT labeling and combination of the labeled 

pools was common for both experiments. Glycopeptide capture by solid-phase enrichment of N-linked 

glycopeptides (SPEG) was then performed in the glycoproteome experiment (C), followed by peptide 

fractionation, LC-MS/MS analysis and protein and peptide identification and quantification, which was common 

for both experiments. 

 

Deglycoproteome analysis 

A CSF aliquot from each pool (100 µg) was purified and concentrated using 3 kDa 

ultracentrifugation filters as described in 26, in-solution trypsin digested, desalted and TMT 

labeled as described for the global proteome analysis. Approximately 1.5 μg was taken from 

each sample for testing the labeling efficiency, which was found to be > 99%.  

 

Glycopeptide enrichment 

The samples for the deglycoproteome analysis were combined, concentrated and dissolved in 

300 μL 0.1% TFA and further acidified by addition of 2 μL 100% TFA before a new Oasis® 

HLB desalting, now using a 10 mg plate as previously described 26. The resulting sample was 

then concentrated, oxidized in 10 mM sodium periodate, 0.1% TFA, and desalted by Oasis® 

HLB as in 26. Oasis eluate was added to 50 μL Affi-Prep® Hz hydrazide support slurry, 

prewashed with 1 mL deionized water. Beads and peptides incubated overnight before beads 

were washed and deglycosylated peptides were released by PNGase F digestion, desalted by 

Oasis® HLB µElution and concentrated, as described in 16, 26. Five percent of the sample was 

saved for prefractionation LC tandem mass spectrometry analysis, in case some peptides were 

lost during fractionation. The experimental workflow is illustrated in Figure 1C. 

 

 

Sample fractionation 

The TMT labeled peptides were fractionated (100 fractions for the global proteome analysis 

and 15 for the deglycoproteome analysis) using mixed-mode chromatography on a Sielc 

Promix MP column (MP-10.250.0530, 1.0 × 250 mm, 5 μm, 300Å, Sielc Technologies) and 

an Agilent 1260 series LC system (Agilent Technologies). The peptides were reconstituted in 

buffer A (20 mM ammonium formate, 3% ACN) and loaded on the column using 15% buffer 

B (2 mM ammonium formate, 80% ACN, pH 3.0). Details for the gradient and fraction 

collection are in Table S2.  
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Liquid chromatography mass spectrometry analysis 

Each fraction (100 for the global proteome analysis and 15 for the deglycoproteome analysis) 

as well as the prefractionation deglycoproteome sample was freeze dried in a Centrivap 

Concentrator (Labconco) and dissolved in 2% ACN, 1% FA. Approximately 0.5 µg of 

peptides from each fraction was injected into an Ultimate 3000 RSLC system (Thermo 

Scientific) connected to a Q-Exactive HF equipped with an EASY-spray ion source (Thermo 

Scientific). The samples were loaded and desalted on a pre-column (Acclaim PepMap 100, 2 

cm x 75 µm i.d. nanoViper column, packed with 3 µm C18 beads) at a flow rate of 3 µL/min 

for 5 min with 0.1% TFA. The peptides were separated during a biphasic ACN gradient from 

two nanoflow UPLC pumps (flow rate of 0.200 µL/min) on a 50 cm analytical column 

(PepMap RSLC, 50 cm x 75 µm i.d. EASY-spray column, packed with 2 µm C18 beads 

(Thermo Scientific). Solvent A was 0.1% FA in water and Solvent B was 100% ACN. The 

fractions were applied different LC-methods depending on their elution time from the mixed-

mode column (Table S3). For the deglycoproteome experiment, all fractions were initially 

analyzed using one LC-gradient. Additionally, since peptides in fractions 7-15 eluted very late 

in the gradient, those fractions were reanalyzed using a longer (105 min) gradient (Table S3). 

The mass spectrometer was operated in data-dependent acquisition mode to 

automatically switch between full scan MS1 and MS2 acquisition. The instrument was 

controlled through Q Excative HF Tune 2.4 and Xcalibur 3.0. Mass spectrometry spectra were 

acquired in the scan range 375-1500 m/z with resolution 60,000 at m/z 200, automatic gain 

control (AGC) target of 3e6 and a maximum injection time (IT) of 50 ms. The 12 most intense 

eluting peptides above intensity threshold 6e4, and charge states two or higher, were 

sequentially isolated for higher energy collision dissociation (HCD) fragmentation and MS2 

acquisition to a normalized HCD collision energy of 32%, target AGC value of 1e5, 

resolution R = 60,000, and IT of 110 ms. The precursor isolation window was set to 1.6 m/z 

with an isolation offset of 0.3 and a dynamic exclusion of 30 seconds. Lock-mass (445.12003 

m/z) internal calibration was used 27 and isotope exclusion was on. 

 

Data Interpretation   

Global proteome analysis 

All raw files were converted to mgf using Proteowizard 28 and searched using X!Tandem 29, 

MyriMatch 30, and Comet 31 via SearchGUI (v. 2.8.5) 32 against the Homo Sapiens 

complement of the UniProt/SwissProt reviewed database downloaded April 2016 (20,200 

entries) 33. All non-human contaminant proteins from the Global Proteome Machine cRAP 
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protein sequences (ftp://ftp.thegpm.org/fasta/cRAP/) were added to the downloaded database 

as well as a reversed version of every sequence as decoys. The search settings were: 

carbamidomethylation of C, TMT-6plex labeling on K and N-terminal as fixed modifications; 

oxidation of M as variable modification; trypsin as enzyme with a maximum of 2 missed 

cleavages; precursor charge 2-5; peptide length 6-30; precursor and fragment mass tolerance 

10 ppm. All other settings were left to default.  

The search engine results were combined and assembled in PeptideShaker 34 (v. 

1.10.2). Notably, protein ambiguity groups were made to account for the presence of shared 

peptides between protein sequences 35, and all hits were thresholded to retain only the best 

scoring until reaching a false discovery rate (FDR) of 1% estimated using the distribution of 

target and decoy hits 36. Throughout the manuscript, peptides and proteins refer to peptides 

and protein groups validated at 1% FDR. The default quality control filters of PeptideShaker 

were used and the peptides and proteins passing this additional quality control are referred to 

in the following as confidently identified. The confidence in the localization of 

posttranslational modifications was evaluated using the D-score 37 and PhosphoRS 38 using 

the default settings of PeptideShaker. 

Peptides and proteins were quantified according to 39 using Reporter 

(http://compomics.github.io/projects/reporter.html) (v. 0.3.4) and default settings. Briefly, the 

reporter ion intensities were deisotoped using the purity coefficients provided by the 

manufacturer. For every peptide, abundance ratios were estimated from the aggregation of 

spectrum level ratios using all fractions. In every channel, the peptide ratio estimation was 

done using robust estimators: the median was used if less than six ratios were found, a 

redescending M-estimator elsewise. Using the median or averages of channels has been 

demonstrated to be preferable over using one reference pool 40. Peptide ratios were 

normalized to the median of those peptides that were derived from  the list of brain specific 

proteins presented by Aasebø et al. 24 as suggested as the best way for normalization of CSF 

quantitative proteomics 41. Protein group ratios were finally estimated from peptide ratios 

using the same estimators. For every TMT channel, proteins ratios were normalized to the 

median of the stable proteins as done for the peptides. All human keratins, proteins targeted 

by the depletion column, contaminants and proteins that did not have quantitative values in all 

TMT channels were removed from the dataset (n = 89). The remaining 2,877 proteins were 

included for statistical analysis after logarithm base two transformation. An F-test was used to 

investigate equality of variances between the patients and controls, and a Student’s t-test with 

unequal variances was used when the F-test was significant (p < 0.05) (n = 174). A Student’s 
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t-test with equal variances was used otherwise. The Benjamini-Hochberg correction was used 

as multiple hypothesis test. We further calculated a Z-score to identify most prominent fold 

change (FC) differences between the two groups (RRMS and OND). The FC was calculated 

based on the difference of averages. Proteins with doubtful validation status were removed, in 

addition to removing proteins with fewer than two validated and unique peptides. The 

remaining 2,072 proteins are referred to  as quantified. A p-value < 0.05 from the t-test was 

considered as significant, and the 484 statistically significant proteins were included for 

network analysis and GO-enrichment.   

 

Deglycoproteome analysis 

All raw files (n = 25: 15 fractions + 9 re-runs of late eluting fractions + 1 prefractionation 

sample) were identified and quantified as described above except deamidation of N was added 

as variable modification. A peptide list containing the normalized ratios was exported from 

Reporter and further data processing was performed in Excel. Contaminant peptides were 

removed as well as peptides with no quantitative value in at least one of the TMT channels. 

Adequate routine quantitative methods for the high throughput analysis of glycopeptides, 

comprising both the amino acid backbone and the glycan moiety, are currently not available 

Instead, glycans are usually detached proteolytically after enrichment as detailed above, and 

the remaining amino acid sequence is used as surrogate to estimate the abundance of the 

glycopeptide 42. For this, those identified peptides that present a deamidation at an N-

glycosylation sequence motif [N][XPˆ][ST] (where XP^ can be any amino acid except 

proline) are assumed to be the result of a deglycosylation event.. Deglycopeptides were 

identified as described in 16 with N-glycopeptide enrichment specificity calculated as 

(
#𝑔𝑙𝑦𝑐𝑜𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠
) 𝑥 100. Briefly, a deglycopeptide was defined as a peptide containing a 

deamidation and the N-glycosylation sequence motif, and where a deamidation was not 

confidently assigned only to an asparagine outside the motif. Hence, for peptides with the N- 

glycosylation motif and additional asparagines in the sequence but uncertainty in the 

localization of the deamidation, it was assumed that the deamidation was at the asparagine in 

the motif as a result of the activity of the PNGase F enzyme. This is based on our calculated 

low chance of a non-glycopeptide having both a deamidation and the N-glycosylation motif 

(calculated to be 0.7%) and the fact that N-glycopeptide enrichment had been performed. 

Briefly, to get an idea of the false glycosite identification rate, we performed an additional 

search of the corresponding global data with deamidation of asparagine as a variable 
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modification. Using this dataset we found that the chances of a deamidation occurring in a 

peptide containing the N-glycosylation sequence motif was about 0.7%. Deglycopeptides that 

had at least one deamidation confidently localized on an asparagine in the N-glycosylation 

motif were termed high confident deglycopeptides. Those peptides where the localization was 

doubtful or random, indicating that the scoring algorithms could not confidently assess the 

exact position of the deamidation, were termed medium confident deglycopeptides, although it 

is likely that the deamidation is on the asparagine in the motif, because of the enrichment 

performed. Only 23 of the 2,153 peptides identified in the glycopeptide enrichment 

experiment included both a deamidation and the N-glycosylation motif, where the 

deamidation(s) was confidently assigned only to asparagine(s) outside the motif. These 

peptides were not considered deglycopeptides. 

Significant differences in peptide ratios between patients and controls were identified 

using a Student’s t-test as described for the global proteome. Furthermore, significant peptides 

(p < 0.05) were thoroughly investigated to see if other variants of the peptide were also 

present in the dataset, due to miscleavages or other combinations of modifications on the 

peptide (oxidized M, deamidation of N, etc.), and if they had similar or opposite regulation 

(further described in the Supplemental Information). Deglycopeptide FC abundance 

differences were then compared to the global proteome experiment to identify similar and 

different regulations revealed by the two approaches.  

 

Sharing of data through PRIDE 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium 43 via the PRIDE 44 partner repository with the dataset identifier PXD004572 for 

the global data and PXD004540 for the glycoproteome data. 

 

Protein network analysis  

All of the 484 significantly different proteins from the global proteome analysis were 

imported into STRING 45 with interaction sources being experiments and databases, and the 

interaction score set to medium confidence. The three proteins Ig kappa chain C region, 

semaphorin-3B, and neurofilament light polypeptide (NFL) were not imported as STRING 

could not “detect any proteins by the name in Homo sapiens”. The STRING network was 

exported to Cytoscape v.3.3.0 46. The Cytoscape plugins BINGO 47 ClusterONE 48 were used 

for visualization of the STRING network and cluster analysis. In the cluster analysis, a 

minimum of five proteins was used for network size and interaction evidence towards the 
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combined score from STRING. All other settings were left to default. The Cytoscape plugins 

ClueGo 49 and CluePedia 50 were used for Gene Ontology (GO) analysis of biological 

processes (Homo sapiens GO updated 14.06.16). GO-term fusion and “show pathways with p-

value < 0.05” were activated. Evidence was set to “All without inferred from electronic 

annotation (IEA)” and the network specificity was medium. In the ClueGO analysis, all 

proteins significantly increased in the RRMS patients were analyzed as one group (named 

Cluster 1 by ClueGO) and the proteins significantly decreased in the RRMS patients were 

analyzed as a second group (named Cluster 2 by ClueGO). These two clusters were compared 

by ClueGO, and resulted in two pie charts of biological processes. One pie chart showed the 

enrichment of genes increased in RRMS (Cluster 1) and the other pie chart showed the 

enrichment of genes decreased in RRMS (Cluster 2). A corresponding GO term table was also 

generated presenting the genes behind each term. All other settings were left to default. GO 

analysis with ClueGO and CluePedia was also done for the glycoproteome using similar 

settings.  

 

Comparing significant proteins against relevant literature data 

In order to compare our protein quantification data against relevant and comparable literature, 

we thoroughly investigated previously published quantitative CSF proteome datasets 

presenting biomarkers for MS, Parkinson’s disease (PD) and Alzheimer’s disease (AD) 13, 14, 

25, 41, 51-63. These data were included in an extended version (unpublished) of CSF-PR 16 which 

was used for the comparison. Detailed inclusion criteria for these 17 publications are available 

in the Supplemental Information. To further compare in more detail our 484 significantly 

changed proteins, we extracted quantitative data from those studies comparing RRMS, CIS 

with conversion to MS or CDMS (collectively called MS) to OND, symptomatic controls or 

non-MS (collectively called Non-MS). These particular disease groups were chosen because 

they were similar to the RRMS and control groups used in our study. Eight of the 17 

publications included such comparisons 13, 25, 41, 51, 53-56. Details on the categorization of the 

literature protein data are available in the Supplemental Information. 

 

 

RESULTS 

In this study, pooled CSF was used to analyze the global proteome and deglycoproteome from 

RRMS patients and controls (n = 21 pooled in three RRMS and 3 control pools) as illustrated 

in Figure 1A. We identified 2,966 and quantified 2,072 proteins in the global proteome 
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analysis (Table S4) and in the deglycoproteome analysis 1,744 deglycopeptides mapping to 

697 proteins groups were quantified (Table S5, C). STRING 45 analysis and the Cytoscape 46 

plugin ClusterONE 48 was used for cluster analysis, while the Cytoscape plugins ClueGO 49 

and CluePedia 50 were used for GO-enrichment analysis, as described in the Experimental 

Procedures. 

 

Global proteome analysis 

In the global proteome analysis, we quantified 2,072 proteins with ≥ 2 validated and unique 

peptides. A Student’s t-test was used for statistical analysis and revealed 484 proteins with a 

p-value < 0.05 between the RRMS patients and the controls of which 243 were increased and 

241 were decreased in the RRMS patients (Table S6, A). The 2,072 quantified proteins were 

compared to 17 previously published studies as explained in the materials and methods, and 

quantitative information had not been reported for 1,273 of them. Of the 484 significantly 

changed proteins 236 (49%) had not been quantified in any of the 17 studies, whereas 248 

(51%) had.   

We further compared the 484 significantly changed proteins to the regulations of these 

proteins found in eight other studies analyzing patient groups similar to ours 13, 25, 41, 51, 53-56. 

Of the 248 proteins found in all 17 studies, 216 were quantified in these eight studies and we 

divided the 216 hits into five categories based on their correlation with the literature data. 

More information about this categorization is in Supplemental Information. As can be seen 

from Figure 2, 10 of the proteins significantly increased in MS were also reported with 

increased abundance in the eight comparable studies (Increased 100%). Seventeen proteins 

fell into the “Increased < 100%” category, indicating that these proteins were found 

significantly increased in MS in the majority (average) of the studies. The numbers for the 

proteins significantly decreased in MS were 10 (Decreased 100%) and 50 (Decreased < 

100%). For the remaining proteins (129), their abundance had been reported with either 

opposite significant change (9 proteins) or an average non-significant change (Equal, 120 

proteins).       
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Figure 2: Distribution of protein data for proteins previously quantified in comparable CSF studies. 

Proteins found significantly increased (left) or decreased (right) in RRMS were compared separately to eight 

publications. Red circles represent the query proteins found increased in MS compared to Non-MS in 100% of 

the studies and pink circles represent the proteins found increased in MS in the majority of studies, but with 

some conflicting data. Green and light green circles represent these same trends for the decreased proteins. The 

blue circles represent the proteins found unaltered between MS and Non-MS on average in the seven studies.  

The MS category is a combination of the reported MS subcategories: RRMS,  CDMS and CIS with conversion to 

MS, and the Non-MS category is a combination of the control group subcategories reported as OND, 

Symptomatic controls and Non-MS. More information about this categorization is in Supplemental 

Information. *Combined categories 

 

Deglycoproteome analysis 

Glycopeptide identification and quantification 

In total 2,153 peptides mapping to 734 protein groups were quantified from the glycopeptide 

enrichment experiment (Table S5, B) of which 1,744 (Table S5, C) were identified as 

deglycopeptides (Experimental Procedures) mapping to 697 glycoproteins. This gave a 

peptide enrichment specificity of 81%. Of these, 1617 were high confident deglycopeptides 

(Table S5, D) and 127 medium confident (data not shown). Furthermore, 153 (< 10%) of the 

deglycopeptide sequences were also identified in the global peptide dataset, when comparing 
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against 32,701 confidently validated peptides quantified in all six pools (Table S5, H). This 

shows that both a glycosylated and non-glycosylated form of these proteins is likely to exist.  

We retrieved Uniprot glycosylation annotation data for all the proteins to which our 

glycopeptides mapped and checked our identified sites (only sites on unique peptides and 

where there was only one possible glycosylation site) against all known sites for these 

proteins. Information about referenced glycosylation status on both protein and site level can 

be found in Table S5, sheet C. In summary, we identified a total of 1,239 unambiguous 

glycosylation sites, of which 515 were already referenced in Uniprot and 724 were new. In 

addition, sites on 62 peptides were termed ambiguous either because they were on non-unique 

peptides or because there were two possible glycosylation sites. Previously undocumented 

glycosylation data is here demonstrated (indirectly as deglycopeptides) for 304 proteins. 

 

Categorization of significant deglycopeptides 

Of the quantified deglycopeptides, 235 were found to have significant differences between 

MS and OND (Table S5, E). These were manually inspected to reveal if other peptide 

variants containing the same glycosylation site had conflicting relative abundances in the 

deglycoproteome dataset. Different peptide variants containing the same glycosylation site 

could be non-tryptic peptides or appear due to missed cleavages and/or modifications (see 

Supplemental Information for details). This manual validation resulted in 180 non-

conflicting significantly changed deglycopeptides (Table S5, G) which were used as input for 

GO enrichment analysis in Cytoscape. Furthermore, 49 of these deglycopeptides also had a 

significant z-score based on the observed FC (Table S7), and represent the deglycopeptides 

most likely to be changed in RRMS compared to controls. 

 

Global versus deglycoproteomics experiments 

We further compared the deglycopeptide and the global protein FC (log2) for the 180 non-

conflicting deglycopeptides (Table S8, B). Four deglycopeptides substantially deviated from 

their protein FC with significant opposite regulation. These peptides derive from oligo-myelin 

glycoprotein (OMgp) (three peptides, negative FC) and noelin (one peptide, positive FC). 

OMgp was found significantly increased (p < 0.01) in RRMS patients in the global study by 

22 peptides, whereas in the deglycoproteome study, all three quantified deglycopeptides were 

found significantly decreased (p < 0.05). Noelin, on the other hand, was significantly 

decreased (p < 0.005) in the global data, but was found with a significantly increased (p < 

0.05) peptide in the deglycoproteome study. More details on these data are available in Table 
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S8, A, B. We also plotted the FC difference between  all 1,744 quantified deglycopeptides and  

all quantified global proteins, and it was clear that most deglycopeptides display a FC similar 

to the protein FC from the global experiment (Table S8, C, D). 

 To assess the possibility of identifying glycoproteins in CSF without glyco enrichment 

procedures, we investigated the known glycosylation status of the 2,072 proteins quantified in 

the global CSF study, and found that 580 of these were annotated with one or more referenced 

glycosylation sites in Uniprot. We further compared these to the proteins to which our 

quantified deglycopeptides mapped. We found that 249 of them were not found in the 

deglycoproteome experiment, meaning that these proteins could only be identified using the 

global proteome approach. Information about which proteins have referenced Uniprot 

glycosylation status and whether they were also found in the deglycoproteome experiment can 

be found in Table S4, B. 

 

GO enrichment analysis of significantly changed proteins and glycoproteins 

The Cytoscape plugins ClueGO 49 and CluePedia 50 were used for GO enrichment analysis for 

comparing which biological processes that were enriched in the RRMS patients, as described 

in the Experimental Procedures. For the global data, the 484 significant proteins (mapping to 

319 unique genes in ClueGO, Table S9) were imported, while the 180 non-conflicting 

significantly changed deglycopeptides (mapping to 138 proteins and 85 unique genes in 

ClueGO, Table S5, G and Table S10) were imported for the glycoproteome analysis. The 

processes that were enriched in proteins significantly increased in RRMS patients are 

illustrated in Figure 3 A and B, and the processes enriched in proteins significantly decreased 

in RRMS patients are illustrated in Figure 3 C and D. Each pie chart is divided into different 

groups, named according to the leading term for each group. The group leading term was 

chosen by ClueGO and depends on e.g. the number of genes, percentages of found genes and 

the p-value for the different terms. All data for Figure 3 A and C (global proteome) can be 

found in Table S9 and data for Figure 3 B and D (glycoproteome) are found in Table S10.  
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Figure 3. Biological processes GO enriched in proteins increased (A and B) and decreased (C and D) in CSF of RRMS patients. The global data is shown in A 

(increased in RRMS) and C (decreased in RRMS) and the glycoproteome data is shown in B (increased in RRMS) and D (decreased in RRMS).  
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As shown in Figure 3 A and B, the processes enriched in proteins increased in RRMS 

patients relate to the inflammatory response, such as protein processing, protein activation 

cascade, leukocyte migration, acute inflammatory response and defense response. Further, the 

enriched processes included proteins involved in extracellular matrix (ECM) organization, 

aminoglycan and chitin metabolic processes, and coagulation. Of the processes that were 

enriched in proteins decreased in RRMS patients (Figure 3, C and D) we found neuron 

development, including axonal development and cell morphogenesis involved in neuron 

differentiation, fibril-organization, and chemotaxis.  

 

Global proteome interaction analysis of significantly different proteins 

The 484 significantly changed proteins (Table S6) were imported into STRING 45 and 

interactions were found between 222 of the imported proteins. The protein-protein interaction 

(PPI) network was further exported to Cytoscape 46 and the main network (170 genes) is 

visualized in Figure 4. The two proteins amyloid-beta A4 protein (APP) and epidermal 

growth factor receptor (EGFR) represented the key nodes (genes) with the highest number of 

interactions in the PPI network. The EGFR pathway has been indicated to contribute to the 

inflammation amplifier 64. Other studies have indicated that inhibition of EGFR protects 

neurons from degradation and is neuroprotective in rat models of both spinal cord injury 65 

and glaucoma 66. For APP, a wide range of functions have been suggested in the CNS 67, but it 

is mostly known to be a precursor protein for amyloid beta known to be involved in AD 68.   
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Figure 4. Protein-protein interaction (PPI) network. 484 significantly changed proteins between the RRMS 

patients and the controls (Table S6) were imported into STRING 45 and interactions were found between 222 of 

the 484 proteins. The PPI was visualized in Cytoscape v3.3.0. Green and red colors represent lower and higher 

expression of proteins in CSF between RRMS patients and controls, respectively. Light green and light red 

represent proteins with z-score significance > 0.05, while the dark green and red proteins have z-score 

significance < 0.05. Rectangles are proteins with a t-test p-value < 0.01, while the proteins represented by a 

circle have p-value between 0.01 and 0.05.  
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The Cytoscape plugin ClusterONE reported 14 clusters with a p-value < 0.05 (Figure S1) 

using the PPI network from Figure 4 as input. A selection of the most significant clusters 

containing five or more genes is shown in Figure 5A-F. These clusters contain (a) cadherins, 

involved in cell adhesion, (b) collagens, which are ECM proteins, (c) complement factors, 

involved in inflammation, (d) ephrins and other proteins involved in synaptic plasticity, (e) 

proteins involved in aminoglycan processes, and (f) proteins involved in coagulation and 

inflammation.  

 

 

Figure 5. Cluster analysis of the protein-protein interaction network using ClusterONE. A minimum of 

five genes was included in the network and interaction evidence towards the combined score from STRING. a) 

cadherins b) collagens c) complement proteins d) ephrins and proteins involved in synaptic plasticity e) proteins 

involved in aminoglycan processes f) proteins involved in the coagulation and inflammation. Green and red 

colors represent lower and higher expression of proteins in CSF between RRMS patients and controls, 

respectively. Light green and light red represent proteins with z-score significance > 0.05, while the dark green 

and red proteins have z-score significance < 0.05. Rectangles are proteins with a t-test p-value < 0.01 while the 

proteins represented by a circle have p-value between 0.01 and 0.05.  
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DISCUSSION 

In the present study, we compared the CSF global and glycoproteome between RRMS 

patients and controls using TMT-labeling, extensive peptide fractionation, and state of the art 

bioinformatics. More than 2,000 proteins and 1,700 deglycopeptides were identified and 

relatively quantified with high confidence, and we hereby present the most comprehensive 

quantitative CSF proteomics study to date.  

The pooling strategy undertaken in our study allows us go deep into the CSF proteome 

to reveal novel information about how RRMS affects the CSF proteome. When pooling 

samples, information about biological variation between individuals is lost, but other studies 

have shown no systematic bias due to pooling 69 as well as agreement between the protein 

expression in pools and the mean of individual samples 70. This is in accordance with our own 

observations when comparing our pooling data to previously published work and we therefore 

conclude that the observed protein regulations in general are in concordance with the mean 

measurements of the individuals. Based on this the pooling strategy was considered as a 

suitable approach particularly since our study is focused on the processes affected by MS at 

large and not on finding single biomarker candidates. 

Our study provides additional evidence for differential expression of previously 

discovered biomarker candidates, in addition to novel findings. The fact that 236 of the 484 

proteins found as significantly changed have not been quantified in any of the 17 recent 

publications we compared our data to shows that our data revealed regulations occurring in a 

deeper part of the proteome not previously studied. CHI3L1, CHI3L2 and NFL are among the 

few proposed biomarkers that have previously been confirmed to be affected by MS 13, 53, 71-73. 

We found these proteins significantly changed in agreement with the literature, demonstrating 

how CSF quantitative proteomics can reliably and reproducibly detect significant changes 

associated with neurological disorders. In addition, 87 of our significantly different proteins 

have previously been found with similar regulation in other studies (Figure 2). This shows 

that the pooling strategy used here provides reliable quantitative information. 

Since LP is an invasive procedure, it is important to investigate the possibility to 

observe significant CSF changes also in serum or plasma. This has been done in some studies 

13, 53, 54, 74, attempting to verify biomarker candidates found in CSF. Some of the most studied 

proteins in CSF and serum are CHI3L1, CHI3L2 and NFL 13, 53, 74, 75. Significant increase of 

CHI3L1 have been found in serum of CIS and RRMS patients compared to non-inflammatory 

neurological controls 53, but increased CSF CHI3L2 levels found in RRMS compared to CIS 

and non-inflammatory neurological controls were not confirmed in serum 53. Others have also 
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investigated the effect of treatment on CHI3L1, and a trend towards decrease in the plasma 

CHI3L1 levels after treatment with INFβ has been observed 74. This shows that the CHI3L1 

levels between CSF and plasma/serum correlate, but the CHI3L2 levels do not. This offers 

new possibilities for easier diagnosis and estimation of disease progression and treatment 

effect. Studies have also investigated other candidate proteins in serum of MS patients 13, 54, 

but these have found no change between MS subtypes and controls.  

To investigate the chance of sampling our 484 significantly changed proteins in blood, 

we compared them to CSF-PR 16 and the Plasma Proteome Database 76. We found that 80% of 

our significantly changed proteins were previously found in plasma or serum, and the 

remaining proteins were not found (Table S6), indicating that they are likely difficult to 

measure in a blood sample. The list of changed proteins will be a valuable source for selecting 

new biomarker candidates for MS for further validation. In addition, the deep coverage of the 

CSF proteome gave us a unique possibility to obtain a broader overview of the RRMS 

affected processes that can be monitored via the CSF proteome.  

 

Cluster analysis and GO enrichment 

Inflammation and the immune system 

MS is known as an inflammatory disease, and the increase of proteins and pathways related to 

the immune- and complement system in RRMS are therefore not surprising. A characteristic 

of the MS brain is the presence of lesions or plaques infiltrated by immune cells, such as T-

cells and macrophages 77 which are cells involved in both the innate (native) and adaptive 

(acquired) immune system. The innate immune system acts in a non-specific manner and has 

no memory. Contrary, the adaptive immune system has specificity against certain molecules 

and among others includes CD4+ T-helper cells and CD8+ cytotoxic T-cells (reviewed in 78).  

The BBB normally protects the CNS from entry of immune cells, but in MS this 

protective barrier is disrupted, allowing for activated immune cells to migrate across the BBB 

(reviewed in 79). Why this disruption occurs and how the immune cells enter the CNS is not 

fully understood, but can hold the key for novel MS treatment. The cells from the innate and 

adaptive immune system has the ability to produce chemokines, cytokines and other 

inflammatory factors, which will continue to recruit immune cells into the CNS during the 

inflammatory event. In accordance with theory, we see an enrichment of proteins significantly 

increased in RRMS in the GO term leukocyte migration. We do however also see an 

enrichment of proteins significantly decreased in RRMS in the GO terms chemotaxis and 

regulation of chemotaxis. Chemokines have the ability to influence the movement of immune 
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cells by chemotaxis, attracting them towards a higher concentration of chemokines 80. Our 

data may imply that the response to such chemical stimuli is impaired in the RRMS patients. 

This could perhaps be a result of blockage of chemokine receptors on the immune cells, 

resulting in disturbance of leukocyte movement.  

Increased activity of the adaptive immune system, characterized by release of 

immunoglobulins (Igs), more known as antibodies, is already a well-established trait in 

RRMS. In our data, we found multiple Ig deglycopeptides increased in the RRMS patients. 

However, Igs of the adaptive immune system were not found in the global data, due to the 

removal of IgG, IgM and IgA using protein depletion. We further found increase of the 

complement proteins C6-C8 (Figure 5C), members of the innate immune system that are 

involved in the generation of the membrane attack complex. Three proteins belonging to the 

C1-complex, part of the classical complement pathway, were also found increased in these 

data (Figure 4). It has previously been suggested that antibody and complement mediated 

phagocytosis is involved in the demyelination seen in MS 81. 

Furthermore, our GO analysis showed enrichment of proteins increased in RRMS 

related to the coagulation cascade in MS. This was also seen in the cluster analysis (Figure 

5F), and has also been found by others 82, 83. In a study investigating pathways for MS 

subtypes, the complement and coagulation cascades were demonstrated as a shared pathway 

for all MS subtypes 82. In addition, Han et al. profiled the MS lesion specific proteome and 

uniquely identified several coagulation proteins in chronic active plaques, suggesting a 

dysregulation of molecules associated with coagulation in MS 83. In the same study, 

coagulation cascade inhibitors were demonstrated to suppress Th1 and Th17 cytokines in 

astrocytes and immune cells and to decrease disease severity in an experimental autoimmune 

encephalomyelitis model. This point towards a role for coagulation cascade participants as 

potential therapeutic targets 83. The coagulation proteins we find as increased in CSF could 

very well appear due to these MS-related CNS processes. The GO analysis also showed an 

enrichment of proteins increased in platelet degranulation. Platelets have been found to be 

activated in MS 84 and they are known to alert the immune system during a coagulation 

process. They may therefore have important roles in the regulation of the innate and adaptive 

immune processes seen in MS, as they also secrete pro-inflammatory molecules 85, 86. 

 

Extracellular matrix organization 

ECM organization was also found as a biological process enriched in RRMS from the GO 

analysis, and this is also supported by the cluster analysis demonstrating an increase of 
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collagens. Collagens are important fibrous ECM proteins 87 and mainly appear in the ECM as 

fibrillar proteins to form various connective tissues 88. We also see that deglycopeptides from 

ECM proteins such as fibronectin domain containing proteins, vitronectin and 

thrombospondin, demonstrate a significant change in RRMS compared to controls. In the 

brain, ECM proteins not only provide support and structure, but can also have various roles in 

the development and maturation of neurons 89. The growth and elongation of many neurons is 

directed through the ECM and it is therefore not surprising that ECM structures and 

interactions can influence developing neurons 90. ECM signaling and recognition are also 

important in the migration of leukocytes into inflammatory sites and their entry through blood 

vessels 91. It has been suggested that the BBB breakdown occurring in MS causes ECM 

alterations and that deposition of ECM components in active lesions can contribute to disease 

progression 92. ECM proteins such as fibrillar collagens have previously been found 

upregulated in both active and inactive MS lesions 89, and altered expression of collagen has 

been found in internal jugular veins of MS patients, supporting a role of a vascular 

involvement in MS 93. 

Other ECM proteins highlighted in our cluster (Figure 5E) and GO analyses 

(aminoglycan metabolic processes) (Figure 3) are the proteoglycans (PGs), which are 

macromolecules of the ECM and cell surface. The PGs in our data bears either heparan sulfate 

or chondroitin 94 and appears in cluster with sulfotransferases. Although PGs are known to 

have a role in relation to astroglial scarring and axon regrowth after injury 95, 96, few studies 

have discussed PGs specifically in relation to MS. However, Sobel and colleagues 

investigated active MS lesions and conclude that white matter ECM PG changes in MS 

happens in the early inflammatory phases and contribute to failed axonal regrowth and repair 

97. From our analysis it seems clear that alterations in heparan sulfate, chondroitin, and 

chondroitin sulfate PGs are occurring in RRMS, and we hypothesize that this could be related 

to the transfer of sulfo groups, based on the many sulfotransferases that interact with the PGs, 

as shown in Figure 5E. The aminoglycan processes also include proteins related to chitin 

catabolic processes (Table S9). CHI3L1 and CHI3L2, chitinase domain-containing protein 1, 

chitotriosidase-1 and Di-N-acetylchitobiase were found increased in the RRMS patients. Of 

these proteins, CHI3L1 and 2 lack chitinase activity and have been widely studied in relation 

to MS over the latest years 13, 14, 51-53.  
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Neuron development  

We found an enrichment of proteins significantly decreased in RRMS in the GO terms axon 

development, neuron cell-cell adhesion, neuron recognition, and cell morphogenesis involved 

in neuron differentiation (Figure 3C and D, Table S9, cluster 2 and Table S10, cluster 2). 

These categories indicate an impaired development and morphogenesis of neurons, especially 

with respect to axon development. Neurodegeneration and axonal damage are proposed to be 

primary mechanisms behind permanent disability in MS 98, and our data support the presence 

of such processes. Cerebral axonal damage has been demonstrated in early stages of MS, and 

transected axons, neurons, and apoptotic neurons have been found in MS lesions 99, 100. In 

general, the observation of reduced levels of proteins related to neuron development is likely 

due to an impaired ability in MS patients for neuronal repair after inflammatory damage, or 

simply a reduced ability to obtain a normal maintenance/turnover of neuronal cells. It would 

be highly relevant to investigate further the proteins represented in the GO terms mentioned 

above, to evaluate their potential as therapeutic targets to reduce neurodegeneration in MS, as 

the current treatment is so far mainly targeting the inflammatory aspect of the disease. A study 

has shown that the CSF levels of the axonal marker NFL is reduced due to natalizumab 

treatment, and may have an impact to reduce axonal loss 101. However, treatment with 

natalizumab may also have serious side effects. Our supplied list of gene names linked to 

various GO terms (Table S9), e.g. those under the GO terms related to neuron development, 

can  provide useful background data to guide future studies investigating new potential 

treatments targeting neurodegeneration. 

Many of the proteins found related to neuron development are ephrin and ephrin 

receptor proteins which are also highlighted in the cluster analysis (Figure 5D). Ephrin 

proteins are ligands for the ephrin transmembrane tyrosine kinase receptors and this ligand-

receptor signaling has already been linked to the regulation of axonal guidance through the 

regulation of growth cones 100 and to myelination, as mediators of the signaling between 

axons and oligodendrocytes 102. It seems that this signaling can either stimulate or repulse 

axon growth, and the ephrins may well also be therapeutic targets in MS 103.  

Among the 165 proteins not mapped to a gene during the GO analysis (Table S6), we 

find multiple proteins with a potential role in the nervous system. Some of these proteins 

showed significant interactions in the cluster analysis (Figure 3D), and are among other 

things involved in glutamate signaling, synaptic transmission and synaptic plasticity 104.  
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Adhesion molecules 

Several adhesion molecules were also found decreased in RRMS patients compared to 

controls in both the global and deglycopeptide datasets, such as the cadherins (Figure 5A) 

and several protocadherin deglycopeptides. Cadherins are transmembrane glycoproteins 

known for their role in cell adhesion, especially in tissues, where they help maintain a 

multicellular structure 105. N-cadherin has previously been linked to de- and remyelination 

using mouse models 106, 107. They are further involved in the recruitment and migration of 

neural progenitor cells into MS lesions and are a key element in promoting repair 106. Other 

cell adhesion molecules, including neurexins, neuroligin, integrins and immunoglobulin 

superfamily molecules, have been found significantly changed in our study, highlighting a 

possible role of these proteins in MS. A gene pathway study from 2014 links cellular adhesion 

molecules to MS susceptibility and point to their role in T-cell BBB crossing, which is an 

important event in the MS pathology 108, 109. It may well be that the decrease in adhesion 

molecules are, in fact, also directly linked to the neurodegeneration seen in MS, as their 

important role in organization and maintenance of tissue structure could be disturbed in 

affected individuals. Figure 3C specifically highlight proteins under the GO terms neuron 

cell-cell adhesion as decreased in RRMS, supporting this theory. These decreased proteins 

could therefore also be relevant to investigate further with the aim of targeting the 

neurodegenerative manifestation of MS. 

 

Cerebrospinal fluid glycosylation data 

In comparison with the existing literature on glycopeptides and proteins in CSF, we have by 

far identified and quantified the highest number of glycopeptides or deglycopeptides to date. 

In 2006, Pan et al. identified 216 O- and N-linked glycoproteins by a combination of lectin 

affinity and hydrazide chemistry in addition to 103 non annotated  proteins (glycosylation not 

annotated or protein not in Pubmed) 110. Furthermore, other studies of glycosylation in CSF 

include a study by Nilsson et al. from 2009 identifying 36 N-linked and 44 O-linked 

glycosylation sites in CSF 111, one by Halim et al. from 2012 reporting 84 O-linked intact 

glycopeptides 112 and one from Goyallon et al. from 2015 reporting 124 intact glycopeptides, 

covering 55 glycosylation sites in 36 proteins 113. However, the previously most 

comprehensive characterization of glycosylation in CSF was published by our group in 2014, 

where we reported 1121 previously glycosylated peptides after PNGase F treatment, and they 

mapped to 520 proteins 16. In comparison with referenced glycosylation data in Uniprot, our 

new data here indirectly demonstrates glycosylation sites for 304 proteins previously not 
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annotated as glycosylated, however it should be stressed that this data should be further 

verified by direct identification of the intact glycopeptide. 

Our assessment of the Uniprot glycosylation status of all quantified proteins in the 

global experiment revealed that 580 of these were referenced glycoproteins, and furthermore 

that 249 of these were not found by our glycopeptide enrichment approach (Table S4, B). 

Since this global experiment gives no information about glycosylation status it may well be 

that these proteins are simply not glycosylated in CSF, although found glycosylated in other 

tissues or body fluids (Uniprot). Other reasons for not identifying them in our 

deglycoproteome experiment might be that they mainly contained O-linked glycosylation 

sites, which were not targeted by our approach, or that the specific glycosylated peptides also 

contained additional modifications not considered in our search settings. Finally, the reason 

may also be that we did not reach the same depth in the deglycoproteome experiment as in the 

global (depletion and 100 fractions in global vs. no depletion and 15 fractions in glyco). 

 

Comparing significant deglycopeptides to the global proteome data 

Many of the significant deglycopeptides demonstrated the same significant changes as their 

corresponding global protein (Table S5, G). However, 96 significantly changed 

deglycopeptides without corresponding global change were also found (Table S5, G). These 

are likely to come from CSF proteins that are present in both glycosylated and non-

glycosylated form, where only the glycosylated form is affected by the disease. They 

represent an interesting set of potential disease altered glycoproteins, where changes might be 

associated with glycosylation events.  

The same is true for the even more interesting four deglycopeptides with opposite 

significant changes compared to the global protein. In these cases, MS might have affected the 

two protein forms differently. These four deglycopeptides mapped to the proteins OMgp (3 

peptides), and Noelin (1 peptide). OMgp is a CNS localized membrane glycoprotein ligand 

for the Nogo receptor, a so-called myelin-associated inhibitor (reviewed in 114). It has been 

demonstrated to be an important negative regulator for neurite growth 115, 116. Noelin is a 

secreted glycoprotein expressed in neurogenic tissues during development and interestingly, it 

has also been linked to the Nogo receptor through a study launching Noelin as a ligand for the 

Nogo A receptor 1 117. The Nogo receptor is known to limit the recovery from neural injury 

and neural plasticity as is reviewed in 118. Our deglycopeptide regulation data therefore 

suggest a shift in glycosylation status in RRMS patients of these two proteins that both serve 

as ligands to the Nogo receptor. It would be interesting to further explore how this affects the 
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Nogo receptor and possibly neuron growth and myelination, important CNS processes known 

to be affected in MS.  

To validate our glycosylation data and further investigate if glycosylation status is in 

fact altered in the RRMS pathology, we envision applying methods for true site-specific 

glycoproteomics where the intact glycopeptide is analyzed by tandem mass spectrometry. 

This has already been investigated and applied for CSF by a few research groups, presenting 

data for the major CSF glycoproteins 111, 113, 119, and relevant aspects of glycoproteomics have 

also been reviewed 120-122. However the methods for intact glycopeptide analysis are still not 

optimized for large scale analysis.   

 

 

CONCLUSION 

This study presents an in-depth analysis of the CSF proteome, comparing RRMS patients and 

neurological controls, and reports the largest set of quantified proteins and deglycopeptides in 

CSF to date. Pathway analyses of significantly changed proteins between the compared 

groups highlight biological processes that can be linked to MS pathology like inflammation, 

ECM organization, cell adhesion, immune system processes and neuron development. Of the 

clusters of changed proteins, cadherins, collagens, complement and proteoglycans were 

among those that appeared from the analysis, and these can also to a large degree be linked to 

the biological processes found changed. The correlating information from the pathway and 

cluster analysis gives a deep insight into the CNS processes affected by RRMS reflected in 

the CSF proteome. Many disease specific changes found among the deglycopeptides where 

the global protein abundance was not affected indicate that glycosylation status is affected by 

MS, and this group of proteins reveals a new level of information in the CNS pathology. Our 

study confirms many of the previously observed proteins changed by RRMS, but also reveals 

many new biomarker candidates that will be interesting to include in future verification 

studies.  
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ABBREVIATIONS 

AD Alzheimer’s disease  

AGC automatic gain control  

APP amyloid-beta A4 protein  

BBB blood-brain-barrier  

CDMS clinically definite multiple sclerosis 

CHI3L1 chitinase-3-like protein 1 

CHI3L2 chitinase-3-like protein 2 

CIS clinically isolated syndrome 

CNS central nervous system 

CSF cerebrospinal fluid 

DTT dithiothreitol 

ECM extracellular  matrix 

EDSS expanded disability status scale 

EGFR epidermal growth factor receptor 

FA formic acid 

FC fold change 

FDR false discovery rate 

GO gene ontology 

HCD higher energy collision dissociation  

IAA iodoacetamide 

Ig immunoglobulin 

IT injection time 

LP lumbar puncture 

MRI magnetic resonance imaging 

MS multiple sclerosis 

NFL neurofilament light polypeptide  

NOG N-Octyl-β-D-glucopyranoside 

OCB oligoclonal band 

OMgp oligo-myelin glycoprotein  

OND other neurological disease  

PD Parkinson’s disease  

PG proteoglycan 

PNGase F peptide -N-Glycosidase F 

PPI protein-protein interaction  

RRMS relapsing-remitting multiple sclerosis 

TMT tandem mass tag 
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SUPPORTING INFORMATION 

Supplemental Information. Categorization of significant deglycopeptides, literature data 

inclusion criteria and categorization of literature studies. 

Table S1. Detailed information for the patients and controls included in the CSF pools. 

RRMS patients are in sheet A and controls in sheet B. This table also indicates which of the 

included samples that have been used by our group in previous studies. 

Table S2. LC-gradient and peptide fraction collection information. 

Table S3. LC-gradient for LC-MS/MS analysis for the global data and the glycoproteome 

data. 

Table S4. Data from the global proteome analysis. Default protein export from Reporter 

(sheet A), and all quantified proteins (sheet B).  

Table S5. Data from the glycoproteome analysis. Default peptide export (sheet A), all 

quantified peptides (sheet B), all deglycopeptides (sheet C), all high confident 

deglycopeptides (sheet D), all deglycopeptides with significant p-value (sheet E), all 

deglycopeptides with significant p-value and z-score (sheet F), all category 1 significant 

deglycopeptides (sheet G) and all deglycopeptides also found as non-glycosylated in the 

global dataset (sheet H).  

Table S6: 484 significant proteins from the global proteome analysis (sheet A). Sheet A also 

indicates which of the significant proteins that previously have been found in serum/plasma. 

The proteins included in the STRING network and in the ClueGO analysis is shown in sheet 

B.  

Table S7. 49 category 1 deglycopeptides with significant p-value and z-score. 

Table S8. Comparison of fold change deglycopeptides vs. global protein. . Details for 

significant peptide/protein comparison (sheet A), comparison plot significant peptide/protein 

comparison (sheet B), details for all peptide/protein comparison (sheet A), comparison plot all 

peptide/protein comparison (sheet B). 

Table S9. Enriched biological processes in ClueGO. Global data.  

Table S10. Enriched biological processes in ClueGO. Glycoproteome data.  

Figure S1. Clusters generated in ClusterONE with p-value < 0.05.  
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LIST OF FIGURE LEGENDS 

Figure 1. Illustration of the pooling procedure (A) and the workflow of global (B) and deglycoproteome 

(C) experiments performed in this study. The pooling procedure shown in Figure 1A illustrates that 21 

relapsing-remitting multiple sclerosis (RRMS) patients and 21 neurological controls with other neurological 

diseases (OND) were separated into six pools, with seven individuals in each pool. These pools were used for 

two separate experiments: B) Global proteome analysis and C) Deglycoproteome analysis. Only the global 

experiment included protein depletion (B), while trypsin digestion, TMT labeling and combination of the labeled 

pools was common for both experiments. Glycopeptide capture by solid-phase enrichment of N-linked 

glycopeptides (SPEG) was then performed in the glycoproteome experiment (C), followed by peptide 

fractionation, LC-MS/MS analysis and protein and peptide identification and quantification, which was common 

for both experiments. 

 

Figure 2: Distribution of protein data for proteins previously quantified in comparable CSF studies. 

Proteins found significantly increased (left) or decreased (right) in MS were compared separately to eight 

publications. Red circles represent the query proteins found increased in MS compared to Non-MS in 100% of 

the studies and pink circles represent the proteins found increased in MS in the majority of studies, but with  

some conflicting data. Green and light green circles represent these same trends for the decreased proteins. The 

blue circles represent the proteins found unaltered between MS and Non-MS on average in the seven studies.  

The MS category is a combination of the reported MS subcategories: RRMS, CDMS and CIS with conversion to 

MS, and the Non-MS category is a combination of the control group subcategories reported as OND, 

Symptomatic controls and Non-MS. More information about this categorization is in Supplemental 

Information. * Combined categories.     

   

Figure 3. Biological processes GO enriched in proteins increased (A and B) and decreased (C and D) in 

CSF of RRMS patients. The global data is shown in A (increased in RRMS) and C (decreased in RRMS) and 

the glycoproteome data is shown in B (increased in RRMS) and D (decreased in RRMS).  

 

Figure 4. Protein-protein interaction (PPI) network. 484 significantly changed proteins between the RRMS 

patients and the controls (Table S6) were imported into STRING 45 and interactions were found between 222 of 

the 484 proteins. The PPI was visualized in Cytoscape v3.3.0. Green and red colors represent lower and higher 

expression of proteins in CSF between RRMS patients and controls, respectively. Light green and light red 

represent proteins with z-score significance > 0.05, while the dark green and red proteins have z-score 

significance < 0.05. Rectangles are proteins with a t-test p-value < 0.01, while the proteins represented by a 

circle have p-value between 0.01 and 0.05.  

 

Figure 5. Cluster analysis of the protein-protein interaction network using ClusterONE. A minimum of 

five genes was included in the network and interaction evidence towards the combined score from STRING. a) 

cadherins b) collagens c) complement proteins d) ephrins and proteins involved in synaptic plasticity e) proteins 

involved in aminoglycan processes f) proteins involved in the coagulation and inflammation. Green and red 
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colors represent lower and higher expression of proteins in CSF between RRMS patients and controls, 

respectively. Light green and light red represent proteins with z-score significance > 0.05, while the dark green 

and red proteins have z-score significance < 0.05. Rectangles are proteins with a t-test p-value < 0.01 while the 

proteins represented by a circle have p-value between 0.01 and 0.05.  
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