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Preface

This thesis, submitted for the degree of Philosophiae Doctor at the Uni-

versity of Bergen, consists of five papers and one Research Report as well

as a summary of the work. The work has been performed at the Depart-

ment of Chemistry (2003) and the Centre for Integrated Petroleum Research

(CIPR), University of Bergen in the period 2004-2006. From November 2005

until January 2006 I had a short stay at the University of Newcastle upon

Tyne, in Newcastle, UK, funded by Marie Curie Fellowship Association. The

work at the University of Bergen has been financed by CIPR, and has been

performed in close collaboration with the HYPERION project. The HY-

PERION (HYdrate in PEtRoleum productION - Assessment of Plug Risk)

project is interdisciplinary, combining physical chemistry, petroleum chem-

istry, physics and the industrial aspects in research on crude oil/water/gas

interactions that influence hydrate morphology, and it is a KMB-project fi-

nanced by The Norwegian Research Council and Norsk Hydro ASA.

The work presented in this thesis has consisted of extraction and char-

acterisation of components in crude oil with affinity for hydrate surfaces.

Certain crude oil components have proven able to influence gas hydrate be-

haviour in petroleum systems, and thus relate to whether the plugging ten-

dency is high or low. Prevention of hydrate plugs in oil pipelines is important

for the petroleum industry, and today large amounts of methanol or glycol

are used to prevent the plugs from forming. A better knowledge on the com-

ponents present in crude oil that influence anti-agglomeration behaviour, and

hence the plugging tendency, can have positive economical and environmental

effects. Surface active compounds can be extracted from the bulk petroleum

by several methods. Due to the huge complexity of crude oil, the analysis of

the extracts is very challenging.
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Abstract

Some crude oils are believed to contain natural inhibiting components that

can prevent hydrate plugging of oil pipelines in petroleum production. A

method for classification of the oils that form hydrate plugs, as opposed to

those that are not problematical, can change the hydrate inhibiting strate-

gies for oil companies, and result in both economical savings and environ-

mental improvements. Furthermore, an identification of natural hydrate plug

inhibiting components can eventually give rise to development of more eco-

nomical and environmentally friendly inhibitors that can be added to crude

oil in pipelines.

This thesis addresses the issues of chemical characterisation of crude oil

with respect to identification of natural plug inhibiting components. Natu-

ral plug inhibiting components are probably hydrate surface active, e.g. an

acid fraction has previously been shown to be able to convert a plugging oil

into a non-plugging oil when added in a low concentration. In this work,

methods for extraction of surface active compounds in crude oil have been

established; two methods for acid extraction have been tested (liquid-liquid

and ion exchange), and in addition components with affinity for freon hydrate

and ice surfaces have been extracted. The extracts have been characterised

with chromatographic and spectroscopic methods, e.g. an HPLC method for

separation of extracts into four groups have been developed; non-polar com-

pounds, saturated carboxylic acids, phenolic compounds and polyfunctional

compounds.

The results show that the ion exchange is more effective than the liquid-

liquid method for extraction of acids from crude oil. Freon hydrates are found

to extract a specific fraction with polar compounds from crude oil, while ice

does not seem to be a good surface for extraction of components.
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Compounds which absorb to hydrate surfaces are found to be dominated

by saturated carboxylic acids, and to contain lower amounts of phenols and

polyfunctional compounds. In general, crude oil extracts primarily contain

components of intermediate molecular weights. This means that neither

high-molecular compounds such as asphaltenes, nor simple low-molecular

petroleum acids and bases are present to a large extent in these extracts.

FTIR analysis can to some degree differentiate between freon hydrate ex-

tracts from plugging and non-plugging crude oils. GC-MS is not suited for

the extracts used in this thesis due to limitations regarding molecular weights

and low volatility. LC-MS analysis with Ion Trap MS has been tested at the

University of Newcastle, but was not optimal for our samples. The freon hy-

drate extracts have been analysed for compounds similar to a biosurfactant

structure, but no such compounds could be found.

No structural identification of the natural inhibiting components have

been obtained. However, new methods for extraction of components with

affinity for freon hydrate and ice surfaces have been developed and acid ex-

traction methods from the literature have been tested. In addition, a set of

analytical methods that can characterise the fractions have been established.

One reason for the difficulty of identifying the natural inhibiting components

can be that they are present in very low amounts, but it may also be that the

distribution of compounds in the fractions is as important as the presence of

specific molecules.
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Chapter 1

Introduction

In production and transportation of petroleum a number of chemical and

physical phenomena has to be considered. Changes in pressure and temper-

ature can cause alterations in the equilibrium between water, gas and crude

oil. Some of the most common and most problematic alterations are the for-

mation and deposition of hydrates, wax and asphaltenes. These deposits can

cause plugging of transportation pipelines or process equipment, and eventu-

ally result in large economic losses. The prevention of these problems causes

substantial extra costs and unwanted use of chemicals. In some cases, the

costs associated with prevention of hydrate problems, typically high costs

regarding chemicals and construction of equipment for pumping and regen-

eration of the chemicals, can be a "show stopper" for oil companies when

evaluating new prospects.

Reliable physical models for prediction of hydrate formation are avail-

able [1]. However, these models do not describe the morphology of the hy-

drate particles, i.e. whether the hydrate particles agglomerate and grow into

a plug or remain as a dispersion of small hydrate particles in oil. Obser-

vations have indicated that some oils contain natural inhibiting components
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CHAPTER 1. INTRODUCTION

that prevent hydrate plugging [2–5]. A possible mechanism for formation of a

dispersion is adsorption of special compound types onto the hydrate surface,

preventing the small hydrate particles from agglomerating into large plugs.

Hence, morphology of the hydrates can be influenced by crude oil composi-

tion. Acid fractions for instance, have been shown to contain hydrate plug

inhibiting components (Paper II).

The negative consequences when a hydrate plug is formed have led the

oil companies to always assume plugging, thus large amounts of inhibitors,

like methanol or monoethylene glycol, are used. A better understanding of

the plugging tendency of different crude oils, and a differentiation of oils with

respect to their composition, will lead to lower operation costs for many oil

fields compared to how it is managed today.

Detailed knowledge about the natural plug inhibiting components and

which physical mechanisms are causing the anti-agglomeration of hydrate

systems, can be helpful to understand the plugging tendency of crude oils.

Thus, organic chemical analysis of the crude oil is very important, but the

complexity of crude oil makes it impossible to perform a complete structural

analysis [6]. The natural plug inhibiting components are believed to interact

with the hydrate surfaces and have high hydrate surface activity. Extraction

of these surface active components from the bulk crude oil is necessary to

obtain detailed knowledge about them. Petroleum acids comprise a large

part of the surface active components in crude oil, and several authors have

extracted acids using different methods, see Section 4.2. In addition to ex-

traction of acids, this thesis also focus on extraction of components with

affinity for hydrate surfaces.

Even after fractionation of crude oil, the analysis of the fractions are chal-

lenging. Petroleum analysis is often focused on the hydrocarbon fractions,

2



CHAPTER 1. INTRODUCTION

and the methods for these analyses are not suitable for the identification of

compounds in crude oil fractions containing surface active compounds, due

to low volatility and polar properties. Thus, new methods with the focus on

polar compounds of intermediate molecular weights (appr. 500 g/mole) have

to be developed.
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Chapter 2

Gas Hydrates

Gas hydrates have been a research subject from the beginning of the 19th

century [7, 8]. The problem with hydrates in natural gas pipelines was first

reported by Hammerschmidt in 1934 [9], when he discovered that the plug

in a pipeline consisted of hydrates, and not ice.

2.1 Composition of gas hydrates

Gas hydrates consist of gas molecules that are trapped in a framework of

water molecules, and a simple example is shown in Figure 2.1. Hydrates are

similar to ice, but hydrates can be formed at higher temperatures than ice.

The water molecules in the hydrate structure are held together by hy-

drogen bondings, and guest molecules are situated in cavities. The hydrate

structure is dependent of the guest molecule, and three different hydrate

structures can be formed, see Figure 2.2. Methane and ethane are small

molecules, and these gases form Structure I hydrates. Propane is a larger

molecule, and Structure II hydrates are needed to provide cavities of suitable

size [1]. Petroleum associated natural gas consists predominantly of methane.

5



CHAPTER 2. GAS HYDRATES

Figure 2.1: Simple illustration of a gas molecule trapped inside a framework
of water molecules. c©USGS (U.S. Geological Survey).

Higher weight hydrocarbons, like ethane and propane, are also present in

smaller quantities. Non-flammable, non-hydrocarbon components, like car-

bon dioxide and nitrogen, are often present in trace amounts and are regarded

as contaminants [10]. The natural gas contains propane, and Structure II hy-

drates are formed to make large enough cavities for all the gas components.
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CHAPTER 2. GAS HYDRATES

COMMENTARIES

Clathrate Hydrates: The Other Common Solid Water Phase

When small (<0.9 nm) nonpolar molecules contact
water at ambient temperatures (typically <300 K) and
moderate pressures (typically >0.6 MPa), a second
commonly found water crystal may formsa clathrate
hydrate. A large fraction of the earth’s natural gas is
stored in clathrate hydrates, and natural gas is a
premium fuel for two reasons: (1) it burns cleanly,
causes few pollution problems, and, relative to oil or
coal, produces less carbon dioxide and (2) liquid fuels
are better used as feedstocks for petrochemicals. Much
of the natural gas-containing hydrates is in the ocean
bottom, and while production of gas from such deep-
lying hydrates is now too expensive, it is likely that one
day we will need to tap that fuel source to meet growing
energy demands. However, during the last 70 years,
most of the influence of hydrates has been negative
because hydrates plug gas transmission lines.

On a molecular scale, single small guest molecules
are encaged (enclathrated) by hydrogen-bonded water
cavities, in these nonstoichiometric hydrates. Guest
repulsions prop open different sizes of water cages,
which combine to form three well-defined unit crystals
shown in Figure 1. Cubic structure I predominates in
the earth’s natural environments with small (0.4-0.55
nm) guests; cubic structure II generally occurs with
larger (0.6-0.7 nm) guests in mostly man-made envi-
ronments; and hexagonal structure H may occur in
either environment but only with mixtures of both small
and the largest (0.8-0.9 nm) molecules. The smallest
hydrated molecules (Ar, Kr, O2, and N2) with diameters
of less than 0.4 nm form structure II; still smaller
molecules cannot be enclathrated except at extreme
pressures. Table 1 shows properties of the three common
unit crystals.

Remarkably, when all hydrate cavities are filled, the
three crystal types have similar concentrations of
components: 85 mol % water and 15 mol % guest(s).
Hydrate formation is most probable at the interface of
the bulk guest and aqueous phases, because the hydrate
component concentrations exceed the mutual fluid
solubilities. The solid hydrate film at the interface acts
as a barrier to further contact of the bulk fluid phases,
and fluid surface renewal is required for continued
clathrate formation. The gas concentration in clathrates
is comparable to that of a highly compressed gas (i.e.,
methane gas at 273 K and 16 MPa).

Energy Impact, Seafloor Stability, and Climate
Changes

The above molecular properties result in unusual
macroscopic behavior, the most pragmatic being the
plugging of gas pipelines. The prediction of hydrate

formation conditions is acceptable for the natural gas
industrysaccurate to within 10% for well-defined fluids
at temperatures above 273 K and pressures below 30
MPa. To provide flow assurance, thermodynamic inhibi-
tors such as methanol, ethylene glycol, or salts are
injected to compete for water molecules with the hydrate
structure.

However, the thermodynamic database, previously
capped at 30 MPa by gas-processing needs, must be
extended with better inhibitors to enable future gas
production at water depths approaching 3 km. In the
past decade a new inhibitor type1 has come into use,
which prevents formation of solid plugs for a period
exceeding the pipeline’s free water residence time. While
they do not replace thermodynamic inhibitors, kinetic
inhibitors and antiagglomerants are complementary in
the pipeline flow assurance toolbox for hydrate preven-
tion.

† Phone: 303-273-3723. Fax: 303-273-3730. E-mail: esloan@
gashydrate.mines.edu.

Figure 1. Three common hydrate unit crystal structures. No-
menclature: 51264 indicates a water cage composed of 12 pentago-
nal and 4 hexagonal faces; along the lines are indicated the
numbers of cage types. Example: the structure I unit crystal is
composed of 2 512 cages, 6 51262 cages, and 46 water molecules.

Table 1. Geometry of Cages in Three Hydrate Crystal
Structures in Figure 1A

I II H

small large small large small medium large

description 512 51262 512 51264 512 435663 51268

no. of cavities/
unit cell

2 6 16 8 3 2 1

average cavity
radius, Å

3.95 4.33 3.91 4.73 3.91c 4.06c 5.71c

variation in
radius,a %

3.4 14.4 5.5 1.73 nad nad nad

coordination
numberb

20 24 20 28 20 20 36

no. of waters/
unit cell

46 136 34

a Variation in distance of oxygen atoms from center of cage.
b Number of oxygens at the periphery of each cavity. c Estimates
of structure H cavities from geometric models. d na ) not available.

3123Ind. Eng. Chem. Res. 2000, 39, 3123-3129

10.1021/ie000574c CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/12/2000

Figure 2.2: Three common hydrate unit crystal structures. Nomenclature:
51264 indicates a water cage composed of 12 pentagonal and 4 hexagonal
faces. Along the lines are indicated the numbers of cage types. Example:
the Structure I unit crystal is composed of 2 512 cages, 6 51262 cages, and 46
water molecules. The figure is taken from Sloan [11].

2.2 Formation of hydrates

The formation of hydrate crystals can take place when the mixture of water

and guest (gas) molecules is within the pressure and temperature region

for hydrate formation. Temperatures are typically < 27 ◦C and pressure

typically > 6 bar [11]. Within the pressure and temperature conditions for

hydrate formation, it often takes some time for hydrates to form, and this

is normally termed the induction period [1]. The hydrate crystals can grow

into large clusters of hydrates.

A phase diagram for natural gas is shown in Figure 2.3. This diagram

shows that hydrates can be formed in the region to the left of the line in
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CHAPTER 2. GAS HYDRATES

Figure 2.3, for instance at 5◦C and 25 bars. At 15◦C and 25 bars there will

be no hydrate formation. Different gases give different phase diagrams.
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Figure 2.3: Hydrate phase diagram of natural gas (90.4% methane, 5.2 %
etane, 2.1 % propane and trace amounts of N2, CO2, iso-butane, n-butane,
iso-pentane, n-pentane and C6) simulated by PVT-sim (from Calsep A/S).

2.3 Industrial aspects: inhibition of hydrates

Formation of a hydrate plug in a petroleum pipeline may create dangerous

situations for the oil companies due to pressure build up during plugging

and non controllable liberation of gas causing explosion hazard during plug

melting. The expenses when removing a hydrate plug is large, including

delayed production.

2.3.1 Thermodynamic inhibitors

In order to avoid these problems, the oil companies traditionally design their

operating systems to stay outside the hydrate stable region. The hydrate

problems are most often avoided by adding methanol (MeOH) or monoethy-

lene glycol (MEG), which are thermodynamic inhibitors. When the ther-

8



CHAPTER 2. GAS HYDRATES

modynamic inhibitors are added to the water phase in the pipelines, the

hydrate phase diagram changes. Lower temperatures and higher pressures in

the pipelines can be tolerated without moving into the stable hydrate forma-

tion area. In Figure 2.4, 30 wt% metanol has been added to the natural gas

system (grey stippled line) and this is compared to the gas system with no

inhibitor (black line). The phase boundary for hydrate formation is moved

to much lower temperatures.
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Figure 2.4: Hydrate phase diagram of natural gas system with 30 wt%
metanol as inhibitor (grey stippled line) compared to no inhibitors (black
line), simulated by PVT-sim (from Calsep A/S).

A production system is often designed to retain sufficient heat to operate

outside the hydrate stability region [12]. Inhibitors are needed mostly during

"start-up" of cold pipelines that have been shut down either planned or

unplanned. The methanol and MEG can be regenerated to use less inhibitor.

Still, large amounts are necessary, and storing, transportation and facilities

for the regeneration of the inhibitor are needed. Another problem, especially

with methanol, is that it can be dissolved in relatively high concentrations

in oil before arrival at the refinery, reducing the value of the crude oil [12].

9



CHAPTER 2. GAS HYDRATES

2.3.2 Low dosage inhibitors

Low dosage chemicals can also be used to prevent problems related to hy-

drate formation in the pipelines. There are two kinds of low dosage hydrate

inhibitors (LDHIs); kinetic hydrate inhibitors (KHIs) and anti-agglomerants

(AAs).

The KHIs decrease the rate at which hydrates are formed and the growth

rate of the hydrates. The hydrate forming fluids can then be transported

for a certain period of time before hydrates start to form. The AAs do not

prevent the formation of hydrates, but they prevent the agglomeration into

large masses by forming a slurry that can be transported. More information

about LDHIs can be found in a review article by Kelland [13] and references

therein.

KHIs and AAs have different advantages. The AAs are effective at high

degrees of sub-cooling, but they cannot be used at high water cuts and they

require the presence of a liquid hydrocarbon phase to transport the sus-

pension of the converted hydrate crystals. The KHIs do not need a liquid

hydrocarbon phase and can be used at any water cuts, but their effectiveness

is limited by sub-cooling [12,13].

LDHIs are being used in some field applications (e.g [14–16]), but some

limitations create problems for the use of LDHIs. The price per volume of the

LDHI chemicals is much higher than the thermodynamic inhibitors. How-

ever, smaller amounts of LDHIs are needed compared to the thermodynamic

inhibitors, so it might be more cost effective to use LDHIs. A main problem

is the modification of infrastructure needed for the change from thermody-

namic inhibitors to the LDHIs. In addition, since the formation of a hydrate

plug will have negative consequences, the oil companies can be reluctant to

use LDHIs before their effects has been properly proved [12]. Another im-

10



CHAPTER 2. GAS HYDRATES

portant factor is the toxicity of LDHIs, and a lot of the chemicals used for

inhibition are restricted due to their negative environmental effects [17].

2.3.3 Natural inhibitors

Some crude oils have shown to be unproblematic even when operated within

thermodynamic conditions for stable hydrate formation without using in-

hibitors. Several authors have indicated that the plugging tendency of crude

oils is dependent on the presence or absence of natural inhibiting components

(NICs) [2–5]. A possible mechanism could be the adsorption of special com-

pound types onto the hydrate surface, preventing the small hydrate particles

from agglomerating into large plugs, and thus work as a kind of natural AA

mechanism.

The natural inhibiting components that are present in some oils are most

likely surface active compounds. Examples of surface active compounds in

crude oil are asphaltenes, resins, acids and bases. The composition of crude

oil will be discussed in Chapter 3.

2.4 Naturally occurring gas hydrates

Gas hydrates are not only a focus in the oil industry, but also attract much

interest because they occur naturally in many environments, like in the ocean

floor and in the permafrost [1]. Usually methane comprise most (>99%)

of the hydrocarbon gas mixtures, and thus Structure I hydrates are most

likely to be formed. The gas hydrates buried below the ocean floor are

mostly of microbial origin (CO2 from organic matter is reduced to methane),

and the continental gas hydrates often contain a mixture of microbial and

migrated thermal methane (thermal decomposition of organic matter), see
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review article by Kvenvolden [18] and references therein. Large amounts of

methane are present in the gas hydrates, and if obtained, this methane can

be used as energy resource. The amounts of methane contained in the naural

gas hydrates have been estimated by several authors, and the amounts vary

over a wide range [1]. Some authors estimated the amount of carbon in

methane hydrates to approximately 2.0 × 1016 m3 [19, 20]. If correct, this

amount would be twice as large as the carbon present in all known fossil

fuels [19]. However, the recovery of gas from the hydrate reservoirs is very

uncertain, because they are very dispersed and the solid form makes them

difficult to recover [1].

2.5 Models for gas hydrates

In this thesis, the experimental work has not involved the natural gas hy-

drates, due to the need for using expensive equipment that tolerate the tem-

perature and pressure conditions associated with natural gas hydrates. Mod-

els for natural gas that are easier and safer to work with in the laboratory,

like freon hydrates and ice, have been used.

2.5.1 Freon hydrates as models for natural gas hydrates

Freon (CCl3F, R-11) forms Structure II hydrates below 8.5◦C at 1 bar [21],

and is thus suitable for laboratory experiments without pressurised equip-

ment. A procedure for making of the freon hydrates and extracting compo-

nents with affinity for the hydrate surface is described in Paper III.

12
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2.5.2 Ice as a model for natural gas hydrates

Ice has also been tested as a model for natural gas hydrates. The ice crystals

are made as small as possible to get a large surface area for extraction of

active material. Crude oil components are allowed to adsorb onto the ice

surface by various extraction methods. The procedures for ice extraction are

described in the Research Report which is included in this thesis.
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Chapter 3

Crude oil

Crude oil is formed from inclusion of biomass of mostly aquatic plants and

animals in the sediments. The organic material is altered and decomposed

in several steps, and this process results in a complex mixture containing a

large variety of compounds and molecular species [10,22,23].

3.1 Composition of crude oil

The composition of petroleum can vary depending on many factors, like the

location and the age of the field. Crude oil mainly consists of the elements

carbon and hydrogen (from organic material). In addition small amounts of

nitrogen, oxygen, sulfur and metals can be found [10].

3.1.1 Hydrocarbons in crude oil

Hydrocarbons are compounds consisting of only carbon and hydrogen. In

petroleum we can find saturated hydrocarbons with straight or branched

chains (paraffins), saturated hydrocarbons containing one or more cyclic

structures (naphthenes) and hydrocarbons containing one or more aromatic
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nuclei (aromatics) [10]. Examples of different hydrocarbons are shown in

Figure 3.1.

Paraffins: saturated hydrocarbons with 
straight or branched chains:

Naphthenes: saturated hydrocarbons 
containing one or more rings

decahydronaphthalene

tetradecane

Aromatics: hydrocarbons containing 
one or more aromatic nuclei

benzene3,6-dimethyltetradecane

Figure 3.1: Examples of different hydrocarbons in crude oil; paraffins, naph-
thenes and aromatics.

3.1.2 Nonhydrocarbon constituents

Components containing oxygen, nitrogen and sulfur are termed hetero com-

pounds. These compounds appear throughout the whole boiling range of the

crude oil, but they tend to concentrate in the heavier fractions [10]. The

polar compounds in petroleum containing nitrogen, sulfur and oxygen are

often called NSO-compounds or resins.

Oxygen compounds in crude oil are typically alcohols, phenols, acids, ke-

tones, esters, ethers and anhydrides, and many of them are acidic. Typical

nitrogen compounds found in crude oil are pyridine and quinoline, that are

basic, and pyrole, indole and carbazole that are non-basic [10]. Sulfur com-

pounds often have harmful effects, like increased corrosion, and they need to

be removed due to environmental concerns. Examples of crude oil compounds

containing oxygen, nitrogen and sulfur are shown in Figure 3.2.

In addition to the resins, asphaltenes are also found in the heavier frac-
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Oxygen compounds:

O

OH

OH

tetradecanoic acid phenol

Nitrogen compounds: Sulfur compounds:

N
HN SS

benzothiophenepyridine pyrrole thiophene

Figure 3.2: Examples of crude oil components containing oxygen, nitrogen
or sulfur.

tions. The asphaltenes are not special compounds or compound groups, but

a solubility fraction. The asphaltenes consist of crude oil components that

cannot be dissolved in low boiling liquid hydrocarbons, like pentane, hexane

and heptane [10]. The composition of the asphaltenes is dependent on the

liquid hydrocarbon used for the asphaltene extraction, and asphaltene data

always has to be reported together with the extraction procedure. In the

literature asphaltenes are referred to as macromolecules consisting of many

aromatic rings, hydrocarbon chains and heteroatoms (and trace metals), and

the molecular weight is probably in the range 2000 ± 500 g/mole [10].

3.2 Biodegradation of crude oil

Biodegradation is microbial alteration of the crude oil. Bacteria are under

some conditions able to degrade some of the compounds present in crude

oil, using them as a source of carbon [22]. The n-alkanes are attacked first,

probably because they are easiest for the bacteria to consume. After the n-

alkanes, the bacteria start to consume compounds with one methyl branch,
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and then more highly branched compounds. Later polycyclic alkanes are

attacked, starting with the most degradable ones, and at the end aromatic

hydrocarbons. Degradation of the lighter hydrocarbons leads to enrichment

of other compounds in the crude oil, like heavy polar compounds and as-

phaltenes. Biodegradation also leads to formation of compounds like acids,

mostly cyclic acids (naphthenic acids), that can be manufactured by the

bacteria [24] and demethylated hopanes, possibly components of bacteria

cells [22]. The production of acids during biodegradation might be due to

either oxidation of hydrocarbons in the crude oil, or the acids can come from

the cell walls of the micro-organisms [24–27].

The level of biodegradation can be determined by investigating which

compounds that are degraded. Peters and Moldowan [28] have developed a

scale for evaluating the biodegradation level from 1 to 10, 1 representing light

biodegraded and 10 representing severe biodegraded oils. The scale of Peters

and Moldowan is used to characterise the crude oils in this thesis. Crude oils

that are not biodegraded at all (non-biodegraded) are given the level 0. The

Peters and Moldowan scale focus on the heavy and severe biodegradation.

Other scales for biodegradation level have been developed, e.g. a scale by

Wenger et al. [29] that focus more on the lower levels of biodegradation,

and characterisation of biodegradation by the use of carbon isotopic ratio

that has been used by Vieth and Wilkes [30]. Recent results from our group

have shown that early biodegradation may occur in a very variable manner,

depending on the micro-organisms present [31].

Biodegradation results in reduction of the crude oil quality and economic

value. The enrichment of heavy polar components leads to an increase in

density, viscosity, acidity and content of sulfur, asphaltene and metals [24,

28, 29, 32]. The increased acidity due to biodegradation further reduces the
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value of the oil and may contribute to corrosion, e.g. [25,33,34] and emulsion

problems, e.g. [29].

The biodegradation process is not well understood. Previously aerobic

bacteria was thought to be the main contributor to biodegradation [22, 32,

35]. However, recent research has shown that anaerobic biodegradation also

occurs, e.g. [36–42].

In order for biodegradation to occur, some conditions are needed. Most

of the biodegradation takes place at the oil-water contacts, where the bac-

teria can live in the water phase, which contains nutrients, and consume

components from the oil phase [32, 41, 43, 44]. Thus, a water phase in ad-

dition to the crude oil is needed. In order to easier get hold of the crude

oil components, the bacteria often produce biosurfactants, see Section 3.3.2.

Another important factor for biodegradation is the temperature in the reser-

voir. Generally the degradation level decrease with increasing temperature

up to 80◦C [32,41,43,45]. Over 80◦C reservoirs are sterilised, and no bacterial

activity occurs [45].

In general, biodegradation occurs in shallow reservoirs with temperatures

below 80◦C, and most of the degradation processes are anaerobic, see review

article by Larter et al. [46]. The biodegradation reduces the value of the

crude oil by the lower hydrocarbon content and the higher amounts of acids,

asphaltenes and other heavy polar components.

3.3 Surface active compounds in crude oil

Surface active compounds in crude oil are important because they affect the

phase behaviour when an oil comes in contact with one or several other

phases, like water or solid surfaces. For instance, surface active crude oil

19



CHAPTER 3. CRUDE OIL

components are important for behaviour during processing of crude oil, e.g.

formation of emulsions [47,48] and foam [49]. Surface active compounds are

also believed to be of special interest regarding the hydrate plugging problem

in the petroleum industry [5]. In addition to production problems, adsorbed

surface active components influence the wetting properties of reservoir rocks,

which again influence the oil recovery from the reservoirs [50].

Several classes of hetero compounds in crude oil show surface activity,

but the carboxylic acids are especially important for the interfacial activity

of crude oil [51]. Recently, very surface active biosurfactants formed during

petroleum biodegradation have also been identified [52,53].

3.3.1 Petroleum acids

Acids are a natural part of petroleum, and have been extracted and analysed

in several contexts [24, 25, 51, 54–67]. The amount of acids in petroleum is

low, generally less than 4 wt% [51, 59, 67]. However, they are important

due to their interfacial activity and their emulsifier and corrosive properties

[51,61,68–70].

The acids are present because the crude oil formation process has not

proceeded to a sufficient degree to defunctionalise them, or because the crude

oil has been biodegraded by bacteria, see Section 3.2 [23, 24, 26]. Thus, the

amount of acids is much higher in biodegraded oils than in non-biodegraded

oils.

Naphthenic acids comprise a large part of the petroleum carboxylic acids.

The naphthenic acids are a complex mixture of alkyl substituted acyclic and

cycloaliphatic carboxylic acids, and they have the general formula CnH2n+ZO2,

where n stands for the number of carbon atoms and Z specifies the hydrogen

deficiency, see Figure 3.3. When Z is 0, the formula represents an acyclic
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fatty acid. More information about naphthenic acids can be found in a re-

view article by Clemente and Fedorak [71] and references therein. The cyclic

structures that are found to a large degree in the naphthenic acids are not

easily identified on molecular basis.
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1. Introduction

Naphthenic acids comprise a complex mixture of

alkyl-substituted acyclic and cycloaliphatic carboxylic

acids, with the general chemical formula CnH2n+ZO2,

where n indicates the carbon number and Z is zero or

a negative, even integer that specifies the hydrogen defi-

ciency resulting from ring formation. The absolute value

of Z divided by 2 gives the number of rings in the com-

pounds. The rings may be fused or bridged. The acyclic

components are highly branched, unlike fatty acids

(Rudzinski et al., 2002), although fatty acids fit the for-

mula CnH2n+ZO2, for Z = 0. Fig. 1 shows examples of

naphthenic acids structures. Besides the carboxylic acid

group, cyclic naphthenic acids are believed to be substi-

tuted with alkyl groups (R in Fig. 1).

Naphthenic acids are non-volatile, chemically stable,

and act as surfactants. Naphthenic acids have dissocia-

tion constants that range between 10�5 and 10�6 (Brient

et al., 1995), which is typical of most carboxylic acids

(acetic acid = 10�4.7, propionic acid = 10�4.9, palmitic

acid 10�8.7) (Kanicky et al., 2000). Sodium salts of naph-

thenic acids are soluble in water.

Naphthenic acids are natural components of petro-

leum (Seifert and Teeter, 1969; Seifert et al., 1969;

Fan, 1991; Tomczyk et al., 2001). They comprise part

of the petroleum acids that are present at different con-

centrations depending on the source of oil. Lochte and

Litman (1955) reported petroleum acids in crude oils

to range from undetectable to 3% by weight. Carboxylic

acids, which include naphthenic acids, are found in

petroleum because either the deposit has not undergone

sufficient catagenesis or it has been biodegraded by bac-

teria (Tissot and Welte, 1978). Carboxylic acids have

been found in deposits of naturally biodegraded oil

(Nascimento et al., 1999; Meredith et al., 2000) and in

crude oil that was biodegraded in laboratory experi-

ments (Roques et al., 1994; Watson et al., 2002). Naph-

thenic acids in the Athabasca oil sands in Canada were

produced by biodegradation of mature petroleum (Tis-

sot and Welte, 1978).

However, petroleum acids and naphthenic acids

preparations obtained from petroleum are not solely

comprised of cyclic or acyclic alkanoic acids with the

general formula CnH2n+ZO2. For example, UV and IR

analyses showed the presence of pyrroles, thiophenes,

and phenols in naphthenic acids purified from a Califor-

nia crude oil (Seifert et al., 1969). Thin layer chromato-

graphy (TLC) of a California crude demonstrated that

the naphthenic acid fraction contains 3 mol% phenol,

5 mol% nitrogen, (2% of which are in indoles), and

8.5 mol% sulfur (Seifert and Teeter, 1969).

Tomczyk et al. (2001) characterized San Joaquin Val-

ley, California crude oil and found that 40% of the acids

did not contain the carboxylic acid functional group.

Z = 0

Z = – 6

Z = – 4

Z = – 2

(CH2)mCO2HR R (CH2)mCO2H

R
(CH2)mCO2H

R

(CH2)mCO2H

R (CH2)mCO2H

(CH2)mCO2H

(CH2)mCO2H

R (CH2)mCO2H

R

R

CH3(CH2)mCO2H

Fig. 1. Sample naphthenic acid structures where R is an alkyl

chain, Z describes the hydrogen deficiency, and m is the number

of CH2 units.

586 J.S. Clemente, P.M. Fedorak / Chemosphere 60 (2005) 585–600

Figure 3.3: Naphthenic acid structures where R is an alkyl chain, Z describes
the hydrogen deficiency and m is the number of CH2 units, from Clemente
and Fedorak [71].

The petroleum acid fraction does not only consist of cyclic or acyclic

alkanoic acids. Compounds containing heteroatoms like sulfur and nitrogen

are also present, as well as phenols [25,65,68,72,73].

3.3.2 Biosurfactants

Micro-organisms cause the biodegradation of petroleum. These organisms

live in the water phase, and they consume crude oil components that mostly

are found in the oil phase (see Section 3.2). In order to enhance the avail-
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ability of the crude oil components, the micro-organisms can produce biosur-

factants [74–77]. Surfactants are surface active agents, which amongst other

properties can reduce the surface and interfacial tension of liquids. The sur-

factants contain one hydrophilic part (head) and one hydrophobic/lipophilic

part (tail), where the hydrophilic head can interfere with the water phase,

and the hydrophobic tail stays in the oil phase at an oil-water interface [78].

Biosurfactants have high surface active properties and are produced by mi-

crobial activity [78,79].

Biosurfactants have several application areas, where the oil industry is

the major market, for instance in bioremediation of petroleum contamination

[80–82], oil tank cleaning [83] and microbial enhanced oil recovery [84]. Other

applications are agriculture, cosmetics, pharmaceuticals, detergents, personal

care products, food processing etc. (see review article by Banat et al. [85]

and references therein). Advantages with the biosurfactants, are that they

can be biodegraded [86–88] and they are non-toxic or less toxic [85,89]. One

disadvantage is the high production costs of biosurfactants [75,90].

Several classes of biosurfactants can be found, like glycolipids, lipopep-

tides, phospholipids, fatty acids and neutral lipids [91]. In this thesis two

biosurfactants have been studied; surfactin which is a lipopeptide, and rham-

nolipid which is a glycolipid.

Surfactin has a molecular weight of approximately 1050 g/mole, and con-

tains a seven-membered ring of amino acid units, made up of four different

amino acids, linked with a hydroxy fatty acid. The number of C-atoms and

the branching in the fatty acid might vary, as well as the the amino acid

substitution in the peptide ring [92–95]. More information about surfactin

can be found in the mini-review by Peypoux et al [96] and others [92,97–101].

The structure of a surfactin molecule is shown in Figure 3.4. In our tests
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we used a commercial surfactin (purity approx. 98%), purchased from from

Sigma.
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Figure 3.4: The structure of a surfactin molecule, containing a seven-
membered ring of amino acid units, made up of four different amino acids
(leucine, glutamic acid, valine and aspartic acid), linked with a hydroxy fatty
acid. (Figure 1, Paper III.)

Rhamnolipid is a glycolipid, and consists of the sugar structure rhamnose

and hydroxy fatty acids. One or two sugar units might be present, in ad-

dition to one or two fatty acids [102], giving molecular weights from 330 to

650 g/mole. The structure of a rhamnolipid is shown in Figure 3.5. More

information about rhamnolipids can be found in the review article by Desai

and Banat [102] and others [103–105]. Our sample of rhamnolipid (0.25 %

in water) was recieved from Professor I. Banat, University of Ulster [103].
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Figure 3.5: The structure of a rhamnolipid molecule, consisting of two rham-
nose units and two hydroxy fatty acids.
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Chapter 4

Methods for fractionation and

analysis

4.1 Bulk analysis of crude oil

To examine the general nature of petroleum the percentages of carbon, hy-

drogen, nitrogen, oxygen and sulfur are often characterised [10]. The atomic

ratio of the various elements compared to carbon (i.e. H/C and O/C) can be

used to indicate the overall character of the crude oil. However, this analysis

does not give any information about the structure of the components present

in the crude oil.

The amounts of acids and bases in crude oil are often measured by titra-

tion. The titration procedures only give the total amount of titratable acids

and bases, and they do not give any information about the molecular com-

position of the compounds. Standard methods have been developed for total

acid number (TAN), e.g. ASTM664-89 [106], and total base number (TBN),

e.g. ASTM2896-88 [107] with modifications by Dubey and Doe [108].
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4.2 Fractionation of crude oil

Crude oil can be divided into fractions in different ways. In distillation

fractionation for instance, compounds are separated according to their boiling

points, and fractions of broad boiling ranges are obtained [10]. Solvents can

also be used to fractionate crude oil, usually by having two phases - a solvent

phase and an oil phase [10]. One type of solvent extraction is asphaltene

separation. In this procedure 40 volumes of low-molecular-weight paraffinic

hydrocarbons, like n-pentane, n-hexane or n-heptan, are added to the crude

oil. The fraction that can be solved in the hydrocarbon solvent is called

maltenes, and the fraction that is not soluble is called asphaltenes.

The maltene fraction can be further fractionated into sub-fractions by the

use of adsorption chromatography. This is performed on a column filled with

adsorption material. When a sample is applied onto the column and trans-

ported through by a solvent, the components in the sample are adsorbed to

the column material to various extents, depending on their chemical nature.

By varying the polarity of the solvent, the components elute from the column

in different fractions [10]. A standard fractionation procedure is the SARA

fractionation, where the crude oil is separated into Saturates, Aromatics,

Resins and Asphaltenes [109]. A scheme for a simplified fractionation proce-

dure is shown in Figure 4.1.

In this work, crude oil extracts are fractionated on micro silica columns

to remove the non-polar components and separate the rest of the extract

into two polar fractions, the first polar fraction containing less polar com-

pounds (typically carboxylic acids) than the second polar fraction (typically

polyfunctional compounds). Two types of columns are used, and the frac-

tionation procedures are described in Paper III.

Solid Phase Extraction (SPE) cyano columns are also used to fraction-
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Figure 4.1: A simplified fractionation procedure, from Speight [10].

ate crude oil extracts. A method for separation of acid fractions into four

sub-fractions has been developed, and this procedure is described in Paper

IV. A picture of the SPE column during the fractionation of an acid fraction

is shown in Figure 4.2. This method was primarily developed to fractionate

large amounts of sample in a way similar to the HPLC fractionation using

cyano columns, see Section 4.4.2. Even after optimisation of the eluent com-

position, the SPE columns cannot reproduce the fractionation on the HPLC

cyano columns. The produced sub-fractions are not sufficiently uniform to

be useful in precise analysis on GPC, FTIR and GC-MS to obtain structural

information. However, the SPE procedure can be used to rapidly separate

large amounts of the acid fractions into rough sub-fractions for studies of

physical and chemical properties.

Iatroscan is a method that quickly and inexpensively quantifies the rela-

tive amounts of material present in different fractions. Samples are spotted

near the end of tubes coated with a thin layer of stationary phase, and solvent
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Figure 4.2: SPE fractionation of an acid fraction. The picture is taken during
the fractionation when the third fraction is being eluted off the column.

are allowed to climb up the tube. Some of the molecules are mobilised by the

solvent. A series of eluting solvents of increasing polarity is used to mobilize

all the compounds. The amount of material can be determined using a flame

ionisation detector [22].

Acids can be extracted from crude oil by various methods. Several au-

thors report the use of liquid-liquid extractions, where alkaline solutions are

used to extract the acidic components from crude oil [25,51,55,59,110,111].

An alternative method for extracting the acids from petroleum is using an

ion-exchange resin [24, 54, 60, 62, 67, 112]. The separated acid fractions still

comprise a wide range of structures and acid strengths [6]. In this thesis,

acids have been extracted from crude oils both by liquid-liquid extraction

(Paper I and V) and ion exchange extraction (Paper V).
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4.3 Spectroscopic methods

Infrared spectroscopy (IR) provides information on the functional groups

present in samples. Individual compounds cannot be identified using Fourier

Transform InfraRed (FTIR) spectroscopy, but information about structural

features of the whole sample can be obtained, e.g. the presence of linear or

branched carbon chains, aromatic rings, carbonyl groups and other specific

functional groups. The FTIR interpretations in this thesis are based on

literature from Williams and Fleming [113] and Coates [114]. In this work,

the Attenuated Total Reflection (ATR) technique is used. The technique is

used for hydrate extracts in Paper III and acid fractions in Paper IV and V.

Nuclear Magnetic Resonance (NMR) has a large potential for characteri-

sation of structures of heavy petroleum components. The NMR method can

measure the aliphatic and aromatic carbon content, as well as hydrogen dis-

tributions [6]. However, there are limitations to the interpretation of NMR

spectra due to the complexity of petroleum [23,115].

4.4 Chromatographic methods

Molecular analysis of crude oil is very challenging due to the large number

of different molecules present. Even after fractionation, the number of dif-

ferent molecular structures in most fractions is too high to be determined.

All chromatographic methods thus give only partial information about the

composition at a molecular level.
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4.4.1 Gas Chromatography

Gas chromatography (GC) is often used on saturated hydrocarbon fractions

of crude oils [22]. In gas chromatography a sample is injected into a column

situated inside an oven. Molecules in the sample are vaporised and an inert

gas carries them through the column, where they are separated according to

boiling point and affinity to the column stationary phase. Heavy molecules

generally move more slowly than lighter molecules, and polar molecules move

more slowly than non-polar. The temperature in the oven can be increased

to enhance the volatility and mobility of heavier molecules, in order to get

them more easily through the column. When the molecules come out of the

column, they are recorded in a detector, and a chromatogram with peaks

that ideally represent single compounds is recorded. However, if two or more

peaks come out of the column almost simultaneously, they may overlap. The

compounds in a sample can be identified by comparing the retention time to

retention times of known standards.

Fractions from petroleum that are more polar than the saturated hydro-

carbons are more complicated to analyse by GC, due to high boiling points

and the large number of compound types [6]. Compounds with high boil-

ing points and polarity that are difficult to get through the GC column

can be converted into compounds with lower boiling points and polarities

in a process called derivatisation [116]. Petroleum acids, for instance, can

be converted into more volatile and less polar esters. However, even after

fractionation of the crude oil, and derivatisation of fractions, insufficient sep-

aration is often found in gas chromatograms. Especially biodegraded oils,

containing a large variety of heavy, polar compounds, give a hump in the

chromatogram from Unresolved Complex Mixture (UCM) [27,117–119].
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4.4.2 High Performance Liquid Chromatography

High molecular weight and low volatility of the target compounds can make

the use of GC difficult, and liquid chromatography may be preferred. High

Performance Liquid Chromatography (HPLC) is very useful for separation of

oil fractions containing functionalised compounds. In HPLC the mobile phase

is a liquid, and the compounds in a sample can be separated according to

the affinity for the stationary phase (column material) and the liquid mobile

phase [116]. A simple sketch is shown in Figure 4.3. HPLC can be used

in normal phase and reverse phase mode. In normal phase the stationary

phase is polar, and by using a non-polar mobile phase the least polar sample

components come out first from the column. Reverse phase mode uses a

non-polar stationary phase, and polar components are eluted first from the

column.

mobil phases

pump

injector

column

detector
data 

sampling

Figure 4.3: A simple scheme for HPLC procedure.

HPLC has been used for chromatographic separation of petroleum by

several authors, e.g. [120–122]. However, better HPLC methods for separa-

tion, especially for the more polar parts of the crude oil, are needed. A new

method for HPLC separation of petroleum acids has been developed and is
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presented in Paper IV.

The work in Paper IV presents an HPLC method using normal phase

chromatography on a cyano bonded phase column, which provides a stable

and fast separation of organic acids from crude oils into four well-defined

fractions that correspond to the main types of acidic compounds found in the

oils; weak acids with no acidic protons, saturated carboxylic acids, phenols

and polyfunctional acids. The method has been developed both in analytical

scale for characterisation of acid fractions, and in preparative scale to provide

sufficient sample amounts for further analysis using other spectroscopic or

chromatographic methods. Gradient programmes for the analytical and the

semi-preparative columns are presented in Paper IV.

Two detector types are used, an Evaporative Light Scattering Detector

(ELSD) and a UV detector. In the ELS detector the mobile phase is evapo-

rated, the sample is turned into droplets and the amount of scattered light

is detected. This detector is universal, and most types of compounds can be

detected. The only compounds that will not be detected are compounds that

evaporate together with the solvent, in this case certain phenolic compounds.

In the UV detector, compounds that have UV-absorption can be detected.

The phenolic compounds that are difficult to analyse with the ELS detector,

can easily be detected by UV-absorption. The UV detector is therefore used

complementary to the ELS detector. HPLC chromatograms from acid frac-

tions from the oil B4c are shown in Figure 4.4 to demonstrate the separation

into different fractions, using both an ELS detector and a UV detector.

When comparing different samples, the chromatogram is divided into four

sections; FA - non-polar compounds, FB - saturated carboxylic acids, FC -

phenolic compounds and FD - polyfunctional compounds. The percentage of

each area in the chromatogram is used to calculate the amount of material in
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Figure 4.4: Chromatograms from using an analytical cyano column of the
acid fraction from the oil B4c (ion exchange extraction); upper: ELS detector
and lower: UV detector. (Figure 2 and 4, Paper IV.)

the different fractions of the crude oil. This is performed on the basis of the

amount of acids extracted from the corresponding oil. The semi-preparative

cyano column gives chromatogram with five fractions (FA, FB1, FB2, FC and

FD), as shown in Figure 4.5.

4.4.3 Gel Permeation Chromatography

Gel Permeation Chromatography (GPC) is a method that separates com-

pounds according to their molecular weights. In this technique the chro-

matographic column is packed with gels of varying pore size [10]. A sample

is injected to the column, and small molecules have longer residence time in

the pores, while the larger molecules are too large to spend time in the pores,

and they are eluted first. From using a calibration curve made from stan-
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Figure 4.5: A chromatogram from semi-preparative HPLC of the acid fraction
from B4c (ion exchange method), using ELS-detection. (Figure 5, Paper IV.)

dards with known molecular weights, the number of average molecular weight

distribution of petroleum fractions can be determined. However, petroleum

samples contain constituents of widely different polarity that may interact

with the gel surface. This could effect the elution time of compounds in the

column, making the molecular weights obtained from GCP somewhat uncer-

tain. However, the method still is the most suitable way of getting molecular

weight profiles of these complex samples.

In this work, GPC analysis is performed using a column that is packed

with polystyrene/ divinylbenzene co-polymer, and the molecules are sepa-

rated according to molecular size and shape. The molecular weights of the

samples are calculated from a standard curve based on model compounds.

More information about the GPC system can be found in Paper I, III and

IV.

4.5 Hyphenated techniques

Hyphenated techniques like GC-MS (Gas Chromatography-Mass Spectrom-

etry) and LC-MS (Liquid Chromatography-Mass Spectrometry) have been

used for analysis of crude oil, e.g. [24, 56, 60, 123, 124]. In these techniques,
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the compounds in the different peaks from the GC or LC chromatograms can

be identified by MS analysis. The compounds are broken up into charged

fragments (ions) in the MS part of the instrument. Every compound has a

special fragmentation pattern, which is closely related to the chemical struc-

ture, giving a unique fingerprint for that compound [22,125].

In this work, GC-MS is used for analysis of the hydrate extracts, see

Paper III. Due to high molecular weights, many of the compounds in the

samples are outside optimal GC-MS scope. The samples are therefore hy-

drolysed to decompose large molecules into smaller, identifiable compounds.

After hydrolysis, the water phase and the organic phase are derivatised with

chloroformate as described by Liebich et al. [126]. This procedure is tested for

the biosurfactant surfactin (Paper III), and surfactin can easily be identified.

The GC-MS procedure is then used on polar fractions of hydrate extracts

to search for lipopeptides in the oils. The detection limit for surfactin on

GC-MS is tested, and samples of surfactin of 1, 10 and 100 ppm in ethyl

acetate are analysed. The detection limit is between 1 and 10 ppm, meaning

that sample concentrations of 10 and 100 ppm are easily detected, but not

sample concentrations of 1 ppm.

Some LC-MS analyses have been performed at the University of New-

castle upon Tyne on a Surveyor HPLC system, Thermo Finnigan, with a

UV (Surveyor PDA) and a MS detector (LCQ Advantage ion trap). Both

APCI (Atmospheric Pressure Chemical Ionisation) and ESI (Electron Spray

Ionisation) are tested. The instrumentation allows direct infusion of samples

into the MS ion source as well as separation of samples in an HPLC column

prior to analysis in the MS. Hydrate extracts and acid fractions, sub-fractions

from these, fractionated on an analytical cyano column (see Section 4.4.2),

and the standards surfactin and rhamnolipid are used for analysis. In ad-
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dition, a reversed phase C18 column (BDS Hypersil, 250 mm × 4.6 mm, 5

µm) is used for separation of the samples prior to MS analysis. These results

have not been published.

4.6 Crude oil - hydrate interactions

4.6.1 Plugging tendencies of crude oils

Crude oils have different tendencies to form hydrate plugs within realistic

petroleum pipeline temperature and pressure conditions. Several methods

can be used to evaluate the plugging tendency of a crude oil, for instance

the use of a high pressure sapphire cell. A high pressure cell from Sanchez

Technology is situated at Norsk Hydro Research Centre, and allows pressure

up to 500 bar and temperature down to -40◦C. The experimental setup is

described by Fadnes [2].

This high pressure cell is used for the plugging tendency tests in Paper

II. The evaluation are primarily performed by visual inspection, and a crude

classification of the oils is obtained; dispersive systems and plugging systems.

In a dispersive system all the hydrates are present as a dispersion, and in a

plugging system the hydrates form aggregates.

4.6.2 Wettability of crude oil/brine systems

Previously, Høiland et al. [5] developed a method for investigation of the

wettability of freon hydrates in crude oil/brine emulsions. An emulsion con-

taining colloidal solid particles will have one liquid that is more likely to wet

the solid than the other liquid [127], and the more poorly wetting liquid be-

comes the dispersed phase. This means that the wettability of the solid can
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influence the type and stability of an emulsion. In the method of Høiland et

al., hydrates are considered to act as emulsion-stabilising colloids. Thus, if

the hydrate particles are oil wet, the emulsion system most likely will be oil

continuous, and if the hydrate particles are water wet, the emulsion system

most likely will be water continuous. A schematic illustration of spherical

particles at a planar oil-water interface is given in Figure 4.6.
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Figure 4.6: Spherical particles at planar oil/water interface. Oil wet particles
(contact angle > 90◦) will reside in the oil phase (left), and tend to stabilize
water-in-oil emulsions. Water wet particles (contact angle < 90◦) reside
mainly in the water phase (right), and tend to stabilize oil-in-water emulsions.
(Adapted from Binks [128].) (Figure 1, Paper II.)

The wettability of a hydrate particle in contact with brine and crude

oil will probably be influenced by the presence of surface active compounds

that can be adsorbed onto the hydrate surface. Schulman and Leja [129]

have previously reported that surfactants may adsorb to the particle surface

and alter the wettability of the particle. Crude oils contain a large variety of

components, and the amounts of surface active species vary for different crude

oils. Hence, the wettability alteration of hydrate particles will be different

for various crude oils.

In the method of Høiland et al. [5], the point of phase inversion from
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oil-continuous to water-continuous is found by gradually increasing the vol-

ume fraction of brine. The point of phase inversion is found both for systems

with freon hydrates, and without hydrates for the same crude oil, to avoid the

influence from other compound classes in crude oil affecting the properties

of crude oil/brine emulsions (asphaltenes, resins and naphthenic acids [48]).

The difference between the two inversion points (with hydrates - without

hydrates), ∆ϕinv
w , is calculated for the crude oil systems. A positive value of

∆ϕinv
w indicates presence of oil wet hydrate particles, negative ∆ϕinv

w value

indicates the presence of water wet particles, and ∆ϕinv
w values close to zero

indicate the presence of intermediate wet particles. Crude oils are likely to

contain components with different affinities for adsorption onto the hydrate

surface, resulting in a range of wettability states, from water wet particles to

intermediate wet and oil wet particles, depending on crude oil composition.

The generation of oil wet freon hydrates correlates well with a low hydrate

plugging tendency. Oil wet hydrates reduce the possibility of strong attrac-

tive hydrogen-bonding between hydrate particles. This results in flocculation

and dispersion rather than agglomeration and hydrate plugs. Dispersions can

be transported in the petroleum pipelines, while hydrate plugs can block fluid

transport completely.

By investigation of the wettability of freon hydrates, the method de-

veloped by Høiland et al [5] can differentiate oils with regard to hydrate

morphology. Additives can be tested to see if the wetting properties of a

plugging crude oil can be altered by addition of surface active components,

and this is presented in Paper II. Chemical additives are introduced to wa-

ter wet or intermediate wet crude oils to see whether the wettability of the

crude oil/brine systems are altered. A change to a more positive ∆ϕinv
w value

indicates that the chemical additive affects the system to change into a more
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oil-wetted state. Both oil soluble and water soluble additives are used. Sur-

factin and rhamnolipids are water soluble, and naphthenic acids extracted

from crude oils are oil soluble. All the additives are added in moderate to

low concentrations (6500 ppm for the naphthenic acids).
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Chapter 5

Main Results

5.1 Characterisation of the crude oils

The data set used in this thesis consists of 19 crude oils, spanning from

heavy biodegraded oils enriched in asphaltenes to light non-biodegraded oils

and condensates. Most of the oils originate from the Norwegian continental

shelf and are supplied by Norsk Hydro ASA. The oils are labelled with a

letter, B - biodegraded oil or S - sweet, non-biodegraded oil, followed by a

number indicating production field and a letter denoting different wells or

different batches within one field.

Out of the 19 crude oils 4 are identified as having low tendency to form

hydrate plugs. These so called non-plugging crude oils are believed to con-

tain natural inhibiting components that prevent hydrate particles from ag-

glomerating into a large plug, see Section 2.3.3. The oils have been char-

acterised with regard to biodegradation level, asphaltene content, density

and the amount of extractable acids, acidic compounds (TAN) and basic

compounds (TBN), and these results are reported in Paper I and V. The

plugging tendency of crude oils and the wettability of the freon hydrate sur-
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face in crude oil/brine emulsions for various crude oils have been reported by

Høiland et al [5] and in Paper V. Some of the crude oil properties are given

in Table 5.1.

Table 5.1: Characterisation of the crude oils; the level of biodegradation on
the Peters and Moldowan [28] scale (from Paper I), and wettability of hydrate
particles in crude oil and plugging tendency of the crude oils (reported in
Høiland et al [5] and Paper V).

Oil Biodegr. Wetta- Plugging
level bility a tendency

B1a 2 water high
B1c 2 n.a. n.m.
B2a 6 n.m. low
B2b 6 oil low
B2c 5 int.c n.m.
B3a 8 water high
B4a 8 oil low
B4b 8/2 b int. high
B4c 2 oil low
S1a 0 n.m. high
S2a 0 n.m. high
S2b 0 water high
S3a 0 int. high
S3b 0 int. high
S4a 0 n.m. high
S4b 0 water high
S5a 0 water high
S6a n.a. water high
S7b 0 int. high

a Denotations from wettability tests: oil: oil wet hydrate particles, water:
water wet particles, int.: intermediate wet particles. [5].
b The B4b oil is a mixture of a more biodegraded oil and a less biodegraded
oil.
c The oil might contain large amounts of water. The results may not be
trustworthy.
n.a. not available.
n.m. not measured
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The crude oils with low tendency to form hydrate plugs are all biode-

graded, but not all the biodegraded oils are non-plugging, so a direct correla-

tion between biodegradation and plugging tendency are not found. Still, the

results indicate that biodegradation is an important factor for the presence

of natural inhibiting components (NICs) in the non-plugging crude oils.

5.2 Natural inhibiting components in crude oils

The natural inhibiting components probably have surface active properties,

and petroleum acids comprise some of the surface active constituents of crude

oils, see Section 3.3.1. An acid fraction from a non-plugging crude oil was

previously injected into a plugging crude oil and tested for plugging tendency

at realistic conditions at Norsk Hydro ASA (reported in Paper II). The test

showed that the plugging crude oil was changed into a non-plugging crude oil.

This indicates that the acids extracted from that particular crude oil hold

inhibiting compounds. However, the concentration of the acid fraction, the

nature of the non-plugging crude oil from which the acids are extracted, and

the nature of the plugging crude oil they are injected into, have been shown to

be important factors influencing the success of changing a plugging crude oil

into a non-plugging crude oil. Hence, it is likely that only a part of the acid

fraction works as plug inhibitors, and the solvent effect of the crude oil might

also be of importance. The addition of the biosurfactant rhamnolipid has

also shown to alter a plugging crude oil into a non-plugging oil (reported in

Paper II). Biodegraded crude oils probably contain biosurfactants, and these

surface active molecules might be able to influence the plugging properties

of the crude oils.

The plugging tests at realistic conditions are very time-consuming, and
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they require the use of high pressure equipment such as the sapphire cells

located at the laboratories situated at Norsk Hydro ASA in Bergen. A faster

screening method for evaluation of the plugging tendency of crude oil systems

was developed by Høiland et al. [5], and it is based on the wettability of

hydrate particles in crude oil systems, see Section 4.6.2.

Chemical additives are introduced in low concentrations to crude oil/brine

emulsions in an attempt to modify intermediate or water wet hydrate surfaces

into an oil wet state, and the results are presented in Paper II. For most

systems the additives affect the emulsion behaviour. However, the same

chemical additive can give different results when different crude oils are used,

as is shown in Figure 5.1. These results show that for one of the crude oils (to

the right in Figure 5.1), all the acid fractions could make a change towards

a more oil wet state, while for the other crude oil (to the left), only one of

the acid fractions managed to give a change towards a more oil wet state.

The reason for the difference regarding the crude oil systems can be that one

of the oils initially gives intermediate wet hydrate particles, while the other

gives water wet particles.

The addition of the biosurfactant rhamnolipid gives a change to a more

oil wet system. The concentration of the additive is shown to be important,

as several systems show a more oil wet state when the concentration of the

additive is increased. More details can be found in Paper II.

The results from some of the wettability tests are compared to results

from plugging tests at realistic conditions, and a positive correlation is found

for 9 out of 11 systems (presented in Paper II). One difference between the

wettability tests and the realistic conditions is the hydrate forming compo-

nent, which is freon in the wettability tests and a natural gas mixture in the

realistic tests. Both form Structure II hydrates, and the physical properties
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Figure 5.1: The effect of naphthenic acids on emulsion behaviour, given as
changes in inversion points, normalised values [5]. (Figure 8, Paper II.)

of the hydrates formed are not assumed to be different. However, the two

hydrate formers can have an impact on the surface energy in the system, and

this might make a difference in systems with low oil/water surface tensions.

5.3 Acid fractions as hydrate plug inhibitors

5.3.1 Acids in biodegraded crude oils

Acids extracted from crude oils are analysed in Paper I and V. The results

show that there is a difference between acids extracted from biodegraded

compared to non-biodegraded crude oils. Both the acidity (TAN) and the

amount of extracted acids are larger in biodegraded oils.

The results in Paper I also show that compounds in the acid fractions

from biodegraded oils have lower molecular weights than acids from non-

biodegraded oils, and a comparison between TAN and the molecular weights
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gives an indication of the presence of multifunctional compounds in the biode-

graded oils. The infrared spectra of acid fractions from biodegraded oils hold

more carboxylic acid functionalities and saturated hydrocarbon structures,

compared to non-biodegraded acid fractions which are more phenolic in char-

acter. GC-MS analyses of acid fractions from biodegraded crude oils show

UCM, indicating that many complex structures are present.

The results from comparing acids from biodegraded and non-biodegraded

crude oils strongly suggest that the acids in the biodegraded oils are produced

in the microbial degradation process, and this agrees with findings from oth-

ers [24–26].

5.3.2 Comparison of methods for acid extraction

The amount of acids extracted from the different crude oils are presented

in Paper I and V. In Paper V the two extraction methods (see Section 4.2)

are compared. The results show that the amount of extracted acids is much

larger using the ion exchange method than the liquid-liquid extraction in this

sample set. The oil B4a is extracted by both methods, and the amount of

acids found by the ion exchange method is three times the amount that is

found by the liquid-liquid method. The results from Paper I show that the

liquid-liquid extraction method has a low recovery of acids in the extract.

The ion exchange procedure has previously been shown to have a very good

recovery [62], and the results confirm that the ion exchange method is a far

more effective method.

Analyses of acid fractions using HPLC also show differences between the

two extraction methods, see Figure 5.2 below. This means that the varia-

tions between the two extraction methods are not just a matter of different

amounts of total material, but also what types of material has been extracted.
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The ion exchange fraction contains larger amounts of the saturated carboxylic

acid fraction. Furthermore, the amount of non-polar components is lower in

the ion exchange fraction compared to the liquid-liquid fraction. Thus, the

extra amount of organic material found by the ion exchange method is not

co-extracted crude oil, which would show as a large amount of non-polar

compounds.

5.3.3 Analysis of acid fractions

The results from Paper I show that GC-MS analysis cannot give much struc-

tural information on the acid fraction from biodegraded crude oils. Acid

fractions are therefore analysed using HPLC (presented in Paper V). A com-

parison of the estimated amounts of material found in the different sections

of the HPLC chromatograms of the acid fractions is shown in Figure 5.2.
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Figure 5.2: The estimated amounts in the sub-fractions of the acid fractions
from different oils using the analytical HPLC column and the ELS detector.
The oils marked with "ion" have been extracted by the ion exchange method,
and the oils marked with "liq" have been extracted by the liquid-liquid ex-
traction. The amount of material found in the non-biodegraded oils is much
lower than in the biodegraded oils, so the y-axes are shown with different
scales. (Figure 5, Paper V.)
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Many of the biodegraded oils extracted by the ion exchange method show

a similar compositional trend, with largest amount of saturated carboxylic

acids and more polyfunctional compounds than phenols. Of the two non-

biodegraded oils that are investigated, one of them has a similar relative

composition as the biodegraded oils. Thus, the HPLC results show that

there are groups of oils with similar acid composition, but the criteria for

which oils group together is not just whether the oils are biodegraded or

not. However, all the oils show that the saturated carboxylic acids are major

constituents.

The UV detector is primarily used to obtain information about the phe-

nolic compounds (fraction FC) in the samples (see Section 4.4.2), and the

results show that no distinct peaks from phenolic compounds are found, but

a broad band with low intensity. UV spectra from various parts of the chro-

matogram are also studied, e.g. spectra from the FC fraction shown in Figure

5.3. These spectra show that the B1c and S3b ion extracts have more ab-

sorbance in the region above 250 nm than the B2b and B4a ion exchange

extracts, indicating that some of the oils might contain additional compounds

with aromatic character in the FC fraction. And it is interesting to note that

the oils containing the increased absorption bands are known to be plugging

oils.

FTIR analysis of sub-fractions from acid fractions (after fractionation

on a semi-preparative column) indicate a non-polar fingerprint in fraction

FA, saturated carboxylic acids in fraction FB1 and FB2 and a lower relative

amount of carbonyl (C=O) and increased complexity of the spectrum in frac-

tion FD. The GPC-analyses show that fractions FB1 and FB2 have molecular

weights ranging from 400 - 600 g/mole, most likely carboxylic acids with

more than 30 carbon atoms. The polyfunctional compounds in the samples,
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Figure 5.3: UV spectra from fraction FC of acid fractions from using analyt-
ical HPLC column. (Figure 7, Paper V.)

fraction FD from HPLC, are believed to contain the most surface active com-

pounds, and they have a relatively high molecular weight range, from 700 -

800 g/mole. They correspond well with the molecular weight of some types

of biosurfactants, like rhamnolipids. These GPC-results generally show that

acid fractions mostly contain compounds of intermediate molecular weights.

Thus, neither high-molecular compounds such as asphaltenes nor simple,

low-molecular petroleum acids and bases are prominent in the acid fractions.

The results from the analysis of the acid fractions have not provided

molecular identification of specific compounds. However, an elimination of

possible compounds types as Natural Inhibiting Components (NICs) can be

obtained, e.g. the asphaltenes are probably less important. The focus of at-

tention should be aimed at functionalised fractions of intermediate molecular

weights.
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5.3.4 Fractionation of extracted petroleum acids

The extracted petroleum acids are fractionated into sub-fractions by SPE-

columns as described in Paper IV. In order to investigate which part of

the acid fraction is active as a hydrate plug inhibitor, the sub-fractions can

be studied by the use of wettability tests as described in Paper II. Some

preliminary tests have been done, indicating that each of the sub-fractions

has an effect, even though some of the fractions have very low concentrations.

This work is continued by Kristin Erstad [130].

5.4 Adsorption of compounds onto freon gas

hydrate surfaces

The extracts from contacting oil with freon hydrates contain components

with affinity for the hydrate surfaces. In this method, the aim is to obtain an

extract that contains the specific components that adsorb onto the hydrate

particles. The results from the freon hydrate extractions are presented in

Paper III.

5.4.1 Quantification of hydrate extracts

In the analysis of the freon hydrate extracts the focus is on the polar frac-

tions, due to a considerable amount of co-extracted hydrocarbons. These

co-extracted hydrocarbons are removed by column fractionation, and are as-

sumed not to represent adsorbed material. The results from the fractionation

of hydrate extracts are given in Figure 5.4.

The polar 1 fraction contains significantly more material than the polar

2 fraction. With the exception of oil S1a, a considerably higher amount of
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Figure 5.4: The amount of organic material in the hydrate extracts after col-
umn fractionation of the hydrate extracts into one non-polar (hydrocarbons,
not presented) and two polar fractions by the use of a silica column. Left:
Polar 1 fraction, Right: Polar 2 fraction. Black bars (B-oils): Biodegraded
oils, and grey bars (S-oils): Non-biodegraded oils. (Figure 3, Paper III.)

polar material is extracted from the biodegraded oils compared to the non-

biodegraded oils for both fractions.

5.4.2 Analysis of the freon hydrate extracts

FTIR analyses show some differences between the hydrate extracts from dif-

ferent crude oils. The extracts from the B2 and B4 oils are different from the

other oils, both in the first and second polar fractions. The bands identified

at approximately 1735 and 1250 cm−1, probably corresponding to C=O and

C-O stretching in an ester compound present in the B2 and B4 oils in the

second polar fractions, are of special interest because these peaks can indi-

cate the presence of biosurfactants in the extracts. Spectra of the second

polar fraction of one biodegraded oil and one non-biodegraded oil are shown

in Figure 5.5.

The average of molecular weights in the hydrate extracts, determined

by GPC, vary from 400 to 600 g/mole. The molecular weight range for

some of the sub-fractions of the hydrate extracts are also determined, and

vary from 500 to 1000 g/mole. The GPC results show that the major part
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Figure 5.5: FTIR spectra of the polar 2 fraction of the hydrate extracts of
one biodegraded oil, B2a (upper spectrum) and one non biodegraded oil, S2a
(lower spectrum). (Figure 5, Paper III.)

of the components in the hydrate extracts are of intermediate molecular

weights. Thus, like for the acid fractions, neither high-molecular compounds

such as asphaltenes nor simple, low-molecular petroleum acids and bases are

prominent in the adsorbed matter.

5.5 Searching for biosurfactants in freon hy-

drate extracts

Surfactin is used as a representative biosurfactant standard in the freon hy-

drate experiments. Surfactin elutes in the second polar fraction in both

fractionation methods presented in Paper III and is identified by FTIR and

GC-MS. The FTIR spectrum of surfactin is compared to spectra found in

the literature [97, 101]. The GC-MS analysis is performed after hydrolysis

and derivatisation of the surfactin sample, and the GC-MS chromatograms
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of surfactin are shown in Figure 5.6. In the aqueous phase three of the four

amino acids present in surfactin are easily identified, and hydroxy fatty acids

are found in the organic phase.
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Figure 5.6: Total ion chromatograms of; upper chromatogram: the aqueous
phase after hydrolysis of surfactin, and lower chromatogram: the organic
phase after hydrolysis of surfactin. Both phases are derivatised with chloro-
formate. (Figure 10, Paper III.)

In order to validate the procedure, one crude oil is spiked with surfactin in

a concentration of 1350 ppm prior to hydrate extraction. The hydrate extract

is analysed in the same way as the other non-spiked hydrate extracts, and
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surfactin could be identified.

The results indicate that units incorporated in biosurfactant structures

of the lipopeptide type are recovered and identified in the applied procedure.

However, neither amino acids or hydroxy fatty acids are found in the hydrate

extracts. The results indicate that molecular structures of lipopeptide type

are either a) not present in the hydrate extracts, b) present in concentrations

below the detection limit of the GC-MS (i.e. less than 10 ppm, see Section

4.5), or c) not liberated by the applied procedure. However, oil degrading

bacteria produce a number of different biosurfactants depending on type

of bacteria and growth conditions, so biosurfactant compounds cannot yet

be eliminated as the determining factor for hydrate particle wettability in

oil/water/gas systems.

5.6 Adsorption of compounds onto ice surfaces

5.6.1 Analysis of ice extracts

The results from the ice extractions are shown in the Research Report which

is included in this thesis. The amount of organic material adsorbed onto the

ice surface is generally low when a good washing procedure for removal of

excess oil is applied (<3.5 mg/g water).

One of the ice extract is analysed with HPLC, and chromatograms from

using an ELS detector and a UV detector are shown in Figure 5.7. The

HPLC chromatograms show that the ice extract contains significant amount

of non-polar compounds, which most likely are co-extracted hydrocarbons.

Peaks are also found in the areas corresponding to saturated carboxylic acids

and polyfunctional compounds, but these peaks have low intensities.

GPC is used to find the molecular weight range of one of the ice extracts.
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Figure 5.7: HPLC chromatograms of the ice extract of B4c. Top chro-
matogram: ELS detector, lower chromatogram: UV detector. (Figure 5,
Research Report.)

The molecular weight calculated from the maximum intensity of the GPC-

chromatogram peak is found to be approximately 480 g/mole. This result

shows that the molecular weight of the ice extract is similar to the molecular

weight of the freon hydrate extract and acid fraction (ion exchange method)

for the same oil (approximately 500 g/mole) reported in Paper III and V.

GPC analyses of HPLC fractions of an ice extract show that most of the

compounds in the ice extract fractions have molecular weights between 420

and 450 g/mole, and there are some peaks correlating to higher molecular

weights. These results show that the ice extract mostly contain compounds of

intermediate molecular weights, like the acid fractions and the freon hydrate

extracts.
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5.6.2 Comparison of ice extractions with other extrac-

tion methods

HPLC analysis using an ELS detector is used to compare the relative com-

position of an ice extract, a freon hydrate extract and an acid extract of the

same oil (B4c), see Figure 5.8. In the comparison of the different extracts

the first fraction from the chromatogram is disregarded. The first fraction

is presumed to be of less importance because it most probably consists of

co-extracted hydrocarbons. The estimated amounts of material found in the

second, third and fourth fractions are calculated as a relative amount of the

sum of these three fractions.
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Figure 5.8: Comparison of three different extraction procedures using HPLC
results. The extracts are labelled; acid: acid fraction, hyd: freon hydrate
extract, ice: ice extract. (Figure 7, Research Report.)

The histogram in Figure 5.8 shows that the ice extract contains a rel-

atively smaller amount of saturated carboxylic acids than the acid fraction

and the freon hydrate extract, and a relatively larger amount of phenolic

compounds and polyfunctional compounds. The polyfunctional compounds

probably contain the most surface active components of the sample, and is
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most interesting regarding natural plug inhibiting components in crude oil.

The relatively larger amount of polyfunctional compounds in the ice extract

compared to the freon hydrate extract and the acid fraction indicates that

the relative composition of the ice extract might be significant. However, in

these results, the non-polar fraction is not considered at all, and the non-polar

fraction that probably contains co-extracted hydrocarbons, is very large in

the ice extract. Thus, even if the relative composition of the ice extracts

might be interesting, the amount of oil necessary to extract active compo-

nents from the ice extract is too large for this method to be considered to be

effective.

Extraction of surface active components from crude oil by the use of ice

does not seem to be as effective as using freon hydrates. One reason for the

low yields of extracted material might be that ice surface is not a good model

for hydrates, resulting in surface active components not adsorbing onto the

ice surface to the same degree or by the same mechanisms. Another possible

explanation for the lower yields of material from the ice extractions can be

that the ice crystals are prepared before they are mixed with the oil, and the

crude oil components can only be adsorbed onto the outside of the crystals.

In the freon hydrate extractions, on the other hand, the hydrates grow inside

the solution containing the crude oil and inclusion of surface active material

during growth is possible.

From the results it is difficult to decide whether ice is a good model for

natural gas hydrates, or not. It does not seem like ice is an effective surface

for extraction, but it is possible that the extraction method can be further

developed and improved. Based on our experiments, ice is in practice not a

good model for hydrate surfaces, due to very low amount of organic material

found in the extracts.
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5.7 Correlation of extract to crude oil compo-

sition

Crude oil compositional properties, such as asphaltene content, total acid

number (TAN), total base number (TBN), density, level of biodegradation

and wettability of hydrate particles are correlated to the amounts of acids ex-

tracted, the amounts of organic material found in the different fractions from

HPLC of acid fractions (total amount and relative amount), the amounts of

hydrate extract as a whole, and the amounts after fractionating it into the

polar fractions. These correlations are described in more detail in Paper III

and V.

For the acid fractions (Paper V), a strong negative correlation between

the relative amount of material found in fraction FC using the ELS detector

and the wettability of hydrates formed in the crude oil is found (R = -0.94).

The negative correlation means that high amounts of phenolic compounds

(fraction FC) will give lower values for the wettability, which again indicate

water wet hydrates and generation of hydrate plugs. Based on the correla-

tion one cannot say whether this is a cause-effect relationship, or whether

the absence of compounds eluting in the phenolic fraction is indicative of

some other compositional factor that determines the wettability. The UV

spectra from HPLC of ion exchange acid fractions show that crude oils with

high tendency to form hydrate plugs probably contain components that are

not present in measurable concentrations in crude oils with low plugging po-

tentials. This strengthens the idea that the relative amount of material in

fraction FC is important for the wettability of the crude oils. However the

system is very complex, and this correlation can be indicative of some other

compositional factor that determines the wettability. Thus, at the moment
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no clear conclusions can be reached.

The results from the hydrate extractions (Paper III) show that the amount

of hydrate extract and polar fractions have a poor correlation with most of

the crude oil compositional properties, which supports that the hydrate ex-

tract is different from the fractions obtained by other fractionation schemes

(asphaltenes, petroleum acids, etc.). This supports the premise that the

hydrate extract consists of compounds with special affinity to the hydrate

surfaces. Density of the oil has the strongest correlation to the amount re-

covered in the polar 1 fraction with R = 0.84, so this fraction may represent

a certain part of the heavier oil components. The biodegradation level has

the highest correlation with the polar 2 fraction yields, which thus may be

linked to biodegradation products. The amount of material extracted onto

the hydrates do not correlate with the wettability of the corresponding crude

oils. Biodegraded crude oils that generate water wet hydrates, e.g. B1a and

B3a, give similar yields of adsorbed compounds as the crude oils generat-

ing oil wet hydrates (B2b and B4c). Hence, it is likely that the type and

structure of the adsorbing material is more important for hydrate wettabil-

ity, and thus the hydrate plugging tendency, than the amounts of material

adsorbed. This observation corresponds well with the conclusions in a previ-

ous work by Høiland et al. [110], where petroleum acid types and structures

were found more important to wettability alteration of silica surfaces than

the acid concentrations in the oils. For the two oils that form dispersed,

oil wet freon hydrates, B2b and B4c, FTIR analysis of the hydrate extracts

shows that they deviate from the rest of the data set with respect to their

internal relation between functional groups. This supports the idea that the

type of compounds present may be more important than the amount. How-

ever, more complex relationships between the solvent properties and polar
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compound content for each crude oil can also be envisioned.

5.8 LC-MS analysis of extracts

The MS detector was first tuned for the rhamnolipid standard to make the

instrumental settings optimal for searching for this type of biosurfactant

in the samples. Negative ionisation, using Electron Spray Ionisation (ESI)

source, was found to be best for the rhamnolipid standard, and rhamnolipids

consisting of two sugar units and two hydroxy fatty acids, one sugar unit and

two acids and two sugars and one acid were identified using reference data

from two articles by Deziel et al. [131,132].

The samples were difficult to ionise by ESI, and left a sticky layer in the

ionisation chamber of components that were not ionised. Samples (HPLC

fractions from an acid fraction) were run by APCI (Atmospheric Pressure

Chemical Ionisation) and direct infusion (an MS tuning previously used by

Dr. Helen Talbot at the University of Newcastle for hopanoid samples was ap-

plied [133]). Some peaks were found, but they could not be identified. How-

ever, the results indicated that compounds with either several acid groups, or

hydroxy groups were present. Running a sample through a C18 column prior

to MS analysis gave no other peaks than contamination from plastics, and

again a lot of sticky material was found in the ionisation chamber, indicating

that the samples were not properly ionised.

Surfactin was found both from using the ESI and the APCI ion sources,

with help from articles by Vater et al. [53], Hue et al. [134] and Leenders

et al. [135]. The APCI ion source was chosen for the analysis of the sam-

ples. Samples were separated on a C18 column with a gradient profile of the

solvents water, methanol and acetone. Some peaks that in principle should
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be possible to interpret were found in the chromatograms, but no structures

have been identified. The identification of compounds from the Ion Trap MS

is very difficult and time consuming, especially when we do not know much

about the compounds we are searching for. Identification of standards like

rhamnolipid and surfactin is possible, but compounds in complicated sam-

ples, like crude oil fractions, are much more difficult. Further work is needed

to provide clear results.

5.9 Summary of main results

19 crude oils have been investigated to learn more about the presence of

natural hydrate plug inhibiting components. These crude oils have been

thoroughly characterised with respect to chemical composition and proper-

ties, e.g. acid and base content, asphaltene content, biodegradation level and

the wettability of the freon hydrates that are generated by each crude oil.

Due to the complexity of crude oil, structural analysis is very complicated,

and fractions have been extracted to ease the characterisation by working

with a fraction containing fewer components than the whole crude oil. In the

search for natural plug inhibiting components, fractions containing surface

active compounds have been extracted; acid fractions, freon hydrate extracts

and ice extracts. One acid fraction has shown plug inhibiting properties, but

the concentration of the fraction, the crude oil which the acids are extracted

from and the solvent effect of the bulk crude oil, are important factors. Prob-

ably only a part of the acid fraction is active, and the amount of this specific

compound group is most likely different in various crude oils. Alternatively,

a combination of several compound groups can be important.

Fractionation of the acids is needed to simplify the detailed analysis. A
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new HPLC method using a cyano column gives reproducible fractionation

of acid fractions into four distinct sub-fractions; non-polar compounds, satu-

rated carboxylic acids, phenolic compounds and polyfunctional compounds.

Freon hydrate extracts contain a specific fraction of the crude oil with

affinity for the freon hydrate surface. A difference between biodegraded and

non-biodegraded oils is observed, in a general higher amount of material

in biodegraded oils. However, the amount of material cannot differentiate

between plugging and non-plugging crude oils. A method for identification

of the biosurfactant surfactin has been tested on the freon hydrate extracts,

and surfactin cannot be found in the hydrate extracts.

Ice surfaces do not seem to be a good model for hydrate surfaces, because

very low amount of material is extracted, and an ice extract contains a lot

of co-extracted crude oil.

In general the analysis of the extracts from crude oil investigated in this

thesis show that the extracts primarily contain components of intermedi-

ate molecular weights. This means that neither high-molecular compounds

such as asphaltenes, nor simple low-molecular petroleum acids and bases are

present to a large extent. FTIR analysis can to some degree differentiate

between freon hydrate extracts from plugging and non-plugging crude oils.

However, this analysis technique does not give any molecular structural in-

formation. GC-MS is not suited for the extracts used in this thesis due to

high molecular weights and low volatility. LC-MS analysis with Ion Trap MS

has been tested at the University of Newcastle, but was not optimal for our

samples.
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Concluding remarks and further

work

The work in this thesis have shown that the task of extraction and char-

acterisation of components in crude oil with affinity for hydrate surfaces is

more complicated than originally expected. Biodegradation has shown to

be a necessary, but not sufficient, condition for formation of oil wet hydrate

surfaces. For one oil, the acid fraction has shown to contain components that

change the wetting properties of hydrate surfaces. However, analyses of both

acid fractions and hydrate extracts have not yet been able to identify specific

molecules or structures. This means that these structures either are present

in very low concentrations, like biosurfactants, or that the wetting properties

are dependent on interactions between several fractions, like acids and bases

or acid and bulk crude oil (the bulk crude oil is then functioning as a solvent

for the acid).

General hypothesis based on the results:

• Crude oil acid fractions contain natural inhibiting components that

63



CHAPTER 6. CONCLUDING REMARKS AND FURTHER WORK

prevent gas hydrate agglomeration.

• Biodegradation is necessary but not sufficient for the presence of these

compounds.

• Acid fraction composition is critical for the anti-agglomerant effect.

• Polyfunctional compounds have the strongest interaction with hydrate

surfaces

Further work with biosurfactants is of special interest, as well as further

developments of methods for SPE fractionation and evaluation of wetting

properties. The wetting properties of sub-fractions from acid fractions can be

tested as performed on whole acid fractions (Paper II) in order to find which

part of the acid fraction is active in making an oil wetted system. Eventually

these tests can show if a combination of different parts of the acid fraction

is necessary for inhibition of freon hydrate systems. The number of samples

analysed is still quite limited, and the continuing mapping of new samples

when they become available will be of great value for confirming or rejecting

the hypothesis presented in this work.

So far, molecular identification of inhibiting structures has not been achieved.

LC-MS (Time of Flight MS) will soon be available at the Department of

Chemistry, University of Bergen, and this will hopefully give more molecular

identifications of compounds in our samples. A high pressure cell is also be-

ing installed at the University of Bergen. Formation of natural gas hydrates,

and adsorption of crude oil components with affinity for the hydrates might

be possible to achieve. An interdisciplinary cooperation between organic

petroleum chemistry and physical petroleum chemistry will be very useful

in developments of new methods for characterisation of hydrate inhibiting

systems.
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