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Abstract 
 

Chinese steel industry is one of the energy intensive industries in China. Coal and electricity 

are the two main energy sources for steel making. Steel industry in China is experiencing its 

transition period because of economy transition during the industrialization period. Steel 

demand has increased significantly in recent years, which correspondingly enlarges the 

energy demand. On the other hand, energy prices of coal and electricity have been increasing 

dramatically since 1980 because of the macro-control from the government. Large energy 

demand leads to high energy consumption and high energy price raises the energy expense of 

steel making. 

 

Motivated by the need to reduce energy use and energy expense, a System Dynamics based 

model is built to investigate policies in order to help Chinese steel industry ease energy 

problems during its transition period. The model helps to foster learning about a dynamically 

complex system, and thus contributes to a better understanding on the effectiveness, validity 

of energy policies. Results show that most of the investigated policy options are cost-effective. 

However, implementation remains a critical issue, the viability of energy tax and R&D 

subsidy is still questionable in the real world. Developing the technology of recycling 

scrapped steel is found to be useful in limiting carbon emission with comparatively easy 

implementation. 

 

Key Words: Chinese steel industry, System Dynamics, energy price, energy demand, 

transition 
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Chapter 1 

 

Introduction 

The industrial sector is the largest of the energy end-use sectors in China. It was responsible 

for the country’s 70% of primary energy use and 53% of associated carbon dioxide emissions 

in 2004. The industrial sector is extremely diverse, encompassing the extraction of natural 

resources, conversion into raw materials, and manufacture of finished products. Five energy-

intensive industrial sub sectors account for the bulk of industrial energy consumption and 

related carbon dioxide emissions (iron and steel, chemicals, petroleum refining, pulp and 

paper, and cement). China is facing increasing energy price, resource shortage and 

environmental destruction, such condition is worsening over time. For that reason, relevant 

measures have been carried out. The technology to improve energy efficiency in those 

energy-intensive industries may be the most effective and economical way for energy 

conservation and environment protection. 

 

Challenges exist in adapting technologies, removing old and outdated equipments, improving 

technical production process in those energy-intensive industries. Such measures usually take 

one or even two decades to realize, which has a large discrepancy from what people expect to 

see. Thus long delay implies early reactions. Interrelationships and feedbacks among the 

above issues require us to think the problem in a dynamic way. Chinese steel industry which 

involves the above features will be studied in this research as a case analysis.  

 

Steel industry is one of the energy intensive industries in China, and is responsible for the 

country’s 15% of the total energy consumption and corresponding carbon dioxide emissions. 

Iron and steel production consumes a large quantity of coal, especially in China at its early 

stage of industrialization where outdated, inefficient technologies are extensively used to 

produce iron and steel. High energy demand during industrialization transition period and 

rapidly rising energy price due to resource scarcity and potential government policy 
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adjustment are two challenges for steel industry. The dynamic condition allows us to use 

some tool which can capture the above features and the interrelationships among them.   

 

In this research, a System Dynamics based model is built. Its purpose is to explore the internal 

mechanism of the Chinese steel industry and to see how energy conservation policies help to 

reduce the high energy demand and energy expenditure during the economy transition period. 

The model is aimed to help the readers foster a way of understanding dynamic and complex 

feedback energy system; it is also the output of this study. Model results and relevant policies 

can be considered as examples of possible applications of the model. Two major problems 

will be studied in the model: energy efficiency technology development and substitution 

among steelmaking ways. 

 

The rest of the paper is organized as follows. Major problems regarding energy in steel 

industry are elaborated in the following chapter. Then dynamic hypothesis including research 

methodology, assumptions and causal loop diagrams are illustrated in Chapter 3. Chapter 4 

reviews relevant researches on the similar problems. We proceed by introduction and 

describing the detailed System Dynamics model in Chapter 5. Simulation results and model 

testing are then exhibited in Chapter 6. Chapter 7 discusses policy implementation and 

optimization. The paper concludes with a summary and future work in Chapter 8. Equation 

and documentation of each variable in the model can be found in the appendix in the end of 

the paper. 
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Chapter 2 

 

Problem Articulation 

The most important step in modeling is problem articulation. This system dynamics based 

model is designed for a particular purpose and address a specific problem. 

2.1 PROBLEM BACKGROUND 

The Chinese steel industry is one of the high energy-intensive industries; the energy problems 

in steel industry became serious in recent years. Two major issues are of special concern. 

2.1.1 Rapid Development of Steel Industry and Correspondingly High 

Energy Demand 

The steel demand in China has increased significantly since 1980 due to economic growth and 

increasing demand from other industries such as buildings, automobiles and other steel 

appliances.  We are in the early stage of industrialization. The development of world economy 

and global capital accumulation keep simultaneous growth with the growth of steel 

cumulative consumption. From the experience of other developed counties, industrialization 

is a process of large natural resources consumption with rapid social capital accumulation. 

The U.S., Japan and some western European countries have all experienced an important 

developing section which based on iron and steel industry as their mainstay industry. Those 

countries’ industrialization processes imply that such process necessitates large amounts of 

steel. 

 

From 1901 to 2000, the accumulated steel consumptions in main developed countries are 

listed below: 

 

U.S.:  7.1 billion tons 
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Japan: 3.8 billion tons 

Former Soviet Union: 5.6 billion tons 

Source: (Zhou, 2006) 

China only consumed 1.9 billion tons in the corresponding time period, which indicates there 

is still a large discrepancy between the current level of Chinese industry and that of 

industrialized countries, but it also implies a big potential in Chinese steel industry. 

 

The experience of world developed countries indicates steel demand intensity is obviously 

different due to different developing stages and industrial structures. In general, the steel 

demand intensity appears as following changes: 

 

Stages GDP per capita (YUAN) Steel demand intensity 

Underdevelopment Lower than 8000 Very low  

Initial and intermediate 8000-16000 Rapidly increasing 

Later 16000-32000 Remains at high level 

Maturity Higher than 32000 Slowly decreasing 

 

Source: (Zhou, 2006)  

Table 2.1 Relationship between GDP per capita and steel demand intensity in different 

industrialization stages 

 

The data from IMF shows that the GDP per capita of China in 2006 is more than 10000Yuan, 

which means China has entered into initial stage of industrialization. Hence from the 

experience of other developed countries, the steel demand will keep the trend of continuous 

increasing for a long time.  
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Source: Chinese Iron & Steel Association 

Fig.2.1 Steel demand in China 

From the figure above, it is obvious to find that the demand grows significantly, the growth 

remained strong during the market reforms in 1990s. In 1996 China became the world’s 

largest producer of steel (IISI, 1999). Correspondingly, large steel demand necessitates large 

energy demand, steel industry in China has consumed large amount of coal and electricity. 

 

Since reform and opening policies implemented around 1980, there is a dramatic reduction in 

energy consumption per ton of steel produced. The unit energy consumption has been reduced 

from 2.04 tce 1 in 1980 to 0.74 tce in 2005, which remarkably ease the pressure of steel 

production cost caused by the increase of energy price. Even we have achieved great 

improvement on reduction of energy consumption; there is still discrepancy from the level of 

developed countries, such as Japan, which has already reduced to 0.65 tce in 1990. The 

comparatively low energy efficiency for steel making in China is due to outdated, inefficient 

technologies and unreasonable production structure. Rapid increasing steel demand directly 

leads to high energy demand every year. The energy demand from steel industry has increased 

from 10% of total energy consumption in China in 1995 to 15% in 2004.  

 

Large energy demand caused by rapid increasing steel demand has put a heavy weight on 

steel industry; it becomes both meaningful and practical to study how steel industry responds 

to save energy. 

2.1.2 Dependence on Coal and Electricity and Problematic Price Increase 

Coal is the main energy resource used in China, which is true as well in steel industry. Coal 

and electricity together amount to more than 95% of the total energy consumption for steel 

industry. So what about the price condition for coal and electricity? Among all sectors in 

China, steel industry consumes more than 10% of the total coal consumption in China, while 

coal-fired power plants burn about half of China’s coal and produce about half of the 

country’s power. China's coal pricing system is divided into two parts. To ensure the 

electricity generation use, a certain amount of coal is ordered nationally. To meet the price of 

                                                
1  Tce refers to ton of coal equivalent or standard coal, which is a generally used energy unit in China. Different 
kinds of energy have their own calorific value. In order to unify the standard, we transfer the measure of coal and 
electricity in terms of its weight for steel production into Tce. 1 ton of crude coal= 0.714 Tce= 7560kwh= 29270 
MJ. 
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electricity set by the country at an artificially low level, the price of coal used in this sector is 

kept low too.  

The other parts including the coal price for steel industry see their prices rise or fall in 

accordance with market forces. 

Energy Price (YUAN/Tce) 

1990 1991 1992 1993 1994 1995 1996 1997 1998 …… 2006 

240 250 290 350 410 470 567 587 549 …… 600 

Source: (Wang, 1999), China Iron & Steel Association 

Table 2.2 Combined Energy Price of Coal and Electricity in China 

The price for both electricity and coal has been increasing since 1990. Table 2.2 shows an 

increasing trend of energy price. From the data series, even though the price keeps increasing 

rather slowly in recent years, possibilities of costly increases in energy price in the future are 

still big. Coal price of international market begins to respond to the rise of oil price of 

international market in recent years. Besides the rise from international market, some other 

policies which may be implemented in the near future will further raise the energy cost of the 

steel industry. 

-Continuous Adjustment of Energy Resource Tax 

Continuous adjustment on energy resource tax has been made by the state administration of 

taxation during recent years. The resource tax rate of coal has been raised to 3 Yuan/ ton for 

the time being, such adjustments have been made several times since the initialization of 

resource tax in 1993. China is facing resource scarcity, huge waste of natural resource and 

serious environmental destruction and so on; one of the reasons for all these results is lack of 

relevant financial policies. The recent adjustments from state administration of taxation 

indicate that the reform of resource tax system tends to be intensified. Such upward 

adjustment will influence the production cost of steel industry. The tax rate is still 

comparatively low and will not give much effect on energy use and environmental protection. 

In the near future, the resource tax rate may continuously increase at a bigger magnitude. The 

proportion of energy cost in the production cost has large possibility to increase 

correspondingly, which may affect the profits of steel industries gradually. 
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-Indirect Price Increase by Coal Pollution Tax 

The carbon intensity of coal is much higher than that of other kinds of energy, CO2 emission 

from unit coal combustion is two times the level from natural gas (CO2 emission from unit oil 

combustion is between coal and natural gas). As described above, coal consumption takes up 

more than 70% of the total energy consumption for steel industry. CO2 emission is 

proportional to energy consumption; high energy consumption from steel industry will 

directly lead to high CO2 emission. The experts from state administration of taxation think 

that current coal price can not reflect its economic cost and scarcity of natural resources. 

(Huang, 2004) In this sense, coal pollution tax might be introduced in terms of the carbon 

contents from the use of coal. Consequently, coal price will increase indirectly. 

2.1.3 Transition Problem 

As illustrated in 2.1.1 and 2.1.2, rapidly increasing steel demand leads to high energy demand 

while continuous increasing energy price will lead to high energy expense. The system has 

already entered into a so-called “transition period” as a result of industrialization transition 

and price increase since 1980. The transition period will terminate when China has entered the 

maturity period of industrialization. During this transition period, which probably will last for 

several decades, the steel industry may have to invest more on energy efficiency technology, 

adjust the steelmaking process structure in order to reduce energy use and expense. 

Two main solutions are studied in this research to ease the transition problem: developing 

energy efficiency technology and steelmaking process improvement. 

 

1. Developing Energy Efficiency Technology 

 

“Energy efficiency technology” here refers to efficient utilization of natural resource, waste 

water, heat and gas recycling, continuous casting, reducing ore to steel ratio and hot metal to 

steel ratio and any measure that can reduce energy consumption for steel making.  

 

There are currently 33 key iron and steel enterprises in China operated by the Ministry of 

Metallurgical Industry (MMI). These plants are generally old, ranging in age from 17 to 89 

years old and averaging 48 years old (although the age of the plant does not give adequate 

information regarding later equipment upgrades). (MMI, 2005) Compared to the world 
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advanced level of energy efficiency, only a few steel plants have reached the level of 

advanced countries. Most of the steel plants still have a long way to go, equipments in those 

factories are usually outdated with inefficient technology. There is large potential to improve 

the energy efficiency in those factories as well as in non-MMI enterprises, i.e., iron and steel 

plants outside of MMI’s supervision. By attaching more importance to the measures described 

above, significant energy savings are technically possible in China. However, the largest 

opportunities most likely exist in the construction of new plants, where state-of-the-art 

technologies are significantly more energy-efficient than existing plants. In this research, the 

dynamic process of technological development is investigated. 

 

2. Improving Steelmaking Process 

 

There are mainly three ways of steelmaking: open hearth furnace (OHF), basic oxygen 

furnace (BOF) and electric arc furnace (EAF) using scrap. Steelmaking using a basic oxygen 

furnace (BOF) has a relatively low energy intensity compared to the energy intensity of open 

hearth furnaces (OHF). The BOF process is rapidly replacing the OHF worldwide, because of 

its greater productivity and lower capital costs, but the scrap input is rather small for the BOF-

route, typically about 10-25%. The OHF is completely phased out in the end of 2000 in China.  

 

Both BOF and OHF include the iron making process. During iron making process, sintered or 

palletized iron ore is reduced using coke (produced in coke ovens) in combination with 

injected coal or oil to produce pig iron in a blast furnace. Lime stone is added as a fluxing 

agent. Reduction of the iron ore is the largest energy-consuming process in the production of 

primary steel and also accounts for a high CO2 emission. 

 

Electric arc furnace (EAF) using scrap is a process in which, the coke production and pig iron 

production are omitted, resulting in much lower energy consumption. By avoiding iron 

making process, EAF can save about 350 tce/ ton of steel produced. Thus, the EAF process 

only emits ¼ CO2 of the amount that emitted in other traditional processes. EAF develops 

quickly with the development of steel industry, but the share of EAF increases slowly, it 

keeps lower than 20% after 1995. Only sufficient scrapped steel resource can ensure the 

possibility of developing EAF, because the increase of EAF production capacity is always 

limited by scrapped steel resource in China. Cumulative steel decides the source of the 

scrapped. Steel production exceeded 0.27 billion tons in 2004, accounting for 26% of the 
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world steel production, while the country’s cumulative steel is only 7%. Thus, the obstacle for 

developing EAF is lack of scrapped steel resource. EAF in this research is regarded as an 

energy efficient way of steelmaking. The substitution among different steelmaking ways is 

another focus of the research, the adjustment dynamics is investigated. 

 

2.2 REFERENCE MODE  

A reference model is a pattern of behavior, which can characterize the problem dynamically, 

unfolding over time, showing how the problem arose and how it might evolve in the future. It 

describes the problem through a set of graphs showing how it develops over time. To do so, 

some key variables and a time horizon that we consider to be important for understanding the 

problem are defined.  

 

The time horizon for the model is set at 120 years (from 1980 to 2100). Such a long time 

period could reflect the predicted whole industrialization period which is one driving force 

behind energy demand for steel industry, showing how steel industry responds and acts during 

this transition period. In addition, tracing back to 1980 can show how the problem emerges 

and what its symptoms are. The key variables that can reflect the problem in this model are 

“Energy Demand” and “Average Energy Expense”. Although “CO2 Emission” is another 

focus that we concern about, it is directly related to “Energy Demand”, so their reference 

modes will be quite similar. The behavior of “Energy Demand” can reflect how serious CO2 

emission is, thus there is no need to show both of them.  

 

 

 

 

 

                                  

 

 

 

Fig 2.2 Energy Demand Reference Mode 

 

Energy Demand 

(Tce/Year) 

1980                                                              2100         

                               Time (Year) 
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Fig 2.3 Average Energy Expense Reference Mode 

Steel demand increases significantly with the rapid economic development in China during 

recent years. It is a driving force behind energy demand. Although the energy price increases 

as well, the energy cost is somehow offset by the improvement of energy efficiency 

technology. As a result, the cost increases slowly, which can not prevent the rising trend of 

energy demand. Secondly, energy demand influences the energy consumption directly, which 

is closely related to the country’s energy conservation. (See Fig 2.2)  

 

The energy expense is directly influenced by the energy price variation and energy 

consumption (In this particular model, to simplify the model structure, we assume that energy 

consumption is a delay of energy demand.). The energy demand will eventually decrease 

responding to the decreasing steel demand after the transition period. However, if the energy 

price continues to increase and due to low potential for the improvement of energy efficiency 

in a long run, the expense may not decrease as fast as energy demand. (See Fig 2.3) Increase 

of energy expense does create a financial problem for steel industry, exerting pressure on the 

production cost of steelmaking. If we could ease the transition problem, it could largely 

benefit the steel industry in financial sense. In addition, policies are made to reduce the energy 

consumption for steel industry. If the economic value of saving from energy conservation is 

lower than increasing energy expense raised by certain policy such as energy tax, then such 

policies are not necessary to be implemented. In this case, energy expense acts as a cost-

effective indicator for policies aiming at easing the transition problem. From these points of 

view, our key variables for this particular model are “Energy Demand” and “Average Energy 

Expense”. 

Average Energy 

Expense (Yuan/Year) 

1980                                                                 2100 

                             Time (Year) 
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Chapter 3 

 
 

Dynamic Hypothesis 

3.1 RESEARCH METHODOLOGY 

The research is about an energy intensive industry. Such an industry in China is complicated 

by interrelated nature of the elements. Technological advances are stimulated from rising CO2 

emissions, and these advances affect costs and usage which in turn will influence the energy 

demand, the demand eventually affect the CO2 emissions. There is no way to determine the 

ultimate effect of each above element on the industry’s energy sustainable development 

unless one knows the behavior of the other elements and the inherent delays in the system. 

The complex interdependence of all these factors are dynamic themselves (changing 

overtime), so that no unique relationship exists between the static and dynamic behaviors of a 

given energy intensive industry. 

 

Thus we need a dynamic framework within which these elements are allowed to operate on 

each other through time as they do in the real world. It is also allowed to examine the 

interrelationships and foresee the effects of different policies through the dynamic based 

model. System Dynamics is such a modeling methodology.  

 

System Dynamics is a computer-aided approach for analyzing and solving complex problems 

with a focus on policy analysis and design. It is a methodology for studying and managing 

complex feedback systems. The elements described in the above paragraph have feedbacks 

among each other; one can not study the link between one factor to the other or in the 

opposite way independently and predict how the system will behave. Only the study of the 

whole system as a feedback system will lead to correct results.  

 

The above way of studying a complex feedback system requires us to think the problem 

systematically. System thinking enables us to evaluate the transition problem more 
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comprehensively by taking dynamic feedbacks into consideration. It helps to make everything 

in the system connect to everything else. In this case, we combine all the factors such as 

energy demand, steel demand, technology development and CO2 emission with dynamic 

interrelationships which were once neglected or even invisible, and make them easier for us to 

make policy regarding the transition problem.  

  

3.2 MAJOR MODEL ASSUMPTIONS 

All models are wrong. Models are only valid under certain assumptions. For the sake of 

simplicity and tractability, several assumptions are adopted for this particular model. 

 

1. Only focus on steelmaking, the ultimate product is just steel. 

2. Steel production cost equals to the steel price.  

3. Other production costs such as labor, capital and raw material costs grow at a constant 

rate. (It could be different between the historical period and future) 

4. Energy structure share ratio (coal and electricity in this case) is constant during the 

whole time horizon. 

5. Steel demand in reality is closely related to the progress of industrialization. We use 

GDP per capita to measure the progress of industrialization. And it is estimated that 

when GDP per capita reaches 4000$, the steel demand will saturate. We use this 

estimation as our assumption as well. 

6. Scrapped steel recycling only comes from the social capital depreciation; scrapped 

steel recycling in the model only serves the use for steelmaking. 

7. EAF (electric arc furnace) as a more energy efficient steelmaking way has the same 

other production costs as BOF (basic oxygen furnace) and OHF (open hearth furnace). 

 

The above assumptions we made may somehow limit the research scale, but they will not 

influence the validity of this research. Besides, such assumptions and exclusions can radically 

reduce the size of the model and help to achieve simplicity and clarity.  
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3.3 MAJOR CAUSAL LOOP DIAGRAM 

Once the problem has been identified and characterized over an appropriate time horizon, a 

dynamic hypothesis can be formulated accounting for the problematic behavior.  

 

When energy price rises and steel demand increases during the economy transition (modeled 

as reference steel demand), high energy expense and energy demand are the direct results 

from the above causes. Energy price and CO2 emission from energy consumption act as two 

incentives for the steel industry to develop energy efficiency technology. In addition, 

increasing steel demand lead to more scrapped steel resource which promotes the 

development of more energy efficient way of steelmaking, namely EAF. By raising the 

proportion of EAF, energy efficiency is further improved and CO2 emission problem will be 

well eased. The main diagram for the above description of the big picture is described below: 
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Fig 3.1 Major Causal Loop Diagram 
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The above figure shows a general causal loop diagram (CLD) of the model. Important model 

variables and the causal relationships among these variables are linked by arrows with delays 

marking (two lines) and polarities. Note that the above CLD is a highly aggregated one; it just 

captures the major causal loops of the model. A much more detailed one would be difficult for 

the readers to identify which are more important or understand how they generate the 

dynamics. 

 

All dynamics arise from the interactions of two types of feedback loops: reinforcing loop that 

amplifies whatever is happening in the system and balancing loop that counteract or oppose 

changes. Here in our CLD, reinforcing loops are labeled as R and balancing loops are labeled 

as B. There are two reinforcing loops and three balancing loops as it shows in the above 

figure. 

 

1. Reinforcing Loops 

 

R1: Improving Average Unit Energy Consumption through Increasing EAF Proportion 

Average unit energy consumption is an indication of energy efficiency. When the efficiency is 

improving (meaning that the average unit energy consumption is decreasing), the whole 

production cost is decreasing, which leads to an increasing steel demand. High demand needs 

an increasing production rate, which eventually adds up to the cumulative steel. The 

development of EAF requires sufficient scrapped steel resource, more scrapped steels from 

the depreciation of social capital (Here refers to the cumulative steel) will raise the proportion 

of EAF among steelmaking processes. Since the proportion of more energy efficient way is 

increasing, as a result, the energy efficiency will be further raised.  

 

R2: High Steel Demand leads to High CO2 Emission 

When there is a very high steel demand, we need more energy for steel making, which leads 

to higher CO2 emission. High CO2 emission as an environmental incentive to develop energy 

efficiency technology promotes the energy efficiency. When the average unit energy 

consumption is reduced through the above incentive, it directly lowers the production cost of 

steelmaking, which causes the steel demand to increase, and then repeatedly emit more CO2. 

 

2. Balancing Loops 
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B1: R&D Investment Results in the Improvement of Energy Efficiency Technology 

Only incentives can not lead to the improvement of technology, in order to achieve so, the 

industry has to invest on research and development (R&D). The higher ratio of sales revenue 

the industry sets aside on R&D, the lower the average unit consumption will be reduced. 

When the energy efficiency is improved, the production cost of steelmaking is reduced. Based 

on the assumptions we made above, the cost is just equal to the price of steel, lower price will 

lead to low sales revenue. Hence the R&D investment will be lower than before, which means 

no bigger improvement will be produced with low R&D investment. 

 

B2: High CO2 Emission reduction through increasing proportion of EAF 

Since EAF is a more energy efficient way of steelmaking, it not only promotes the energy 

conservation but also reduces the CO2 emission through saving energy.  

 

B3: High CO2 Emission eventually will lead to a reduction on energy demand  

Based on the assumption we made above, all the energy demand will become actual 

consumption through a certain time period. High energy demand for steel industry in China 

means high CO2 emission because of its high carbon emission from high proportional use of 

coal. High CO2 emission simulates the development of energy efficiency technology, which 

eventually leads to a reduction on average unit energy consumption. Eventually, the energy 

demand will be reduced. 

 

In reality, all the above processes include delays; some of them are as long as more than 20 

years, such as technology development and application. In the more detailed model structure, 

we include such delays as well in order to show people may not well-prepared to face the 

transition problem when there exists long time delays.  

 

The variables linked from gray arrows are exogenous inputs or policy variables. They are 

modeled exogenously: some of them are introduced directly from data series of reality; others 

are modeled using some reasonable assumptions. All these exogenous variables are not in the 

main causal loops, while they may influence the model behavior substantially under some 

scenarios. Details about their influence are described in the sensitivity tests and policy design 

chapters.  
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Chapter 4 

 

 

Literature Review 

Energy issues are usually complex and dynamic, they have many properties such as non-

linearity, stock and flows, feedback loops, delays and so on and so force, all of which 

indicates it is a suitable field to apply System Dynamics methodology. The industry sector is 

the largest of the end-use sectors, consuming 50 percent of delivered energy worldwide in 

2003, and industrial energy use is projected to grow more rapidly than that in the other end-

use sectors. (IEO 2006) However System Dynamics studies on a certain energy intensive 

industry are few. Energy efficiency and related policy design are the main focus regarding 

energy issues in energy intensive industries. In this chapter, researches concerning the above 

two respects carried by System Dynamics are reviewed and commented. The chapter 

concludes that a System Dynamics based model with endogenous energy efficiency 

technology and energy policy design in a regional or sectoral background can contribute to 

this field. 

 

4.1 SYSTEM DYNAMICS MODELING IN TECHNOLOGICAL 

DEVELOPMENT 

This research focuses on the energy efficiency technology’s development in an energy 

intensive industry. The behavior of the energy system is shaped by the evolution of 

technology. However, nearly all models treat technology in the energy system as an 

exogenous factor. Endogenous technology creates path-dependence and the opportunity for 

lock-in of dominant carbon-based energy sources (Moxnes 1992).  

 

System Dynamics research regarding technology development can be traced back to William 

(1972). He described the technology as ‘not easily quantified and the process of implementing 
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is a long undertaking’. It is many years before a technological breakthrough results in a 

significant market impact, the long undertaking may take about twenty years. (Peter 1968).  

 

Meadows (2005) mentions that  

‘…the most common criticisms of the original World3 model (Meadows 1972) 

were that it underestimated the power of technology and that it did not 

represent adequately the adaptive resilience of the free market’.  

Since technology operates only on imperfect information and with delay, they can enhance 

the economy’s tendency to overshoot. William’s or Meadow’s model all show that 

technological development is usually undertaken with response to economic or environmental 

pressures. These pressures maybe rising costs, the potential for profit, pollution, or tax 

incentives from government.  

 

This paper deals with developing energy efficiency technology in steel industry in China. The 

incentives are from CO2 emissions and rising energy price and also the R&D investment from 

the industry or the subsidy from government. The whole technological development includes 

long time delay to develop and implement. Besides simply doing research on how to reduce 

energy consumption, the improvement of technical process is included as well. 

 

4.2 SYSTEM DYNAMICS MODELING IN ENERGY POLICY  

Simply developing energy efficiency technology is not enough. The improvement from 

technological development on energy efficiency is limited, especially with rising cost of 

technology advancement. In recent years, there is a shift of focus in technological 

development regarding energy to energy policy design and implementation. In China, policies 

such as energy tax, standards have not been implemented yet due to high cost and difficulty to 

implement in a large scale.  

 

Naill (1992) did a cost effectiveness analysis of U.S. energy policies to mitigate global 

warming. He described such policies as following: 

‘Relating these costs to their effects on the energy system and carbon emissions 

provides measures of the relative cost effectiveness of alternative policy 

options’.  
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Naill’s research suggests that energy polices should be evaluated through comparing their 

relative expenditure with relevant measures of their effects.  

 

Wirl (1991) focused on energy tax that is presumably introduced because of its favorable 

environmental side effects. He concludes that this tax instrument performs poorly from a 

public finance point of view.  

‘Such a tax requires substantial flexibility, either with respect to the revenues or 

with respect to the tax rate itself’.  

Fiddaman (2002) tested a family of emissions permits and tax policies like the Kyoto Protocol 

under a range of assumptions. He concludes that nearly all policies proposed by modelers do 

no more than stabilize emissions at historically high levels. Permits and energy tax as two 

policy options appear impractical for reaching ambitions targets like zero emissions. He also 

mentioned that ‘the search for optimal policies needs to be expanded to other kinds of 

instruments—technological and social for example.’ 

 

Both Wirl’s and Fiddaman’s study suggest the implementation of energy policy needs to be 

taken into consideration as another indicator for policy analysis, and policies regarding energy 

could be extended to alternatives with low cost and easy implementation.  

 

Endogenous technological development and policy design are two important factors for 

energy issues. However, we would like to see a model involving these two points in a more 

specific background. A comprehensive and detailed modeling needs to take account of a wide 

variety of possible situations such as interrelationships between diverse economic sectors, 

energy sub sectors, energy demand and alternative energy resources substitution. Because of 

its complexities, it may be better to model the national energy sector by sub sector (e.g. 

industry, residential and transportation). In the case of significant regional differences, such as 

climate, infrastructures, energy source availability and political factors, it may be appropriate 

to develop a sub sector regional model. The comprehensive national energy model can then be 

assembled by coupling several sub sector regional models. Similar work along these lines has 

already been done by Dyner et al (1990). By doing so, we can help the users to digest the 

whole energy system bit by bit and come to a better understanding. 
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Chapter 5 

 

Model Description 

5.1 INTRODUCTION 

In this chapter, main features and structures of the System Dynamics model are presented. 

Model boundary with assumptions are presented using model boundary chart. Detailed 

System Dynamics model is described in sectors by defining key variables and illustrating 

important relationships connecting the relevant stock and flow. The complete equation list of 

all the model variables can be found in the appendix. 

5.2 MAPPING SYSTEM STRUCTURE 

A model boundary chart is used to help us communicate the boundary of the model and 

represent its causal structure. It summarizes the scope of the model by listing and classifying 

key variables into three categories. See the following chart for details: 
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Fig 5.1 Model Boundary Chart 

The purpose of the model decides what factor should be included. In this case, GDP growth 

and energy price increase are assumed to be exogenous; they are the root of the problem that 

we want to find out and to see what impact they will have on the endogenous structure. 

“Reference percentage investment in R&D by steel industry” is introduced directly from data 

series; the feedback from that is small. The process of technological development (Average 

unit energy consumption is the outcome of technological development) and CO2 emission are 

more problematic. 

 

The list of excluded concepts further limits the model boundary and gives important warnings 

to the readers. In this particular model, the economic factors are assumed to be exogenous 

such as GDP growth rate, so there is no need to include inflation. Since it is a long-term based 

model, short-term business cycles such as markup on production costs and inventories of 

steels and iron ores as raw materials are omitted.  

 

As for the factors influencing energy efficiency technological development, increasing energy 

price (economical factor) and CO2 emission (environmental factor) and R&D investment as 

financial support are three main incentives, the impact from others compared to the above 

factors are small, so we exclude the others.  

 

The other factors influencing EAF developments such as market impact or other new ways of 

steelmaking are excluded. The lack of scrapped steel is the main concern for the current 

period, but we do not deny the fact that the impact from scrapped resource will be mitigated 

in a long run. So in this case, it is just an optimistic assumption.  

 

When we talk about energy efficiency in steel industry, it always refers to the energy 

consumption for producing steels which is the end use production in steel industry, other 

products like iron just serves for steelmaking.  

 

The toxic gases emitted from steelmaking are quite a lot such as nitrogen oxide, sulfur dioxide 

and so on and so force. Among all the emitted toxic gases, carbon dioxide and sulfur dioxide 

are comparatively more important. In this case, we only choose carbon dioxide so as to 

compare the policies (carbon tax aiming at reducing CO2 emission) implemented by other 
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countries. The model also treats the energy system in a fairly aggregated fashion, so interfuel 

substitution (coal vs. gas, for example), is not considered, another optimistic assumption. 

5.3 SUBSYSTEM DIAGRAM 

 A subsystem diagram shows the overall architecture of a model. Each major subsystem is 

shown along with the flows of material, money, goods, information, and so on coupling the 

subsystems to one another. The subsystem diagram in figure 5.2 shows what is dealing with 

in each subsystem and their interactions between each other.  

 

 

 

 

 

Fig 5.2 Subsystem Diagram 

 

All the subsystems in the above diagram are bridged with arrows. The relationships between 

each two subsystems are expressed with the output variables from one subsystem to the other. 
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All together, the whole system consists of six subsystems. Energy price and GDP are taken 

exogenously and are thus out of the model boundary.  

5.4 SECTOR DOCUMENTATION 

The model is formulated in terms of the subsystem diagrams above. As illustrated in the 

subsystem diagram, the model consists of six sub sectors. Detailed descriptions of the formal 

stock and flow structures are presented below. 

5.4.1 Steel Demand Sub Sector 

This sub sector mainly deals with steel demand formulation. The actual steel demand is the 

output variable in this sub sector, it represents the actual steel demand needed yearly. We get 

this variable by modeling the reference steel demand after affected by the production cost 

effect. The reference steel demand depends on the GDP growth. The structure of modeling 

reference steel demand is shown below: 
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Fig 5.3 Structure of Reference Steel Demand 

 

We can indirectly get reference steel demand by modeling the steel demand intensity which is 

the steel demand per billion Yuan of GDP. There is an important relationship here between 

GDP per capita and steel demand intensity. We introduce the GDP growth and population 



Chapter 5 Model Description 

 - 23 -

directly from data series in order to get GDP per capita. Dividing GDP by the total population, 

we get the GDP per capita. We take the initial value of GDP per capita (in 1980) as a 

reference value and calculate the Relative GDP per capita.  

Relative GDP per capita=
capitaperGDPInitial

capitaperGDP
  

With the increasing of GDP per capita, the steel demand intensity will behave in the following 

way. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4 Relationship between Steel Demand Intensity and GDP per capita (Zhou 2006) 

 

As we illustrated in the Introduction Chapter, the steel demand will saturate when the GDP 

per capita reaches around 32000￥. The United States has already passed the maturity period 

of industrialization; the steel demand intensity in 2004 of US is around 7700 ton per billion 

Yuan. From the experience of developed countries, we roughly estimated the maximum steel 

demand intensity is around 25000 Yuan and will drop to around 8000 Yuan when the steel 

demand reaches its peak. We represent the relationship in the above graph with a variable 

called Effect of GDP per Capita on Steel Demand Intensity. The Relative GDP per capita 

acts as the input of the table function, the output will be the effect on steel demand intensity. 

Thus we can get the steel demand intensity in the following way:  

 

Steel Demand Intensity= Initial steel demand intensity * Effect of gdp per capita on steel 

demand intensity 
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Note the Initial Steel Demand Intensity in the equation is the value in 1980. Then, peoples’ 

perception of the steel demand intensity is formulated using a smooth function2. 

 

Perceived Steel Demand Intensity=smooth (Steel demand intensity, Time to perceived steel 

demand intensity) 

 

Eventually we can get the Reference Steel Demand Intensity by multiplying the steel demand 

intensity with GDP measured as billion Yuan (using billion Yuan to measure GDP instead of 

Yuan to match with steel demand intensity’s unit).  

 

In this sub sector, another important structure we need to know is the cost effect on the 

reference steel demand. The structure of modeling the cost effect is shown below: 
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Fig 5.5 Structure of Cost Effect on Steel Demand 

 

The light color variables are shadow variables which are imported from other sub sectors, 

they will be described later. In order to get the cost effect, we have to model the production 

cost first. The production cost in this particular model consists of unit other production costs, 

unit energy cost and unit R&D cost. Unit R&D cost and unit other production cost are 

formulated in this sub sector.  

                                                
2 The SMOOTH function is commonly used to take time averages and represent expectations. It is written as 
y=SMOOTH(x, t), the equation is exactly the same as (y-x)/t. 
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Unit production cost=Indicated unit energy cost+ Indicated unit other costs+ Indicated unit 

R&D cost 

 

Unit Other Production Cost means all the other production costs except the energy and R&D 

cost to produce one ton of steel. It is formulated by adding exogenous inputs on the initial unit 

other production cost in 1980.   

 

Unit Other production cost= Initial unit other costs*Input for other units production costs 

 

Those inputs include ramp function with different ramp slopes and thus lead to different cost 

variation patterns. They will be raised later.  

 

Unit R&D Cost means the total R&D investment shared on each unit production cost. Since 

we assume the steel demand equals the production, so the formulation will be as follows: 

 

Unit R&D Cost= 
demandsteelActual

investmentDR &
 

 

R&D investment each year could be quite different, and usually it takes a long time to 

implement the new technology, so the peoples’ perception of R&D investment is formulated 

as a smooth function: 

 

Perceived unit R&D cost= Smooth (Unit R&D cost, Time to perceived unit R&D cost) 

 

Unit production cost is averaged within average time, which becomes the Average Unit Cost; 

it is formulated using a simple smooth function. 

 

Average unit cost= smooth (Unit production cost, Time to average unit cost) 

 

In order to model the cost effect, we need to know the relative cost to its initial cost in 1980. 

In this case, the Initial Unit Cost consists just unit other production costs and energy costs 

because of no R&D expenditure before 1980. We calculate the Relative Unit Cost as follows: 
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Relative unit cost= 
tunitInitial

tunitAverage

cos

cos
 

Now we can model the cost effect, it is obvious that higher cost leads to lower demand; we 

use a very simple linearly effect of cost on demand table function, the graph below illustrated 

the table function. 

 

 

 

Fig 5.6 Graph of “Effect of Cost on Steel Demand” as a table function 

 

The input (X axis) refers to the Relative unit cost while the output (Y axis) is the effect. As 

we see the figures on the left side of the table, there is no effect if cost remains at its initial 

level. With the increasing of the unit cost, the price of the steel increases correspondingly (As 

it is assumed the price equals to the cost in the first chapter), eventually the demand begins to 

fall. If the cost is high enough to suppress the demand, then no body can afford to buy any 

steel, in this particular model, we assume when the cost is twenty times the initial cost, and 

then there is no demand for steel. 

 

Based on the reference steel demand and cost effect on steel demand, the Actual Steel 

Demand can be formulated like the structure below: 
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Fig 5.7 Structure of Modeling the Actual Steel Demand 

 

Indicated Steel Demand is reference steel demand with the cost effect, it is simply the 

multiplication of these two. The Actual Steel Demand is the stabilized demand after the effect; 

the actual value still needs time to adjust. We pick up the reference steel demand as its initial 

value. See the equation below: 

 

Actual Steel Demand= SMOOTHI (Indicated steel demand, Demand adjustment delay, 

Reference steel demand) 

 

5.4.2 Technology Sub Sector 

The technology here refers to the energy efficiency technology; it includes all the technical 

improvement to save energy such as recycling wasting gas, heat, continuous casting, reducing 

ore to steel ratio and hot metal to steel ratio. This sub sector deals with several important 

factors: 

 

1. Technology change from all the incentives such as CO2 emission, energy price increasing 

and its financial support, namely the R&D investment. 

2. The effect of energy efficiency technology on unit energy consumption for steelmaking. 

 

We begin from the first factor to formulate the technology. The technology is modeled as a 

stock with its virtual unit: technology. The flow of technology is technology change rate, here 
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we assume the technology level will never fall once it has been improved, thus the flow will 

only be the inflow. 
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Fig 5.8 Structure of Technology development 

 

The key variable in the above structure is obviously indicated technology change, which 

includes all the factors that influence the technological development.  

 

1.   Factors that promote the development of technology 

 

The incentives to improve the technology include the CO2 emission and energy price increase, 

R&D investment is another important factor as the financial support to development 

technology. All the above three factors promote the advancement of technology; they are 

imported from other sub sectors.  

 

Note since we do not know which of the above incentives or the financial support is more 

important, thus weights are set for each of them. The weights here refer to the importance that 

steel industry attaches to. We assume that effect of both incentives and financial support is 

100% on the technological change. Thus, the effect of one certain incentive will be the 

incentive times its weight. So the total effect of all the incentives will be the sum of each 

effect. 
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 In order to make the calculation easier, we use normalized weight here. The sum of the 

normalized weights will be 100%. Thus the user can set any value for each weight, which will 

be normalized by the following way (take energy price as an example): 

 

                                 =  
DRforWeightpriceenergyforWeightemissionCOforWeight

priceenergyforWeight

&2 ++

  

 

The other two normalized weights are formulated in the similar way. For the details of weight 

setting, we will discuss more in the policy analysis chapter. 

 

2.   Factors that limit the development of technology 

 

With the advancement of technology, more investment is required. The variable effect of cost 

on technology advance refers to the cost of affecting an incremental advance in technology, 

the cost is assumed to gradually increase as more investment is required for each marginal 

increase in technology. It is formulated using a table function as below: 

 

 

 

Fig 5.9 Graph of “effect of cost on technology advance” as a table function 

The input of the above table(X axis) refers to the relative technology level, which is simply 

the current technology level relative to the initial level in 1980. The output (Y axis) refers to 

the effect which limits the technology advancement. When technology level remains at its 

initial level, there is no cost effect to limit technology improvement. With the advancement of 

technology, more and higher human capital is required, older and outdated machines are 

Normalized weight 

for energy price 
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substituted by higher efficient ones, all of which add cost to further technological 

development. In the early stage of technology development, the cost is low and increases 

slowly with technology improve because of large potential and low requirement for human 

capital and cheaper capital substitution. When the energy efficiency is fairly high, there is 

little potential to get it improved, thus the cost will increase dramatically in order to further 

improve the energy efficiency.  

  

Thus we can calculate the technology change by involving all the above factors. The related 

variable is variable called Indicated Technology Change, which includes all the influential 

factors on technological development 

 

Indicated technology change=  

 

Normal technology change*  
 advanceogy on technolcost  ofEffect 

emission)) CO2for  weight Normalized*emission CO2 relative (Perceived

price)energy  relative Perceived*priceenergy for  weight d(Normalize

)"investment D&Rfor  weight Normalized"*"investment D&R Relative(("

+

+

 

 

The Normal Technology change in the above equation is a constant variable and is set to be 

the technology change rate without any other external factors. 

 

The Technology is a stock variable, its flow, namely technology change rate equals to the 

indicated technology change. 

  

Stock:   Technology 

Init:      Technology= Initial technology 

Flow:    Technology change rate= Indicated technology change. 

 

After the formulation of technology, we want to know how it influences the energy efficiency. 

The energy efficiency is expressed as Average unit energy consumption; it is the energy 

consumption for making one ton of steel. The structure to model the technological effect and 

the formulation of average unit energy consumption is shown below: 
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Fig 5.10 Structure of technological effect on energy efficiency 

 

Since there are three ways to make steel, energy consumption for each of them is different. 

The aggregated energy consumption for unit steel making is the sum of the energy 

consumption of each way times its proportion in steelmaking. Those steelmaking processes 

consist of EAF (Electric Arc Furnace), BOF (Basic Oxygen Furnace) and OHF (Open Hearth 

Furnace).  

 

Among them, the OHF way of steelmaking has died out, while it did exist in the previous two 

decades. From the data serious of Chinese steel industry, the proportion of OHF decreases 

quite linearly, and it almost died out in 2000. In this case, we assume it decreased linearly 

from its initial proportion in 1980 to 0 in 2000. 

 

The proportion of EAF is modeled endogenously in the “EAF & Scrapped Steel” sub sector. 

When we know two proportions of steelmaking way, the proportion of BOF will be the 

residual of 1 minus the other two proportions.  Thus we can calculate the Reference Average 

Unit Energy consumption by aggregating each proportion times its initial unit energy 

consumption. 

 

Reference average unit energy consumption=  
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Initial unit energy consumption of BOF*(1-Actual proportion of EAF-OHF proportion) 

+Initial unit energy consumption of EAF*Actual proportion of EAF 

+Initial unit energy consumption of OHF*OHF proportion 

 

All the above steelmaking processes are technically improving, since it is hard to see which 

one of them has been improved the most, we assume the energy efficiency technology has the 

same effect on all of them. 

 

The Relative Technology Level is the technology level relative to its initial level. We 

calculate this variable as follows: 

Relative technology level=
ytechnoInitial

yTechno

log 

log
 

It is an indication of the changes in technology level. Then, peoples’ perception of the relative 

technology level is formulated using a 3rd order delay function3, because it takes time for 

people to estimate and perceive the actual change of technology. 

 

Perceived technology level= DELAY3 (Relative technology level, Time to perceived relative 

technology) 

The effect of technology on energy efficiency is formulated using a table function. 

 

 

Fig 5.11Graph of “effect of technology on energy efficiency” as a table function 

                                                
3 Returns a 3rd order exponential delay of the input, conserving the input if the delay time changes. The reason 
we use a 3rd order delay is that people do not perceive the technological change immediately to an improvement 
in technology; people may perceive the actual change after some time has passed. 
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The input (X axis) refers to the perceived technology level, while the output(Y axis) refers to 

the effect. When the technology remains at its initial level, no effect happens on the energy 

efficiency (unit energy consumption of steelmaking). In the early stage of technological 

development, people do not attach much importance on energy conservation, and that is just 

the early stage of industrialization in China, so all the machines are old and outdated with low 

energy efficiency. With the time going on, we know the importance of technology, thus China 

imported technology from other developed countries in the beginning. On the other hand, the 

Chinese industry began to invest on R&D. It is easier to improve technology from a 

comparatively low level with low expenditure.  With the time going on, even the technology 

level is high, the potential to improve energy efficiency becomes smaller because we can not 

expect to produce something without any energy consumption. 

 

Thus we can get the Desired Average Unit Energy Consumption by multiplying effect of 

technology on energy efficiency with Reference average unit energy consumption. It is the 

unit energy consumption that people hope to achieve. 

 

The ultimate goal of this sub sector is to formulate the Average Unit Energy Consumption as 

a stock variable, which refers to the average unit energy consumption for the current year 

after new technology has been implemented. 

 

Its initial value is the initial unit energy consumption for steelmaking in 1980; the equation of 

its flow is formulated as below: 

Change in unit energy consumption  

 

=
timenrealizationconsumptioenergyunitaverageDesired

tionconenergyunitAveragenconsumptioenergyunitaverageDesired

      

sup       −
 

 

5.4.3 Unit Energy Cost Sub Sector 

This sub sector deals with the formulation of energy price, it is one of the incentives that 

influences technological change; in addition, it directly influences part of the production cost, 

namely the unit energy cost. The structure of this sub sector is shown below: 
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Fig 5.12 Structure of Energy Price Formulation and Its Influence on Other Sub sectors 

 

We begin from the formulation of energy price. Note the energy price here refers to a 

weighted average price, since the main energy source for steel industry is coal and electricity. 

The percentage for each of them is quite constant, to simplify the model, we combine these 

two prices into one. The price for the historical period (1980-2006) is introduced directly from 

Chinese Iron & Steel Association.  

 

For the time after 2007, we use some exogenous input to predict the price increasing trend. 

So the reference average energy price will be calculated as follows: 

 

Reference average energy price= Energy price table (Time)* Input for energy price 

 

Note the Energy price table (Time) refers to a table function involving the historical data for 

energy price from 1980 to 2006. After 2007, it mainly depends on the input. Since it is rather 

impossible for the energy price (Both coal and electricity) to have a sharp increase in the 

future, we use a ramp function for this input. The slope (just like the magnitude of price 

increase) of the ramp function needs sensitivity tests; we will raise this point in the testing 

chapter.  
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The energy price may not only refer to the above reference energy price, but also be 

influenced by the government policy. For this particular model, Energy Tax is one of such 

policies, it is assumed to be the tax rate times the energy price, which means it is proportional 

to the energy price. The policy year decides the time to implement policy; we can even select 

a historical year to see whether the condition will be improved if we implemented the policy 

earlier. We calculate the energy tax as follows: 

 

Energy tax= IF THEN ELSE (Time>=Policy year, Energy tax rate*Reference average energy price, 

0) 

 

We use “If then else” function here to control the policy implementation time. Only if the 

time reaches the policy year can the policy be implemented. 

 

Energy Tax Expense is the tax expense paid by the steel industry. It is an output to the R&D 

investment sub sector and a key variable for the “tax recycled as subsidy” policy. The 

formulation is simply the energy demand times the energy tax per unit; we will mention it in 

details in the policy analysis chapter. 

 

The incentive from energy price increase is modeled in this sub sector. We have formulated 

the energy price, so the price change between the current year and the initial year is expressed 

by Relative Energy Price.  

Relative energy price= 
iceEnergyInitial

iceEnergy

Pr

Pr
 

Then, peoples’ perception of the price change is formulated using a smooth function. 

 

Perceived relative energy price=smooth (Relative energy price, Time to perceived relative 

energy price) 

 

The above perception of the change in energy price will warn people to realize the price 

increasing crisis and take measures. 

 

Unit energy cost is another output of this sub sector; it is the energy cost among the 

production cost. The formulation is simply the multiplication of energy price and the unit 

energy consumption. Due to the unstable energy price, unit energy cost varies each year; it 
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takes people to perceive the actual change in unit energy cost. So we calculate the perceived 

unit energy cost as follows: 

 

Perceived unit energy cost= smooth (Unit energy cost, Time to perceived unit energy cost) 

5.4.4 Energy Demand &CO2 Emission Sub Sector 

This sub sector deals with the formulation of CO2 Emission as an incentive for technological 

development and the formulation of two key variables for the model, namely Energy Demand 

and Average Energy Expense. The structure of this sub sector is shown below: 
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Fig 5.13 Structure of Energy Demand and CO2 Emission 

 

We start from the modeling Energy Demand, which is required by the whole steel industry. 

Since we know the steel demand (formulated in the steel demand sub sector) and how much 

energy is needed to produce one ton of steel (formulated in the technology sub sector), then 

the energy demand will simply be the multiplication of the steel demand and average unit 

energy consumption. 

 

Energy demand= Actual steel demand*Average unit energy consumption 

 

Then we can calculate the expenditure that steel industry spends on energy by multiplying the 

energy price with energy demand.  
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Energy expense=Energy demand* Energy price 

 

The energy expense is averaged within time to get average energy expense based on recent 

years; it is modeled using a smooth function. 

 

Average energy expense= Smooth (Energy expense, Time to average energy expense) 

 

The Average Energy Expense functions as an indicator in the model, it refers to the average 

expenditure that steel industry spends on the energy use. It is one of the key variables in the 

model, and can be tested to see whether the policy is cost-effective. 

 

When the Energy Demand is known, based on the assumption we made in the former chapter, 

the consumption is equal to the energy demand. The Energy Consumption in the model is 

formed as a delay of the energy demand; it refers to the total amount of energy consumed by 

steel industry every year. 

 

Energy consumption= Smooth (Energy demand, Time to actual energy demand) 

 

Now we can model CO2 emission. CO2 emission is closely related to fossil energy 

consumption, coal emits the most carbon among all kinds of energy resources and it is the 

mostly used energy for Chinese steel industry as well. In this case, we calculate carbon 

emission per unit energy used first. The carbon emission varies based on different technical 

process of steelmaking, which means the average carbon emission will depend on the unit 

carbon emission for each technical process times their respective proportion. 

 

As for BOF and OHF, they all include iron making process, so they consume much more coal 

(acts as a reducer to extract iron from iron ore) than EAF. As the literature shows (Shan, 

2001), carbon emission for the way of BOF and OHF are almost the same, so we consider 

their carbon emission per unit energy consumed are equivalent. Then we calculate the average 

carbon emission per unit energy used as follows: 

 

Average carbon emission per unit energy used= 
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Actual proportion of EAF*Carbon emission from EAF per tce+ (1-Actual proportion of 

EAF)*Carbon emission from BOF&OHF per tce 

 

Based on the carbon emission, we need some conversion variable to get the CO2 emission. 

This conversion variable is called Carbon Index; this parameter refers to the ration between 

the molecular weight of carbon dioxide and the atomic weight of carbon. 

 

So we formulate the CO2 Generation Rate as follows: 

 

CO2 generation rate= Energy consumption*Average carbon emission per unit energy 

used*Carbon index 

 

The actual emitted CO2 takes time for people to perceive. Then peoples’ perception of CO2 

emission is formulated using a smooth function. 

 

Perceived CO2 emission= smooth (CO2 generation rate, Time to perceived CO2 emission) 

 

The actual change of CO2 emission based on the initial emission is the relative emission. 

 

Relative CO2 emission= 
emission CO2

emission CO2 

Initial

Perceived
 

 

Peoples’ perception of the actual change of CO2 emission is formulated as a smooth function.  

 

Perceived relative CO2 emission= Smooth (Relative CO2 emission, Time to perceive CO2 

emission) 

 

The perceived relative CO2 emission acts as another incentive warning the industry about its 

environmental damage and stimulates its technological development to reduce energy 

consumption. 
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5.4.5 EAF & Scrapped Steel Sub Sector 

This sub sector deals with the steel scrapping and recycling process, and their influence on 

EAF proportion. The big picture is shown below: 
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Fig 5.14 Structure of EAF proportion and scrapped steel recycling 

 

We start from the formulation of Scrapped Steel Demand, which is the demand needed for all 

three steel production processes. It is the sum of each scrapped steel consumption times its 

respective proportion among the general steel production. We assume the scrapped steel 

consumption for each process remains constant overtime and we calculate the total scrapped 

steel demand as follows: 

 

Scrapped steel demand=  

 

Actual steel demand*Actual proportion of EAF*Scrapped steel consumption by EAF+ Actual 

steel demand*(1-Actual proportion of EAF-OHF proportion)*Scrapped steel consumption by 

BOF+ Actual steel demand*Scrapped steel consumption by OHF*OHF proportion 
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The purpose of this sub sector is to formulate the EAF proportion among the steelmaking 

processes. It is closely related to the scrapped steel resource. Whether the actual recycling rate 

can meet the demand will decide EAF’s development. 

 

The next step is to formulate the recycled scrapped steels. The source of the recycling is from 

the scrapping steels. Among all ways of producing scrapped steels, the depreciation of social 

capital takes up the most, and scrapped steels are mostly used for steelmaking. (Zhang, 2003) 

The other ways of producing scrapping steels are assumed to be used for other kinds of use.  

 

For the simplification of the modeling, we assume the scrapped steel resource for steelmaking 

all comes from the social capital depreciation. The social capital refers to the cumulative steel 

resource in this particular model, and it is expressed as a stock variable. Its inflow is steel 

production rate, which is assumed to be equal to the steel demand, while the outflow is the 

scrapping rate from social capital depreciation after a certain depreciation time. 

 

Stock: Cumulative Steel 

Init: A constant number, the steel resource accumulated before 1980 

Inflow: Steel production rate= Actual steel demand 

Outflow: Steel scrapping rate= 
on timeDepreciati

steel Cumulative
 

After the steel is depreciated to scrapped steels, people try to recycle them for further use. The 

amount about how much they can be recycled depends on the recycling rate. In China, the 

recycling technology develops quite slowly, such technology has recently been attached more 

importance because of the price rise of iron ore. But how to develop recycling technology 

needs to be raised in the future study and is not our research focus. Instead, we use some 

exogenous inputs such as step function to test the influence of recycling rate. These inputs 

will be added based on the reference recycling rate that is used before. And since technology 

needs a long time to develop and implement, so time delay is taken into consideration as well. 

We calculate the recycling rate as follows: 

 

Recycling rate= Reference recycling rate*Smooth (Input for EAF recycling rate, Time to 

realize the recycling rate) 
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Then we can calculate the recycled steel by multiplying the scrapping rate with the recycling 

rate: 

 

Recycled scrapped steel= Steel scrapping rate*Recycling rate 

 

The actual number of recycled steels still needs time to be estimated, the equation of the 

actual recycled steels is shown below: 

 

Actual recycled scrapped steel= Smooth (Recycled scrapped steel, Time to actual scrapped 

steel recycled)  

 

Divided by Scrapped Steel Demand, we can calculate the difference between the actual 

existing scrapped steel and the scrapped steel demand. 

 

Ratio between demand and actual recycled=
steel scrapped recycled Actual

demand steel Scrapped
 

 

The scrapped steel supply and demand is the only factor that influences the EAF development 

as we assumed, so here a table function is used to express this effect, which is called Effect of 

Scrapped Steel Ratio on Proportion of EAF, and the table is shown below: 

 

 

Fig 5.15 Graph of “Effect of Scrapped Steel Ratio on Proportion of EAF” as a Table 

Function 
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The input (X axis) refers to the ratio between demands and actual recycled, while the output 

(Y axis) refers to the effect. When the demand equals the actual recycled steels, there is no 

effect produced on EAF proportion. When the recycling rate is higher than the demand which 

means it is enough to cover the demand, the price of scrapped steel declines causing people 

tend to use more scrapped steels instead of iron ore which means EAF is preferred to use 

more. Since more energy-efficient way is encouraged, once the demand is fulfilled, it is easier 

to raise the proportion due to the government’s policy. When there is fewer scrapped steel 

resource, and it can not meet the demand, the proportion of EAF will slowly drop because of 

the above reason. 

 

Thus the indicated proportion of EAF will be its initial proportion times the effect described 

above. 

 

Indicated proportion of EAF= Initial proportion of EAF*Effect of scrapped steel ratio on 

proportion of EAF 

 

The actual proportion of EAF needs time for people to investigate, and that time delay also 

includes installing and the removing facilities.  

 

Actual proportion of EAF= DELAY1I (Indicated proportion of EAF, Time to actual 

proportion of EAF, Initial proportion of EAF) 

 

The above delay1I function is similar to delay functions, it means first order delay with 

initial value, and in this case, the initial proportion of EAF will be the initial value in 1980. 

5.4.6 R&D Investment Sub Sector 

This sub sector deals with the R&D investment by the steel industry and by the government in 

a form of subsidy as a policy structure. The R&D investment will be the output of this sub 

sector as a financial factor to develop technology. See the structure below for details: 
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Fig 5.16 Structure of R&D investment 

 

In the past two decades, the expenditure of steel industry on R&D remains at around 1% of its 

sales revenue (China technology statistical yearbook 2005). Technological influence on 

energy efficiency has been improved a lot in the past, the potential to develop more advanced 

technology is not as large as before, so we assume the industry tends to keep its investment on 

R&D as usual.  

 

The R&D investment is set aside from its sales revenue. As the assumption we made in the 

first chapter, cost equals to price and demand equals to the sales rate. So the multiplication of 

these two will be the sales revenue. 

 

Sales revenue= Average unit cost*Actual steel demand 

 

Then the R&D investment by the steel industry will be as follows: 

 

R&D investment by steel industry= Reference percentage investment in R&D by steel industry 

*Sales revenue 

 

Another part of R&D could be the government subsidy; it is formulated as a policy, so no 

subsidy exists before the policy year. With regarding to such government subsidy, we design 
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two ways of implementation: direct government subsidy with repayment by industry and tax 

revenue recycled as subsidy. The formulations for both cases are listed below: 

 

R&D investment subsidized by government= IF THEN ELSE (Time>=POLICY YEAR, 

Energy tax expense, 0) 

 

To compare the effectiveness of subsidy with tax, we assume this amount of subsidy equals to 

energy tax expenditure. Then the R&D investment is calculated as the sum of government 

subsidy on R&D and the investment by steel industry. 

 

R&D investment= R&D investment by steel industry+ R&D investment subsidized by 

government 

 

R&D investment is a financial support to technological development, and the improvement of 

which is assumed to be proportional to the amount that invested in R&D. So the actual change 

in R&D investment for current year relative to the investment in 1980 is expressed as Relative 

R&D Investment which is also the output of this sub sector, the equation is shown below: 

 

Relative R&D investment= R&D investment/ Initial R&D investment 

 

5.4.7 Exogenous Inputs 

The exogenous inputs here refer to the variables that we create to predict the future behavior 

of some uncertain variables including energy price, EAF recycling rate and other unit 

production costs. The exogenous inputs have no realistic meaning in real life; they consist of 

some functions that are used to test model behavior such as ramp and step functions. 

 

The structures of these exogenous inputs are shown below: 
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Fig 5.17 Structure of Exogenous Inputs 

 

These inputs will take effect on their respective variables by means of the function they 

contain.  

 

The formulation of input of other unit production costs is divided into two parts in terms of 

different time periods. We use different ramp slopes for the two time periods, so the first ramp 

slope functions between 1980 and 2006, and then the other ramp function gets started from 

2007 and works until 2100. The equation is listed below: 

 

Input for other unit production costs = 1+ Ramp (Ramp slope 1, Ramp start time 1, Ramp end 

time1) + Ramp (Ramp slope 2, Ramp start time 2, Ramp end time 2) 

 

The above input will take effect on the Initial unit other costs 

 

The same formulation way works with energy price as well, the equation is listed below: 

Input of energy price= 1+ramp (Ramp slope 3, Ramp start time 3, Ramp end time 3) 

 

The above input will multiply the energy price table to get the reference energy price.  

 

As for Input for EAF Recycling Rate, it exists in a form of policy variable, so it does not 

function in normal scenarios. We use a step function for the input, while it does not mean the 

recycling rate will be raised immediately. On the contrary, based on the long delay added to 
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this exogenous input (see 5.4.5, EAF & Scrapped Steel Sub sector), the technology to raise 

recycling rate takes several decades to reach a high level. The equation is listed below: 

 

Input for EAF recycling rate= 1 +step (Step height, Step time) 

 

The policy is needed only if the step height is given a certain value except for zero. When 

they are set at zero, it means the policy does not work. This input will take effect on the 

reference recycling rate to get actual recycling rate. 

5.5 SUMMARY  

The formulation of the above model structure focuses on representing the energy issues in 

steel industry of China. The model can not comprehensively capture all the features that 

contain in the real steel industry, but the defects can somehow be made up from certain 

relevant assumptions. The structure of the model captures the energy efficiency technology 

development process and the relationship of scrapped steels and EAF development process. 

Moreover, most structures of policy design and testing are included as well. 
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Chapter 6 

 

Model Testing 

6.1 INTRODUCTION 

After the model is formulated, we still can not say the results are valid or can be trusted. The 

model could produce errors or has limitations under certain circumstances. Model testing is 

thus designed to uncover errors so you and your clients can understand the model’s defects, 

improve it, and ultimately use the best available model to assist in important decisions. This 

chapter describes several specific tests which are designed to verify whether the model works 

fine to match the research purpose of this work.  

 

Tests in this chapter help to understand the suitability of the underlying structure, find out the 

robustness and sensitivity of the results according to the assumptions that we made regarding 

the model boundary, interactions among sub sectors. The tests we carry out here include 

boundary adequacy, structure assessment, dimensional consistency, parameter assessment, 

extreme conditions, behavior sensitivity and integration error tests. 

 

6.2 BOUNDARY ADEQUACY TESTS 

Boundary adequacy tests assess the appropriateness of the model boundary for the purpose at 

hand. The boundary adequacy tests for this study include the determination of the model 

boundary and investigating whether all the important feedback loops are taken into 

consideration. 

 

1. Model Boundary Determination 

Helpful tools for determining what the boundary is include model boundary charts and 

subsystem diagrams, both of which are described in Chapter 5. 
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Important concepts for addressing the problem should be endogenous in the model. For this 

particular model, the evolution of technology is endogenous compared to other energy models. 

The problem is closely related to the energy efficiency technology which is the main way for 

the steel industry to save energy, and technology bridges key variables all together with 

feedback loops to construct the mechanism of the system. Several policies are aimed to ease 

the problem through influencing technological development. 

 

All constants are exogenous but may in fact be variable over time in this model. For instance, 

reference recycling rate, it is changing over time in reality. At the early stage of the 

industrialization in China, cumulative steel resource which directly decides the amount of 

scrapped steels is small. During that period, the steel industry in China did not attach much 

importance to recycling scrapped metal products because the government has not realized the 

importance of sustainable development. Hence, the technology for recycling scrapped steel 

develops slowly. But the condition may be improved in the future, yet if so, policies and 

reasonable exogenous inputs can be carried out, since the technology for recycling has no 

relationship with the endogenous energy efficiency technology. Recycling technology is not 

our research focus, so we exclude it from the research scope. Hence, this constant assumption 

is adequate for the boundary of the model. 

 

2. Important Feedback Loops 

For the second point, we need to consider whether any potentially important feedbacks 

omitted from the model, if included, might be important given the purpose of the model. 

 

We do have some exogenous inputs for this particular model, such as GDP growth and other 

unit production cost. Both of them can to some extent be influenced by some of the 

endogenous structure such as steel demand, but there is no direct relationship. In addition, it 

does not make sense if we do include them as a part of the feedbacks. Steel production and 

demand is only a fairly small part that can influence the GDP growth, so the impact can be 

omitted. As for the other unit production costs, we need to add more economic related 

variables into the structure if we need to include it, yet the focus of the model might deviate. 

So in this case, we only focus on the energy costs, which is one of the most increasing costs 

among the total production cost. Modeling energy cost corresponds to the purpose of the 

model.  
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With respect to the purpose of this study, and in terms of the boundary chart and subsystem 

diagrams we use in the former chapter, the model boundary is appropriate for the purpose. 

 

6.3 STRUCTURE ASSESSMENT TESTS 

Structure assessment tests ask whether the model is consistent with knowledge of the real 

system relevant to the purpose. The tests focus on the level of aggregation and the 

conformance of the model to basic physical realities. Structure assessment tests are carried 

using subsystem diagrams, stock and flow maps, causal loops diagrams and direct inspection 

of the equations. We test the model in the following ways: 

 

1. Conformance of the Model to Basic Physical Realities 

Common violations of physical law involve stocks that can become negative. In our model, 

all the stocks have their real meaning in real world, and all their real quantities or the value of 

measuring its level cannot be negative. Most of the stocks are modeled with net inflow, their 

equations and structures of modeling show none of them would become negative in any case. 

Only cumulative steel has its outflow, namely steel scrapped rate, which is formulated using a 

first-order negative feedback loop. This loop restricts the scrapping rate from the cumulative 

steel so that the scrapping rate turns to zero when there is no steel resource. 

 

2. No Free Lunch is provided 

Free lunches arise when activities that require important resources in the real system are 

assumed to occur without those resources in the model. Take scrapped steel recycling 

technology as an example; we only create exogenous inputs on the recycling rate. While 

recycling technology cannot be developed without any R&D investment, so to some extent, 

this exogenous input on the recycling rate is sort of free lunch. The reason we did so is just to 

take it as a policy variable, we want to see the effect of raising the recycling rate on improving 

energy conservation and CO2 emission reduction. Including the structure of investment on 

recycling technology does not help a lot for the research purpose, and it just complicates the 

model structure. In this case, original and simpler model should be retained without involving 

the above extra details. 
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3. Level of Aggregation  

The model is built based on related studies, technical literatures and online database. It maps 

the basic structure of the real Chinese steel industry energy system, which is divided into six 

subsystems: Steel Demand, Technology, Unit Energy Cost, Energy Demand& CO2 Emission, 

EAF& Scrapped Steel and R&D Investment. All of the above subsystems are closely related 

with feedbacks. The variables in all the subsystems have their corresponding meanings in the 

real world. Therefore, the model constructed in this way can to some extent replicate the 

dynamic change in reality. 

 

6.4 DIMENSIONAL CONSISTENCY 

A System Dynamic model has dimension for each of its variable, even “dimensionless” can 

also be regarded as a dimension. The dimension for each variable is specified when the model 

is built, the consistency test for dimension may reflect nothing more than unit error or missing 

units. Such errors reveal important flaws in your understanding of the structure or decision 

process you are trying to model. 

 

The criterion we use for the dimensional consistency test is that each equation must be 

dimensionally consistent without the inclusion of arbitrary scaling factors that have no real 

world meaning. We can only find out such fudge factors through direct inspection of the 

equations. All the equations for the model is available in the appendix, by inspecting the 

equations and automated dimensional analysis by the simulation software, we can say the 

model is dimensionally consistent, and all the parameters defined in meaningful names. 

 

6.5 PARAMETER ASSESSMENT 

This assessment can make sure the values of all the parameters are reasonable and every 

constant (and variable) has a clear, real- life meaning. 

  

The basic way to estimate the values of each parameter are formal statistical estimation from 

numerical data, or judgmental estimation. In our study, both of the methods are used 

depending on the data availability. Historical data like GDP growth rate, energy price are 
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easily found in some online database or official published year books. Important social 

concerns are often evaluated and analyzed on their future growth trend by experts; our 

estimation is based on these evaluations. Only estimation without verification is unqualified. 

We estimate their future values by sensitivity tests in order to find out their robustness. 

 

The second way is used when values of the parameters required by the model are not 

available or the data required by the model are at different aggregation levels from data 

available. The study focuses on the whole Chinese steel industry; the level of aggregation is 

high. Therefore, judgmental estimation based on experts’ opinion, scientific literatures and 

our experience and knowledge is required.  

 

Some technical parameters are created only for modeling purpose, while no real data is 

available. For instance, some technical parameters such as “Carbon Emission from a certain 

steelmaking process including EAF, BOF and OHF” are rather difficult to get their exact 

values. We get to know the value by summing up the carbon emission for each technical 

process of steelmaking such as casting, rolling, and iron making. 

 

Another example is the cost and price of steel. The price of steel is changeable in the real 

world market depending on supply and demand or other factors which are beyond this 

research scope. In our research, the price and cost are assumed to be equivalent with each 

other due to the high aggregation level of the model. 

 

By examining the values for all the parameters in the model, it helps us to get a more accurate 

and reliable understanding of the model and we find out the aggregated structure is acceptable 

for the research purpose. 

 

6.6 EXTREME CONDITION TESTS 

The extreme test evaluates the robustness of the model to see whether the model works under 

extreme conditions. A model should behave in a realistic fashion no mater how extreme the 

inputs or policies imposed on it are. Extreme conditions refer to those can never happen in the 

real world. The test is carried out by imposing extreme conditions as scenarios in simulations 
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of the model. We set extreme values for variables or test inputs like step function to create 

extreme conditions. 

 

Before all the tests are taken, a baseline scenario (without any exogenous inputs) is introduced 

for the testing purpose. The baseline scenario refers to the case that there is no significant 

driving force such as energy price, GDP growth to cause the problem, all such factors will 

remain constant or stop function. This is for the purpose of testing isolated effect of each 

factor. The detailed settings are listed below. 

 

6.6.1 Baseline Scenario 

Energy price setting: 

 

The baseline scenario is made under the assumption that the energy price is introduced 

directly from data series from 1980 to 2006 and will keep at the level of 2006’s until 2100.  
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Fig 6.1 Energy Price setting under the Baseline Scenario 

As we see in the graph, the energy price keeps at 600 Yuan/tce until 2100. 

 

GDP growth rate setting: 
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Fig 6.2 GDP Growth Rate Setting under the Baseline Scenario 

GDP growth is an important driving force behind the steel demand. When the GDP growth 

rate drops to zero, GDP will remain at its 2006’s level, which means the reference steel 

demand should remain at 2006’s level. 

 

Units other production costs setting: 
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Fig 6.3 Unit Other Production Costs under the Baseline Scenario 

The transition problem is caused by the rapidly increasing energy price and steel demand. The 

introduction of GDP and population is to model the reference steel demand. But only keeping 

these two variables constant after 2007 is not enough, the actual steel demand will still be 

influenced by the production costs. Unit other production costs is an important part of unit 

production cost, while from the historical data, we find that it grows at a steady and flat trend. 
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For the purpose of not affecting the steel demand, we keep it constant at the level of 2006 

until 2100.The results of important model variables from these baseline settings are shown 

below: 
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Fig 6.4 Energy Demand under the Baseline Scenario 

The behavior of energy demand is decided by the steel demand and unit energy consumption. 

As the behavior of steel demand shows above, it is the result of keeping other exogenous 

inputs constant. There is almost no consequent change in steel demand, but the behavior 

keeps rising at a very low rate due to the cost effect. With almost constant steel demand and 

unit cost, the sales revenue remains unchanged. Since we assume a reference R&D investment 

percentage, steel industry keeps investing on energy efficiency technology at the same amount 

of investment expense every year. While the technology development also comes from two 

incentives: CO2 emission and energy price rising. Due to the existing but unchanged steel 

demand and continuously advancement of energy efficiency, the energy demand drops. Hence 

CO2 emission will decline correspondingly from 2007. As for the energy price, the price level 

in 2007 is still high compared to its initial level. So even it no longer increases, the high 

energy price still can become another incentive for the industry to invest in R&D. 
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Without strong incentives to develop energy efficiency technology, the energy efficiency 

improves slowly, which means the average unit energy consumption declines slowly after 

2007. 

 

The average energy expense comes from the result of energy price and energy demand. The 

expense declines due to the decreasing energy demand with constant energy price after 2007. 
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Fig 6.5 Average Energy Expense under the Baseline Scenario 

Note we do not believe that this baseline condition ever exists. There are always variations in 

the real world. Yet when the model is set without change in exogenous inputs, it becomes a 

simplification of the reality. We can show all the tests and isolated effect of all kinds of 

exogenous inputs. 

 

6.6.2 Extreme Test1: Energy Price Drops to 0 

Based on the baseline scenario, firstly, we test the model under the extreme condition that the 

industry can get energy for free. The detailed operation is simply set energy price to 0 in 2007 

and remains until 2100. For the purpose of comparison, we will show both the extreme 

condition and baseline condition in the same graph. Meanwhile, keep the other variables as 

what they set in the baseline case. 
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Fig 6.6 Energy Price in Extreme Test 1 

The actual energy price is the reference average energy price plus the energy tax, since no 

policy implemented in the extreme tests, the actual energy price equals to the reference one. 

In this extreme test, no wonder that unit energy cost suddenly drops to zero in 2007, as it is 

the multiplication of the energy price and average unit energy consumption. 

 

When the unit energy cost drops to zero, the total unit production cost goes down. Note that it 

decreases at a small extent, since we assume the other production costs keep constant, so the 

only variation comes from the decrease of unit energy costs. The behaviors of both cases turn 

to equilibrium eventually. In the extreme case, industry needs time to realize the new policy 

and adjust their production way.  In the baseline case, since the energy price keeps constant 

from 2007, while unit energy consumption is decreasing, all of which leads to a reduction on 

unit energy cost over time. 
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Fig 6.7 Perceived Unit Energy Cost in Extreme Test 1 
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Average unit production cost
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Fig 6.8 Average Unit Production Cost in Extreme Test 1 

The unit energy cost is only one part of the total production cost. The extreme case actually 

eliminated the unit energy cost by purchasing energy for free, which leads to a step reduction 

on the production cost. Since there is no rising energy price crisis, the energy cost can not 

increase any more, on the contrary, it will decrease due to the improving energy efficiency. 

The above reason explains why there is no substantial reduction on the whole production cost 

even the energy cost turns to zero.  

 

The production cost directly influence the steel demand. When cost increases, demand may 

decrease. As the graph is shown below, the demand seems to be influenced a little. This is due 

to lower and lower proportion of unit energy cost among the total cost with the time going on. 
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Fig 6.9 Actual Steel Demand in Extreme Test 1 
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“Energy demand” is the multiplication of steel demand and average unit energy consumption. 

Higher steel demand than the baseline case drives energy demand to increase correspondingly. 
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Fig 6.10 Energy Demand in Extreme Test 1 

Responds to the price cut to zero, the industry no longer needs to spend on the energy expense. 

Note this is the average energy expense; we averaged the energy expense into 5 years. Thus 

from the behavior below, the expense will slowly turn to zero instead of a sharp reduction. 
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Fig 6.11 Average Energy Expense in Extreme Test 1 
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Perceived CO2 emission
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Fig 6.12 Perceived CO2 Emission in Extreme Test 1 

Responds to the change in energy demand, CO2 emission increases correspondingly at a small 

rate.  

 

6.6.3 Extreme Test 2: Depreciation time of cumulative steel is extremely 

high 

In this extreme test, we raise the depreciation time of cumulative steel resource to an 

extremely high level. The cumulative steel actually refers to social capital in reality, such as 

buildings, machines of any products made of steel. The average depreciation time for these 

capitals in China is around 18 years for the baseline scenario. Based on the original 

depreciation time, we add a step function with an extremely high value to raise the time. 

 

Depreciation time=18+step (1e+008, 2007) 

 

Equation above indicates it takes extremely long time for the social capital to depreciate. The 

scrapped steel comes from the recycling of the depreciation of social capitals. As a result, the 

behavior of actual recycled scrapped steels is shown in the graph below. 
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Actual recycled scrapped steel
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Fig 6.13 Actual Recycled Scrapped Steel in Extreme Test 2 

As figure 6.13 shows, it is easy to understand that with extremely long depreciation time, 

scrapped steel will no longer exist in the market. Note that it will not suddenly response to the 

change of rising depreciation time, because it takes time for people to recycle the old products 

or assets with shorter depreciation time during past years. 

 

As a result, no scrapped steels are available, which makes it impossible to use EAF any more, 

thus the proportion of EAF goes towards zero. 
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Fig 6.14 Actual Proportion of EAF in Extreme Test 2 

From the above results of extreme tests, we can say the model is able to capture underlying 

physical realities and constraints that affect behavior outside the conditions observed in the 

past. 
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6.7 Behavior Sensitivity Tests 

Sensitivity tests allow you to test the robustness of the model to see whether the results 

change in ways important to your purpose when assumptions are varied over plausible range 

of uncertainty. Limited to time and resources, to do comprehensive sensitivity analysis is 

generally impossible since it requires testing all combinations of assumptions. In this sense, it 

would be wise to focus on the relationships and parameters that we suspect are both highly 

uncertain and likely to be influential. 

 

For this research, behavior mode sensitivity tests are carried out; we introduce different 

scenarios to see the model behaviors responding to them. All the scenarios below are created 

based on the “Baseline Scenario” that we introduced in the extreme tests. The consequent 

results of these scenarios are compared with those in baseline scenario.  

 

6.7.1 Sensitivity Test I: Pure Energy Price Increase 

Based on the baseline scenario, we relax the constant energy price assumption and simulate 

the model with a ramp increase in energy price.  

 

From the historical trend and literatures, we find a rapidly increasing rate on energy price 

before 2007, 6 times the price level in 1980. No body knows how it behaves in the future, but 

there are high possibilities that energy price will keep increasing after 2007. In terms of the 

current situation in China, the price of coal and electricity is made by Chinese National 

Development and Reform Commission. In order to meet the needs from the whole industry 

and social life, it is rather impossible that the energy price will suddenly be raised to a very 

high level, so we give up the thinking of using a step increase for the energy price. Instead, a 

ramp function input is used here. 

 

The energy price expression is:  

Energy price table (Time)* Input for energy price, in which Input for energy price=1+ramp 

(slope, 2007). 
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The ramp function above means the price will increase at a certain slope. A sensitivity test on 

the slope of ramp function is carried out below. The results of other key variables caused by 

the change of the slope are depicted in the following graphs. The slope is varied between 0 

and 0.5 and the model will be simulated for 200 times.  

 

Baseline

50% 75% 95%

Energy price

40,000

30,000

20,000

10,000

0
1980 2010 2040 2070 2100

Time (Year)  

 

Fig 6.15 Energy Price under Sensitivity Testing 1 

The line in bottom area is the behavior of baseline scenario. The simulation results in the 

graph are displayed as confidence bounds.  These are computed at each point in time by 

ordering and sampling all the simulation runs. The whole behavioral areas ranges from the 

simulation run at slope 0 to slope 0.5. 50% means half of the 200 simulations will concentrate 

in this area with specified color. 75% means 25% of the 200 simulations will concentrate in 

the area with specified color. So do the other percentage.  
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Fig 6.16 Average Unit Production Cost under Sensitivity Testing 1 
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Fig 6.17 Actual Steel Demand under Sensitivity Testing 1 

When the energy price varies like figure 6.15 shows, the unit production cost will increase 

correspondingly, which leads to a corresponding reduction on the steel demand. The behavior 

changes a little in the beginning, then changes substantially with the time going on as a result 

of ramp input, the bigger the ramp slope, the bigger the variation is.  
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Fig 6.18 Energy Demand under Sensitivity Testing 1 

Figure 6.18 indicates the energy demand decreases correspondingly with steel demand 

decrease. Note that it does not decrease as much as steel demand because of even slower 

technological development than the baseline scenario. With decreasing steel demand, the sales 

revenue is decreasing, which makes industry invest less than before. Thus energy efficiency 

will not be improved as much as it does in the baseline scenario. The above graph indirectly 

tells us another incentive CO2 emission becomes weak, because CO2 emission is closely 
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related to energy demand. Thus this incentive to develop energy efficiency technology no 

longer becomes important to the industry.  
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Fig 6.19 Average Energy Expense under Sensitivity Testing 1 

Figure 6.19 indicates the direct result of pure energy price increase is a significant increase in 

energy expense. From figure 6.18, we know there is a reduction on energy demand, but the 

increment of energy price is higher than the demand reduction. The reason is that the cost 

effect on the steel demand is not proportionally reinforced. Energy cost is just one part of the 

production cost; it is somehow offset by the improvement of energy efficiency. So there is no 

proportional increment on the production cost due to energy price increasing. In this sense, 

the steel demand will not decrease that much, thus there is no bigger reduction on energy 

demand. But the price increase will directly put weight on the industry’s energy expense, 

that’s why the average energy expense increases significantly. 

6.7.2 Sensitivity Testing II: Pure GDP Growth  

In this test, we relax no GDP growth rate setting in the baseline scenario and keep the other 

exogenous input settings just as they behave in the baseline scenario 

 

With respect to GDP, we use GDP growth rate to model it. GDP varies a lot in China’s 

historical data, and it is hard to predict its future trend with a certain value. With regarding to 

its recent years’ development trend, the GDP growth rate keeps at an average rate of 9%, such 

growth rate may last for one or two decades, then slowly drop to a low rate.  
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We want to test the most reasonable development trend of GDP growth rate to model GDP 

per capita. Three scenarios are provided here, each one has a certain high growth rate in 2007, 

and then we assume it will slowly and linearly drop to a low rate in 2100. 

 

-High GDP growth trend: From 9% in 2007 to 3% in 2100. 

-Medium GDP growth trend: From 8% in 2007 to 2% in 2100 

-Low GDP growth trend: From 7% in 2007 to 1% in 2100 
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Fig 6.20 GDP of three conditions under Sensitivity Testing 2 

The behavior of GDP growth is shown in figure 6.20. With growth rate taken on, the GDP in 

three scenarios will grow exponentially. (Compared to the exponential growth condition, the 

behavior in the baseline looks like a line) 
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Fig 6.21 Perceived Steel Demand Intensity under Sensitivity Testing 2 
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Fig 6.22 Actual Steel Demand under Sensitivity Testing 2 

When GDP grows, GDP per capita increases, it drives the steel intensity to decrease (Figure 

6.21). As it is illustrated in the model description chapter, we set 4000$, which is 

320,000RMB as a milestone of GDP per capita. When it reaches that height, the steel demand 

will reach its peak, and then slowly decrease. 

 

As three scenarios show in the graph 6.20, GDP grows in three different trends depending on 

their different growth rate. The high scenario behavior grows higher and faster than the other 

two, which means GDP per capita reaches 320,000RMB earlier than the other two, so the 

steel demand saturates earlier than the other two. When all three curves reach their peak, they 

all slowly decrease and look like to be coinciding with each other in the end. The reason for 

this moving-close trend behavior is that high scenario will produce high GDP per capita, 

which cause the steel demand intensity to decrease even faster than the other two do. At the 

same time, its GDP grows faster than the other two, the multiplication of these two constitute 

the steel demand. 
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Fig 6.23 Energy Demand under Sensitivity Testing 2 
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Fig 6.24 Perceived CO2 emission under Sensitivity Testing 2 

Figure 6.23 indicates a similar behavior trend in energy demand to steel demand. Since 

energy demand is the multiplication of steel demand and unit energy consumption, there is 

little impact from different scenarios of GDP growth rate on unit energy consumption, so 

energy demand mainly depends on the steel demand. The difference of the behaviors of three 

scenarios comes from the difference in the steel demand. With regarding to CO2 emission in 

figure 6.24, it is the direct cause of energy consumption; the difference in behaviors has the 

same reason as the energy demand. 
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Average energy expense
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Fig 6.25 Average Energy Expense under Sensitivity Testing 2 

Energy expense in this case depends on the energy demand, since only the GDP growth 

assumption is relaxed, no energy price increase in this testing. So the average energy expense 

will follow the trend that energy demand does. 

6.7.3 Sensitivity Testing III: Pure Unit Other Production Costs Increase 

In this test, we relax unit other production costs setting and keep the other exogenous inputs 

settings just as they behave in the baseline scenario 

. 

“Unit other production costs” is an exogenous input attributed to the cost effect on steel 

demand besides unit energy cost and unit R&D cost. From the statistical data series for steel 

production cost, we know that usually energy cost amounts to around 30% of the total 

production costs and R&D cost is only 1%. Even the rest costs grow steadily and slowly, it 

still has a significant influence on the steel demand. 

 

The unit other production costs in this particular model includes labor and capital costs, raw 

material costs, administration costs and so on. It is not that realistic for the industry to invest 

even more or the same amount on capital when the steel demand reaches it saturation. When 

the steel demand declines, the demand for raw materials will decline correspondingly. All of 

the above reasons make us unconfident to set a high grow rate for unit other production costs. 

We test the unit other production costs increase as following:  
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Assuming that the unit other production costs may vary between its current level in 2007 and 

following its original increasing trend as usual until 2100, which means we will adjust the 

ramp slope between 0 and 0.1. 
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Fig 6.26 Unit Other Production Cost in Sensitivity Testing 3 
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Fig 6.27 Average Unit Production Cost in Sensitivity Testing 3 

 

As figure 6.27 shows, not like energy cost, there is no measure to offset the unit other costs in 

this model, so the increment on other unit costs will completely be calculated into the whole 

unit production costs. Such substantial cost increase will have dramatic impact on steel 

demand, see the figure 6.28 below: 
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Fig 6.28 Actual Steel Demand in Sensitivity Testing 3 
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Fig 6.29 Energy Demand in Sensitivity Testing 3 

The above behaviors of steel demand and energy demand are quite similar as they are in pure 

energy price increase testing though the magnitude of the behavior are somehow different.  

The reason for that is both testing try to influence demand through raising production cost.  
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Fig 6.30 Average Energy Expense in Sensitivity Testing 3 

Similar to the condition in sensitivity testing 2, energy expense in this testing depends on 

energy demand since the energy price is assumed to remain constant as it behaves in baseline 

scenario.  

6.7.4 Sensitivity Testing IV: Combined scenarios 

The former three tests are aimed to test the sensitivity of each isolated effect. While in reality, 

all three exogenous factors happen at the same time, we will combine these three exogenous 

inputs in this testing. The combined scenarios will be categorized into three different 

conditions in terms of different settings of each respective factor. They include medium GDP 

medium cost development, high GDP high cost development and low GDP low cost 

development. The detailed settings for each case are listed below. 

 

1. Low GDP growth, low cost development (Low Scenario) 

• GDP growth rate: From 7% in 2007 to 1% in 2100 

• Energy price=Energy price table (Time)*Input, in which, Input=1+ramp (0.1, 

2007, 2100) 

• Other unit production costs: Keep constant at the level of 2006 after 2007 to 2100.  
 

2. Medium GDP growth, medium cost development (Medium Scenario) 

• GDP growth rate: From 8% in 2007 to 2% in 2100. 

• Energy price=Energy price table (Time)*Input, in which, Input=1+ramp (0.1, 

2007, 2100) 
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• Other unit production costs: Increasing slowly after 2007: Half ramp slope (0.05) as 

the one (0.1) used before 2007.  

 

3. High GDP growth, high cost development (High Scenario) 

• GDP growth rate: From 9% in 2007 to 3% in 2100 

• Energy price=Energy price table (Time)*Input, in which, Input=1+ramp (0.2, 

2007, 2100) 

• Other unit production costs: Increasing just as fast as it grows before 2007. 

 

The three conditions focus on the effect of GDP and costs, while the costs include both the 

energy cost affected by the rising energy price and other production costs. The results from 

the combined scenarios are compared below: 
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Fig 6.31 Actual Steel Demand under Combined Scenarios of Sensitivity Testing 4 

 

As figure 6.31 shows, the general growth trend of the steel demand under above three 

combined scenarios are quite similar, they all have experienced S-shape growth then slowly 

declines. Such growth trend is mainly due to the GDP growth compared to the baseline case. 

Different rates of costs limit the development of the demand. As we explained in the 

sensitivity test 2 about the isolated effect of GDP growth, it is easy to conclude the higher the 

GDP grows, the earlier the demand will reach its peak. On the other hand, cost will influence 

the demand, the higher the cost to produce steel, the more quickly the demand will decline. 

The low scenario changes more smoothly than the other two, because it only has the cost 

effect from energy price rising, which means the cost effect has the least impact on its demand. 
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Fig 6.32 Energy Demand under Combined Scenarios of Sensitivity Testing 4 

 

Figure 6.32 indicates that energy demand grows like steel demand. As we explained in the 

former tests, it is influenced by the steel demand. Although in the very short term, the energy 

demand in the low scenario is lower than the other two cases, the low cost and consequent 

slowly decreasing steel demand extend the time for the industry to require more energy.  On 

the contrary, the cost in the high scenario may put a heavy pressure on steel industry. Such 

situation will not last forever; people would seek more efficient materials to replace steels due 

to high cost. In this sense, energy conservation can achieve a better result in the high scenario.  
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Fig 6.33 Average Energy Expense under Combined Scenarios of Sensitivity Testing 4 
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In the combined scenario, the energy expense will depend on both the energy demand and the 

energy price. (See figure 6.33) The behavior of each scenario in the above figure looks quite 

different from each other; the growth trends no longer follow the way the steel demand grows. 

First reason is that high energy price setting will lead to high energy expense; hence the 

energy expense in the high scenario grows much faster in the growth period of 

industrialization than that in the other two scenarios. After the steel demand reaches its peak, 

the condition will be slowly eased for all three scenarios. Due to faster decreasing energy 

demand in the high scenario, even though its energy price is quickly increasing, the energy 

expense is somehow offset by the decreasing demand, and slowly decreasing overtime. In the 

low scenario, the energy expense grows quite similar as it does in the medium case before the 

energy demand reaches it peak. The reason is that they have the same energy price setting; the 

difference will be only dependent on the energy demand. From Figure 6.32, it is easy to 

explain why the energy expense in low scenario will eventually increase faster than the 

medium case because of its higher energy demand.  

 

Another purpose of introducing the combined scenarios is to provide typical problematic 

condition for policy analysis. We will raise it later in the policy chapter. 

6.8 INTEGRATION ERROR TESTS 

The System Dynamics model is usually formulated in continuous time. A time step needs to 

be selected for your model to yield an approximation of the underlying continuous dynamics 

accurate enough for your purpose. This test aims to find out whether the model behaviors are 

sensitive to the settings of time step. The test is taken by cutting the time step in half and 

running the model again. 

 

 

Fig 6.34 Time step setting in the model 
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As the graph is shown above, the current time step used in the model is set at 0.125, and then 

we cut it into half and run the model at a time step of 0.0625. The results show that the model 

is not sensitive to the choice of time step. 

 

6.9 SUMMARY 

Testing is an integral part of the iterative process of modeling. By continuously testing the 

assumptions and the sensitivity of results of the model, we can uncover important errors early, 

avoid costly rework, and generate insights throughout the project.  

 

Based on the purpose of testing, we implement several tests in this chapter. After all kinds of 

tests, we can say, in general, the model is appropriate for the purpose of showing the dynamic 

mechanism of Chinese steel industry sub sector.  As the structure assessment test shows, the 

structure of the model can properly represent the real world system with interrelationships 

according to our knowledge from the real world. Boundary and level of aggregation of the 

model are appropriate for the purpose of the study reflected from boundary adequacy test and 

structure assessment test. Moreover, the model has passed the dimensional consistency tests 

and integration error tests, and is able to work under extreme conditions. The sensitivity of 

behavior modes under different assumptions of exogenous inputs is tested to show the 

robustness of our conclusions to uncertainty of our assumptions.  
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Chapter 7 

 

Policy Development 

7.1 INTRODUCTION 

In this chapter, policies aiming at easing high energy demand, CO2 emissions and high energy 

expense during the transition period of steel industry are studied by means of simulation. 

Assessments and comments on the cost-effectiveness and implementation of policies are 

made in the conclusion part of the chapter. 

 

The key variables that we want to show for the policy analysis are Energy Demand and 

Average Energy Expense. There are several reasons for doing this: Firstly, energy demand is 

an indicator that reflects how much energy is needed for steel industry, and is always a 

number of considerable concerns. Lower energy consumption in high energy intensive sectors 

contributes to energy conservation from the sustainable development point of view. In 

addition, reducing energy consumption perhaps is the most economical way for 

environmental protection, and the most effective solution for reducing energy expenditure 

because of increasing energy price. Secondly, energy expense for an energy intensive industry 

is vital; it can reflect the cost-effectiveness of policy regarding energy conservation. 

 

We introduce a typical transition condition for the policy design. It is just the medium 

combined scenario in the sensitivity test of the former chapter. 

• GDP growth rate: From 8% in 2007 to 2% in 2100. 

• Energy price:=Energy price table (Time)*Input, in which, Input=1+ramp (0.1, 2007, 

2100) 

• Other unit production costs: Increasing slowly after 2007. Half slope as the one used 

before 2007. 
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The scenario above will be depicted as “Without Policy” in model behavioral graphs. We will 

compare the no policy scenario with scenarios of policies. 

 

There are two ways for steel industry to save energy and reduce energy expense: continuously 

develop energy efficiency technology with more powerful measures and adjusting 

steelmaking process by raising the proportion of more energy efficient way of steelmaking. 

Thus, Policies here are categorized into two kinds: energy efficiency technology development 

policy and steelmaking process improvement policy. 

 

7.2 ENERGY EFFICIENCY TECHNOLOGY DEVELOPMENT 

POLICY 

Policies at this stage are intended to stimulate technological development. R&D investment, 

energy price and CO2 emission are assumed to be the only incentives for energy-saving 

technology development in this particular model. Since it is hard to say which of these 

incentives is more important or more effective for technological improvement, we assume 

they have the same weight at beginning. The optimization and analysis on the weight for each 

of the incentives is studied after the individual policy analysis. 

7.2.1 Policy 1: Energy Tax 

With respect to energy tax, the government in China so far has not levied carbon tax, namely 

the CO2 tax. Besides the carbon tax, the energy tax, which is called resource tax in China, is 

levied at a low rate compared to its real price. While the government thinks that the current 

energy price can not reflect its economic value and scarcity of natural resources, pollution tax 

aiming at reduce CO2 is scheduled to be levied and even higher resource tax rate is going to 

be raised in the near future. In this particular model, we combined pollution tax with resource 

tax to simplify the model, and the combined tax is just called energy tax. We consider “energy 

tax” as one of the policies. In order to find its practicability and effect, we may also need to 

consider to what extent should we levy on energy price and when shall we implement the 

policy? Does it help if we implement the policy in the early period?  

 

We will test the magnitude of tax rate first from 2007;  
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- Run1: Energy tax rate =30% 

- Run2: Energy tax rate =50% 

Simulation results are shown as below: 
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Fig 7.1 Energy Price under Different Tax Rate for Policy 1 
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Fig 7.2 Energy Demand under Different Tax Rate for Policy 1 

From figure 7.1, we know that the energy price in the tax scenarios increases proportional to 

the original energy price increase. The higher the tax rate, the higher it increases over time. 

Figure 7.2 shows even with 50% tax, the energy demand seems to drop at a rather small 

extent from the condition without policy. 
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Fig 7.3 Average Energy Expense under Different Tax Rate for Policy 1 

The policy aims at raising energy cost in order to influence the steel demand, and then 

eventually leads to a reduction on the energy demand. Figure 7.2 and 7.3 show that energy tax 

in this case can not effectively achieve expected result; on the contrary, it largely increases the 

energy expense of steel industry. Energy cost amounts to around 30% of the production cost, 

and the other production costs are increasing at the same time. The increment of energy cost 

only influence the 30% of production cost, and to large extent, the increment is offset by the 

improvement of energy efficiency technology (by consuming less energy to make a saving on 

energy cost). Hence only if the proportion of energy cost increases largely among the 

production cost can the energy demand be reduced substantially by implementing energy tax. 

In order to test whether energy tax policy takes effect depending on different growth trend of 

energy price, the assumption that we made for energy price increase at the beginning of this 

chapter as a typical transition condition needs to be changed. Both high energy price growth 

trend and constant energy price pattern will be tested as the problematic condition for testing 

energy tax policy. The tax rate is set at 30% for all scenarios.  The simulation is run as 

following: 

-Energy tax 30% (Reference energy price increase trend, ramp slope = 0.1) 

-Energy tax on high energy price trend (ramp slope = 0.2) 

-Energy tax with no energy price increase (ramp slope = 0) 



Chapter 7 Policy Development 

 - 80 -

Energy price

20,000

15,000

10,000

5,000

0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1 1 1 1 1 1 1 1
1 1 1

1 1 1 1
1 1 1

1 1 1

1980 1992 2004 2016 2028 2040 2052 2064 2076 2088 2100
Time (Year)

Energy price : Energy tax 30% yuan/tce1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Energy price : Energy tax 30% on high energy price trend yuan/tce2 2 2 2 2 2 2 2 2

Energy price : Energy tax 30% with no energy price increase yuan/tce3 3 3 3 3 3 3 3 3

 

Fig 7.4 Energy Price under Different Price Pattern 
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Fig 7.5 Energy Demand with Energy Tax under Different Price Pattern 
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Fig 7.6 Average Energy Expense with Energy Tax under Different Price Pattern 
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Figure 7.5 and 7.6 indicate that different energy price future settings with same energy tax 

rate produce fairly different behavior patterns. With high energy growth trend, the policy has 

the greatest impact on energy demand, which effectively promotes the energy conservation. 

While the expense is correspondingly the highest among the three behavior patterns due to 

proportional energy tax increase. Thus, if the energy price increases quickly in the future, 

implementing energy tax will not be a cost-effective policy. For the case with no energy price 

increase, energy tax policy will have almost no effect. The reason is that the energy tax will 

always be kept at a constant and low rate; too low energy tax can not attract much attention 

from the steel industry. Instead, the industry will be willing to pay the tax in order to consume 

more energy because of low extra expenditure on energy. Thus, constant energy price pattern 

with energy tax implemented can not achieve the original purpose of energy conservation. 

 

The tax policy for such situation in this particular study can not be called cost-effective. If we 

test such policy in the early period, the result obviously can be imagined: the industry may 

spend a lot on energy expense with unapparent effect on energy conservation. So in this case, 

we do not test the policy in the early period. 

7.2.2 Policy 2: Energy Tax Recycled as R&D Subsidy 

R&D investment could be subsidized by the government in order to promote the energy 

efficiency technological development. But to develop technology needs a long time and it 

may cost a lot, which in turn puts financial pressure on government’s budget. There is no such 

thing as a free lunch, the energy tax revenue from the first policy could be transformed or 

recycled in the form of subsidy on R&D investment.  

 

So we test the policy in the following way: the tax rate is set at 30% in order to compare the 

case in the energy tax policy. All this tax revenue will be transformed into R&D subsidy from 

2007. See the behaviors below for details: 
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Fig 7.7 Energy Demand under Policy 2 
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Fig 7.8 Average Energy Expense under Policy 2 

Figure 7.7 and 7.8 indicate that the policy of converting energy tax to R&D subsidy has a 

remarkable improvement than the tax policy alone. Energy demand has been cut both through 

the tax effect and more efficient energy use due to faster advancement of technology 

subsidized by government. As for the energy expense, both tax and efficient use of energy 

have impacts as well, they offset each other. Not like the tax policy alone, current policy with 

tax recycled only put a small weight on the industry’s energy expense. But the discrepancy in 

energy expense between the policy scenario and without policy increases over time during the 

transition period. That’s because the energy demand keeps increasing in any scenario during 

the transition period and the energy price is assumed to increase as well with proportional tax 
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added. The average energy expense will reach its peak after the transition period has just 

passed because no more energy demand is needed. In a long run after the transition period, 

with limited technological development, the potential to improve energy efficiency is small, 

and the energy price with tax still increases. Hence the industry can not reduce its energy 

expenditure a lot from the case without policy. While in general, current policy can be called 

cost-effective, energy conservation has been achieved to a large degree with comparatively 

small portion of energy expense increasing. 

 

What if we implement the same policy in early period? (In 1990) 
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Fig 7.9 Energy Demand when the tax recycled policy implemented in early period 
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Fig 7.10 Average Energy Expense when the tax recycled policy implemented in early 

period 
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From figure 7.9 and 7.10, obviously, policy implemented in the early period could produce 

better results during the transition period. The behavior of energy demand during the 

transition period looks more smoothly, which means the industry can pass the transition 

period easily without higher energy demand needed. Since energy efficiency was low in early 

90s, the policy introduced large amount of R&D investment from tax revenue in early 90s, 

which promotes the energy efficiency technology development quickly to a level that can only 

be reached late after 2007. In this case, energy conservation can be further achieved in the 

early period. Even the energy expense did increase more than that in the other cases because 

of early tax levied; the condition will be eased when the industry can produce steel with less 

energy compared to the condition in which policy is implemented later.  

 

For the tax recycled as subsidy policy, there is an underlying assumption: the government will 

invest all the tax revenue from industry as the subsidy back to the industry. While in the real 

world, it does not need to do like that, tax revenue from steel industry or part of it can be 

given to other sectors in order to achieve more significant effect in energy conservation or 

other needs. Just based on energy conservation and environmental purpose, the government 

will have to investigate which sector or industry has comparatively larger potential to improve 

its energy efficiency or pollution condition with R&D subsidy. 

7.2.3 Policy 3: Direct Government Subsidy and Repayment from the Steel 

Industry 

Direct Government subsidy is mostly common, while doing that probably will produce social 

welfare loss. To keep balance in social welfare, we test the policy by making the steel 

industry pay back the subsidy at the same time when there is subsidy provided by the 

government on R&D. This is a way to test the cost-effectiveness of subsidy on energy 

conservation. In this case, the government subsidy can be regarded as a loan to the steel 

industry; it is paid back at the same year, which will become an additional expenditure on the 

industry’s energy expense. Since we want to find out the effectiveness of this policy, so we 

assume the industry will accept this “loan” from the government. When the steel industry 

pays back the loan to the government, it is distributed as a part of unit cost. We classify such 

unit cost into the unit energy cost. Thus the above idea is formulated by adding additional 

policy structure to the original energy cost sub sector. See the structure below for more details: 
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Fig 7.11 Formulation of Unit Energy Cost When Industry Pay back Subsidy as a Loan 

 

The direct government subsidy is set to be equal to the energy tax expense introduced in the 

former policy numerically (Tax rate =30%). So the energy tax expense in the above graph will 

be the energy tax times the energy demand. Then the additional unit cost of loan will be the 

energy tax expense divided by the steel demand. See the figures below as a result of the 

current policy: 
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Fig 7.12 Energy Demand under Policy 3 
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Fig 7.13 Average Energy Expense under Policy 3 

From figure 7.12 and 7.13, we almost can not see any difference between the policy 2 and 

policy 3, the behaviors look like identical.  The reason is that the two policies are just opposite 

in the way that they pay tax or loan and benefit from subsidy. For the energy tax recycled as 

subsidy policy, the industry pay the tax first, and benefits from what it actually paid through 

other form of financial return as a subsidy, the amount are just the same. When the tax is 

levied, the energy cost is raised due to the price increase. The current policy as it is illustrated 

above is actually a loan to the steel industry, the industry benefits from the subsidy to the 

R&D, but the repayment of this subsidy will be converted as an additional cost into the energy 

cost.  Both the tax and the unit loan cost aim to raise the energy cost, so the equation in the 

current policy for unit energy cost can be converted to a form which is equal to the result of 

energy price with tax. 

 

Unit energy cost=Average unit energy consumption*Energy price+ Unit cost of loan 

                          =Average unit energy consumption* Energy price+ 
DemandSteelActual

enseEnergy

  

exp tax
 

             =Average unit energy consumption* Energy price+
DemandSteelActual

demandenergyTotaltaxEnergy

  

  * 
 

=Average unit energy consumption*Energy price+ Energy tax* Average unit energy 

consumption 

            = Average unit energy consumption*(Energy price+ Energy tax) 

 

Although the results are the same, but it does not mean they can be treated in the same way. 

For the subsidy as a loan policy, it is hard to say whether the steel industry will accept this 



Chapter 7 Policy Development 

 - 87 -

loan, since the benefit can only be seen in a long run, while people are usually myopic. 

Therefore, it turns out to be the government’s responsibility to enhance stronger or even 

compulsory energy conservation measures. 

 

Since the current policy has almost the same behavior as the tax recycled as subsidy policy, 

the result of early implementation will be same as well, thus there is no need to show it here. 

7.2.4 Policy Optimization 

Former policy analysis with same weight on three incentives shows that it is hard to reduce 

energy demand with lower energy expense. The default weights for three incentives are set at 

1 at beginning, and the technological change depend on the incentive times its respective 

weight. The incentives in this particular model like R&D investment, energy price and CO2 

emissions are modeled using their relative value compared to the level in the initial year, 

namely 1980. Hence the bigger the relative value it is, the more the importance we should 

attach to. In this case, we will try to adjust the values of each weight in order to maximize the 

technological improvement. Before we start to find out the optimal weighs combination, we 

would like to see sensitivity of weights changing on model behaviors. 

 

Weight Sensitivity Testing: 

The normalized sum of the three weights is 1, before we do the weight optimization, all three 

weights equal to each other, so each of its normalized weight is around 33% at beginning. 

Now we will do a sensitivity test on all three weights, each will change between 0 and 1. The 

results will show a scale ranging from best result to the worst based on the combination of the 

three weights. We do the test in the following way: 

- “Weight for CO2” ranges from 0 to 1 

- “Weight for energy price” ranges from 0 to 1 

- “Weight for R&D” ranges from 0 to 1 

 

The sensitivity test is simulated based on the combination of above weights. The simulation 

results are shown below: 
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Fig 7.14 Energy Demand under Weight Sensitivity Testing 
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Fig 7.15 Average Energy Expense under Weight Sensitivity Testing 

Figure 7.14 and 7.15 indicate there is obvious change in terms of different weights 

combinations. Optimal weights can lead to maximum reduction on energy demand and energy 

expense. In reality, the weights here refer to the importance of incentives (including R&D 

investment) on technological change. By raising or reducing the weight of respective 

incentive, steel industry adjusts its emphasis, taking measures to favor its emphasis and 

thinking little of other incentives.  
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By optimizing the weights, the former policies can be implemented based on the “improved” 

model behavior. By looking at the behaviors of these three incentives, we find that the relative 

R&D investment has the biggest increment in the future. So we set the weight for R&D to 100, 

keep the other two weights at 1 as usual from 2007, which mean the industry will attach more 

importance on the R&D investment, thinking little of other incentives. The model behaviors 

with optimal weights settings are shown below with no other policies implemented.  

 

Energy demand

600 M

450 M

300 M

150 M

0
2

2 2
2

2

2

2
2 2

2

2

2

2
2

2
2

2 2 2 2 2 2

1
1 1

1

1

1

1

1
1

1

1

1

1
1

1
1

1
1 1 1 1 1 1

1980 1992 2004 2016 2028 2040 2052 2064 2076 2088 2100
Time (Year)

Energy demand : Without policy tce/Year1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Energy demand : Weights Optimization tce/Year2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 

 

Fig 7.16 Energy Demand under Optimal Weights 
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Fig 7.17 Average Energy Expense under Optimal Weights 

The behaviors of these key variables have little improvement. While when we have raised the 

weight for R&D investment to 100, the other two weights become insignificant, so incentives 

from energy price increase and CO2 emission can almost be neglected. In this case, 

subsidizing R&D investment will be much more effective than levying energy tax. Among the 

policies regarding subsidy, the tax recycled as subsidy should be the most cost-effective. So 
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we will show such policy with optimal weights compared to the policy without weights 

changed. See the behavioral graphs below: 
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Fig 7.18 Energy Demand under Tax Recycled to Subsidy with Optimal Weight 
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Fig 7.19 Average Energy Expense under Tax Recycled to Subsidy with Optimal Weight 

 

Figure 7.18 shows that the energy demand in the optimal policy is further reduced; this 

improvement makes the industry spend less on its energy expense. After the transition period, 

the energy expense will become lower than the case without policy. Note that whatever policy 

is implemented, the energy expense in a long run will slowly increase due to continuously 

energy price increasing and almost no potential of technical improvement on energy 

efficiency.  
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Different weights of incentives should be treated in different ways. More attention should be 

attached to the incentive with the highest weight. In the real world, the importance of 

incentives for the steel industry to develop energy efficiency technology varies in terms of 

different time period or government policies. If the incentive from energy price increases 

rather rapidly in the future due to resource scarcity or market supply and demand, policies 

related to energy tax may become more effective.  

 

7.3 STEELMAKING PROCESS IMPROVEMENT POLICY 

Energy efficient steelmaking process is encouraged from sustainable development point of 

view. Among all three steelmaking process, EAF is regarded as the one that promotes energy 

conservation and environmental protection. As it is explained in the problem description 

chapter, scrapped steel resource is the main obstacle to develop EAF in China for the current 

time period. Scrapped steel mainly comes from the recycling of depreciated social capitals; 

the cycle period is around 18 years in China. Taking the loss and recycling rate of the current 

level into account, the situation described in the former chapter will be greatly eased in 10 to 

15 years. Besides the gradual increment of depreciated steels, the steel industry can raise 

another technical factor: the scrapped steel recycling rate. The recycling rate has been kept 

around 40% in the past 2 decades, while this technical parameter in developed countries is 

high. For instance, the recycling rate in Germany and United States is 80% and 67% 

respectively in 2004. This condition indicates China has large potential to raise this technical 

parameter.  

 

The policy at this stage aims to raise the proportion of EAF among steelmaking process. 

Raising the recycling rate is the main policy of improving steelmaking process for this 

particular model. Such a technical improvement needs more attention from the industry, and 

the government may need to make relevant regulations to help the industry recycle more 

scrapped steels from social capitals. All of which take time to occur, so no body has the idea 

to what extent we can raise the recycling rate. Suppose the improvement of recycling rate 

doubled in several decades, to reach this purpose, we adjust the step height in the step 

function which is the exogenous input on the recycling rate and run the model as following: 

 

- Step height = 1, due to the long delay, the recycling rate will be raised to 0.8 eventually 
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Simulation results are shown as below: 
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Fig 7.20 Recycling Rate under Technical Process Improvement Policy 
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Fig 7.21 Actual Proportion of EAF under Technical Process Improvement Policy 

Figure 7.20 shows a gradual step increase in doubling the recycling rate in around 30 years. 

Such a long time delay reflects that it takes a long time to develop technology and realize 

practical implementation. Note that we do not know the actual time to develop and implement 

the technology regarding recycling rate, this policy test is merely to find out the effectiveness 

of raising the proportion of EAF on energy conservation and CO2 emission. When the 

recycling rate is raised, more recycled scrapped steels are available; the industry becomes not 

as dependent on importing scrapped steels as past. The increasing scrapped steel resource will 

meet the domestic need and eventually steel industry will be self-sufficient in its scrapped 

steels resource. When the supply of scrapped steels increase, the price of scrapped steels will 
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drop, which makes steel plants invest more on scrapped steels based steelmaking way, namely 

EAF to replace the others. Such condition leads to a gradual increase on the proportion of 

EAF. When the time has passed the transition period, the steel demand will gradually 

decrease, which leads to a reduction on steel scrapping rate each year. No more recycled 

scrapped steels will eventually limit the EAF proportion.  
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Fig 7.22 Energy Demand under Technical Process Improvement Policy 
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Fig 7.23 Perceived CO2 Emission under Technical Process Improvement Policy 

In the former policy analysis or testing in chapter 6, we do not show the behavior of CO2 

emission, because it is closely related to energy demand and unit carbon emission. Different 

steelmaking ways decide the carbon emission per unit energy used, since no former policy or 

testing has strong impact on the proportion of steelmaking ways, the index of carbon emission 

is almost kept constant. Thus, the behavior of CO2 emission looks quite similar to the total 
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energy demand. In this case, raising EAF proportion will not only reduce the energy 

consumption but also significantly reduce the CO2 emission.  

 

From figure 7.22 and 7.23, it is obvious to see different impacts of the policy on energy 

demand and CO2 emission. Adjusting the proportions of different steelmaking processes 

influences the energy demand through improving energy efficiency. But the potential to 

improve energy efficiency becomes low in a long run, in addition, EAF only avoid the iron 

making process which is not a big saving compared to the total energy consumption for the 

whole steelmaking process. Thus we can not see substantial improving in energy conservation.  

 

The condition is different for CO2 emission, using EAF to make steel can save ¾ of the 

energy required by OHF or BOF. If the proportion of EAF is raised as figure 7.23 shows, then 

a dramatic reduction on carbon emission per unit energy used can be achieved. Thus, there is 

a significant reduction on CO2 emission. 
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Fig 7.24 Average Energy Expense under Technical Process Improvement Policy 

 

Current policy can to some extent reduce energy expense through reducing energy demand 

even though the reduction is small. We do not consider the policy implemented in early 

period in this case. Due to low cumulative steel resource in historical time, the depreciation of 

social capital is low. Even though the recycling rate is high; there are not sufficient scrapped 

steels to recycle. Thus the policy is not appropriate to be implemented in early period. 

 



Chapter 7 Policy Development 

 - 95 -

7.4 CONCLUSIONS AND IMPLEMENTATIONS 

From the graphs shown in all kinds of policy analysis above, we know that the energy demand 

will eventually decline due to no more need of steels even there is no policy implemented. 

This will happen during the later stage of industrialization. As a main energy source for 

steelmaking and electricity generation, the reserve of coal is limited. For sustainable 

development, the country can not wait until the energy demand declines itself. The above 

policies aim to promote energy conservation and CO2 emission reduction. While not all of 

them have its realistic sense, some of them can achieve good results but with high expenditure, 

some of them are only policy suggestions, which mean they are hard to be implemented in 

reality. To assess all the policies we described above, cost-effective and difficulties in 

implementation are our judgment index. A summary table is listed below: 

 

CATEGORY POLICY 
ENERGY 

CONSERVATION 
CO2 

EMISSION 

ENERGY 
EXPENSE 

INCREMENT 
IMPLEMENTATION 

Energy Efficiency 
Technology 
Development Policy 

Energy Tax Little Little High Medium 

Energy Tax 
Recycled as 

Subsidy 
Large Large Low Medium 

Direct Subsidy 
with 

Repayment 
Large Large Low 

 
Difficult 

 

Policies with 
Optimal 
Weights 

Large Large Low 
 

Medium 
 

Steelmaking 
Process 
Improvement 
Policy 

Raising EAF 
Proportion 

Little Large Low Easy 

 

Table 7.1 Policy Assessment  

Note the above policy assessment is made based on our assumptions about the future energy 

price, GDP and unit other cost growth setting in the beginning of this chapter. It is hard to say 

what happens to these factors in the future in reality. The effectiveness of the policies may to 

some extent depend on the future behavior of such factors. Just based on the settings in this 

beginning of this policy chapter, energy tax converting into subsidy seems to be the most 

effective policy though difficult to implement. While policy designs always need to take real 
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world issues into consideration. Discussions about implementations of above polices are 

raised below: 

 

Energy taxes, based either on carbon content or particular fuels, would allow energy users to 

trade off the relative merits of paying the penalties versus adopting new kinds of energy or 

technologies to limit scarce and carbon intensive energy use and avoid carbon emissions.  

Some countries have already proposed energy tax, more specifically carbon tax. Finland has 

gone the furthest by introducing a $6 per ton tax on fossil fuels in its 1990 Finance Art; 

Sweden is considering a much higher tax of $40 per ton. Even so, taxes of greater magnitude 

will most likely be required to achieve dramatic reductions in the future.  

 

The effect of energy tax is little both in energy conservation and in limiting CO2 emission in 

this particular model; on the contrary, the expense is high. In reality, if there is energy tax 

levied at such a high rate like the model does, the steel industry may feel its financial pressure 

in energy expenditure, which forces it to consider low carbon emitted energy sources (natural 

gas) to gradually replace coal as its main energy source even though the technical application 

of producing steel with other kinds of energy are immature and usually with a high production 

cost. Such situation will somehow be eased in the future when the low carbon energy based 

production process is popularized. While whatever kind of energy is used, the energy demand 

required for steel industry will not be reduced that much because of the same high steel 

demand during the transition period.  

 

Policies related to subsidy can achieve good results with low expense in this particular model. 

From the weight sensitivity tests, we know the consequent reason. It is simply because of 

comparatively bigger incentive of R&D investment on technological change than other 

incentives (energy price and CO2 emissions). Such condition may vary in the future if the 

energy price increases much more rapidly than expected or aggravated environmental 

destruction from carbon pollution. In this case, other polices like carbon tax, setting strict 

standard to control toxic gas emission or reforestation may become more effective.  

 

Besides the cost-effectiveness, we have to admit that it is not realistic for the government to 

subsidize on steel industry in the way that the model does. The policy only analyzes the 

situation once the policy is implemented, it will take effect until 2100. Such a long period 

makes us unconfident to believe the government will continuously support subsidy. Once the 
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steel industry has passed the transition period, the energy demand will decline 

correspondingly; in addition, there will be rather low potential to improve the energy 

efficiency in a long run, all of which makes the continuous subsidy become impossible. The 

way that we did in the model is just want to show the effect during the transition period and 

assuming continuous subsidy is just to simplify the model structure.  

 

Raising EAF proportion is a focus that has been concerned about during recent years due to 

continuously increasing iron ore price and sustainable development. China has large potential 

to raise its recycling rate compared to the level of advanced steelmaking countries. The policy 

may take a long time to see the effect, but it can be developed quickly compared to the energy 

efficiency technology due to low advancement cost. Since the policy can limit CO2 emission 

quite well and comparatively easy implementation, it is worthwhile and beneficial for the 

steel industry to invest more on recycling technology and adjust its steelmaking way. 

 

Last but not least, the model is a tool to test policy and scenarios instead of a way of 

forecasting or predicting the future. Policies here provide new ways of thinking something in 

“what if” manner for the policymakers to move the system outside the limited range of 

historical experience. Most of these single polices have their limitations to achieve significant 

reductions in a cost-effective manner with easy implementation, policymakers need to seek a 

combination of different policies. 
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Chapter 8 

 

Conclusions 

This work presents the dynamic mechanism of Chinese steel industry. A System Dynamics 

model and related testing and policy design are described in the previous chapters. We 

conclude the work with forming an overview of the research, major findings and limitations 

are raised thereafter. 

 

The study presents a System Dynamics model with endogenous technological change in a sub 

sector regional way. The model is built to help understand the dynamic energy problems 

evoked by high steel demand during economy transition and increasing energy price in steel 

industry in China. Scenarios and policies are tested as examples of possible situations and 

practical applications. 

 

The present model can be used for analysis in the following major problems: 

1. Development of energy efficiency technology in energy intensive industries 

2. Substitution among different steelmaking ways 

 

8.1 MAJOR FEATURES AND FINDINGS 

1.  The research analyzes energy related problem in China, such problem was (and still is) a 

good problem area in which to apply System Dynamics. A typical energy intensive industry 

such as steel industry in this case has many properties that can be described easily using 

System Dynamic model: for the model presented in this study, nonlinearities (such as 

reference steel demand formulation), stock and flows (of technology and cumulative steel 

resource), feedback loops (through energy demand and technology development), emphasis 

on dynamic behavior and the need for policy analysis. 
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2.  Increasing energy demand due to economic transition and related CO2 emission with rising 

energy expenditure are mutual characteristics among almost all the coal intensive industries in 

China. Since System Dynamics has been found appropriate to support the integrated planning 

and management of problems related to energy efficiency issues, the current developed model 

structure in this research may be adaptable to other industries shared with above features.  

 

3.  The model is designed to test policies that could help ease the transition problem in energy 

demand and expenditure under a range of assumptions. Results suggest that most policies 

introduced in this research are cost-effective. However, implementation of these policies 

remains a critical issue, and the viability of energy tax and R&D subsidy is still questionable 

in the real world. Developing the technology of recycling scrapped steel is found to be useful 

in limiting carbon emission with easy implementation.   

 

4.  With a long time horizon for the model, the industry will have to switch from coal to other 

energy sources for steelmaking due to the scarcity of resource and increasing price of coal in 

the future. An inexpensive, reliable, and environmentally benign fuel source is required to be 

the substitute. This rule is also applicable to other coal-intensive industries or other sectors 

like electricity.  

 

5.  Many structures from earlier system dynamics models were omitted or abstracted in this 

particular model for simplicity. While such a simple model still can capture the main structure 

of the real system. Simplified model structure helps the readers get a better understanding, 

and they can test different policies in different ways without spending long time on digesting 

the structure of the model. 

 

8.2 LIMITATIONS AND FUTURE WORK 

The model is built in a simplified way; it deals with some structures in a highly aggregated 

level due to limited time and resources. Model boundary and assumptions are listed in the 

former chapters; both of them determine the limitations of the work. For the future work, 

some exogenous variables can be reconstructed in an endogenous way and some assumptions 

like other unit production costs can be relaxed to make the model more convincing.  
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Some of the parameters such as steel demand intensity, energy tax rate in the model are 

estimated from other country’s experience. With the issuance of real data in the near future, 

those parameters should be re-estimated or even replaced with detailed structures. 

 

Problems such as energy substitution, endogenous way of modeling the R&D investment 

from industry are not included in the model. Such problems may not be serious for the time 

being since coal is still the dominant energy source for the whole Chinese industry. But coal 

will be gradually replaced by other cheaper and low carbon emitted energy sources such as 

natural gas or renewable energy sooner or later. In that case, industry will have to invest more 

on R&D regarding other energy resources. All these issues should be included in the future 

work. 

 

Limited by the boundary of the work, interactions between sectors are excluded. Policies 

designed in one sector could ignore their influence to other sectors. So the policies in this 

model can not be regarded as realistic forecasts, they just provide the hypothetical view for 

the policymakers to move the system outside the limited range of historical experience. The 

future work can be extended to other energy intensive industries to form a comprehensive 

energy model for industry sector in China. 
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Appendix 

 

Model Equations and Annotations 
 
 
 
******************************************************** 
 .Steel Demand 
********************************************************~ 
 | 
 
Actual steel demand= 
 SMOOTHI (Indicated steel demand, Demand adjustment delay, Reference steel 

demand) 
 ~ ton/Year 

~ Actual steel demand from the indicated one, it takes time to get data for the 
steel demand change after cost effect. 

 | 
 
Average unit production cost=Smooth (Unit production cost, Time to average unit cost) 
 ~ yuan/ton 
 ~ The unit cost averaged in one year 
 | 
 
Billion yuan as conversion variable=1e+009 
 ~ yuan/billion yuan 

~          A conversion variable, set in order to convert GDP (Yuan) into billion Yuan as 
its unit. 

 | 
 
Demand adjustment delay=1 
 ~ Year 
 ~ We assume the estimation time of steel demand is 1 year 
 | 
 
Effect of cost on demand= 
 Effect of cost on demand table (Relative unit cost) 
 ~ Dimensionless 

~ The effect is estimated based on chapter 6 of the book: Toward Global 
Equilibrium: Collected Papers, by William W. Behrens III, Dynamics of 
natural resource utilization. Assuming that when cost increases at the 
beginning, small effect will influence the steel demand, cost effect becomes 
more significant when production costs increases even higher than before. 

 | 
 
Effect of cost on demand table=  

([(0,0)-(20,1)],(1,1),(1.46789,0.960526),(1.95719,0.912281),(2.75229,0.864035), 
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(3.73089, 0.802632), (5.50459, 0.710526), (8.13456, 0.570175), (20, 0)) 
 ~ Dimensionless 

~ The cost effect table is used to model the cost effect; its input is the relative 
cost while the output the effect of cost on the demand 

 | 
 
Effect of gdp per capita on steel demand intensity= 
 Effect of gdp per capita on steel demand intensity table (Relative gdp per capita) 
 ~ Dimensionless 
 ~  | 
 
Effect of gdp per capita on steel demand intensity table= 

 ([(0,0)-(3000,0.3)],(1.037,1),(1.119,0.99),(1.227,0.97),(1.395,0.91),(1.557,0.89),(1.66 

 ,0.87),(1.83,0.86),(1.99,0.78),(2.05,0.77),(2.11,0.71),(2.27,0.69),(2.56,0.76),(2.87 

,0.75),(3.14,0.71),(3.19,0.75),(3.45,0.74),(4,0.67),(4.3,0.66),(4.58,0.66),(4.93,0.69), 

(5.33639, 0.723684), (5.33639, 0.767105), (5.8104, 0.855263), (6.29969, 0.934211), 

(6.78899,1.00526),(7.52294,1.06842),(8.25688,1.11579),(9.11315,1.13816),(9.96942,

1.15263),(11.055,1.13246),(12.0642,1.10482),(13.578,1.06316),(15.2599,1.01579),(16

.6055,0.978947),(18.1193,0.926316),(19.8012,0.884211),(22.6606,0.821053),(25.519

9,0.757895),(29.052,0.689474),(33.7615,0.610526),(37.63,0.536842),(41.8349,0.4789

47),(48.3884,0.412281),(56.5902,0.350877),(64.792,0.302632),(74.3609,0.258772),(8

7.1193,0.214912),(103.976,0.175439),(125.459,0.144737),(155.046,0.116228),(196.8

81,0.0899123),(250.765,0.0701754),(311.927,0.0548246),(403.67,0.0416667),(477.06

4,0.03547),(571.865,0.02887),(697.248,0.02432),(850.153,0.01954),(906.728,0.01885

96),(970.948,0.0175439),(1056.57,0.0157895),(1227.83,0.0135965),(1480.12,0.01116

),(1981.65,0.008311),(2299.69,0.007495)) 

 ~ Dimensionless 
 ~ The relationship between GDP per capita and the steel demand intensity.  
 Such a complex relationship is modeled using table function in terms of 

literature. 
 | 
 
GDP= INTEG (GDP change, 1.41966e+012) 
 ~ yuan/Year 

~ Exogenous input to model the GDP per capita, it is imported from data series 
(provided by IMF) before 2007,and assume 3 scenarios for the GDP growth 
rate between 2007 and 2100 

 | 
 
GDP change=GDP growth rate*GDP 
 ~ yuan/Year/Year 
 ~ The net flow of the GDP stock, it refers to the GDP growth each year 
 | 
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GDP growth rate=GDP growth rate table (Time) 
 ~ Dimensionless 
 ~ The output of the GDP growth rate table 
 | 
 
GDP growth rate table=  

([(1980, 0)-(2100, 1)], (1980, 0.0517237), (1981, 0.0926267), (1982, 0.111776), 

(1983,0.153175),(1984,0.132241),(1985,0.0847539),(1986,0.115292),(1987,0.11277),

(1988,0.0422287),(1989,0.0423565),(1990,0.0911653),(1991,0.140544),(1992,0.1311

76),(1993,0.126256),(1994,0.090037),(1995,0.0975268),(1996,0.0858786),(1997,0.07

80579),(1998,0.0717702),(1999,0.0838896),(2000,0.0720543),(2001,0.0890671),(200

2,0.101957),(2003,0.0990221),(2004,0.111893),(2005,0.1),(2006,0.1),(2007,0.08),(21

00,0.02)) 

 ~ Dimensionless 
~ Using real GDP at price 1995, easy to calculate the growth rate. In order to 

correspond with the GDP growth in reality, it is hard to assume growth rate 
between 2006 and 2100. Even you assume an average growth rate during such 
long time period; it may produce large discrepancy from the actual GDP 
growth. We assume several conditions for the growth rate after 2007. For the 
baseline scenario after 2007, it is assumed to be 0. Several sensitivity tests will 
have to been done to test the robustness of the model behavior.  

 | 
 
GDP measure as billion yuan=GDP/Billion yuan as conversion variable 
 ~ billion yuan/Year 
 ~ Converted from GDP, it is set to get the reference steel demand 
 | 
 
Gdp per capita=GDP/Population 
 ~ yuan/(Year*person) 
 ~ Simply the GDP divided by population. 
 | 
 
Indicated steel demand=Reference steel demand*Effect of cost on demand 
 ~ ton/Year 
 ~ The reference steel demand after the cost effect. 
 | 
 
Initial GDP per capita= INITIAL (GDP per capita) 
 ~ yuan/(Year*person) 

~ The initial value of GDP per capita in 1980. It is modeled to get the relative 
value of GDP per capita. 

 | 
 
Initial steel demand intensity=22681.5 
 ~ ton/billion yuan 
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 ~ The initial steel demand intensity in 1980. 
 | 
 
Initial unit cost= INITIAL (Unit other production costs +Initial unit energy cost) 
 ~ yuan/ton 

~ Assuming no R&D costs before 1980.So it only includes other production costs 
and energy costs 

 | 
 
Initial unit other costs=800 
 ~ yuan/ton 
 ~ Around 5 times of the unit energy cost in 1980. 
 | 
 
Perceived steel demand intensity= 
 Smooth (Steel demand intensity, Time to perceived steel demand intensity) 
 ~ ton/billion yuan 

~ Peoples' perception of steel demand intensity. It takes some time for people to 
perceive the real steel demand intensity by estimation or calculation. 

 | 
 
"Perceived unit R&D cost"=  
 DELAY N (“Unit R&D cost", "Time to perceived unit R&D cost”, 12.36, 1) 
 ~ yuan/ton 
 ~ People's perception of the R&D cost 
 | 
 
Population=Population table (Time) 
 ~ Person 

~ Formulated by importing the data series of population from IMF and the 
prediction from "China Population & Development Research Center". 

 | 
 
Population table= 

([(1900, 0)-(2100, 1e+010)], (1980, 9.98877e+008), (1981, 1.0124e+009), 

(1982,1.02601e+009),(1983,1.03998e+009),(1984,1.05464e+009),(1985,1.07017e+00

9),(1986,1.08677e+009),(1987,1.10426e+009),(1988,1.12205e+009),(1989,1.13926e+

009),(1990,1.15531e+009),(1991,1.16993e+009),(1992,1.1833e+009),(1993,1.1957e+

009),(1994,1.2076e+009),(1995,1.21933e+009),(1996,1.23098e+009),(1997,1.24241e

+009),(1998,1.25351e+009),(1999,1.26407e+009),(2000,1.27398e+009),(2001,1.2832

e+009),(2002,1.29184e+009),(2003,1.30004e+009),(2004,1.30799e+009),(2005,1.315

84e+009),(2020,1.43498e+009),(2030,1.46956e+009),(2040,1.469e+009),(2050,1.432

29e+009),(2060,1.4e+009)) 

 ~ person 
~ The data before 2007 is introduced from IMF country database. After 2007, 

since the population growth rate is rather low, from the literature and China 
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Population & Development Research Center, the population will reach its peak 
at 1.45 billion at the middle of this century and slowly drop to 1.4 billion and 
keep it into the future. 

 | 
 
Reference steel demand= 
 GDP measure as billion yuan*Perceived steel demand intensity 
 ~ ton/Year 

~ This variable is to large extent based on the data series. It is just a reference 
steel demand without taking the cost effect into consideration. It is formulated 
to get the actual steel demand. 

 | 
 
Relative gdp per capita= 
 GDP per capita/Initial GDP per capita 
 ~ Dimensionless 
            ~ Relative change from the Initial GDP per capita, it is modeled in order to get               

the steel demand intensity through the relationship between each other. 
 | 
 
Relative unit cost=Average unit production cost/Initial unit cost 
 ~ Dimensionless 

~ The way to measure the increasing extent of cost. This is for the purpose of 
modeling effect of cost on demand. 

 | 
 
Steel demand intensity= 
 Effect of GDP per capita on steel demand intensity*Initial steel demand intensity 
 ~ ton/billion yuan 

~ It is related to the GDP per capita, the outcome of the effect on the initial steel 
demand intensity. It is formulated to model the reference steel demand. 

 | 
 
Time to average unit cost=1 
 ~ Year 
 ~ Assuming the unit production cost is averaging into 1 year 
 | 
 
Time to perceived steel demand intensity=2 
 ~ Year 
 ~ Assuming it takes 2 year to perceive the steel demand intensity 
 | 
 
"Time to perceived unit R&D cost"=1 
 ~ Year 
 ~ Time for people to perceive the unit R&D cost 
 | 
 
Unit other production costs=Initial unit other costs*Input for other units production costs 
 ~ yuan/ton 
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            ~ Exogenous input in this particular model. We only focus on unit energy cost, 
from the historical data, other production costs increase in a very flat and slow 
trend, which is expressed using exogenous inputs like ramp function. Needs 
further sensitivity tests. 

 | 
 
Unit production cost= 
 Perceived unit energy cost Unit other production costs+"Perceived unit R&D cost" 
 ~ yuan/ton 
            ~ Unit cost, namely the production cost for one ton of steel produced. It includes 

other production costs, energy costs and R&D costs. 
 | 
 
"Unit R&D cost"="R&D investment"/Actual steel demand 
 ~ yuan/ton 
            ~ Since we assume steel demand almost equals to sales rate and production rate, 

so unit R&D cost is simply the R&D investment divided by demand. 
 | 
******************************************************** 
 .Technology 
********************************************************~ 
 | 
 
Average unit energy consumption= INTEG (Change in unit energy consumption, 2.04) 
 ~ tce/ton 
            ~ The expression of energy efficiency in this particular model. The initial value                

is the level in 1980 
 | 
 
Change in unit energy consumption= 

(Desired average unit energy consumption-Average unit energy consumption)/Desired 
average unit energy consumption realization time 

 ~ tce/(Year*ton) 
            ~ Modeled as a net flow for the average unit energy consumption, refers to the 

change in unit energy consumption each year. 
 | 
 
Desired average unit energy consumption= 
 Effect of technology on unit energy consumption*Reference average unit energy 

consumption 
 ~ tce/ton 
            ~ Indicated value of energy efficiency, taking effect from technology 

development into consideration. 
 | 
 
Desired average unit energy consumption realization time=2 
 ~ Year 
 ~ Assuming it takes 2 years to realize the developed technology. 
 | 
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Effect of cost on technology advance= 
 Effect of cost on technology advance table (Relative technology level) 
 ~ Dimensionless 
            ~ The cost of affecting an incremental advance in technology, the cost is 

assumed to gradually increase as more investment is required for each marginal 
increase in technology. 

 | 
 
Effect of cost on technology advance table= 

 ([(1,0)-(20,200)],(1,1),(1.34067,1.11),(1.91315,1.2),(2.43792,1.3),(2.89908,1.6), 

(3.39205,2.63158),(3.99633,4.12281),(4.39388,5.78947),(4.79144,7.80702),(5.37982,

10.5263),(5.96697,12.2807),(6.4367,15.7895),(7.08257,21.0526),(7.90459,28.0702),(8

.72661,35.0877),(9.43119,42.9825),(10.3119,54.386),(11.0752,63.1579),(11.7798,71.

9298),(12.5431,82.4561),(13.1303,91.2281),(13.8349,103.509),(15.0092,119.298),(16.

0661,135.965),(17.8862,162.281), (18.767, 178.07), (19.8826, 199.123)) 

 ~ Dimensionless 
 ~ A table function used to model the cost of technology advancement. 
 | 
 
Effect of technology on unit energy consumption= 
 Effect of technology on unit energy consumption table (Perceived technology level) 
 ~ Dimensionless 

~ A function of relative technology level, increase in technology yields a 
corresponding decrease in energy use per ton of steel produced. 

 | 
 
Effect of technology on unit energy consumption table=  

([(0,0)-(50,1)],(1,1),(1.001,0.907895),(1.01,0.8046),(1.02,0.7012),(1.05,0.6067), 

(1.22324, 0.535088), (1.83486, 0.434211), (2.29358, 0.364035), (3.36391, 0.298246), 

(5.19878,0.236842),(7.95107,0.20614),(11.1621,0.175439),(14.6789,0.157895),(18.50

15,0.140351),(22.63,0.127193),(27.5229,0.118421),(35.0153,0.109649),(50.3058,0.09

64912),(53.7615,0.0877193)) 

 ~ Dimensionless 
~ It is modeled as a table function to express the effect of technology on energy 

efficiency. Technology change level is the input of the table function, while its 
output will be the effect 

 | 
 
Indicated technology change= 
 (Normal technology change/Effect of cost on technology advance)* 
 (("Relative R&D investment"*"Normalized weight for R&D investment")+ 
 (Normalized weight for energy price*Perceived relative energy price)+ 
 (Perceived relative CO2 emission*Normalized weight for CO2 emission*Initial 

Technology)) 
 ~ technology/Year 
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~ Assume that changes in the energy efficiency technology result from 
investments in research and development, energy price increment,CO2 
emission influence the technology development as two motivations as well, 
while it is affected by the increasing costs of technology advancement. 

 | 
 
Initial Technology=1 
 ~ Technology 

~ The initial technology level, assuming it is 1 in the beginning for the virtual 
technology level 

 | 
 
Initial unit energy consumption of BOF=2.107 
 ~ tce/ton 

~ Initial energy usage to produce one ton of steel using basic oxygen furnace as a 
technical process 

 | 
 
Initial unit energy consumption of EAF=1.757 
 ~ tce/ton 

~ Initial energy usage to produce one ton of steel using electrical arc furnace as a 
technical process 

 | 
 
Initial unit energy consumption of OHF=2.107 
 ~ tce/ton 

~ Initial energy usage to produce one ton of steel using open hearth furnaces as a 
technical process 

 | 
 
Normal technology change= INITIAL (0.1) 
 ~ 1/Year 

~ Nominal fraction in technology change each year without any effect from 
incentives 

 | 
 
Normalized weight for CO2 emission= 
 Weight for CO2 emission/(Weight for CO2 emission Weight for energy 

price+"Weight for R&D"\ 
  ) 
 ~ Dimensionless 
 ~ The weight for CO2 emission can be set at any value, while the sum of all  
  the weights should be 100%.In order to reach this purpose, the weight for  
  CO2 emission needs to be converted to Normalized weight for CO2 emission 
 | 
 
Normalized weight for energy price= 
 Weight for energy price/(Weight for CO2 emission Weight for energy price+ "Weight 

for R&D"\ 
  ) 
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 ~ Dimensionless 
 ~ The weight for energy price can be set at any value, while the sum of all  
  the weights should be 100%.In order to reach this purpose, the weight for  
  energy price needs to be converted to Normalized weight for energy price 
 | 
 
"Normalized weight for R&D investment"= 
 "Weight for R&D"/ (Weight for CO2 emission Weight for energy price+"Weight for 

R&D") 
 ~ Dimensionless 
 ~ The weight for R&D can be set at any value, while the sum of all the  
  weights should be 100%,in order to reach this purpose, the weight for R&D  
  needs to be converted to Normalized weight for R&D investment. 
 | 
 
OHF proportion= OHF proportion table (Time) 
 ~ Dimensionless 
 ~ From the historical data, the proportion decreasing trend looks like  
  linearly, it almost went obsolescent in 2000. 
 | 
 
OHF proportion table ([(0, 0)-(2000, 10)], (1980, 0.32), (2000, 0)) 
 ~ Dimensionless 
 ~  | 
 
Perceived technology level= 
 DELAY3 (Relative technology level, Time to adapt new technology) 
 ~ Dimensionless 
 ~ People's perception of new technology level for the time being 
 | 
 
Reference average unit energy consumption= 
 Initial unit energy consumption of BOF*(1-Actual proportion of EAF-OHF proportion)    

+Initial unit energy consumption of EAF*Actual proportion of EAF+ Initial unit energy 
consumption of OHF*OHF proportion 

 ~ tce/ton   
 ~ Refence average energy efficiency, average value of EAF, BOF and OHF's  
  energy efficiency times their owe proportion 
 | 
 
Relative technology level=Technology/Initial Technology 
 ~ Dimensionless 
 ~ Relative technology level, initial technology in 1980 as a reference 
 | 
 
Technology= INTEG (Technology change rate, Initial Technology) 
 ~ technology 
 ~ A way to represent accumulated research and knowledge, modeled as a level  
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 variable, using "technology" as a virtual unit. In this particular research, 
technology refers to energy efficiency techonolgy, such as making use of waste 
heat, 

 | 
 
Technology change rate=Indicated technology change 
 ~ technology/Year 
 ~ Modeled as a net flow to the Technology stock, refers to the technology  

change each year. 
 | 
 
Time to adapt new technology=20 
 ~ Year 
 ~ Time between the research and actual implementation of the new technology. 
 | 
 
Weight for CO2 emission=1 
 ~ Dimensionless 
 ~ A virtual variable. It refers to the importance of the CO2 as an incentive  
  to improve energy saving technology. It is used to model normalized weight  
  for CO2. The value of this constant can be changed during the policy  
  Optimization. The initial value is 1 for the equilibrium condition. 
 | 
 
Weight for energy price=1 
 ~ Dimensionless 
 ~ A virtual variable. It refers to the importance of the energy price as an  
  incentive to improve energy saving technology. It is used to model  
  normalized weight for energy price. The value of this constant can be  
  changed during the policy optimization. The initial value is 1 for the  
  equilibrium condition. 
 | 
 
"Weight for R&D"=IF THEN ELSE (Time>POLICY YEAR,” Weight R&D", 1) 
 ~ Dimensionless 
 ~ A virtual variable. It refers to the importance of the R&D as an incentive  
  to improve energy saving technology. It is used to model normalized weight  
  for R&D The value of this constant can be changed during the policy  
  optimization. The initial value is 1 for the equilibrium condition. 
 | 
 
"Weight R&D"=1 
 ~ Dimensionless 
            ~ Used only during the technological improvement policy optimization. The 

reason we only use this structure to model the "weight for R&D" is that R&D 
change has been found to have the most impact on technological development 
among all the incentives.  

            | 
******************************************************** 
 .Unit Energy Cost 
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********************************************************~ 
 | 
 
Energy price=IF THEN ELSE (Time >= POLICY YEAR, Reference average energy price 

Energy tax*1, Reference average energy price) 
 ~ yuan/tce 
 ~ The ultimate energy price including the crude price and the tax levied by  
  government 
 | 
 
Energy price table= 

 ([(1980,0)-(3000,4000)],(1980,100),(1981,106),(1982,108),(1983,110),(1984,113), 

(1985,117),(1986,120),(1987,130),(1988,160),(1989,205),(1990,240),(1991,250),(199

2,290),(1993,350),(1994,410),(1995,470),(1996,567),(1997,587),(1998,549),(2006,60

0),(2007,600), (2100.37, 600)) 

 ~ yuan/tce 
 ~ Exogenous input variable, we introduced the data series directly from 1980  
  to 2006. Needs sensitivity tests for future behavior analysis. 
 | 
 
Energy tax= 
 IF THEN ELSE (Time>=POLICY YEAR, Energy tax rate*Reference average energy 

price, 0) 
 ~ yuan/tce 
 ~ Assumed to be the tax rate times the energy price, which means it is  
  proportional to the energy price. And the energy tax policy can be  
  implemented from 2007 or 1990 to see whether the condition will be  
  improved if we implemented the policy earlier. 
 | 
 
Energy tax expense=Energy demand*Energy tax 
 ~ yuan/Year 
 ~ It is an output to R&D investment sector formed as a recycled subsidy on  
  R&D investment and output to Energy demand sector as a policy repayment. 
 | 
 
Energy tax rate=0.3 
 ~ Dimensionless 
 ~ Policy variable, the key variable to implement the energy tax policy. The  
  tax rate can be adjusted to see the effect from magnitude of the policy. 
 | 
 
Initial energy price= INITIAL (Energy price) 
 ~ yuan/tce 
 ~ The energy price in 1980 
 | 
 
Initial unit energy cost= INITIAL (Unit energy cost) 
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 ~ yuan/ton 
 ~ The unit energy cost among production cost in 1980. 
 | 
 
Perceived relative energy price=Smooth (Relative energy price, Time to perceived relative 
energy price) 
 ~ Dimensionless 
 ~ Peoples' perception of energy price change 
 | 
 
Perceived unit energy cost=Smooth (Unit energy cost, Time to perceived unit energy cost) 
 ~ yuan/ton 
 ~ People's perception of unit energy cost. 
 | 
 
POLICY YEAR=2007 
 ~ Year 
 ~ Initial year to implement policy, 2007 or 1990 for the time selection of  
  the policy implementation 
 | 
 
Reference average energy price=Energy price table (Time)*Input for energy price 
 ~ yuan/tce 
 ~ The reference energy price introduced directly from historical data series  
  Between 1980 and 2007, needs sensitivity tests for the behavior after 2007. 
 | 
 
Relative energy price=Energy price/Initial energy price 
 ~ Dimensionless 
 ~ Relative value of energy price, the price 1980 as its initial value. 
 | 
 
Time to perceived relative energy price=1 
 ~ Year 
 ~ The time that people needed to perceive the real energy price change. 
 | 
 
Time to perceived unit energy cost=1 
 ~ Year 
 ~ Assuming it takes 1 year for people to perceive the unit energy cost 
 | 
 
Unit cost of loan=Energy tax expense/Actual steel demand 
 ~ yuan/ton 
 ~ Used in the subsidy pay off policy, in this case, the subsidy will have  
  to be paid back, namely a loan. This loan will be distributed into the  
  industry's energy cost. 
 | 
 
Unit energy cost=Average unit energy consumption*Energy price Unit cost of loan*0 
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 ~ yuan/ton 
~ It is simply the energy price times the unit energy consumption, this variable 

means how much energy is needed to produce one ton of steel. When there is 
subsidy repayment policy implemented, the unit energy cost should also 
include the pay off. 

 | 
******************************************************** 
 .Energy Demand & CO2 Emission 
********************************************************~ 
 | 
 
Average carbon emission per unit energy used= 
 Actual proportion of EAF*Carbon emission from EAF per tce+ (1-Actual proportion 

of EAF)*"Carbon emission from BOF&OHF per tce" 
 ~ C/tce 
 ~ The average carbon emission per unit energy used based on three  
  steelmaking ways, it is influence by the proportion of different  
  steelmaking ways. 
 | 
 
Average energy expense=Smooth (Energy expense, Time to average energy expense) 
 ~ yuan/Year 
 ~ The energy expense averaged in a certain period of time. 
 ~ :SUPPLEMENTARY  
 | 
 
"Carbon emission from BOF&OHF per tce"=0.743 
 ~ C/tce 
 ~ Both of BOF and OHF have included the iron making process, from historical  
  data, their carbon emission per unit energy used are quite similar. We use  
  the same value for both of them. 
 | 
 
Carbon emission from EAF per tce=0.186 
 ~ C/tce 
 ~ An estimated value, should be 1/4 of value when using BOF or OHF 
 | 
 
Carbon index=3.666 
 ~ tonc/C 
 ~ The ratio between "CO2" molecular weight and "C" atomic weight. It is used  
  to calculate the CO2 generation rate. 
 | 
 
CO2 generation rate= 
 Total energy consumption*Average carbon emission per unit energy used*Carbon 

index 
 ~ tonc/Year 
 ~ Closely related to the energy demand, while it is also dependent on the  
  steelmaking ways, since different production way has its own carbon  
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  emission per energy used. 
 | 
 
Energy expense=Energy demand*Energy price Energy tax expense*0 
 ~ yuan/Year 
 ~ The energy expenditure for the steel industry to spend on, it is closely  
  related to the energy demand and energy price. In the policy analysis of  
  subsidy repayment, the repayment needs to be added. 
 | 
 
Initial CO2 emission= INITIAL (Perceived CO2 emission) 
 ~ tonc/Year 
 ~ The initial CO2 emission in 1980 
 | 
 
Perceived CO2 emission=Smooth (CO2 generation rate, Time to perceived CO2 emission) 
 ~ tonc/Year 
 ~ People's perception of CO2 emission. 
 | 
 
Perceived relative CO2 emission=Smooth (Relative CO2 emission, Time to perceive CO2 

emission) 
 ~ Dimensionless 
 ~ People's perception of relative CO2 emission 
 | 
 
Relative CO2 emission=Perceived CO2 emission/Initial CO2 emission 
 ~ Dimensionless 
 ~ The current CO2 emission relative to the initial CO2 emission reflecting  
  the actual CO2 emission change. 
 | 
 
Time to actual energy demand=1 
 ~ Year 
 ~ Assuming there is a one year delay before the energy is consumed and after  
  the energy is demanded. 
 | 
 
Time to average energy expense=5 
 ~ Year 
 ~ Assuming that time to get an average value of energy expense is 5 years. 
 | 
 
Time to perceive CO2 emission=1 
 ~ Year 
 ~ Assuming it takes 1 year for people to perceive the relative CO2 emission  
  change 
 | 
 
Time to perceived CO2 emission=1 
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 ~ Year 
 ~ Assuming it takes 1 year for people to perceive the CO2 emission 
 | 
 
Total energy consumption=Smooth (Energy demand, Time to actual energy demand) 
 ~ tce/Year 
 ~ It is assumed to be the 1 year delayed value of energy demand. It is  

modeled to get the CO2 emission. 
 | 
 
Energy demand=Actual steel demand*Average unit energy consumption 
 ~ tce/Year 
 ~ The energy demand required for the whole steel industry. 
 | 
******************************************************** 
 .EAF & Scrapped Steel 
********************************************************~ 
 | 
 
Actual proportion of EAF=  
 DELAY N (Indicated proportion of EAF, Time to actual proportion of EAF, 0.192, 1) 
 ~ Dimensionless 
 ~ The actual EAF proportion that people can estimate or calculate in the  
  future. 
 | 
 
Actual recycled scrapped steel=Smooth (Recycled scrapped steel, Time to actual scrapped 
steel recycled) 
 ~ ton/Year 
 ~ The actual recycled scrapped steels that people estimate. 
 | 
 
Cumulative steel= INTEG (Steel production-Steel scrapping rate, 4.17707e+008) 
 ~ ton 
 ~ An expression of the steel resource and accumulation. 
 | 
 
Depreciation time=18+step (1e+008, 2007)*0 
 ~ Year 
 ~ For the situation in China, the depreciation time is around 18 years.  
  Extreme testing about the deprecation time is implemented on this variable. 
 | 
 
Effect of scrapped steel ratio on proportion of EAF= 
 Effect of scrapped steel ratio on proportion of EAF table (Ratio between demand and 

actual recycled) 
 ~ Dimensionless 
 ~  | 
 
Effect of scrapped steel ratio on proportion of EAF table= 
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 ([(0,0)-(10,10)],(0.339,3.55263),(0.389,3.37719),(0.459,2.9386),(0.564,2.41228), 

(0.681,1.88596),(0.721713,1.71053),(0.795107,1.44737),(0.869,1.31579),(0.985,1.228

07),(1.105,1.1),(1.68,0.9),(2,0.756),(3,0.5),(10,0)) 

 ~ Dimensionless 
 ~ From the literature, more scrapped steel resource leads to a low cost, which  
  eventually make steel industry to use more scrapped steel as raw materials  
  to make steel. This means people may increase the proportion of EAF to  
  save energy. 
 | 
 
Indicated proportion of EAF= 
 Initial proportion of EAF*Effect of scrapped steel ratio on proportion of EAF 
 ~ Dimensionless 
 ~ Indicated EAF proportion after the effect of scrapped steels supply and  
  demand. 
 | 
 
Initial proportion of EAF=0.192 
 ~ Dimensionless 

~ The initial proportion of EAF in 1980, introduced from "ANALYSISOF 
ENERGY SAVING AND ENERGY CONSUM PTION IN CHINESE STEEL 
INDUSTRY FOR LAST 20 YEARS AND NEXT 5 YEARS" 

 | 
 
Ratio between demand and actual recycled=Scrapped steel demand/Actual recycled scrapped 
steel 
 ~ Dimensionless 
 ~ The input of the table function in order to get the effect from scrapped  
  steel supply & demand ratio on the EAF development, namely EAF proportion 
  among steelmaking ways. 
 | 
 
Recycled scrapped steel=Steel scrapping rate*Recycling rate 
 ~ ton/Year 
 ~ Recycled scrapped steels from the social capital. 
 | 
 
Recycling rate= 
 Reference recycling rate*Smooth (Input for EAF recycling rate, Time to realize the 

recycling rate) 
 ~ Dimensionless 
 ~ Modeled in an exogenous way, using some input to predict the future  
  development. Policy is designed with regarding to this parameter for the  
  steelmaking process improvement. 
 | 
 
Reference recycling rate=0.4 
 ~ Dimensionless 
 ~ The reference recycling rate of scrapped steels for the past. 



 

 - 119 -

 | 
 
Scrapped steel consumption by BOF=0.1 
 ~ ton/ton 
 ~ The scrapped steels consumed to make steel when use BOF 
 | 
 
Scrapped steel consumption by EAF=0.9 
 ~ ton/ton 
 ~ The scrapped steels consumed to make steel when use EAF 
 | 
 
Scrapped steel consumption by OHF=0.25 
 ~ ton/ton 
 ~ The scrapped steels consumed to make steel when use OHF 
 | 
 
Scrapped steel demand= 
 Actual steel demand*Actual proportion of EAF*Scrapped steel consumption by EAF+ 

Actual steel demand*(1-Actual proportion of EAF-OHF proportion)*Scrapped steel 
consumption by BOF+ Actual steel demand*Scrapped steel consumption by 
OHF*OHF proportion 

 ~ ton/Year 
 ~ It is dependent on the each steelmaking way's scrapped steel consumption  
  times the proportion respectively. 
 | 
 
Steel production=Actual steel demand 
 ~ ton/Year 
 ~ Assuming the demand equals the actual production rate 
 | 
 
Steel scrapping rate= Cumulative steel/Depreciation time 
 ~ ton/Year 

~ It is modeled using a material delay, simply the cumulative steel depreciated 
after a certain time period. 

 | 
 
Time to actual proportion of EAF=5 
 ~ Year 
 ~ The time for the industry to realize the proportion 
 | 
 
Time to actual scrapped steel recycled=1 
 ~ Year 
 ~ The time for people to estimate the actual recycled scrapped steels 
 | 
 
Time to realize the recycling rate=5 
 ~ Year 
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 ~ Time to realize the recycling rate from technology development. 
 | 
******************************************************** 
 .R&D Investment 
********************************************************~ 
 | 
 
"Initial R&D investment"= INITIAL ("R&D investment") 
 ~ yuan/Year 
 ~ The initial R&D investment as a percentage of sales revenues in 1980 
 | 
 
"R&D investment"= 
 "R&D investment by steel industry"+ "R&D investment subsidized by government" 
 ~ yuan/Year 
 ~ The sum of industry R&D investment and the investment from government 
 | 
 
"R&D investment by steel industry"= 

"Reference percentage investment in R&D by steel industry" *sales revenues 
 ~ yuan/Year 
 ~ R&D investment implemented by the steel industry itself, the industry set  
  aside a certain percentage of its revenue each year as the investment on  
  R&D. 
 | 
 
"R&D investment subsidized by government"= 
 IF THEN ELSE (Time>=POLICY YEAR, Energy tax expense*0, 0) 
 ~ yuan/Year 
 ~ R&D invested by the government in a form of subsidy. Since the R&D subsidy  
  is a policy variable, the subsidy is only given after the policy year. 
 | 
 
"Reference percentage investment in R&D by steel industry"= 0.01 
 ~ Dimensionless 
 ~ percentage of sales revenue on R&D investment. As the "Yearbook of  
  technology of China" shows, R&D percentage for iron and steel industry has  
  been kept at around 0.01 for a long time. 
 | 
 
"Relative R&D investment"="R&D investment"/"Initial R&D investment" 
 ~ Dimensionless 
 ~ The relative R&D investment change from the initial year 
 | 
 
Sales revenues=Average unit production cost*Actual steel demand 
 ~ yuan/Year 
 ~ We assume that cost equals to price, without the consideration of markup  
  and demand equals to the sales rate. 
 | 
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******************************************************** 
 .Exogenous Input 
********************************************************~ 
 | 
Input for EAF recycling rate=1+step (Step height, Step time) 
 ~ Dimensionless 
 ~ Policy input for EAF recycling rate. Since no body knows how it behaves in  
  the future, several reasonable conditions for this policy input will be  
  given. 
 | 
 
Input for energy price=1+ramp (Ramp slope 3, Ramp start time 3, Ramp end time 3) 
 ~ Dimensionless 
 ~ Exogenous input for energy price. Assuming that it grows like using a ramp  
  function. The slope needs sensitivity tests. 
 | 
 
Input for other units production costs= 
 1+ramp (Ramp slope 1, Ramp start time 1, Ramp end time1) +ramp (Ramp slope 2, 

Ramp start time 2, Ramp end time 2) 
 ~ Dimensionless 
 ~ Exogenous input for other unit production costs. Assuming that it grows  
  like using a ramp function when the slope 1 is 0.1.The slope 2 is the  
  assumption for its future behavior, it needs sensitivity tests. 
 | 
 
Ramp end time 2= 2100 
 ~ Year 
 ~ The end time of the time horizon 
 | 
 
Ramp end time 3=2100 
 ~ Year 
 ~ The end time of the time horizon 
 | 
 
Ramp end time1=2007 
 ~ Year 
 ~ The end time of the ramp function 1 
 | 
 
Ramp slope 1=0.1 
 ~ Dimensionless 
 ~ Normal ramp slope value for other units production costs is set at 0.1 for  
  the time period 1980-2007. 
 | 
 
Ramp slope 2=0.05 
 ~ Dimensionless 
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 ~ After 2007, the growth trend of other units production costs could be  
  different, we assume there are two cases which may happen in the future:  
  first case: it grows as usual; second case: it grows at half rate as the  
  it does before. Base run scenario: 0. 
 | 
 
Ramp slope 3=0.1 
 ~ Dimensionless 
 ~ The ramp slope of the input for energy price, needs sensitivity testing to  
  analysis future behavior of the energy price growth 
 | 
 
Ramp start time 1=1980 
 ~ Year 
 ~ The start time of the time horizon 
 | 
 
Ramp start time 2=2007 
 ~ Year 
 ~ The start time to use the ramp function 2 
 | 
 
Ramp start time 3=2007 
 ~ Year 
 ~ The start time to use the ramp function 3 
 | 
 
Step height=0 
 ~ Dimensionless 
 ~ Exogenous input as a policy. Different situations are considered. For the  
 Step function, we test the height 1, and then the recycling rate will eventually 

reach 0.8. 
 | 
 
Step time=2007 
 ~ Year 
 ~ The time to add step function as an input on the EAF recycling rate. 
 | 


