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Abstract: Diet plays an important role not only in the pathophysiology of irritable bowel syndrome
(IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a
result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine
cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms
seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of
stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-,
monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore
the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a
prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut
bacteria fermentation, which results in several by-products. These by-products might act on the
stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers
decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS
symptoms and restores the density of endocrine cells.
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1. Introduction

It has been estimated that 12.1% of the world’s population suffers from irritable bowel syndrome
(IBS) [1,2]. The main symptom of IBS is recurrent abdominal pain associated with a change in the
bowel habits according to Rome IV criteria [3]. The diagnosis of IBS is based mainly on an assessment
of the symptoms as described by Rome criteria [4]. Based on stool patterns, IBS patients are divided
into four subtypes: diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), mixed diarrhea
and constipation (IBS-M), and patients who meet the diagnostic criteria for IBS, but whose bowel
habits cannot be accurately categorized (IBS-U) [5,6].

IBS is usually diagnosed in young patients in a phase of their lives when they are trying
to build a family and getting an education/working [7–18]. IBS reduces the patient’s quality of
life to the same degree as other chronic diseases such as diabetes, inflammatory bowel diseases,
and kidney failure [18–21]. IBS patients generate a substantial workload in both primary and secondary
care, and 12–14% of primary care patient visits and 28% of referrals to gastroenterologists are IBS
patients [12,13,22]. Thus, IBS is a more common reason for a visit to a physician than diabetes,
hypertension, or asthma [23,24].

IBS patients can be divided into two subsets: sporadic (nonspecific) and post-infectious (PI) [19].
Sporadic IBS includes patients who have had symptoms for a long time without any associated events.
PI-IBS occurs in otherwise healthy subjects as a sudden onset of IBS symptoms after gastroenteritis [19].
PI-IBS comprises about 6–17% of patients with IBS [25].
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There is no effective treatment for IBS, and the treatment practiced in the clinic is directed toward
the relief of symptoms [26]. An international survey showed that these patients would give up 25%
of their remaining life (average 15 years) and 14% would risk a 1/1000 chance of death to receive a
treatment that would make them symptom-free [27].

The etiology of IBS is not completely understood, but several factors are believed to play a pivotal
role in the pathophysiology of IBS. These factors are genetics, diet, gut microbiota, gut endocrine cells,
and low-grade inflammation [1]. Studies of family history and family cluster, as well as twin studies,
provide strong evidence that IBS is hereditary [28–35]. However, the gene responsible for IBS has not
been determined yet [1,36]. Low-grade inflammation occurs in some IBS patients, but far from all [1].
Diet, gut microbiota, and gut endocrine cells interact with each other in a way that affect IBS symptoms.
The present review is an attempt to clarify this interaction and the possible implications for everyday
clinical work.

2. Diet in IBS

Patients with IBS attribute their symptoms to specific food items such as milk and milk products,
wheat products, cabbage, onion, peas/beans, hot spices, and fried food [37–41]. Despite the selective
choice of food by IBS patients, the intake of calories, carbohydrates, proteins, and fats by IBS patients is
similar to community controls [38,42,43]. There was no difference either in the number of meals or meal
patterns between IBS patients and community controls [38]. However, the diets of IBS patients are lower
in β-carotene, retinol, riboflavin, calcium, magnesium, and phosphorous [38]. Moreover, IBS patients
avoid certain food items, some of which belong to the fermentable oligo-, di-, monosaccharides,
and polyols (FODMAPs) group, but they have a high consumption of other food items that are rich
in FODMAPs [38]. They also consume more food with probiotic supplements and avoid fewer food
sources that are important to their health [38].

The influence of diet on IBS symptoms was previously explained by food allergy/intolerance,
and poorly absorbed carbohydrates and fiber [44]. There is no evidence that food allergy/intolerance
is involved in IBS, but it is generally accepted that poorly absorbed carbohydrates and fiber play an
important role in the development of IBS symptoms [44,45]. The intake of a low FODMAP-diet improves
both symptoms and quality of life in IBS patients (Table 1) [37,44,46,47]. However, only 50–70% of
IBS patients have effect of low FODMAP-diet [48–50]. Moreover, a low FODMAP-diet is expensive
and hard to maintain over a long time and changes the intestinal microbiota negatively [49,51–53].
Furthermore, the intake of low FODMAP-diet over a long time may cause deficiencies in vitamins,
minerals, and naturally occurring antioxidants [52,53]. A NICE (National Institute for Health and Care
Excellence)-modified diet (Table 2) has the same effect as a low FODMAP-diet, is easy to maintain,
and does not have the hazards seen with the FODMAP-reduced diet [49,50]. The NICE-modified diet
is now the diet first recommended to patients with IBS [54,55]. In our clinic, we use a slightly modified
NICE diet, as recommended by the British Dietetic Association [37,38]. In this diet, the patients are
asked to have regular meals, to replace wheat products with spelt products, to reduce their intake of
fatty food, onions, cabbage, and beans, to avoid soft drinks and carbonated beverages, chewing gum,
and sweeteners that end with -ol, and to regularly intake of psyllium husk fibers. The British Dietetic
Association also recommends reducing coffee drinking, and avoiding spicy foods and alcohol [37,38].
However, these three food items’ association to IBS needs more clarification.

Caffeine is not known to affect IBS symptoms. However, a large number of IBS patients suffer
from reflux esophagitis [4], and reducing their coffee intake would improve their reflux symptoms.
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Table 1. Food items rich in fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs).

Vegetables Fruits Others

Onions, garlic, the white
portion of leeks and spring
onions, cabbage, spring onions,
mushrooms, beans, red kidney
beans, Brussels sprouts, sugar
peas, asparagus, lentils, beets,
artichoke, fennel, peas, sugar
peas, cauliflower

Apples, pears, peach, mango,
watermelon, dried fruit, fruit juice,
canned fruit in natural juice,
nashiphary, apricot, longan, cherry,
lychee, nectarine, plum

Wheat, barley, rye, bread, pasta,
couscous, biscuits, cakes

Milk and dairy products: cheese,
yogurt, soy milk, cream

Sweeteners containing fructose (for
example, corn syrup)

Sweeteners: sorbitol, mannitol, xylitol,
isomalt, maltitol, and other
sweeteners with names ending in “ol”

Table 2. The food items that should be avoided in a National Institute for Health and Care Excellence
(NICE)-modified diet.

Vegetables Fruits Others

Onions, garlic, beans,
peas, artichoke, cabbage Watermelon

Wheat flour and wheat-based products
Milk and dairy products
Sweeteners containing fructose (for example, corn syrup)
Sweeteners: sorbitol, menthol, xylitol, isomalt, maltitol, and
other sweeteners with names ending in “ol”
Carbonated drinks (soft drinks), coffee, beer

IBS patients are known to consume less alcohol than the normal population, and 12% of them avoid
alcoholic beverages [38,56–58]. Chronic alcohol consumption affects gastrointestinal motility, damages
the gut mucosal, impairs nutrient absorption, and causes inflammation [59–64]. The mechanism by
which alcohol affects gastrointestinal motility is thought to be by inhibiting nitric oxide pathways [59–63].
Whereas the previously mentioned effects of alcohol on the gastrointestinal tract have been detected in
chronic alcohol abuse, the effects of moderate social consumption of alcohol on gastrointestinal tract
functions are not known.

Whereas some studies have shown that drinking alcoholic beverages induces symptoms in
IBS patients [56,65,66], others have not [67]. These contradictory results could be explained by the
observation that moderate and light drinking are not associated with IBS symptoms, but binge drinking
is [68]. Moreover, there is marked individual variation in alcohol drinking being a trigger of IBS
symptoms [68]. The recommendation of the British Dietetic Association is that each individual should
assess the relation between alcohol intake and symptom developments in order to determine whether
a reduction is necessary. This recommendation works well in the clinical setting.

Capsaicin is the major component in spicy food with hot peppers. Capsaicin accelerates
gastrointestinal transit through TRPV receptors, hence causing abdominal pain [69]. Several studies
have shown that spicy food induces the onset of IBS symptoms [56,65–67,70]. It has been shown,
however, that whereas an occasional ingestion of chili increases abdominal pain/discomfort [70,71],
chronic intake of chili decreases abdominal pain and bloating in IBS patients [72,73]. This effect
seems to be caused by desensitization effects of capsaicin ingestion on TRPV1 receptors [74]. Asians
consume 2.5–8g/person of chili daily, which is 10–300 times higher than the intake of Europeans [75–77].
This probably can explain why Asian patients with IBS have less abdominal pain and the alteration in
bowel habits is much less prominent in Asian IBS patients than in Western patients [78–81].

3. Gut Microbiota

It has been estimated that more than 1014 microorganisms are harbored in the human gut [82].
The gut is inhabited by 12 different bacteria phyla, comprising 2172 species. Most gut bacteria belongs
to the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla [83]. However, anaerobic
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Firmicutes and Bacteroidetes dominate the bacterial population in the gut of healthy adults, with a few
members from of the Proteobacteria and Actinobacteria phyla [83,84]. A low microbial diversity in the
gut (dysbiosis) is associated with several diseases [85,86].

Bacterial composition in healthy subjects is determined by genetics and environmental
factors [82,86]. Genetics explains only 5–10% of the bacterial variability between individuals, which
emphasizes the importance of environmental factors [86]. Among these environmental factors are
diet, the frequency of antibiotic treatment, treatment with certain non-antibiotic drugs, geographical
location, surgery, smoking, and depression [82,86,87].

The gut bacterial composition in IBS patients differs from that of healthy subjects [86,88–90].
IBS patients have a lower abundance of Erysipelotrichaceae and Ruminococcaceae, butyrate-producing
bacteria, than healthy controls. Whereas Methanobacterialles, methane-producing bacteria, are more
abundant in IBS-C, they are less abundant in IBS-D than in healthy individuals [91,92]. Moreover,
IBS patients have been found to exhibit an increase in the abundance of bacteria belonging to
Proteobacteria, Veillonella, and Firmicutes, such as Lactobacillus and Ruminococcus, and a decrease in the
abundance of Bifidobacterium, Faecalibacterium, Erysipelotrichaceae, and methanogens, as compared with
healthy individuals in the community [91,92]. Furthermore, IBS patients have a lower diversity of
gut bacteria (dysbiosis) than healthy subjects [86,88–93]. Patients with IBS who did not respond to
low-FODMAP or NICE-modified diets have been found to suffer from a severe dysbiosis [58].

Changes in the intestinal microbiota in experimental animals causes gastrointestinal dysmotility,
visceral hypersensitivity, altered intestinal permeability, and altered behavior [93]. All of these
abnormalities are similar to those encountered in IBS. There is a growing body of evidence showing
that intestinal microbiota not only explain the abdominal symptoms of IBS, but also the psychiatric
co-morbidity occurring in a considerable number of IBS patients [93]. Although altered gastrointestinal
microbiota and dysbiosis in patients with IBS are documented, the microbial signature characterizing
these patients is not known yet [93].

4. Gut Hormones

There are at least 14 different gut hormones secreted by endocrine cells scattered between the
epithelial cells facing the gut lumen [19,94] (Figure 1). These cells are localized to the stomach and the
small and large intestine [19]. The different types of gut endocrine cells, their functions, and modes of
action have been described in details previously [3,37,94–109]. These cells have specialized microvilli that
project into the lumen and function as sensors for the gut contents (mostly for nutrients), and respond
to luminal stimuli by releasing their hormones into the lamina propria (Figure 2) [110–122]. Different
gut hormones are released from the gut endocrine cells depending on the gut intraluminal contents
and the proportions of carbohydrates, proteins, and fats [19,94]. Thus, carbohydrate-rich luminal
contents stimulate the release of gastric inhibitory peptide (GIP) and enteroglucagon, protein-rich
luminal contents cause the release of peptide YY (PYY), pancreatic polypeptide (PP), neuropeptide
Y (NPY), motilin, ghrelin, and cholecystokinin (CCK), and fat-rich luminal contents result in the
release of neurotensin, enteroglucagon, galanin, motilin, ghrelin, and CCK. These hormones act locally
on nearby structures (paracrine mode of action) or by entering the circulating blood and reaching
distant targets (endocrine mode of action) [123]. These hormones interact and integrate with each
other, with the enteric nervous system, the autonomic nervous system, and the central nervous
system [3,94,98,124]. Gut hormones regulate several functions of the gastrointestinal tract, including
visceral sensation, motility, secretion, absorption, local immune defense, cell proliferation, and food
intake [3,96,108,109,124].
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Figure 2. The gut endocrine cells have specialized microvilli that project into the gut lumen and act 
as sensors for the gut contents (mostly for nutrients). They respond to luminal content by releasing 
their hormones into the lamina propria. These hormones act locally on nearby structures (paracrine 
mode of action) or enter the blood stream and act on more distant structures (endocrine mode of 
action). 

 
Figure 3. Duodenal cholecystokinin (CCK) cells of a healthy subject (A) and of a patient with irritable 
bowel syndrome (IBS) (B). Patients with IBS have a low density of CCK cells. 

Figure 1. Schematic illustration of the gut endocrine cells. The endocrine cells are scattered among the
epithelial cells of the mucosa facing the gut lumen. These cells secret at least 14 different hormones that
regulate gut motility, secretion, absorption, visceral sensitivity, local immune defense, cell proliferation,
and appetite. These hormones also interact and integrate with the enteric, autonomic, and central
nervous systems.
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Figure 2. The gut endocrine cells have specialized microvilli that project into the gut lumen and act as
sensors for the gut contents (mostly for nutrients). They respond to luminal content by releasing their
hormones into the lamina propria. These hormones act locally on nearby structures (paracrine mode of
action) or enter the blood stream and act on more distant structures (endocrine mode of action).

Several abnormalities in different endocrine cell types of the stomach and the small and large
intestine have been described in IBS patients (Figure 3) [125–136]. Generally, IBS patients have a
lower gut endocrine cell density than healthy subjects [94]. A low density of gut endocrine cells
occurs in patients with congenital malabsorptive diarrhea, in small intestine allograft rejection, and in
NEUROG3-knockout mice [137–139]. The low density of gut endocrine cells in these conditions is
accompanied by a reduction in the number of gut neurogenin 3 cells. [137–139]. Neurogenin 3 is a
marker for early intestinal endocrine cell progenitors originating from stem cells, which are located
at the base of the crypts [138,140–145]. In the small and large intestines of patients with IBS, the cell
density of Musashi 1 and neurogenin 3 are lower than that of healthy subjects (Figure 4) [135,146–148].
Musashi 1 is a marker for intestinal stem cells and their early progeny [138,140–145].
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Accordingly, it is probable that a low number of these in the stem cells and enteroendocrine cells
progenitors might be responsible for the low density of gut endocrine cells [149].

5. Interaction between Diet, Microbiota, and Endocrine Cells in the Guts of Patients with IBS

The food that we ingest acts as a substrate (prebiotics) for intestinal bacteria. Our choice of different
food items determines our intestinal bacterial profile. On the other hand, intestinal bacteria ferment
the undigested remains of the food items into methane and hydrogen gases, as well as short chain fatty
acids [92] (Figure 5). Fructans and galactans are substrates for several bacteria and a low-FODMAP
diet appears to induce unfavorable changes in the intestinal bacterial profile of IBS patients [150,151].
Patients with IBS adhering to a low-FODMAP diet develop a lower abundance of fecal Bifidobacteria
as compared with healthy subjects/before intervention [150,151]. Moreover, the absolute and relative
numbers of butyrate-producing bacteria have been reported to be reduced following a low-FODMAP
diet intervention [150,151].

Patients with IBS have gut dysmotility, visceral hypersensitivity, and abnormal secretion [146].
The hormones secreted from gut endocrine cells regulate gut motility, visceral sensitivity,
and secretion [39]. The abnormalities in the gut endocrine cells seem to explain the gut dysmotility,
visceral hypersensitivity, and abnormal secretion seen in IBS patients [148]. It is believed that the
abnormalities in the gut hormones play a major role in the pathophysiology of IBS [148,149].
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Figure 5. Schematic illustration of the possible role of the interaction of diet, gut microbiota, and gut
endocrine cells in the pathophysiology of IBS. The foods we ingest act as prebiotics that favor the
growth of a certain type of bacteria. These bacteria in turn ferment the diet, resulting in by-products.
These by-products may act on the stem cells in a way that reduces their number. This in turn would
result in a low density of gut endocrine cells. The low density of gut endocrine cells gives rise to the
gut dysmotility, visceral hypersensitivity, and abnormal gut secretion that are seen in IBS patients.

The gut hormones, as mentioned previously, sense the luminal content of the gut and release their
hormones accordingly. Gut luminal contents rich in proteins cause the release of certain hormones,
while those rich in carbohydrates or fats cause the release of other hormones.

The composition of the diet, with different proportions of carbohydrates, proteins, and fats, is a
trigger for the release of different gut hormones into the lamina propria [40,46].

Diet seems to also interact with gut endocrine cells in more complicated ways. It has been shown
recently that a change in diet from a common Norwegian diet to a low-FODMAP diet results in a
change in the density of gastrointestinal cells towards the levels of healthy subjects [152–158]. The effect
of a NICE-modified diet is not known. Furthermore, fecal microbiota transplantation (FMT) changes
the density of small and large intestine endocrine cells in patients with IBS [159]. These changes in gut
endocrine cells caused by a low-FODMAP diet and FMT was accompanied with an improvement in
symptoms and quality of life [159].

One may speculate that diet acts as prebiotic favoring the growth of certain bacteria. These
bacteria in turn ferment the diet, which results in by-products. These by-products act on gut stem
cells, causing low differentiation into endocrine cells. The low density of gut endocrine cells and
the subsequent low levels of certain hormones give rise to gut dysmotility, visceral hypersensitivity,
and abnormal secretion (Figure 5).

6. Conclusions

Several endocrine cell types are scattered among the epithelial cells of the gut mucosa and secret
at least 14 different hormones. These hormones regulate many functions of the gut. Some of these
cells response to protein-rich luminal contents by releasing their hormones. Others response to
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carbohydrates or fat-rich luminal contents. Thus, the proportions of proteins, carbohydrates, and fats
in the diet, and consequently in the gut lumen, determine which hormones are released.

The density of gut endocrine cells is lower in IBS patients than healthy subjects, probably because
of a low density of stem cells and low differentiation of these cells into endocrine cells. It is believed
that this abnormality plays a major role in the pathophysiology of IBS. A low FODMAP intake
and FMT improve symptoms and quality of life and restore the density of the gut endocrine cells.
An interaction between diet, gut microbiota, and gut endocrine cells appears to play an important role
in the pathophysiology of IBS.

This interaction should be kept in mind when managing IBS patients in clinic. Patients who do
not respond well to diet management should be considered as candidates for gut microbiota alteration
through FMT.

Author Contributions: M.E.-S. designed the review, collected, analyzed, and interpreted the data, and drafted
the manuscript, J.G.H., and T.H. contributed to the design of the review, to the analysis and interpretation of the
data, and critically revised of the manuscript for important intellectual content.
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(grant no. 912234) and Helse Fonna (grant no. 40415).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. El-Salhy, M. Recent developments in the pathophysiology of irritable bowel syndrome. World J. Gastroenterol.
2015, 21, 7621–7636. [CrossRef] [PubMed]

2. Canavan, C.; West, J.; Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 2014, 6, 71–80.
[CrossRef]

3. El-Salhy, M. Irritable bowel syndrome: Diagnosis and pathogenesis. World J. Gastroenterol. 2012, 18,
5151–5163. [CrossRef] [PubMed]

4. El-Salhy, M.; Gilja, O.H.; Hatlebakk, J.G. Overlapping of irritable bowel syndrome with erosive esophagitis
and the performance of Rome criteria in diagnosing IBS in a clinical setting. Mol. Med. Rep. 2019. [CrossRef]
[PubMed]

5. Spiller, R.; Aziz, Q.; Creed, F.; Emmanuel, A.; Houghton, L.; Hungin, P.; Jones, R.; Kumar, D.; Rubin, G.;
Trudgill, N.; et al. Guidelines on the irritable bowel syndrome: Mechanisms and practical management. Gut
2007, 56, 1770–1798. [CrossRef] [PubMed]

6. Longstreth, G.F.; Thompson, W.G.; Chey, W.D.; Houghton, L.A.; Mearin, F.; Spiller, R.C. Functional bowel
disorders. Gastroenterology 2006, 130, 1480–1491. [CrossRef] [PubMed]

7. Thompson, W.G.; Irvine, E.J.; Pare, P.; Ferrazzi, S.; Rance, L. Functional gastrointestinal disorders in Canada:
First population-based survey using Rome II criteria with suggestions for improving the questionnaire.
Dig. Dis. Sci. 2002, 47, 225–235. [CrossRef] [PubMed]

8. Thompson, W.G.; Heaton, K.W. Functional bowel disorders in apparently healthy people. Gastroenterology
1980, 79, 283–288. [CrossRef]

9. Agreus, L.; Svardsudd, K.; Nyren, O.; Tibblin, G. Irritable bowel syndrome and dyspepsia in the general
population: Overlap and lack of stability over time. Gastroenterology 1995, 109, 671–680. [CrossRef]

10. Kennedy, T.M.; Jones, R.H.; Hungin, A.P.; O’Flanagan, H.; Kelly, P. Irritable bowel syndrome,
gastro-oesophageal reflux, and bronchial hyper-responsiveness in the general population. Gut 1998,
43, 770–774. [CrossRef]

11. Drossman, D.A.; Li, Z.; Andruzzi, E.; Temple, R.D.; Talley, N.J.; Thompson, W.G.; Whitehead, W.E.; Janssens, J.;
Funch-Jensen, P.; Corazziari, E.; et al. U.S. householder survey of functional gastrointestinal disorders.
Prevalence, sociodemography, and health impact. Dig. Dis. Sci. 1993, 38, 1569–1580. [CrossRef] [PubMed]

12. Hungin, A.P.; Whorwell, P.J.; Tack, J.; Mearin, F. The prevalence, patterns and impact of irritable bowel
syndrome: An international survey of 40,000 subjects. Aliment. Pharmacol. Ther. 2003, 17, 643–650. [CrossRef]
[PubMed]

13. Jones, R.; Lydeard, S. Irritable bowel syndrome in the general population. BMJ 1992, 304, 87–90. [CrossRef]

http://dx.doi.org/10.3748/wjg.v21.i25.7621
http://www.ncbi.nlm.nih.gov/pubmed/26167065
http://dx.doi.org/10.2147/clep.s40245
http://dx.doi.org/10.3748/wjg.v18.i37.5151
http://www.ncbi.nlm.nih.gov/pubmed/23066308
http://dx.doi.org/10.3892/mmr.2019.10284
http://www.ncbi.nlm.nih.gov/pubmed/31180516
http://dx.doi.org/10.1136/gut.2007.119446
http://www.ncbi.nlm.nih.gov/pubmed/17488783
http://dx.doi.org/10.1053/j.gastro.2005.11.061
http://www.ncbi.nlm.nih.gov/pubmed/16678561
http://dx.doi.org/10.1023/A:1013208713670
http://www.ncbi.nlm.nih.gov/pubmed/11837727
http://dx.doi.org/10.1016/0016-5085(80)90142-0
http://dx.doi.org/10.1016/0016-5085(95)90373-9
http://dx.doi.org/10.1136/gut.43.6.770
http://dx.doi.org/10.1007/BF01303162
http://www.ncbi.nlm.nih.gov/pubmed/8359066
http://dx.doi.org/10.1046/j.1365-2036.2003.01456.x
http://www.ncbi.nlm.nih.gov/pubmed/12641512
http://dx.doi.org/10.1136/bmj.304.6819.87


Nutrients 2019, 11, 1824 9 of 15

14. O’Keefe, E.A.; Talley, N.J.; Zinsmeister, A.R.; Jacobsen, S.J. Bowel disorders impair functional status and
quality of life in the elderly: A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M184–M189.
[CrossRef] [PubMed]

15. Everhart, J.E.; Renault, P.F. Irritable bowel syndrome in office-based practice in the United States.
Gastroenterology 1991, 100, 998–1005. [CrossRef]

16. Harvey, R.F.; Salih, S.Y.; Read, A.E. Organic and Functional Disorders in 2000 Gastroenterology Outpatients.
Lancet 1980, 1, 632–634. [CrossRef]

17. Quigley, E.M.; Locke, G.R.; Mueller-Lissner, S.; Paulo, L.G.; Tytgat, G.N.; Helfrich, I.; Schaefer, E. Prevalence
and management of abdominal cramping and pain: A multinational survey. Aliment. Pharmacol. Ther. 2006,
24, 411–419. [CrossRef]

18. Miller, V.; Whitaker, K.; Morris, J.A.; Whorwell, P.J. Gender and irritable bowel syndrome: The male
connection. J. Clin. Gastroenterol. 2004, 38, 558–560. [CrossRef]

19. El-Salhy, M.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Irritable Bowel Syndrome: Diagnosis, Pathogenesis and
Treatment Options; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 873–878.

20. Whitehead, W.E.; Burnett, C.K.; Cook, E.W., 3rd; Taub, E. Impact of irritable bowel syndrome on quality of
life. Dig. Dis. Sci. 1996, 41, 2248–2253. [CrossRef]

21. Gralnek, I.M.; Hays, R.D.; Kilbourne, A.; Naliboff, B.; Mayer, E.A. The impact of irritable bowel syndrome on
health-related quality of life. Gastroenterology 2000, 119, 654–660. [CrossRef]

22. Talley, N.J.; Gabriel, S.E.; Harmsen, W.S.; Zinsmeister, A.R.; Evans, R.W. Medical costs in community subjects
with irritable bowel syndrome. Gastroenterology 1995, 109, 1736–1741. [CrossRef]

23. Schuster, M.M. Defining and diagnosing irritable bowel syndrome. Am. J. Manag. Care 2001, 7, S246–S251.
24. Mitchell, C.M.; Drossman, D.A. Survey of the AGA membership relating to patients with functional

gastrointestinal disorders. Gastroenterology 1987, 92, 1282–1284. [CrossRef]
25. Longstreth, G.F.; Hawkey, C.J.; Mayer, E.A.; Jones, R.H.; Naesdal, J.; Wilson, I.K.; Peacock, R.A.; Wiklund, I.K.

Characteristics of patients with irritable bowel syndrome recruited from three sources: Implications for
clinical trials. Aliment. Pharmacol. Ther. 2001, 15, 959–964. [CrossRef]

26. El-Salhy, M. Recent advances in the diagnosis of irritable bowel syndrome. Expert Rev. Gastroenterol. Hepatol.
2015, 9, 1161–1174. [CrossRef]

27. Drossman, D.A.; Morris, C.B.; Schneck, S.; Hu, Y.J.; Norton, N.J.; Norton, W.F.; Weinland, S.R.; Dalton, C.;
Leserman, J.; Bangdiwala, S.I. International survey of patients with IBS: Symptom features and their severity,
health status, treatments, and risk taking to achieve clinical benefit. J. Clin. Gastroenterol. 2009, 43, 541–550.
[CrossRef]

28. Locke, G.R., 3rd; Zinsmeister, A.R.; Talley, N.J.; Fett, S.L.; Melton, L.J., 3rd. Familial association in adults with
functional gastrointestinal disorders. Mayo. Clin. Proc. 2000, 75, 907–912. [CrossRef]

29. Kalantar, J.S.; Locke, G.R., 3rd; Zinsmeister, A.R.; Beighley, C.M.; Talley, N.J. Familial aggregation of irritable
bowel syndrome: A prospective study. Gut 2003, 52, 1703–1707. [CrossRef]

30. Kanazawa, M.; Endo, Y.; Whitehead, W.E.; Kano, M.; Hongo, M.; Fukudo, S. Patients and nonconsulters with
irritable bowel syndrome reporting a parental history of bowel problems have more impaired psychological
distress. Dig. Dis. Sci. 2004, 49, 1046–1053. [CrossRef]

31. Morris-Yates, A.; Talley, N.J.; Boyce, P.M.; Nandurkar, S.; Andrews, G. Evidence of a genetic contribution to
functional bowel disorder. Am. J. Gastroenterol. 1998, 93, 1311–1317. [CrossRef]

32. Levy, R.L.; Jones, K.R.; Whitehead, W.E.; Feld, S.I.; Talley, N.J.; Corey, L.A. Irritable bowel syndrome in twins:
Heredity and social learning both contribute to etiology. Gastroenterology 2001, 121, 799–804. [CrossRef]

33. Lembo, A.; Zaman, M.; Jones, M.; Talley, N.J. Influence of genetics on irritable bowel syndrome,
gastro-oesophageal reflux and dyspepsia: A twin study. Aliment. Pharmacol. Ther. 2007, 25, 1343–1350.
[CrossRef]

34. Wojczynski, M.K.; North, K.E.; Pedersen, N.L.; Sullivan, P.F. Irritable bowel syndrome: A co-twin control
analysis. Am. J. Gastroenterol. 2007, 102, 2220–2229. [CrossRef]

35. Bengtson, M.B.; Ronning, T.; Vatn, M.H.; Harris, J.R. Irritable bowel syndrome in twins: Genes and
environment. Gut 2006, 55, 1754–1759. [CrossRef]

36. D’Amato, M. Genes and functional GI disorders: From casual to causal relationship. Neurogastroenterol.
Motil. 2013, 25, 638–649. [CrossRef]

http://dx.doi.org/10.1093/gerona/50A.4.M184
http://www.ncbi.nlm.nih.gov/pubmed/7614239
http://dx.doi.org/10.1016/0016-5085(91)90275-P
http://dx.doi.org/10.1016/S0140-6736(83)91802-0
http://dx.doi.org/10.1111/j.1365-2036.2006.02989.x
http://dx.doi.org/10.1097/00004836-200408000-00004
http://dx.doi.org/10.1007/BF02071408
http://dx.doi.org/10.1053/gast.2000.16484
http://dx.doi.org/10.1016/0016-5085(95)90738-6
http://dx.doi.org/10.1016/S0016-5085(87)91099-7
http://dx.doi.org/10.1046/j.1365-2036.2001.01010.x
http://dx.doi.org/10.1586/17474124.2015.1067138
http://dx.doi.org/10.1097/MCG.0b013e318189a7f9
http://dx.doi.org/10.4065/75.9.907
http://dx.doi.org/10.1136/gut.52.12.1703
http://dx.doi.org/10.1023/B:DDAS.0000034570.52305.10
http://dx.doi.org/10.1111/j.1572-0241.1998.440_j.x
http://dx.doi.org/10.1053/gast.2001.27995
http://dx.doi.org/10.1111/j.1365-2036.2007.03326.x
http://dx.doi.org/10.1111/j.1572-0241.2007.01479.x
http://dx.doi.org/10.1136/gut.2006.097287
http://dx.doi.org/10.1111/nmo.12173


Nutrients 2019, 11, 1824 10 of 15

37. El-Salhy, M.; Ostgaard, H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. The role of diet in the pathogenesis
and management of irritable bowel syndrome (Review). Int. J. Mol. Med. 2012, 29, 723–731. [CrossRef]

38. Ostgaard, H.; Hausken, T.; Gundersen, D.; El-Salhy, M. Diet and effects of diet management on quality of life
and symptoms in patients with irritable bowel syndrome. Mol. Med. Rep. 2012, 5, 1382–1390. [CrossRef]

39. El-Salhy, M.; Gilja, O.H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Interaction between ingested nutrients
and gut endocrine cells in patients with irritable bowel syndrome (Review). Int. J. Mol. Med. 2014, 34,
363–371. [CrossRef]

40. El-Salhy, M.; Mazzawi, T.; Hausken, T.; Hatlebakk, J.G. Interaction between diet and gastrointestinal
endocrine cells. Biomed. Rep. 2016, 4, 651–656. [CrossRef]

41. El-Salhy, M.; Lilbo, E.; Reinemo, A.; Salmeøid, L.; Hausken, T. Effects of a health program comprising
reassurance, diet management, probiotic administration and regular exercise on symptoms and quality of
life in patients with irritable bowel syndrome. Gastroenterol. Insights 2010, 2, 21–26. [CrossRef]

42. Jarrett, M.; Heitkemper, M.M.; Bond, E.F.; Georges, J. Comparison of diet composition in women with and
without functional bowel disorder. Gastroenterol. Nurs. 1994, 16, 253–258. [CrossRef]

43. Saito, Y.A.; Locke, G.R., 3rd; Weaver, A.L.; Zinsmeister, A.R.; Talley, N.J. Diet and functional gastrointestinal
disorders: A population-based case-control study. Am. J. Gastroenterol. 2005, 100, 2743–2748. [CrossRef]

44. El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 36. [CrossRef]
45. El-Salhy, M.; Hatlebakk, J.G.; Gilja, O.H.; Hausken, T. The relation between celiac disease, nonceliac gluten

sensitivity and irritable bowel syndrome. Nutr. J. 2015, 14, 92. [CrossRef]
46. El-Salhy, M.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Diet and irritable bowel syndrome, with a focus on

appetite-regulating hormones. In Nutrition in the Prevention and Treatment of Abdominal Obesity; Watson, R.R.,
Ed.; Elsevier: San Diego, CA, USA, 2014; pp. 5–16.

47. El-Salhy, M. Diet in the pathophysiology and management of irritable bowel syndrome. Clevel. Clin. J. Med.
2016, 83, 663–664. [CrossRef]

48. Staudacher, H.M.; Whelan, K.; Irving, P.M.; Lomer, M.C. Comparison of symptom response following advice
for a diet low in fermentable carbohydrates (FODMAPs) versus standard dietary advice in patients with
irritable bowel syndrome. J. Hum. Nutr. Diet. 2011, 24, 487–495. [CrossRef]

49. Eswaran, S.L.; Chey, W.D.; Han-Markey, T.; Ball, S.; Jackson, K. A Randomized Controlled Trial Comparing
the Low FODMAP Diet vs. Modified NICE Guidelines in US Adults with IBS-D. Am. J. Gastroenterol. 2016,
111, 1824–1832. [CrossRef]

50. Bohn, L.; Storsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Tornblom, H.; Simren, M. Diet low in FODMAPs
reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: A randomized controlled
trial. Gastroenterology 2015, 149, 1399–1407.e2. [CrossRef]

51. Halmos, E.P.; Christophersen, C.T.; Bird, A.R.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Diets that differ in their
FODMAP content alter the colonic luminal microenvironment. Gut 2015, 64, 93–100. [CrossRef]

52. Catassi, G.; Lionetti, E.; Gatti, S.; Catassi, C. The Low FODMAP Diet: Many Question Marks for a Catchy
Acronym. Nutrients 2017, 9, 292. [CrossRef]

53. Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms
and efficacy in IBS. Gut 2017, 66, 1517–1527. [CrossRef]

54. McKenzie, Y.A.; Alder, A.; Anderson, W.; Wills, A.; Goddard, L.; Gulia, P.; Jankovich, E.; Mutch, P.; Reeves, L.B.;
Singer, A.; et al. British Dietetic Association evidence-based guidelines for the dietary management of
irritable bowel syndrome in adults. J. Hum. Nutr. Diet. 2012, 25, 260–274. [CrossRef]

55. McKenzie, Y.A.; Thompson, J.; Gulia, P.; Lomer, M.C. British Dietetic Association systematic review of
systematic reviews and evidence-based practice guidelines for the use of probiotics in the management of
irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 576–592. [CrossRef]

56. Simren, M.; Mansson, A.; Langkilde, A.M.; Svedlund, J.; Abrahamsson, H.; Bengtsson, U.; Bjornsson, E.S.
Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 2001, 63, 108–115.
[CrossRef]

57. Monsbakken, K.W.; Vandvik, P.O.; Farup, P.G. Perceived food intolerance in subjects with irritable bowel
syndrome—Etiology, prevalence and consequences. Eur. J. Clin. Nutr. 2006, 60, 667–672. [CrossRef]

58. Bohn, L.; Storsrud, S.; Simren, M. Nutrient intake in patients with irritable bowel syndrome compared with
the general population. Neurogastroenterol. Motil. 2013, 25, 23e1. [CrossRef]

http://dx.doi.org/10.3892/ijmm.2012.926
http://dx.doi.org/10.3892/mmr.2012.843
http://dx.doi.org/10.3892/ijmm.2014.1811
http://dx.doi.org/10.3892/br.2016.649
http://dx.doi.org/10.4081/gi.2010.e6
http://dx.doi.org/10.1097/00001610-199406000-00004
http://dx.doi.org/10.1111/j.1572-0241.2005.00288.x
http://dx.doi.org/10.1186/s12937-015-0022-3
http://dx.doi.org/10.1186/s12937-015-0080-6
http://dx.doi.org/10.3949/ccjm.83a.16019
http://dx.doi.org/10.1111/j.1365-277X.2011.01162.x
http://dx.doi.org/10.1038/ajg.2016.434
http://dx.doi.org/10.1053/j.gastro.2015.07.054
http://dx.doi.org/10.1136/gutjnl-2014-307264
http://dx.doi.org/10.3390/nu9030292
http://dx.doi.org/10.1136/gutjnl-2017-313750
http://dx.doi.org/10.1111/j.1365-277X.2012.01242.x
http://dx.doi.org/10.1111/jhn.12386
http://dx.doi.org/10.1159/000051878
http://dx.doi.org/10.1038/sj.ejcn.1602367
http://dx.doi.org/10.1111/nmo.12001


Nutrients 2019, 11, 1824 11 of 15

59. Bagyanszki, M.; Bodi, N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic
alcohol consumption. World J. Gastrointest. Pathophysiol. 2015, 6, 51–57. [CrossRef]

60. Bagyanszki, M.; Krecsmarik, M.; De Winter, B.Y.; De Man, J.G.; Fekete, E.; Pelckmans, P.A.; Adriaensen, D.;
Kroese, A.B.; Van Nassauw, L.; Timmermans, J.P. Chronic alcohol consumption affects gastrointestinal
motility and reduces the proportion of neuronal NOS-immunoreactive myenteric neurons in the murine
jejunum. Anat. Rec. 2010, 293, 1536–1542. [CrossRef]

61. Bagyanszki, M.; Torfs, P.; Krecsmarik, M.; Fekete, E.; Adriaensen, D.; Van Nassauw, L.; Timmermans, J.P.;
Kroese, A.B. Chronic alcohol consumption induces an overproduction of NO by nNOS- and iNOS-expressing
myenteric neurons in the murine small intestine. Neurogastroenterol. Motil. 2011, 23, e237–e248. [CrossRef]

62. Bodi, N.; Jancso, Z.; Talapka, P.; Pal, A.; Poles, M.Z.; Bagyanszki, M.; Hermesz, E.; Fekete, E. Gut region-specific
rearrangement of the cellular and subcellular compartments of nitric oxide synthase isoforms after chronic
ethanol consumption in rats. Histol. Histopathol. 2014, 29, 1547–1555.

63. Krecsmarik, M.; Izbeki, F.; Bagyanszki, M.; Linke, N.; Bodi, N.; Kaszaki, J.; Katarova, Z.; Szabo, A.; Fekete, E.;
Wittmann, T. Chronic ethanol exposure impairs neuronal nitric oxide synthase in the rat intestine. Alcohol Clin.
Exp. Res. 2006, 30, 967–973. [CrossRef]

64. Nazer, H.; Wright, R.A. The effect of alcohol on the human alimentary tract: A review. J. Clin. Gastroenterol.
1983, 5, 361–365.

65. Hayes, P.; Corish, C.; O’Mahony, E.; Quigley, E.M. A dietary survey of patients with irritable bowel syndrome.
J. Hum. Nutr. Diet. 2014, 27 (Suppl. S2), 36–47. [CrossRef]

66. Bohn, L.; Storsrud, S.; Tornblom, H.; Bengtsson, U.; Simren, M. Self-reported food-related gastrointestinal
symptoms in IBS are common and associated with more severe symptoms and reduced quality of life.
Am. J. Gastroenterol. 2013, 108, 634–641. [CrossRef]

67. Faresjo, A.; Johansson, S.; Faresjo, T.; Roos, S.; Hallert, C. Sex differences in dietary coping with gastrointestinal
symptoms. Eur. J. Gastroenterol. Hepatol. 2010, 22, 327–333. [CrossRef]

68. Reding, K.W.; Cain, K.C.; Jarrett, M.E.; Eugenio, M.D.; Heitkemper, M.M. Relationship between patterns
of alcohol consumption and gastrointestinal symptoms among patients with irritable bowel syndrome.
Am. J. Gastroenterol. 2013, 108, 270–276. [CrossRef]

69. McKenzie, Y.A.; Bowyer, R.K.; Leach, H.; Gulia, P.; Horobin, J.; O’Sullivan, N.A.; Pettitt, C.; Reeves, L.B.;
Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice
guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet.
2016, 29, 549–575. [CrossRef]

70. Gonlachanvit, S.; Mahayosnond, A.; Kullavanijaya, P. Effects of chili on postprandial gastrointestinal
symptoms in diarrhoea predominant irritable bowel syndrome: Evidence for capsaicin-sensitive visceral
nociception hypersensitivity. Neurogastroenterol. Motil. 2009, 21, 23–32. [CrossRef]

71. Schmulson, M.J.; Valdovinos, M.A.; Milke, P. Chili pepper and rectal hyperalgesia in irritable bowel syndrome.
Am. J. Gastroenterol. 2003, 98, 1214–1215. [CrossRef]

72. Aniwan, S.; Gonlachanvit, S. Effects of Chili Treatment on Gastrointestinal and Rectal Sensation in
Diarrhea-predominant Irritable Bowel Syndrome: A Randomized, Double-blinded, Crossover Study.
J. Neurogastroenterol. Motil. 2014, 20, 400–406. [CrossRef]

73. Bortolotti, M.; Porta, S. Effect of red pepper on symptoms of irritable bowel syndrome: Preliminary study.
Dig. Dis. Sci. 2011, 56, 3288–3295. [CrossRef]

74. Patcharatrakul, T.; Gonlachanvit, S. Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and
Disease. Curr. Gastroenterol. Rep. 2016, 18, 19. [CrossRef]

75. Ferrucci, L.M.; Daniel, C.R.; Kapur, K.; Chadha, P.; Shetty, H.; Graubard, B.I.; George, P.S.; Osborne, W.;
Yurgalevitch, S.; Devasenapathy, N.; et al. Measurement of spices and seasonings in India: opportunities for
cancer epidemiology and prevention. Asian Pac. J. Cancer Prev. APJCP 2010, 11, 1621–1629.

76. Govindarajan, V.S.; Rajalakshmi, D.; Chand, N. Capsicum—Production, technology, chemistry, and quality.
Part IV. Evaluation of quality. Crit. Rev. Food Sci. Nutr. 1987, 25, 185–282. [CrossRef]

77. Govindarajan, V.S.; Sathyanarayana, M.N. Capsicum—Production, technology, chemistry, and quality.
Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and
desensitization sequences. Crit. Rev. Food Sci. Nutr. 1991, 29, 435–474. [CrossRef]

78. Ghoshal, U.C.; Shukla, R.; Ghoshal, U.; Gwee, K.A.; Ng, S.C.; Quigley, E.M. The gut microbiota and irritable
bowel syndrome: Friend or foe? Int. J. Inflam. 2012, 2012, 151085. [CrossRef]

http://dx.doi.org/10.4291/wjgp.v6.i3.51
http://dx.doi.org/10.1002/ar.21192
http://dx.doi.org/10.1111/j.1365-2982.2011.01707.x
http://dx.doi.org/10.1111/j.1530-0277.2006.00110.x
http://dx.doi.org/10.1111/jhn.12114
http://dx.doi.org/10.1038/ajg.2013.105
http://dx.doi.org/10.1097/MEG.0b013e32832b9c53
http://dx.doi.org/10.1038/ajg.2012.414
http://dx.doi.org/10.1111/jhn.12385
http://dx.doi.org/10.1111/j.1365-2982.2008.01167.x
http://dx.doi.org/10.1111/j.1572-0241.2003.07451.x
http://dx.doi.org/10.5056/jnm14022
http://dx.doi.org/10.1007/s10620-011-1740-9
http://dx.doi.org/10.1007/s11894-016-0494-0
http://dx.doi.org/10.1080/10408398709527453
http://dx.doi.org/10.1080/10408399109527536
http://dx.doi.org/10.1155/2012/151085


Nutrients 2019, 11, 1824 12 of 15

79. Gwee, K.A. Irritable bowel syndrome in developing countries—A disorder of civilization or colonization?
Neurogastroenterol. Motil. 2005, 17, 317–324. [CrossRef]

80. Gwee, K.A.; Lu, C.L.; Ghoshal, U.C. Epidemiology of irritable bowel syndrome in Asia: Something old,
something new, something borrowed. J. Gastroenterol. Hepatol. 2009, 24, 1601–1607. [CrossRef]

81. Ghoshal, U.C.; Abraham, P.; Bhatt, C.; Choudhuri, G.; Bhatia, S.J.; Shenoy, K.T.; Banka, N.H.; Bose, K.;
Bohidar, N.P.; Chakravartty, K.; et al. Epidemiological and clinical profile of irritable bowel syndrome in
India: Report of the Indian Society of Gastroenterology Task Force. Indian J. Gastroenterol. 2008, 27, 22–28.

82. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [CrossRef]
83. Hugon, P.; Dufour, J.C.; Colson, P.; Fournier, P.E.; Sallah, K.; Raoult, D. A comprehensive repertoire of

prokaryotic species identified in human beings. Lancet Infects Dis. 2015, 15, 1211–1219. [CrossRef]
84. Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.;

Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651.
[CrossRef]

85. Kriss, M.; Hazleton, K.Z.; Nusbacher, N.M.; Martin, C.G.; Lozupone, C.A. Low diversity gut microbiota
dysbiosis: Drivers, functional implications and recovery. Curr. Opin. Microbiol. 2018, 44, 34–40. [CrossRef]

86. Wilson, B.C.; Vatanen, T.; Cutfield, W.S.; O’Sullivan, J.M. The Super-Donor Phenomenon in Fecal Microbiota
Transplantation. Front. Cell Infect. Microbiol. 2019, 9, 2. [CrossRef]

87. Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.;
Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555,
623–628. [CrossRef]

88. El-Salhy, M.; Mazzawi, T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev.
Gastroenterol. Hepatol. 2018, 12, 439–445. [CrossRef]

89. Casen, C.; Vebo, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Froyland, C.;
Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for
determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Ther. 2015, 42, 71–83. [CrossRef]

90. Enck, P.; Mazurak, N. Dysbiosis in Functional Bowel Disorders. Ann. Nutr. Metab. 2018, 72, 296–306.
[CrossRef]

91. Pozuelo, M.; Panda, S.; Santiago, A.; Mendez, S.; Accarino, A.; Santos, J.; Guarner, F.; Azpiroz, F.; Manichanh, C.
Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome.
Sci. Rep. 2015, 5, 12693. [CrossRef]

92. Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The Microbiome and Irritable Bowel
Syndrome—A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019,
10, 1136. [CrossRef]

93. Collins, S.M. A role for the gut microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 497–505.
[CrossRef]

94. El-Salhy, M.; Seim, I.; Chopin, L.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Irritable bowel syndrome: The
role of gut neuroendocrine peptides. Front. Biosci. 2012, 4, 2783–2800. [CrossRef]

95. Mawe, G.M.; Coates, M.D.; Moses, P.L. Review article: Intestinal serotonin signalling in irritable bowel
syndrome. Aliment. Pharmacol. Ther. 2006, 23, 1067–1076. [CrossRef]

96. Wade, P.R.; Chen, J.; Jaffe, B.; Kassem, I.S.; Blakely, R.D.; Gershon, M.D. Localization and function of a 5-HT
transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci. 1996, 16, 2352–2364. [CrossRef]

97. Gershon, M.D.; Tack, J. The serotonin signaling system: From basic understanding to drug development for
functional GI disorders. Gastroenterology 2007, 132, 397–414. [CrossRef]

98. Gershon, M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes
Obes. 2013, 20, 14–21. [CrossRef]

99. Gershon, M.D. Serotonin is a sword and a shield of the bowel: Serotonin plays offense and defense. Trans. Am.
Clin. Climatol. Assoc. 2012, 123, 268–280, discussion 280.

100. El-Salhy, M.; Mazzawi, T.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. The role of peptide YY in
gastrointestinal diseases and disorders (Review). Int. J. Mol. Med. 2013, 31, 275–282. [CrossRef]

101. Dubrasquet, M.; Bataille, D.; Gespach, C. Oxyntomodulin (glucagon-37 or bioactive enteroglucagon):
A potent inhibitor of pentagastrin-stimulated acid secretion in rats. Biosci. Rep. 1982, 2, 391–395. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2982.2005.00627.x
http://dx.doi.org/10.1111/j.1440-1746.2009.05984.x
http://dx.doi.org/10.1042/BCJ20160510
http://dx.doi.org/10.1016/S1473-3099(15)00293-5
http://dx.doi.org/10.1126/science.1155725
http://dx.doi.org/10.1016/j.mib.2018.07.003
http://dx.doi.org/10.3389/fcimb.2019.00002
http://dx.doi.org/10.1038/nature25979
http://dx.doi.org/10.1080/17474124.2018.1447380
http://dx.doi.org/10.1111/apt.13236
http://dx.doi.org/10.1159/000488773
http://dx.doi.org/10.1038/srep12693
http://dx.doi.org/10.3389/fmicb.2019.01136
http://dx.doi.org/10.1038/nrgastro.2014.40
http://dx.doi.org/10.2741/e583
http://dx.doi.org/10.1111/j.1365-2036.2006.02858.x
http://dx.doi.org/10.1523/JNEUROSCI.16-07-02352.1996
http://dx.doi.org/10.1053/j.gastro.2006.11.002
http://dx.doi.org/10.1097/MED.0b013e32835bc703
http://dx.doi.org/10.3892/ijmm.2012.1222
http://dx.doi.org/10.1007/BF01119301


Nutrients 2019, 11, 1824 13 of 15

102. Schjoldager, B.T.; Baldissera, F.G.; Mortensen, P.E.; Holst, J.J.; Christiansen, J. Oxyntomodulin: A potential
hormone from the distal gut. Pharmacokinetics and effects on gastric acid and insulin secretion in man.
Eur. J. Clin. Investig. 1988, 18, 499–503. [CrossRef]

103. Schjoldager, B.; Mortensen, P.E.; Myhre, J.; Christiansen, J.; Holst, J.J. Oxyntomodulin from distal gut. Role in
regulation of gastric and pancreatic functions. Dig. Dis. Sci. 1989, 34, 1411–1419. [CrossRef]

104. Dakin, C.L.; Small, C.J.; Batterham, R.L.; Neary, N.M.; Cohen, M.A.; Patterson, M.; Ghatei, M.A.; Bloom, S.R.
Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004, 145,
2687–2695. [CrossRef]

105. Wynne, K.; Park, A.J.; Small, C.J.; Patterson, M.; Ellis, S.M.; Murphy, K.G.; Wren, A.M.; Frost, G.S.; Meeran, K.;
Ghatei, M.A.; et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: A
double-blind, randomized, controlled trial. Diabetes 2005, 54, 2390–2395. [CrossRef]

106. Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 2012, 367, 1626–1635.
[CrossRef]

107. Jianu, C.S.; Fossmark, R.; Syversen, U.; Hauso, O.; Waldum, H.L. A meal test improves the specificity of
chromogranin A as a marker of neuroendocrine neoplasia. Tumour Biol. 2010, 31, 373–380. [CrossRef]

108. Gunawardene, A.R.; Corfe, B.M.; Staton, C.A. Classification and functions of enteroendocrine cells of the
lower gastrointestinal tract. Int. J. Exp. Pathol. 2011, 92, 219–231. [CrossRef]

109. May, C.L.; Kaestner, K.H. Gut endocrine cell development. Mol. Cell Endocrinol. 2010, 323, 70–75. [CrossRef]
110. Sandstrom, O.; El-Salhy, M. Ageing and endocrine cells of human duodenum. Mech. Ageing Dev. 1999, 108,

39–48. [CrossRef]
111. El-Salhy, M. Ghrelin in gastrointestinal diseases and disorders: A possible role in the pathophysiology and

clinical implications (review). Int. J. Mol. Med. 2009, 24, 727–732. [CrossRef]
112. Tolhurst, G.; Reimann, F.; Gribble, F.M. Intestinal sensing of nutrients. Handb. Exp. Pharmacol. 2012, 309–335.

[CrossRef]
113. Lee, J.; Cummings, B.P.; Martin, E.; Sharp, J.W.; Graham, J.L.; Stanhope, K.L.; Havel, P.J.; Raybould, H.E.

Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent
model of type 2 diabetes mellitus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R657–R666.
[CrossRef]

114. Parker, H.E.; Reimann, F.; Gribble, F.M. Molecular mechanisms underlying nutrient-stimulated incretin
secretion. Expert Rev. Mol. Med. 2010, 12, e1. [CrossRef]

115. Raybould, H.E. Nutrient sensing in the gastrointestinal tract: Possible role for nutrient transporters. J. Physiol.
Biochem. 2008, 64, 349–356. [CrossRef]

116. San Gabriel, A.; Nakamura, E.; Uneyama, H.; Torii, K. Taste, visceral information and exocrine reflexes with
glutamate through umami receptors. J. Med. Investig. 2009, 56, 209–217. [CrossRef]

117. Rudholm, T.; Wallin, B.; Theodorsson, E.; Naslund, E.; Hellstrom, P.M. Release of regulatory gut peptides
somatostatin, neurotensin and vasoactive intestinal peptide by acid and hyperosmolal solutions in the
intestine in conscious rats. Regul. Pept. 2009, 152, 8–12. [CrossRef]

118. Sternini, C.; Anselmi, L.; Rozengurt, E. Enteroendocrine cells: A site of “taste” in gastrointestinal
chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008, 15, 73–78. [CrossRef]

119. Sternini, C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in
gastrointestinal chemosensing. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G457–G461. [CrossRef]

120. Buchan, A.M. Nutrient Tasting and Signaling Mechanisms in the Gut III. Endocrine cell recognition of
luminal nutrients. Am. J. Physiol. 1999, 277, G1103–G1107.

121. Montero-Hadjadje, M.; Elias, S.; Chevalier, L.; Benard, M.; Tanguy, Y.; Turquier, V.; Galas, L.; Yon, L.;
Malagon, M.M.; Driouich, A.; et al. Chromogranin A promotes peptide hormone sorting to mobile granules
in constitutively and regulated secreting cells: Role of conserved N- and C-terminal peptides. J. Biol. Chem.
2009, 284, 12420–12431. [CrossRef]

122. Shooshtarizadeh, P.; Zhang, D.; Chich, J.F.; Gasnier, C.; Schneider, F.; Haikel, Y.; Aunis, D.; Metz-Boutigue, M.H.
The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity.
Regul. Pept. 2010, 165, 102–110. [CrossRef]

123. Rindi, G.; Inzani, F.; Solcia, E. Pathology of gastrointestinal disorders. Endocrinol. Metab. Clin. N. Am. 2010,
39, 713–727. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2362.1988.tb01046.x
http://dx.doi.org/10.1007/BF01538078
http://dx.doi.org/10.1210/en.2003-1338
http://dx.doi.org/10.2337/diabetes.54.8.2390
http://dx.doi.org/10.1056/NEJMra1207068
http://dx.doi.org/10.1007/s13277-010-0045-5
http://dx.doi.org/10.1111/j.1365-2613.2011.00767.x
http://dx.doi.org/10.1016/j.mce.2009.12.009
http://dx.doi.org/10.1016/S0047-6374(98)00154-7
http://dx.doi.org/10.3892/ijmm_00000285
http://dx.doi.org/10.1007/978-3-642-24716-3_14
http://dx.doi.org/10.1152/ajpregu.00345.2011
http://dx.doi.org/10.1017/S146239940900132X
http://dx.doi.org/10.1007/BF03174091
http://dx.doi.org/10.2152/jmi.56.209
http://dx.doi.org/10.1016/j.regpep.2008.10.002
http://dx.doi.org/10.1097/MED.0b013e3282f43a73
http://dx.doi.org/10.1152/ajpgi.00411.2006
http://dx.doi.org/10.1074/jbc.M805607200
http://dx.doi.org/10.1016/j.regpep.2009.11.014
http://dx.doi.org/10.1016/j.ecl.2010.08.009


Nutrients 2019, 11, 1824 14 of 15

124. Seim, I.; El-Salhy, M.; Hausken, T.; Gundersen, D.; Chopin, L. Ghrelin and the brain-gut axis as a
pharmacological target for appetite control. Curr. Pharm. Des. 2012, 18, 768–775. [CrossRef]

125. Dizdar, V.; Spiller, R.; Singh, G.; Hanevik, K.; Gilja, O.H.; El-Salhy, M.; Hausken, T. Relative importance of
abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and
functional dyspepsia. Aliment. Pharmacol. Ther. 2010, 31, 883–891. [CrossRef]

126. El-Salhy, M.; Gilja, O.H. Abnormalities in ileal stem, neurogenin 3, and enteroendocrine cells in patients with
irritable bowel syndrome. BMC Gastroenterol. 2017, 17, 90. [CrossRef]

127. El-Salhy, M.; Gilja, O.H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Duodenal chromogranin a cell density
as a biomarker for the diagnosis of irritable bowel syndrome. Gastroenterol. Res. Pract. 2014, 2014, 462856.
[CrossRef]

128. El-Salhy, M.; Gilja, O.H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Endocrine cells in the ileum of patients
with irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 2383–2391. [CrossRef]

129. El-Salhy, M.; Gilja, O.H.; Gundersen, D.; Hausken, T. Endocrine cells in the oxyntic mucosa of the stomach in
patients with irritable bowel syndrome. World J. Gastrointest. Endosc. 2014, 6, 176–185. [CrossRef]

130. El-Salhy, M.; Gilja, O.H.; Hatlebakk, J.G.; Hausken, T. Stomach antral endocrine cells in patients with irritable
bowel syndrome. Int. J. Mol. Med. 2014, 34, 967–974. [CrossRef]

131. El-Salhy, M.; Gilja, O.H.; Hausken, T. Chromogranin A cells in the stomachs of patients with sporadic irritable
bowel syndrome. Mol. Med. Rep. 2014, 10, 1753–1757. [CrossRef]

132. El-Salhy, M.; Gundersen, D.; Hatlebakk, J.G.; Gilja, O.H.; Hausken, T. Abnormal rectal endocrine cells in
patients with irritable bowel syndrome. Regul. Pept. 2014, 188, 60–65. [CrossRef]

133. El-Salhy, M.; Hatlebakk, J.G.; Gilja, O.H.; Hausken, T. Densities of rectal peptide YY and somatostatin cells as
biomarkers for the diagnosis of irritable bowel syndrome. Peptides 2015, 67, 12–19. [CrossRef]

134. El-Salhy, M.; Patcharatrakul, T.; Hatlebakk, J.G.; Hausken, T.; Gilja, O.H.; Gonlachanvit, S. Chromogranin A
cell density in the large intestine of Asian and European patients with irritable bowel syndrome. Scand. J.
Gastroenterol. 2017, 52, 691–697. [CrossRef]

135. El-Salhy, M.; Patcharatrakul, T.; Hatlebakk, J.G.; Hausken, T.; Gilja, O.H.; Gonlachanvit, S. Enteroendocrine,
Musashi 1 and neurogenin 3 cells in the large intestine of Thai and Norwegian patients with irritable bowel
syndrome. Scand. J. Gastroenterol. 2017, 52, 1331–1339. [CrossRef]

136. El-Salhy, M.; Vaali, K.; Dizdar, V.; Hausken, T. Abnormal small-intestinal endocrine cells in patients with
irritable bowel syndrome. Dig. Dis. Sci. 2010, 55, 3508–3513. [CrossRef]

137. Wang, J.; Cortina, G.; Wu, S.V.; Tran, R.; Cho, J.H.; Tsai, M.J.; Bailey, T.J.; Jamrich, M.; Ament, M.E.; Treem, W.R.;
et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 2006, 355, 270–280.
[CrossRef]

138. Fishbein, T.M.; Novitskiy, G.; Lough, D.M.; Matsumoto, C.; Kaufman, S.S.; Shetty, K.; Zasloff, M. Rejection
reversibly alters enteroendocrine cell renewal in the transplanted small intestine. Am. J. Transplant. 2009, 9,
1620–1628. [CrossRef]

139. Jenny, M.; Uhl, C.; Roche, C.; Duluc, I.; Guillermin, V.; Guillemot, F.; Jensen, J.; Kedinger, M.; Gradwohl, G.
Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric
epithelium. EMBO J. 2002, 21, 6338–6347. [CrossRef]

140. Montgomery, R.K.; Breault, D.T. Small intestinal stem cell markers. J. Anat. 2008, 213, 52–58. [CrossRef]
141. Potten, C.S.; Booth, C.; Tudor, G.L.; Booth, D.; Brady, G.; Hurley, P.; Ashton, G.; Clarke, R.; Sakakibara, S.;

Okano, H. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation
2003, 71, 28–41. [CrossRef]

142. Kayahara, T.; Sawada, M.; Takaishi, S.; Fukui, H.; Seno, H.; Fukuzawa, H.; Suzuki, K.; Hiai, H.; Kageyama, R.;
Okano, H.; et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed
in crypt base columnar cells of mouse small intestine. FEBS Lett. 2003, 535, 131–135. [CrossRef]

143. He, X.C.; Yin, T.; Grindley, J.C.; Tian, Q.; Sato, T.; Tao, W.A.; Dirisina, R.; Porter-Westpfahl, K.S.; Hembree, M.;
Johnson, T.; et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 2007, 39,
189–198. [CrossRef]

144. Schonhoff, S.E.; Giel-Moloney, M.; Leiter, A.B. Minireview: Development and differentiation of gut endocrine
cells. Endocrinology 2004, 145, 2639–2644. [CrossRef]

145. Schonhoff, S.E.; Giel-Moloney, M.; Leiter, A.B. Neurogenin 3-expressing progenitor cells in the gastrointestinal
tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 2004, 270, 443–454. [CrossRef]

http://dx.doi.org/10.2174/138161212799277806
http://dx.doi.org/10.1111/j.1365-2036.2010.04251.x
http://dx.doi.org/10.1186/s12876-017-0643-4
http://dx.doi.org/10.1155/2014/462856
http://dx.doi.org/10.3748/wjg.v20.i9.2383
http://dx.doi.org/10.4253/wjge.v6.i5.176
http://dx.doi.org/10.3892/ijmm.2014.1887
http://dx.doi.org/10.3892/mmr.2014.2472
http://dx.doi.org/10.1016/j.regpep.2013.11.005
http://dx.doi.org/10.1016/j.peptides.2015.02.008
http://dx.doi.org/10.1080/00365521.2017.1305123
http://dx.doi.org/10.1080/00365521.2017.1371793
http://dx.doi.org/10.1007/s10620-010-1169-6
http://dx.doi.org/10.1056/NEJMoa054288
http://dx.doi.org/10.1111/j.1600-6143.2009.02681.x
http://dx.doi.org/10.1093/emboj/cdf649
http://dx.doi.org/10.1111/j.1469-7580.2008.00925.x
http://dx.doi.org/10.1046/j.1432-0436.2003.700603.x
http://dx.doi.org/10.1016/S0014-5793(02)03896-6
http://dx.doi.org/10.1038/ng1928
http://dx.doi.org/10.1210/en.2004-0051
http://dx.doi.org/10.1016/j.ydbio.2004.03.013


Nutrients 2019, 11, 1824 15 of 15

146. El-Salhy, M.; Hatlebakk, J.G.; Hausken, T. The reduction in duodenal endocrine cells in IBSis associated with
stem cell abnormalities. World. J. Gastroenterol. 2015, 21, 9577–9587. [CrossRef]

147. El-Salhy, M.; Hatlebakk, J.G.; Gilja, O.H.; Hausken, T. Irritable bowel syndrome: Recent developments in
diagnosis, pathophysiology, and treatment. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 435–443. [CrossRef]

148. El-Salhy, M.; Gundersen, D.; Gilja, O.H.; Hatlebakk, J.G.; Hausken, T. Is irritable bowel syndrome an organic
disorder? World J. Gastroenterol. 2014, 20, 384–400. [CrossRef]

149. El-Salhy, M.; Hausken, T.; Gilja, O.H.; Hatlebakk, J.G. The possible role of gastrointestinal endocrine cells
in the pathophysiology of irritable bowel syndrome. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 139–148.
[CrossRef]

150. Hill, P.; Muir, J.G.; Gibson, P.R. Controversies and Recent Developments of the Low-FODMAP Diet.
Gastroenterol. Hepatol. 2017, 13, 36–45.

151. Biesiekierski, J.R.; Jalanka, J.; Staudacher, H.M. Can Gut Microbiota Composition Predict Response to Dietary
Treatments? Nutrients 2019, 11, 1134. [CrossRef]

152. Mazzawi, T.; El-Salhy, M. Changes in small intestinal chromogranin A-immunoreactive cell densities in
patients with irritable bowel syndrome after receiving dietary guidance. Int. J. Mol. Med. 2016, 37, 1247–1253.
[CrossRef]

153. Mazzawi, T.; El-Salhy, M. Dietary guidance and ileal enteroendocrine cells in patients with irritable bowel
syndrome. Exp. Ther. Med. 2016, 12, 1398–1404. [CrossRef]

154. Mazzawi, T.; Gundersen, D.; Hausken, T.; El-Salhy, M. Increased gastric chromogranin A cell density
following changes to diets of patients with irritable bowel syndrome. Mol. Med. Rep. 2014, 10, 2322–2326.
[CrossRef]

155. Mazzawi, T.; Gundersen, D.; Hausken, T.; El-Salhy, M. Increased chromogranin A cell density in the large
intestine of patients with irritable bowel syndrome after receiving dietary guidance. Mol. Med. Rep. 2015,
in press. [CrossRef]

156. Mazzawi, T.; Hausken, T.; Gundersen, D.; El-Salhy, M. Effects of dietary guidance on the symptoms, quality
of life and habitual dietary intake of patients with irritable bowel syndrome. Mol. Med. Rep. 2013, 8, 845–852.
[CrossRef]

157. Mazzawi, T.; Hausken, T.; Gundersen, D.; El-Salhy, M. Effect of dietary management on the gastric endocrine
cells in patients with irritable bowel syndrome. Eur. J. Clin. Nutr. 2014. [CrossRef]

158. Mazzawi, T.; Hausken, T.; Gundersen, D.; El-Salhy, M. Dietary guidance normalizes large intestinal endocrine
cell densities in patients with irritable bowel syndrome. Eur. J. Clin. Nutr. 2016, 70, 175–181. [CrossRef]

159. Mazzawi, T.; Lied, G.A.; El-Sahy, M.; Gilja, O.H.; Hatlebakk, J.G.; Hausken, T. Effect of fecal microbiota
transplantation on the symptoms and duodenal enteroendocrine cells in patients with irritable bowel
syndrome. United Eur. Gastroenterol. J. 2016, 4 (Suppl. 5), 677.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3748/wjg.v21.i32.9577
http://dx.doi.org/10.1586/17474124.2014.888952
http://dx.doi.org/10.3748/wjg.v20.i2.384
http://dx.doi.org/10.1080/17474124.2017.1269601
http://dx.doi.org/10.3390/nu11051134
http://dx.doi.org/10.3892/ijmm.2016.2523
http://dx.doi.org/10.3892/etm.2016.3491
http://dx.doi.org/10.3892/mmr.2014.2498
http://dx.doi.org/10.1155/2015/823897
http://dx.doi.org/10.3892/mmr.2013.1565
http://dx.doi.org/10.1038/ejcn.2014.151
http://dx.doi.org/10.1038/ejcn.2015.191
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Diet in IBS 
	Gut Microbiota 
	Gut Hormones 
	Interaction between Diet, Microbiota, and Endocrine Cells in the Guts of Patients with IBS 
	Conclusions 
	References

