
 1 

Modelling supercapacitors using a dynamic equivalent 

circuit with a distribution of relaxation times 

L.E. Helseth  

Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen, Norway  

 

ABSTRACT: Supercapacitors are often modelled using electrical equivalent circuits with a limited 

number of branches. However, the limited number of branches often cannot explain long-term dynamics, 

and one therefore has to resort to more computationally challenging basic models governing diffusion and 

drift of ions. Here, it is shown that consistent modelling of a supercapacitors can be done in a 

straightforward manner by introducing a dynamic equivalent circuit model that naturally allows a large 

number or a continuous distribution of time constants, both in time and frequency domains. Such a model 

can be used to explain the most common features of a supercapacitor in a consistent manner. In the time 

domain, it is shown that the time-dependent charging rate and the self-discharge of a supercapacitor can 

both be interpreted in this model with either a few or a continuous distribution of relaxation times. In the 

frequency domain, the impedance spectrum allows one to extract a distribution of relaxation times. The 

unified model presented here may help visualizing how the distribution of relaxation times or frequencies 

govern the behavior of a supercapacitor under varying circumstances.    
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1. Introduction 

Electrochemical double layer capacitors, often called supercapacitors, were patented in 1957 and later 

commercialized [1,2]. Supercapacitors are based on porous carbon immersed in an electrolyte, where the 

ions can form an electrical double layer which aids in storing electrical charge. The large number of pores, 

often with a large size distribution, results in charge dynamics covering a hierarchy of time scales. 

Modelling of supercapacitors must take into account this distribution of time scales. 

 

Supercapacitors are often modelled using equivalent circuits composed of resistors and capacitors, 

including inductive elements which may become important at higher frequencies, both in the time and 

frequency domains [3-17]. An early transmission line model of porous electrodes in electrolytes in Ref. 

[18] was later shown to be consistent with molecular dynamics simulations [19], and this model has been 

used to understand the behavior of supercapacitors as well [20,21]. Representing a supercapacitor in terms 

of an equivalent circuit composed of passive elements is not only a convenient and computationally 

efficient method to describe the supercapacitor, it is also based on sound physics. Indeed, linearization of 

the partial differential equations describing the system results in linear ordinary differential equations that 

can be associated with a passive electrical network [22,23]. Comparisons have been made between the 

equivalent circuits to better understand their performances [24-26], and multiscale models have been 

shown to represent impedance spectra well [27]. Methods for accurate fitting of model parameters are 

needed [28], and recursive algorithms have been used to obtain better fits to experimental data 

characterizing charge-discharge cycles [29].  

  

Various means to follow the online dynamics and improve power management during use of the 

supercapacitor may involve real time equivalent circuit parameter estimation [30], Kalman filtering 

[31,32], and variable capacitor models [33] to allow better online power management. However, also 

further understanding of the underlying equivalent models are needed. Fractional order calculus provides 

a method for more accurately modelling the supercapacitor performance [34-37]. However, it should also 
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be pointed out that standard electrical circuit analysis can be utilized to a fuller extent in order to interpret 

experimental data. In Ref. [38] it was suggested how one may model a supercapacitor using a number of 

serial RC-circuits arranged in parallel in terms of a distribution of time constants in frequency domain, 

and how the finite Pascal equivalent circuits could be used to interpret results. Ref. [39] demonstrates how 

the relaxation of frequencies can be used to extract information about degradation of supercapacitors from 

impedance spectra. However, the distribution of relaxation times found in impedance spectra of 

supercapacitors is often very narrow, and it would be advantageous to also have a suitable description in 

the time domain such that charging and self-discharging phenomena also could be described.  In the 

current work it is shown how to model a supercapacitor using a number of parallel RC circuits in series, 

the socalled dynamic equivalent circuit, in order to extract the equivalent distribution of relaxation times, 

both in time and frequency domains. The distribution of relaxation times can be utilized to visualize the 

slow and fast charge dynamics in a supercapacitor, and may also be a useful tool when designing new 

systems. Thus, the current work is a natural expansion of previous studies, and should further the 

understanding of how to model supercapacitors using electrical equivalent circuits.  

 

 

2. The dynamic equivalent circuit 

The circuits considered in this work are shown in Fig. 1. Figure 1 a) shows a Randle circuit, which is 

often used to model the simplest features of supercapacitors. It consists of a resistor (Rp) and capacitor 

(Cp) in parallel, connected to a serial resistor (Rs). To explain the high frequency behavior (typically above 

100 Hz), an inductor of inductance L is added. However, the inductive behavior is often related to the 

metallic cover of the supercapacitor and may not play a role in understanding the supercapacitor itself.  

This circuit has a single relaxation time, and therefore represents only a limited set of the mobile charges 

in a supercapacitor. Nonetheless, it is often a reasonable approximation when trying to model the 

supercapacitors in a limited temporal or frequency range, although in particular self-discharge cannot be 

understood using such a circuit. 
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Figure 1.  Equivalent electrical circuits representing a supercapacitor. In a), a Randle circuit is shown, 

whereas b) shows the dynamic circuit. 

 

The dynamic equivalent circuit in Fig. 1 b) can be rationalized by linearization of the partial differential 

equations describing diffusion, drift, charge conservation [23]. It is composed of a series of parallel 

resistors and capacitors, which allows one to incorporate multiple time constants when modelling the 

supercapacitor. In principle, any continuous distribution of time constants can be generated, but this 

potential appears to not yet have been fully exploited. In the following an approach to model all important 

aspects of supercapacitors using the model in Fig. 1 b) is presented. 

 

 

3. Experimental details 

In this study, two different supercapacitors were studied, hereafter named A and B. Supercapacitor A was 

a GoldCap of nominal capacitance 10 F and voltage limit 2.5 V. Supercapacitor B was made by Ioxus, of 

nominal capacitance 400 F and voltage limit 2.7 V. The measurements of voltage, current and impedance 

were done with either a Biologic SP050 or a Gamry Ref. 600. Currents of 0.1 A, 0.5 A or 0.8 A were 
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provided during galvanostatic charging, where the fluctuations were kept below ±0.1 mA. The voltage 

fluctuations were typically about ±0.1 mV. The galvanostatic impedance spectroscopy was run between 

2 mHz and 1 MHz with 50 mA root-mean-square about zero average current. 

 

 

4. Galvanostatic charging 

Galvanostatic charging of a supercapacitor is made by applying a constant current I0 while measuring the 

voltage VC over the capacitor as function of time. The dynamic equivalent circuit model in Fig. 1 b) is 

used as the starting point when extracting information from the experimental data. The supercapacitor is 

charged by a constant current I0 which is the same through all elemental parallel circuit parts and given 

by 

 

𝐼0 = 𝐼𝐶𝑖
+ 𝐼𝑅𝑖

=
𝑑𝑄𝑖

𝑑𝑡
+

𝑄𝑖

𝑅𝑖𝐶𝑖
 ,      (1) 

 

where the current through the capacitor Ci is ICi=dQi/dt and the current IRi through the resistor Ri was 

found by noting that the voltage over Cj and Rj are equal and can be given by  

𝑄𝑖

𝐶𝑖
= 𝑅𝑖𝐼𝑅𝑖

 .      (2) 

Equation (1) above can be solved to give the following equation for the charge on capacitor Ci: 

 

𝑄𝑖(𝑡) = 𝑄𝑖(0)𝑒−𝑡/𝜏𝑖 + 𝐼0𝜏𝑖(1 − 𝑒−𝑡/𝜏𝑖)    ,    𝜏𝑖 = 𝑅𝑖𝐶𝑖 .  (3) 

 

Here Qi(0) is the initial charge and i the relaxation time for one particular elemental circuit branch. So 

far, only one elemental circuit branch (resistor and capacitor in parallel) has been considered, although it 

is a fact that in a supercapacitor one would have a large number of such elements. From a statistical point 

of view, one could say that there is a distribution of relaxation times i, or equivalently that there is a 
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certain probability that each elemental circuit with relaxation time i is excited. Therefore it is convenient 

to assign a weight i to each initial charge Qi(0), such that there is a probabilityi that the charge Qi(0) 

is present on the elemental branch of relaxation time i. Also the current passing through the elemental 

branches follows a statistical distribution, since the particular branch of relaxation time i may allow 

current to pass through or not, depending on whether there is any blockage due to for example small sized-

pores or an electron tunneling layer or other factors controlling the current in that branch. From a statistical 

point of view, there is a probability i that the current I0 runs through the elemental circuit with relaxation 

time i. It should be pointed out that the two weight factors fulfill ∑ 𝛼𝑖
𝑁
𝑖=1 = 1 and ∑ 𝛽𝑖

𝑁
𝑖=1 = 1 to ensure 

that the total probability sums up to one. From Eq. (3), the total charge gained by the supercapacitor after 

a time t is given by  

 

𝑄(𝑡) = ∑ 𝑄𝑖(𝑡)𝑁
𝑖=1 = ∑ 𝛼𝑖𝑄𝑖(0)𝑒−𝑡/𝜏𝑖𝑁

𝑖=1 + 𝐼0 ∑ 𝛽𝑖𝜏𝑖(1 − 𝑒−𝑡/𝜏𝑖)𝑁
𝑖=1     .   (4) 

 

For small times, t<<i, in absence of initial charge it is seen that 𝑄(𝑡) ≈ 𝐼0𝑡, as also obtained using the 

Randle circuit in Fig. 1 a). If one neglects the inductor, the voltage 𝑉𝐶(𝑡) = ∑
𝑄𝑖

𝐶𝑖

𝑁
𝑖=1 + 𝑅𝑠𝐼0 over the entire 

supercapacitor is given by 

 

𝑉𝐶(𝑡) = ∑ 𝛼𝑖𝑉𝑖(0)𝑒−𝑡/𝜏𝑖𝑁
𝑖=1 + 𝐼0 ∑ 𝛽𝑖𝑅𝑖(1 − 𝑒−𝑡/𝜏𝑖)𝑁

𝑖=1 + 𝑅𝑠𝐼0    ,  (5) 

 

where Vi(0)=Qi(0)/Ci is the initial voltage over capacitor Ci. The voltage rate is given by 

 

𝑑𝑉𝐶(𝑡)

𝑑𝑡
= ∑ [𝛽𝑖

𝐼0

𝐶𝑖
− 𝛼𝑖

𝑉𝑖(0)

𝜏𝑖
]𝑁

𝑖=1 𝑒−𝑡/𝜏𝑖    .   (6) 
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Equations (4) and (5) constitute the results of the discrete part of the model presented here. This discrete 

model allows one to use any finite number of relaxation times i to model the system at hand. Using Eqs. 

(4) and (5) requires prior knowledge about the distribution functions i andi. Alternatively, one could 

extract information about these distributions from the experimental data. Upon initial charging, the 

voltage makes a jump RsI0 before the time-dependency proceeds according to the two first terms in Eq. 

(5). This current-dependent jump is also observed experimentally for the supercapacitors considered here, 

in consistency with other previous studies under different circumstances [40]. However, the current-

dependent initial voltage jump is besides the main point of this work, and therefore not considered further.  

 

 

Figure 2.  The voltage (a) and voltage rate (b) over supercapacitor B is shown as a function of time when 

supercapacitor B is charged at a constant current 0.5 A. The dashed red lines in (a) and (b) corresponds 

to a fit of Eqs. (5) and (6) to the experimental data with C1=343 F and =2200 s.  
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The black solid line in Fig. 2 a) represents the experimental voltage data obtained during galvanostatic 

charging of supercapacitor B at I0=0.5 A, while the dashed red line corresponds to a fit of Eq. (5) to the 

experimental data with N=1, C1=343 F and =2200 s. The R2 value of 0.9998 suggests that the fit is very 

good. The voltage rate extracted from the experimental data is shown in Fig. 2 b) as boxes, and a fit of 

Eq. (6) to the experimental data is presented as a dashed red line. The R2 value of the fit is 0.9352, and 

is therefore not as accurate as the voltage fit in Fig. 2 a). Nonetheless, the fact that the voltage and voltage 

rate are described very well by Eqs. (5) and (6) with only N=1 elemental circuit branch may at first sight 

suggest that a single relaxation time plays the most important role here. However, it should also be 

mentioned that the voltage rate in Fig. 2 b) is nearly linear. In the case of t<<i for all contributing 

elemental branches and Vi(0)=0, one may write Eq. (6) as dVC/dt=a-bt, where 𝑎 = ∑ 𝛽𝑖𝐼0/𝐶𝑖 
𝑁
𝑖=1 and 𝑏 =

∑ 𝛽𝑖𝐼0/𝜏𝑖𝐶𝑖  𝑁
𝑖=1 . Here, it is clearly seen that the slope remains nearly linear even when there are 

contributions from more than one branch. Thus, with a nearly linear slope one cannot definitely conclude 

whether it is only one or several relaxation times present.  
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Figure 3.  In a) and c), the voltage and voltage rate over supercapacitor A is shown as a function of time 

when supercapacitor A is charged at a constant current 0.1 A. The dashed red line corresponds to a fit of 

Eqs. (5) and (6) to the experimental data with N=1, C1=11.7 F and =700 s. In b) and d), the voltage and 

voltage rate over the supercapacitor A is shown as a function of time when it is charged at a constant 

current 0.8 A. The dashed red and green lines correspond to fits of Eqs. (5) and (6) to the experimental 

data with N=1, C1=11.0 F and =85 s. 

 

The black solid lines in Figs. 3 a) and b) represents the experimental voltage data obtained during 

galvanostatic charging of the nominal 10 F supercapacitor with I0=0.1 A and I0=0.8 A, respectively. The 

boxes in Figs. 3c) and d) are the corresponding voltage rates. The dashed red lines in Fig. 3 a) and c) 

correspond to fits of Eqs. (5) and (6) to the experimental data with N=1, C1=11.7 F and =700 s. The 

dashed red and green lines in Fig. 3 b) and d) correspond to fits of Eqs. (5) and (6) to the experimental 

data with N=1, C1=11.0 F and =85 s. From Fig. 3 is seen that the voltage once more is well represented 

by Eq. (5) with N=1, as exemplified by R2 values of 0.9876 (b) and 0.9934 (d). However, since the voltage 

rate is nearly constant, one cannot make a definite conclusion that only one relaxation time is present. It 

is also seen that the fitted relaxation time decreases by a factor of 8 when increasing the current from 0.1 

A to 0.8 A. At the same time, the capacitance Ci remains nearly constant as fixed by the initial slope of 

the curves (I0/Ci). In our dynamic equivalent circuit model, this means that only the resistance Ri decreases 

significantly with current. In the dynamic equivalent circuit model of Fig. 1 b), this can be interpreted as 

the probability of charging a branch of a given relaxation time i depends on the current. Smaller current 

means a higher probability of charging an elemental branch with large relaxation time, whereas larger 

current corresponds to small relaxation time. This phenomenon is due to the different time scales involved 

when filling the charge from the fast and slow branches associated with the pore structures, where large 

pores are filled quicker than the smaller ones. The conducting nanostructures are more or less randomly 

aligned in the electrolyte, and the capacitance may increase with up to three orders of magnitude as the 
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filler fraction increases [38]. On the other hand, the resistance may change with six orders of magnitude 

[38], thus suggesting that Ri has a significantly larger range than Ci in Eq. (5). The currents in the 

experimental data analysed are not very large for several reasons. For the experimental data investigated, 

it was found that currents changing by a factor of 8 (from 0.1 A to 0.8 A) did not result in any functional 

difference in the voltage and its derivative versus time (Fig. 3), while the nonlinear behavior changed 

slightly due to change in relaxation time as predicted by the Eqs. (5) and (6). Only one branch was needed 

to describe the experimental data. While even higher currents may give even smaller relaxation times and 

even couple in more than one branch, the instruments available only allowed currents up to 0.8 A. The 

main aim of this study is to present a new method for analysis of experimental data from supercapacitors, 

and due to costs and time it was not found possible to cover all cases experimentally. 

Upon discharging, the delivered charge decreases with applied current in a fixed time interval, a 

phenomenon that has been coined Peukert’s law [41]. A similar phenomenon associated with 

galvanostatic charging can be interpreted in terms of the dynamic equivalent circuit model used here. If 

the relaxation time i decreases with increasing current I0, then Eq. (4) predicts that the charge deposited 

on the supercapacitor during galvanostatic charging should become smaller with increasing current. To 

see this, one may expand Eq. (4) to second order and obtain and 𝑄(𝑡) = 𝐼0𝑡 −
1

2
𝐼0𝑡2 ∑ 𝛽𝑖/𝜏𝑖 

𝑁
𝑖=1 . If i 

decreases with the current, it is seen that the second term in the expansion increases monotonously with 

current, such that the total deposited charge decreases monotonously with current.   

 

Equations (4) and (5) are derived assuming that there are a finite number of elemental circuit branches 

describing the system. While this appears to work well for the two supercapacitors considered here, other 

systems may behave differently. One may in principle encounter situations where a continuous 

distribution of relaxation times would better describe the supercapacitor. That is, during charging one 

encounters a large number of possible time constants and initial charge distributions, leading to a 

statistical distribution represented by () and (). One requires normalization such that ∫ 𝛼(𝜏)𝑑𝜏
∞

0
=
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1 and ∫ 𝛽(𝜏)𝑑𝜏
∞

0
= 1.   Note that the continuous variables () and () have units s-1.  If one assumes 

that the number N is very large, a continuous distribution can be assumed. It is assumed that one can let 

i→, iQi(0)→()Q0, iVi(0)→()V0, i→() and Ri→Rp() such that 

 

𝑄(𝑡) = 𝑄0 ∫ 𝛼(𝜏)𝑒−𝑡/𝜏𝑑𝜏
∞

0
+ 𝐼0 ∫ 𝛽(𝜏)𝜏(1 − 𝑒−𝑡/𝜏)𝑑𝜏

∞

0
    ,  (7) 

 

and 

 

𝑉𝐶(𝑡) = 𝑉0 ∫ 𝛼(𝜏)𝑒−𝑡/𝜏𝑑𝜏
∞

0
+ 𝐼0 ∫ 𝛽(𝜏)𝑅𝑝(𝜏)(1 − 𝑒−𝑡/𝜏)𝑑

∞

0
𝜏 + 𝑅𝑠𝐼0    .  (8) 

 

In the case of a single relaxation time 0, one may write (t)=(-0), =(-0) and Rp(0)=Rp, such that  

 

𝑄(𝑡) = 𝑄0𝑒−𝑡/𝜏0 + 𝐼0𝜏0(1 − 𝑒−𝑡/𝜏0)         (9) 

 

and 

 

𝑉𝐶(𝑡) = 𝑉0𝑒−𝑡/𝜏0 + 𝐼0𝑅𝑝(1 − 𝑒−𝑡/𝜏0) + 𝑅𝑠𝐼0    ,    (10) 

 

in agreement with what one obtains by setting N=1 in Eqs. (4) and (5).  It should be emphasized that Eqs. 

(4) and (5) represent the discrete version of the theory which is more useful for describing galvanostatic 

charging when the deviations from ideal behavior is rather small (i.e. dVC/dt is nearly constant) or there 

is a main relaxation time governing the charging.  On the other hand, Eqs. (7) and (8) represent the 
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continuous version of the theory which might find use for describing charging situations where there is 

stronger nonlinear behavior due to a continuous distribution of relaxation times.  

 

 

5. Self-discharging 

Self-discharging is another important physical phenomenon exhibited by supercapacitors. The same 

framework as for galvanostatic charging can be applied, but now with I0=0. From Eq. (5) the voltage over 

the supercapacitor is in the discrete version given by 

 

𝑉𝐶𝐷(𝑡) = ∑ 𝛼𝑖𝑉𝑖(0)𝑒−𝑡/𝜏𝑖𝑁
𝑖=1 ,     (11) 

 

which upon assuming a continuous distribution of relaxation times becomes  

 

𝑉𝐶𝐷(𝑡) = 𝑉0 ∫ 𝛼(𝜏)𝑒−𝑡/𝜏𝑑𝜏
∞

0
    .    (12) 

 

By changing to a dimensionless variable in the frequency domain such that s=1/f* and P(s)=(1/ 

f*)/f*s2, this expression can be written as 

 

𝑉𝐶𝐷(𝑡) = 𝑉0 ∫ 𝑃(𝑠)𝑒−𝑠𝑓∗𝑡𝑑𝑠
∞

0
    .    (13) 

 

Equation (13) is recognized as an inverse Laplace transform, and one needs to determine the spectrum 

P(s) in order to determine the distribution of relaxation times.  
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The stretched exponential function, of the form 𝑒−(𝑓∗𝑡)𝛽
 , with  and f* constants, was introduced by 

Kolrausch to explain the discharge of a capacitor (Leyden jar), after finding that a simple exponential 

decay did not explain the experimental data [42]. Later, it was applied to numerous physical situations 

were a sum of exponential relaxations were present [43-45]. In Ref. [46] a stretched exponential function 

exp (−√𝑡/𝜏2) was used, corresponding to =1/2 conjectured from diffusion dynamics, to explain long-

time discharging of the supercapacitor.  However, it is not obvious why only =1/2 dictated by diffusion 

alone should govern the dynamics of self-discharge, and a further investigations of improved data fitting 

should be guided by the available experimental data. The general stretched exponential function is a good 

candidate for describing the time dynamics of the voltage, 

 

 𝑉𝐶𝐷(𝑡) = 𝑉0𝑒−(𝑓∗𝑡)𝛽
= 𝑉0 ∫ 𝑃(𝑠, 𝛽)𝑒−𝑠𝑓∗𝑡𝑑𝑠

∞

0
   .   (14) 

 

Note that the P(s,) can be interpreted as probability distribution in the frequency domain (or rate 

constants), and that ∫ 𝑃(𝑠, 𝛽)𝑑𝑠 = 1
∞

0
. The constant f* has units s-1, but cannot be given a general 

interpretation in terms of a relaxation frequency as explained in ref. [45]. In the case of a single relaxation 

time =1/f*, =1 and P(s,) is a Dirac delta function centered on .  

By setting f*t=x in Eq. (14), the Laplace transform is given by  

 

𝑃(𝑠, 𝛽) =
1

2𝜋𝑖
∫ 𝑒−(𝑥)𝛽

𝑒𝑠𝑥𝑑𝑥
+𝑖∞

−𝑖∞
   .     (15) 
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This can also be transformed into Fourier transform upon suitable change of variables, and in a few cases 

including =0.5, analytical solutions exist [44,45]. For arbitrary values of the coefficient in the range 

0<<1, there are several methods for evaluating it numerically [44].  

The solid line in Fig. 4 a) shows the measured self-discharge of supercapacitor A after first charging it to 

V0=2.2 V, and then measuring the voltage in absence of any current (I0=0). The blue, dotted line in Fig. 

4 a) shows a fit of Eq. (14) to the experimental data using =0.5 as in Ref. [46]. The fit is better than 

obtained using a simple exponential decay, but there are deviations as signified by the R2 value of 0.970. 

A better fit using the function nlinfit in MatLab is obtained using =0.4 (red, dashed line) and f* ≈ 6.9∙10-

6 Hz, obtaining an R2 value of 0.997. The blue, dotted line in Fig. 4 b) is the probability density function 

P(s,=0.5), whereas the dashed red line corresponds to P(s,=0.4). The spectrum in Fig. 4 b) 

corresponding to =0.4 (red, dashed line) has maximum value at smax=0.060, which corresponds to a 

relaxation time max=1/smaxf* ≈ 2.4∙106 s. This parameter does not have a very distinct physical 

interpretation since the spectrum is very broad. However, one can conclude that the relaxation times 

involved in self-discharge are much longer than those involved in galvanostatic charging events described 

in the previous section. Clearly, application of smaller currents may result in larger relaxation times during 

galvanostatic charging, but one cannot expect these to be as large as those observed during self-discharge 

for any practically relevant charging currents. The reason is simply that galvanostatic charging is a process 

constantly driven out of equilibrium, whereas self-discharge is a relaxation towards equilibrium. One a 

general basis, it is observed that when <1, the probability density is shifted to larger relaxation times (or 

shorter relaxation frequencies), which means that there are more elemental circuit branches with larger 

relaxation times than expected for fast galvanostatic charging processes. Decreasing  from 0.5 to 0.4 

enhances the shift to larger relaxation times.  
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Figure 4.  In a) the experimental data for the voltage over supercapacitor A during self-discharge are 

shown as a black, solid line. A fit with Kolrausch exponents =0.5 (blue, dotted line) and =0.4 (red, 

dashed line) give R2 values of 0.970 and 0.997, respectively. In b), the distributions of rate constants are 

shown for =0.5 (blue, dotted line) and =0.4 (red, dashed line). 

 

 

Similar trends were observed for supercapacitor B, which was first galvanostatically charged to 2.4 V 

followed by voltage-measurements in absence of any current (I0=0). The solid line in Fig. 5 a) shows the 

experimental data, whereas the dashed, red line shows the best fit of the stretched exponential function 

to the experimental data using nlinfit in MatLab. One obtains =0.34 and f* ≈ 2.5∙10-6 Hz with R2 value 

0.987. In Fig. 5 b), the distribution function is shown for =0.34 and =0.5.  
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Figure 5.  In a) the experimental data for the voltage over supercapacitor B during self-discharge are 

shown as a black, solid line. A fit with Kolrausch exponents =0.4 (red, dashed line) give R2 value of 

0.987. In b), the distributions of rate constants are shown for =0.5 (blue, dotted line) and =0.34 (red, 

dashed line). 

 

Note that supercapacitor B exhibits a more significant shift towards larger relaxation times (smaller 

frequencies) as compared to supercapacitor A, since the latter has a higher . This could be due to a 

wider distribution of pores in the larger supercapacitor, but also redox-reactions may play a role. The 

experimentally observed self-discharge in supercapacitors can be related to ohmic losses and redox 

reactions [47,48], but internal redistribution of charge has been found to play a significant role [20,49-

52]. Memory effects in supercapacitors are often associated with charge redistribution and have been 

associated with an increased resistance of ions moving in nanoporous structures [53]. A blocking layer 
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may alter the self-discharge due to electron tunneling, thus providing a method to control the self-

discharge, often at the cost of reduced capacitance [54,55]. Self-discharge can also be used as a 

diagnostic tool, and has been found to be faster than conventional tools such as potential floating when 

determining the stability of supercapacitors based on ionic liquids [56]. At this moment it is unclear 

whether one could connect the distribution function P(s,) to geometrical parameters of the pores of the 

supercapacitor, which is a topic outside the scope of the current work. Nonetheless, one may be able to 

use the knowledge about the fitted constant  and the distribution function P(s,) as a diagnostic tool for 

analyzing self-discharging since it allows one to distinguish between distribution of relaxation times or 

frequencies. As such, it is different and may complement the already existing diagnostic tools based on 

for example polynomial fitting [57]. 

 

6. Impedance spectroscopy 

In the frequency domain, the dynamic equivalent circuit in Fig. 1 b) is once again assumed. If the 

resistance and capacitance of the ith elements are Ri and Ci, respectively, each parallel circuit has 

impedance Ri/(1+jRiCi), where 𝑗 = √−1. From a statistical point of view, there is a distribution of 

relaxation times, and a probability i that current runs through a circuit of a particular relaxation time i. 

One must require ∑ 𝛾𝑖
𝑁
𝑖=1 = 1 to ensure that the total probability sums up to one. The total impedance of 

a circuit consisting of N series-connected elements is then 

 

𝑍 = 𝑅𝑠 + ∑
𝛾𝑖𝑅𝑖

1+𝑗𝜔𝜏𝑖

𝑁
𝑖=1     ,     (16) 

 

where Rs is the series resistance. Later we will also include the inductance L and the impedance term jL 

to account for the high frequency behavior. Now, it is convenient to define a new variable i such that 
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∑ 𝛾𝑖𝑅𝑖
𝑁
𝑖=1 = 𝑅𝑝 ∑ 𝜃𝑖

𝑁
𝑖=1 , where Rp is a constant which in the case of a simple parallel circuit is just the 

parallel resistance in Fig. 1. Here, i is a combination of distribution of relaxation times as well as the 

distribution of parallel resistors Ri. In general, i and i may exhibit different behavior. However, previous 

studies have indicated that the capacitance associated with nanograins may vary with up to three orders 

of magnitude, whereas the corresponding resistance may change with six orders of magnitude, thus 

suggesting that Ri has a significantly larger range than Ci. Under such conditions, the probability i may 

follow the behavior of i since it is mainly the values of Ri that determine the distribution of relaxation 

times.  

If one assumes that the number N is very large, a continuous distribution can be assumed. Under such 

circumstances one may write Eq. (16) as 

 

𝑍 = 𝑅𝑠 + 𝑅𝑝 ∫
𝜃(𝜏)

1+𝑗𝜔𝜏
𝑑𝜏

∞

0
    ,  ∫ 𝜃(𝜏)𝑑𝜏 = 1

∞

0
 .   (17) 

 

This equation can also be used to describe Debye-relaxation of dipole moments in molecules [58], and 

has been used to describe degradation of supercapacitors [39], batteries or fuel cells [59]. Moreover, it 

can also be used to describe a supercapacitor model consisting of parallel circuits [38], as opposed to the 

serial circuits described here. However, the interpretation in terms of the dynamic equivalent circuit given 

here is slightly different from previous approaches, and it is mainly introduced to complement and 

compare with the time-dynamic approach constructed from Fig. 1 b) and presented in the previous 

sections. The real and imaginary parts of Eq. (17) can be written as  

 

         𝑍𝑅𝑒 = 𝑅𝑠 + 𝑅𝑝 ∫
𝜃(𝜏)

1+(𝜔𝜏)2 𝑑𝜏
∞

0
    and 𝑍𝐼𝑚 = −𝜔𝑅𝑝 ∫

𝜏𝜃(𝜏)

1+(𝜔𝜏)2 𝑑𝜏
∞

0
   .  (18) 
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The modulus is |𝑍| = √𝑍𝑅𝑒
2 + 𝑍𝐼𝑚

2  and the phase is 𝜙 = 𝑡𝑎𝑛−1[𝑍𝐼𝑚/𝑍𝑅𝑒]. In previous works, various 

methods for inverting Eq. (17) in order to obtain the statistical distribution of relaxation times have been 

considered [59]. In the situation where there is only one relaxation time, ()=δ(0), with 0=RpCp, one 

obtains for the equivalent circuit in Fig. 1 a): 

 

         𝑍𝑅𝑒 = 𝑅𝑠 +
𝑅𝑝

1+(𝜔𝜏0)2    ,  𝑍𝐼𝑚 = −
𝜔𝜏0𝑅𝑝

1+(𝜔𝜏0)2   .     (19) 

 

To account for statistical variations that is fairly easy to model, it is convenient to assume a gaussian 

statistical distribution of relaxation times with standard deviation ,    

 

𝜃(𝜏) =
1

√2𝜋𝜎2
𝑒

−
(𝜏−𝜏0)2

𝜎2    .   (20) 

 

Equation (18) can be fitted to experimental data directly using nonlinear fitting. However, to ensure 

convergence, it is convenient guess a relatively narrow distribution function () first, and then make the 

fit. Further iterations are then made until the best possible fit is obtained.  When needed, more complicated 

fitting functions and procedures can be considered, as detailed in e.g. Ref. [59]. However, for the two 

supercapacitors considered in the current study, it is found that Gaussian distribution function is sufficient 

since the deviations from the Randles circuit are not large. 

 

The black and blue data points in Fig. 5 a) and b) show the modulus and phase of the measured impedance 

data for supercapacitors A and B, respectively. The dashed red lines in Fig. 6 a) and b) show the fit of 

Eqs. (18) and (20) to the experimental data with Rs=5.7 m, Rp=6.4 , Cp=342.6 F, 0=2193 s, =10 s 
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and L=141 nH. The dashed green lines in in Fig. 6 a) and b) show the fit of Eq. (18) and (20) to the 

experimental data with Rs=38.3 m, Rp=67.3 , Cp=11.3F, L=143 nH, 0=760 s and =10 s.  

 

 

Figure 6.  Figure a) and b) show the modulus |Z| and phase angle  obtained using impedance 

spectroscopy, respectively. The black experimental data points correspond to supercapacitor A, whereas 

the blue data points correspond to supercapacitor B. The red and dashed lines are the fits of Eqs. (18) 

and (20) to the experimental data for supercapacitor A and B, respectively. The corresponding 

distribution of relaxation times are shown in c), with peaks at 0=760 s and 0=2193 s for supercapacitors 

A and B.  
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The impedance spectrum can be well described by the simple model used here, with two very narrow 

gaussian peaks in the distribution function at 0=760 s for supercapacitor A and 0=2193 s for 

supercapacitor B. To this end, it should be recalled that a relaxation time of 2200 s was obtained when 

galvanostatically charging supercapacitor B at 0.5 A, which is consistent with the data obtained using 

impedance spectroscopy. In the case of supercapacitor A, galvanostatic charging at 0.1 A gave a relaxation 

time of 700 s, while charging at 0.8 A gave 85 s. From impedance spectroscopy one obtains 0=760 s, 

which is consistent with the number obtained for the slowest charging. This is not unexpected, since the 

relaxation time is extracted from the low-frequency part of the impedance spectrum, corresponding to 

slow processes. Nonetheless, it should also be emphasized that self-discharge provides even larger 

relaxation times within this model.   

 

7. Discussion  

The aim of this study was to demonstrate that the dynamic equivalent circuit can be used to model the 

behavior of supercapacitors if one allows for an interpretation in terms of a distribution of relaxation 

times. Galvanostatic charging with weakly nonlinear behavior is found to be well described using this 

method, but only a single effective relaxation time can be extracted. On the other hand, self-discharging 

of supercapacitors exhibits a wide distribution of relaxation times, with large relaxation times playing a 

major role.  Impedance spectroscopy utilizes weak excitations about a working point and is rather well 

described by an elemental circuit branch consisting of a resistor in parallel with a capacitor, and the 

distribution of relaxation times is therefore narrow.  

 

It should be pointed out that in principle there could be one relaxation time for each electrolyte-filled pore 

in the porous carbon, thus requiring a very large number of branches to fit the experimental data if a very 

good overlap between theoretical and experimental data is needed. Using a discrete equivalent circuit 

under such conditions might require unnecessary large computational efforts. In fact, it might be more 
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convenient to find a continuous distribution of relaxation constants if such a distribution can be calculated 

efficiently without large computational efforts. One may utilize existing databases (e.g. [44]) to obtain 

distributions of relaxation times as was done for self-discharging supercapacitors (Fig. 4b and 5b), thus 

minimizing computational time.  

 

The question of uniqueness of the relaxation time distribution is an important and mathematically very 

challenging question. For very narrow distributions, like the one obtained from the impedance spectrum 

(Fig. 6b), one expects that the representation is close to unique, due to the fact that large changes from the 

obtained distribution would most likely also result in large changes in the theoretical functions for the 

impedance. On the other hand, for the self-discharging curves (Fig. 4b and 5b) there are other possible 

functions except the stretched exponential function that can be used, thus allowing other distributions as 

well. However, it should be noted that since the experimental curves in Fig. 4 a) and 5 a) have non-

exponential shapes with a fast initial phase followed by a prolonged decay, one must expect a wide 

distribution of relaxation times for any distribution that is to represent self-discharge. Since the stretched 

exponential function has found success in a wide variety of other fields of physics [45], it makes sense to 

utilize this function to extract the distribution of relaxation times using existing data bases [44]. 

 

In the current work, the method for validation of the distribution of relaxation time is by observing how 

well the method allows one to fit theoretical curves to experimental data. However, since this is not really 

a microscopic justification, further studies are needed. Future work could be aimed at validating the 

distribution of relaxation times obtained using the method proposed here. While experiments have been 

conducted to characterize relaxation of single channels [60], few experiments have been done to 

characterize the relaxation of a distribution of channels with known porous properties. This lack of 

available techniques on the micro and nanoscale makes it hard to obtain a direct correlation with the 

macroscopic distribution function. Further validation could be obtained by comparison with numerical 
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modelling [61], however such efforts are very computationally challenging if they are to be based on x-

ray tomographic images of real porous carbon structures. 

 

 

8. Conclusion 

This study presents a method to model supercapacitors in both time and frequency domains using a 

dynamic equivalent circuit model with a continuous distribution of time constants. The model was used 

to monitor the charging and discharging of supercapacitors, the self-discharge as well as the impedance 

spectrum. Only one type of equivalent circuit is needed to model the supercapacitor in a consistent 

manner. While self-discharge could be modelled using a broad distribution of relaxation times, other 

charging and discharging procedures were found to be fitted well with a narrow distribution.  

It should be emphasized that the physical behavior of other supercapacitors or even pseudocapacitors 

could be interpreted in terms of a distribution of relaxation times as described here. It is therefore 

anticipated that the model presented here could be a valuable diagnostic tool when studying such energy 

storage systems. 
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