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Cnidarians shared a common ancestor with bilaterians more

than 600 million years ago. This sister group relationship gives

them an informative phylogenetic position for understanding

the fascinating morphological and molecular cell type diversity

of bilaterian nervous systems. Moreover, cnidarians display

novel features such as endodermal neurogenesis and

independently evolved centralizations, which provide a

platform for understanding the evolution of nervous system

innovations. In recent years, the application of modern genomic

tools has significantly advanced our understanding of cnidarian

nervous system structure and function. For example,

transgenic reporter lines and gene knockdown experiments in

several cnidarian species reveal a significant degree of

conservation in the neurogenesis gene regulatory program,

while single cell RNA sequencing projects are providing a much

deeper understanding of cnidarian neural cell type diversity. At

the level of neural function, the physiological properties of ion

channels have been described and calcium imaging of the

nervous system in whole animals has allowed for the

identification of neural circuits underlying specific behaviours.

Cnidarians have arrived in the modern era of molecular

neurobiology and are primed to provide exciting new insights

into the early evolution of nervous systems.
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Introduction
Cnidarian nervous systems have attracted the interest of

zoologists and neurobiologists since the middle of the 19th

century, when first ‘neuro-muscular-epithelial cells’ and

nematocytes [1,2], and a few decades later neurons [3–5]

were identified. Central to this interest was the apparent

simplicity of the cnidarian body plan, which was soon

realized to reflect a long evolutionary distance to other

animal groups. It is now well established that cnidarians are

the sister group to the bilaterians [6–8] and thus occupy a

key position in the animal tree of life for understanding

early stages in nervous system evolution. Cnidarians are

carnivores that are found in two strikingly different mor-

photypes: sessile polyps, generally attached to a substrate,

and free-swimming medusae. In a typical cnidarian life

cycle, a swimming planula larva is derived from sexual

reproduction and continues to develop into a sessile polyp

(Figure 1). Cnidarians comprise two principle groups,

anthozoans and medusozoans; the polyps of these groups

share a similar anatomy but differ in their developmental

potential and their role in the life cycle. In anthozoans,

polyps are the sexually mature stage that completes the life

cycle by generating gametes that give rise to new planulae

(Figure 1a). In medusozoans, polyps asexually generate

medusae, and the medusae are the sexually mature stage

that produces gametes to close the life cycle (Figure 1b).

However, there is variation in the life cycle among medu-

sozoan species, many of which have a truncated life cycle,

having lost one or multiple stages [9].

Nervous system complexity and organization differ

between the sessile polyp and free-swimming medusae,

which is likely due to differences in life style. Polyps have

a bi-layered, tube-shaped body with a single opening,

surrounded by a ring of tentacles. The tentacles are used

for catching prey and the single opening serves as both

mouth and anus. The nervous system in the outer layer,

named epidermis or ectoderm, is organized as a nerve net,

though the density of neurons is typically higher at both

the oral and aboral ends. In some species, a nerve ring at

the oral end coordinates the feeding response, which

involves tentacle motility and the ‘mouth’ opening.

The inner tissue layer, named gastrodermis or endoderm,

can be a plain epithelial sheet (as in many medusozoans),

or it can bear folds (the mesenteries) that carry gonadal

tissue and longitudinal musculature (as in many anthozo-

ans). The gastrodermal nervous system is also a nerve net,

but in some species prominent tracts of neurites run along

the base of the mesenteries [10–13].
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Figure 1

(a) (b)
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Cnidarian life cycles.

(a) Life cycle of an anthozoan exemplified by Nematostella vectensis in clockwise order. Mature polyps (on the left) release gametes into the

water. After blastula and gastrula stages, the animals develop into free-swimming planulae, which settle on their aboral pole and develop into

sessile polyps that start feeding. (b) Life cycle of a medusozoan, exemplified by the hydrozoan Clytia hemispherica. Gametes are released by

medusae and develop after fertilization into planulae. The planulae settle and form colonies of different polyps, including feeding polyps and

reproductive polyps. The reproductive polyps asexually generate medusae to complete the life cycle. Note that, there are many variations to

medusozoan life cycles. For example, freshwater Hydra polyps propagate asexually by budding or the polyps reproduce sexually by forming

gametes; fertilized Hydra embryos develop directly into polyps without producing a swimming larval form. Therefore, Hydra lack both the planula

and medusa stages. Artwork by Johanna Kraus.
Medusae display a much higher degree of nervous system

centralization as compared to polyps. A prominent nerve

ring is often located at the margin of their bell and many

medusae contain well-developed eyes that can be inte-

grated into sophisticated light and gravity-sensing organs,

the rhopalia [14,15]. The nerve ring and the sensory struc-

tures contribute to the control of swimming behavior, for

example the avoidance of obstacles or escape from pre-

dators [16–18]. Studies of different medusae revealed

interesting features in the regulation of their locomotion.

In scyphomedusae, contraction of the bell musculature is

coordinated with the help of bidirectional synapses in the

motor nerve net [19,20]. In the hydromedusae Aglantha
digitale, slowswimmingandescapeswimming are mediated

by the same motor neurons, which can generate two types

of action potentials. Weak depolarization triggers small and

slow, calcium-driven spikes, whereas strong depolarization

causes the large andfast, sodium-drivenspikes that result in

escape swimming [21,22]. The ongoing characterization of

neuronal ion channels in several cnidarian species will help

to relate such physiological properties of neurons to their

molecular constitution [23–26].

The cells that comprise cnidarian nervous systems are

traditionally grouped into three broad classes: sensory/

sensory-motor neurons, ganglion neurons, and mechano-

sensory cells called cnidocytes. Sensory neurons are

defined by their upright position in the epithelium and

the presence of an apical cilium. Ganglion neurons are

considered a morphological equivalent of interneurons;

their somata are located basally within the epithelium.

Consistent with their classification as neurons, both sen-

sory and ganglion cells extend neurites on their basal side
Current Opinion in Neurobiology 2019, 56:87–96 
that form a basi-epithelial meshwork (Figure 2). Distinc-

tion of neurites as axons and dendrites has not been

shown yet. Cnidocytes (‘stinging cells’) are cnidarian-

specific cells that can contain structures resembling pre-

synaptic sites [27,28], a cnidocil and a highly sophisticated

extrusive organelle, the cnidocyst, that discharges by fast

Ca2+-dependent exocytosis for catching prey [29,30].

These features have led to the suggestion that cnidocytes

are highly derived neural cells (reviewed in Ref. [11]).

Morphological and molecular analyses reveal that each

neuronal class contains several subpopulations, character-

ized for example by the expression of particular neuro-

peptides or by the presence of a specific type of cnidocyst

[31–34]. In recent years, the genomes of several cnidar-

ians have been sequenced [35–39], transgenic reporter

lines have been established [40�,41�,42�], and gene-

knockdown or genome-editing technologies have been

implemented for Hydra ([43,44], Hydractinia [45,46�],
Clytia [47�,48] and Nematostella [49,50�,51]. These tech-

nologies open the door to a comprehensive understanding

of the composition, the development, and the function of

cnidarian nervous systems [9,52,53].

Transgenic reporter lines and single cell RNA
sequencing as new tools for studying the
diversity of cnidarian neurons
Histological and ultrastructural observations have provided

many insights into the morphology of neurons in different

cnidarians [54–57], but identifying defined subpopulations

of neurons and capturing the dynamics of their develop-

ment has been a major challenge. The generation of

transgenic reporter lines in several cnidarian species

[40�,41�,42�] was an important step in overcoming this
www.sciencedirect.com
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Figure 2

(a) (b)

(c) (d)
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Labeling of neurons in transgenic cnidarians.

(a) A GFP-labeled bipolar neuron after dissociation of a Hydra polyp. (b) A sensory cell in the body wall of a Nematostella late planula (green). The

apical surface of the ectoderm is oriented to the top. The capsules of cnidocytes (magenta) are labeled with a different transgene [62�]. (c) A

multipolar neuron close to the oral opening of a young Nematostella polyp, labeled by an NvElav1::mOrange transgene. (d) The gastrodermal

nervous system of a Nematostella polyp includes prominent tracts of neurites along the mesenteries and a nerve net between these tracts. The

transgene is NvElav1::mOrange. Scale bars in (b, d) 20 mm, in (C) 10 mm. Image credits: (a) Stefan Siebert; (b–d) Océane Tournière.
problem. Through the use of general neuronal promoters,

the first transgenic lines were used to obtain a broad picture

of cnidarian nervous system structure and development

[58�,59�]. However, there is now a growing number of

transgenic lines with fluorescent proteins expressed in

specific neural subpopulations [60�,61,62�,63��,64��].
These revealed, for example, that neurons with stereotypic

projection patterns and positions in the body column

contribute to the Nematostella nervous system, thus sug-

gesting that the seemingly diffuse and random cnidarian

nerve nets have reproducible elements [60�].

Understanding the complexity and organization of cnidar-

ian nerve nets requires uncovering neuronal diversity,

which is now possible using single cell RNA sequencing

(scRNA-seq). This technology combined with transgenic

reporter lines has the potential to provide a detailed picture
www.sciencedirect.com 
of cnidarian nervous systems. Thus far, scRNA-seq has

been applied to both the Nematostella and Hydra adult polyp

to characterize neuronal diversity [63��,64��]. Using trans-

genic lines with neuronal GFP expression, several thou-

sand neurons were collected and sequenced from each

animal, giving significant insights into cnidarian nervous

systems and providing rich datasets for future exploration.

Analysis of sequenced Nematostella neurons revealed

32 clusters with unique gene markers. In addition, the

Nematostella neurons could be split broadly into two unique

transcriptional states defined by the expression of unique

sets of transcription factors. Transgenic lines were created

to study these two neuronal states and this revealed differ-

ences in morphology and position [63��]. In Hydra, 12 neu-

ronal subtypes were identified with distinct molecular

signatures. Using both transgenic reporter lines to highlight

neural subtypes and in situ hybridization, the location of
Current Opinion in Neurobiology 2019, 56:87–96
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each neuronal subtype was identified thus creating a spatial

and molecular map of the Hydra nervous system, including

the identification of distinct neuronal subtypes in the

epidermal and gastrodermal nerve nets [64��].

The application of scRNA-seq to uncover neuronal diver-

sity in cnidarians is very promising; however, more work is

required to determine whether the full transcriptional

diversity has been uncovered in Nematostella and

Hydra. Importantly, the clustering parameters, number

of cells sequenced, and sequencing depth are all impor-

tant factors contributing to the number of clusters

reported in a given study. In addition, the degree of

similarity between cell types is an important consider-

ation. Sequencing a small number of transcripts from

relatively few cells is sufficient to discern two very

different cells types due to large transcriptional differ-

ences. Delineating cell types by cluster analysis is more

difficult when considering cell types with similar tran-

scriptional profiles; we don’t yet fully understand the

level of sampling required to distinguish two neuronal

subtypes, which likely have a high level of transcriptional

overlap. Finally, it is unclear what level of transcriptional

differences between two cell types warrants classification

as two different neuronal subtypes. Unlike in cnidarians,

the full diversity of Caenorhabditis elegans neurons is

known from a large body of previous work and therefore

attempts to identify the transcriptional signatures of C.
elegans neurons using scRNA-seq are informative in defin-

ing benchmarks. In C. elegans, nearly 7000 single neurons

were sequenced with a median of approximately 700 tran-

scripts per cell; this revealed 40 of the 118 known neuro-

nal subtypes [65]. It is likely that increasing the number of

sequenced cells and/or increasing the sequencing depth

would ultimately uncover the transcriptional signatures of

all 118 subtypes. The Nematostella and Hydra single cell

datasets were sequenced at different depths – a median of

approximately 550 transcripts per cell for Nematostella and

a median of approximately 5650 transcripts per cell for

Hydra. In addition, different clustering methodologies

were used, so it is likely too early to make direct compar-

isons between the neuronal diversity of Nematostella and

Hydra [63��,64��]. Ultimately, scRNA-seq experiments

describing the neuronal diversity of any organism should

be validated at the bench. Regardless, scRNA-seq is

clearly a very valuable tool that will allow us to uncover

the neuronal diversity in a large array of cnidarian species

and life stages. This information can be used to gain an

understanding of the organizational principles underlying

the cnidarian nervous system and will provide molecular

handles for the functional manipulations required to test

nervous system development and function.

The developmental basis for the generation of
neural cell types
Approaches to manipulate gene function using morpho-

linos, CRISPR/Cas9, RNAi, and shRNAs have been
Current Opinion in Neurobiology 2019, 56:87–96 
implemented in several cnidarian species [43–

45,47�,48,49,50�,51,66,67]. In combination with trans-

genic lines and data collected from scRNA-seq, the ability

to test gene function allows for detailed analysis of

cnidarian nervous system development and function, thus

providing a basis for evolutionary comparisons.

Surprisingly, the stem cells that give rise to neurons and

cnidocytes might be quite different between medusozo-

ans and anthozoans. In hydrozoans (a class of medusozo-

ans), the multipotent interstitial stem cells give rise to all

cells of the nervous system, as well as gland cells and germ

cells [68–72]. By contrast, in anthozoans, interstitial stem

cells have not been found and the nervous system may

instead arise from epithelial-like stem cells [59�,73],
suggesting that interstitial stem cells might be a hydro-

zoan-specific or medusozoan-specific innovation [74].

Candidate gene approaches used to study the molecular

control of neurogenesis suggest a significant degree of

conservation in the broad specification of neurons

between cnidarians and bilaterians (reviewed in Refs.

[13,73]). For example, Notch and Wnt signalling, soxB,
atonal/neurogenin and achaete-scute family genes play

central roles in Nematostella neurogenesis [59�,75�,76–
78] and soxB and nanos genes function in Hydractinia
neurogenesis [79,80��]. However, in contrast to Nema-
tostella and most bilaterians, Notch signaling appears

not be involved in the regulation of neurogenesis in

both adult Hydra and embryonic Hydractinia, in which

neurons derive from the non-epithelial interstitial cells

[46�,81�,82�]. Currently, only a few functional studies

have addressed the development of specific neural cell

types. In adult Hydra, apical neurons require the Para-

Hox gene gsx/cnox-2 for their development [83] and in

Nematostella, PaxA and Mef2 are involved in the forma-

tion of cnidocytes [84�,85]. Now, with new tools and

resources, like those provided by scRNA-seq, it is

possible to move beyond candidate gene approaches

to obtain a less biased view of the regulatory networks

that underlie cnidarian neurogenesis.

In adult cnidarian organisms, the nervous system is

continuously replaced in homeostatic animals and is

capable of regeneration, thus providing a platform for

understanding the regulation of adult neurogenesis. In

polyps, the whole nervous system readily regenerates

after significant loss of the body column, while in

medusae, regeneration is restricted to some organs such

as the manubrium or the eyes [86–88]. Comparative

analysis of progenitor behaviours between cnidarians

and bilaterian model organisms showing similar regen-

erative potential (e.g. planarians), will allow us to deter-

mine possible common molecular mechanisms [89].

Such comparisons can be made using amputation para-

digms or ablation of specific structures like the eyes of

jellyfish and planarians [88,90].
www.sciencedirect.com
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Conserved molecular basis for
neurotransmission in cnidarians and
bilaterians
Even though neuroid conduction, that is electrical con-

duction across non-neuronal cells, is observed across a

wide repertoire of organisms, that is plants, protists,

porifers, cnidarians and bilaterians [91], electrophysiolog-

ical studies performed on the giant axon from the hydro-

medusae Aglantha, have demonstrated that cnidarian and

bilaterian synapses exhibit similar properties, with their

activity relying on the formation of presynaptic and

postsynaptic potentials [92,93]. Genomic sequencing

from choanoflagellates, poriferans and placozoans has

actually demonstrated that the molecular components

of the post-synaptic density are already almost complete

in phyla that do not differentiate nerve cells [94,95].

Genomic sequencing and transcriptomic sequencing

from cnidarians have confirmed pharmacological studies

showing that most chemical neurotransmitters used in

bilaterians are also active in cnidarian neurons, acetylcho-

line, glutamate, GABA, glycine for fast transmission,

catecholamines and serotonin for slow transmission

[96,97�,98]. Signaling through these neurotransmitters

is required for coordinated behaviors such as the rather

complex feeding response [99].

The role of peptides in neural signaling
Neuropeptides and epitheliopeptides are a prominent

feature of the cnidarian nervous system. The expression

of numerous G protein-coupled receptors and the discov-

ery of peptide-gated ion channels suggests that these

peptides play a key role in both slow and fast neurotrans-

mission [31,100,101]. In mammals, peptidergic signaling

is neuromodulatory, involved in slow neurotransmission

and interacting with fast neurotransmission driven by

small molecules such as GABA and glutamate. This

neuromodulatory role of neuropeptides might represent

a typical synapomorphy of nervous systems or alterna-

tively, a convergent evolutionary trait in cnidarians and

bilaterians.

Recent studies highlight the power of functional geno-

mics to test the function of neuropeptides in cnidarians.

For example, disruption of the expression of a GLWa-

mide neuropeptide in Nematostella [102�] resulted in a

subtle delay in the progression from swimming to sessile

life stages under laboratory conditions. Two other recent

studies analyzed how light cues regulate the release of

gametes, a feature common to many animals. A group of

cells required for spawning in the gonad of the Clytia
hemispherica medusa are both light sensitive and secrete

neuropeptides. Opsin9 is expressed in these cells and

mutating the Opsin9 gene blocks light induced oocyte

maturation and spawning. The same cells express a

neuropeptide that functions as the maturation-inducing

hormone (MIH), and secretion of this neuropeptide

requires the stimulation of Opsin9 by blue-cyan light
www.sciencedirect.com 
[103��,104��]. These elegant experiments provide an

interesting example of direct coupling of sensory and

neurosecretory functions in one cell, a situation that

may have been more common early in animal evolution

[105]. Future studies should address the role of neuro-

peptides in nervous system function using similar

approaches.

In Hydra, epitheliopeptides can act either positively or

negatively on neurogenesis and/or neurotransmission

[101]. This epitheliopeptide signaling points to a tightly

regulated cross-talk between the myoepithelial cells and

the nervous system. The physiological function and the

regulation of this crosstalk are currently not well under-

stood. The elimination of the interstitial stem cells, and

consequently neurons, leads to the up regulation of taxon-

specific epitheliopeptides in the epithelial cells in Hydra
[97�]. This may suggest a proto-neuronal function for the

epithelial cells, which are widely recognized as the cells

from which synaptic conduction likely emerged [106]. A

differentiated nervous system could repress the proto-

neuronal function of the epithelial cells, whereas in the

absence of neurogenesis, this potential could be

expressed. While this hypothesis remains to be tested,

one possible interpretation is that peptides played a key

role in the emergence of neurons from epithelial cells,

that is cells that integrated three major functions: secre-

tion, integration, and conductivity (Figure 3).

The wiring of cnidarian nervous systems
Electrophysiological recordings have been instrumental

for understanding conduction and function in cnidarian

nervous systems [22,107,108]. Genetically encoded repor-

ters of neural activity and tools for optogenetic manipula-

tions now also allow system-wide analyses. This has

recently been accomplished in Hydra by transgenic

expression of the fluorescent calcium sensor protein

GCaMP6s in the entire nervous system [109��]. This

allowed for imaging of nervous system activity in a whole

animal and the identification of neuronal populations

whose activities correlate with two main types of previ-

ously described electrical activity – contraction bursts

(CBs) and rhythmic potentials (RPs) [107,110,111]. As

previously postulated, CBs are associated with longitu-

dinal contraction. Unexpectedly, two non-overlapping

RP networks were identified, one in the epidermis and

one in the gastrodermis. While the gastrodermal RP is

related to radial contraction as previously thought, the

epidermal RP is related to longitudinal elongation as a

response to light stimulation. Apart from their functional

and spatial separation, the two RP neuron populations

also displayed differences in cellular morphology [109��].
These findings-coupled with the new molecular and

spatial map of the Hydra nervous system [64��], the recent

classification of the Hydra behavioral repertoire [112�],
and the development of new technologies to measure

Hydra nervous system activity [113�], means we are now
Current Opinion in Neurobiology 2019, 56:87–96
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Figure 3

“Nerve cells arose by the coupling of electrical
activity with the secretion of biologically active
substances so that a chain of events in response
to stimuli in alteration of effector activity” (Lentz, 1968)

“A nervous system is an organized constellation
of cells (neurons) specialized for the repeated
conduction of an excited state from receptor
sites or other neurons to effectors or other
neurons.” (Bullock and Horridge, 1965)

“Inputs from many receptors must merge on
common “coordinators” before integration is
achieved. Integration is as fundamental as
conduction to any nervous system.” (Passano, 1963)

Which property
came first?

How did these processes
get connected?

How many times?
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The three properties that are necessary and sufficient to build a nervous system.

Quotations are from Refs. [117–119].
poised to gain a comprehensive understanding of the

Hydra nervous system form molecules to behavior.

Conclusions and outlook
Cnidarian neurobiology is enjoying a renaissance with

several species being amenable to genetic manipulations,

thus allowing for the visualization and interrogation of

nervous system development and function. Calcium

imaging will likely soon be used together with optoge-

netic tools for the activation and inhibition of individual

neurons, which will lead to new insights into the logic of

neural circuits in nerve net-based nervous systems. Stud-

ies of neural development currently focus on the specifi-

cation of different neural cell types; in the near future, we

expect these studies to expand to cellular aspects of the

formation of neural connectivity via neurites and synap-

ses. Basic questions about the nature of cnidarian neu-

rons, including the identification of distinct dendrites and

axons and the molecular composition of chemical synap-

ses remain unanswered. The development of cell culture

protocols has so far eluded cnidarian researchers, but

would be useful for addressing these questions. Another

emerging topic is the crosstalk between neurons and the

microbiome that recently has been evidenced in Hydra,
pointing to previously overlooked functions of the
Current Opinion in Neurobiology 2019, 56:87–96 
nervous system [114], possibly maintained in bilaterians

[115,116]. At the organismal level, adding genetically

tractable model systems from other classes of cnidarians

would allow, for example, studying the development of

convergently evolved eyes and centralizations of the

nervous system (in scyphozoans and cubozoans), or the

neural basis of the exquisite behavioural repertoire of box

jellies (cubozoans). Extrapolating from the recent prog-

ress summarized here, it is likely that many new insights

into the fascinating neurobiology of this diverse group of

animals are on the horizon.
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