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Abstract: In addition to the conventional Isothermal Titration Calorimetry (ITC), kinetic ITC (kinITC)
not only gains thermodynamic information, but also kinetic data from a biochemical binding process.
Moreover, kinITC gives insights into reactions consisting of two separate kinetic steps, such as protein
folding or sequential binding processes. The ITC method alone cannot deliver kinetic parameters,
especially not for multivalent bindings. This paper describes how to solve the problem using
kinITC and an invariant subspace projection. The algorithm is tested for multivalent systems with
different valencies.

Keywords: multivalent bindings; PCCA+; kinetic ITC

1. Introduction

Multivalency is an important phenomenon of binding processes characterized by an interaction
of two or more molecules through several binding sites that enhance overall binding affinity [1–13].

Ligands and receptors form a complex according to: L + R
kon−→←−
koff

LR. While the binding mechanisms

of one ligand to one receptor through one binding site have been studied widely, theoretical models
for multivalent ligands and receptors are still lacking. In order to conduct numerical modeling
and compare them to actual experimental results, ITC and kinITC data previously presented by
Igde et al. [14] were used. So far, the average kon value of all titration steps has been used to obtain the
binding rate kon in the reaction equation above. Averaging kon values implies that these values do not
change systematically with regard to the titration steps. Instead, we propose a concentration-dependent
binding rate approach and show that the binding rate follows a certain scheme over the titration steps.
Isothermal titration calorimetry is a common tool to measure the thermodynamic parameters of
mono- and multi-valent bindings in biochemistry. The experimental setup of ITC is the following:
The apparatus consists of two adiabatic cells of a thermally-conducting material connected by
a feedback circuit to measure their temperature difference upon binding. The titration cell contains a
fixed number of receptors. The other cell is filled with a buffer solution only. According to the multiple
injection method (MIM), a certain solution volume with a known concentration of ligands is injected
into the cell at regular time intervals [15]. The binding of ligands and receptors is in most cases an
exothermic reaction (Ligand–receptor interaction may under some circumstances be endothermic, as
well. In this case, the reference cell is cooled down to maintain equal temperatures. The isotherm
has the same shape as in the exothermic case, but with negative signs.), i.e., heat is generated in the
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titration cell. The apparatus measures the heat that is necessary for the reference cell to have the same
temperature as the titration cell. After binding and unbinding take place, the system is in equilibrium,
and the titration cell has a constant temperature. Then, the next titration step takes place. Usually,
the heights of the single heat peaks decrease with each injection. The shape of this time-dependent
thermogram gives insights into thermodynamic parameters. With the kinITC method, it is possible to
obtain kinetic parameters in addition to the thermodynamic information from the ITC experiment [15].
Based on the paper of Vander Meulen et al. [16], the heat power measured by ITC can be linked to the
production rate of the complex taking into account the conservation equations of ligand and receptor
concentrations. The change of the complex concentration over time is:

∂[LR]
∂t

= −∂λ

∂t
= kon([L]eq + λ)([R]eq + λ)− koff([LR]eq − λ)

with λ the difference between the equilibrium concentration of the complex and its current
concentration λ = [LR]eq − [LR]. λ cannot be determined analytically, but together with kon in
a least squares approximation. The heat evolution function is:

Qev = −∆HV0(λt=0 − λ).

The equilibrium constants are determined by the van’t Hoff equation:

∂ ln Ka

∂T
=

∆H
RT2

with R the gas constant and T the temperature. The enthalpy change ∆H is known from the ITC
experiment. The association constant Ka is derived from a fitting procedure. The binding constants k
are temperature dependent and are determined with the Arrhenius equation:

kon = Ae
−Ea
kBT

with A some pre-exponential factor depending on the type of chemical reaction, Ea the activation
energy, kB the Boltzmann constant, and T the temperature. koff is obtained by the relationship:

koff =
kon

Ka
.

Since these binding rates depend on the temperature, usually several ITC experiments are run at
different temperatures and an average is used.

Mathematically speaking, multivalent bindings of ligands and receptors to a complex comprise
a high-dimensional system, which can be projected onto a subspace of lower dimension. Therefore,
a rate matrix consisting of all the possible intermediate binding states is set up. Using the robust Perron
cluster analysis (PCCA+), this high-dimensional system is projected on a two-dimensional system:
bound and unbound. Because this projection is mathematically feasible, a fitting of the unknown
binding and unbinding parameters kon and koff is possible, only by knowing the system’s valency and
the receptor concentration per titration step. In contrast to standard kinITC methods, our projected
overall kon and koff values are concentration dependent. The benefit of our method is the insight into
multivalency: ITC experiments can be conducted for monovalent and multivalent systems. The fact
that the states can be clustered to unbound and bound and that the inverse problem of fitting the
single kon and koff parameters to the experimental data can be solved very well are an indication
that our multivalent binding assumption is correct. This paper shows experimental data obtained
from Igde et al. [14], who previously applied ITC and kinITC to multivalent mannose: functionalized
oligo(amidoamines) with different valencies and sequences of mannose ligands. The focus of the
present paper is the mathematical aspect: the application of the invariant subspace projection to the
given kinITC data.
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Regarding ITC, there exists extensive literature. Both theoretical, as well as applied aspects have
been studied in depth. An early theoretical paper was, e.g., Freire et al. from 1990 [17]. For experimental
details and applications, see for example Pierce et al. [18]. For bridging the gap between computational
and experimental analysis, Leavitt and Freire must be mentioned [19]. kinITC is a relatively new
technique. The pioneers here were Burnouf [15] and Dumas [20]. The matrix approach we used to
translate our multivalent binding setting into discrete states was previously done by Aberg et al. [21].
The mathematical literature concerning clustering is vast. A concise summary of the clustering of
reversible Markov processes was given by the paper of Deuflhard and Weber [22]. The present paper
is mainly based on the PCCA+ algorithm from Röblitz and Weber [23]. For both reversible and
irreversible processes, the reader may consult [24] for the advanced G-PCCA algorithm. To the authors’
knowledge, there is no publication on the application of clustering kinITC data.

The paper is organized as follows: In Section 2, the biomolecular basics and their notations
are introduced. The equations for bivalent bindings as stated in Kugel and Goodrich [25] and their
practical limitations are shown. In Section 3, the ITC experiment and the kinetic data retrieval are
outlined. Section 4 is dedicated to the mathematical modeling. It is shown how the rate matrix is set
up, once for a bivalent example and in general for the n-valent case, and how to derive the projected
2× 2 rate matrix using the PCCA+ clustering algorithm. Section 5 gives numerical results by applying
the projection to the experimental kinITC data from Section 3. Further, potential pitfalls and error
sources of the method are discussed. The last Section 6 summarizes the paper and gives an outlook on
future research.

2. Biomolecular Preliminaries and Notations

Two biomolecules form a complex with the binding rate constant kon in units M−1s−1.
The dissociation takes place according to the unbinding rate koff in units s−1. Rate constants are numeric
representations of the time needed for molecules to associate or dissociate. The dissociation constant

Kd and the association constant Ka are the ratios of kon and koff, i.e., Kd =
koff
kon

and Ka =
kon

koff
[25]. Note

that in this paper, we assume a one-to-one stoichiometry between the protein and ligand after the
bindings. Although aggregation may occur in some settings, i.e., for molecules with many binding
sites, we consider in theory one multivalent ligand interacting with one multivalent receptor only.

In the same way as a one-step binding process, a two-step binding process can be described by
inserting one intermediate step. Based also on Kugel and Goodrich [25], the bivalent ligand–receptor
encounter is:

L + R
kon1−→←−−
koff1

LR1
kon2−→←−−
koff2

LR2

with kon1 the association rate for the first binding [M−1t−1], koff1 the dissociation rate constant for the
first binding [t−1], kon2 the association rate for the second binding [t−1], and koff2 the dissociation rate
constant for the second binding [t−1] where t denotes the time unit. The superscript * in [LR*]denotes
the number of interaction sites in the complex. The second binding is an intramolecular transformation,
a conformational change. It is a structural rearrangement of the complex formed by the first binding
step. Therefore, kon2 comes in units [t−1] instead of [M−1t−1]. The rate equation for the change in
bivalent complexes is:

d[LR2]

dt
= kon2 [LR1]− koff2 [LR2] (1)

and the rate equation for the first binding is:

d[LR1]

dt
= kon1 [L][R]− koff1 [LR1]− kon2 [LR1] + koff2 [LR2]. (2)
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The amount of receptors will be fixed throughout the experiment at [R]total , and only the number of
ligands changes. At time t, the concentration of free receptor Rt depends on the number of monovalent
and bivalent complexes and is given by:

[R]t = [R]total − [LR1]− [LR2]. (3)

The dissociation constant of the first binding is:

KD1 =
[L][R]
[LR1]

. (4)

Substituting [R] from Equation (3) into (4) and rearranging for [LR1] gives:

[LR1] =
[R]total [L]− [LR2][L]

KD1 + [LR1]
. (5)

Equation (1) is an ODE of the form dx/dt + αx − β = 0 and has the standard solution
x =

(
β
α

)
exp(−αt) + β

α =
(

β
α

)
(1− exp(−αt)). Substituting (5) into (1) and rearranging give:

d[LR2]

dt
+

kon2 [L] + KD1 koff2 + koff2 [L]
KD1 + [L]︸ ︷︷ ︸

α

[LR2]− kon2 [R]total [L]
KD1 + [L]︸ ︷︷ ︸

β

= 0. (6)

Thus, the solution of Equation (1) would be:

[LR2] =

(
β

α

)
(1− exp(−αt)) with

α =
kon2 [L] + KD1 koff2 + koff2 [L]

KD1 + [L]
and β =

kon2 [R]total [L]
KD1 + [L]

.

Note that α and β are time dependent, as they depend on time-sensitive parameters. The ligand
concentration [L] changes with each titration step. In the ideal case, we knew all the three quantities
[L], [R], and [LR1] at all time steps. However, we only know that they depend on each other, and thus,
we cannot solve this ODE straightforwardly. A kinITC approach is necessary.

3. From ITC to kinITC

As briefly explained in the Introduction, the ITC apparatus consists of two cells connected by
a temperature feedback circuit. Each ligand injection causes a change in the solution composition in
the sample cell, and during the relaxation to a new equilibrium, the heat of reaction is recorded as
a peak in the power trace. Integration of this peak provides the total heat generated or consumed upon
changing the solution composition [26].

Numerically, ITC determines the change in Gibbs free energy G using the Gibbs–Helmholtz
equation: ∆G = −RT ln K = ∆H − T∆S, with R being the gas constant, T the temperature, K the
binding affinity, H the binding enthalpy, and S the entropy. The heat Q itself is not measured from
the thermogram, but the heat power P, which is: P(t) = dQ

dt . Integrating P over time yields the total
heat generated or consumed upon changing the solution composition [26]. Plotting the integrated heat
against the ligand/receptor molar ratio gives K, ∆H, and the stoichiometry can be inferred [27].

Burnouf and his coworkers developed the ITC method further to kinITC. The ITC experiment
and the measurement stayed the same, and just the output data were processed further using chemical
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kinetics knowledge. The essential link between the heat power and the rate of production of the
complex [LR] is [16]:

P(t) = Vcell∆H
d[LR]

dt
with Vcell the volume of the titration cell. Knowing the ligand and receptor concentrations per time
step leads to:

d[LR]
dt

= kon[L][R]− koff[LR]

with respect to the conservation equations [L] + [LR] = [L]t=0 and [R] + [LR] = [R]t=0.
The innovation is that more complex reactions, i.e., more than one binding step, can be

addressed [15,20]. In their paper, Burnouf et al. [15] gained both thermodynamic and kinetic
information for the specific binding and folding processes. While the classical processing of raw ITC
data (peak integration) yielded thermodynamic information (KA and ∆H), the analysis of the shape
of each injection peak can give kinetic information (kon and koff) [28,29]. Especially the equilibration
time curve, i.e., the end of each injection [20], plays a key role. To find this exact effective end of each
injection curve, an automatic baseline determination, integration of the power curves is necessary.
Burnouf et al. [15], as well as Dumas et al. [20] explained how to derive kon and koff using the
equilibration time.

ITC Data Generation for the Study

All ITC measurements and subsequent kinITC data in this paper were taken from Igde et al. [14].
As model structures mimicking the multivalent nature of oligosaccharides, they used glycooligomers
based on oligo(amidoamines) with pendant mannose side chains. These glycomimetics are built
up by a stepwise assembly of functional building blocks on solid support, thereby allowing for
the control of the monomer sequence. In their recent study, Igde et al. synthesized a library of
mannose-functionalized oligo(amidoamines) varying the valency of the ligands from mono- to
deca-valent , introducing different linkers between the mannose and the oligomer backbone, and
varying the position of mannose ligands along the backbone. Table 1 shows the ligands we used for
comparing the experimental data to the mathematical model.

Binding of the glycooligomers to model lectin Concanavalin A (Con A) was studied by
ITC performing normal titration where the glycooligomers were titrated into the sample cell
containing the protein [14]. ITC data were then evaluated for thermodynamic information on the
ligand–receptor complex formation, and kinetic rate constants were extracted from the heat flow
signals of the ITC isotherms following the work by Dumas et al. [15], Vander Meulen and Butcher [16],
and Egawa et al. [28]. Datasets of di-, tri-, and penta-valent ligands binding to tetrameric Con A were
selected from the series of measurements [14] to be compared with the model derived in this study
(Table 1; see the Supplementary Information (SI) for additional information on thermodynamic and
kinetic evaluation).

The ITC experimental data came in spreadsheets containing the following information per
titration step:

Dissociation constant: Kd in mM
Receptor concentration at injection time: cR in mM
Ligand concentration at injection time: cL in mM
Complex concentration at injection time: cLR in mM
Receptor concentration at equilibrium: cR in mM
Ligand concentration at equilibrium: cL in mM
Complex concentration at equilibrium: cLR in mM
Wiseman parameter at the beginning of each titration: c0
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Table 1. Ligands used in the study [14,30].

Valency (N) Structure Compound Name

bivalent (2) Man(1,5)-5

trivalent (3) Man(1,3,5)-5

pentavalent (5) Man(1,3,5,7,9)S-9

For the overall experiment, the following data entries were collected:

Heat power: E = dQ
dt in µcal/s

In a MATLAB script, a weighted average kon, in this paper referred to as overall kon, was
determined for each titration step based on the reaction rate equation in the paper of Vander
Meulen and Butcher [16]. In order to fit kon, an initial guess was made and subsequently fitted
by a Gauss–Newton iteration such that it fulfilled equation:

∂[LR]
∂t

= −∂λ

∂t
= kon([L]eq + λ)([R]eq + λ)− koff([LR]eq − λ)

with λ = [LR]eq − [LR] and the subscript eq denoting the equilibrium. The kinetic data were fitted
with the ZIB algorithm nlscon, the numerical solution of Nonlinear (NL) least Squares (S) problems
with nonlinear Constraints (CON), especially designed for numerically-sensitive problems [31].

4. The Mathematical Model

In general, the ligand–receptor interaction is modeled as a Markov process. Markov processes
are memoryless stochastic processes. Let (Xt)t∈T be a stochastic process, (E, Σ) a measurable space
for a given set E, and (Ω,A,P) the probability space. A stochastic process Xt on a state space E is
a Markov process if the probability function p fulfills the following condition [32]:

p(t, x, A) = P(Xt+s ∈ A|Xs = x) for all s, t ∈ T, x ∈ E, A ∈ Σ.

If E consists of a finite number, say n, of states, we can construct a transition probability matrix
P(t) ∈ Rn×n. The entries Pij(t) denote the probability to jump from state i to state j within one time
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step t. The row sum of P is always one. The transition probability matrix P and the transition rate
matrix K are linked through the matrix exponential Pt = exp(tK).

K = kij, also called the intensity matrix, rate matrix, or infinitesimal generator, has the following
properties [33]:

- the off-diagonal entries are positive: kij ≥ 0 for i 6= j
- each column sum is zero : ∑i kij = 0 for all j
- each diagonal element is the sum of the column entries: kii = ∑i 6=j kij.

A binding process can be interpreted as a kinetic projection from an infinitesimal generator K
onto a clustered rate matrix Kc such that the resulting process can be approximated by a Markov chain.
Then, the binding process can be described in terms of transition probabilities between the bound and
unbound state. This procedure is no longer valid when considering multivalent binding processes,
since here, a clear distinction between the bound or unbound state is no longer possible. In detail,
spatial effects spoil the Markovianity. Röblitz and Weber [23] therefore introduced “soft conformations”
respecting the spatial situation. In contrast to crisp clustering methods, where a molecule is in
either one state or the other, with soft membership vectors, also called almost characteristic vectors,
a molecule can partly belong to one state and partly to another one. For example, a bivalent receptor
and a bivalent ligand connected through one binding site are partly bound and partly unbound.

For the mathematical model, a transition rate matrix K was set up first. This technique was
established by, e.g., Berberan-Santos and Martinho [34]. In our model, an n-valent binding process
consists of n receptors and n ligands, with conformational states that can be unbound, singly bound,
bivalently bound, etc., up to n-valently bound. Further, it is assumed that ligands and receptors
have a certain rigidity. That means that not every ligand arm can reach every receptor binding site,
depending on the already existing bindings. There is no “cross binding” of ligand arms possible.

The number of possible states is:

nstates(n) = 1 + n + n
n−1

∑
i=1

(
n
i

)
.

The proof is a simple induction. Because ∑n
i=0 (

n
i ) = (n

0) + (n
1) + · · ·+ (n

n) = 2n, we can further
simplify this equation to nstates(n) = 1− n + n2n. This gives an intuition that the number of states
increases exponentially when the valency goes up. The examples discussed in Section 5 have 2, 3, and
5 binding sites. The number of states is hence n(2) = 7, n(3) = 22, and n(5) = 156.

In the following example, the rate matrix is set up for a bivalent system. As mentioned above,
in the bivalent case, there are seven different binding states: 1 unbound state, 4 monovalent binding
states, and 2 bivalent binding states. These seven states are illustrated in Figure 1. Therefore, the rate
matrix is of size 7× 7. Assume the ligands 1 and 2 and the receptors A and B.
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Figure 1. Bivalent bindings have seven possible states. The ligand binding sites are equal. The red and
blue color refer to the possible binding permutations.

In the example, the seven states were ordered as listed in Table 2.

Table 2. Order of the seven possible states for bivalent bindings: as described in Section 2, [LR1]

comprises the sum of the conformational states II, ..., V, and [LR2] comprises the sum of states VI
and VII.

State Number Combination Number of Bindings

I
[

1−
2−

]
0

II
[

1A
2−

]
1

III
[

1B
2−

]
1

IV
[

1−
2B

]
1

V
[

1−
2A

]
1

VI
[

1A
2B

]
2

VII
[

1B
2A

]
2

Our model considers every possible combination of each ligand interacting with each receptor.
In general, the states can also be summarized into n+ 1 states, i.e., one unbound state, one singly-bound
state, one doubly-bound state, ..., and one fully-bound state. Then, the rate matrix is of size (n + 1)×
(n + 1). This is particularly useful for bigger valency numbers n, i.e., decavalent bindings and above.
However, in the following, the procedure is explained in detail for all possible states in the bivalent
case. The matrix entries depend on the order of the states, the receptor concentration cR, as well as on
the two kon and two koff rates, where kon1 represent the binding rate for the first (monovalent) binding
and kon2 the second (bivalent) binding. koff2 represents the first unbinding, i.e., from the bivalent to
monovalent state, and koff1 represents the second unbinding rate (from the monovalent to unbound
state). The diagonal elements are the sum of the remaining column entries such that the column sum
of K is always zero.
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K =



−4kon1 · cL koff1 koff1 koff1 koff1 0 0
kon1 · cL −koff1 − kon2 0 0 0 koff2 0
kon1 · cL 0 −koff1 − kon2 0 0 0 koff2

kon1 · cL 0 0 −koff1 − kon2 0 koff2 0
kon1 · cL 0 0 0 −koff1 − kon2 0 koff2

0 kon2 0 kon2 0 −2koff2 0
0 0 kon2 0 kon2 0 −2koff2


Note that the positions of the entries in the submatrix on the upper right diagonal (in the red box):

koff2 0
0 koff2

koff2 0
0 koff2


depend on the order of the states. Likewise, this submatrix transpose with the kon2-values instead
of koff2 is inserted below the diagonal (see the submatrix in the blue dotted box). The matrix size
increases exponentially. The rate matrix for the n-valent binding is only sketched schematically.

K =



∗ koff 0 0 . . . 0
kon · cL ∗ X1 0 . . . 0

0 Y1 ∗ X2 . . . 0

0 . . . .
. . .

... 0
0 0 . . . Y2 ∗ Xn−1

0 0 0 . . . Yn−1 ∗


Legend:

*
diagonal matrix with the negative column sum such that the column sum is zero

koff
row vector of length n2 with entry koff1

kon · cL column vector of length n2 with entry cL · kon1

Xi
sparse matrix of size ((n

i ) · n× ( n
i+1) · n) with entries koff2 to koffn , respectively.

The positions of these entries depend on the theoretical order of conformational states.

Yi
sparse matrix of size (( n

i+1) · n× (n
i ) · n) with entries kon2 to konn , respectively.

The positions of the entries are the transpose of the respective Xi submatrices.

Let [I], [I I], . . . , [nstates] be the number of molecules in the respective conformation 1, ..., nstates.
Then, the corresponding ODE system for n-valent bindings to be solved is:

d
dt


[I]
[I I]

...
[nstates]

 = K


[I]
[I I]

...
[nstates]
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PCCA+

Our Markov process is space and time continuous and therefore needs to be discretized for
numerical results. A possible discretization method is the Galerkin discretization. The key idea is to
project this Markov process onto fewer macro states, i.e., in the bivalent case, we project the 7× 7 matrix
K on a 2× 2 matrix in order to cluster these seven states into only two distinct states: bound and
unbound. To do so, the robust Perron cluster analysis (PCCA+) algorithm of Röblitz and Weber [23]
was used. Therefore, the eigenvalues of K are computed first according to:

KX = XΛ

with X the matrix of all the eigenvectors and a diagonal matrix of eigenvalues Λ = diag(λ1, ..., λn+1).
In this case, only two eigenvalues are of interest because all the states will be clustered into two states
only. The eigenvector corresponding to the biggest eigenvalue is called the Perron eigenvalue. For rate
matrices, the biggest eigenvalue is always λ = 0. This leading eigenvalue and its corresponding
leading eigenvector were selected. The second eigenvector has to satisfy the criterion that the first entry
and the respective last one have the maximum distance, to make sure that the two states “unbound”
and “bound” are as distinct as possible. For regular matrices K, the clustering algorithm gives a
membership matrix χ by:

χ = XA

with A being a matrix of linear factors computed by an optimization process within the clustering
algorithm. χ is a 7× 2 matrix stating the degree of membership of each of the seven states to the
unbound and bound states, respectively. Its row sum is always one. Finally, K is Galerkin discretized
weighted by the stationary distribution Π into Kc (clustered K) using χ.

Kc = (χTΠχ)−1χTΠKχ

Since we project on a two-dimensional subspace, our Kc matrix is of size 2 × 2 and has the
following entries:

Kc =

(
−kon · cR koff
kon · cR −koff

)
By dividing the lower left matrix entry by the respective receptor concentration cR of the titration

step, we determine the overall binding rate kon. This projection is only possible because we project on
an invariant subspace. No crucial information is lost by the clustering.

The following Algorithm 1 shows how the PCCA+ clustering is used to determine the optimal
kon and koff values.

Algorithm 1: Find the optimal overall kon curve after clustering
Require: 14 k_on-ITC and cR values from ITC

P← permutation matrix of possible k_on and k_off values
for all rows of P do

set up rate matrix K ;
for all titration steps t do

perform PCCA+ to obtain Kc;
k_on← Kc(2, 1)/cR(t) ;

end for
C← correlation coefficient of k_on-ITC and k_on ;
index← max(C);

end for
return P(index), k_on(index);
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For details of the PCCA+ algorithm and specific MATLAB code with examples, please consult [35]
(specifically the file optimizeMetastab.m in folder “Figure 6”) and the respective paper.

5. Results and Discussion

To test the model fit, the overall binding rate kon was calculated and compared to the observed
binding rate kon−ITC from the experiments. Therefore, the input variables for the mathematical model
had to be fitted by a sensitivity analysis. The goal was to achieve the same qualitative behavior of the
kon−ITC curve over time, that is over the titration steps and our computed kon curve. That means that
the slope including anomalies like kinks should be equal. The goodness of fit was assessed via the
correlation coefficient for the lower left entry Kc(2, 1), divided by the receptor concentration cR of the
respective titration step and the kon from ITC experiments for each time step. The algorithm was tested
for the bivalent Man(1,5)-5, trivalent Man(1,3,5)-5, and pentavalent Man(1,3,5,7,9)S-9 binding processes.

The valency of receptor and ligand was not always the same in the experiments. For setting
up the rate matrix, one overall valency of the interaction process was needed. Because we assumed
a one-to-one stoichiometry, we used the minimum number of binding sites of the receptor and ligand,
i.e., n = min(nligand, nreceptor). As we will see next, the subsequent projection and clustering of the rate
matrix mimicked the experimental kon rate behavior very well. By allowing the theoretical kon and
koff rates to move on a logarithmic scale, i.e., from 100–104, some further conclusions of the valency of
the overall binding can be drawn. If the single kon rates were searched for in a limited range due to
computation time limits, it is not possible to learn about the different affinities of the binding steps.
We were interested in the relation of say the first binding and the second. For instance, a first binding
is quite rare, but if it is made, a second binding is 100-times more likely.

The subsequent discussion of the results should be considered as a preliminary explanation of the
systematic change of the kon and koff rates of the kinITC experiments. Actually, kinITC is a suitable

tool for describing: L + R
kon−→←−
koff

LR settings, but for higher valent bindings, a mathematical projection

becomes necessary. For the following comparison, the first 14 titration steps of each experiment were
considered (see the Supplementary Information (SI) for experimental data).

5.1. Bivalent Model Fitting

Man(1,5)-5

The experimental and computed kon rates are depicted in Figure 2. The correlation coefficient was
0.98. The experimental kon showed a clear upward slope. To interpret these binding and unbinding
rates from a mathematical model point of view, this constellation seemed to be a monovalent binding
process, as only the first binding rate kon1 = 100 was high, while the second one kon2 = 1 was very low.
Both unbinding rates were very low, koff1 = 1 and koff2 = 1. We can assume that unbinding was very
unlikely. All in all, there seemed to be one binding taking place, which was the equilibrium.
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Figure 2. Comparison of the computed and experimental [14] kon rates for bivalent Man(1,5)-5; see
the Supplementary Information (SI) for additional information on experimental data. The theoretical
kon rates were 100 and one, and those of koff were one and one.

5.2. Trivalent Model Fitting

Man(1,3,5)-5

As shown in Figure 3, only 13 out of 14 titration steps were considered for the fitting procedure.
The 14th overall kon value was clearly an outlier, probably due to measurement inconsistencies.
For completeness, it is depicted in the graph. The correlation coefficient was 0.87. The binding
rates were the following: kon1 = 1000, kon2 = 1000, kon3 = 1000. All three unbinding rates were
koffi = 1. One possible interpretation is that all the fully-bound state was what Whitesides called the
kinetic origin of high stability [36].
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Figure 3. Comparison of the computed and experimental [14] kon rates for bivalent Man(1,3,5)-5.
The kon rates were 1000, 1000, and 1000 and for koff were 1, 1, and 1.

5.3. Pentavalent Model Fitting

Man(1,3,5,7,9)S-9

In the pentavalent example, there were only four specific kon and koff rates and not five. This
was due to the fact that Con A was tetrameric, and within the model when assuming a one-to-one
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stoichiometry, there can only be a maximum of min(nligands, nreceptor) = min(4, 5) = 4 single bonds.
Experimental and computed kon rates are illustrated in Figure 4.

The correlation coefficient for this example was 0.98. The scenario representing the best fit for this
model showed that the first and second binding seemed to be highly unlikely with kon1 = kon2 = 1,
but once they took place, the third binding happened almost surely with kon3 = 10,000. The last
binding was again unlikely with kon4 = 10. koff1 = 10,000 and koff2 = koff3 = koff4 = 1. That means
that overall unbinding was very low if there was more than one binding. If there was only one bond
between the mannose and Con A, dissociation was very likely.
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Figure 4. Comparison of the computed and experimental [14] kon rates for pentavalent
Man(1,3,5,7,9)S-9; see the Supplementary Information (SI) for additional information on experimental
data. The kon rates were 1, 1, 10,000, and 10 and for koff were 10,000, 1, 1, and 1.

5.4. Limitations of the Model and Discussion

The deviation of the modeled kon rates to the experimental ones was due to several reasons.
Our mathematical model was a simplification of complex binding processes and therefore had
theoretical limitations. First, our mathematical models assumed a one-to-one stoichiometry. So far,
intermolecular complex formation has been neglected. Especially for ligands with many binding sites,
this intermolecular crosslinking does occur. This phenomenon was not considered in our mathematical
model and can partly explain the deviations from our computed kon rates to the experimental rates
kon−ITC. Secondly, so far, no rebinding has been considered. Every binding was treated as a first
time ligand–receptor interaction no matter if this very couple was bound before. The heat absorption
due to unbinding was not yet taken into account, but very likely had an effect on the ITC signal.
As discussed in the outlook, we are working on a rebinding quantification for a better interpretation of
the kinITC results.

Third, we solved an inverse problem by fitting four (two kon rates and two koff rates in the bivalent
case), six (three kon rates and three koff rates in the trivalent case), or eight (four kon rates and four koff
rates in the pentavalent case) specific binding and unbinding rates knowing 14 different titration data.
We do not claim that our solution found was the only possible interpretation of the laboratory data
with regard to our model. There may be other combinations that will yield a comparably good fit.
For instance, in the trivalent example, 15,625 different combinations (56 because five different values
for each of the three kon and koff) of the kon and koff rates were considered. Out of these, 25 had the
maximum correlation coefficient. The results shown in this paper are one example out of these 25 fits.
Despite not delivering unique results, this method helped in excluding inappropriate models.

The ITC method can be fragile, and single outliers occur due to experimental limitations.
The thermodynamic parameters of the ITC data can have errors stemming from the ligand and
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receptor concentrations, unfavorable fitting procedures, and baseline drift. Other error sources
were a combination of random noise, unclear instrument response time, uncertainty in Ka, and
the instrumental rate constant kITC [16]. For an uncertainty quantification in the experimental data
used in the practical part, see Igde et al. [14]. Numerically, the kon parameters from our computation
do not correspond to the kinITC experimental data yet. However, it is possible to model such a
complicated process showing the same qualitative behavior with each titration step. Shifting our
computed kon rates down to the experimental kon−ITC baseline level allowed for slope comparison.
This is due to the fact that the koni and koffi parameters were assumed to be on an exponential scale.
This scaling could be refined further or even made adaptive to tackle this problem.

6. Conclusions and Outlook

This paper demonstrated that the overall binding rate of a ligand–receptor interaction implies
a systematic dependency of the kon rates with regard to the titration steps. Taking the average kon

value over all titration steps did not fully account for the whole process. It is possible to compute the
overall binding rate of multivalent bindings, only by knowing the valency number and the ligand
concentration per titration step. Our subspace projection approach could be successfully applied to
kinITC data. The key finding of this study is that we can learn about the system’s association rate
by projecting a high-dimensional process on a two-dimensional space, namely bound and unbound.
Doing so, we obtained a binding rate kon per time step, i.e., one for each titration step. This rate
showed the same qualitative behavior as the overall kon rate obtained from the kinITC experiments.
This finding will be useful for the prediction of the binding behavior when no experimental data,
but only the ligand and receptor concentration, are available.

Our method still has some limitations. In the present model, we assumed one-to-one bindings
between ligands and receptors. However, other stoichiometries such as intermolecular aggregations
were possible and could occur in the experiments. If this was not possible, an error estimate for overall
kon rates would be necessary, as they were the result of a slightly different stoichiometric model.

Another aspect that was not considered in this paper is the so-called rebinding effect where
the probability of a monovalent binding event of multivalent ligands is increased by the high local
concentration of ligands with no regard to potential multivalent receptor binding. So far, there has
been no distinction made between rebinding and new binding. Mathematically, there already existed
a quantification of the lower bound of rebinding in the system [32,37]. Such an estimation could also
be applied numerically for ITC data as presented in this paper.

Supplementary Materials: The Supplementary Information are available online at http://www.mdpi.com/2079-
3197/7/3/46/s1.
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