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Abstract 
The European eel (Anguilla anguilla) is widely distributed in Europe and has an exceptional 

tolerance to different salinity environments. Despite of this it is listed as critically endangered 

on the ICUN Red List of Threatened SpeciesTM  and vulnerable on the Norwegian Red List of 

Species. Historically, eels (Anguilla spp.) have been considered a catadromous fish species, 

but research has shown that some eels skip the freshwater phase, and some are habitat-

shifters. These alternative life-history strategies may be the dominant at higher latitudes 

compared to southern Europe. Otolith microchemistry analyses, growth patterns, lipid profile, 

long-term dietary patterns and parasite fauna can be used to infer the type of residency the 

eels have had.  

The aim of the present study was to get insight into the movement of eels between fresh and 

seawater using parasites as biological indicators, as well as provide background data on the 

occurrence of eel parasites in Norway and the geographical range of exotic eel parasites. 

European eel was caught at seven different localities along the Norwegian coast (58.3°-

63.8°N), 93 freshwater and 78 seawater-caught. All 171 eels were dissected and examined for 

micro- and macro parasites. The eels examined were found to be infected with 34 different 

parasite species, with 18 species infecting eels caught in freshwater and 22 species in 

seawater-caught eels. Eleven species were only found in freshwater caught eels, 15 only in 

seawater caught eels and eight in eels from both habitats.  

The three marine parasites found in freshwater eels occurred in 18 % of the fish. However, the 

studied freshwater locality in Grimstad has seawater influx and is frequented by some marine 

fishes. In the localities where such influence did not occur, only 3 % had parasites of marine 

origin, suggestive of inter-habitat shifting (IHS). Yet, myxosporean infections acquired by 

eels in freshwater were often as prevalent (>30 %) in eels from marine samples as in 

freshwater localities. This is an indication that most eels at some point had been in freshwater, 

likely a lake, and been exposed to infectious actinosporeans. These histozoic myxosporean 

infections are long-lasting, and can reflect only a single periode of freshwater residence, 

probably as elvers. Other parasites, with a shorter expected longevity in the seawater-caught 

eels and indicative of recent inter-habitat shifting were rare. These were occasional 

Proteocephalus macrocephalus (cestode) and Anguillicola crassus (swimbladder nematode) 

infections, registered in 4 % of the seawater-caught yellow eels.  
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In conclusion, some parasites can reveal if an eel has been in freshwater during its lifetime, 

while others indicate more recent movement between freshwater and marine habitats. Their 

usefulness depends on the level of knowledge on the life cycles, and knowledge in parasite 

longevity in the eels.  

  



 
 

VII 

Acknowledgements 
 

The present study is part of the MAREEL project at The Istitute of Marine Research (IMR) at 

Austevoll (funded by the Norwegian Research Council NFR project# 280658 and the Institute 

of Marine Research). The work has been conducted at The Faculty of Mathematics and 

Natural Sciences (Institute of Biological Science) at the University of Bergen (UiB).  

I would like to thank my co-supervisor Caroline Durif (IMR, project leader MAREEL) for 

letting me participate in the project, coordinating sampling, participating in field work and 

proofreading my thesis. Mehis Rohtla (IMR) and Camilla Parzanini (Ryerson Univerity) for 

running analyses and giving me access to their results. Terje van der Meeren (IMR) for 

sampling eels from Smøla, Eva Thorstad (NINA) for providing samples, Anton Rikstad and 

Kjersti Hanssen (County Governor of Trøndelag) for sampling in Bjugn and Øystein Skaala 

and Per Tommy Fjeldheim (IMR) for facilitating the examination of eels at the Etne field 

station.   

I also wish to give a huge thanks to my supervisor Egil Karlsbakk (UiB) for guiding me and 

showing great enthusiasm throughout this project. All his knowledge and experience has been 

of big help. And thanks to Lindsey Moore (UiB) for lab training, encouragement and 

proofreading.  

A sincere thanks to my fellow students for laughs and fun times through five years at UiB.  

Last but not least, I would like to thank my roommates for putting up with me, in addition to 

my family for not only supporting me through my studies, but always.  

Bergen, June 2020 

Signe Haugsland 

  



 
 
VIII 

Glossary 
Abundance  

 
The number of individuals of a particular 

parasite in/on a single host regardless of whether 

or not the host is infected  (Bush et al. 1997). 

Cercariae 
 

Free swimming larval stage of trematodes 

Coelozoic 
 

Lives in a cavity of an animal’s body. 

Component community  Refers to all infrapopulations of parasites 

associated with some subset of a host species or 

a collection of free-living phases associated with 

some subset of the abiotic environment (Bush et 

al. 1997).  

Final host 
 

The host in which the parasite attains sexual 

maturity.  

Habitat  The locality or external environment in which 

the eel lives.  

Histozoic 
 

Living within tissues but outside of the cell.  

Infracommunity  A community of parasite infrapopulations in a 

single host (Bush et al. 1997).  

Inter-habitat shifter  Eel that move once or twice between freshwater 

and seawater through their growth face.  

Intermediate host  
 

A host in which a parasite passes one or more of 

its asexual stages. 

Intensity 
 

The number of individuals of a particular 

parasite species in a single infected host (Bush et 

al. 1997). 



 
 

IX 

Locality  A geographic location of the external 

environment where the parasite is found (Bush 

et al. 1997).  

Metacercariae 
 

Encapsulated larval stage of trematodes, in the 

second intermediate host, normally the infective 

stadium.  

Plerocercoid 
 

Larval stage of cestodes. 

Prevalence 
 

The number of hosts infected with one or more 

individuals of a particular parasite species 

divided by the number of hosts examined for 

that parasite species (%) (Bush et al. 1997).  

Site/location  The topological or spatial location on a host 

where a particular sample of parasites is 

collected (Bush et al. 1997).  

Transport/paratenic host  A host not needed for the development of the 

parasite, but serves to maintain the parasite’s life 

cycle.  
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Abbreviations 
BLAST 

 
Basic Local Alignment Search Tool 

bp 
 

Basepairs 

DNA 
 

Deoxyribonucleic acid 

FA 
 

Fatty acid 

FET 
 

Fisher's exact test  

FW 
 

Freshwater 

FWR 
 

Freshwater resident 

x g 
 

Relative centrifugal force 

g 
 

Gram 

HES 
 

Hematoxylin-Eosin-Safran  

IHS 
 

Inter habitat shifter 

IMR 
 

Institute of Marine Research 

in vitro 
 

In site, within the sample 

ITS 
 

Internal transcribed spacer 

IUCN  International Union for Conservation of Nature 

km 
 

Kilometer 

km2 
 

Square kilometer 

l 
 

Liter 

LSU 
 

Large Sub-Unit, about the rRNA gene (LSU rDNA), also called 28S 

in animals 

M/F 
 

Marine to freshwater ratio 

Min 
 

Minutes 

ml 
 

Milliliter 

mm  
 

Millimeter 



 
 

XI 

mm2 
 

Square millimeter 

MWR 
 

Marine water resident 

N 
 

Number of specimens 

NCBI 
 

National Centre for Biotechnology Information 

ng 
 

Nanogram 

nt 
 

Nucleotides 

p 
 

p-value  

PCR 
 

Polymerase chain reaction 

rDNA 
 

Ribosomal DNA, DNA sequence coding for ribosomal RNA 

rs 
 

Spearman rank correlation-coefficient  

rxn 
 

Reaction 

Saline 
 

Saltwater diluted to about physiological salinity (10 ‰) 

Sec/s 
 

Second 

Sensu  In the sense of 

Sensu lato  In the old i.e. wide sense, normally used when a species has been 

split.  

Sensu stricto  In the strict i.e. recent sense, normally used when a species have 

been split into several 

SSU 
 

Small Sub-Unit, about the rRNA gene (SSU rDNA), also called 18S 

in animals 

SW 
 

Seawater 

UiB 
 

University of Bergen 

V 
 

Volt 

Vide  “see” (L.), used here to connect citations that must be considered 

together to make sense. 

µl 
 

Microliter 
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µM 
 

MicroMolar 

µm 
 

Micrometer 
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1 Introduction 

1.1 European eel  

The European eel (Anguilla Anguilla) is widely distributed, from northern Norway and 

Iceland in the north, all over Europe including around the Mediterranean, down to the 

northwest coast of Africa (Tesch 2003). In Norway, the European eel is registered in 1788 

waters and lakes representing 361 precipitation areas. However, many lakes and watercourses 

have not been investigated. In the coastal areas it is seen that the eel abundance decrease 

northwards (IMR 2017).  

The European eel’s tolerance to different salinity environments is exceptional. The fish can be 

found in all kinds of habitats: rivers and lakes, marshes, brackish water, fjord systems and 

marine coastal waters (Tesch 2003, Daverat et al. 2006). The European eel have historically 

been considered a catadromous fish species that spawn in seawater and grow in freshwater. In 

later years the species has been reclassified as a facultative catadromous species due to 

research done on the strontium and calcium ratio in the otoliths (Tsukamoto et al. 1998). This 

together with other analyses suggested that some eels never migrate into freshwater, and that 

some move once or twice between both environments throughout their growth phase. Some 

research shows that inter-habitat shifting may be the dominant strategy at higher latitudes 

(Daverat et al. 2006, Durif et al. 2008). The type of residency the eels have had can be 

inferred from the microchemistry analysis of the otoliths, with the help of growth patterns, 

lipid profile, long-term dietary patterns and parasite faunas.  

1.2 Life cycle 

The European eel has a complex life cycle (Fig. 1). The larvae hatch from eggs spawned in 

the Sargasso Sea area, and develop into characteristic leptocephalus larvae which are 

transparent with a leaf-like structure (Schmidt 1923).  
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Figure 1 The life cycle of the European eel starting with eggs hatching in the Sargasso Sea 
area and the leptocephalus larvae drifting with the Gulf stream and enter the European coast 
as glass eels. Then becoming yellow eels which feed and grow before metamorphosing into 
silver eels and swim back to the Sargasso sea to spawn (Henkel et al. 2012). 
  

The larvae float in the water column and are transported by the Gulf Stream to Europe where 

they are dispersed along the European coast (Tesch 2003). The drifting from the western 

Atlantic to Europe takes approximately one to two years, and the eels arrive at the coast of 

Europe in the spring (Tesch 2003, Bonhommeau et al. 2009). Before they reach the coast of 

Europe, they metamorphose into glass eels. Glass eels have the shape of an adult eel but they 

have no pigmentation. This stage lasts a few months (Schmidt 1923, van den Thillart et al. 

2009). Some of the eels will now remain in marine and brackish water in lagoons or estuaries, 

while others will move upstream and end up in rivers and lakes. The eels feed and grow 

during their time in freshwater (Tesch 2003). This is the longest period in the life cycle and 

can last from four to sometimes 30 years or more (Poole & Reynolds 1996, Durif et al. 2020). 

During this time the eels reach full pigmentation and become yellow eels. There are growth 

and size differences between males and females. Most large eel, over 45 cm in length, are 

females (Tesch 2003). After many years in freshwater, the eels undergo a second 
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metamorphosis known as silvering and transform into silver eels (van den Thillart et al. 

2009). They stop growing and start migration towards the ocean. Silvering preadapts the eel 

to deep-sea conditions and for sexual maturation. This metamorphosis is largely 

unpredictable, unlike smoltification in salmonids and occurs at various ages and sizes. In 

females, the age can vary between four and 30 years and in males between 2 and 15 years. 

Mean total lengths of male European silver eels range between 35 and 46 cm, and females 

have a range of means from 50 cm to over 1 m (Tesch 2003, Durif et al. 2009b). Several 

changes occur during silvering. All sensory organs become more developed, including 

enlarged eyes. The pectoral fin length increases significantly and changes in colour to black. 

The enlarged fins will contribute with stabilization in the open water during migration. The 

skin also adapts to the pelagic environment by changing colour. In the silver stage, an eel 

display a white silver belly separated from a black dorsal region by the lateral line. The skin 

thickens and an accumulation of fat occurs. Some of the fat is used as an energy source for 

gonad development, but the majority will be used for swimming. During this period and until 

the end of their life cycle the eels stop feeding and the alimentary tract degenerates (Schmidt 

1923, Durif et al. 2005, van den Thillart et al. 2009). After the eels have gone through 

silvering and reach the ocean, the long-distance migration to the spawning location in the 

Sargasso Sea starts. They swim approximately 6000 km, and during this period they undergo 

sexual maturation. The downstream migration together with the long-distance migration lasts 

about 6 months. When they reach the spawning grounds they spawn and most likely die 

afterward (Durif et al. 2008, van den Thillart et al. 2009). Spawning takes place in early 

spring and can last until late summer (Schmidt 1923). 

1.3 Eel fishing and aquaculture in Norway 

The eel is a highly valued fish in many countries. But in Norway, there has historically been a 

low interest for eels (Durif et al. 2011). It has been illegal to fish eel since 2010, due to the 

European eel population crash. Up until then, the annual recorded eel catch varied between 

200-400 tons (Statistics Norway 2019).  

The Japanese have farmed eel in ponds since around 1880. Development of eel farming in 

Europe started in the mid-1900s with the use of the Japanese strategy with eel farming in 

ponds. This was most feasible in the southern parts of Europe, with France and Italy that had 

a favourable climate for farming in ponds (Herland et al. 1997, Skiftesvik et al. 2003). The 
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demand for eel was bigger than the production, therefor new localities and farming models 

were established (Herland et al. 1997). Eel farming spread northwards to more temperate 

areas, such as Denmark and The Netherlands. Today European eel farming is mainly 

associated with recirculation systems, but flow-through systems have also been used 

(Skiftesvik et al. 2003). The freshwater used in the systems has to be heated for good growth 

throughout the year, with eels having the best growth at 25°C (Herland et al. 1997). Because 

the industry has not been successful in rearing larvae and producing glass eel, all eel farming 

in the world is based on wild caught eel that is placed in tanks and fed until they reach a 

certain weight. Scientists have however been able to get the eel to spawn in the laboratory 

(van Ginneken & Maes 2005). Eel farming in Norway was based on imported glass eels in the 

beginning, but since the import ban on glass eel, the production had to change and be based 

on capture of yellow eel (Herland et al. 1997, Skiftesvik et al. 2003). The interest for eel 

farming in Norway has varied, but several eel farms, based on different farming models, have 

been established (Skiftesvik et al. 2003). Today there are 14 concessions for eel in Norway 

(Directorate of Fisheries 2018), but no operating eel farms. This is due to the ban on the eel 

fishery. The last big eel farm in Norway, Farsund Aqua, closed down in 1998 due to problems 

with different pathogens (Engø 1997, Aasen 1999).  

1.4 Eel decline 

There has been a steady decline in the European eel stock for the past 40 years and the species 

is therefore listed as critically endangered on the International Union for Conservation of 

Nature (IUCN) Red List of Threatened SpeciesTM  (Freyhof & Kottelat 2010). The adult stock 

started to decrease in the 1940s and recruitment has collapsed since the early 1980s. The stock 

is considered outside safe biological limits and the decline seems to occur over most of the 

natural range of the European eel (ICES 2019). The decline in recruitment has been more 

pronounced in the North than in the rest of Europe. So with Norway representing the limit of 

the distribution range, changes in density are more likely to be detected here (Durif et al. 

2020). In Norway, as in the rest of Europe, analyses has shown a decline in the eel stock, both 

in fresh and marine water subpopulations (Durif et al. 2008). The European eel is listed on the 

Norwegian Red List of Species. It was listed as critically endangered from 2006 to 2015, 

when the status got improved to vulnerable. This change came as a result of an improvement 

in the freshwater environment which had a positive effect on the eel abundance (IMR 2017). 

A new study by Durif et al. (2020) on the age of European silver eels in Norway reported a 
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mean age of 19 years for female silver eels, which is more than twice the mean age (eight 

years) used in the previous Norwegian assessment. With the generation length being used to 

classify endangered species into different IUCN categories, the results of the study will likely 

have an impact on the next revision of the Norwegian red listing, with the European eel being 

reassigned to critically endangered or at least an endangered status (Durif et al. 2020).  

There are several possible causes for the decline. Two obvious reasons are habitat reduction 

and overfishing. The eel may have reduced access to the upper reaches of the watershed due 

to dams and other obstructions and downstream migration can be difficult for the silver eels 

which get entrained in the turbines of hydroelectric power plants. Other reasons may be 

pollution and diseases or parasites (Durif et al. 2008, Castonguay & Durif 2016, Aschonitis et 

al. 2017, Drouineau et al. 2018). Many of these reasons are only present in freshwater 

habitats, but some marine causes have also been hypothesized, one being a global change in 

oceanic currents, which could affect the larval drift to Europe. Also changes in ocean 

productivity and a decrease in food for leptocephalus larvae could cause variation in the 

recruitment (Durif et al. 2006). Higher temperatures at the spawning ground in the Sargasso 

Sea may also have a negative effect on the newly hatched larvae (IMR 2017).  

European eel parasites, in particular invasive species, are suspected to play an important role 

in the decline in the population of their host (Fazio et al. 2008). The parasites can be 

considered as biological stressors. Not all cause disease in fish, but they may be present in a 

subclinical or carrier state as a potential causative factor in the decline (Mayo-Hernandez et 

al. 2015). The parasitic infections which leads to severe symptoms and eventually death of 

eels are caused primarily by highly pathogenic species (van den Thillart et al. 2009).  

1.5 Parasites in the European eel 

Parasite species that can be considered as serious pathogens for the European eel are 

Pseudodactylogyrus anguillae (Yin et Sproston, 1948), P. bini (Kikuchi, 1929) and 

Anguillicola crassus Kuwahara, Niimi et Itagaki, 1974 (Kennedy 2007). Neither of them are 

pathogenic to their preferred natural host species in the wild, but are found to cause great 

damage to European eel.   

Anguillicola crassus, the swimbladder parasite, is an introduced parasite in Europe. The 

natural range of A. crassus is in tropical and subtropical Asia where it is widespread in the 

Japanese eel (Anguilla japonica) in natural waters and eel farms. It causes little or no damage 
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to the Japanese eel but can be highly pathogenic to the European eel. The parasite came to 

Europe in the early 1980s with live eels from Taiwan when eels were imported for stocking 

and farming purposes (Mo & Steien 1994, Mo 2009). The first reports of the parasite came 

from Italy and the south of Germany. Later the parasite spread to other countries and was 

reported from Denmark in 1986 and from Sweden in 1987. The first observation from 

Norway came in 1993 when two dark-brown nematodes were observed in the swimbladders 

of eels from an eel farm in Østfold (Fig. 2). The production was based on wild caught eel 

from the area between Hvaler and Fredrikstad, together with imported eels from Denmark 

(Mo & Steien 1994). It was apparently observed for the first time in wild-caught eels, from 

the south of Norway, delivered to an eel farm in Farsund in 1997 (Engø 1997). After the late 

1990s, when most eel farms were closed down, the parasite got little attention until it was 

observed in wild eels caught in several rivers in 2008. It was identified in eel from the river 

Imsa, the outlet area to the the river Drammenselva and the river Enningdalselva (Fig.2). The 

hypothesis is that the parasite has spread between Norwegian waterways by migratory eels 

(Mo 2009), or with the help of different mobile transport hosts (Lindholm 2012). A. crassus 

has not been reported further north than Stavanger, but it is believed that it has spread to 

Hordaland and Sogn og Fjordane (NBIC 2018a).  

Pseudodactylogyrus anguillae and P. bini have also been introduced in Europe. They were 

first reported from an eel farm in the European part of the former Soviet Union where they 

had been introduced with imported Japanese eel. The introduction to Central Europe most 

likely happened at the same time as the introduction of A. crassus with the import of eel from 

Taiwan (Buchmann et al. 1987, Køie 1991). The ectoparasitic monogeneans are located on 

the gills, where they feed on blood, mucus and skin cells. P. anguillae was observed for the 

first time in Norway in 1987 in farmed eel (Mo et al. 1988) and became a big problem for eel 

farmers (Mo et al. 1988). The first observation of P. anguille, together with P. bini, in wild 

eel was made in 1998 in eel from Årungen lake and the river Glomma (Mo & Sterud 1998). 

How they were introduced to Norway is unknown. One possibility is that there were eggs 

present in Danish wellboats visiting the farms to collect eel. Another is by the natural 

migration of infected eel along the coast from Sweden (Mo et al. 1988, Mo & Sterud 1998). 

Today the known geographical range of P. anguille is Østfold, Oslo and Akershus (NBIC 

2018b). 
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Little is known about the parasites of the European eel, especially by comparison with the 

extensive information available on the parasites of salmonids (Kennedy 2007). Jakob et al. 

(2016) summarized all published data on the parasite fauna of the European eel and found a 

total of 161 parasitic species/taxa recorded for European eel. Compared to other fish species 

in Europe, eels tend to have species poor parasite infracommunities with low parasite 

abundance.  

Most studies of the parasite communities of European eel have been carried out in freshwater 

localities, and therefore even less is known about the parasite fauna of eels from salt and 

brackish waters (Filippi et al. 2013). With the suggestion that eels may not necessarily 

migrate into freshwater (Tsukamoto et al. 1998, Daverat et al. 2006, Durif et al. 2008), and 

that populations of eels from marine localities contribute primarily to future recruitment of eel 

populations (Tsukamoto et al. 1998, Mayo-Hernandez et al. 2015), studying the parasite fauna 

of eels from salt waters can give a better picture of the health status of eel populations.  

An eel’s parasite infracommunity can provide information on the eel’s life strategy. If the 

parasite life cycles and modes of transmission to fish are known, they can be used as 

biological tags to provide information on hosts movements and habitats (Kennedy et al. 

1992). Parasite communities of European eels strongly relate to the habitat preferences of 

their hosts and reflect the life history of individual eels. The parasites show very specific 

salinity-dependence that makes it possible to cluster the them into freshwater, brackish, and 

marine groups (Jakob et al. 2009, Mayo-Hernandez et al. 2015).  

In Norway, knowledge on the parasite communities in European eel is very scant. In a study 

from 1998, with thirteen specimens of eel from south-eastern Norway, twelve different 

parasite species were found (Mo & Sterud 1998). Additional species have also been recorded 

in general parasite studies (Table 1). None of the previous studies on the parasite fauna of 

Norwegian eel have been carried out in marine localities, but there are scattered parasite 

record from eels caught in the sea (e.g. Olsson (1868)). 
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Table 1 Parasite species recorded in European eel (Anguille anguille) in Norwegian waters 
before August 2019. 
Parasite species Locality, year 

Trypanosoma granulosum Leveran et Mesnil, 1909 Årungen 19961 Glomma 19971, Jæren7 

Trichodina spp. Vegsund7, Bergen7, Sunnmøre3 

Paramyxidium giardi* (Cépède, 1906) Årungen 19961, Glomma 19971 

Pseudodactylogyrus anguillae (Yin et Sproston, 1948) Årungen 19961, Glomma, 19971 

Pseudodactylogyrus bini (Kikuchi, 1929) Glomma 19971 

Gyrodactylus sp.  Mauseidvatn 19907 

Diplostomum sp.  Årungen, 19961 

Azygia lucii (Müller, 1776) Årungen, 19961 

Deropristis inflata (Molin, 1859) Bergen 18682, Glomma 19971 

Helicometra sp.  Bergen 18682 

Hemiurus communis Odhner, 1905 Bergen 18682 

Lecithichirium rufoviride (Rudolphi, 1819) Bergen 18682, Langesund5, Sotra6 

Derogenes varicus (Müller, 1784) Bergen 18682 

Lecithaster gibbosus (Rudolphi, 1802) Bergen 18682 

Triaenophorus nodulosus (Pallas, 1781) Årungen 19971 

Bothriocephalus sp. Årungen 19961, Glomma 19971 

Proteocephalus macrocephalus (Creplin, 1825)  Oslofjord 19794 

Paraquimperia tenerrima (Linstow, 1878) Kalandsvatn8, Årungen 19961, Glomma 19971 

Anguillicola crassus Kuwahara, Niimi et Itagaki, 1974 

Oslofjoden 1993, Farsund 199711 

Imsa 20089, River Drammenselva 20089 

River Enningdalelva 20089, River Storelva201010 

Camallanus lactustris (Zoega, 1776) Årungen 19961, Glomma, 19971 

Ergasilus sieboldi Nordmann, 1832 Glomma 19971 

* Most likely Paramyxidium branchialis since recorded from the gills. 1 Mo and Sterud (1998), 2  Olsson 1868, 3 

Karlsbakk in Sterud (1999), 4 Andersen (1979), 5 Gibson and Bray (1986), 6 Lönnberg (1890), 7 Karlsbakk 

(pers.comm), 8 B. Berland (pers. comm. Karlsbakk), 9 Mo (2009), 10 Lindholm (2012), 11 Engø (1997).         
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1.6 Aim 

The main aim of the present study is to get insight into the movement of eels between fresh 

and seawater using parasites as biological indicators. There are several sub goals: 

i) Provide background data on the occurrence of eel parasites in Norway 

ii) Examine the spread of the exotic eel parasites A. crassus and 

Pseudodactylogyrus spp. 

iii) Revealing suitable indicator parasites of habitat shifting.   

iv) Compare parasite evidence for habitat-shifting with that from stable isotope 

and fatty acid data.  
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2 Material and method 

2.1 Sampling 

The European eels (Table 2), Anguilla anguilla, were caught at seven different localities in 

Norway (58.3°-63.8°N) (Fig. 2); 

Landvikvannet (August 2018, N=30) and 

Inner Grosfjord (August 2018, N=17) in 

Grimstad, Littledalsvatnet (July 2019, 

N=45) and Etnefjord (July 2019, N=31) 

in Etne, the river Botngårdelva in Bjugn 

(August 2019, N=30), the Edøyfjord in 

the vicinity of the island Smøla 

(November 2019, N=30) and a couple of 

lakes in the Orkla river drainage system 

(September 2018, N=3). Hereafter the 

localities will be referred to by place 

name and habitat (Grimstad FW, 

Grimstad SW, Etne FW, Etne SW, Bjugn 

FW, Smøla SW, and Orkla FW).  

The captured eels were killed using an 

overdose of anaesthetics 

(Eugenol/MS222) or with electricity. All 

fish from Etne FW and Etne SW were 

measured (mm), weighed (g) and taken samples from at the locality before they were put into 

individual plastic bags and frozen (-20 °C). Just after terminal anaesthesia, a gill (1st left) was 

removed from all the Etne eels. A squash preparation was examined in a compound 

microscope (100-400x) for protists, myxosporeans and monogeneans. Gill samples from all 

Etne eels were preserved in ethanol (suitable for DNA extraction) or fixed in a modified 

Karnovsky fixative (phosphate buffered; Steigen et al. (2015)) for histology. Muscle and liver 

tissue samples together with both eyes were taken from the Etne eels for fatty acid analysis 

which were carried out by Camilla Parzanini (Ryerson University, Canada), for another part 

Figure 2 European eel sampling localities 
along the Norwegian coast (58.3°-63.8°N). 
Yellow marker=seawater localities, red 
marker= freshwater localities 
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of the MAREEL project (funded by the Norwegian Research Council NFR project# 280658 

and the Institute of Marine Research). Fish from Bjugn FW and Smøla SW were put straight 

into individual plastic bags before they were frozen (-18 °C). The eels from Grimstad FW and 

Grimstad SW were received deep-frozen in blocks and were separated into individual plastic 

bags after minimal defrosting in the lab, before being re-frozen until examination. Sediments 

from the water used for defrosting were examined for any detached ectoparasites (e.g. Argulus 

spp., leeches).  

 

Table 2 Overview of total length and weight of the examined eels.  Min=Minimum, 
Max=Maximum, SD=Standard deviation 

Locality n 
Length(mm)   Weight (g) 

Mean  SD Min Max   Mean  SD Min Max 

Grimstad FW 30 531 67 400 647  255 90 124 423 

Grimstad SW 17 527 65 420 647  237 110 117 520 

Etne FW 45 518 102 370 840  257 201 78 1150 

Etne SW 31 497 107 380 512  239 114 80 512 

Bjugn FW 30 334 59 204 452  68 30 14 137 

Smøla SW 30 527 72 405 704  326 153 140 712 

Orkla FW 3 726 323 357 960   1093 913 98 1891 

 

2.2 Localities 

2.2.1 Landvikvannet (‘Grimstad FW’) 

Landvikvannet (58.332997°N, 8.518651°E) is located on the Norwegian Skagerrak coast (Fig. 

3). It is a 1.85 km2 lake that is artificially connected via a 3 km long, 1-4 m deep canal to the 

adjacent fjord, the Strand fjord. Apart from a small 25 m deep basin located at the entrance of 

the lake, the depth is between 7-10 m. Streams around Landvikvannet add fresh water into the 
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lake, and there is an inflow of saltwater during the tidal cycle, resulting in a stratified water 

column with a transition depth at 4 m. The upper layer has low salinity, and oxygen content 

above 5 ml/l as opposed to the lower layer that has moderate salinity (> 20 ‰), low and 

constant temperature (~8°C), and is anoxic and toxic due to hydrogensulphide (Eggers et al. 

2014, Berg 2018).  

Landvikvannet hosts several different fish species, both marine, and freshwater. The dominant 

species is rudd (Scardinius erythrophthalmus). Other species are brown/sea trout (Salmo 

trutta), herring (Clupea harengus), sprat (Sprattus sprattus) and eel (Anguilla anguilla) (Berg 

2018). There are also sticklebacks (Gasterosteus aculeatus, Pungitius pungitius) inhabiting 

the water (Haraldstad et al. 2013).  

The eels were caught using fyke nets at 3-8 m depth. 

 

Figure 3 Sampling localities in the Grimstad area, Landvikvannet (red marker) and the Inner 
Grosfjord (yellow marker). (Obtained from Kommunekart.no) 

2.2.2 The Inner Grosfjord (‘Grimstad SW’) 

Inner Grosfjord (58.3334°N, 8.6074°E) is located on the Norwegian Skagerrak coast, in 

Agder county (Fig. 3). The water in the fjord is polyhaline (16-30 ‰) and low on oxygen 

(Vann-nett.no). The eels were caught using fyke nets at 3-8 m depth.  
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2.2.3 Litledalsvatnet (‘Etne FW’) 

Litledalsvatnet, a 0.949 km2 freshwater lake, is located on the Norwegian west-coast in the 

municipality Etne (Fig. 4). The lake hosts several different species, brown trout, Arctic charr 

(Salvelinus alpinus), threespine sticlebacks (Gasterosteus aculeatus) and European eel. The 

lake is connected with the Etnefjord by the river Etneelva. The eels were caught using fyke 

nets placed at 0.4-1.5 m depth that had been in the water for two-three days. To kill the fish, 

they were put in a barrel and given an overdose of anaesthesia (Eugenol).  

 

Figure 4 Freshwater sampling locality in Etne, Litledalsvatnet (red). (Obtained from 
Kommunekart.no) 

2.2.4 The Etnefjord (‘Etne SW’) 

The Etnefjord (8.3 km long), an arm of the fjords Ølsfjord and Hardangerfjord, is located on 

the border between Vestland and Rogaland counties in Norway. The fjord is 8.3 km long and 

divides into two branches, with Osvågen that branches off into the southeast and the Etnefjord 

continuing northeast to Etne. The Etnefjord is categorised as euhalin (> 30 ‰) (Vann-nett.no). 

The eels representing Etne SW were caught in two areas of the fjord, A and B (Fig. 5). Area 

A is between the river mouth of the river Etneelva and Fjørsnaneset (59.67446°N, 

5.92127°E). The fyke nets and eel pots were placed at 1-2 m depth with sandy bottom, 

seaweed and eelgrass. Area B contains the bay within Melandsholmen (59.64372°N, 

5.88671°E). The fyke nets and here eel pots were here placed on a sandy bottom with 

eelgrass. The fish traps were in the water for two-three days.  



 
 

14 

 

2.2.5 The river Botngårdelva (‘Bjugn’) 

The river Botngårdselva is located in Bjugn municipality in Trøndelag county (Fig. 6). The 

river is a part of the Botngård drainage system and connects it with the Bjugn fjord. The Fish 

fauna in The Botngård drainage area is dominated by salmonid fish species, but eel and 

introduced pike are also present (Bergan 2016). The fish were caught with electrofishing 100-

200 m from the river mouth.  

Figure 5 Marine sampling localities in Etnefjorden, Areas A and B (black shaded). (Obtained from 
Kommunekart.no) 
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Figure 6 Sampling locality in the river Botngårdelva (red) in Bjugn municipality. (Obtained 
from Kommunekart.no) 

2.2.6 Smøla (‘Smøla’) 

The eels from the ‘Smøla’ sample were caught in three areas in Edøyfjoden near Smøla in 

Trøndelag county. Sampling was done during a survey for Atlantic cod juveniles at Smøla 

and Aure (by Terje van der Meeren, IMR). The localities were in the area around Lauvøysvaet 

(63.31244°N, 8.16862°E), Åkvika (63.33444°N, 8.43911°E) and Araneset (63.26796°N, 

8.32712°E) (Fig. 7). All these areas are categorised as Euhaline (> 30 ‰) (Vann-nett.no). The 

eels were caught using fyke nets at 2-8 m depth over a time period of three weeks. The fyke 

nets were checked every second day and the captured eels were kept in nets in the sea until 

they were killed with an overdose of anaesthesia (MS222), put in individual plastic bags and 

deep-frozen.   
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Figure 7 Sampling localities in the area near the island Smøla, Lauvøysvaet (A), Åkvika (B) 
and Araneset (C). (Obtained from Kommunekart.no) 

2.2.7 Orkla River drainage area (‘Orkla’) 

The three eels from two small lakes (Ålvatnet (63.29940°N, 9.78992°E), Brandåstjønna 

(63.24553°N, 9.65813°E)) connected to the river Sika and the river Skjenaldselva in the Orkla 

River drainage system (Fig. 8), were killed during a rotenone treatment performed there in 

September 2018, in 

order to eradicate 

the introduced pike 

(Esox lucius) 

(Bardal et al. 2019). 

These eels were 

included in the study 

only to extend the 

knowledge on the 

geographic range of 

the eel parasites in 

Norway, and did not 

constitute a sample 

equal to the others.  

 

 

Figure 8 Sampling localities in the Orkla River drainage system, 
Brandåstjønna (A) and Ålvatnet (B). 
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2.3 Dissection and parasite examination  

A total of 171 eels caught at the seven different localities were dissected and examined for 

parasites. The general examination included the external surface of the fish, fins, gills, eyes 

and all internal organs. However, since the eyes of all eels from Etne were used in fatty acid 

analysis, 15 additional freshwater-caught eels from Etne were examined solely for eye 

parasites. The dissections took place at the parasitology laboratory at The University of 

Bergen (UiB).  

The eels were thawed in cold water, usually for c. 30 minutes. The total length and weight 

were then recorded. In accordance with Durif et al. (2009a), eye diameter, and pectoral fin 

length were also registered, providing a staging for the eels. During the dissection, the sex of 

the fish was determined by gonad inspection (Tesch 2003). Any prey present in the stomach 

was recorded, and during the examination of the head (below) the otoliths were taken out. 

These were sent to The Institute of Marine research (IMR) for microchemical analyses.  

The external surfaces were then examined for abnormalities such as lesions. The plastic bag 

was also examined for potentially detached ectoparasites. During the external examination, 

the eels were examined for skin and fin cysts or black spots due to endoparasites such as 

myxosporea or trematode metacercariae. The head was then separated from the body and 

placed in a glass Petri dish with seawater diluted to about physiological salinity (~10 ‰, 

henceforth referred to as ‘saline’) and stored cold (see below), because the digestive tract was 

necessarily examined first.  

The abdomen was cut open from the pericardial cavity to the anus with the use of scissors.  

All internal organs: heart, liver, gallbladder, spleen, alimentary tract and swim bladder, were 

removed and placed in separate glass Petri dishes with saline. A urine sample was taken from 

the urinary bladder and examined microscopically for spores. Gall from the gallbladder was 

transferred to a 1.5 ml plastic microtube for spore sedimentation of any spores present and 

later examined microscopically. A squash preparation was made with a piece from the 

posterior part of the kidney and examined in the microscope for plasmodia and spores (e.g. 

myxosporea). Occasionally white spots were observed in the kidney, that were also examined 

further. All these wet and squash preparations (urine, gall, and kidney) were examined in a 

compound microscope (Olympus cx 41) at 100x, 400x and 1000x magnification for spore 

producing protists or myxosporea. The other organs were examined macroscopically 

externally, and any parasites seen were removed, before the organs were flattened between to 
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glass Petri dishes and candled using a dissecting microscope (Wild Herrbrugg) with under 

lights. 

The alimentary tract was divided into the esophagus/stomach and intestine, with the intestine 

being further split into an anterior, a posterior and an anal part. The parts were split 

longitudinally and any prey or big parasites were removed and placed in separate containers. 

The mucosa was then scraped out with a scalpel and candled, before the wall of the gut was 

examined in the same way. A small selection of fish from each freshwater locality were 

examined for the coccidian Epieimeria anguillae (Léger et Hollande, 1922), by microscopy 

on squash preparations from the epithelium from the anterior intestine for oocysts and 

sporocysts. The swimbladder was examined macroscopically for the presence of Anguillicola 

crassus in the lumen. The heart, liver, spleen, gonad and the rest of the swimbladder was then 

squashed between two Petri dishes and candled for parasites. Finally, the visceral cavity was 

inspected. 

From the head-part of the body, the eyes were cut out and placed in saline. They were 

examined in the dissecting microscope by opening the eye and examining the lens, vitreous 

humour and retina. The gills were taken out and examined separately for helminth parasites 

such as monogeneans and nematodes (e.g. Pseudodactylogyrus spp. and Daniconema 

anguillae Moravec et Køie 1987) using a dissecting microscope. To examine the gills for 

myxosporeans, about 20 filaments were cut off from the first gill on the left side and 

examined in the microscope (100-400x). As a measurement of intensity, the proportion of 

infected filaments was estimated. When the occurrence of the tissue nematode Daniconema 

anguillae was discovered in the gills, and large numbers of larvae subsequently seen in the 

pectoral fin, a density estimate was taken. In the pectoral fin, the typical number of visible 

nematodes in a field of view with 40x magnification (18.85 mm2) was registered.  

All the parasites found were, as a standard, counted, roughly measured, washed and examined 

more closely in the microscope, and identified if possible. Digital photos were taken for 

documentation, and as an aid in identification. The gender and maturity were determined and 

registered on certain parasites. Maturity of platyhelminths was determined on the basis of 

whether or not the specimen contained eggs (were oviferous), with egg containing specimens 

registered as mature. Pictures were taken of all parasite types and most individuals, but not of 

all individual of common types. The myxosporean parasites were registered as present and 

with the number of plasmodia containing spores if possible. Helminth parasites and tissue 
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samples containing microparasites (e.g. urinary bladder and intestinal wall) were preserved in 

ethanol (96-100 %).  

Also, small pieces of the stomach wall, posterior kidney, and lamellae from the first left gill 

were taken and stored in ethanol as a standard, allowing for PCR analyses later.  

2.4 Extraction and purification of nucleic acids 

To extract and purify nucleic acids from tissue samples and parasites the E.Z.N.A.Ò Tissue 

DNA Kit (Omega Bio-Tek) was used. The sample was removed from ethanol and dried using 

a heating block (55°C). Then 200 µl of digestion buffer (TL) and 25µl of proteinase K 

solution were added. This was mixed, spun down and incubated at 55°C overnight, except for 

the platyhelminth parasites that were incubated for only two hours. After the proteinase K 

treatment, the sample was centrifuged (13,000 x g; 5 min). The supernatant was then 

transferred to a sterile 1.5 ml micro-tube and 220 µl of BL Buffer was added. The sample was 

mixed and incubated at 70°C for 10 minutes. Then, the sample was spun down and 220 µl of 

absolute ethanol was added to the sample and mixed by pipetting up and down. The entire 

sample was then transferred into a HiBind DNA Mini Column with a collection tube. To bind 

the DNA, the sample was centrifuged (10,000 x g; 1 min). The HiBind DNA Mini Column 

was then placed in a new collection tube and 500 µl of the first wash buffer (HB/HBC) 

(diluted with isopropanol) was added to the column. The sample was centrifuged (10,000 x g; 

30 sec). The HiBind DNA Mini Column was then placed in a new collection tube and 700 µl 

of DNA Wash Buffer (diluted with absolute ethanol) was added and the sample was 

centrifuged (10,000 x g; 30 sec). This step was then repeated for a second DNA Wash Buffer 

step. The empty HiBind DNA Mini Column was then centrifuged at maximum speed for two 

minutes to remove traces of ethanol. To elute the DNA from the column the HiBind DNA 

Mini Column was placed in a sterile microtube and 50-200 µl of preheated (70°C) Elution 

Buffer was added. After about two minutes, the sample was centrifuged (13,000 x g; 1 min). 

The isolated DNA was eluted from the column with the Elution Buffer.   

The concentration (ng/µl) of DNA in the samples was measured using a UV 

spectrophotometer (NanodropÒ ND-1000). The instrument baseline was set using the Elution 

Buffer. The DNA  was stored at -30°C.  
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2.5 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is a method used to amplify a specific DNA region in vitro. 

In this study, PCR was performed on DNA from a selection of parasites, in order to identify 

them, verify identity or provide reference sequences. The target gene amplified varied with 

parasite groups, Small Sub-Unit RNA gene (SSU rDNA or 18S), Large Sub-Unit RNA gene 

(LSU rDNA or 28S) and the internal transcribed spacer DNA region (ITS1-5.8s-ITS2) were 

used.  

PCR requires a thermostable DNA polymerase enzyme, template DNA, primers and 

nucleotides in a suitable buffer. A mastermix containing 10 µl GoTaqÒG2 Colorless Master 

Mix (GoTaqÒG2 DNA Polymerase, dNTPs, MgCl2, reaction buffers), 500 µM forward and 

500 µM reverse primer and 7 µl nuclease-free water per sample was prepared (Table 3). 19 µl 

of the mastermix together with 1µl of the isolated DNA was added to sterile 0.2 ml PCR-

tubes. Primers used are listed in Table 4.  

Table 3 PCR set up - mastermix 

Reagent Volume (µl) for 1 rxn Final concentration 

GoTaqÒG2 Colorless Master Mix 10 X 1 

Forward primer 1 500 µM 

Reverse primer 1 500 µM 

DNA template 1 Variable 

Nuclease-free water 7 - 

Total reaction volume 20  

 

The samples were put in a thermocycler (VeritiÔ 96-Well Thermal Cycler-Applied 

Biosystems) for the PCR. The following thermo profile was used: two minutes of denaturation 

at 95°C, followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55 or 

56°C for 30 seconds and one minute of extension at 72°C. At the end, there was a final 

extension for five minutes at 72°C (Fig. 9). The temperature used in the annealing step of the 

PCR depended on the Tm for the primers used.  



 
 
21 

 

Figure 9  Illustration of the PCR thermoprofile. Stage 1: Two minutes of denaturation at 
95°C. Stage 2: 30 cycles of denaturation at 95°C for 30 seconds, annealing at 55 or 56°C for 
30 seconds and one minute of extension at 72°C. Stage 3: Final extension for 30 seconds.  

 

Table 4 Primers used in the PCRs in order to amplify various types of rDNA of some 
parasites.  

Primer name Primer sequence (5'-3') Target DNA Target parasite Ref. 

Myxgp2F WTGGATAACCGTGGGAAA 18S Myxosporea Kent et al. 
(1998) 

Ech-R1 CATGCACCACCATACACCG 18S Myxosporea, Paramyxidium EK 

Ech-R3 CGGGATAAGCCTGACAGATCA 18S Myxosporea, Paramyxidium EK 

MyEel-R1-RW AACCGCTCCTCTTAATCATCA 18S Myxosporea, Myxobolus EK 

MyEel-R2-RW ACACGATTGTTCGTTCCATG 18S Myxosporea, Myxobolus EK 

MyxospecF TTCTGCCCTATCAACTWGTTG 18S Myxosporea general Fiala 
(2006) 

ZEel-R3 GCACATTGTATAGCTTGCAC 18S Myxosporea, Zschokkella EK 

Py28S F1 ATAGCCCAGCACCGAAGC 28S Cestoda EK 

Ces28S R1 CTCTGGCTTCAACCTACG 28S Cestoda EK 

L300F CAAGTACCGTGAGGGAAAGTTG 28S Trematoda 
Littlewood 

et al. 
(2000) 

28SR3 TCTGGCTTCAACCTACGCAAG 28S Trematoda EK 

NC5F GTAGGTGAACCTGCGGAAGGATCATT ITS Nematoda (Zhu et al. 
1998) 

ANIR1 CAGTGRYCGATGGATTCA ITS Nematoda EK 
18S – Small Sub-Unit RNA gene (SSU rDNA), 28S – Large Sub-Unit RNA gene (LSU rDNA), ITS – internal 

transcribed spacer DNA region (ITS1-5.8s-ITS2), EK – Egil Karlsbakk (unpublished). 
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Positive controls were included in the PCR analyses when possible (Table 5). These had been 

fixed fresh, so DNA quality should be good. This was done to account for potential poor 

DNA quality in the frozen and thawed parasites.  

 

Table 5 Positive controls used in some of the PCR analyses.  

Agens 
 

Host Locality Date 

Myxobolus species 
   

 
Myxobolus neurobius Salmo trutta Byglandsfjord, Agder 11.12.13 

Bothriocephalidean cestode 
   

 
Dibothriocephalus ditremus Gasterosteus aculeatus Lake Gjønavatn, Hordaland 21.08.05 

Tetraphyllidean cestode 
   

 
Trilocularia gracilis Phrynorhombus norvegicus Raunefjord, Hordaland 20.10.03 

Trematoda 
    

 
Steringophorus furciger Platichthys flesus Lyngen, Troms 20.05.03 

Nematoda 
    

  Contracaecum sp. Phalacrocorax carbo Masfjord  07.05.98 

 

2.6 Gel electrophoresis 

Gel electrophoresis was used visualize that the DNA template in the PCR was detected by the 

primers. A 1 % agarose gel dissolved in 1X TAE-Buffer with 1 µl GelredÔ  was used. The gel 

was submerged in 1X TAE-buffer and the wells were loaded with 5 µl PCR product mixed 

with 1 µl loading dye. 3 µl Quick-loadÒ purple 2-log DNA ladder (New England Biolabs) was 

applied to at least one well to estimate the molecular weight of the PCR products. The gel was 

connected to a power source (80V) for 60 minutes. The bands on the gel were visualized 

using UV-light (Gel Logic 212PRO, Fisher Scientific) and the program Carestream MI.  

All controls collected and provided by Egil Karlsbakk.  
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2.7 Sequencing and Analyses 

PCR-products with proven content of DNA, seen as bands on the gel, were purified using 

ExoSAP-ITÒ before sequencing. A mix of 1 µl of ExoSAP-ITÒ and 2.5 µl of PCR-product 

was placed in the thermocycler and the standard “Exosap” program was run, 37°C for 15 

minutes, then 80°C for 15 minutes. Primers and nucleotides left from the PCR were broken 

down in this process. The treated samples were used as the template in the sequencing 

reaction. Template (1 µl) was added to two PCR-tubes together with 1 µl BigDyeÒ (version 

3.1), 1 µl sequencing buffer and 6.5 µl nuclease-free water. Then 0.5 µl of forward primer 

was added to one of the PCR-tubes and 0.5 µl reverse primer to the other. The cycle 

sequencing was performed using the following thermoprofile: denaturation at 96°C for 5 

minutes, then 25 cycles of denaturation at 96°C for 10 seconds, annealing at 50°C for 5 

seconds and extension at 60°C for 4 minutes. Afterwards, 10µl of nuclease-free water was 

added to the samples and they were delivered to the sequencing laboratory at UiB for 

processing. Contigs were assembled using Contig Express, part of the Vector NTI (v 9.0) 

suite. Sequence searches were done with BLAST (Basic Local Alignment Search Tool) in 

NCBI (National Center for Biotechnology Information) to find similar sequences that could 

aid identifying the parasites.   

2.8 Histology 

Histology was used to clarify the exact location of infection foci with the myxosporean 

Myxobolus sp. within the intestinal wall. Tissue samples containing the parasite were taken 

from the defrosted eels during dissection, and fixed in buffered formalin (10%). The gut 

pieces were processed at the histology lab at IMR, where they were and embedded in paraffin 

wax, and sectioned following standard protocol (Bøgwald 2019). The sections were 

hematoxylin-erythrosin-saffron (HES) stained.  

2.9 Fatty acid analysis 

Fatty acids (FA) were extracted by Camilla Parzanini (Ryserson University) following a 

modified Folch method (Folch et al. 1957) in a chloroform:methanol (2:1) solution, and 

analysed as methyl esters (FAME) using gas chromatography (GC). Finally, following the 
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formula provided by Parzanini et al. (Accepted), the marine to freshwater ratio (M/F) was 

calculated for the identification of M vs F eel.  

 M/F = (20:1n-9 + 22:1n-11 + 20:5n-3 + 22:6n-3) / (18:2n-6 + 18:3n-3 + 20:4n-6) 

Elements of the numerator are FA that are typically found in high proportions in marine 

fishes, such as eicosenoic (20:1n-9), cetoleic (22:1n-11), eicosapentaenoic (20:5n-3), and 

docosaexahenoic (22:6n-3) acids. Conversely, the FA included in the denominator, i.e. 

linoleic (18:2n-6), linolenic (18:3n-3), and arachidonic (20:4n-6) acids, are generally 

abundant freshwater fishes (Parzanini et al. Accepted).  

Based on the M/F ratio, the eels were categorized into groups with either freshwater (FW), 

brackish water (BW), intermediate (SW/BW) or seawater signatures (SW).   

2.10 Otolith microchemistry analyses  

The otolith microchemistry analyses were carried out by Mehis Rohtla (IMR). The sagittal 

otoliths were prepared in transversal plane until the core was exposed. For trace element 

analysis, continuous core-to-edge transects were traced using Cetac LSX213 laser coupled 

with Agilent 8,800× ICPMS. The laser was set to 10 Hz, with a 40 µm ablation spot size, and 

a scan speed of 5 µm/s. Data were handled following the methods of Miller (2007) as 

described in Rohtla et al. (2014). Briefly, raw counts were converted to element-to-calcium 

molar ratios using the NIST-612 standard that was analysed before and after every 10 

otoliths. The eels were categorised as either freshwater residents (FWR), marine water 

residents (MWR) or inter-habitat shifters (IHS).  

2.11 Statistics and diversity indices 

The relationship between eel size (length) and parasite (helminth) abundance was examined 

using Spearman’s Rank correlation coefficients (rs). Generally, only significant results from 

meaningful analyses (prevalence >~10 %) are reported.  
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3 Results 

3.1 Parasites detected 

The 171 female eels (N (FW)=93, N (SW)=78) from seven different salinity habitats along 

the Norwegian coast (58.3 °N- 63.8 °N) were in all infected with 34 different parasite species 

(Table 6), 11 found only in freshwater, 15 only in seawater and eight in eels from both 

habitats. The parasites represented one coccidian, six myxosporeans, one monogenean, nine 

trematodes, five cestodes, one acanthocephalan and eleven nematode species. 

3.1.1 Protists        

Epieimeria anguillae (Léger et Hollande, 1922)  

Coccidian oocysts and sporocysts were observed during microscopy on mucus from the 

intestine of two eels from Grimstad FW (Table 6). A few fish from the other localities 

examined were negative, but coccidia was not targeted in this study.  

The coccidian was identified with Epierimeria anguillae according to the descriptions 

provided by Léger and Hollande (1922) and Lacey and Williams (1983). Oocysts (Fig. 

10A,B) measured 10.8-12.1 (mean 11.4) µm in diameter (N=14), while the sporocysts (Fig. 

10C) were 8.1-8.9 (8.5) µm long and 4.5-5.1 (4.8) µm thick (N=15). The sporocysts were oval 

according to the side view but hexagonal in transverse section.  

 

Figure 10 Epieimeria anguillae from freshwater-caught eel, Grimstad. All to same scale. A, 
B oocyst with visible sporocysts, C four sporocysts. 
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Table 6 Overview over the parasite species recorded in European eels caught in Norwegian waters dissected in the present study.  
 
Locality: Grimstad FW Grimstad SW Etne FW Etne SW Bjugn FW Smøla SW 

No. examined: 30b 17c 30 (+15)d 31 30 30 
Length range (mm): 400-647 420-647 370-840 380-512 204-452 405-704 
Weight range (g): 124-423 117-520 78-1150 80-512 14-137 140-712 
Parasite species:    Abundance Int.     Abundance Int.     Abundance Int.       Abundance Int.       Abundance Int.       Abundance Int.   

N 
inf 

P 
(%) 

Mean  SD Max   N 
inf 

P 
(%) 

Mean  SD Max   N 
inf 

P 
(%) 

Mean  SD Max   N 
inf 

P 
(%) 

Mean  SD Max   N 
inf 

P 
(%) 

Mean  SD Max   N 
inf 

P 
(%) 

Mean  SD Max   

Protistes 
                                      

  
Epieimeria anguillae a 

 
 + 

           
- 

           
- 

          

Myxosporea 
                                    

  
Paramyxidium branchialis 11 37 

    
7 41 

    
11 37 

    
11 35 

    
2 7 

    
9 30 

   
 

  
Paramyxidium magi 0 0 

    
0 0 

    
0 0 

    
0 0 

    
0 0 

    
1 3 

   
 

  
Paramyxidium giardi  1 4 

    
0 0 

    
10 33 

    
1 3 

    
11 37 

    
0 0 

   
 

  
Hoferellus gilsoni  1 4 

    
0 0 

    
5 17 

    
0 0 

    
20 67 

    
0 0 

   
 

  
Zschokkella stettinensis  0 0 

    
0 0 

    
10 33 

    
0 0 

    
21 70 

    
0 0 

   
 

  
Myxobolus sp. 9 30 

    
0 0 

    
6 20 

    
3 10 

    
4 13 

    
0 0 

   
 

Platyhelminthes 
                                   

 
 

Monogenea 
                                   

 
  

Pseudodactylogyrus anguillae 24 80 13.8 19.4 90 
 

0 0 0 
   

0 0 0 
   

0 0 0 
   

0 0 0 
   

0 0 0 
  

 
 

Trematoda 
                                   

 
  

Deropristis inflata 0 0 0 
   

7 41 2.6 4.6 15 
 

0 0 0 
   

18 58 8.5 13 49 
 

0 0 0 
   

12 40 5.8 17.3 84  
  

Podocotyle atomon 0 0 0 
   

0 0 0 
   

0 0 0 
   

6 19 3.1 11.9 65 
 

2 7 0.3 1.2 5 
 

0 0 0 
  

 
  

Helicometra fasciata 0 0 0 
   

5 29 2.2 4.7 16 
 

0 0 0 
   

0 0 0 
   

0 0 0 
   

0 0 0 
  

 
  

Hemiurus communis 0 0 0 
   

0 0 0 
   

0 0 0 
   

22 71 69.0 77.8 255 
 

0 0 0 
   

29 97 35.6 54.9 248  
  

Brachyphallus crenatus 0 0 0 
   

0 0 0 
   

0 0 0 
   

1 3 0.03 0.2 1 
 

0 0 0 
   

0 0 0 
  

 
  

Lecithochirium rufoviride 0 0 0 
   

13 76 21.2 29.9 83 
 

0 0 0 
   

0 0 0 
   

0 0 0 
   

27 90 31.3 36.1 152  
  

Derogenes varicus 0 0 0 
   

0 0 0 
   

0 0 0 
   

1 3 0.03 0.2 1 
 

0 0 0 
   

7 23 0,5 1.2 5  
  

Lecithaster gibbosus 0 0 0 
   

0 0 0 
   

0 0 0 
   

2 6 0.1 0.4 2 
 

0 0 0 
   

1 3 0.03 0.2 1  
  

Diplostomum sp. (M) 0 0 0 
   

0 0 0 
   

1 7 0.13 
 

2 
       

0 0 0 
   

0 0 0 
  

 
 

Cestoda 
                                   

 
  

Scolex pleuronectis (P) 0 0 0 
   

0 0 0 
   

0 0 0 
   

0 0 0 
   

0 0 0 
   

2 7 0.07 0.25 1  
  

Proteocephalus macrocephalus 0 0 0 
   

0 0 0 
   

1 3 0.03 0.2 1 
 

2 6 0.2 0.9 4 
 

0 0 0 
   

0 0 0 
  

 
  

Bothriocephalus claviceps 0 0 0 
   

0 0 0 
   

6 20 0.4 1 4 
 

0 0 0 
   

1 3 0.03 0.2 1 
 

0 0 0 
  

 
  

Dibothriocephalus ditremus (P) 0 0 0 
   

0 0 0 
   

2 7 0.2 0.9 5 
 

0 0 0 
   

0 0 0 
   

0 0 0 
  

 
  

Bothriocephalidea gen. sp. (P) 0 0 0 
   

0 0 0 
   

0 0 0 
   

4 13 2.5 7 27 
 

0 0 0 
   

0 0 0 
  

 

Acanthocephala 
                                   

 
  

Echinorhynchus gadi 0 0 0 
   

0 0 0 
   

0 0 0 
   

3 10 1.5 
 

40 
 

0 0 0 
   

2 7 0.1 0.4 2  
Nematoda 

                                   
 

  
Pseudocapillaria tomentosa 1 3 0.03 0.18 1 

 
0 0 0 

   
0 0 0 

   
0 0 0 

   
0 0 0 

   
0 0 0 

  
 

  
Eustrongylides sp. (L) 0 0 0 

   
0 0 0 

   
8 27 0.4 0.8 2 

 
0 0 0 

   
3 10 0.2 0.5 2 

 
0 0 0 

  
 

  
Daniconema anguillae (L)  8 40 

    
0 0 

    
1 3 

    
0 0 

    
0 0 

    
0 0 

   
 

  
Paraquimperia tenerrima 0 0 0 

   
0 0 0 

   
22 73 5.5 7.7 35 

 
0 0 0 

   
5 17 0.3 0.8 3 

 
0 0 0 

  
 

  
Paracuaria adunca (L) 0 0 0 

   
0 0 0 

   
0 0 0 

   
3 10 4.6 18 91 

 
0 0 0 

   
0 0 0 

  
 

  
Cucullanellus minutus 0 0 0 

   
0 0 0 

   
0 0 0 

   
1 3 0.03 0.2 1 

 
0 0 0 

   
0 0 0 

  
 

  
Hysterothylacium aduncum 0 0 0 

   
0 0 0 

   
0 0 0 

   
5 16 0.2 0.4 1 

 
0 0 0 

   
11 37 1.3 2.7 13  

  
Anisakis simplex (L) 2 7 0.07 0.25 1 

 
0 0 0 

   
0 0 0 

   
0 0 0 

   
0 0 0 

   
2 7 0.1 0.4 2  

  
Contracaecum spp. (L) 11 37 2.6 7.51 39 

 
4 24 0.5 1.1 4 

 
2 7 0.07 0.3 1 

 
8 26 2.0 5.2 23 

 
0 0 0 

   
1 3 1.7 9.1 50  

    Anguillicola crassus  23 77 2.0 2.25 10   1 6 0.1 0.5 2   0 0 0       0 0 0       0 0 0       0 0 0      

M – metacercariae, P – plerocercoids, L – larvae, N inf – number infected, P – prevalence (%), SD – standard deviation, Int – intensity. a Not systematically screened for, b N=24 examined for P. giardi, N=26 examined for H. gilsoni and Z. 

stettinensis, N=20 examined for D. anguillae, c N=7 examined for D. anguillae, d 15 additional eels were only examined for the presence of Diplostomum sp.   
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3.1.2 Myxosporea 

Paramyxidium branchialis Freeman et Kristmundsson, 2018 

Infections with this myxosporean were detected microscopically in eels from all localities 

except those from the Orkla area (Table 6). Plasmodia with spores were round to oval, and 

measured 38-173 x 34-115 µm (N=20) (Fig. 11A,B). Spores (Fig. 11D,E) (N=20) measured 

10.7 (9.7-12.0) µm in length and 6.5 (5.7-7.1) µm in width, with polar capsules 3.7 (3.4-4.3) 

µm long and 3.4 (3.1-4.0) µm in diameter and polar filaments in 5-6 coils.  

Across samples, the prevalence of P. branchialis in freshwater-caught eels was 26 %, while 

35 % of the saltwater-caught eels were infected. Overall prevalence was 30 %. There were up 

to 0.87 plasmodia per primary lamella, but average density was 0.15 lamella-1. Two partial 

SSU rDNA sequences (Orkla and Etne SW) had >99 % similarity (1242 nt compared) with 

the P. branchiale sequence in the GenBank (MH414926). 

 

Figure 11 Paramyxidium branchialis infections. A Plasmodium observed as dark spots in gill 
lamella from freshwater-caught eel, Grimstad, B Plasmodium in gill lamella from freshwater-
caught eel, Bjugn, C Plasmodium with visible spores from a fresh squash preparation from 
freshwater-caught eel, Etne, D Plasmodium with visible spores from a seawater-caught eel, 
Smøla. 
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Paramyxidium magi Freeman et Kristmundsson, 2018 

Only one seawater-caught eel from the Smøla area had a P. magi infection (Table 6). The 

parasite formed polysporous plasmodia (reaching 200-300 µm in diameter) in the submucosa 

of the stomach wall. Mature spores (N=21) measured 9.0 (8.4-9.5) µm in length and 5.8 (5.6-

6.1) µm in width (Fig. 12). The polar capsule diameter was 2.9 (2.5-3.2) µm. P. magi was also 

detected on the basis of sequences (490-560 nt) obtained from kidney samples, in an eel from 

Grimstad and one from the Orkla area. Identification was based on SSU rDNA sequence 

identity (99-100 %), in comparison with P. magi in GenBank (MH414922). 

 

Figure 12 Paramyxidium cf. magi spores from a plasmodium in the stomach wall of a 
seawater-caught eel, Smøla.   
 

Paramyxidium giardi (Cépède, 1906) 

Infections with this myxosporean were seen in the kidneys of freshwater eels from Grimstad, 

Etne and Bjugn, and in a single seawater-caught eel from Etne (Table 6). The intact large 

plasmodia were occasionally seen macroscopically as white spots (0.9-1.4 mm) on the 

kidneys (Fig. 13A), throughout the posterior half. Spores (Fig. 13B) were observed as 

aggregates (destroyed plasmodia) in squash preparations of kidney tissue or free. They 

measured (N=26) 10.7 (9.9-12.2) µm in length and 5.8 (5.3-6.7) µm in width, with polar 
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capsules 3.7 (2.9-4.4) µm long and 3.3 (2.8-3.6) µm in diameter and polar filaments in 5-7 

coils. 

Overall, the prevalence was 25 % in freshwater-caught eels and 1 % in the saltwater caught, 

13 % overall. The parasite was molecularly identified from two infected eels (Grimstad SW, 

Etne SW), the SSU rDNA sequence obtained showed 100 % identity (>1240 bp compared) 

with P. giardi in GenBank (MH414925).  

 

Figure 13 Paramyxidium giardi in the kidneys of a freshwater-caught eel, Etne. A Intact large 
plasmodium seen as a white spot on the kidneys, B P. giardi spores from the plasmodium on 
picture A.  

 

Hoferellus gilsoni (Debaiseux, 1925)  

This parasite was found infecting urinary bladders in fish from Grimstad FW, Etne FW and 

Bjugn FW. Both free spores and plasmodia were observed. About 29 % of all the examined 

freshwater eels were infected, with an infection rate of 4 % in Grimstad FW as the lowest and 

67 % as the highest in Bjugn FW (Table 6). None of the saltwater caught eels were infected. 

The myxosporean was identified with Hoferellus gilsoni (syn. Sphaerospora anguillae) 

following the description by Wierzbicka (1986) and Lom et al. (1986). Spores developed in 

diasporic pansporoblasts, in round to elongated polysporic plasmodia (Fig.14A,B) measuring 

from 29 µm in diameter to 81 µm in length and 45 µm in width. The spores (Fig.14C,D) 

measured 6.5 (6.1-7.1) µm in length and x 6.2 (5.8-7.1) µm in width, with polar capsules 

measuring 3.7 (3.0-4.4) µm in length and 2.2 (1.7-2.7) µm in diameter (N=25 spores; 5 eels). 
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A reference H. gilsoni sequence (1210 nt) was obtained from a kidney sample from a Bjugn 

eel. Identity with the H. gilsoni sequence in GenBank (AJ582062; Scottish eel) was 99.8%.  

 

Figure 14 Hoferellus gilsoni observed in the urine from freshwater-caught eel. A Plasmodium 
with four H. gilsoni spores, B Plasmodium with several spores, C Two spores sticking 
together with their posterior parts, D Two spores sticking together with their posterior parts 
  

Zschokkella stettinensis Wierzbicka, 1987 

A myxosporean morphologically similar to Zschokkella stettinensis described from eel in 

Poland (Wierzbicka 1987), were observed in freshwater eels from Etne and Bjugn. The spores 

developed in polysporic plasmodia (Fig. 15D) in the urinary bladder. The plasmodia 

measured from 29 µm in diameter to 149 x 74 µm, and were observed to contain from 2-15 

spores. The spores (Fig. 15A,B,C) measured 9.8 (8.4-11.3) x 6.6 (5.3-8.4) µm, and the polar 

capsules 3.3 (2.6-4.3) in length and 2.8 (2.3-3.6) µm in diameter (N=22 spores; 8 eels). Partial 
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SSU rDNA sequences of the myxosporean (829-1001 nt) were obtained from eels from both 

localities. These were similar (99.2 % identity) to a Zschokkella sp. sequence (AJ581918) 

from Scottish eel, and to the sequence of the actinosporean Neoactinomyxon eiseniellae 

(AJ582007) (100 %) infecting an aquatic oligochaete.  

About 35 % of all examined freshwater-caught eels were infected. The prevalence was 

highest in Bjugn FW with 70 %, with a prevalence of 33 % in Etne FW (Table 6).  

 

Figure 15 Zschokkella stettinensis recorded in urinary samples from freshwater-caught eels, 
Etne. A mature spore, B spores with visible striae running along the spore, C nearly mature 
spores, D Plasmodium with several spores.  
 

Myxobolus sp.  

Brown spots observed in the wall of the posterior and anal part of the intestine was found to 

represent Myxobolus sp. plasmodia packed with mature spores, or spore aggregates among 

brown-pigmented cells. However, yellowish brown spots in the stomach wall rarely contained 

Myxobolus sp. spores. This Myxosporean was observed in freshwater eels from Grimstad, 

Etne and Bjugn, with an overall prevalence of 20 %. The parasite was rare in seawater-caught 
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eels, occurring in 3 fish from the Etne area only (prevalence 4 % in the saltwater caught eels) 

(Table 6) .  

Histology revealed that the spore patches were located to the submucosal connective tissue 

(Fig. 16). 

 

Figure 16 Myxobolus sp. aggregate in the submucosa of the intestinal wall from a seawater-

caught eel, Etne. A Aggregate (red circle) seen in the submucosa, M - smooth muscle, B 

Spores (as indicated with red arrow) seen within the aggregate from picture A.  
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The round to oval plasmodia (Fig. 17D,E) measured 190-970 x 120-930 µm, with a mean 

diameter of 356 µm (N=20). Spore measurements were taken from crushed plasmodia from 

seven eels representing all three geographic areas.  The spores (Fig. 17A,B,C) measured 

(mean (range)) 10.9 (10.3-11.6) µm  in length, 8.6 (7.7-9.1) µm in width and 6.0 (5.5-6.5) µm 

in thickness. The polar capsules were 5.7 (4.6-6.7) µm long, had diameter 2.9 (2.5-3.4) µm 

and contained seven (6-8) coils of polar filament (N>30; except spore thickness N=12). 

 

Figure 17 Myxobolus sp. spores and plasmodia. A Spore from a freshwater-caught eel, B 
spore from a freshwater-caught eel, C spores from a seawater-caught eel, D Plasmodium from 
a freshwater-caught eel, E Plasmodium from a freshwater-caught eel. 
 

Partial SSU rDNA sequences (880-900 bp) were obtained from five samples (one from 

stomach, four from intestine) from four eels, representing freshwater eels from Grimstad, 

Etne and Bjugn. These sequences were identical. In GenBank, they showed highest identity 

(96.7 %) with Myxobolus portucalensis Saraiva et Molnár, 1990 (AF085182), a myxosporean 

from the fins of European eels.  
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3.1.3 Plathyhelminthes 

Monogeneans 

Pseudodactylogyrus anguillae (Yin et Sproston, 1948) 

Infections with this monogenean (Fig. 18), as described by Ogawa and Egusa (1976), were 

only recorded in Grimstad FW eels, where 80 % of the fish were infected (Table 6). The 

parasites were unevenly distributed on the gills, with a trend that the first gill arch pair 

harboured fewest worms, and that the number of parasites increase with the gill arch number 

(Fig. 19). The parasite differs from its congener P. bini in the hamuli morphology, and while 

all worms were carefully examined, no P. bini was seen. There was no relationship between 

P. anguillae abundance and eel size (rs<0.01, p=0.96). 

 

Figure 18 Pseudodactylogyrus anguillae observed on the gills of freshwater-caught eels, 
Grimstad. A, B ventral view, C anterior end of P. anguillae in picture B with visible eyespots, 
D close up of the posterior haptor of worm in picture A showing the hamuli.  
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Figure 19 Number of P. anguillae per gill arch, total counts from Grimstad FW. L=Left side, 
R=Right side. 

Trematoda 

Deropristis inflata (Molin, 1859) 

Deropristis inflata (Fig. 20) was identified according to the description in (Dawes 1968). 

Infections with this trematode were observed at all the saltwater localities (Grimstad, Etne and 

Smøla), but never in freshwater-caught eels. The trematode primarily occurred in the posterior 

and anal part of the intestine, with a maximum intensity of 84 (Table 6). Both mature and 

immature specimens, measuring between 1.7 and 6.3 mm in length, occurred with a 

distribution of 90 % mature and 10 % immature in Etne and Smøla, and 65 % mature/35 % 

immature in Grimstad. The overall prevalence in saltwater caught eels was 47 %. Partial LSU 

rDNA reference sequences were obtained from three selected worms (one per locality). The 

sequences were invariant (900 bp compared). This represent the first time the D. infalta LSU 

gene is sequenced (partial).  
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Figure 20 Deropristin inflata, ventral view, from the intestine of a seawater-caught eel, Etne.  
 

Podocotyle atomon (Rudolphi, 1802)  

This opecoelid trematode, identified using Dawes (1947), was detected in eels from Etne SW, 

and in two eels caught in Bjugn (Table 6). All the specimens (n=104), were mature and 

between 2 and 3 mm in length (Fig. 21). They were observed in the posterior and anal part of 

the intestine. Partial LSU rDNA reference sequences were obtained from three selected 

worms (Etne, Bjugn). The sequences showed 99.9% identity with P. atomon from the White 

Sea (Russia) (MH161437). No sequence divergence was seen in the Norwegian P. atomon 

sequences from eel (859 bp compared).  
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Figure 21 Podocotyle atomon observed in the intestine. A ventral view, from a freshwater-
caught eel, Bjugn, B dorsal view, from a seawater-caught eel, Etne.  

 

Helicometra fasciata (Rudolphi, 1819) 

A total of 38 specimens of this opecoelid trematode (Fig. 22) was found in 5 eels from 

Grimstad SW (prevalence 29 %) (Table 6). They occurred in the hind intestine. Some were 

immature (c. 1 mm), the oviferous worms reached 2.1 mm in length. Oral sucker width was 

208 (195-220) µm, ventral sucker diameter 298 (295-300) µm, sucker index 1:1.4-1.5. Eggs 

(without filament measured 75 (72-78) µm in length. The vitellarium reached pharynx, but 

was interrupted medially in the post-testicular region. Testes tandem, lobed, ovary 3-4 lobed. 

Based on these characteristics, the present specimens are identified with Helicometra fasciata 

Rudolphi following Odhner (1901) and Reversat et al. (1991).  

The partial LSU rDNA sequence obtained from the specimen in Fig. 22 (880 nt) showed 

highest identity with Helicometra spp., however there were only 95.1 % identity with a 
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sequence of H. fasciata from Epinephelus fasciatus (Forsskål, 1775) from New Caledonia 

(KJ701238). 

 

Figure 22 Helicometra fasciata from seawater-caught eel, Grimstad. A ventral view, 

vitellarium almost to pharynx (ph), and interrupted in the post-testicular area. Ovary (o) and 

testes (t) lobed; B, worm in dorsal view, C, uterine area, detail, filamented eggs. 

 

Hemiurus communis Odhner, 1905 

This trematode (Fig. 23) (family Hemiuridae), identified as Hemiurus communis according to 

Gibson and Bray (1986), was present in fish caught in Etne SW and Smøla SW. Most 

specimens, 0.8-2.2 mm in length, were mature (76-83 %, N=3206) and were primarily found 

in the lumen of the stomach with a maximum intensity of 255. A few were observed in the 

intestine. The prevalence was highest in Smøla with 97 % infected and 71 % in Etne SW 

(Table 6). Of all the saltwater caught eels, 65 % were infected. LSU rDNA reference 

sequences were obtained from two selected worms (Etne, Smøla). The sequences 

showed >93 % identity to hemiurids in GenBank, but no sequences of H. communis were 
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available for comparison. The two H. communis sequences differed by three substitutions 

(810 bp compared). 

 

Figure 23 Hemiurus communis observed in the intestine of seawater-caught eels, Smøla. A 
ventral view, B lateral view.  

 

Brachyphallus crenatus (Rudolphi, 1802) 

One specimens of this trematode (family Hemiuridae), as described by Gibson and Bray 

(1986), was observed in an eel from Etne SW (area B) (Table 6). The parasite (Fig. 24) was 

located in the lumen of the stomach. A partial LSU rDNA reference sequence was obtained 
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from B. crenatus from a seawater-caught eel from Etne. Identity with sequences in GenBank 

(North Sea (KT767168), North Pacific (MH628299)) was 100 % (378-790 bp compared).  

 

Figure 24 Brachyphallus crenatus, lateral view, from an eel caught in the Etnefjord, with 
visible seminal vesicle (arrow) dorsal-anterior to the ventral sucker. 

 

Lecithichirium rufoviride (Rudolphi, 1819)  

Lecithichirium rufoviride (Fig. 25) was identified using the description by Gibson and Bray 

(1986). Infections with this big trematode (family Hemiuridae), 1-7 mm in length, were 

observed in eels caught in Grimstad SW and Smøla (Table 6). Most specimens were mature 

(93-96%, N=1089) and were primarily found in the lumen of the stomach with a maximum 
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intensity of 152. A few were observed in the intestine. The prevalence was highest in Smøla 

with 90 % infected and 76 % in Grimstad SW. The parasite abundance correlated with eel 

size (Grimstad; rs=0.80, p<0.001, Smøla; rs=0.61, p<0.001). Partial LSU rDNA reference 

sequences was obtained from two L. rufoviride obtained from seawater-caught eels from 

Grimstad and Smøla. The sequence (819 nt) showed >92 % identity to related hemiurids in 

GenBank, but no sequences of L. rufoviride were available for comparison.  

 

Figure 25 Lecithochirium rufoviride found in the lumen of the stomach in seawater-caught 
eels. A ventral view, B closeup of the oral sucker with postero-lateral thickening of wall, C 
lateral view.   
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Derogenes varicus (Müller, 1784)  

This derogenid trematode (Fig. 26), identified as Derogenes varicus according to Gibson 

(1996), was observed in seawater-caught eels from Etne and Smøla, with a total prevalence of 

10 % among all the seawater-caught eels examined (Table 6). All the specimens (N=16) were 

mature, 1.5-2 mm in length. Most were found in the oesophagus, some were found in the 

stomach and one in the anal part of the intestine. Partial LSU rDNA reference sequences were 

obtained from two selected worms (Etne, Smøla). These sequences were identical (757 bp), 

and in BLAST search they showed highest identity (97.7 %) with D. varicus from Scottish 

waters.  

 

Figure 26 Derogenes varicus from seawater-caught eels. A, B lateral view. 

 

Lecithaster gibbosus (Rudolphi, 1802)  

Specimens of this lecithasterid trematode (Fig. 27), as described by Gibson (1996), were 

observed in fish caught in Etne SW and Smøla SW. Three fish in total were infected with a 



 
 

43 

maximum intensity of two (Table 6). The parasite was found in the lumen of the posterior part 

of the intestine. Partial LSU rDNA were not obtained from the DNA extraction of two 

selected worms (Etne, Smøla).  

 

Figure 27 Lecithaster gibbosus from the intestine of a seawater-caught eel, lateral view. 
 

Diplostomum sp.  

Infection with metacercaria larvae of this trematode (family Diplostomidae), as described by 

Dawes (1968), Gibson (1996) and Bykhovskaya-Pavlovskaya (1962), was only found in one 

freshwater-caught eel from Etne (Table 6). One metacercaria (Fig. 28) was observed in the 

vitreous humour near the lens in both eyes. A partial LSU rDNA sequence was obtained from 

one of these metacercariae. The sequence (872 nt) showed 99.8 % identity with a sequence 

(KR269765) of Diplostomum spathaceum (Rudolphi, 1819) from a final host, the black 

headed gull (Larus ridibundus).  
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Figure 28 Diplostomum spathaceum found in the eyes vitreous humor in the eye of a 
freshwater-caught eel from Etne. 

Cestoda 

‘Scolex pleuronectis’ 

Infection with cestode larvae of this morphotype, with bilocular bothridia (Fig. 29), was 

observed in two eels caught near Smøla (Table 6). The worms were 1.6-1.8 mm long and 0.6-

0.7 mm wide, with the minor anterior bothridial loculus measuring 157-185 µm in diameter, 

the posterior 189-232 µm and the apical sucker 105-112 µm in diameter. The parasites were 

located in the lumen of the anal part of the intestine. A partial LSU rDNA sequence (405 nt) 

was obtained from one of the two worms. It showed highest identity (99.8 %) with the 

tetraphyllidean Phyllobothrium squali Yamaguti, 1952, a parasite of the shark Squalus 

acanthias.  
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Figure 29 Phyllobothrium squali observed in the anal part of the intestine of seawater-caught 
eels, Smøla. A worm measuring 1.8 mm, B worm measuring 1.6 mm, C close up of the apical 
sucker of the worm in picture A D close up of the bilocular bothridia of the worm in picture 
B.  
 

Proteocephalus macrocephalus (Creplin, 1825)  

This cestode (Fig. 30), identified according to Scholz and Hanzelova (1998), was observed in 

both freshwater and saltwater caught fish from Etne (Table 6). The adult mature parasites, 

180-250 mm long, were located in the anterior part of the intestine. A reference LSU rDNA 

sequence (1243 nt) of P. microcephalus from Etne showed 98.7 % identity to an available 

sequence in GenBank (EF095261) from a River Thames eel (U.K.).  
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Figure 30 Proteocephalus macrocephalus obsrved in the intestine of a seawater-caught eel, 
Etne. A scolex with four suckers, B mature progleottids. 

 

Bothriocephalus claviceps (Goeze, 1782)  

Specimens belonging to B. claviceps (Fig. 31), as described by Scholz (1997), were found in 

the intestine of fish caught in Etne FW, Bjugn and Smøla (Table 6). The cestodes measured 

33-100 mm in length. Both mature and immature specimens were observed. A reference LSU 

rDNA sequence (1213 nt) of a mature B. claviceps from Etne showed 98.8 % identity to an 

available sequence in GenBank (DQ925323) from a Czech eel.  
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Figure 31 Bothriocephalus clavicpes observed in freshwater-caught eels, Etne. A immature 
worm, B close up of the scolex, C mature progleottids from another specimen.  
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Dibothriocephalus ditremus (Creplin, 1825)  

In eels caught in Etne FW (Table 6), brownish capsules occurred (Fig. 32B,C,D) in the 

stomach wall. Some of these contained small smooth cestode larvae (Fig. 32A) 

morphologically identifiable with D. ditremus according to Andersen and Gibson (1989). 

Partial LSU rDNA sequences were obtained from four worms. The consensus sequence (1227 

nt) showed 100 % identity with sequences from D. ditremus plerocercoids from U.K. 

(KY552813) salmonids and a plerocercoid from a threespine stickleback (Gasterosteus 

aculeatus L., 1758) from lake Gjønavatn, Fusa.  

 

Figure 32 Dibothriocephalus ditremus plerocercoids from the stomach wall of freshwater-
caught eels, Etne. A intact worm dissected out of a capsule, B, C worm in their capsules, D 
degraded encapsulated worm. 
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Bothriocephalidean plerocercoids 

Bothriocephalidean plerocercoids were observed in the lumen of the posterior part of the 

intestine in seawater-caught eels from Etne (Table 6). The worms measured 1.4-3.8 mm in 

length and had 3-16 proglottids. The biggest worms had craspedote strobila (Fig. 33A,C) and 

the scolex showed two bothria and often a distinct apical disc (Fig. 33B). Partial LSU rDNA 

sequences were obtained from five worms. All showed 100% identity (1180 nt compared) 

with sequences from Eubothrium crassum (Bloch, 1779) from Salmo spp. in freshwater, as 

well as from Eubothrium sp. from seawater farmed Atlantic salmon (Salmo salar L., 1758) in 

Norway. 

 

Figure 33 Eubothrium crassum from the intestinal lumen of Etne eels (seawater). These 

larvae were molecularly identified with Eubothrium crassum, a cestode maturing in salmonids 

(Salmo spp.). A big worm with craspedote stobila (red circle), B small worm with visible 

apical disk (red arrow) and bothria (yellow arrow), C worm also showing craspedote strobila. 

All to same scale.  
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3.1.4 Acanthocephala 

Echinorhynchus gadi Zoega, 1776 

Infections with Echinorhynchus gadi (Fig. 34), as described by Arai (1989), were observed in 

seawater-caught eels from Etne and Smøla (Table 6). The 6.5-23 mm long and apparently 

immature acanthocephalans were located in the lumen of the intestine.  

 

Figure 34 Echinorhynchys gadi recorded in the lumen of the intestine of a seawater-caught 
eel, Etne. A Male specimen with two visible testis (t) B Close up of the proboscis.  

3.1.5 Nematoda 

Pseudocapillaria tomentosa (Dujardin, 1843) 

Only one freshwater-caught eel from Grimstad had an infection with this capillariid nematode 

(Table 6), identified as Pseudocapillaria tomentosa according to Moravec (1987). The 

specimen observed (Fig. 35) was male, measured c. 140 mm, and was embedded in the anal 

part of the intestinal wall.  



 
 

51 

 

Figure 35 Pseudocapillaria tomentosa recorded encapsulated in the intestinal wall of a 
freshwater-caught eel, Grimstad. A posterior part, B anterior part 
 

Eustrongylides sp. 

Infections with small specimens (7.5-8.3 mm) of this dioctophymid nematode, identified 

according to Berland (1961), were detected in freshwater-caught eels from Etne and Bjugn 

(Table 6). The reddish coloured parasite (Fig. 36) was encapsulated in the stomach wall, with 

some of the capsules containing degraded nematodes (not counted).   

 

Figure 36 Eustrongylides sp. from capsules in the stomach wall of freshwater-caught eels, 
Etne A worm dissected out of the capsule, B encapsulated apparently partly degrded worm, C 
anterior part of the worm in A, D posterior part of the worm in A.  
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Daniconema anguillae Moravec et Køie, 1987 

Nematode larvae of D. anguillae (Fig. 37A,B,C), identified according to Moravec and Køie 

(1987), were first detected and identified from the gills of an eel (Fig. 37E). This discovery 

then led to examination of the dorsal and pectoral fin where the parasite was also found (Fig. 

37D). The larvae were small, 1.4-1.5 mm. The infected fish were freshwater-caught eels from 

Grimstad, Etne and Orkla (Table 6). A total of ten eels were found infected, where the 

nematode most often were recorded in the gills, and in greatest amount in the pectoral fin. The 

intensities were very high, densities in the pectoral fin reached 1.6 larvae per mm2 (Grimstad 

eel). No adult specimens were found in the typical site, the swimbladder wall. Abundance 

showed a positive correlation with eel length (rs=0.61, p<0.01). 

 

Figure 37 Daniconema anguillae larvae, found infecting the gills and the pectoral fin of 
freshwater-caught eels. A dissected out from the gill, B close-up of anterior part of the 
nematode with visible boring tooth (red arrow), C close-up of tail end, D in situ in pectoral 
fin, E in situ in gill filament.  

 



 
 

53 

Paraquimperia tenerrima (Linstow, 1878) 

Freshwater-caught eels from Etne, Bjugn and Orkla were registered as infected with this 

nematode (Fig. 38), identified according to Arai and Smith (2016). The parasites, 1-10.5 mm 

in length, were located in the lumen of the intestine with a maximum intensity of 37. The 

prevalence was highest in Etne (73 %) (Table 6) and the overall prevalence in freshwater-

caught eels was 37 %. 

 

Figure 38 Paraquimperia tenerrima from the lumen of the intestine of a freshwater-caught 
eel, Etne. A female specimen, B male specimen, C anterior part of the female specimen with 
visible lateral alae (arrow), D close up of the straight tail of the female specimen, E close up 
of the ventrally bent tail of the male specimen with visible spicules 
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Paracuaria adunca (Creplin, 1846) 

Infections with this acuariid nematode were only observed in three seawater-caught eels from 

Etne (Table 6). The larvae were coiled up in spirals and encapsulated (Fig. 39C) in the 

stomach wall. Out of the 151 specimens registered, 30 were dissected out, examined more 

closely in the microscope and were identified as P. adunca larvae (Fig. 39A,B,D) according 

to the description by Anderson and Wong (1982).  

 

Figure 39 Paracuaria adunca recorded encapsulated in the stomach wall of seawater-caught 
eel, Etne. A worm dissected out of capsule, B anterior part of the worm, C encapsulated 
worm , D posterior end of the worm. 

 

Cucullanellus minutus (Rudolphi, 1819) 

Only one seawater-caught eel from Etne was infected with C. minutus (Table 6), as described 

by Arai and Smith (2016). The 3 mm long adult female worm (Fig. 40)was located in the 

posterior part of the intestine.  
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Figure 40 Cucullanellus minutus recorded in the intestine of seawater-caught eel, damaged 
form flattening.  
 

Hysterothylacium aduncum (Rudolphi, 1802) 

Infections with this raphidascarid nematode (Fig. 41), identified according to Berland (1961), 

were detected in seawater-caught eels from Etne and Smøla. The preadult or adult specimens 

(stage IV-V), 5-45 mm long, were located in the lumen of the intestine with a maximum 

intensity of 13. The prevalence was highest in Smøla with 37 % (Table 6). ITS1-5.8s-ITS2 

sequences were obtained from two worms from Etne and Smøla. Both showed 100 % identity 

(1052 nt compared) with Hysterothylacium aduncum from sprat in Denmark (KU306720).  
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Figure 41 Hysterothylacium aduncum from the lumen of the intestine of seawater-caught 
eels, Smøla. A female specimen, B close up of the anterior end, C close up of the tail of the 
female specimen and detail of the characteristic “cactus-tail” , D close up of a male tail with 
visible everted spicules. 

 

Anisakis simplex (Rudolphi, 1809) 

This nematode (Anisakidae), identified according to Berland (1961), was detected in both 

freshwater-caught eels from Grimstad and seawater-caught eels from Smøla, each locality 

represented by two infected fish (Table 6). The parasites (Fig. 42), 18-27 mm long, were 

encapsulated in the mesenteries around the stomach and intestine. ITS1-5.8s-ITS2 sequences 
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were obtained from two worms from Grimstad and Smøla. Both showed 99.9 % identity (974-

985 nt compared) with sequences from Anisakis simplex sensu stricto1.  

 

Figure 42 Anisakis simplex recorded encapsulated in the mesenteries around the intestine in a 
seawater-caught eel, Smøla. A worm dissected out of the capsule, B anterior end, C anterior 
end with the characteristic spike (arrow) at the rounded posterior end.  

 

Contracaecum spp. 

Both freshwater-caught eels from Grimstad and Etne, and seawater-caught eels from 

Grimstad, Etne and Smøla were infected with Contracaecum sp (Anisakidae) larvae (Table 

                                                

1 Recent, more restricted sence 
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6), as described by Arai and Smith (2016). The small (1.8-3.8 mm) nematode larvae were 

encapsulated in the wall of the stomach and intestine, and in the mesenteries surrounding 

these organs. ITS1-5.8s-ITS2 sequences were obtained from 15 worms representing all the 

localities with infected fish. All sequences of larvae obtained from Grimstad (FW and SW) 

and Etne SW eels showed >99 % identity with Contracaecum rudolphii Hartwich, 1964 from 

cormorants in Sardinia, genotype A (Fig. 43B,C,E). The sequence of a larva from Smøla was 

identical to that of an adult worm from a cormorant (Phalacrocorax carbo) from the 

Masfjord, W Norway included. In GenBank, these showed >98 % identity with a 

Contracaecum sp. larvae from a marine fish from the Atlantic coast of USA, and >99 % 

identity with Contracaecum chubutensis Garbin, Diaz, Cremonte et Navone, 2008 (Fig. 43D). 

A specimen from Etne FW (Fig. 43A) revealed an ambiguous C. rudolphii sequence, 

representing a mixed C. rudolphii A and B signal in the ITS sequences.   

 

Figure 43 Contracaecum sp. worms. A Contracaecum sp. recorded in freshwater-caught eel, 
Etne, B C. rudolphii A recorded in freshwater-caught eel, Grimstad, C C. rudolphii A 
recorded in seawater-caught eel, Grimstad, D C. chubutensis recorded in seawater-caught eel, 
Smøla, E C. rudolphii A recorded in seawater-caught eel, Etne.  
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Aguillicola crassus Kuwahara, Niimi et Itagaki, 1974 

Anguillicola crassus (Fig. 44), identified according to Arai and Smith (2016), was only 

observed infecting the swimbladder of eels caught in Grimstad, in 23 freshwater and a single 

fish caught in seawater (Table 6). The prevalence in Grimstad FW was 77 % with a maximum 

intensity of 10. The nematodes measured 2.3-32 mm in length and >99 % of the 63 worms 

registered were collected from the lumen of the swimbladder. Only one specimen was 

recorded in the wall of the swimbladder (3.7 mm in length).  

 

Figure 44 Anguillicola crassus recorded from the swimbladder of a freshwater-caught eel, 
Grimstad.  
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3.2 Fresh gills examination 

Most eels examined had been frozen, so protist parasites that do not produce spores could not 

be revealed. However, squash preparations of the gills of all eels from Etne FW and Etne SW 

were examined fresh. The only parasites observed during this screening was Paramyxidium 

branchialis. Hence the prevalence of the protists Ichhtyobodo sp., Trichodina sp. and 

monogeneans from the genus Gyrodactylus (all previously found in north-European eels) 

were 0 on the basis of gill examination.  

3.3 Parasite diversity 

In freshwater-caught eels, 18 species were found. These represented one coccidian, five 

myxosporeans, one ectoparasite and 12 endohelminths, the latter of six larval and six adult 

stage forms. Twelve species were eel specialists, the coccidian Epieimeria anguillae, four 

myxosporeans and five endohelmints (Bothriocephalus claviceps, Proteocephalus 

macrocephalus, Paraquimperia tenerrima, Anguillicola crassus and Daniconema anguillae) 

and the ectoparasite Pseudodactylogyrus anguillae. Of the endohelminth individuals (N=513), 

54 % were adult stage, and 46 % larval forms, the latter underestimated since the D. anguillae 

infrapopulations were not fully censused. For the same reason, > 77 % of the endohelminth 

individuals were eel specialists while the rest were generalists. 

In the seawater caught eels, 22 species were found. These represented four myxosporeans and 

18 endohelminths, the latter of five larval and 13 adult stage forms. Eel specialists were 

represented by eight species, four myxosporeans and four endohelminths (Lecithochirium 

rufoviride, Deropristis inflata, P. macrocephalus, A crassus). Of the endohelminth 

individuals collected (N=5588), 68 % were of generalists, while 32 % were eel specialists. A 

total of 94 % were adults, only 6 % larval forms.  

The seawater caught eels were less likely to harbour myxosporean infections than eels from 

freshwater. The endohelminth and gastrointestinal helminth communities in seawater caught  

eels were richer in number of species and individuals than in the freshwater eels (Table 7).  
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Table 7 Some diversity measures for the parasite communities in the studied eel samples. 
N=number.  

    Freshwater eels   Seawater eels 

    Grimstad Etne Bjugn   Grimstad Etne Smøla 

Ectoparasites        
   

 N species 1 0 0  0 0 0 

 Mean N species per eel 0.8      
   

 Prevalence (%) 80      
   

Myxosporea        
   

 N species 4 5 5  1 3 2 

 Mean N species per eel 0.7 1.4 1.9  0.4 0.5 0.3 

 Prevalence (%) 54 73 90  41 48 33 

Endohelminths        
   

 N species 5 8 4  5 13 10 

 Mean N species per eel 1.5 1.4 0.4  1.8 2.4 3.1 

 Mean N individuals per eel 8.0 7.7 0.8  26.7 91.5 76.3 

 Prevalence (%) 90 86 30  94 94 100 

Gastrointestinal helminths        
   

 N species 1 3 3  3 11 8 

 Mean N species per eel 0.03 1.0 0.3  1.5 2.1 3.0 

 Mean N individuals per eel 0.03 6.0 0.6  26.1 85.0 74.5 

  Prevalence (%) 3 79 27   88 94 100 
 

3.4 Habitat and parasite origin  

According to their life cycles, discussed below (p. 66), the parasites were classified as 

freshwater or marine (Table 8). They were further subdivided into parasites that are acquired 

from free infective stages in the water (‘penetration’; Myxosporean actinospores, monogenean 

oncomiracidia, trematode cercariae) or through prey (endoparasitic helminths). 

 

 

 



 
 
62 

Table 8 Indicator parasites (freshwater, marine) used in the evaluation of eel interhabitat 
shifting (IHS). The freshwater residence indicators infect the fish through the external 
surfaces. The freshwater and marine feeding parasites are acquired by feeding on freshwater 
or marine prey harbouring parasite larvae. The background data for this list is provided in 
Appendix Table 1 and Table 2, which represents a summary of the information provided on 
this subject in the Discussion.  

My – myxozoa, T – trematode, C – cestode, N – nematoda, Mo – Monogenea, A – Acanthacephalan  

 
Overall, 15 parasite species were clearly of freshwater origin, and 17 were marine. 

Paramyxidium giardi and an ambiguous genotype of Contracaecum rudolphii could not be 

assigned to a habitat, and one species, the coccidian Epieimeria anguillae could show 

transmission in both habitats and was not considered. Hence 32 parasite species were clearly 

connected to either FW or SW. Three of the 15 freshwater parasite (H. gilsoni, Z. stettinensis, 

P. anguillae) could not be used as indicators, since they do not survive in seawater, The final 

list therefor contained 12 freshwater parasites and 18 seawater parasites were considered as 

indicator species and used to examine habitat shift (inter-habitat shifters, IHS).  

Indicator of: Parasite     Indicator 
of:   Parasite    

Freshwater residence 
indicators 

  Marine feeding 
indicators 

  

 Paramyxidium branchialis (My)  Hemiurus communis (T)  

 Paramyxidium magi (My)  Brachyphallus crenatus (T) 
 Myxobolus sp. (My)  

 Lecithochirium rufoviride (T) 
 Diplostomum spathaceum (T)  Derogenes varicus (T)  

 Daniconema anguillae (N)  Lecithaster gibbosus (T)  
   

 Podocotyle atomon (T)  

Freshwater feeding indicators   
 Helicometra faciata (T)  

 Proteocephalus macrocephalus (C)   Deropristis inflata (T)  
 Bothriocephalus claviceps (C)  Eubothrium sp. (C)  

 Dibothriocephalus ditremus (C)   Phyllobothrium squali (C) 
 Pseudocapillaria tomentosa (N)  Cucullanellus minutus (N) 
 Eustrongylides sp. (N)  

 Hysterothylacium aduncum (N) 
 Paraquimperis tenerrima (N)  Anisakis simplex (N)  

 Anguillicola crassus (N)  
 Contracaecum rudolphii A (N) 

Not usable as indicators   
 Contracaecum chubutensis (N) 

 Paramyxidium giardi (My)  Paracuaria adunca (N) 
 Hoferellus gilsoni (My)   Echinorhynchus gadi (A)  

 Zschokkella stettinensis (My)     
 Pseudodactylogyrus anguillae (Mo)     
  Contracaecum sp. A/B (N)         
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Marine parasites detected in freshwater eels were all acquired through prey. They occurred in 

0-43 % (Table 9) of the freshwater eels. In Grimstad FW, marine parasites constituted 56 % 

of all the endohelminth individuals (N=141). In Bjugn the only marine parasite occurring was 

P. atomon, while in Grimstad FW 97 % were Contracaecum rudolphii A larvae and the rest 

A. simplex.  

Table 9 Occurrence of marine parasites (%) in freshwater-caught eel.  

FW locality % infected with marine parasites 
Grimstad  43 
Etne  0 
Bjugn 7 

 

Five parasites of freshwater origin (the myxosporeans P. branchialis, P. magi and Myxobolus 

sp., the cestode P. microcephalus and nematode A. crassus) occurred in seawater-caught eels. 

Freshwater parasites were detected in 33-47 % (Table 10) of the 78 seawater-caught eels. 

With the exception of one eel from Grimstad SW with A. crassus and two from Etne SW 

infected with P. microcephalus, close to all these individuals harboured histozoic 

myxosporeans (Myxobolus sp., P. magi and P. branchialis). Of the 32 seawater-caught eels 

with freshwater parasites, 31 harboured freshwater myxosporeans.  

Table 10 Occurrence of freshwater parasites (%) in seawater-caught eel 

SW locality % infected with FW parasites 
Grimstad 47 
Etne 45 
Smøla 33 

 

3.5 Fatty acid analysis 

Fatty acid analysis were performed by Camilla Parzanini on the eels from Etne (FW/SW) that 

were examined for parasites. Based on the M/F fatty acid ratios, the eels were by her 

categorized as having either freshwater (FW), brackish water (BW), intermediate (SW/BW) 

or seawater signatures (SW). All the FW eels had clear FW fatty acid profiles. However, the 

seawater-caught eels had BW, SW/BW and SW signatures, but some harboured parasites of 

freshwater origin. 
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The freshwater parasites detected in the Etne SW samples were Myxobolus sp., Paramyxidium 

branchialis and Proteocephalus macrocephalus. The proportion of freshwater-acquired 

parasites in eels with BW signature was not significantly higher than in eels with SW or 

SW/BW signature (Table 11; FET, p=0.15). 

However, two of the eels with BW signature carried P. macrocephalus infections (3 and 4 

large worms), while none of the eels with SW or SW/BW signature were infected. This 

difference was significant (FET, p<0.03). 

 

Table 11 2 x 2 table. Occurrence of freshwater acquired parasites in seawater-caught eels in 

Etne SW, according to fatty acid signature categories. BW=brackish water, SW=seawater. 
 

Freshwater parasites 

 
Present Absent 

BW signature 4 1 

SW or SW/BW signature 11 15 

FET, p=0.15 

3.6 Otolith microchemistry analyses 

Microchemical analyses were performed on otoliths from the Etne eels by Mehis Rohtla. 

Based on these analyses, he classified the eels as either freshwater resident (FWR), marine 

water resident (MWR) or inter-habitat shifters (IHS). All the freshwater-caught eels (Etne 

FW) were classified from the otoliths as FWR. These eels did not harbour parasites of certain 

marine origin (but see Contracaecum sp. p. 84).  

The seawater-caught eels were either IHS, MWR or intermediate (MWR/HIS). All categories 

of eels harboured parasites of freshwater origin (Myxobolus sp., Paramyxidium branchialis 

and Proteocephalus macrocephalus).  

There were no significant difference between eels that showed a MWS signature and those 

with an indication of habitat shifting (IHS) in the occurrence of parasites of freshwater origin 
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(Table 12;FET=0.22). Two eels had intestinal infections by the freshwater cestode P. 

macrocephalus. One was classified as IHS, the other as MWR. 

 

Table 12. 2 x 2 table. Occurrence of freshwater acquired parasites in freshwater-caught eels 

in Etne SW, according to otolith microchemistry classifications. IHS=inter-habitat shifters, 

MWR=marine water resident  
 

Freshwater parasites 

 
Present Absent 

IHS or MWR/IHS 6 4 

MWR 8 13 

FET=0.22 
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4 Discussion 

4.1 Parasites in European eel from Norway 

A total of 34 parasite species were observed in the 171 eels examined. Prior to the present 

study, there were records of 20 species from Norway (Table 1). The list has now increased 

with 21 additional species.  

4.1.1 Protists 

Epieimeria anguillae is a coccidian which infect the foregut epithelium of eels. It was first 

described from the European eel (Anguilla anguilla) from Corsica (Léger & Hollande 1922). 

The parasite has later been reported from most countries in Europe south of Scandinavia and 

from Iceland Kristmundsson and Helgason (2007), mostly in freshwater eels. This is the first 

observation of E. anguillae in Norway. Like most fish infecting coccidia, E. anguillae likely 

has a direct infection route. Epieimeria anguillae occur both in freshwater and seawater-

caught eels (Daoudi et al. 1989, Benajiba et al. 1994, Kristmundsson & Helgason 2007). 

While clearly becoming infected in freshwater (Lacey & Williams 1983), it is unclear if 

transmission also may occur in the sea. It was therefore dismissed as an indicator species for 

habitat shift in the present study, and not systematically screened for. 

It was surprising that none of the eels from Etne showed any signs of microscopic 

ectoparasites in the gills. Trichodina sp. infections have previously been noted in wild marine 

eels from Bergen (Karlsbakk, pers. comm.), and the ciliate was registered in a freshwater eel 

from Sunnmøre (Karlsbakk in Sterud (1999)). These ciliates has also caused problems in 

freshwater eel culture in Norway (Jensen 1998). In Scottish eels, the prevalence of the 

flagellate Ichthyobodo sp. was high (McGuigan & Sommerville 1985), but these flagellates 

occurred in highest densities on the skin.  

4.1.2 Myxosporea 

Myxosporeans have obligate two-host life cycles involving a vertebrate and an annelid 

(Oligochaeta, Polychaeta). Different types of multicellular spores are produced in these hosts. 

Myxospores produced in the vertebrate are infective for the annelid host, while the 
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actinospores produced in the annelid are infective for the vertebrate, which typically is a fish 

(Kent et al. 2001, Melendy & Cone 2003). Myxosporeans are classified according to the 

myxospore morphology. Tissue tropism and sites are often characteristic for different 

phylogenetic groups (Fiala 2006). They are usually either tissue parasites (histozoic) or 

inhabit cavities such as the gall and urinary bladders (coelozoic).  

 

Paramyxidium spp. 

Genus Paramyxidium was erected by Freeman & Kristmundsson (2018) for a phylogenetic 

grouping of Myxidium-like histozoic parasites of eel, earlier considered a single species, 

Myxidium giardi. This M. giardi in the ‘old sense’ (sensu lato) was originally described from 

the kidney of the European eel in France. Infections with similar Myxidium spp. have since 

been reported in other Anguilla spp. globally. Many of these Myxidium spp. were 

subsequently synonymized with M. giardi. Due to this it is unknown if M. giardi is a widely 

distributed parasite which infects numerous species of eels in multiple organs, or if some 

infections represent other, morphologically similar but different species of myxosporeans. 

However, Freeman & Kristmundsson (2018) genetically characterised Myxidium giardi-like 

parasites from different infection sites in eels from Iceland and showed there were three 

different species, which they placed in their new genus Paramyxidium. Paramyxidium giardi 

infect the kidney, P. branchialis the gills and P. magi  the gut wall (Freeman & 

Kristmundsson 2018). The present observations support the validity and tissue tropism of P. 

giardi and P. branchialis. However, the P. magi sequences from the present study were 

associated with a Paramyxidium sp. with clearly smaller spores than recorded by Freeman and 

Kristmundsson (2018). This species was in addition to the stomach wall also detected in the 

kidneys. Further studies are needed, but it now seems possible that the genotype described 

from Icelandic eels was matched with the wrong phenotype. 

In the present study P. giardi was found in freshwater-caught eels from Grimstad, Etne and 

Bjugn, and in seawater-caught eels from Etne. There is a previous record of Myxidium giardi 

sensu lato from Norwegian eels (Mo & Sterud 1998), reporting gill infections in eels from 

Årungen and Glomma, and also infections in the intestinal wall of eels caught below 

Sarpsfossen in Glomma. The sites suggest that these records could have represented P. 

branchialis and P. magi. Hence the present record represents the first confirmed infections 

with P. giardi in Norway. The present detection of P. branchialis in freshwater-caught eels 
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from Grimstad, Etne and Bjugn and seawater-caught eels from Grimstad, Etne and Smøla and 

P. magi in an eel from Smøla also represent new confirmed records for Norway (for P. magi 

based on the sequence), but these species may have been present in the eels examined by Mo 

& Sterud (1998) from eastern Norway.  

According to Benajiba & Marques (1993), Myxidium giardi (very likely P. giardi, since 

kidney cysts) infect freshwater oligochaetes (Tubifex sp.) where actinospores of the 

aurantiactinomyxon type develops. These were infective to glass eels, in which kidney cysts 

containing spores appeared after 2 months. The whole life cycle was found to take four 

months at 12°C. However, recently Rocha et al. (2019) showed that a myxosporean 

developing aurantiactinomyxon spores in the estuarine oligochaete Tubificoides pseudogaster 

was P. giardi according to its SSU rDNA sequence. This observation suggest that the life 

cycle of this species could be completed in estuaries such as river mouths. Freeman and 

Kristmundsson (2018) showed that numerous freshwater oligochaete actinosporeans belong to 

the Paramyxidium clade, suggesting both a higher diversity in this genus than presently 

recognized, and that the life cycles are mostly completed in freshwater. The life cycles of P. 

branchialis and P. magi have not been demonstrated, but sequences of two actinospore 

morphs of the Synactimomyxon type from Tubifex tubifex in a Scottish river show very high 

identity with the sequences of these two Paramyxidium spp. and they must be conspecific 

(Holzer et al. (2004) vide Freeman and Kristmundsson (2018)). These myxosporeans are 

therefore regarded as freshwater species, while P. giardi is considered as potentially marine.  

 

Hoferellus gilsoni and Zschokkella stettinensis  

The urinary bladder infecting coelozoic myxosporeans Hoferellus gilsoni and Zschokkella 

stettinensis were only found in freshwater eels. These may not survive in eels in seawater, 

since the eel then should produce hypersaline urine. Therefore, these coelozoic species cannot 

be used as indicator parasites for freshwater origin. The H. gilsoni sequence in GenBank, 

provided by Holzer et al. (2004) from a Scottish eel was confirmed. The Zschokkella sp. and 

Myxidium giardi sequences obtained in that study is here found to represent the same species, 

identified with Z. stettinensis. My Z. stettinensis sequences confirm that a sequence from the 

actinosporean Neoactinomyxon eiseniellae (Ormières et Frézil, 1969) is from the same 

species. That is then evidence for the inclusion of its host, the freshwater oligochaete 

Eiseniella tetraedra, in the Z. stettinenesis life cycle (Holzer et al. 2004). Therefore, this 
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myxosporean may occur throughout the range of the eel in Norway, and also occur in 

Scotland, Poland, France and Portugal (Debaisieux 1925, Wierzbicka 1987, Wierzbicka & 

Orecka-Grabda 1994, Saraiva & Eiras 1996, Rodjuk & Shelenkova 2006). The life cycle of 

Hoferellus gilsoni is still unknown.  

 

Myxobolus sp. 

The Myxobolus sp. detected here in the lamina propria of the hindgut is morphologically 

identical with Myxobolus dermatobius (Ishii, 1915) sensu Copland (1982), from the same site 

in juvenile English eels. However, according to Copland (1982) the site is the muscularis, 

where the parasite was never found in the present study. Possibly, the much smaller eels in the 

English study had plasmodia protruding into the muscularis. M. dermatobius was originally 

described from cysts in the skin of Japanese eel (Anguilla japonica) from Japan, with spores 

being clearly smaller (6.3-7.0 µm long) (Ishii 1915). Skin or fin cysts did not occur in the 

present material, nor in Copland’s (1982) eels, and Hoshina (1952) confirmed the small spore 

size in M. dermatobius. Therefore, together with a different site, host species and geographic 

distribution, Myxobolus sp. cannot be identified with M. dermatobius. In European eels, 

Myxobolus portucalensis and Myxobolus kotlani Molnar, Lom et. Malik, 1986 produce 

macroscopically visible cysts in the fins and skin respectively (Saraiva & Molnár 1990) 

(Molnár et al. 1986). The former differs from Myxobolus sp. by its much larger spores 

(averaging 12.6 µm in length) and in the SSU rDNA sequences. Myxobolus kotlani has 

similar but significantly smaller spores, and never occur in the gut. Myxobolus sp. is therefore 

considered a likely new species. Its confinement to freshwater eels, and the fact that related 

Myxobolus spp. also are freshwater parasites indicate that the unknown life cycle is 

freshwater-restricted.  

4.1.3 Platyhelmintes 

Monogenean 

Pseudodactylogyrus anguillae  

This gill monogenean is one of two Anguilla-specific species of the genus 

Pseudodactylogyrus present in Norway, the other is P. bini (Mo 1999). P. anguillae has a 
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direct life cycle, where eggs are released to the environment by adult worms, and 

oncomiracidia that hatch from the eggs finds and infects an eel (Buchmann et al. 1987).   

The gill ectoparasite was only recorded in freshwater-caught eels from Grimstad, whit a 

prevalence of 80 %. There was, like in the study by Fazio et al. (2009), surprisingly no clear 

positive relationship between abundance and eel size (400-647 mm), which is the opposite of 

what has previously been shown in both wild eel (Barker & Cone 1997, Aguilar et al. 2005) 

and eel farmed in a commercial eel-culture system (Buchmann 1989). Buchmann (1989) 

explained it with the larger space available in the gills of larger eels, but interactions between 

the host and the parasites also make such correlations less distinct in older infections 

(Buchmann 1993). Seawater entering the lake Landvikvannet, Grimstad, allows the eels there 

to move from freshwater to saline environment. If this occur, then that could cause P. 

anguillae mortality within days. If such habitat-shifting contribute to the observed pattern, 

then such movements must be most frequent among large eels.  

P. anguillae seems to show a preference for the posterior gill arches. The same trend has been 

noted in other studies (Buchmann 1988, 1993), but then also with P. bini present. Hence the 

present study demonstrates this microhabitat pattern with P. anguillae infection alone.    

Pseudodactylogyrus anguillae, together with P. bini, is geographically widespread 

worldwide, also in Norway (section 4.2) due to uncontrolled transport of live eels, even 

intercontinental transfer (Køie 1988c, Matejusová et al. 2003).  

Trematoda  

Trematodes have complicated life cycles with several hosts involved. The first intermediate 

host is most often a mollusc, gastropod or bivalve, where cercaria larvae develops. These are 

usually released and may infect the second intermediate host, where they develop into 

metacercaria larvae. The final host is most often infected by eating the second intermediate 

host with metacercariae.   

The examined eels hosted nine different trematode species, one species as a metacercaria 

larvae and eight as adults. All the trematode species, except two, are generalists that are able 

to infect different teleost species. The specialist trematodes seen were the marine Deropristis 

inflata and Lecithochirium rufoviride which only infects eels.  
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Deropristis inflata  

Deropristis inflata differs from most digeneans by its unusual host-specificity pattern, the 

trematode is host-specific in regard to the final host, the eel, while the cercariae of D. inflata 

develop in several gastropod groups. The second intermediate hosts are nereid polyachaetes, 

such as Hediste diversicolor that harbour metacercariae (Vaes 1978, Køie 1988b). Most other 

digeneans are host-specific toward the first intermediate host (Køie, 1988b). 

Deropristis inflata appears to be the most common parasite of European eels in saline waters. 

Kristmundsson and Helgason (2007) compared intestinal helminth component communities 

between brackish and marine localities in Europe and found that D. inflata was the dominant 

species at 15 of 19 localities (distributed between six countries). In the present study, D. 

inflata was not found to be the dominant species at any of the marine localities, but is the only 

trematode that is present at all. The infected eels most likely got infected by eating H. 

diversicolor.  

The parasite has previously been reported from European eels in Norway from Bergen 

(Olsson 1868), and from below the Sarpsfossen in Glomma (Mo & Sterud 1998). The latter 

observation suggest that it may be brought into freshwater by eels, and can be a biological tag 

for eels that have fed in the sea.  

 

Podocotyle atomon  

Podocotyle atomon is a widely distributed parasite of marine fishes (Hunninen & Cable 

1943). The life cycle involves cercariae that develop in the littoral snail Littorina saxatilis, 

which is the main snail host and first intermediate host. The second intermediate host is 

various crustaceans, especially amphipods where infectious metacercariae develop. These 

then infect the final host, apparently any marine teleost (Hunninen & Cable 1943, Køie 1984).  

In the present study P. atomon was registered in saltwater caught eels from Etne and 

freshwater-caught eels from Bjugn. The parasite is most common in sheltered areas, often 

with reduced salinity (Køie 1984). Estuarine environments are widespread in Norway, 

including outside the river mouths in Bjugn and Etne. Kennedy et al. (1992) also reported P. 

atomon from freshwater-caught eels in England. They explained these findings by the 

proximity of the sampling locality to the estuaries. This is most likely also the case in this 
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study whit the sample locality in Bjugn being a maximum of 200 m from the river mouth. The 

eels could readily make sojourns downstream to brackish waters and feed on e.g. amphipods. 

This is the first registered finding of Podocotyle atomon in European eel in Norway, but it has 

been registered in this host in other European countries like Denmark, Germany, England, 

Iceland and Portugal (Jakob et al. 2016).   

 

Helicometra fasciata  

Stossich (1902) described a separate species, Helicometra mutabilis (Stossich, 1902) from 

marine eels (Adriatic Sea), which is very similar to the present form, except for a relatively 

larger ventral sucker in the Adriatic species. That species is now considered synonymous with 

H. fasciata (Aken’Ova et al. 2006). H. fasciata has been described from many parts of the 

world, such as Oceania, Australia, the Mediterranean and the northeast North Atlantic. 

However, as suggested by Aken’Ova et al. (2006), the present LSU rDNA sequences support 

that H. fasciata is a species complex, consisting of several morphologically similar species.  

The first intermediate host for H. fasciata is certain snails in the genus Steromphala 

(previously Gibbula), one of which is common on kelps in the Norwegian fjords. Second 

intermediate hosts are certain shrimps in shallow water (Palaemon spp.), harbouring 

metacercaria larvae of the trematode in the musculature (H. fasciata life cycle reviewed by 

Blend and Dronen (2015)). Hence, the eels from Grimstad likely acquired their H. fasciata 

infections by feeding on glass shrimps Palaemon elegans or Baltic shrimps, P. adspersus. 

Olsson (1868) found Helicometra faciata in eels from Bergen.  

 

Hemiurus communis  

Hemiurus communis is found in the stomach of fish from several families and is considered 

unspecific. It has a boreal distribution, in European coastal waters from the Bay of Biscay to 

about Lofoten in Norway (Køie 1984, Gibson & Bray 1986, Gibson 1996).  

The life cycle involves at least three hosts. First intermediate host is a marine snail (Retusa 

truncatula) where the cercaria develops. The free-swimming cercariae infect zooplankton 

copepods being second intermediate hosts that harbour metacercariae. These are infective for 

the final host, a teleost fish. Small fish species and young specimens of final hosts acquire the 

parasite by ingesting infected copepods, while larger fishes most likely acquire the trematode 
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by ingesting smaller infected fishes (Køie 1995). Hence, the eels of the sizes studied here 

likely became infected by eating smaller planktivorous fishes.  

Hemiurus communis has previously been reported from European eel from Norway, in 

Bergen (Olsson (1868) vide Odhner (1905)). The species has also been reported from 

seawater-caught eels in Denmark and Germany (Jakob et al. 2016).  

 

Brachyphallus crenatus  

Brachyphallus crenatus has an Arctic-boreal distribution and is found in the stomach of 

various kinds of marine teleosts (low host specificity). Its life cycle involves at least three 

hosts, with the first intermediate host being the snail Retusa obtusa releasing cercariae. The 

second intermediate host is a zooplankton copepod where infective metacercariae develops, 

infecting planktivorous teleost final host. B. crenatus survive in anadromous salmonids during 

migration into freshwater, and thus the species may act as a biological indicator for marine 

foraging (Køie 1992). The parasite most often infects salmonids, clupeids, gasterosteids and 

pleuronectids, but is also found infecting European eels in both brackish and marine areas in 

Denmark and in marine areas in Germany and Poland (Køie 1988b, Køie 1992, Jakob et al. 

2016). The parasite has not previously been registered in European eel in Norway.  

 

Lecithochirium rufoviride   

Lecithochirium rufoviride is a trematode which is specific to eels, infecting both the European 

eel and the conger eel, Conger conger (Køie 1990).  

The life cycle of L. rufoviride has been found to involve four hosts (Køie 1990). The cercariae 

develop in the gastropod Steromphala cineraria (Køie 1990), copepods are supposed to act as 

second intermediate host and small fishes, e.g. goldsinny, as third intermediate host. Eel and 

conger are final hosts (Køie 1984).  Experimental life cycle studies indicate that the species in 

addition to the four-host life cycle could have a three-host life cycle, depending on the 

crustacean host (Køie 1990).  

In the present study, L. rufoviride was found in the stomach of seawater-caught eels from 

Grimstad and Smøla. The parasite showed a strong correlation between abundance and eel 

size. In this case the larger eels, eating small fishes with metacercariae, will accumulate a 
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higher abundance of the trematode compared to the smaller eels that could become infected 

by feeding on copepods.  

Lecithochirium rufoviride has previously been registered in European eels in Norway from 

Sotra, Bergen and Langesund (Olsson 1868, Lönnberg 1890, Gibson & Bray 1986). It has 

also been registered in eels from Denmark, Faroe Islands, Germany, Portugal and Spain 

(Jakob et al. 2016).  

 

Derogenes varicus  

Derogenes varicus is a very common trematode in the stomach of marine fish from the North-

Atlantic including the entire Norwegian coast. It infects a wide range of unrelated teleosts, 

and is hence regarded as unspecific (Gibson 1996, Køie 2000).  

The life cycle, that takes place in saltwater, involves at least three hosts; the first intermediate 

host is a snail (Lunatia spp.) where the cercariae develop. These infect copepods, the second 

intermediate host where infective metacercaria develop in the body cavity. The second 

intermediate host can be a number of common zooplankton copepods, like Calunus spp. The 

final host, normally a teleost, is infected by eating zooplankton. Also, several different 

transport hosts can be part of the life cycle, like chaetognatha, ctenophores or planktivorous 

fish (Køie 1979). Predatory fish accumulate D. varicus from eating prey and the intensity of 

infection with the parasite can therefore get high in predators such as cod (Meskal 1967). The 

seawater-caught eels found infected from Etne and Smøla found infected had likely become 

infected by feeding on small fish, such as sandeels.  

Derogenes varicus has previously been reported from European eel in Norway, from Bergen 

by Olsson (1868) and the Trondheimsfjord (Land et al. 1966), but has also been registered in 

other fish species along the entire Norwegian coast (Køie 1984). The parasite has been 

registered in European eels from Iceland, Denmark and Spain (Jakob et al. 2016).  

 

Lecithaster gibbosus  

Lecithater gibbosus is a common trematode that infect the intestine of marine teleosts in the 

North Atlantic ocean and adjacent seas. The parasite is recorded in the intestine of members 

from most teleost families, and is therefor not considered host spesific (Køie 1989, Gibson 

1996).  
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The life cycle is marine with cercariae that develops in the snail Branchystomia eulimoides. 

The released cercariae are eaten by certain zooplankton copepods acting as a second 

intermediate host. These then contains infective metacercaria in the body cavity. The final 

host is a plankton feeding teleost or larger predatory fish feeding on them again (Køie 1989).  

L. gibbosus (as Distoma bergense Olsson, 1868) was reported from European eel from 

Bergen, Norway  (Olsson 1868). The trematode has also been recorded in seawater-caught 

eels from Denmark and Spain (Jakob et al. 2016).  

The European eel of the size studied here probably become infected after eating planktivorous 

fishes, the trematode likely being transferred from one fish host to another (Køie 1989).  

 

Diplostomum spathaceum  

Metacercariae from members of the genus Diplostomum inhabit the brain and various regions 

of the eyes of fish (Field & Irwin 1995). Only one of the eels studied here had metacercariae 

infecting the vitreous humour of the eye, identifies as Diplostomum spathaceum.. Hence 

European eel may serve as the second intermediate host in the three-host life cycle of this 

trematode. The first intermediate host is the snail Lymnaea pereger were the cercariae 

develop, and the parasite matures in a fish-eating bird (Køie 1988a, Køie 1988b).  

Diplostomum spp. metacercariae have been registered in European eels from Denmark, 

England, Ireland, Iceland, Latvia and Spain (Jakob et al. 2016). Mo and Sterud (1998) 

reported Diplostomum sp. from European eel in Norway from Årungen lake in Eastern 

Norway. The present case seems to be the first time that such metacercariae in eel has been 

identified to species.   

Cestoda 

Eels can act as both intermediate host for larval stages and final host for adult individuals in 

the life cycle of cestoda. When fish act as intermediate host the plerocercoids are found either 

free in the gut or encapsulated in tissues, depending on the cestode group. Encapsulated 

plerocercoids can accumulate in older fish since they may be long lived. Adult worms are 

found attached by their scolex to the intestinal mucosa (Bruno et al. 2013). The typical life 

cycle of cestodes include a free-living egg or larval stage (coracidium), a procercoid stage in 

the first intermediate host (in general a copepod), and a plerocercoid stage in the second 
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intermediate host (a large variety of copepod-eating anials), and the adult in the final host 

(fish-eating fish, birds or marine mammals) (Möller & Anders 1986).  

 

Scolex pleuronectis  

Scolex pleuronectis is today used as a designation for tetrabothridial cestode larvae normally 

found free in the intestine of marine teleosts and in squids. It is now clear that larvae of this 

type is the alternating stage of several groups of phyllobothriidean and onchobothriidean 

cestodes (Caira & Jensen 2014). The morphologically very similar plerocercoids of this type 

found in eels from Etne likely all represented Phyllobothrium squali according to the 28S 

rDNA sequences. This species matures in the spiral valve of dogfish Squalus acanthias, a 

shark very common in the area.  

 

Proteocephalus macrocephalus  

Proteocephalus macrocephalus is a specific parasite of eels, found in the intestine (Køie 

1988b, Scholz & Hanzelova 1998, Dezfuli et al. 2014). Certain planktonic copepods are first 

intermediate hosts, containing procercoids developing in their body cavity (Køie 1988b, 

Scholz 1999). The definitive hosts, eels, can become infected directly when consuming  the 

copepods. However, larger eels rarely feed on copepods, so invertebrates and small prey 

fishes feeding upon plankton are likely to occur in the life cycle, but their role in the 

transmission is unclear (Scholz 1999). Free Proteocephalus larvae are common in the 

intestine of small fish such as sticklebacks (Rødland 1980, Zander et al. 2002).  

Proteocephalus macrocephalus is a freshwater parasite but tolerant the eel’s migration to sea 

(Dezfuli et al. 2014). In the present study the cestode is recorded from eels in Etne, where it 

was found both in freshwater and seawater-caught fish. The infected seawater-caught eels 

were caught near the river mouth of the river Etneelva, which can explain the freshwater 

parasite infection with habitat shifting eels. 

The tapeworm has previously been recorded in European eels from Norway by Andersen 

(1979). Those eels were caught in brackish waters in the Oslofjord. Besides Norway, the 

parasite has been registered in countries all over Europe (Jakob et al. 2016).  
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Bothriocephalus claviceps  

Bothriocephalus claviceps is a common intestinal parasite specific to eels (Køie 1988b, 

Scholz 1997, Dezfuli et al. 2014). The tapeworm only require one intermediate host, a 

cyclopid copepod, for completing the development. It is also assumed that small fish can 

serve as transport hosts, and represent a source of infection for the larger eels (Scholz 1997). 

The life-cycle is carried out in freshwater (Dezfuli et al. 2014).  

In the present study the tapeworm was registered at three of the freshwater localities, Etne, 

Bjugn and Orkla. It has previously been found eels caught in Årungen and lower River 

Glomma on the east coast of Norway by Mo and Sterud (1998).  

 

Dibothriocephalus ditremus  

Species of the genus Dibothriocephalus have complex life cycles. Copepods serve as first 

intermediate hosts, fish as second intermediate host harbouring encapsulated plerocercoids, 

and fish-eating birds or mammals as final hosts. D. ditremus is mostly found as plerocercoids 

in salmonids and the final host is mergansers (Henricson 1977, Borgstrøm et al. 2017). In the 

salmonids, the small plerocercoids are normally found in the stomach wall, the same site they 

were found in the freshwater-caught eels from Etne. Within the eels, the capsules were 

brownish, and many contained recognizable but degenerated plerocercoids. In addition there 

were capsules without identifiable contents, perhaps remains of killed and degenerated 

worms. This is the first record of this tapeworm species in European eel.  

Eubothrium cf. crassum 

Eubothrium crassum (Bloch, 1779) is a widespread parasite which is found in the alimentary 

tract of salmonids in freshwater. A similar or conspecific tapeworm is also found to infect 

salmonids in seawater, and the marine ‘race’ or species is often referred to as Eubothrium sp. 

(Berland 1997). This is a common cestode in farmed salmon and trout at aquaculture 

localities on the west coast of Norway. The life cycle of both the freshwater and marine form 

is relatively simple with only one intermediate host, copepods (Rosen 1919, Saksvik et al. 

2001). Small fishes are important transport hosts, but are not essential for the continuation of 

the life cycle (Vik 1963). In Norway, the natural final hosts are the Salmo spp. The 

importance of Eubothrium larvae that end up in the wrong fish host is unknown.  
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Free bothriocephalidean plerocercoids were found in the lumen of the intestine in seawater-

caught eels from Etne. Some of the largest specimens were morphologically similar to 

Eubothrium crassum, whit craspedote strobila. The smaller specimens had a smoother surface 

and were not possible to identify morphologically. A selection of these, together with 

specimens morphologically similar to Eubothrium crassum, were molecularly identified using 

LSU rDNA sequencing. All sequences were similar to Eubothrium crassum and Eubothrium 

sp. from seawater farmed Atlantic salmon (Salmo salar) in Norway. However, marine and 

freshwater specimens of E. crassum cannot be distinguished from each other morphologically 

or molecularly so they are therefore referred to as Eubothrium cf. crassum. Since there were 

no such plerocercoids in freshwater-caught Etne eels, it is highly likely that these 

plerocercoids represented the marine form, common in farmed Atlantic salmon in the 

Hardangerfjord. 

The tapeworm have been recorded from European eels caught in Lake Neusiedler in Austria 

(Kritscher 1986, Jakob et al. 2016). However, Scholz et al. (2003) found that the tapeworms 

from Austria were misidentified, they represented Bothriocephalus claviceps. Hence there are 

no previous valid records of E. crassum in eels in Europe.  

4.1.4 Acanthocephala 

Echinorhynchus gadi  

Echinorhynchus gadi is the most common acanthocephalan infecting marine fish in the North 

Atlantic (Marcogliese 1994) and the only adult acanthocephalan infecting marine fish in 

Norway. E. gadi is a common parasite in codfish, but may be found in almost all marine 

teleosts in Norway. The life cycle involves two hosts, the intermediate host is certain 

amphipods and the definitive host is a teleost (Miller 1977, Marcogliese 1994).  

The parasite was registered in three eels in total, seawater-caught eels from Etne and Smøla. 

This is the first record of E. gadi in European eels in Norway. It has previously been 

registered in European eels from Germany and Russia (Jakob et al. 2016).  

4.1.5 Nematoda 

Nematodes or roundworms are among the most common parasites. As a group they are easy 

to distinguish from other worms, but species determination is complicated. Roundworms 
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parasitize fish in both their adult and larvae stage. The life cycle can be direct or involve one 

or several intermediate hosts, and often transport hosts. Crustaceans are known to play an 

important role as intermediate hosts for most species (Möller & Anders 1986). 

 

Pseudocapillaria tomentosa  

Pseudocapillaria tomentosa is a wide-spread intestinal parasite of freshwater fishes in the 

Northern Hemisphere. It is mainly a parasite of the intestine of cyprinids in Europe, but is also 

found in other fishes (Anderson 2000, Leis et al. 2016). The roundworm has a direct life 

cycle, with oligochaetes which may serve as transport hosts (Leis et al. 2016).  

In Europe, the parasite is known form the U.K., Scandinavia and throughout Europe from 

France to trans-Caucasia (Leis et al. 2016). It is reported from European eels from Denmark, 

Germany, Italy and Spain (Jakob et al. 2016), it has not previously been reported from 

European eels in Norway.  

 

Eustrongylides sp. 

Eustrongylides spp. are found in both marine and freshwater fish and uses teleosts as an 

intermediate host in the life cycle. The first intermediate host is aquatic oligochaetes were the 

nematode develops to a third stage larvae (Measures 1988). These infect fish, which serve as 

a transport host, and develop into fourth stage larvae. The larvae are encapsulated, mainly in 

the mesentery and the intestinal serosa. Some of the encapsulated larvae undergo degeneration 

and die, due to the hosts immune responses. Larvae that survive in the teleost may end up in 

the final host, a piscivorous bird (Anderson 2000, Urdes et al. 2015).  

The Eustrongylides sp. specimens observed in the freshwater-caught eels in Etne were 

encapsulated in the stomach wall. Some were degenerated and presumed dead. This can be an 

indication that eels are unsuitable hosts. These worms may grow much larger in salmonids 

which seems to be the dominant hosts in western Norway (Elnan 1995). The identity of the 

Eustrongylides sp. infecting salmonids and eels in western Norway is unknown, but some 

authorities have identified them with E. mergorum (Rudolphi, 1809), a species infecting 

Mergus spp. (Køie 1988a, Elnan 1995). Goosander Mergus merganser is a final host in 

Norway according to Elnan (1995), who found adult mature worms in the proventriculus of 

this fish-eating duck.  
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This is the first reported observation of Eustrongylides sp. in European eels in Norway, but 

several Eustrongylides spp. have been reported from eels in Europe previously (Urdes et al. 

2015, Jakob et al. 2016).  

 

Daniconema anguillae  

Daniconema is a tissue parasite, and has been registered in the swim-bladder, intestine and in 

the subcutaneous connective tissue in the fins of eels in freshwater (Køie 1988b, Molnár & 

Moravec 1994, Molnár 1997).  

The life cycle of the genus Daniconema has not been studied, but the life cycles of related 

deniconematids and skrjabillanids are known. These nematodes develop in the ectoparasitic 

branchiurans, Argulus spp., being the intermediate hosts. It is highly probable that D. 

anguillae larvae also reach the third larval stage, the maturity level necessary for infectivity, 

in that crustacean (Molnár & Moravec 1994, Molnár 1997). The parasite is transferred to the 

host’s tissue when it penetrates through the crustacean’s mouth organs as the crustacean is 

sucking blood from the host. After entering the connective tissue, the parasite can migrate into 

internal organs of the fish host for further development and maturation (Molnár & Moravec 

1994).  

In the present study, D. anguillae was found in freshwater-caught eels from Grimstad, Etne 

and Orkla. Larvae of the hostozoic parasite was detected in the connective tissue of the 

pectoral fin, dorsal fin and in the gill lamellae, but likely occurred throughout much of the 

eel’s tissues. The abundance of D. anguillae larvae, as quantified in the pectoral fins or gills, 

showed a positive correlation with eel length. If a blood sucking branchiuran of the genus 

Argulus is involved in the life cycle (Molnár 1997), the eels may become infected when the 

branchiuran feed on eel blood. The older and larger eels may have experienced this several 

times, a possible explanation for them harbouring more larvae. However, this is uncertain, 

since this life cycle pattern occurring in other daniconematids has not yet been studied and 

verified for D. anguillae. Curiously, there was a single infected eel in freshwater in 

Litledalsvatn, Etne. Arguglus spp. is not known to occur in western Norway north of Jæren 

(Økland 1985, Sterud 1999), so this individual is either a migrant or the transmission of the 

parasite is independent of the branchyuran.  

Infections in the gills have not been registered before, and this is also the first reported 

infection with Daniconema anguillae in European eel in Norway. In Europe, the nematode 
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has only been detected infrequently and in few countries (Molnár 1997, Jakob et al. 2016). 

But as the present study evidence, the prevalence might be much higher than what has been 

registered based on swimbladder examinations, due to the fact that the parasite is dispersed in 

the tissues and difficult to detect so even heavy infections may be overlooked (Molnár 1997).  

 

Paraquimperia tenerrima  

Paraquimperia tenerrima is a specific freshwater parasite of the European eel. Several studies 

has been done on the life cycle of the nematode and different cycles has been proposed 

(Kennedy et al. 1992, Barker & Cone 1997, Shears & Kennedy 2005). An indirect life cycle, 

involving an intermediate host, seems most likely (Shears & Kennedy 2005). The identity of 

the intermediate host has been considered to be a planktonic invertebrate, or a fish (Kennedy 

et al. 1992, Barker & Cone 1997, Shears & Kennedy 2005). Shears and Kennedy (2005) 

studied the capability of stage two larvae to infect invertebrates, eels directly and other fish 

species. They concluded that P. tenerrima require an obligate fish intermediate host and 

found that in England this was the minnow (Phoxinus phoxinus).  

Freshwater-caught eels from Etne, Bjugn and Orkla were registered infected in this study. 

Minnow is not known to inhabit these localities, so other small fish could be involved. 

Stickleback are widespread in the coastal areas where eels live, is known to be a part of the 

eels diet (Jakobsen et al. 1988), and seems a candidate. 

Paraquimperia tenerrima has been reported from wild eels in Norway previously, Mo and 

Sterud (1998) reported the parasite from eels caught in Årungen and Glomma. The late prof. 

B. Berland found it in eel in Lake Kalandsvatn near Bergen (pers. comm. Karlsbakk). The 

nematode has also been registered in several other countries in Europe (Jakob et al. 2016).  

 

Paracuaria adunca  

Paracuaria adunca is an avian parasite that uses fish as a transport host. The fish is infected 

by third stage larvae which develops in the first intermediate host, an amphipod. The final 

host is gulls (Laridae) (Anderson & Wong 1982).  

Only seawater-caught eels from Etne were infected with this nematode. This is the first 

registered finding of P. adunca in European eels caught in Norway. The parasite has been 
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recorded in other fish species in Norway (Karlsbakk et al. 1996), and in eels in Denmark and 

Germany (Jakob et al. 2016).  

 

Cucullanellus minutus  

Only a single specimen of this nematode was found. It is a parasite of flatfishes, in particular 

the flounder Platichtys flesus. Intermediate host is the marine polychaete Hediste diversicolor. 

However, immature and even adult specimens occasionally occur in gobies, which also may 

act as transport hosts (see Køie (2001)).  

This is the first record of C. minutus in European eel caught in Norway. Cucullanellus spp. 

have previously been reported from eels from the areas around the British Isles, Spain and 

Russia (Jakob et al. 2016) 

 

Hysterothylacium aduncum  

This is a common parasite in the digestive tract of marine teleosts in Norway, Europe and 

elsewhere. Larvae of the species are known to occur in marine crusteaceans, particularly 

copepods (benthic or planktonic), which serve as the first intermediate host. Invertebrates or 

fish ingesting crustaceans with larvae may serve as a second intermediate host or a transport 

host with third stage larvae (Køie 1993) encapsulated in the viscera. However, when fish 

ingest prey harbouring larger third-stage larvae (>3 mm), these may moult to preadults and 

finally adults in the gut (Køie 1988b, 1993). Smaller larvae may re-establish in viscera (Køie 

1993). Remarkably, the eels in the present study were only found infected with adults and 

preadults, suggesting they tend to eat prey with larvae longer than about 3 mm. 

Kristmundsson and Helgason (2007) found only encapsulated larvae in Icelandic eels, while 

Køie (1988b) found both larvae and adults in Danish eels. Therefore, eels do seem to act as 

transport hosts.  

This is the first record of H. aduncum in eels caught in Norway. The parasite has been 

registered in eels in other parts of Europe from France in the south to Iceland in the north 

(Kristmundsson & Helgason 2007, Jakob et al. 2016).  
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Anisakis simplex  

Anisakis simplex is a parasite which is common as a third stage larvae in a variety of marine 

teleosts. The final host in the lifecycle is certain whales (Mattiucci et al. 2017). Krill 

(Euphausiacea) represent the most important first intermediate host where third stage larvae 

develop. The final host can be infected directly by eating krill, but fish or squids who eats 

krill may act as transport hosts (Højgaard 1998). This parasite may be transmitted from prey 

to predator fish, accumulating in the food chain (Haarder et al. 2013).  

In this study, A. simplex were registered in seawater-caught eels from Smøla and in 

freshwater-caught eels from Grimstad. Being a marine parasite, the finding in freshwater-

caught eels is surprising, but there are similar cases. Aguilar et al. (2005) and Saraiva and 

Eiras (1996) both registered findings of A. simplex in Iberian freshwater-caught eels. Saraiva 

and Eiras (1996) examined eels caught in the rive Este (Portugal), and considered the 

occurrence of the marine parasite either as due to an infection acquired during their estuarine 

glass eel phase or an indication that they may migrate down to and feed in the estuarine 

waters after freshwater entry (inter habitat shifting). Anguilar et al. (2005) examined eels 

caught in two rivers in Spain and found 89 specimens of the parasite in one large eel from the 

river Ulla. They also concluded that the parasite most likely had been acquired in the marine 

environment, probably as a result of ingestion of small marine fish. The freshwater-caught 

eels from Grimstad were also relatively large and may also have the acquired A. simplex 

infections by feeding on small marine fish. However, the freshwater locality in Grimstad 

differs from the others studied here with the seawater inflow. Albeit the saline bottom waters 

tend to be anoxic, certain marine fishes such as herring do enter the lake. Therefore, it is 

possible that the eels there may have become infected with A. simplex larvae when eating a 

transport host of marine origin in freshwater. A feeding excursion to the Strandfjord is also a 

possibility, there are no barriers. However, that they should acquire infections in marine 

waters before they entered the lake as juveniles seems contradicted by the general lack of A. 

simplex in other freshwater eel populations (present study, Jakob et al. 2016)  

This is the first registered finding of A. simplex in European eels caught in Norway. Other 

reports of the parasite in European eels are from Germany, Iceland, Spain and Portugal 

(Saraiva & Eiras 1996, Jakob et al. 2016), mostly from seawater-caught fish.  
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Contracaecum spp. 

Parasites of the genus Contracaecum are common anisakids of aquatic organisms in 

freshwater, brackish and marine ecosystems (Garbin et al. 2011). Besides a phylogenetic 

clade with Contracaecum spp. infecting pinnipeds (Nadler et al. 2005), most Contracaecum 

spp. infects fish-eating birds. The life cycles of the avian species involves several hosts, often 

with crustaceans as first intermediate host, various fish species as second transport hosts and 

piscivorous birds as final host (Li et al. 2005, Szostakowska & Fagerholm 2007). Direct 

infections of fish with C. rudolphii larvae is also possible (two-host life cycle), but this may 

be uncommon in nature (Moravec 2009, Dziekonska-Rynko et al. 2010). 

In the present study, Contracaecum spp. larvae were in registered in eels caught in both 

freshwater and seawater. DNA sequences (ITS) showed that worms from Grimstad FW, 

Grimstad SW and Etne SW belonged to the Contracaecum rudolphii complex. Studies on the 

internal transcribed spacers (ITS) in the rDNA of C. rudolphii have shown that this species is 

genetically heterogenous and there are at least two sibling species in Europe which are 

reproductively isolated genotypes, referred to as C. rudolphii A and B (Li et al. 2005, 

Szostakowska & Fagerholm 2007). Both are parasites of cormorants (Phalacrocorax spp.). 

The present C. rudolphii from Grimstad FW and Grimstad SW and Etne SW was of type A, 

apparently a species with marine or estuarine life cycle since the larvae are confined to fish on 

these environments (Szostakowska & Fagerholm 2007). However, the sequences obtained 

from worms from eels caught in the Smøla area were of another species, these genetically 

identified with Contracaecum chubutensis (Garbin et al. 2011). An adult worm from a 

cormorant from Masfjord included in the genotyping had the same identity, previously only 

known from cormorants in Argentina. The worm from Etne FW was not possible to identify, 

because the genotyping was ambiguous, with similarity to both C. rudolphii A and B. 

Genotype B is considered a freshwater species (Szostakowska & Fagerholm 2007).  

This is the first time Contracaecum rudolphii and C. chubutensis has been reported from 

European eels caught in Norway. C. rudolphii sensu lato has previously been reported from 

Denmark and Contracaecum sp. from eels in several other countries in Europe (Jakob et al. 

2016).  
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Anguillicola crassus  

The blood-sucking swimbladder nematode, Anguillicola crassus, is an eel specialist (Køie 

1991). The species is ovoiviparous and is trophically transmitted. At least two hosts are 

involved in the life cycle that takes place in freshwater, an intermediate host and the eel 

definitive host. The intermediate host is a freshwater cyclopoid copepod that hosts the 

developing third stage larvae which is infective to eels. Small fishes can serve as transport 

hosts and be another source of infection for the eels (Køie 1988c, 1991, Kennedy 2007, 

Lefebvre et al. 2012).  

In this study, the parasite was only registered in eels caught in Grimstad, 23 freshwater-caught 

eels and one seawater-caught eel. The infection found in the seawater-caught eel indicates that 

this eel has spent time in freshwater. Kennedy and Fitch (1990) showed that the adult parasite 

could survive for up to four weeks when eels were kept in 100 % seawater. A. crassus larvae 

can also survive in brackish waters, but both the survival and infectivity decreases with 

increased salinity (Kennedy & Fitch 1990).  

A. crassus has not only spread in Europe and Norway (section 4.2), but worldwide and is 

known to infect six out of 15-20 eel species currently described (Lefebvre et al. 2012). 

4.1.6 Parasites not found 

Some parasite species previously recorded in European eel from Norway were not registered 

in the present study. The trematode Azygia lucii, vestode Triaenophorus nodulosus, nematode 

Camallanus lactustris and copepode Ergasilus sieboldi recorded by Mo and Sterud (1998) in 

eels caught on the east coast of Norway, were not registered at any of the localities examined 

here because their final hosts are not naturally present there. Pike (Esox Lucius) is final host 

to A. lucii and T. nodulosus, and pike has been introduced several places in the west but as far 

as known without these parasites. Camallanus lacustris primarily infects perch (Perca 

fluviatilis), also a species that has been spread to the west, but so far this parasite has not been 

found there. Ergasilus sieboldin infects a wide range of freshwater fishes, but the most 

important hosts are cyprinids (Kabata 1979). Which in Norway is only known from the 

eastern parts, Østfold and Akershus (Sterud 1999). Trypansosoma granulosum is a blood 

flagellate, transmitted by a freshwater leech, Hemiclepsis marginata. This leech occurs in 

eastern and southern Norway (Økland & Økland 2010). The eels from the present study were 

mostly examined frozen, so the occurrence of this flagellate was not studied.  
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Some microparasites such as Ichthyobodo spp., Trichodina spp. and Gyrodactylus spp. cannot 

or hardly be detected my microscopy in frozen fish, since they are destroyed. Therefore, 

infections with these may have been present unnoticed, except in the Etne localities where 

squash preparations of fresh gills were examined without detecting them. Trichodina sp. and  

Gyrodactylus sp. has previously been detected in Norwegian eels (see Table 1).  

4.2 Parasite communities 

The parasite communities in European eel in Norway are less diverse than in more southern 

parts of Europe. Important crustaceans such as copepods were not detected, or any of the 

freshwater acanthocephalans occurring in continental Europe (Jakob et al. 2016). Some eel 

specific parasites such as Bucephalus anguillae Spakulova, Macko, Berrilli et Dezfuli, 2002 

and Spinitectus inermis (Zeder, 1800) also appears to be lacking, likely due to the absence of 

suitable intermediate hosts (Abdallah & Maamouri 2002, Saraiva et al. 2002).  

A similar number of metazoan parasite species can be expected in a random freshwater eel 

individual (2.3-3.0) and a marine individual (2.2-3.4). A major difference is the number of 

myxosporeans (0.7-1.4 v.s. 0.3-0.5) will be expected since Hoferellus gilsoni and Zschokkella 

stettinensis never occur in seawater eels. However, the number of endohelminth individuals 

per eel is much higher in the sea, and there are several species. Contrary to in freshwater, 

most parasites are adult, suggesting that eels have a limited role in transmitting parasites to 

larger predators. In freshwater however, the situation is different, with perhaps half the 

parasites being larvae. This could be because glass eels, elvers and small yellow eels can be 

important prey for e.g. fish-eating birds such as merganers. A higher proportion of the 

freshwater parasite individuals (>77 %) are eel-specific, that in seawater (32 %). Still there 

are two marine parasites that exclusively (Deropristis inflata) or mainly (Lecithichirium 

rufoviride) infects eels. This remarkable fact is actually a strong indication that a significant 

proportion of the eels live in the sea. The difference between the freshwater and marine eels is 

particularly clear when comparing the gastrointestinal parasite communities. In Grimstad, 

only a single specimen of the capillariid Pseudocapillaria tomentosa was found in all the 30 

eels examined. In marine eels from Etne and Smøla, 75-85 parasite individuals per eel can be 

expected. Overall, Paraquimperia tenerrima was the dominant parasite in freshwater, and D. 

inflata in the sea; both eel specialists.  
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4.3 Spread of exotic parasites  

Two of the three exotic parasites previously registered in Norway were recorded in the 

present study. The swimbladder nematode, A. crassus, introduced in a Norwegian eel farm in 

1993 (Mo & Steien 1994) and later registered in wild-caught eel (Engø 1997, Mo 2009) is 

believed to have spread further northwards from Imsa in Rogaland to Hordaland and Sogn og 

Fjordane (NBIC 2018a). The present study documents its presence in Grimstad (Fig. 45) but 

also suggests, whit the absence of the parasite in Etne, that it has not yet spread to the 

Hardanger area in western Norway. Still, further spread northwards seems likely.  

 

 

 

 

 

 

 

 

 

 

Figure 45 Known 
geographical range (red 
colour) of Anguillicola crassus, 
localities with previous 
observations (yellow dots) – 
(left to right) Imsa, Farsund, 
the river Storelva, 
Drammenelva , Enningdal 
selva and the Oslofjord, new 
observation (blue dot) – 
Grimstad.  
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Pseudodactylogyrus anguillae have since it was 

introduced in a Norwegian eel farm in 1987 (Mo et al. 

1988) and later, in 1998 when it was registered in wild 

eels, spread along the east coast of Norway (Mo & Sterud 

1998). The record from Grimstad in this study increases 

the previously known geographical range of P. anguillae 

further south (Fig. 46). Mo and Sterud (1998) also 

recorded the other Pseudodactylogyrus species, P. bini, 

which was not found in Grimstad. The chances that P. 

anguillae has spread further than P. bini, as the present 

study suggests, is high due to the fact that P. anguillae is 

able to reproduce at elevated salinities (Køie 1988c, 

Buchmann et al. 1992, Mo & Sterud 1998). P. anguillae 

also has an advantage in spreading when it comes to 

temperatures required for egg hatching. The eggs of P. 

anguillae needs fewer days to hatch at 10°C then P. bini’s 

eggs which do not develop or develop very slowly at lower 

temperatures. (Køie 1988c).  

4.4 Parasites as biological indicators 

Parasites can be used as biological indicators of the populations biology, the migration 

patterns, diet and phylogenetics of fish (Williams et al. 1992). Bailey et al. (1989) looked into 

freshwater parasites potential as biological indicators in fish caught in seawater, and found 

several that could suitable due to their long-time survival in marine conditions.  

4.4.1 Parasites as inter-habitat shifting indicators 

Out of the 34 parasite species recorded, 30 were considered indicator species. Only eight of 

them were found infecting fish from the opposite habitat of their origin. The freshwater 

myxosporeans Paramyxidium branchialis, P. magi, Myxobolus sp., the cestode 

Proteocephalus microcephalus and the nematode Anguillicola crassus were detected in 

seawater-caught eels. The three seawater species detected in freshwater-caught eels were the 

Figure 46 Known geographical 
range (red colour) of 
Pseudodactylogyrus anguillae, 
localities with previous 
observations - Årungen and 
Glomma (yellow dots), new 
observation - Grimstad (blue dot). 
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trematode Podocotyle atomon and larvae of the nematodes Anisakis simplex and 

Contracaecum rudolphii A.  

The myxosporean parasites infected 31 of the 32 ( 41 %) freshwater infected seawater-caught 

eels. These parasites infect fish through penetration of the body surfaces (skin/gills) by 

sporoplasms from actinospores. Hence only exposure to freshwater is necessary in order to 

become infected. Infections with such histozoic myxosporeans are likely long lasting 

(Margolis 1982), and they are therefore represent good indicators for a freshwater residency 

in some part of the life history, but does not indicate how recent.   

P. branchialis was the most prevalent myxosporean. Based on the molecular data, the 

following life cycle seems likely: Eels in lakes are exposed to synactinomyxon actinospores 

released from the oligochaete Tubifex tubifex. As in other myxosporeans, the sporoplasm 

secondary cells eventually give rise to plasmodia at a final site, here the eel gill-filaments. 

The plasmodia then develop myxospores (Holzer et al. 2004, Kristmundsson & Helgason 

2007). The prevalence of P. branchialis was high (>30 %) at all the localities, except Bjugn 

FW, and this could suggest that most eels at some point have spent time in freshwater. In 

reality the prevalence might be even higher, when considering that only a few lamellas of one 

gill were examined microscopically. This supports the hypotheses that all eels go into 

freshwater, even at higher latitudes as in Smøla SW.  

The gastrointestinal freshwater parasites which usually live for maximum a year (Chubb 

1982, Margolis 1982), could therefore be better indicators of recent inter-habitat shifting. 

However, the endohelminths found in the present study were limited with only two species 

registered, P. macrocephalus and Anguillicola crassus. These parasites should not occur in 

seawater resident eels unless these have sojourns to freshwater. Such a case may have 

occurred in Etne SW, where P. macrocephalus infections were seen in two eels. Both these 

eels were among five eels that based on fatty acid analysis were classified as ‘brackish water’ 

(BW). They were both caught near the river mouth of the river Etneelva and may have 

become infected during visits to the river. These parasites were registered in 4 % of the 

seawater-caught yellow eels and indicate due to their shorter longevity, more recent 

movement between freshwater and marine habitats.  

Among the freshwater-caught eels, 17 (18 %) were infected with parasites of marine origin. 

Most of these were caught in Grimstad FW, which has seawater influx and is frequented by 

some marine fishes. This leaves 3 % freshwater-caught eels with parasites suggestive of inter-
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habitat shifting at the remaining localities. All the marine species were gastrointestinal and 

acquired through prey. Podocotyle atomon infected eels from Bjugn have most likely recently 

been feeding in the river mouth due to the short longevity of such trematodes (months) 

(Margolis & Boyce 1969). The parasites Anisakis simplex and Contracaecum rudolphii A 

occurred as encapsulated larvae in the infected eels and the duration of these infections are 

likely years (Chenoweth et al. 1986, Hemmingsen et al. 1993). Only eels caught in Grimstad 

FW were infected with these clearly marine nematodes which in this study makes it difficult 

to use them for indication due to the saltwater input. A. simplex has been discovere 

The lack of gastrointestinal parasites infecting eels caught in the opposite habitat of their 

origin and high prevalence of freshwater myxosporeans in both habitas are also seen in 

studies from Iceland (Kristmundsson & Helgason 2007) and Denmark (Køie 1988b). It seems 

like most seawater-caught eels have gone into freshwater as elvers, acquired an infection of 

myxospoeans which they carry their entire life, and very few re-enter freshwater later, given 

the low prevalence of gastrointestinal parasites.  

The fatty acid analysis and otolith microchemistry analyses done on the sample from Etne SW 

did not always detect a time spent in freshwater as implied by the parasite observations. 

Freshwater myxosporean infections were seen in eels with a clear marine fatty acid signature, 

which is not surprising due to the longevity of the myxosporeans. The fatty acid signature has 

a relatively short temporal resolution, weeks to a year, in comparison to parasites and otolith 

microchemistry analyses. This makes it possible for an eel who has acquired a myxosporean 

infection several years previously to also have a clear marine fatty acid signature. The same 

goes for otolith microchemistry analyses, with freshwater myxosporean infected eels showing 

marine water resident (MWR) otolith microchemistry.  

The challenge with many of the indicator parasites is the lack knowledge about the life cycles 

and the parasites longevity in the eels. More knowledge about this would increase the amount 

of  information an indicator parasite can provide. The low prevalence of most of the observed 

parasites makes it hard to use them as indicators at higher than the individual level.  

4.4.2 Parasites as diet indicators 

Some of the marine eel parasites are good indicators of the hosts diet. These typically occur as 

larval stages in only one or a few related intermediate host species. Deropristis inflata 

infections are only acquired through feeding on certain nereid polychaetes common in sandy 
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bottoms in shallow waters. The acanthocephalan Echinorynchus gadi, the trematode 

Podocotyle atomon and the nematode Paracuaria adunca are all transmitted by amphipods. 

Indeed some individual eels had very high intensities with P. adunca and E. gadi while most 

were uninfected, suggestive of prey specialization (Knudsen et al. 2004).   
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5 Conclusion and future perspectives 
 

This study provide evidence, through knowledge about the parasite’s life cycles, that 

Norwegian eels migrate between fresh and seawater. Histozoic myxosporeans were the most 

prevalent indicator species of freshwater residency and could suggest that all eels enter 

freshwater and stay for a period, after which some re-enter the sea. The gastrointestinal 

parasites indicates more recent habitat shifting. A low prevalence indicate that the amount of 

recent inter-habitat shifting is low, <5 % a year.  

Marine parasites were detected in freshwater-caught eels, but the prevalence was low when 

direct marine influence (seawater inflow) could be excluded.   

The knowledge on eel parasite diversity in Norway has been significantly increased, with 21 

additional species registered in European eel caught in Norwegian waters. A possible new 

species for science was also found. Exotic parasites were represented by Pseudodactylogyrus 

anguillae and Anguillicola crassus, but Pseudodactylogyrus bini were not recorded at any 

localities. The geographic range of P. anguillae was expanded to Landvikvannet in Grimstad, 

while the absence of A. crassus in Etne suggests that it has not yet reached Hordaland.  

There was no good association between the parasite findings and the results from otolith 

microchemistry analyses and fatty acid analysis, due to the low prevalence of short lived 

indicator parasites.  

 

The gill myxosporean Paramyxidium giardi seems to be an important indicator for inter-

habitat shifting and knowledge about the time span of a P. branchialis infection is needed. 

Future studies should also look into other methods for detection of the parasite, e.g. molecular 

testing on gill-biopsis.  
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Appendix 
Table 1 Freshwater indicator parasites used in the evaluation of eel interhabitat shifting 
(IHS). The background data for this list is provided section 3.4. 

Freshwater parasites Source Ref. 

Paramyxidium branchialis (My) Penetration Holzer et al. (2004) vide Freeman and 
Kristmundsson (2018) 

Paramyxidium magi (My) Penetration Holzer et al. (2004) vide Freeman and 
Kristmundsson (2018) 

Myxobolus sp. (My) Penetration Present study, El-Mansy (1998) 

Hoferellus gilsoni (My) Penetration Lom et al. (1986) 

Zschokkella stettinensis (My) Penetration Present study 

Pseudodactylogyrus anguillae (Mo) Penetration Buchmann et al. (1987) 

Diplostomum spathaceum (T) Penetration Køie (1988b) 

Proteocephalus macrocephalus (C)  Prey Scholz (1999) 

Bothriocephalus claviceps (C) Prey Scholz (1997) 

Dibothriocephalus ditremus (C)  Prey (Vik 1964) 

Pseudocapillaria tomentosa (N) Prey Leis et al. (2016) 

Eustrongylides sp. (N) Prey Anderson (2000) 

Paraquimperis tenerrima (N) Prey Shears and Kennedy (2005) 

Daniconema anguillae (N) Penetration Molnár and Moravec (1994) 

Anguillicola crassus (N) Prey Lefebvre et al. (2012) 
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Table 2 Marine indicator parasites used in the evaluation of eel interhabitat shifting (IHS). 
The background data for this list is provided section 3.4. 

Marine parasites Source Ref. 

Hemiurus communis (T) Prey Køie (1995) 

Brachyphallus crenatus (T) Prey Køie (1992) 

Lecithochirium rufoviride (T) Prey Køie (1990) 

Derogenes varicus (T) Prey Køie (1979) 

Lecithaster gibbosus (T) Prey Køie (1989) 

Podocotyle atomon (T) Prey Hunninen and Cable (1943) 

Helicometra faciata (T) Prey Blend and Dronen (2015) 

Deropristis inflata (T) Prey Køie (1988b) 

Eubothrium sp. (C) Prey Saksvik et al. (2001) 

Phyllobothrium squali (C) Prey Caira and Jensen (2014) 

Cucullanellus minutus (N) Prey Køie (2001) 

Hysterothylacium aduncum (N) Prey Køie (1993) 

Anisakis simplex (N) Prey Højgaard (1998) 

Contracaecum rudolphii A (N) Prey Szostakowska and Fagerholm (2007) 

Contracaecum chubutensis (N) Prey Garbin et al. (2011) 

Paracuaria adunca (N, L) Prey Anderson and Wong (1982) 

Echinorhynchus gadi (A) Prey Marcogliese (1994) 
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